
University of Tennessee, Knoxville
Trace: Tennessee Research and Creative
Exchange

Masters Theses Graduate School

8-2008

Temporal Change Within and Among Forest
Communities of Great Smoky Mountains National
Park: The Influence of Historic Disturbance and
Environmental Gradients
Windy A. Bunn
University of Tennessee - Knoxville

This Thesis is brought to you for free and open access by the Graduate School at Trace: Tennessee Research and Creative Exchange. It has been
accepted for inclusion in Masters Theses by an authorized administrator of Trace: Tennessee Research and Creative Exchange. For more information,
please contact trace@utk.edu.

Recommended Citation
Bunn, Windy A., "Temporal Change Within and Among Forest Communities of Great Smoky Mountains National Park: The Influence
of Historic Disturbance and Environmental Gradients. " Master's Thesis, University of Tennessee, 2008.
https://trace.tennessee.edu/utk_gradthes/3658

https://trace.tennessee.edu
https://trace.tennessee.edu
https://trace.tennessee.edu/utk_gradthes
https://trace.tennessee.edu/utk-grad
mailto:trace@utk.edu


To the Graduate Council:

I am submitting herewith a thesis written by Windy A. Bunn entitled "Temporal Change Within and
Among Forest Communities of Great Smoky Mountains National Park: The Influence of Historic
Disturbance and Environmental Gradients." I have examined the final electronic copy of this thesis for
form and content and recommend that it be accepted in partial fulfillment of the requirements for the
degree of Master of Science, with a major in Ecology and Evolutionary Biology.

Nathan J. Sanders, Major Professor

We have read this thesis and recommend its acceptance:

Aimée T. Classen, Daniel Simberloff

Accepted for the Council:
Dixie L. Thompson

Vice Provost and Dean of the Graduate School

(Original signatures are on file with official student records.)



 

To the Graduate Council:  
 
I am submitting herewith a dissertation written by Windy A. Bunn entitled 
“Temporal change within and among forest communities of Great Smoky Mountains 
National Park: The influence of historic disturbance and environmental gradients.” I 
have examined the final electronic copy of this dissertation for form and content and 
recommend that it be accepted in partial fulfillment of the requirements for the 
degree of Master of Science, with a major in Ecology and Evolutionary Biology.  
 
 

____________________________  
Nathan J. Sanders, Major Professor  

 
 
 
 
We have read this dissertation  
and recommend its acceptance:  
 
 
_ Aimée T. Classen____________ 
 
_ Daniel Simberloff____________ 
 

 
 

Acceptance for the Council:  
 
 

_ Carolyn R. Hodges    ______  
Vice Provost and Dean of the  
Graduate School   

 
 

(Original signatures are on file with official student records.) 



 

Temporal change within and among forest 
communities of Great Smoky Mountains National 

Park: The influence of historic disturbance and 
environmental gradients 

 
 
 
 
 
 
 
 

A Thesis Presented for 
the Master of Science 

Degree 
The University of Tennessee, Knoxville 

 
 
 
 
 
 
 
 

Windy A. Bunn 
August 2008



ii 

ACKNOWLEDGEMENTS 

I’ve been very fortunate to have the support and advice of many wonderful people 

over the past two years. First, I’d like to thank my advisor, Nate Sanders, for sharing 

many great ideas, giving an amazing amount of his time and advice, and inspiring a 

great love of ecology. I’d also like to thank Mike Jenkins of for serving on my 

committee, guiding me through the historic dataset, and sharing his knowledge of the 

plant communities of Great Smoky Mountains National Park. I’m grateful to Aimée 

Classen and Dan Simberloff for serving on my committee, reading several drafts of 

my thesis, and giving me key pieces of advice when I needed it. None of this work 

would have been accomplished without the tireless work and cheerful outlook of 

Claire Brown, who spent many rainy days and nights in the field with me. Lara 

Souza also assisted with the field work on this project, and she has been an amazing 

collaborator and friend since my first day at UT. I have been very lucky to exchange 

ideas and encouragement with the other members of the Sanders’ Lab group (Greg 

Crutsinger, Matt Fitzpatrick, J.P. Lessard, Maggie Patrick, and Tara Sackett) as well 

as members of the Simberloff Lab (Martin Nuñez and Noelia Barrios). I’d like to 

thank Janet Rock of Great Smoky Mountains National Park for assisting me with 

plant identification, the University of Tennessee Department of Ecology and 

Evolutionary Biology for providing funding, and the National Park Service for 

issuing me a research permit. Lastly, I owe many thanks to Justin Cully for his 

unending encouragment, support, love, and understanding. Justin has provided the 

strong foundation in my personal life that has helped me succeed during this entire 

process.



ii 

ABSTRACT 

Understanding how ecological communities change over time is critical for 

biodiversity conservation. However, few long-term studies directly address decadal-

scale changes in the ecological communities of protected areas. In this study, we take 

advantage of a network of permanent forest plots, established in Great Smoky 

Mountains National Park in 1978, to investigate temporal changes in plant 

communities. In particular, we examine the factors that influence temporal change in 

species richness and composition within communities and temporal change in 

compositional similarity among communities.  In 2007, we revisited 15 permanent 

plots that were logged in the late 1920s and 15 permanent plots that have no 

documented history of intensive human disturbance. In addition to differences in 

disturbance history, these plots varied in elevation and a variety of edaphic 

parameters. We found that understory species richness decreased by an average of 

4.3 species over the 30-year study period in the logged plots, while understory 

richness remained relatively unchanged in the unlogged plots. In addition, tree 

density decreased by an average of 145 stems/ha in the logged plots but was 

relatively stable in the unlogged plots. Historic logging had no effect on within-site 

understory or tree compositional turnover. However, sites with higher soil pH had 

higher understory turnover and higher tree turnover than did sites with lower soil pH. 

In addition, sites at lower elevations and sites with lower understory productivity in 

1978 had higher understory turnover than did sites at higher elevations and sites with 

higher understory productivity in 1978. Among-community similarity was 

unchanged from 1978 to 2007 in the understory communities and in the tree 
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communities of both the logged and unlogged plots. Taken together, our results 

indicate that human disturbance can affect plant communities for decades following 

the disturbance event but that the extent of temporal change in community 

composition may depend more on environmental gradients than on the legacy of 

large-scale but short-lived historic disturbances, such as logging. In addition, our 

results suggest that variation in temporal turnover within communities may not 

necessarily translate into changes in compositional similarity among communities 

over time.
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PREFACE  

This thesis was written as a manuscript for publication and can be cited as: 

Bunn, W. A., M. A. Jenkins, C. B. Brown, and N. J. Sanders. (In prep). 

