na UNIVERSITY of

i University of Tennessee, Knoxville

ENNESSEE Trace: Tennessee Research and Creative
piisainin

Exchange

Masters Theses Graduate School

12-201S8

Implementation of a Neuromorphic Development

Platform with DANNA

Jason Yen-Shen Chan
University of Tennessee - Knoxville, jchanS@vols.utk.edu

Recommended Citation

Chan, Jason Yen-Shen, "Implementation of a Neuromorphic Development Platform with DANNA. " Master's Thesis, University of
Tennessee, 201S.

https://trace.tennessee.edu/utk_gradthes/3569

This Thesis is brought to you for free and open access by the Graduate School at Trace: Tennessee Research and Creative Exchange. It has been
accepted for inclusion in Masters Theses by an authorized administrator of Trace: Tennessee Research and Creative Exchange. For more information,
please contact trace@utk.edu.

https://trace.tennessee.edu
https://trace.tennessee.edu
https://trace.tennessee.edu/utk_gradthes
https://trace.tennessee.edu/utk-grad
mailto:trace@utk.edu

To the Graduate Council:

I am submitting herewith a thesis written by Jason Yen-Shen Chan entitled "Implementation of a
Neuromorphic Development Platform with DANNA." I have examined the final electronic copy of this
thesis for form and content and recommend that it be accepted in partial fulfillment of the requirements
for the degree of Master of Science, with a major in Electrical Engineering.

Mark Dean, Major Professor
We have read this thesis and recommend its acceptance:

John D. Birdwell, Garrett Rose

Accepted for the Council:
Carolyn R. Hodges

Vice Provost and Dean of the Graduate School

(Original signatures are on file with official student records.)

Implementation of a Neuromorphic

Development Platform with

DANNA

A Thesis Presented for the
Master of Science
Degree

The University of Tennessee, Knoxville

Jason Yen-Shen Chan
December 2015

(© by Jason Yen-Shen Chan, 2015
All Rights Reserved.

i

Abstract

Neuromorphic computing is the use of artificial neural networks to address complex
and/or non-traditional computational problems. The specialized computing field
has been growing in interest during the past few years. Specialized hardware that
function as neural networks can be utilized to solve a broad set of problems less
suited for traditional computing architectures, such as pattern classification, anomaly
detection, and adaptive controls. However, these hardware platforms have neural
network structures that are static, being limited to only perform a specific application,
and cannot be used for other tasks. In this paper, the feasibility of a development

platform utilizing a dynamic artificial neural network for researchers is discussed.

1l

Table of Contents

1 Introduction
2 Related Work

3 DANNA
3.1 Overview oL
3.2 DANNA Element
3.3 Clocking Module
3.4 Psuedo-Random Number Generator
3.5 Programming Interface Module
3.6 DANNA Programming Structure

3.7 Imitial Implementation 0oL

4 Enhanced DANNA
4.1 Element Improvements L.

4.1.1 Element Monitoring
4.2 DANNA Module Improvements

5 DANNA Development Kit
5.1 Host Computer
5.2 Communications Module
5.3 FPGA Module
5.4 Software

v

10
11
11
14
15
15
15
18

21
21
23
24

6 Build and Initial Testing
6.1 Physical Layout

6.2 Communication Interface . .

6.3 Initial Design, Implementation, and Testing

6.4 FIFO Reset Implementation

7 Challenges
7.1 690T FPGA
7.2 2000T FPGA

7.3 Comparison with VLSI Design

8 Future Improvements

8.1 Communication Improvement

8.2 DANNA Element Improvement

8.3 External Input Implementation

8.4 FPGA Improvements

8.5 File Transfer Improvements

9 Conclusion

Bibliography

Vita

34
34
35
39
49

50
51
53
95

57
57
58
99
60
61

63

64

69

List of Figures

2.1
2.2
2.3

3.1
3.2
3.3
3.4

4.1
4.2

5.1
5.2
5.3
5.4
5.5

6.1
6.2
6.3
6.4
6.5
6.6
6.7

Neurogrid Board [18] 4
SpiNNaker CMP Die [9] 6
Element Operation [26] 8
DANNA Block Diagram 12
DANNA Commands Operation Code 16
DANNA Commands and their Structure 17
DANNA Status Packet oo 18
Element Connection 22
Element Monitoring Diagram 23
DANNA Development Kit 27
Block Diagram of Kit oo 28
Wandboard Single Board Computer [12] 29
Cypress EZ-USB FX3 Super Speed Explorer Kit [3] 30
Hitech Global Virtex-7 FPGA FMC Module [5] 32
Cypress FMC Interconnect Board for the FX3 Dev Kit [4] 35
Slave FIFO Interface Diagram 37
Slave FIFO FSM Diagram 38
Fire Command - Sending Command to DANNA 42
Fire Command - Finite State Machine Signals 43
Status Packet - Receiving Packet from DANNA 44
Status Packet - Data Received 45

vi

6.8

7.1
7.2
7.3
7.4

8.1
8.2

8.3

FX3-to-FPGA Socket Switching Implementation 48

47 x 47 DANNA Array Implementation 52
Hitech Global Virtex-7 V2000T PCI Express Development Board [14] 54
75 x 75, FPGA Routing 55
75 x 75, VLSI Routing [19] 56
ODROID-XU4 Single Board Computer [8] 58
Hitech Global Virtex 7 Quad V2000T Emulation / ASIC Prototyping

Board[10] 61
Hitech Global Virtex UltraScale 900 Gig Optical Networking Platform

[11] . . 62

vil

Chapter 1

Introduction

The field of neuromorphic computing has grown in prevalence over the years. To
date, many research groups have tried to implement artificial neural networks using
both hardware and software combined. There are a handful of hardware platforms
hosting artificial neural networks well documented by research groups. However, these
platforms hold static networks, being configured in a specific manner, making them
usable for only specific applications.

Neuroscience-Inspired Dynamic Architecture (NIDA) was presented as an al-
ternate software approach to artificial neural networks. With a focus on making
simple networks dynamic and adaptive, they allow for large network structures with
comparable capabilities against other approaches. The architecture utilizes simple
neurons and synapses to create large array structures suited to perform tasks and
solve problems suited for neuromorphic computing systems.

A hardware platform that utilizes the NIDA computing architecture was devel-
oped. Dynamically Adaptive Neural Network Arrays (DANNA) utilizes the same
architecture and principles as NIDA networks. DANNAs are 2-D network structures
better suited for implementation on a hardware platform. DANNA elements, which
can be programmed as a neuron or a synapse, are tiled together to form an array

structure, and they can be programmed to accomplish the same tasks as NIDA.

Previous work has been done with DANNA networks showcasing their functionality
on a Field-Programmable Gate Array (FPGA) [21].

In an effort to apply DANNA to other applications, a development kit (DDK) was
proposed. Comprised of a single board computer, a communications interface, and an
FPGA module, it can contain a programmable DANNA array DANNA as well as the
necessary hardware to operate and monitor the DANNA networks. This standalone
system contains all of the necessary hardware needed to operate DANNA networks,
so other researchers may utilize it for their own applications.

The DANNA implementation used for the kit improves upon the problems
presented in the original implementation while retaining the same architecture to
create neural networks. It now features an increased number of connections per
element as well as a new monitoring capability for elements and a new communications
interface. Resolving issues found in the original design, large array structures have
been implemented in the DANNA kit. Testing the new design confirms its behavior
and led to other enhancements. While the kit has been confirmed to have worked,
more work can be performed on its components allowing for larger array structures
to be built, interfaced, and monitored.

The following sections of this report detail the work done with DANNA works
that culminate in the creation of the DANNA development kit.

Chapter 2

Related Work

Neuroscience-inspired computation is a rapidly growing field in the realm of comput-
ing. With technology advancing, more and more research has been conducted in the
field with the goal of mimicking a human brain to perform advanced computations
unsuited for traditional computing. However, creating an artificial neural network
(ANNs) for computation proves to be a challenge. They tend to be constructed
with dynamic element with predefined operators, such as unit delay elements, and
are trained with machine learning (ML) methods whereas biological neural networks
are inherently parallel and function as distributed systems that incorporate state
information as memory and dynamics for behavior based on prior stimuli [20].

Currently, there have been many implementations of ANNs by many groups in
both software, through modeling and simulation, and hardware, through analog and
digital constructs [20]. Each group has their own unique method of approaching
the problem posed by neuromorphic computing, with some groups utilizing existing
architecture and others developing unique architectures to solve the same problems.
Some notable hardware examples include Neurogrid by Stanford University [17],
SpiNNaker by the University of Manchester [24], the TrueNorth Computer by IBM
[6], and BrainScaleS by the Human Brain Project [25].

Neurogrid, by Stanford University, is a neuromorphic multi-chip system for
simulating large-scale neural models in real-time [17]. It is capable of modeling
complex neuron structures and synapse connections on each of its custom chips,
referred to as Neurocores. Using a combination of both analog and digital circuits,
Neurogrid succeeds in implementing common elements found in neural structures
allowing for versatility. Specialized software works with the Neurogrid platform to
map neural networks onto the hardware through the use of a USB controller, and a
CPLD acts as an interface between the controller and the Neurocores. The current
Neurogrid hardware platform contains 16 Neurocores, each capable of simulating a
256 x 256 array structure, allowing for very complex networks all on a 6.5 x 7.5 in?

board. An image of the platform can be shown below in figure 2.1.

Figure 2.1: Neurogrid Board [18]

SpiNNaker is a biologically inspired, massively parallel computing engine designed
to model and simulate spiking neural networks [24]. It is designed as an array
of nodes, with each node containing a unique chip multiprocessor (CMP) die and
an SDRAM die, and each CMP holds 18 ARM968 processors, each capable of
simulating 1000 spiking neurons. The processors contain separate instruction and
data memory as well as both off-chip and on-chip RAM all interconnected through
a network which also communicates with an on-chip router which sends packets off-
chip to other processors. Processor communication is based off of a neurobiological-
inspired multicast infrastructure, which uses a packet-switched network to emulate
the high connectivity found in biological systems with a router that repeats packets
to several destinations. A die plot of the SpiNNaker CMP is shown below in figure
2.2. The fourth generation of the SpiNNaker system contains 864 processors in 48
chips all on one board which have been shown to simulate large networks containing
a million neurons and a billion synapses, and it is hoped that multiple boards can be
interconnected together to form larger arrays.