Temporal change within and among forest communities of Great Smoky 

Mountains National Park: The influence of historic disturbance and 

environmental gradients. 

Throughout the manuscript the term “we” refers to myself and the coauthors listed 

above. My primary contributions to this manuscript include (1) selection of topic and 

design of research approach, (2) identification of study areas, (3) collection of 

vegetation data in 2007, (4) analysis of data, and (5) writing the majority of the 

manuscript. Other authors contributed to this research as follows: N.J.S. advised in 

the development of the research and assisted with writing the paper; M.A.J. provided 

historic vegetation data, provided soils data, and assisted with writing the paper; 

C.B.B. assisted with data collection and analysis.
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INTRODUCTION 

Both within- and among-community attributes can change over time, and 

understanding these changes often requires long-term empirical data, perhaps over 

several decades in some systems (Magnuson 1990; Wardle et al. 2004). Within a 

community, the total number of species present as well as the abundance of 

particular species can change with time. These within-community changes can lead 

to temporal differences in similarity among communities within a region (Loreau 

2000).  Despite the potential for within-community changes to influence similarity 

among communities, few studies directly measure long-term changes in both the 

within- and among-community components of diversity (but see Chalcraft et al. 

2004). In this study, we use long-term monitoring data from Great Smoky Mountains 

National Park to examine temporal changes in forest understory plant communities 

and tree communities across 30 years. Specifically, we examine the factors that 

influence temporal change in species richness and composition within communities 

and temporal change in compositional similarity among communities.   

Temporal change within communities 

Over time, the total number of species in a community can increase, decrease, 

or remain stable as new species are gained and lost from the community (Brown et 

al. 2001). In addition to temporal changes in species richness, the relative abundance 

of species in a community can change, though richness itself might not (Brown et al. 

2001). Communities with little temporal change in species composition have low 

turnover, and communities with more extensive temporal change in composition 

have high turnover. Within-community change in species richness and temporal 
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turnover can vary with a number of factors, including disturbance (Collins & Smith 

2006), species invasions (Yurkonis & Meiners 2004), rainfall (Anderson 2008), 

elevation (Aplet & Vitousek 1994; Selmants & Knight 2003), soil fertility and 

productivity (Peet & Christensen 1988; Verheyen et al. 2003; Taverna et al. 2005; 

Clark & Tilman 2008), and species richness (Smart et al. 2006; White et al. 2006). 

However, the relative influence of these factors on temporal change in plant 

communities is poorly understood and likely varies by habitat type. 

Temporal change among communities 

Temporal change within communities can affect among-community 

similarity (Loreau 2000). Over time, communities within a region can become either 

more similar or less similar to one another depending on the extent of temporal 

change within individual communities of the region. Research aimed at 

understanding changes in community similarity with time is of increasing interest 

because contemporary habitat alteration, species invasions (McKinney & Lockwood 

1999), intense herbivory (Rooney et al. 2004), and historic disturbance (Christensen 

& Peet 1984; Vellend et al. 2007) can homogenize communities across regions.  

Though there is a growing interest in changes in among-community 

similarity in space and in time (Olden 2006), understanding the factors that influence 

this component of diversity can require long-term data. One way to investigate these 

long-term processes is to use space-for-time substitution (or chronosequence) studies 

of age-dependent differences in community composition. However, chronosequence 

studies are limited by the fact that site-to-site variability can confound patterns of 

temporal change (Fukami & Wardle 2005). To differentiate fully the mechanisms 
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driving temporal change within and among communities, trends documented in 

chronosequence studies must be compared with data from long-term plot resampling 

schemes, especially in long-lived communities. 

Temporal change in forests of the eastern U.S. 

Recent studies of decadal-scale change in forest communities indicate that 

declines in species richness (Drayton & Primack 1996; Rooney & Dress 1997; 

Rooney et al. 2004; Taverna et al. 2005), shifts in plant community composition 

(Taverna et al. 2005), and changes in regional community similarity (Rooney et al. 

2004) over time may be common in forests of the eastern United States. Since land-

use history can have large effects on forest communities (Foster et al. 1998; Vellend 

et al. 2007), the legacy of human disturbance should be considered when evaluating 

temporal change in these long-lived communities.  

In this study, we take advantage of a network of permanent forest plots, 

established in Great Smoky Mountains National Park in 1978, to investigate changes 

in forest understory plant communities as well as tree communities in historically 

logged and unlogged forests. Specifically, we ask: (1) Does historic logging affect 

temporal change in species richness and compositional turnover within 

communities? (2) Are within-community changes in species richness and 

compositional turnover related to topographic factors, edaphic factors, or community 

attributes? (3) Does historic logging affect temporal change in among-community 

similarity?  
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METHODS 

We conducted this study in Great Smoky Mountains National Park (GSMNP) 

in eastern Tennessee, USA. GSMNP has one of the most complex vegetation 

patterns in North America (Whittaker 1956) and has been a center for plant 

community research since its establishment in the early 1930s. GSMNP ranges in 

elevation from 271 m to 2025 m, and climate and vegetation types vary considerably 

along the elevational gradient.  Mean annual rainfall in low elevation sites is 140 cm 

with mean temperatures greater than 12 °C, while annual rainfall is > 200 cm and 

temperature averages 6 °C at high elevation peaks. GSMNP contains 79 vegetation 

associations that vary from low- to mid-elevation mixed hardwood forests and xeric 

Pinus and Quercus forests to high-elevation Picea-Abies forests and heath balds 

(White et al. 2003). Prior to GSMNP establishment, approximately 80% of the area 

within the current GSMNP boundary was subject to anthropogenic disturbance (Pyle 

1988). Despite the history of disturbance, GSMNP is considered a center for 

diversity in North America and at 211,000 ha is one of the largest protected areas in 

the eastern United States.  

Plot selection and field methods 

In 2007, we resampled thirty 20 m × 50 m forest plots originally established 

in GSMNP in 1978 by the Uplands Field Research Laboratory (White & Busing 

1993). Fifteen of the resampled plots are in historically logged forests and fifteen 

plots are in unlogged forests. We used detailed maps of historic anthropogenic 

disturbance in GSMNP (summarized in Pyle 1988) to identify areas that underwent 
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historic logging and areas that had no known large-scale human disturbance in the 

past. Historically logged areas were defined using the “corporate logging” category 

of Pyle (1988), and included only those areas defined by Pyle as high intensity 

logging. Under Pyle’s definition, high intensity logging included the use of railroads 

and mechanized skidding, non-selective cutting practices, and highly extensive 

cutting on slopes. We defined unlogged areas using Pyle’s “high in virgin forest 

attributes” and “big trees with diffuse disturbance” categories. 