TrueNorth is a brain-inspired neurosynaptic processor with its architecture in-
spired by the human brain and the cortical column, a cluster of densely interconnected
neurons which form the canonical unit of the brain [16]. It is composed of 4096
neurosynaptic cores tiled in a 2-D array structure, which contain an aggregate of
1 million neurons and 256 million synapses. Each core is composed of tightly
coupled neurons for computation, synapses for memory, and axons and dendrites for
communication. The processor is driven by a parallel, event-driven architecture which
implement spiking neurons by programming neurons and the connectivity between
them. The TrueNorth processors are designed in such a way that can be tiled into
2-D array structures, and this allows for large networks of interconnected neurons
built from the neurosynaptic cores.

The Human Brain Project by the European Commission conducted several
projects in an effort to develop its own neuromorphic computing platform. One

project, BrainScaleS, attempts to develop a large-scale artificial neural system

Tightly;cou led
RAM J:

Core 16 Router

[Irouting | H
rl | Tables

Core 15 |
bt s

Figure 2.2: SpiNNaker CMP Die [9]

on a physical platform that implements many systems found in contemporary
computational neuroscience [25]. The platform is comprised of specialized wafer-
integrated VLSI chips, all interconnected together with each one containing 4 x 107
analog synapses and up to 180,000 neurons. External configuration and monitoring of
the system is carried through a dedicated communications network through the use
of application specific integrated circuits (ASICs) and FPGAs [30]. Testing shows
that the system is capable of accelerated emulation of spiking neural networks.

In spite of these technological achievements in the realm of neuromorphic com-
puting, there are some downsides to the hardware. Most hardware implementations
are static structures, by which their neural networks have their components fixed
at specific locations in hardware [20]. This fixed placement of neural components

limits the network to work for only specific applications. Also, the hardware lacks the

ability flexibly adapt to changing conditions and inputs. Furthermore, many hardware
implementations are limited by the use of components found in von Neumann based
systems such as RAM, buses, processors, and sequential instruction processing. This
is most evident in the SpiNNaker project through it use of ARM cores [24]. All of the
drawbacks of current platforms have inspired development of a dynamic, adaptable
neuromorphic platform with an approach of creating complex neural networks at the
expense of less complex neural elements. The result is a simpler platform capable of
providing similar functionality when compared to other complex hardware platforms.

Neuroscience-Inspired Dynamic Architecture (NIDA), is a biologically-inspired
architecture used to develop neuromorphic networks [28]. NIDA networks are unique
in that information is distributed throughout the network in neurons and synapses
via charge and delay, respectively, and that the network functions in a discrete event
framework represented by spiking behavior.

NIDA networks are comprised of neurons and synapses [28]. Neurons are
located at fixed points in 3-D space, and each one acts as an accumulator with
a associated threshold value, while synapses are defined as paths between neurons
passing information (represented as charge), which is delayed because of a synapse’s
propagation velocity. Synapses have associated weight values that may be inhibitory
or excitatory. Delay throughout the network is defined by a synapse’s length, which
corresponds to the distance between the two neurons that the synapse connects.
Depending on the synapse’s delay, both long and short-term information may be
stored in the network.

Neurons accumulate charge and fire, at which point they enter a refractory period
in which they may still accumulate charge but cannot fire. Synapses delay charge for
a certain amount of time before firing to model delay between neurons. The state of
the network, which includes the charges accumulated by neurons and events traveling
along synapses, evolves in an event-driven simulation. An example of a neuron’s
behavior is shown in figure 2.3. The far-left image shows charge traveling along a

synapse to a neuron. The middle-left image shows the charge reaching the neuron.

Once received, the neuron adds the receiving charge to its stored, accumulated charge.
The accumulated charge exceeds the neuron’s threshold, so the neuron fires. The
accumulated charge travels along the synapses connected to the neuron as shown in

the far-right image.

Charge Increase due to
Change-in-Charge Event Return to neutral charge

Threshold \ /

Charge (No elapsed time) /

Incoming Outgoing

s
Synapse Synapse j
‘1’ ,
N

—Q

] t t R t Mt

Firing Time Firing Time Time

7
Change-in-
Charge Event

Firing Nelﬁvon

Figure 2.3: Element Operation [26]

NIDA networks are unique in that they use evolutionary optimization tools to
adjust the network based on changing conditions [28]. It trains over the network
structure and parameters, including neuron thresholds and synapse weights, as well
as the dynamics found within the network. Starting with an initial group of networks
created by user information, they experience mutation and crossover producing
new networks that are optimized to perform a specific task. Using this method
results in networks optimized for various applications such as supervised tasks and
reinforcement learning.

The work done with NIDA shows its potential as a new computing architecture

for neuromorphic computing. Simulations have shown its application in tasks such

as anomaly detection and controls. NIDA is primarily a software simulation-based
system, and the work done has potential applications in hardware. Implementing the
NIDA architecture in hardware would allow for more usage in applications than with

just a software platform.

Chapter 3

DANNA

A DANNA is a system architecture designed to support implementation of artificial
neural networks emulated in hardware. As stated previously, Schuman et al.
introduced a new type of computing architecture, the Neuroscience-Inspired Dynamic
Architecture (NIDA). DANNAS can be thought of as a 2-D hardware implementation
of NIDA. Their uniqueness lies in the fact that their physical layout is not exclusive
to one specific application. Being dynamically programmable, the arrays can be
reconfigured to form a wide variety of network structures limited only by size of the
DANNA array.

With the use of evolutionary optimization tools to train element connections
and interconnections, DANNA arrays can be reprogrammed to adapt to changing
conditions allowing for high adaptability and flexibility when compared to other
hardware models [20]. DANNA arrays also carry the advantage in that their
implementation is highly simplistic. By relying only on select capabilities of
neurons and synapses rather than all characteristics of a biological network, element
complexity is reduced while still retaining the ability to perform various tasks through

complex array structures.

10

3.1 Overview

A DANNA array utilizes basic neural components integrated into a generic structure
referred to as an “element”. Elements are arranged in a 2-dimensional structure
using a nearest neighbor connection matrix. When an element fires, it sends its
weight to all connected elements. Supporting structures that are included within the
DANNA array are: a pseudo-random number generator (to support randomization
of input sampling for each input) and a clocking module. All elements receive signals
from these modules. A finite-state machine module (FSM) supports communications
between the DANNA and a host computer.

The DANNA array structure operates through commands sent by a host processor.
A communications interface receives command data sent from the host and stores it
in a First-In-First-Out (FIFO), the command FIFO. An FSM for the FIFO reads
from the FIFO and concatenates the data into commands. These commands go to a
programming FSM, which interpret the commands and act upon the DANNA array.
In return, the DANNA array returns status packets, which the FIFO FSM reads and
breaks up into data for a second FIFO, the response FIFO. The communications
interface reads from the FIFO and returns the data back to the host computer. A
block diagram showing the DANNA array implementation and associated modules

can be shown below in figure 3.1.

3.2 DANNA Element

DANNA arrays are comprised of basic re-programmable elements that can act as a
neuron or a synapse depending on the network. The representation of the neuron is
highly simplified, but the trade off allows for complex networks rather than complex
neurons [27]. Each neuron in the network has a programmable threshold and a
refractory period. Neurons connect each other through directed synapses, with

each neuron containing a set of synapses going to other neurons as well as a set

11

FPGA
(\ a N\ a) 4 N 4 N DANNA Array
Module
Response Clock
FIFO Generator
p—— — —
FIFO Pseudo
Communications \ / - Programmin = Random [
HOST <;> Interf: LOgIC K p |g rf: ¢ Number
rerace T) Module md:ﬁ: [| Generator [
s 3
E> Command [> <:| B DANNA]
FIFO L | Array [
Elements
-/ \ / g / g J/ (U J T‘l—l—l—’lj

Figure 3.1: Block Diagram of DANNA Implementation

of synapses coming from other neurons. Neurons operate by accumulating charge
from its synapses until its threshold is reached. After it has been reached, the neuron
will fire its output, and its charge will reset to a bias level. After firing, it enters a
refractory period for one network cycle during which it can accumulate charge, but
it cannot fire.

A synapse can be defined by the neurons it links together, as each synapse
links one neuron to another [27]. Each one contains a distance between the two
neurons and a weight value representing the strength of the connection, with the
distance representing how many network cycles it takes for charge to travel across
the synapse. The primary operation of a synapse in a DANNA work is to adapt and
transmit a weighted firing signal based on the firing rate of its input neuron, the
firing conditions of the corresponding output neuron, and its programmable distance,
utilizing a "distance” FIFO to simulate a synapse transmitting a set of fire events
based on its length. A synapse can have one of its I/O ports enabled as an input
and one /O port enabled as an output. When it receives a fire event from its input
neuron, it stores it in its distance FIFO which shifts out stored events; when it reaches
the output, the current weight stored in the synapse is transmitted as a firing event at

its associated output port. When a synapse fires and its transmitted charge causes the

12

neuron at it output port to fire, then the synapse experiences long-term potentiation
(LTP) and increases its weight by a fixed value; on the other hand, if the neuron at
its output port fires but not as a result of the synapse’s charge, then it experiences
long-term depression (LTD) and decreases its weight by a set value. Once a synapse
experiences LTP or LTD, it goes into a refractory period during which it cannot
adjust its weight until the moment has passed.

A DANNA element utilizes processes alongside functional components to support
behavior as a neuron and a synapse. During each network cycle, an element samples
each input port, acquires the incoming fire condition, loading it into the synapse FIFO
as necessary, and checks the fire condition of the element assigned to the output port.
The initial input is randomized through the use of a pseudo-random number generator
global to all elements, after which it checks the remaining inputs in a sequential order.
Next, the element will accumulate the acquired input weight with the charge state
and compare the accumulated result with its programmed threshold if the element is
set as a neuron. As a synapse, the accumulator will hold the LTP/LTD weight, and
it will increase or decrease its weight depending on the fire condition of the element
sampled at its output port. Finally, the element as a neuron will fire its threshold
at its output and resets its accumulator to its bias value if the charge exceeds its
threshold while it will fire its output if a fire event is present at the synapse FIFO
output if the element is a synapse.