In order to restrict our analysis to the effects of historic disturbance on 

community dynamics, we used 1978 field data and 2007 pre-sampling surveys to 

exclude areas with high levels of recent disturbance. Toward this end, we sampled 

only plots dominated by hardwood species (those defined by White et al. 2003 as 

Montane Oak-Hickory, Mountain Cove, and Northern Hardwood forests) in order to 

avoid potential disturbances caused by frequent fire, southern pine beetle, and 

balsam woolly adelgid in the last 30 years. We also excluded plots that had extensive 

loss of canopy trees due to the recent spread of hemlock woolly adelgid.  

To examine whether environmental conditions affected community turnover, 

we chose plots that met the above disturbance criteria and were arrayed along an 

elevational gradient. Note that the mean elevation of logged plots did not differ from 

the mean elevation of unlogged plots (Table A.1; all tables located in the 

appendices). The 15 logged plots ranged in elevation from 727 m to 1402 m and 

occurred on north- (n = 8), east- (n = 4), and west- (n = 3) facing slopes. The 15 

unlogged plots ranged in elevation from 664 m to 1400 m and occurred on north- (n 

= 10), east- (n = 1), and west- (n = 3) facing slopes. The underlying bedrock in the 
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unlogged plots and the low elevation logged plots is metasandstone interbedded with 

metasiltstone layers, and the high elevation logged plots are underlain by a mix of 

slate, metasiltstone, and phyllite with thin beds of metasandstone (Southworth et al. 

2005). Both the logged and unlogged plots are characterized by well-drained loamy 

soils classified as either Humic or Typic Dystrudepts (Anthony Khiel, NRCS, 

unpublished report). 

Tree cores collected and analyzed as part of the GSMNP vegetation program 

were available for a subset of the sampling plots (M. A. Jenkins, unpublished data). 

Cores were taken from 2 – 4 dominant trees within each plot. Complete cores from 

three unlogged plots, cores without pith from three additional unlogged plots, and 

complete cores from three logged plots were used for age comparison. These cores 

indicate that dominant trees in unlogged plots were 150 – 228 years old (complete 

cores) or a minimum 132 – 147 years old (cores without pith) in 2007. As expected 

from logging history records, dominant trees in logged plots were 75 – 80 years old 

in 2007. 

In 1978, the 20 m × 50 m forest plots were permanently marked with rebar 

and witness tree tags, which allowed us to identify the plots in 2007. In the 2007 

resampling, we used the same sampling design used in the original 1978 sampling 

(Bratton 1978). Specifically, within each 20 m × 50 m plot, we recorded the presence 

and percent cover of understory shrub and tree seedling species  < 1 m tall in 25 4-m2 

subplots and the presence and cover of understory herbaceous species in 25 1-m2 

subplots nested within the shrub and seedling subplots (Fig. A.1; all figures located 

in the appendices). We defined the understory community as the shrub, seedling, and 
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herbaceous species recorded in all 25 subplots within the entire 20 m × 50 m plot. 

We also recorded the identity, density, and diameter at breast height (dbh) of all tree 

species (≥10 cm dbh) in the 20 m × 50 m plot and called these species the tree 

community. In 2007, we sampled plots at roughly the same time of year that they 

were sampled in 1978. Sampling was conducted between June 19 and August 26 in 

1978 and between July 9 and August 26 in 2007. Sampling of plots was paired, as 

best as possible, within seasons. That is, if a plot was sampled late in the field season 

in 1978, we attempted to sample that plot late in the field season of 2007.  

The 1978 survey crew recorded cover values in 1% increments. But in 2007, 

we estimated percent cover according to the Carolina Vegetation Survey (CVS) scale 

with 10 cover classes (Peet et al. 1998) to reduce bias between individual recorders. 

In order to compare percent cover values between years, we converted the 1978 

cover estimates to the 10-point CVS scale. To account for taxonomic changes over 

the past 30 years, we updated the 1978 species nomenclature according to Kartesz 

(1999). 

To characterize the sampling plots, we estimated a suite of topographic and 

edaphic parameters (Table A.1). We calculated percent slope by averaging three 

slope measurements taken at the two end lines and along the centerline of each plot. 

We used field measurements of slope and aspect to calculate heat load, an integrative 

measure of a plot’s yearly exposure to incident sunlight (Equation 3 from McCune & 

Keon 2002). Between 2002 and 2007, soil samples were collected from the top 10 

cm of soil at five locations throughout each of the 30 plots with a hand spade. The 

five subsamples were combined into one composite sample per plot, dried at 43 °C 



 

8 

for at least 8 hours, and sieved through a 2 mm mesh. The samples were analyzed for 

pH, cation exchange capacity (CEC), total phosphorus (P), potassium (K), calcium 

(Ca), and magnesium (Mg), and percent organic matter by A&L Analytical 

Laboratories, Memphis, TN (see Jenkins et al. 2007 for details of cation extraction 

procedures). 

Influence of historic logging on forest communities 

To determine the influence of historic logging on plant community attributes, 

we compared species richness and total species abundance in logged plots with 

species richness and abundance in unlogged plots using separate t-tests (JMP 6.0; 

SAS Institute Cary, NC, USA) for 1978 and 2007. For the analyses of tree species 

richness, we used both the observed number of species present in a plot and an 

estimate of species richness generated by individual-based rarefaction (PRIMER, 

Version 6, PRIMER-E Ltd., Plymouth Marine Laboratory, Plymouth, UK). 

Rarefaction allowed us to correct species richness values for differences in the 

number of individuals sampled in each plot by using a resampling procedure to 

generate estimated species richness values based on the number of individuals 

sampled in the plot with the fewest trees (Gotelli & Colwell 2001). 

We used nonparametric, permutational multivariate analysis of variance 

(MANOVA) based on Bray-Curtis similarity values of species abundances to 

compare understory and tree community composition between logged and unlogged 

plots. Nonparametric MANOVA is appropriate for testing the simultaneous effects 

of a treatment on multiple non-independent variables (such as species abundances 

within a community) when the assumptions of the traditional MANOVA are not met 
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(Anderson 2001). We assessed differences in community composition between 

logged and unlogged plots using the FORTRAN program PERMANOVA 

(http://www.stat.auckland.ac.nz/~mja/Programs.htm; Anderson 2005). 