A DANNA element contains all functions required to operate as a synapse or
a neuron. Physically, it features programmable registers to hold specific values: a
Threshold/Weight Register which holds the neuron threshold or a synapse weight, a
Synapse Distance Register to hold the distance value of the synapse, an Input Enable
Register to specify the active inputs from which to sample, an Output Select Register
which specifies the connected element to monitor for LTP/LTD if the element is a
synapse, an Output Register to hold an element’s weight if a synapse or a threshold
if a neuron, and an LTP/LTD refractory period register to hold the length of the
refractory period of a synapse. Other important features of a DANNA element

13

include ports that communicate fire events from neurons and weights from synapses,
multiplexers and latches to latch the selected input fire and weight, an accumulator
consisting of an adder, comparator, and a latch to hold and calculate a neuron’s
charge or a synapse’s weight as well as comparing the calculated charge to the
neuron’s threshold value, the Synapse Distance FIFO previously mentioned to store
firing events for synapses and maintain delays between the events, and a counter to
implement the LTP/LTD synapse refractory period [20].

The elements in a DANNA array are self-contained, but there are some array
features that correspond to all elements. For instance, when programming an element,
an address signal is sent to all elements in the array. Each element has a corresponding
address value, and if the signal sent to the DANNA element matches the value,
it uses the corresponding data to program its internal registers. Another global
function is a global input select signal telling elements what input port to sample
from. All elements sample inputs in the same order ensuring equal operation among
all elements. The DANNA array also contains other essential components necessary
for operation, such as a clocking module, a pseudo-random number generator, a

programming interface module, and a FIFO module.

3.3 Clocking Module

The clocking module contains a clock generator that creates global array clocks that
are necessary for the array’s operation. There are four primary clock signals: the
Global Net Clock (GNC), the Acquire Fire Clock (AFC), the Accumulator Enable
Clock (AEC), and the Accumulator Clock (AC). The GNC controls the overall
operation of the array, with one network cycle being defined in terms of one GNC
cycle. The AFC samples fires from all inputs of an element, and it operates at a faster
frequency than the GNC so as to sample all inputs of an element. The AC and AEC
both work together to operate the accumulator of the element, with the AC running

at a faster frequency than the AFC and the AEC running at the same clock speed as

14

the AFC but with a 90 degree phase shift. These clock signals go to all elements and
modules of the DANNA array.

3.4 Psuedo-Random Number Generator

The pseudo-random number generator is a module that selects an input to be sampled
during each AFC cycle. It sends a global signal to all elements, indicating which input
port to sample, starting with a pseudo-random input. It iterates from the initial input
until all inputs have been sampled. It uses a 63-bit linear feedback shift register to
generate a seed value that is used to determine the starting input in a pseudo-random
fashion allowing for all inputs to be treated equally so no one input gets priority over

others.

3.5 Programming Interface Module

The programming interface module helps configure and operate the DANNA. It parses
commands received from the host computer and acts according to the operation
specified by the command. It also receives data from the DANNA array and returns
status packets back to the host computer during specific events. Commands sent to
the programming interface allow it to perform actions on the DANNA such as running
the DANNA, halting the DANNA operation, programming a DANNA element, run
the DANNA for a specified number of network cycles, reset a DANNA configuration,
send external fires to a DANNA array, and monitor DANNA elements. This is all

done through a unique programming structure specified for the DANNA.

3.6 DANNA Programming Structure

DANNA commands are identified by their operation code, a unique one-byte value

corresponding to a specific action to be performed. The list of current operation

15

codes are shown in 3.2. The codes are programmed in a one-hot encoding scheme
for easy interpretation. Operations supported by the programming structure include
loading/programming an element, halting the DANNA array, running the DANNA
array, “stepping” the array for a specified number of network cycles, sending fires
to external input elements, resetting the array, capture values of an element, and
shifting captured values to the programming interface. Other unspecified codes are

considered “no-ops” where no action is taken during a network cycle.

00000001 Load
00000010 Halt
00000100 Run
00001000 Step
00010000 Fire
00100000 Reset
01000000 Capture
10000000 Shift
Others No Op

Figure 3.2: DANNA Commands Operation Code

The bytes that follow the operation code are payload data whose usage depends
on the particular command. The full command layout can be shown in 3.3. This
structure is designed in such a way that all commands are the same length with the
difference being how the bytes are used. With certain commands such as the reset

and halt command, the following bytes after the operation code are not used whereas

16

with the load command, the following bytes are used to program an element.

I Operation Code ”

Operation Code

” Operation Code ” Operation Code I

',r N Element Address Number of)
LTP/LTD Refractory Period || CyclestoRun | External
Elem. Type & Output Select | /~ ™ c':::;ﬂ
Cpused [Threshold / Weight | Values
o [Distance Register Value I Unused J
Bytes 4
_ J Unused Bytes _ J Bytes)
Run, Halt, Caplure, Load Step for Fire
Shift, Reset, Null Element N Cycles Command
Figure 3.3: DANNA Commands and their Structure
The DANNA array returns status packets during response conditions. These

conditions include when the array is sending an external fire off of the array to the
host computer, when the array has been halted through the use of a halt or step
command, or when the array receives a shift command to shift data of the elements
off of the array. The packets are of a fixed length, and is structured to indicate various
information of the DANNA array. Figure 3.4 shows the structure of a status packet.
The first eight bytes indicate the time-stamp of the response in little-endian order,
and the following 32 bytes are weights from output elements when fired. The shift
output contains data captured in shift registers when a shift command is received.
The status flags take up a byte, with one bit indicating the presence of shift output
data and another bit indicating whether the response is a result of a halt or step
command. The last two bytes are a configuration ID used to identify the DANNA
programming implementation.

Commands and status packets are sent to the programming interface through
the use of FIFOs making it independent of the method used to communicate with
the DANNA array. The FIFO logic is the communications module that reads and
writes data to/from the FIFOs. It is through these FIFOs that the DANNA array

17

Timestamp -— 8 byte value

Eg.tﬁ::.il . 32values,
Weiahts 1 byte each
4 Bytes Unused

Shift Output ~— 16 bytes / 128 bits
1 Byte Unused

P 1 Bit : Shift Data?
Status Flags *— 1Bit: EOF?

Configuration ID | — 2 byte value

Figure 3.4: DANNA Status Packet

communicates with the outside world. The external host processor sends commands
to the DANNA array which are stored in the command FIFO. The FIFO logic module
reads these commands and sends the commands to the programming interface. When
the programming interface has data to send off of the DANNA array, it sends the
data to the FIFO logic which stores it in the response FIFO to be read as shown

previously in Figure 3.1.

3.7 Initial Implementation

The initial DANNA implementation showcased its functionality on an FPGA, with
some modules being configured to support the implementation at the time. Elements
were connected to eight other elements, designated as the eight closest neighbor
elements. Clocking of the DANNA array was done in consideration to the eight
connections of each element. During each network cycle, an element had to sample

all of its eight inputs and accumulate any charge received. Thus, the GNC was 1

MHz, the AFC was 8 MHz, the AC was 16 MHz, and the AEC was 8 MHz with a

18

90 degree phase shift from the AFC. Likewise, the pseudo-random number generator
was configured to only support the eight connections of an element. The DANNA
array was subjected to limited monitoring, with status packets being sent to the
host computer when an edge element fires or when the array was halted due to a
halt or step command. Communication between the host computer and the DANNA
array was performed through PCI Express. This was accomplished through the use
of Xillybus, an FPGA IP core allowing for direct memory access over PCI Express
between a computer and an FPGA [15]. The core was implemented on the FPGA,
and it communicated with the command and response FIFOs to send commands and
receive packets to/from the DANNA array. All the host computer needed to do was
to invoke the Xillybus drivers in their application to send and receive data.

The programming structure of the DANNA array was structured around the
current build of the DANNA array at the time. The array implementation only
supported sixteen external inputs and outputs, and the commands and status packets
reflected that [21]. Commands were limited to 20 bytes, and status packets were fixed
at 24 bytes. Capture and shift commands were not part of the programming interface.
The only information contained in a status packet were the weights of an edge element
if it fired, and the time-stamp at which the fire occurred. Aside from that, the status
packets do not tell much about the array itself. Individual elements could not be
monitored, so the status of elements at specific cycles could not be tracked.

While it was shown to be successful, there were challenges with the design. For
instance, with the eight element connection scheme, there were issues when designing
networks, as elements could potentially block other elements from communicating
with one another. An element had to be configured to allow communication
between elements if they were not next to each other. Another issue involved
the pseudo-random number generator. The linear-feedback shift register used for
the pseudo-random number generator was constructed with 16-bit shift register
elements concatenated to form one large shift register. This design was simplistic

and functional, but it could not be reset. When it tried to reset, the shift registers

19

would not revert back to the initial seed value. As a result, the DANNA array could
not start back at the same random sequence during subsequent runs.

There were also issues facing the PCI Express communication. The Xillybus
FPGA core was very complex, and implementing it in the FPGA design caused some
timing issues. The core was specifically designed for PCI Express communication, so
the DANNA FPGASs needed to have PCI Express support, and the host computer
had to be able to support PCI Express as well. The communications method only
utilized a fraction of the throughput available with PCI Express. Also, a consequence
of utilizing PCI Express with Xillybus forced the host computer to be reset during
each run. Every time the FPGA was reprogrammed with a new DANNA array, the
host computer had to be rebooted without killing power to the FPGA so that the

original design would not be lost.

20

Chapter 4

Enhanced DANNA

The challenges with the previous implementation of the DANNA array showcased
the need for improvement in its design. Initially, changes were made to the element
design to enhance its capabilities. This led to adjusting the supporting modules as
well. Altogether, these changes removed the drawbacks associated with the previous

design allowing for a more flexible implementation of DANNA.

4.1 Element Improvements

In the new implementation, the element connectivity was enhanced. Elements now
connect to sixteen elements instead of eight which eliminates blocking and improves
the fan-out/fan-in of each element. An element not only connects to its eight nearest
neighbor elements, but it also connects to the following eight elements in the same
direction. An example of the new connection can be shown in 4.1. The center element
in red connects to sixteen other elements indicated by the arrows coming out of the
element.

Increasing the number of connections per element required changes to some
internal element signals and registers which carried over to other modules. For
instance, the input select register which controls which inputs are enabled for an

element had to be increased from eight to sixteen bits. Similarly, the output

21

@O
0.0
OVC
CO000

 J

g
g

(L
y.

O

QOOOC
N
Q)

Figure 4.1: Element Connection

enable register which specified which element to monitor for a synapse was increased
from three to four bits. The internal multiplexers were also expanded in size to
accommodate the new connections.

Elements can now be monitored in the new DANNA implementation through the
use of a JTAG-like structure built using shift registers within the element. Through
the use of capture and shift commands, elements can send out information about
themselves at specific clock cycles. The capture command tells the shift registers to
capture values of an element into the shift register, while the shift command shifts
data from one element to another, e.g. in a JTAG-like fashion. The shifted data gets
put into a DANNA status packet which is sent to the host.

22

4.1.1 Element Monitoring

Monitoring of the array is an important feature that allows insight to the status of
the array elements at a given time. It is implemented in the DANNA through the
use of shift registers that capture and shift values off of the array. A diagram of the

procedure is shown below in figure 4.2.

To Programming
Interface Module

OUI < Accum OUI < Accum out < Accum

5 g Value » ..E Value fg Value

=D , =5 . -2

29 Fire 2 @ Fire 29 i

o ae | 4 2 § Fire

© £ Count © £ Count o g < Count
@ < Stored @ < Stored @ Stored

IN Fires . Fires n | A Fires

T T)
P _ | o Accum out Accum
2 Value £ Value g Value
- = Lo w
23 Fire 2 g Fire Eo Fi
: ire
& ; < Count 3; < Count SE < Count
= = =
7] @ %
Stored Stored O Stored
wn | 4 Fires n | 4 Fires n | < Fires

Figure 4.2: Element Monitoring Diagram

In the software, it utilize two commands, capture and shift, to consolidate and
retrieve the data. The capture command loads three important pieces of data into
each element’s shift register: an element’s current accumulator value, the number of
times an element has fired since the last capture command, and the the number of
fires stored in its synapse distance register. The accumulator value informs of the

accumulated charge since its last fire if the element is a neuron, or it represents the

23

current synapse weight including the effects of long term potentiation and depression.
Once the values have been loaded into the shift register, the shift command shifts out
the concatenated values one bit per column per command to the next element above
in each column of the array. At the top of each column, the bits are shifted into the
programming interface which sends the bits of data to the interface board via a status
pscket. Capturing and shifting data are global, so when the commands are sent, all
elements capture and shift their data even if they are not programmed.

While the monitoring implementation is a useful feature to get the sense of the
array at a given time, there are some limitations to it. One noticeable drawback
is the amount of time it takes to get the data of every element. Capturing data
and shifting data off-chip takes one GNC cycle. Given an 80 x 80 array, it can take
approximately 2500 GNC cycles (5 ms) to shift all of the data off-chip. In that time
frame, the array can continue to experience important events which will be missed
while shifting data. This is mitigated by the adjustment that capturing and shifting
of data can be accomplished when the array is halted. Also, there is a limitation to
the number of columns that can be supported by the programming interface with the

current limit set at 120 columns.

4.2 DANNA Module Improvements

The clocking module was adjusted to allow sampling of all sixteen connections of
an element during a whole network cycle. This required changing the ratios of the
clock signals in reference to the global network cycle. In the new implementation, the
Global Network Clock now operates at 0.5 MHz with the other clock signals remaining
the same.

The pseudo-random number generator was also adjusted to support the increased
amount of connections. It now outputs a 4-bit signal to account for each connection,
so during each network cycle, an element samples all sixteen of its inputs. Also, the

implementation for the linear-feedback shift register was redone so that the random

24

number sequence may be properly reset. This was accomplished by using a flip-flop
implementation of the shift registers interlinked together so that they may be reset
to its original seed value when the DANNA array is reset.

The DANNA programming structure also faced some modification to accom-
modate the changes. The number of inputs supported by the DANNA array was
increased to 32 inputs and 32 outputs. While the general structure of the DANNA
commands stayed the same, their length was increased to 36 bytes. The format of
status packets remained the same as shown in 3.4, but their length was increased
to 64 bytes to accommodate the added output edge elements as well as the element
monitoring functionality.

The various improvements to DANNA eliminated the problems from the previous
implementation, allowing for an enhanced version suitable for the DANNA develop-

ment kit.

25

Chapter 5

DANNA Development Kit

The DANNA Development Kit is a hardware kit that allows researchers to take
advantage of DANNA networks through a hardware platform. It utilizes the new
implementation of DANNA to make its usage more portable and user friendly while
eliminating the drawbacks of the previous implementation. The kit is self contained
and requires no outside drivers or software. An image of the development kit
assembled can be shown in figure 5.1.

It is comprised of an host computer module shown as the green board, an
FPGA module shown as the red board, and a communications module shown as
the blue board to interface between the two. The host computer sends commands
to the DANNA and receives status packets. The FPGA module hosts the DANNA
implementation, and the communications module allow for data transfer between
the two boards. The host computer and the communications module communicate
through a Universal Serial Bus (USB) while the communications module and the
FPGA module communicate via an FPGA Mezzanine Card (FMC) interconnection.
A JTAG port on the FPGA module communicates with a workstation to program
the DANNA array implementation.

A block diagram of the entire system is shown in 5.2, with the perspective

being from the point of view of the host computer showing the connections between

26

FPGA

Board
Hard
Drive
FX3 Module
(Communications
Module)
N Power
Supply

Host Computer

Figure 5.1: DANNA Development Kit

the modules. The host computer sends DANNA commands through USB to the
communications module. The communications module buffers the commands received
and indicates to the FPGA module that there is data to be read. An FSM module
on the FPGA reads the available data and stores it in the command FIFO to be read
by the DANNA array. Similarly, when a DANNA status packet is to be sent out, the
FIFO logic module stores it in the response FIFO, which is read by the FSM and

written to the communications module so that the host computer can read the data

27

via USB.

Host FX3 FMC FPGA

)
/ DMA Channels GPIF ||\ ﬁm FIFO Programming DANm
with DMA buffers Interface 32-bit [Machine Logic Interface Array
)

100
e e MHz Response
Endpoint <:, Bus F|F0
usB
< - &
LIBUSB
<:> I:> Command |::>
FIFO
Write

JTAG Interface /
— \ // E’ To Workstation Host

Figure 5.2: Block Diagram of Kit

5.1 Host Computer

The host computer board is a ARM-based single-board computer that configures
the DANNA, sends external fires to the DANNA array, and receives status packets
back from the DANNA array. It also runs the optimization engine necessary for
evolutionary optimization of the DANNA array. To serve its purpose, several single
board computers were considered for use in the kit, with criteria being given to
available memory, processing power, the operating system that can be run on the
board, its physical size, and cost. Some examples of computers considered for the kit
included the UDOO Quad, the Wandboard Quad, the CuBox-i4, and the ODROID-
XU3. However, it was decided that the Wandboard Quad Single Board Computer
would be used for the kit due to its higher memory capacity of 2 GB, its processing
power with its Freescale . MX6 Quad-Core ARM-based processor, and its relatively
lower price than its competitors [12]. The Wandboard Quad is shown in figure 5.3, and
it is configured to run various operating systems, including Linux. The development

kit utilizes Ubuntu 14.04 as the operating system.

28

Figure 5.3: Wandboard Single Board Computer [12]

Other features of the Wandboard include a SATA port for access to a hard drive, a
USB OTG Host port that allows the Wandboard to act as a USB host, and an HDMI
port for a display to be attached. There is also an Ethernet port for Internet access
as well as to allow users to remotely log into the system from a separate workstation

without the need for a display or a keyboard.

5.2 Communications Module

The communications module interfaces between the DANNA array and the host
computer allowing them to send and receive data packets from one another. For
the kit, it is meant to replace Xillybus removing the dependency on PCI Express
from the previous DANNA implementation. Several ideas were considered as to how
the interface should be, including utilizing a small FPGA to act as the interface.

However, with cost and size as a factor, it was decided that the Cypress EZ-USB

29

FX3 SuperSpeed Explorer Kit be used to act as the interface. Figure 5.4 shows an
image of the FX3 Explorer Kit.

GNB-

L RoHS

CYUSB3KTIT-00

Figure 5.4: Cypress EZ-USB FX3 Super Speed Explorer Kit [3]

The Cypress FX3 SuperSpeed Explorer Kit is a development kit that utilizes
the Cypress EZ-USB FX3 USB 3.0 peripheral controller allowing for USB 3.0 device
functionality to any external processor [3]. The FX3 controller contains an ARM9
processor for high performance as well as a fully configurable, General Programmable
Interface (GPIFTII) along with other basic communication peripherals such as 12C,
12S, and UART implemented through GPIO pins. Through use of DMA channels
and the GPIF interface, the FX3 can provide communication between a USB host

and an external processor, which, for the kit, is an FPGA.

5.3 FPGA Module

The FPGA module holds the DANNA array including all components necessary to
run it as well as the state machine necessary for USB communication. The FPGA was
required to contain enough logic cells to support them. Acceptable FPGAs that met
the requirements include the Xilinx Virtex-7 XC7V485T, the XC7V690T, and the

30

XC7V2000T FPGAs, with them being used in testing the previous implementation
of DANNA [20]. Seeing their results with DANNA previously prompted their use in
the development kit.