PERMANOVA compares the variability in species similarity between plots within a 

treatment to the variability in species similarity between plots from different 

treatments. The test statistic for PERMANOVA is the pseudo F-ratio, where a large 

pseudo F-ratio indicates that logged plots are closer to one another in multivariate 

space than they are to unlogged plots and that the logged and unlogged plots differ in 

community composition. The significance of the pseudo F-ratio is tested using a 

permutation test that shuffles the sample labels and calculates the pseudo F-ratio for 

9999 arbitrary reassignments of the data. The pseudo F-ratios of these randomly 

assigned communities are then compared to the pseudo F-ratio of the observed 

community to calculate the significance level of the test (Anderson 2001). For the 

understory communities, we calculated species abundance both by calculating the 

average of the cover values for an individual species in the 25 subplots (cover-based 

estimate) and by calculating the percentage of the 25 subplots in which the species 

occurred (frequency-based estimate). For the tree communities, we used the number 

of individual trees of a species as the abundance value. Since the scale of abundance 

values in our study was small (ranging from 0 to 100 for understory species and 0 to 

52 for tree species), we did not transform the data to reduce the influence of 

abundant species. 

A significant pseudo F-ratio from the PERMANOVA can indicate a 

difference in community composition between treatments due either to differences in 
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the location of the treatment communities in multivariate space or to differences in 

dispersion of communities in multivariate space within the treatments (Anderson 

2001; Anderson 2004). To confirm that compositional differences between logged 

and unlogged communities were due to location differences rather than to dispersion 

differences, we used the FORTRAN program PERMDISP 

(http://www.stat.auckland.ac.nz/~mja/Programs.htm; Anderson 2004). PERMDISP 

calculates the centroid of each treatment (logged or unlogged) in multivariate space 

based on the chosen similarity measure (in this case, Bray-Curtis), and then 

calculates the distance of each plot within the treatment from the treatment centroid. 

To compare average dispersion values between treatments (logged understory 

communities vs. unlogged understory communities; logged tree communities vs. 

unlogged tree communities), PERMDISP performs a permutational ANOVA and 

calculates a pseudo F-statistic and P-value in the same manner as the 

PERMANOVA described above (Anderson 2004). A significant pseudo F-ratio from 

the PERMANOVA and a non-significant difference in dispersion between logged 

and unlogged plots from the PERMDISP analysis would suggest that logged and 

unlogged communities differ in multivariate composition and do not differ in 

variation around the mean composition within logged and unlogged communities.  

To determine whether particular species accounted for the observed 

differences in community composition between logged and unlogged communities, 

we performed indicator species analysis (Dufrene & Legendre 1997) using PC-ORD 

5.0 (MjM Software Design, Gleneden Beach, OR). The indicator analysis uses the 

relative abundance of each species (abundance in one group divided by abundance in 
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all other groups) and the number of plots within each group in which the species 

occurs (relative frequency) to calculate an indicator value that ranges from 0 to 100. 

An indicator value of 100 indicates that the species was observed in only one group  

(in this case, logged or unlogged plots) and that each plot within that group contained 

at least one individual of that species. The significance of the indicator value is 

determined with a Monte Carlo test based on Bray-Curtis distance (Dufrene & 

Legendre 1997). 

Temporal change within communities 

We analyzed within-plot change in species richness and total abundance with 

paired t-tests, where the species richness and total abundance values for a plot in 

1978 were compared with the species richness and total abundance values for the 

same plot in 2007. To determine whether topographic or edaphic factors influenced 

the change in species richness over time, we calculated the proportional difference in 

species richness between 1978 and 2007 for each plot. We then generated Pearson’s 

correlation coefficients between proportional change in species richness and each 

factor listed in Table A.1 to examine whether any topographic or edaphic factors 

were correlated with the extent of change in richness. 

To estimate temporal turnover in community composition, we calculated the 

similarity of each plot in 1978 to itself in 2007 using the Bray-Curtis index and the 

Chao-Sørensen incidence-based index in EstimateS (Colwell 2005). The Bray-Curtis 

index (also referred to as the Sørensen quantitative index or the Czekanowski 

coefficient; CN) is widely used to assess similarity between two communities 

(Magurran 2004). The Chao-Sørensen incidence-based index (Linc) is a modified 
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form of the traditional Sørensen similarity index that accounts for both the frequency 

of individual species in the community and for the effects of “unseen shared species” 

(species that are missing from the sample data but are likely present in the 

community) on community similarity (Chao et al. 2005). The Chao-Sørensen index 

is useful for assessing similarity between diverse communities that contain many rare 

species, such as the forest understory community. For both the Bray-Curtis and the 

Chao-Sørensen indices, values near 1 indicate nearly identical community 

composition between time periods and values near 0 indicate that communities have 

very little compositional overlap between time periods. 

We defined temporal turnover as the degree of compositional dissimilarity 

between 1978 and 2007 within an individual plot. Therefore, we calculated turnover 

as 

€ 

1−CN  and 

€ 

1− Linc . To evaluate whether historic logging influenced temporal 

turnover, we performed t-tests to compare mean logged and unlogged community 

turnover for both the 

€ 

1−CN  and 

€ 

1− Linc  dissimilarity values. We generated Pearson’s 

correlation coefficients to determine whether temporal turnover was related to the 

topographic or edaphic factors listed in Table A.1 or to community attributes. We 

used JMP 6.0 for all analyses of within-plot temporal turnover. 

Temporal change among communities 

To examine whether similarity among communities changed over time in 

logged and unlogged plots, we used a test for homogeneity of multivariate 

dispersions (Anderson et al. 2006) based on Bray-Curtis dissimilarity. Traditionally, 

overall among-community similarity within a group has been described as the mean 

similarity of each community to all other communities within that group. However, 
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direct statistical tests cannot be performed on these average similarity values because 

the values are not independent of one another (Anderson et al. 2006). Here, we 

describe among-community similarity as the average distance of plots within a group 

to the group centroid in multivariate space (i.e. multivariate dispersion as in 

Anderson et al. 2006), and use a permutational ANOVA (described above) in the 

PERMDISP program to statistically test for differences in among-community 

similarity between years. Using this approach, a significant P-value indicates that 

plots within a treatment (logged or unlogged) became either more homogeneous (had 

lower multivariate dispersion in 2007 than in 1978) or more dissimilar to one another 

(had higher multivariate dispersion in 2007 than in 1978) over time. For our study 

plots, average distance of individual plots to the group centroid is directly 

comparable to traditional measures that calculate mean similarity of each plot to all 

other plots within the group.  For understory communities, average Bray-Curtis 

similarity and average Chao-Sørensen similarity were highly correlated with average 

distance to the group centroid in 1978 (r = 0.99, P < 0.001; r = 0.97, P < 0.001, 

respectively) and in 2007 (r = 0.99, P < 0.0001; r = 0.96, P < 0.0001, respectively). 

For tree communities, average Bray-Curtis similarity was highly correlated with 

average distance to the group centroid in 1978 (r = 0.99, P < 0.001) and in 2007 (r = 

0.87, P < 0.0001). 



 

14 

RESULTS 

Influence of historic logging on forest communities 

In 1978 (50 years after logging), historically logged plots contained a total of 

132 understory species and 29 tree species while unlogged plots contained 157 

understory species and 25 tree species (Appendix B). In 2007 (80 years after 

logging), historically logged plots contained a total of 110 understory species and 24 

tree species while unlogged plots contained 134 understory species and 26 tree 

species (Appendix C). Across both sampling periods, historically logged plots 

contained 25 understory species and 5 tree species that were not found in unlogged 

plots, and unlogged plots contained 48 understory species and 2 tree species that 

were unique to unlogged plots (Appendix D). Overall, 39 species recorded in 1978 

were not seen in 2007, and 9 new species were encountered in 2007 that were not 

recorded in 1978 (Appendix D). 

Neither mean understory species richness (t = 1.59, df = 27, P = 0.12) nor 

mean tree species richness (observed: t = 1.65, df = 24, P = 0.11, rarefied: t = 1.0, df 

= 25, P = 0.33) differed between logged and unlogged plots in 1978. In 2007, 

however, understory species richness was 1.4× greater in unlogged plots than in 

logged plots (t = 2.25, df = 27, P = 0.03). Tree species richness did not differ 

between logged and unlogged plots in 2007 (observed: t = 1.26, df = 23, P = 0.22, 

rarefied: t = 0.83, df = 25, P = 0.42). 

 Understory percent cover did not differ between logged and unlogged plots 

in 1978 (t = 1.13, df = 27, P = 0.27). But in 2007, understory cover was 1.8× greater 

in unlogged plots than in logged plots (t = 2.89, df = 27, P = 0.007).  Tree density 
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was 1.7× higher in logged plots than in unlogged plots in 1978 (t = 4.9, df = 27, P < 

0.0001) and 1.4× higher in logged plots than in unlogged plots in 2007 (t = 2.69, df = 

21, P = 0.01). 

Using frequency-based estimates of species abundance, we found slight 

differences in understory community composition between logged and unlogged 

plots in both 1978 (PERMANOVA: F1, 28 = 1.84, P = 0.05) and 2007 

(PERMANOVA: F1, 28  = 1.80, P = 0.05). Using percent cover-based estimates of 

species abundance, we also found differences in understory community composition 

between logged and unlogged plots in 1978 (PERMANOVA: F1, 28  = 1.81, P = 0.02) 

and in 2007 (PERMANOVA: F1, 28  = 1.85, P = 0.03). The differences in understory 

community composition were due to differences in the location of the logged and 

unlogged plots in multivariate space rather than to differences in the relative 

dispersion of plots within the logged and unlogged groups (1978 PERMDISP: F = 

0.54, P = 0.52 (frequency-based), F = 0.08, P = 0.80 (cover-based); 2007 

PERMDISP: F = 0.40, P = 0.59 (frequency-based), F = 0.32, P = 0.64 (cover-

based)).  Overall, fourteen understory species had significantly higher indicator 

values (a combination of relative abundance and relative frequency) in unlogged 

plots in at least one of the years and five understory species had significantly higher 

indicator values in logged plots (Table A.2). Indicators of unlogged plots included 

tree seedlings, small shrubs, and slow-dispersing forest interior herbs, such as 

Trillium spp., Viola hastata, Arisaema triphyllum, and Eurbyia divaricatus.  Four of 

the five significant indicators of logged plots were woody seedlings or shrubs. 
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Composition of tree communities differed between the logged and unlogged 

plots in both 1978 (PERMANOVA: F1, 28  = 2.11, P = 0.03) and 2007 

(PERMANOVA: F1, 28  = 2.37, P = 0.02). Differences in tree community 

composition were due to differences in the location of the logged and unlogged plots 

in multivariate space rather than to differences in the relative dispersion of plots 

within the logged and unlogged groups (1978 PERMDISP: F = 0.02, P = 0.89; 2007 

PERMDISP: F = 0.36, P = 0.59). Betula lenta and Prunus serotina had significantly 

higher indicator values in logged plots than in unlogged plots in both years. In 

addition, Prunus pensylvanica had a significantly higher indicator value in logged 

plots than in unlogged plots in 1978 and Magnolia fraseri had a significantly higher 

indicator value in logged plots than in unlogged plots in 2007. Acer saccharum was 

the only tree species with a significantly higher indicator value in unlogged plots 

than in logged plots (Table A.3). 

Overall, logged and unlogged plots had similar topographic properties, but 

differed in some edaphic parameters (Table A.1). Soil cation exchange capacity was 

1.3× higher, soil Ca was 2× higher, and soil organic matter was 1.7× higher in 

logged plots than in unlogged plots. Soil pH was 1.1× higher in unlogged plots than 

in logged plots and higher elevation plots tended to have significantly lower soil pH 

than did lower elevation plots (Table A.4).  

Effects of historic logging on temporal change within communities 

Understory species richness decreased by an average of 13% over the 30-year 

study period in the historically logged plots (t = 2.35, df = 14, P = 0.03), but did not 

change in the unlogged plots (t = 1.06, df = 14, P = 0.31). The decrease in overall 
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understory species richness in the logged plots resulted from decreased richness of 

herbaceous species (Table A.5; Fig. A.2). Shrub, seedling, and tree species richness 

did not change over time in either logged or unlogged plots (P > 0.08 in all cases; 

Table A.5; Fig. A.2). 

Over the 30-year study period, stem density of trees decreased by an average 

of 21% in the historically logged plots (t = 6.14, df = 14, P < 0.0001) but did not 

change in unlogged plots (t = 0.30, df = 14, P = 0.77) (Table A.5, Fig. A.3). Tree 

basal area increased slightly over 30 years in the historically logged plots (t = 2.0, df 

= 14, P = 0.07) but did not change over time in the unlogged plots (t = 1.07, df = 14, 

P = 0.30).  

Historic logging had no effect on within-plot understory compositional 

turnover measured using the Bray-Curtis (t = 0.08, df = 28, P = 0.94) or the Chao- 

Sørensen (t = 0.45, df = 26, P = 0.65) indices. Similarly, there was no effect of 

historic logging on within-plot tree compositional turnover (Bray-Curtis: t = 1.4, df = 

27, P = 0.17).  