For the development kit, the module hosting the FPGA would be constrained
by the physical dimensions of the box. It had to be small enough to fit in the
case while still being able to fully support a DANNA module without any loss of
functionality. FPGA boards used in the previous DANNA implementation included
the Xilinx Virtex-7 FPGA VC707 Evaluation Kit and the Xilinx Virtex-7 FPGA
VC709 Connectivity Kit. While they were suitable for prototyping with the PCI
Express interface, they were considered too large physically for use in the kit.

With physical size being a constraint, other FPGA modules were considered for
the kit. Some research was done in finding an FPGA board that could support the
Virtex-7 FPGA as well as be small enough to fit in the kit. It was decided that
the Virtex-7 FPGA-FMC Module by Hitech Global will be used as the FPGA board
for the kit. As shown in figure 5.5, it contains a Xilinx Virtex-7 FPGA in a small
form factor of 5.5in. x 4.5in. [5]. Other peripherals include three FMC connectors, a
DDR3 memory SODIMM socket capable of supporting up to 8 GB, two Samtec QSE
and QTE connectors with six GTX/GTH Serial Tranceivers, a flash memory module
for configuration and storage, a USB port for UART communication, and an 12C bus

switch.

5.4 Software

Moving from PCI Express to USB required a different method of communication for
software to interact with the DANNA array. The previous implementation took the
array configuration file, wrote it to a specified file, and the Xillybus drivers were left
to handle the communication with the DANNA array. However, for Xillybus to work,

the host machine must be rebooted every time the FPGA is reprogrammed with a

31

Figure 5.5: Hitech Global Virtex-7 FPGA FMC Module [5]

new configuration. USB communication eliminates this issue by eliminating the need
to reboot the host computer and the FPGA module every time.

Once the communication method was decided upon, the software needed to be
changed to allow for USB communication. There are many ways of implementing USB
communication with a computer. Developing a custom USB driver was considered,
but due to the limited knowledge of designing a kernel driver, research was done
on finding a pre-existing driver. Microsoft provides a generic USB driver, WinUSB
(Winusb.sys), for USB devices that consists of a kernel-mode driver and a user-mode
dynamic link library that allows management of USB devices with user-mode software
[1]. However, the driver and required components are limited to Windows operating
systems. The software for USB communication had to be Linux compatible. After
some research, it was decided that the software would use LIBUSB to perform USB

operations.

32

LIBUSB is a C based library that enables generic access to USB devices [7]. It
is platform independent, allowing it to be used in many different operating systems
including Linux, Windows, and OS X, and it supports all versions of the USB protocol
up to the latest SuperSpeed protocol. The API allows the user to interact with USB
devices through function calls allowing for user applications to send and receive data
from USB devices. LIBUSB was integrated into the DANNA software code on the
host platform.

33

Chapter 6

Build and Initial Testing

The creation of the development kit came about the need to allow other researchers
to easily use DANNA in various applications. This required changes to the physical
implementation of DANNA to make it more portable as described in chapters 4 and 5.
This section highlights the physical changes and testing procedures made to support
the DANNA implementation in the kit.

6.1 Physical Layout

The DANNA development kit was envisioned to be contained in a portable package
that is easy to move around and set up. With this in mind, the main components
of the kit were selected for their capabilities as well as their physical size. The
Wandboard computer connects to the Cypress FX3 Dev Kit through the use of a
USB cable, while the FX3 was attached to the FPGA module through the FMC
connector on the module. This was accomplished through the use of the Cypress
FMC Interconnect Board for the FX3. As shown in figure 6.1, the board attaches
to the headers on the bottom of the FX3 kit, and it can be attached to any FMC
receptacle allowing the selected FPGA-FMC boards to have USB functionality.
Aside from the three main components, the DANNA development kit also contains

a solid state drive to store array configurations as needed when using DANNA for

34

Figure 6.1: Cypress FMC Interconnect Board for the FX3 Dev Kit [4]

applications. The Wandboard itself is placed in a location allowing for easy access
to its Ethernet port, HDMI port, and USB OTG port for connecting peripherals
as needed. The entire kit is powered by an mini-ATX power supply allowing for
full functionality of all modules, and all components are contained in a custom 3-D

printed case.

6.2 Communication Interface

From the previous implementation of DANNA, it was clear that the communication
between the host computer and the DANNA array needed to be changed. It was
impractical for researchers to require a workstation capable of supporting PCI Express
in order to run DANNA. Also, the usage of PCI Express underutilized its potential
throughput due to the amount of data being transferred. Therefore, a replacement
for PCI Express was sought for the DANNA Development Kit.

Initially, the idea for the communications replacement was to develop a custom

protocol through the use of another FPGA. The FPGA would be separate from the

35

DANNA array, and the protocol would communicate with the FIFOs on the DANNA
array. While this method provides a lot of flexibility, the complexity of designing a
reliable interface would have been time consuming. Also, interfacing with the FPGA
hosting the DANNA array would be complex due the lack of I/O pins on the board.

With time and complexity of the interface being an issue, some research was done
on existing protocols to see whether they could be incorporated into the DANNA
development kit. The RS-232 (UART) method was a popular method which can be
easily incorporated onto an FPGA. However, the protocol was very slow, and would
not provide the necessary bandwidth needed for the DANNA array. Another method
that was considered was Gigabit Ethernet, and Xilinx provides IP cores to integrate
it into an FPGA design. However, the unfamiliarity with the protocol as well as the
hardware required made it more of a challenge to incorporate.

The USB protocol provided more than enough bandwidth to satisfy the needs
of the DANNA array, but implementing it on the FPGA was a challenge. Some
companies have developed their own proprietary software incorporating USB with
their FPGAs, such as Opal Kelly and their FrontPanel SDK [2]. There is an open-
source project known as FPGALink which seeks to integrate USB functionality
between an FPGA and a PC [23]. Unfortunately, there were difficulties with the
hardware and software requirements that made it unsuitable for the project, such
as the PCs requiring specific software drivers and the FPGAs needing specific USB
controllers such as the Cypress FX2LP USB controller. However, in an attempt to
find a way to integrate the USB controller, the Cypress FX3 USB controller was
discovered to be a viable substitute for the outdated FX2LP controller without the
need for specialized software.

The Cypress FX3 USB controller can be configured to function as a Slave FIFO
interface to allow any external master device to have USB functionality [29]. Because
of its simplicity and ease of use, the FX3 Slave FIFO interface seemed like a natural
fit to send and receive data from the DANNA array. It operates by creating Direct
Memory Access (DMA) channels with a programmable number of DMA buffers to

36

hold data. Through socket interfaces, the DMA channels can send and receive data
coming from a host computer or the external processor to which it is attached to. A
block diagram of this interface is shown in figure 6.2 showing the bi-directional data
bus, an address bus, DMA flags, operation signals, and a clock signal. Flags A and
B indicate the availability of a DMA buffer that can be written to and flags C and
D represent a DMA buffer that can be read from. The signals SLWR and PKTEND

control write operations while SLRD and SLOE control read operations.

SLCS#
PKTEND#
FLAGA
FLAGE
FLAGC

FLAGD

External FPGA/S A[1:0]
Processor

LI

A

&

»| EZ-USB FX3
DQ[15:0) DQ[31:0]

SLWR#

SLRD#

SLOE#
PCLK

A

Y

Figure 6.2: Slave FIFO Interface Diagram

The interface utilizes DMA channels: one for receiving data from the FPGA to
be read by the host computer (the P2U channel), and one to send data from the
host computer to the FPGA (the U2P channel) [29]. The DMA channels interact
between the USB host and the GPIF interface through the use of sockets to perform
data transfers to and from the FPGA. Each DMA channel can have a number of
buffers of a specified size to hold data. DMA channels also utilize sockets to act as
producers or consumers of data through which end systems can interact with. The
U2P channel uses a USB socket as a producer, which can be accessed by the host

computer through a USB endpoint, and it uses a GPIF socket as a consumer allowing

37

an external processor to read data. Similarly, the P2U channel uses a GPIF socket as
a producer to receive data from the FPGA, and it uses a USB socket as a consumer
for the host to read data through another endpoint. The GPIF interface interacts
with the sockets, and DMA flags going to the FPGA indicate the availability of a
buffer that can be read or written to by the FPGA. DMA flags are unique to each
GPIF socket, and they must be monitored by the FPGA.

On the FPGA, a state machine monitors the DMA flags and acts accordingly
depending on whether the flags represent a DMA channel to be read from or a
DMA channel that can be written to. This state machine, as shown in figure 6.3, is
independent of the DANNA array and can be adjusted to fit the needs of the FX3
firmware. The state machine as well as the GPIF interface operates at 100 MHz. The
FPGA acts as the master of the GPIF interface, and the state machine sends signals
to the GPIF interface to drive a particular data transfer as well as an address signal
to specify which socket to interact with. The GPIF interface interprets the signals

and performs a read or write operation accordingly.

)

Read Flag Idle
Received <:’ State ‘a
| S

Wait for
Read

Watermark
N

Read

State
—

T - N
Read .
Wait
Rue [State £

Delay

(Read
Output
Enable

\ Delay)

Write

Write Flag

Received

w
-
53
[}

S

~

N N N NN

Figure 6.3: Slave FIFO FSM Diagram

The state machine operates with the FX3 at 100 MHz while the DANNA array
reads a command from the command FIFO every GNC cycle. The FSM is designed
such that reading data from the FX3 has more priority than writing data to the FX3.
When there is a DMA buffer available to be read, the FSM goes through the read
states on the left. The FSM goes through the states on the right when there is data
to be written to the FX3.

6.3 Initial Design, Implementation, and Testing

The Slave FIFO project by Cypress was used as a reference design for the FPGA 1/0
implementation. The original project was developed for a Spartan-6 FPGA so some
components were modified for use with the Virtex-7 FPGA. The clock generator used
in the original project was replaced with an clocking wizard IP block that utilized the
clock sources available on the FPGA module to create the necessary clock signals.
Likewise, their FIFO module was replaced with two FIFO Generator IP blocks, so
that the state machine on the FPGA can write data to one FIFO while reading data
from a separate FIFO. Also, the locations for the FMC pin placements were adjusted
to account for their different locations on the FPGA.