Effects of topographic and edaphic factors on temporal change within communities 

The topographic and edaphic factors listed in Table A.1 were not correlated 

with proportional change in understory species richness within individual plots (all P 

> 0.18). Within-plot understory compositional turnover, however, was negatively 

correlated with elevation and positively correlated with soil pH (Table A.6). Overall, 

plots at higher elevations had lower understory compositional turnover over the 30-

year period than did plots at lower elevations (Bray-Curtis: r = -0.46, P = 0.01; 

Chao- Sørensen: r = -0.41, P = 0.02; Fig. A.4). In addition, plots with high soil pH 
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had higher understory turnover than did plots with low soil pH (Bray-Curtis: r = 

0.37, P = 0.04; Chao- Sørensen: r = 0.31, P = 0.09; Fig. A.4).  

Temporal turnover in understory community composition was not related to 

tree compositional turnover (r = 0.19, P = 0.32). Tree compositional turnover was 

negatively correlated with soil cation exchange capacity (CEC; r = -0.57, P = 0.001) 

and positively correlated with soil pH (r = 0.41, P = 0.03). Plots with high CEC and 

low pH had lower compositional turnover in the tree community than plots with low 

CEC and high pH (Fig. A.5). No other topographic or edaphic factors listed in Table 

A.1 were correlated with proportional changes in tree species richness or with tree 

compositional turnover (all P > 0.08; Table A.6). 

Effects of community attributes on temporal change within communities 

Neither proportional change in understory species richness (r = -0.25, P = 

0.18) nor understory compositional turnover (Bray-Curtis: r = 0.32, P = 0.09; Chao- 

Sørensen: r = 0.18, P = 0.35) was related to 1978 understory species richness. 

However, plots with high tree species richness in 1978 lost a greater proportion of 

species over time than did plots with low tree species richness in 1978 (r = -0.45, P = 

0.01). Tree species richness in 1978 was not correlated with compositional change in 

the tree community (r = 0.18, P = 0.33). 

With the exception of one statistical outlier (determined using Cook’s D and 

hat matrix analyses) that contained approximately 55% cover of two fern species 

(Phegopteris hexagonoptera and Dennstaedtia punctilobula), plots with high 

understory productivity in 1978 (estimated using percent cover values) had lower 

understory turnover than did plots with low understory productivity in 1978 (Bray-



 

19 

Curtis: r = -0.49, P = 0.007; Chao-Sørensen: r = -0.45, P = 0.01; Fig. A.4). Change 

in understory species richness was not related to 1978 understory productivity (r = -

0.23, P = 0.22). Tree productivity in 1978 (estimated using stand basal area values) 

was not significantly correlated with change in tree species richness (r = -0.03, P = 

0.87) or with tree compositional turnover (r = -0.33, P = 0.08). Understory percent 

cover and tree basal area were not correlated with any measured topographic or 

edaphic factors (Table A.7). 

Effects of historic logging on temporal change among communities 

Among-community similarity was unchanged from 1978 to 2007 in both the 

logged and unlogged plots (Table A.8). We found no differences in the multivariate 

dispersion of understory communities in 2007 compared with 1978 in either the 

logged (PERMDISP: F = 0.18, P = 0.74 (frequency-based), F = 0.04, P = 0.88 

(cover-based)) or unlogged (PERMDISP: F = 0.19, P = 0.69 (frequency-based), F = 

1.25, P = 0.34 (cover-based)) plots. Similarly, multivariate dispersion of tree 

communities did not change between 1978 and 2007 in logged (PERMDISP: F = 

0.06, P = 0.82) or unlogged (PERMDISP: F = 1.17, P = 0.35) plots. 
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DISCUSSION 

By resampling permanently marked forest plots, we investigated whether the 

legacy of historic logging influenced temporal change within and among forest 

communities and whether topographic factors, edaphic factors, or community 

attributes were correlated with temporal change in these communities. We found that 

logging history affected temporal change in understory species richness and tree 

density within communities. However, logging history did not affect the extent of 

within-community compositional turnover for either the understory or tree 

community. Instead, factors such as topography, soil properties, the number of 

species within a community, and community productivity were related to within-

community compositional change.  Among-community similarity was unchanged 

from 1978 to 2007 in the understory communities and in the tree communities of 

both the logged and unlogged plots. 

Effects of historic logging on temporal change within communities 

In 1978 (50 years after logging), understory community composition differed 

only slightly between historically logged and unlogged plots. Historically logged and 

unlogged plots also differed only slightly in understory composition in 2007 (80 

years after logging). These results are similar to some chronosequence studies 

comparing understory communities in recently (< 50 years) logged forests with 

understory communities of older (> 80 years) forests (Gilliam et al. 1995; Ford et al. 

2000). However, other studies have found larger and more persistent differences in 

the understory communities of anthropogenically disturbed and undisturbed forests 

(Duffy & Meier 1992; Meier et al. 1995; Bellemare et al. 2002; Flinn & Vellend 
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2005; Harrelson & Matlack 2006).  There are at least two reasons for the 

discrepancies among previous studies. First, evidence for large differences in 

understory composition between human-disturbed and undisturbed forests generally 

comes from studies of abandoned agricultural land (Bellemare et al. 2002; Flinn & 

Vellend 2005; Harrelson & Matlack 2006). Agricultural disturbance can last for 

many decades and deplete forest species from the seedbank, leaving only a subset of 

the forest understory species to recolonize abandoned sites (Bellemare et al. 2002; 

Flinn & Vellend 2005; Harrelson & Matlack 2006). Second, it is possible that the 

effects of historic logging are stronger on vernal understory species (Duffy & Meier 

1992; Meier et al. 1995) than on late-season (summer) species. In our study site, the 

relatively small differences we observed in community composition between logged 

and unlogged plots could be due to the short duration of logging activities or to our 

focus on late-season species. Logging activities lasted for four years in our study 

area (Schmidt & Hooks 1994), and understory species may have persisted in the soil 

seedbank and subsequently recolonized logged areas or survived as scattered mature 

individuals in the logged areas. In addition, our 1978 and 2007 sampling data were 

collected between mid-June and late-August and included only late-season 

understory species, which may be more resistant to logging effects than vernal 

species. 

We found that temporal change in understory species richness differed between 

logged and unlogged plots, but that temporal change in tree species richness did not. 

Logged plots lost, on average, 4.3 understory species over the 30-year study period, 

while understory species richness in unlogged plots did not change significantly over 



 

22 

the same time interval. Species loss in other protected areas of the eastern U.S. has 

been attributed to increases in white-tailed deer populations (Rooney & Dress 1997; 

Rooney et al. 2004; Taverna et al. 2005). However, deer impacts to vegetation in 

GSMNP are generally concentrated near historic agricultural fields (Webster et al. 

2005) that do not intersect our study sites, and there is no reason to suspect that deer 

herbivory differentially affects logged and unlogged plots in this area. The loss of 

understory species in individual logged plots is more likely due to the loss of early 

colonizing herbs or to the changing light regime caused by changes in overstory stem 

density, though we did not explicitly test either of these hypotheses.  

Consistent with other studies in this area (e.g., Clebsch & Busing 1989), tree 

species richness did not differ between logged and unlogged plots in either 1978 or 

2007. However, tree species composition did differ between logged and unlogged 

plots in 1978 and also in 2007. Overall, we encountered five tree species in the 

logged plots that were not encountered in the unlogged plots and two tree species in 

the unlogged plots that were not encountered in the logged plots. In addition, tree 

density was higher in logged plots than in unlogged plots in both years.  

Over the 30-year study period, tree density decreased by 21% in the logged plots 

though it remained relatively stable in the unlogged plots. The decrease in tree 

density in the logged plots was driven by a decrease in the number of trees smaller 

than 30 cm dbh (data not shown). The decrease in tree density in the logged plots 

suggests that these plots were in the stem exclusion stage of forest development, 

when trees established after the logging event compete most intensely with one 

another for growing space (Oliver & Larson 1996), and those individuals that grew 
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more slowly had less access to light and died. The relative stability of tree density in 

the unlogged plots indicates that these plots have entered the later stages of forest 

development when the loss of individual trees is more idiosyncratic (Oliver & 

Larson 1996). 

 Contrary to our expectations, the occurrence of historic logging did not affect 

the extent of compositional turnover in the understory community or the extent of 

tree compositional turnover during our 30-year study period. We expected greater 

compositional change in the understory of logged plots than in unlogged plots during 

this period due to the changing understory light environment as the logged plots 

moved through the stem exclusion and understory reinitiation stages of development 

(Oliver & Larson 1996). While we did expect some change in understory species 

composition over time in the unlogged plots (Taverna et al. 2005), we expected this 

change to be small relative to understory change in logged plots. It may be that we 

found no difference in the extent of compositional change in the understory of 

logged and unlogged plots because logging events that occurred greater than 50 

years ago no longer affect understory dynamics in these forests. 

For tree communities, we expected the logged plots to have a higher 

compositional turnover than the unlogged plots due to the expected decrease in small 

trees over time and the presence of early successional tree species in the logged 

plots. However, we found that the extent of tree compositional turnover in unlogged 

plots was similar to tree turnover in logged plots. Given that tree density in the 

logged plots was almost twice as high as tree density in the unlogged plots in 1978, 

the loss of individual trees likely had a smaller effect on compositional turnover in 
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the logged plots than in the unlogged plots. Since each tree species is represented by 

fewer individuals in the unlogged plots, a small change in tree density could result in 

a proportionally larger change in community composition. The different responses of 

logged and unlogged tree communities to the loss of individual trees could explain 

the similar extent of compositional turnover we observed in logged and unlogged 

plots. 

Effects of topographic and edaphic factors on temporal change within communities 

Topography, edaphic parameters, and community productivity were all 

correlated with temporal turnover in the forest understory community. However, 

only edaphic parameters were correlated with turnover in the tree community. 

Overall, the extent of temporal turnover in understory community composition was 

not related to the extent of tree compositional turnover during the 30-year study 

period. 

Consistent with other studies (Aplet & Vitousek 1994; Selmants & Knight 2003), 

we found that the extent of temporal turnover in the understory community 

decreased along the elevational gradient, with greater change in plots at low 

elevations than in plots at higher elevations. Mean annual temperature decreases 

about 4 °C and mean annual precipitation increases about 50 cm over the 740 m 

elevational gradient in our study site (Garten & Hanson 2006). The lower 

temperatures at higher elevation could slow decomposition, decrease nutrient 

availability, and reduce overall plant growth (Vitousek et al. 1992; Aplet & Vitousek 

1994), which might result in lower temporal turnover at high elevations. In Great 

Smoky Mountains National Park, decomposition rates generally decrease with 
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elevation, but nitrogen availability increases due to low soil C-to-N ratios at high 

elevations (Garten 2004). We did not measure decomposition rates or nitrogen 

availability directly on our study plots; therefore, it is unclear whether reduced plant 

growth at high elevations is responsible for the smaller changes in understory 

composition over time that we observed here. 

Differences in precipitation could also lead to differences in compositional 

turnover (Anderson 2008) along the elevational gradient. Anderson (2008) showed 

that areas with higher mean annual precipitation have greater compositional change 

over time. Our results show the opposite trend—forest understory turnover is lower 

at high elevation sites that have higher mean annual precipitation. However, our 

observational study does not allow us to separate the effects of precipitation, per se, 

from the effects of other elevational covariates on understory turnover. On average, 

annual precipitation in our forested sites is more than 2.5× higher than annual 

precipitation in Anderson’s (2008) grassland study, and precipitation may not be the 

limiting resource that controls community dynamics in our study area.  

In addition to temperature and precipitation, soil pH also varies with elevation in 

our study sites, with more acidic soils at higher elevation sites. Consistent with our 

result of higher temporal turnover in the understory communities at low elevations 

compared with high elevations, we found higher temporal turnover in the understory 

communities of plots with high soil pH than in those with low soil pH. We also 

found that temporal turnover in tree communities was positively related to soil pH. 

Tree compositional turnover was higher in plots with high soil pH and low cation 

exchange capacity compared with plots that had low soil pH and high cation 
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exchange capacity. Temporal change in understory community composition is also 

correlated with soil fertility gradients in other southeastern U.S. temperate forests 

(Peet & Christensen 1988; Taverna et al. 2004). In the acidic soils of this region, 

higher soil pH can indicate greater nutrient availability to plants. In the understory, 

greater nutrient availability could lead to increased temporal turnover either by 

increasing the likelihood that newly arriving species will establish in a community 

(Peet & Christensen 1988) or by increasing the growth of dominant species that 

could outcompete other species in the community. In addition, the large regional 

species pool of high pH sites (Peet et al. 2003) could increase the chance that new 

species would colonize these sites over time or that more species would be present in 

the initial community (see discussion below). A larger pool of potential colonizers 

could increase understory compositional change in high pH communities compared 

to low pH communities. For trees, it may be that fertile sites allow faster tree growth, 

which could increase recruitment into the overstory or increase mortality through 

competitive exclusion. Either increased recruitment or mortality could lead to greater 

tree compositional turnover in more fertile plots. 