The changes were made incrementally with verification of each change being done
through testing. The project was tested through the use of an application provided
by Cypress as part of its FX3 Development Kit for Windows. It interacts with
the Cypress FX3 SuperSpeed Explorer Kit by loading firmware onto the kit and
performing data transfers to/from the device. Testing was performed by sending
data out and reading the same data back in a loop to verify the accuracy of the
design. Along with using the utility, LIBUSB code was written to send out data and
read data back in. This was to confirm that the design still functioned correctly on a
Linux platform.

Once the design was verified to have worked, it was integrated with a DANNA

array. Working with a small array for testing, the host computer sent out commands

39

and read status packets through LIBUSB to verify that the DANNA array still
functioned with the new communications interface. An example of a transfer can
be shown below, with a fire command being sent to the DANNA array in figure 6.4
and the FPGA signals of the state machine shown in 6.5. The returning status packet
signals is shown in figure 6.6 with the data read back shown in 6.7.

The images show a fire command being sent to the array. Figure 6.4 shows the
command sent from the Wandboard with each individual byte of the command shown
in hexadecimal. The first byte identifies the operation code of the command, with
the fire operation represented as 16. The following thirty-two bytes shows the weight
value being sent to the designated input elements. Here, all thirty-two inputs receive a
weight of 127. The last three bytes are unused in the command. Probes on the FPGA
show the data being read into the command FIFO by the FSM in figure 6.5 with the
red line indicating the start of the command. This confirms that the command data
was sent to the FPGA correctly.

Once the command was received, the programming interface module sends the
weights to the input elements. They receive it, and operate according to their
configuration. The DANNA array was programmed to produce a fire response when
a fire command was received, so the output elements fire, causing the programming
interface module to send a status packet back. The first eight bytes show the time-
stamp indicating when the edge elements fired while the following thirty-two bytes
show the weight of the indicated output element. No status flags are set, so the status
packet does not contain any shift data nor is the packet the result of a halt or a step
command.

The FIFO logic module receives the status packet and writes it to the response
FIFO. The FSM reads from the FIFO and writes the data to a buffer in the FX3.
Figure 6.6 shows the FSM writing the status packet to the FX3 with the data bytes
shown in hexadecimal. The last four bytes of the packet are indicated by the yellow

marker with the data shown in the second column on the left.

40

Figure 6.7 shows the bytes of the received packet by the Wandboard in
hexadecimal. The time-stamp indicates that the status packet occurred at cycle
323,602,420 from when the DANNA array first started running. The external output
weights indicate that the third output element fired with an weight of 129 and the
fiftth output element fired with a weight of 127. The configuration ID can be observed
as the last two bytes, and the lack of any status flags at byte 62 indicate that this is
a response from the fire command. The data of the fire command and the response
packet can be verified by comparing the probed signals with the data sent out and

received indicating that the USB communication interface is functional.

41

Figure 6.4: Fire Command - Sending Command to DANNA

42

™ DIN

WEITE TO FIFG

T FULL
FULL
PTY

Figure 6.5: Fire Command - Finite State Machine Signals

43

B CUR

8 DOUT

e READ FROM FIFO

Figure 6.6: Status Packet - Receiving Packet from DANNA

44

£

3 0N

b TR i I i Y)

[N

[Te]

B

Figure 6.7: Status Packet - Data Received

45

During testing, the firmware on the FX3 as well as the state machine on the
FPGA underwent some changes to make it more suitable for the DANNA application.
The initial firmware consisted of two DMA channels previously mentioned with one
channel handling transfers from the USB host to the FPGA and another handling
transfers from the FPGA to the host. Each channel had two DMA buffers, and
the buffer size was dependent on the USB speed, 512 bytes at USB 2.0. The DMA
channels were configured such that whenever a transfer is initiated along a channel,
the operation must be performed through a callback function initiated by the FX3
to commit the data to the DMA buffers. Also, the USB endpoints at the USB host
were configured as bulk endpoints, which only allowed for bulk transfers to occur.

Changes to the Slave FIFO firmware were made to increase its potential usage
with the DANNA array. DMA channels were reconfigured to automatically drive
data during transfers without any need for a callback function. By removing the
CPU intervention found with manual channels, data transfers can occur much faster
than with callbacks. The buffer sizes were fixed at 512 bytes to accommodate the USB
2.0 standard supported by the Wandboard. Changes to the GPIF interface included
changing the endian-ness of data in transfers to ensure that the order of data sent to
the DANNA array is correct.

While testing the new design, it was found that there was notable latency when
reading data from the FX3 which appears to be caused by LIBUSB and the underlying
USB protocol. Testing was performed by sending one command to the DANNA array
at a time. The DMA flags took around fifty to sixty microseconds to update the
availability of a new buffer to be read from. Whenever the FSM read from a new
buffer, the command FIFO would have already been empty for several microseconds,
and with the array operating at a period of two microseconds, this caused a delay that
propagated throughout the entire DANNA array. This realization led to the fact that
the data transfers needed to contain enough data such that when the next transfer

comes around, the command FIFO would maintain cycle accurate sequencing with

the DANNA’s operation.

46

By sending out commands to the DANNA, results show that transferring one
command at a time was not enough to fill the command FIFO and maintain cycle
accurate command sequencing. Several tests were ran by sending different size
amounts of DANNA commands to the FX3 to determine the recommended amount of
data per transfer. It was determined that the data transfers need to get ahead on the
command FIFO on the FPGA, and the best way to do that is to transfer enough data
to fill the FIFO to ensure that hides the USB transfer overhead between DMA buffer
operations. Also, to ensure that no data is lost when filling up the FIFOs, the state
machine is configured such that it only reads a DMA buffer when there is enough
room in the FIFO to read a complete DMA buffer. This done through programmable
FIFO signals indicating how full the command FIFO is.

Changes were also made to the FX3 firmware in order to have it transfer data
faster. The initial setup of the firmware had the U2P DMA channel going from the
host computer to the FPGA contain only one producer socket and one consumer
socket. Having only one consumer socket contributed to the large amount of latency
when switching between DMA buffers. By reconfiguring the DMA channel to have
two consumer sockets, the channel can transfer data faster by having the sockets work
together to switch between DMA buffers rather than have one socket perform all of
the switching. The FX3 firmware had to be changed in order to support this new
configuration by specifying a new GPIF socket to be used and reconfiguring the U2P
DMA channel to support the additional socket. A second set of DMA flags had to be
created for the new socket, and the GPIF interface was reconfigured to reflect the new
socket. A block diagram of the new structure can be shown in figure 6.8. The DMA
channel coming from the USB host now has two sockets to transfer data through,
with socket 3 being represented with flags C and D while socket 1 using flags E and
F.

The addition set of DMA flags caused changes to the state machine on the FPGA.
Now, during a read operation, the FSM tracks two sets of flags and ensures that it

reads from the right DMA buffer by having it alternate reading between sockets.

47

FX3 32-bit FPGA

100 MHz Bus
DMA Channel going to USB Host
<:'> State FIFO

Machine Logic

DMA |S°°ket° I Flag A =) Response
Buffers Flag B |::> <:' P

FIFO

DMA Channel going from USB Host

Flag C I::>

r | Socket 3 I Flag D ;

DMA Command

= | ol
/ FlagF ——) \ ~—«/

Figure 6.8: FX3-to-FPGA Socket Switching Implementation

The DMA channel is configured to transfer data in the socket order specified during
channel configuration, and the state machine is configured such that after it reads
from one socket, it is set to read data from the next anticipated socket to ensure that
data will not be read out of order. If no data is sent after a long period of time, the
FSM will revert back to a neutral state, where it can read from any socket of the
DMA channel so that data will not be read out of order during a new DANNA run.

Testing with the additional socket shows significant improvement during data
transfers. Results show that it takes around ten to twelve microsecond between
reading from DMA sockets during the first few buffers. As the command FIFO on
the FPGA gets full, the state machine stops reading data until there is enough room
to read an entire DMA buffer. By waiting until there is enough room, the process
slows down to a point where after immediately reading from one socket, another buffer
is available to be read from the next socket. In this fashion, data can be read by the

FPGA quickly showing very little delay between buffers.

48

6.4 FIFO Reset Implementation

Previously, when working with the PCI Express implementation, the FIFOs on the
FPGA could not be reset. Because of the usage of Xillybus, this was not a issue at
the time. However, through testing with the USB implementation, there were some
cases where stale data remaining in the response FIFO causes response data to be
misaligned. In an effort to eliminate the possibility of stale data, the FIFOs on the
FPGAs had to be reset between DANNA runs.

The Cypress FX3 SuperSpeed Explorer Kit uses GPIO pins to implement its
various communication peripherals. In implementing USB communication with the
kit, it was found that the firmware could be used to drive specified pins going to the
FPGA which can trigger it to perform specific actions. Therefore, by using a GPIO
pin, the firmware could be triggered to send a signal to the FPGA to trigger the
command and response FIFOs to be reset. The kit contained plenty of pins specified
for interfaces such as I2C and 12S. Since they were not being currently used, some of
pins were re-purposed for the kit.

Changes were made to the FX3 firmware to allow free use of the spare pins.
During initialization, an unused GPIO pin intended for use by the I2S peripheral was
overwritten to allow the firmware to use it. Overwriting a GPIO pin holds the risk of
damaging its functionality for the intended peripheral. However, considering how the
DANNA array was not using 125, the risk was determined acceptable at the time. A
function in the firmware that handled USB control transfers was expanded to handle
USB vendor requests allowing for interaction with the GPIO pin.

Whenever the host application performs a USB control transfer indicating a vendor
request with a specific request value, the firmware would interpret the control transfer
and drive the specified GPIO pin for two microseconds. During this time, the FPGA
would treat the signal as a reset signal and reset both of the FIFOs on the FPGA.
This signal was also used to reset the Slave FIFO FSM on the FPGA to a default

state to ensure that it was configured correctly during a new run.

49

Chapter 7

Challenges

Throughout the work done on the DANNA development kit, some issues were
faced during creation of the DANNA arrays. The Virtex-7 FPGAs contained
different amount of resources, with the 485T containing 75,900 logic slices, the 690T
containing 108,300 slices, and the 2000T containing 305,400 slices [33]. The amount of
resources on each FPGA limited the possible DANNA array size. With the previous
implementation of DANNA, the 485T could support a maximum of around 256
elements, while the 690T and the 2000T could support 2,500 elements and 6,400
elements, respectively [20]. Using this resource as a guideline, it was decided that
the HTG-V7 FMC-FPGA module would host a XC7V690T FPGA. As the DANNA
implementation changed, the amount of utilized resources also changed to reflect it.

Some issues were faced during the array creation. These issues presented
themselves throughout the design process causing some problems with the DANNA
array implementation. The software used to build the arrays is the Vivado 2014.2
Design Suite by Xilinx. There was very little control over how the software routes
signals together, so timing issues could propagate throughout the entire array. While
the timing issues were not as prevalent with the previous implementation of DANNA,
they were still significant enough to cause problems throughout the whole design.

For instance, when a fire response was expected at a specific cycle, it was found to

20

occur one or two network cycles later than anticipated. To overcome these issues,
processes that utilize the same sensitivity list were combined, and large signal vectors
were split up into smaller signal vectors between modules and recombined back to
its original length. The synthesis settings were also adjusted such that the DANNA
array hierarchy was fully flattened in an effort to improve timing. Implementing these
changes allowed for a more robust implementation of DANNA.

Another prevalent issue is with the Vivado Design Suite itself. During one point
in the development timeline of the kit, the software would experience a segmentation
fault and fail to synthesize the DANNA design with no warning as to what could have
caused the issue. This seems to occur with large arrays greater than 2,200 elements.
Some work was done in an effort to determine what caused the software to experience
the fault, but results have been largely indeterminate. However, through tinkering,

some larger arrays were able to be synthesized and implemented.

7.1 690T FPGA

The new DANNA implementation consumed more resources than before, limiting the
amount elements that can be supported by the development kit. During development,
results showed that the maximum number of elements that can be supported by the
690T FPGA for the current implementation is 2,209 elements, or an array size of
47 x 47. The final implementation routing done by the Vivado software can be shown

in figure 7.1.

o1

Figure 7.1: 47 x 47 DANNA Array Implementation

52

The resulting implementation utilized a majority of the space for the targeted
DANNA design. According to the post-implementation reports, the design utilized
79% of the available look-up tables, 31% of the available flip-flops, and 44% of the
available buffers on the FPGA. The estimated timing summary reports that the worst-
case setup time is 1.052 ns, while the worst-case hold time is -3.087 ns. Despite the
slack times reported by Vivado, they did not result in faulty or intermittent operation

during testing.

7.2 2000T FPGA

To expand upon the capabilities of the DANNA array, a larger FPGA was used for
prototyping in order to achieve a larger array. The prototyping board used is the
HTG-700 Xilinx Virtex-7 V2000T PCI Express Development Board shown below in
Figure 7.2. It contains three FMC connectors, a DDR3 SODIMM module supporting
up to 8 GB, four SMA ports to allow for external clocks, a USB-UART bridge
controller, and PCI Express Gen2/Gen3 edge connector [14]. The board hosts a Xilinx
Virtex-7 XC7V2000T FPGA, being approximately three times larger than the 690T
FPGA [13]. This FPGA module was utilized with the DANNA array implementation,
and it also contains FMC ports which allows the new DANNA implementation to be
used.

The structure of the 2000T is vastly different than the 690T, with the 2000T
containing four super-logic regions whereas the 690T only contained one [32]. This
caused timing issues throughout the DANNA array. Because of the 2000T’s structure,
a clocking tree was spread out throughout the array to ensure that each DANNA
element received clocks with delays that tracked signals across the array. This involved
partitioning the array into row-like structures, where each row structure contains
clock buffers for each of the four DANNA array clocks as well as a pseudo-random

number generator synchronized with the linear-feedback shift register. This unique

23

XL
VIR

B 7
20007

Figure 7.2: Hitech Global Virtex-7 V2000T PCI Express Development Board [14]

structure allows for distribution of clocks and the random number generator so that
one structure does not drive the signals for each element.

Despite the setbacks presented by the software and the FPGA structure, a
DANNA array was able to be implemented on the 2000T. Issues with the segmentation
fault caused progress to stagnate slightly, but recent attempts have yielded a
successful array implementation of larger arrays over 2,500 elements. However, it
took several hours of run time for the arrays to synthesize, with a 50 x 50 array
taking nine hours and a 70 x 70 array up to seventy-two hours. Despite the unusual
development time, the success of the implementation showcases the potential of the
2000T. With the new DANNA implementation, the 2000T can support up to 5,625
elements in a 75 x 75 array, and the routing can be shown below in figure 7.3.

The implemented 75 x 75 array utilized 72% of the available look-up tables, 28%
of the available flip-flops, and 20% of the available buffers on the FPGA. The total
on-chip power utilization was approximated as 2.522 watts. Timing issues were more
prevalent with this FPGA and design, with the worst-case setup time being -0.951
ns and the worst-case hold time being -4.5 ns. Despite the estimated timing issues

reported by Vivado, testing indicates proper operation of the arrays.

o4

Figure 7.3: 75 x 75, FPGA Routing

7.3 Comparison with VLSI Design

A related project was conducted in parallel to the construction of the DANNA
development kit. Its goal was to create a VLSI implementation of the current
DANNA implementation utilizing existing CMOS technology in an effort to improve
the architecture’s density, speed, and power consumption [19]. Using ASIC tools, an
implementation of a 75 x 75 DANNA array hosting 5,625 elements was achieved, with
the resulting routing placement shown in figure 7.4. The routing placement of the
same-size array highlight the differences between the VLSI implementation and the

FPGA implementation. The routing done by the Vivado software for the FPGA is

95

constrained by the physical placements of the FPGA’s various logic blocks and cells.
With the VLSI routing, the constraints are much more flexible, allowing for a more

robust routing placement.

Figure 7.4: 75 x 75, VLSI Routing [19]

o6

Chapter 8

Future Improvements

Major improvements have been made to the DANNA implementation for the
development kit. However, more work can be done upon it to enhance its capabilities

even further. Improvements can be made to the communications interface, the

DANNA element, and the DANNA array itself.

8.1 Communication Improvement

One major improvement to the communications interface would be to improve the
latency between the FX3 and the FPGA. Despite the viability shown with the USB
implementation, there is still a visible latency associated with the transfers. Using
a host computer with USB 3.0 SuperSpeed capability will help improve the latency
when compared to USB 2.0. USB 3.0 Revision 1 allows for a maximum data rate of 10
Gigabits-per-second (Gbps) which allows for a faster rate of transfer by approximately
20 times than USB 2.0 at its max data rate of 480 Megabits-per-second (Mbps) [31].
The Cypress EZ-USB FX3 USB 3.0 peripheral controller can be easily modified to
work with the enhanced protocol with little modification to the finite-state-machine
on the FPGA.

Switching over to USB 3.0 would require changing the host computer board to

one that can support USB 3.0. However, there are very few single board computers

57

that currently support the protocol. With that being said, one board is being taken
into consideration to replace the Wandboard. The ODROID-XU4 is a small single
board computer that is capable of acting as a USB 3.0 host. It hosts a Samsung
Exynosb422 Cortex-A15 and Cortex-A7 Octa core quad-core CPUs along with 2 GB
of DDR3 RAM, Gigabit Ethernet, and is capable of running Ubuntu 15.04, making
it more than a suitable replacement for the Wandboard Quad [8]. An image of the

board is shown below in figure 8.1.

Figure 8.1: ODROID-XU4 Single Board Computer [8]

8.2 DANNA Element Improvement

An improvement to the element itself would be to expand its functionality while

retaining its simplistic programming model. Other hardware platforms are known

o8

to model many complex structures of neural systems. DANNA has been shown
to accomplish large, complex array structures with simple element structures, but
in order to have it behave more like a biological system, increasing the element
functionality is a necessity.

Expanding the versatility of the DANNA element would increase its usefulness in
modeling more complex systems. The challenge lies in expanding its configurations
without interfering with functionality and increasing its resources.

There are plans into configuring the DANNA element to function as a central
pattern generator. Central pattern generators are neuronal circuits that produce
rhythmic motor patterns without inputs that carry timing information [22]. These
patterns have been shown to be attributed to behavior such as walking, breathing,
and flying [22]. By incorporating such an important structure in the DANNA, the
implementation would be better suited to model involuntary actions found in neural
systems. Currently, there are plans to incorporate the function with little change to

the element, but more work is needed before it can be confirmed as viable.

8.3 External Input Implementation

Currently, elements of the DANNA array only interact through commands. It is not
set up to receive inputs directly from the outside world. Allowing it to do so would
expand the versatility of the DANNA array and allow it to stand on par with other
hardware platforms that implement sensors such as True North.

Incorporating the DANNA array to receive external inputs directly is relatively
straightforward. The DANNA array can receive the data directly from external inputs
by adjusting the implementation code to do so. The external inputs can be easily
incorporated through the use of the second FMC connector on the HTG-V7 FPGA
board currently in use. The amount of pins on the FMC connector would allow up

to 32 inputs to be attached to the FPGA, with each external input requiring the use

29

of nine signals, eight for weight and one to indicate a fire. This can be accomplished

through the use of a breakout board for the FMC connector.

8.4 FPGA Improvements

While improvements can be clearly made with the communications interface, more
work can be done on the FPGA module itself to expand the capabilities of the
DANNA array. The HTG-V7 FMC-FPGA module supports Virtex-7 FPGAs up
to the XC7V2000T FPGA. By replacing the 690T FPGA with a 2000T FPGA, the
development kit can make use of larger arrays and expand its capabilities. While
some success has been shown with the 2000T FPGA already on hand, more work can
be done on it in order to improves its timing. Understanding more about how the
SLR regions are utilized in the FPGA may hold the key to improve timing throughout
the DANNA array.

Another approach to this is to use separate FPGA modules to construct arrays on
different FPGAs and interlink them together to form one large array. A single FPGA
module has already been shown to hold a large DANNA array. If multiple FPGA
modules could be leveraged, they can possibly be interlinked together to form one
large array. The Hitech Global Virtex 7 Quad V2000T Emulation / ASIC Prototyping
Board shown in figure 8.2 contains four Virtex-7 XC7V2000T FPGAs, a Kintex-7
FPGA, eight FMC connectors, and four DDR3 SODIMM modules which fits the
requirements for the proposed array design [10]. Its unique layout allows for a wide
variety of Hitech Global FPGA boards to be interconnected allowing for greater
expansion of FPGAs.

Xilinx has produced a new series of FPGAs utilizing a new design architecture
that supersedes the Virtex-7 FPGAs. Known as the UltraScale architecture, FPGAs
utilizing that architecture use both monolithic and stacked silicon interconnect
technology to allow for high capacity, bandwidth, and performance to meet a vast

spectrum of system requirements [34]. The Virtex Ultrascale FPGAs contain a large

60

Figure 8.2: Hitech Global Virtex 7 Quad V2000T Emulation / ASIC Prototyping
Board[10]

number of logic cells, flip-flops, and look-up tables, even more so than the 690T
FPGA. Utilizing this new FPGA could also allow for larger array sizes. Hitech
Global provides several FPGA boards that utilize the Ultrascale FPGAs. Its Virtex
UltraScale 900 Gig Optical Networking Platform hosts a Virtex Ultrascale FPGA
on a small 9.25tn. x 8.1in. board which makes it an ideal candidate for use in the

DANNA development kit [11].

8.5 File Transfer Improvements

Throughout the testing of the communications interface, some issues were found
regarding the size of files that could be sent out to the FX3. Files as large as 90
KB were able to be sent to the FX3 without error. However, issues occured when

sending files as large as 3 MB. For some reason, during the transfer, the DMA flags all

61

Figure 8.3: Hitech Global Virtex UltraScale 900 Gig Optical Networking Platform
[11]

go high, putting the state machine in a position where it no longer reads any useful
data. This error puts a limit on how large a transfer could be when performing USB

transfers.

62

Chapter 9

Conclusion

DANNASs have been shown to function as a dynamic, neuromorphic platform capable
of adapting their behavior to changing inputs and conditions. However, the previous
implementation contained issues that made it difficult for other researchers to use.
Creation of a DANNA development kit and the new DANNA implementation subverts
the problems allowing other researchers to take advantage of neural network arrays
in a portable package. While great steps have been made to make DANNA more
accessible, additional work to the kit as well as the DANNA implementation itself

will improve usability and capability of these neural networks.

63

Bibliography

64

[10]
[11]
[12]
[13]
[14]

[15]

WinUSB (Winusb.sys). 32
FrontPanel - Opal Kelly, 2013. 36

Cypress EZ-USB®FX3™SuperSpeed Explorer Kit. Technical report, 2015. vi,
30

CYUSB3ACC-005 FMC Interconnect Board for the EZ-
USB®FX3™SuperSpeed Explorer Kit, 2015. vi, 35

Hitech Global Virtex-7 FPGA FMC Module, 2015. vi, 31, 32

IBM Research: Brain-inspired Chip, 2015. 3

LIBUSB.info, 2015. 33

ODROID-XU4, 2015. vii, 58

SpiNNaker, 2015. vi, 6

Virtex 7 Quad V2000T Emulation / ASIC Prototyping Board, 2015. vii, 60, 61
Virtex UltraScale? 900 Gig Optical Networking Platform, 2015. vii, 61, 62
Wandboard Computer, 2015. vi, 28, 29

Xilinx 7 Series FPGAs Overview, 2015. 53

Xilinx Virtex™-7 V2000T PCI Express Development Board, 2015. vii, 53, 54

Xillybus, 2015. 19

65

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

F. Akopyan, J. Sawada, A. Cassidy, R. Alvarez-Icaza, J. Arthur, P. Merolla,
N. Imam, Y. Nakamura, P. Datta, Gi-Joon Nam, B. Taba, M. Beakes,
B. Brezzo, J.B. Kuang, R. Manohar, W.P. Risk, B. Jackson, and D.S. Modha.
TrueNorth: Design and Tool Flow of a 65 mW 1 Million Neuron Programmable
Neurosynaptic Chip. Computer-Aided Design of Integrated Circuits and Systems,
IEEE Transactions on, 34(10):1537-1557, Oct 2015. 5

B.V. Benjamin, Peiran Gao, E. McQuinn, S. Choudhary, A.R. Chandrasekaran,
J.-M. Bussat, R. Alvarez-Icaza, J.V. Arthur, P.A. Merolla, and K. Boahen.
Neurogrid: A Mixed-Analog-Digital Multichip System for Large-Scale Neural
Simulations. Proceedings of the IEEE, 102(5):699-716, May 2014. 3, 4

B.V. Benjamin, Peiran Gao, E. McQuinn, S. Choudhary, A.R. Chandrasekaran,
J.M. Bussat, R. Alvarez-Icaza, J.V. Arthur, P.A Merolla, and K. Boahen.
Neurogrid: A Mixed-Analog-Digital Multichip System for Large-Scale Neural
Simulations. Proceedings of the IEEE, 102(5):699-716, May 2014. vi, 4

Christopher Daffron. DANNA A Neuromorphic Computing VLSI Chip. Master’s
thesis, University of Tennessee, 2015. vii, 55, 56

Mark E. Dean, Catherine D. Schuman, and J. Douglas Birdwell. Dynamic
Adaptive Neural Network Array. pages 129-141, 2014. 3, 6, 10, 14, 31, 50

ECE 402 Senior Design Group. Neuromorphic Hardware using a FPGA, May
2014. 2, 19

Eve Marder and Dirk Bucher. Central pattern generators and the control of

rhythmic movements. Current Biology, 11(23):R986 — R996, 2001. 59

Chris McClelland. FPGALink, 2013. 36

66

[24]

[25]

[27]

28]

[29]

[30]

[31]
[32]

[33]

E. Painkras, L.A. Plana, J. Garside, S. Temple, F. Galluppi, C. Patterson, D.R.
Lester, A.D. Brown, and S.B. Furber. SpiNNaker: A 1-W 18-Core System-on-
Chip for Massively-Parallel Neural Network Simulation. Solid-State Clircuits,
IEEE Journal of, 48(8):1943-1953, Aug 2013. 3,5, 7

J. Schemmel, D. Bru?derle, A. Gru?bl, M. Hock, K. Meier, and S. Millner.
A wafer-scale neuromorphic hardware system for large-scale neural modeling.
In Clircuits and Systems (ISCAS), Proceedings of 2010 IEEE International
Symposium on, pages 1947-1950, May 2010. 3, 6

Catherine D. Schuman. Neuroscience-Inspired Dynamic Architectures Disserta-

tion Defense. PhD thesis, University of Tennessee, November 2014. vi, 8

Catherine D. Schuman and J. Douglas Birdwell. Dynamic Artificial Neural
Networks with Affective Systems. PLoS ONE, 8(11):e80455, 11 2013. 11, 12

C.D. Schuman, J.D. Birdwell, and M. Dean. Neuroscience-inspired inspired
dynamic architectures. In Biomedical Science and FEngineering Center
Conference (BSEC), 2014 Annual Oak Ridge National Laboratory, pages 1-4,
May 2014. 7, 8

Cypress Semiconductor. AN65974 - Designing with the EZ-USB®FX3™Slave
FIFO Interface. Technical report, 2015. 36, 37

V. Thanasoulis, J. Partzsch, B. Vogginger, C. Mayr, and R. Schuffny. Long-
term pulse stimulation and recording in an accelerated neuromorphic system.
In Electronics, Circuits and Systems (ICECS), 2012 19th IEEE International
Conference on, pages 590-592, Dec 2012. 6

USB.org. Universal Serial Bus 3.1 Specification, rev. 1 edition, July 2013. 57
Xilinx. Large FPGA Methodology Guide. Technical report, 2012. 53

Xilinx. 7 Series FPGAs Overview. Technical report, 2015. 50

67

[34] Xilinx. UltraScale Architecture and Product Overview. Technical report, 2015.
60

68

Vita

Jason Chan is from Knoxville, TN. He graduated from Farragut High School in 2010,
and he continued his studies at the University of Tennessee in Knoxville, pursuing a
Bachelor of Science degree in Electrical Engineering from the Department of Electrical
Engineering and Computer Science in the College of Engineering. He graduated with
this degree in May of 2014. In the same month, he began pursuing a Master of Science
degree in Electrical Engineering at the University of Tennessee. He graduated with

that degree in December of 2015.

69

	University of Tennessee, Knoxville
	Trace: Tennessee Research and Creative Exchange
	12-2015

	Implementation of a Neuromorphic Development Platform with DANNA
	Jason Yen-Shen Chan
	Recommended Citation

	Front Matter
	Title
	Abstract

	Table of Contents
	Nomenclature
	1 Introduction
	2 Related Work
	3 DANNA
	3.1 Overview
	3.2 DANNA Element
	3.3 Clocking Module
	3.4 Psuedo-Random Number Generator
	3.5 Programming Interface Module
	3.6 DANNA Programming Structure
	3.7 Initial Implementation

	4 Enhanced DANNA
	4.1 Element Improvements
	4.1.1 Element Monitoring

	4.2 DANNA Module Improvements

	5 DANNA Development Kit
	5.1 Host Computer
	5.2 Communications Module
	5.3 FPGA Module
	5.4 Software

	6 Build and Initial Testing
	6.1 Physical Layout
	6.2 Communication Interface
	6.3 Initial Design, Implementation, and Testing
	6.4 FIFO Reset Implementation

	7 Challenges
	7.1 690T FPGA
	7.2 2000T FPGA
	7.3 Comparison with VLSI Design

	8 Future Improvements
	8.1 Communication Improvement
	8.2 DANNA Element Improvement
	8.3 External Input Implementation
	8.4 FPGA Improvements
	8.5 File Transfer Improvements

	9 Conclusion
	Bibliography
	Vita