Unlike understory temporal turnover, tree compositional turnover was not related 

to elevation. Given that turnover of individual tree stems can be a function of 

elevation, latitude, and productivity in some forest systems (Phillips et al. 2004; 

Bellingham et al. 1999; Stephenson & van Mantgem 2005), we expected to see more 

temporal turnover in the tree community in low elevation plots than in high elevation 

plots. However, elevation was not correlated with overall change in tree community 

composition, stem density, or tree species richness over time in our study. We did 
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not directly measure turnover of individual trees in this study and cannot say whether 

the rate of stem recruitment or mortality changed with elevation. While variation in 

tree population dynamics based on elevation may occur in our system, this potential 

variation has not led to differences in compositional turnover in the tree community. 

Effects of community attributes on temporal change within communities 

In addition to topographic and edaphic parameters, community attributes such as 

species richness and productivity could influence temporal change in community 

composition (Chalcraft et al. 2004; White et al. 2006). Based on multi-taxon 

analyses of species-time relationships, White et al. (2006) proposed that the 

mechanisms generating high species richness in a community could also lead to low 

species turnover in that community. Our study does not provide support for this 

hypothesis. Instead, plots with higher understory species richness in 1978 lost more 

total species over time in our study, but the proportion of understory species lost did 

not differ between plots with high species richness in 1978 and those with low 

species richness in 1978. For trees, plots with high species richness in 1978 lost 

proportionally more species than did plots with low species richness in 1978. While 

we did not find a direct relationship between understory compositional turnover and 

understory species richness in 1978, plots at low elevation and with high soil pH 

supported more understory species in 1978 and had more understory turnover than 

did plots at high elevation and low pH. This suggests that in forested systems, such 

as our study sites, mechanisms leading to high species richness may lead to higher, 

rather than lower, temporal turnover. 
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Based on observations in aquatic systems, Chase & Leibold (2002) hypothesized 

that compositional turnover might be greater in sites with high primary productivity 

than in sites with low primary productivity. Chalcraft et al. (2004) found no support 

for this hypothesis in grassland plant communities. In our study, understory 

productivity in 1978 was correlated with understory compositional turnover, but tree 

productivity in 1978 was not related to tree compositional turnover.  Plots with high 

understory percent cover (an estimate of understory productivity; Gilliam & Turrill 

1993) in 1978 had lower compositional turnover than did plots with low understory 

cover in 1978. We found that both 1978 understory biomass estimates (equations 

from Gilliam & Turrill 1993) and understory biomass estimates averaged across the 

two survey periods (1978 and 2007) were negatively related to change in understory 

community composition (data not shown). The proportion of a plot initially occupied 

by understory species might affect community change in these forests over time due 

to resident species excluding new species from establishing or limiting the 

population growth of other resident species.  

Effects of historic logging on temporal change among communities 

We documented a wide-range of temporal changes in species composition within 

communities, but these within-community changes did not translate into a temporal 

change in among-community similarity. We found no change in among-community 

similarity from 1978 to 2007 in either the logged and unlogged plots. Evidence that 

among-community similarity is lower in forests formerly disturbed by agriculture 

compared with older forests (Christensen & Peet 1984; Vellend et al. 2007) suggests 

that younger forests may become more dissimilar to one another over time. We did 
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not find support for that hypothesis here. Between 50 and 80 years after logging, we 

found no change in among-community similarity in either the understory or the tree 

community of the logged plots. We also found no change in among-community 

similarity in the plant communities of the unlogged plots over this same 30-year time 

period. However, the theoretical expectation for temporal change in among-

community similarity in undisturbed forests is unclear. It may be that our 30-year 

study period was a relatively stable period within larger cycles of among-community 

heterogeneity in forest development or perhaps among-community heterogeneity has 

reached a static point and will remain unchanged in the absence of further 

disturbance (Rejmánek & Rosen 1992). While our study suggests that among-

community similarity in both young and old forests can remain stable for decades, 

we cannot speculate on the long-term trends in spatial heterogeneity across these 

communities or on the mechanisms maintaining this stability.   
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CONCLUSIONS 

In this study, we added to insights gained from chronosequence analyses of 

long-term community dynamics by using permanent plots to directly measure 

compositional changes both within and among forest communities over 30 years. In 

addition, we compared temporal changes within and among historically disturbed 

communities to changes within and among communities with no evidence of large-

scale historic disturbance. We expected greater temporal change in community 

composition both within and among disturbed communities than we expected within 

and among undisturbed communities (Christensen & Peet 1984; Vellend et al. 2007). 

However, we found that the extent of temporal change in community composition 

was not related to historic disturbance, and that among-community similarity did not 

change over time in either historically disturbed or undisturbed plots. We recorded a 

wide range of compositional turnover values within both disturbed and undisturbed 

communities, but these within-plot changes did not affect similarity among 

communities over time.  

With this long-term observational dataset, we could not test the mechanisms 

driving temporal change within these forest communities directly. However, we 

found correlations between the extent of compositional turnover within communities 

and some topographic and edaphic factors as well as community attributes. 

Consistent with chronosequence studies (Aplet & Vitousek 1994; Selmants & Knight 

2003), we found that elevation was correlated with temporal turnover in forest 

understory communities. In addition, we found that soil pH was correlated with 
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temporal turnover in both understory and tree communities and that community 

productivity was correlated with temporal turnover in understory communities. 

Overall, our results indicate that the extent of temporal change in community 

composition may depend more on environmental gradients than on the legacy of 

large-scale but short-lived historic disturbances, such as logging. In addition, our 

results suggest that variation in temporal turnover within communities may not 

necessarily translate into changes in compositional similarity among communities 

over time. Additional long-term studies that directly measure temporal change both 

within and among communities are needed in order to increase our understanding of 

the factors that control multi-scale diversity across time. 
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Table A.1. Comparison of topographic and edaphic variables in historically logged and unlogged plots.  193 

The logged vs. unlogged columns illustrate the mean difference between logged and unlogged plots and the P-value from 194 

t-tests of these differences. One asterisk (*) indicates P ≤ 0.05 and two asterisks (**) indicate P ≤ 0.01. 195 

  Range (min - max) Mean ± SE Logged vs. Unlogged 
Variable logged      unlogged    logged    unlogged    difference P-value 
Elevation (m) 727  - 1402 664  - 1400 1104 ± 61.6 1034 ± 67.3 70.70 0.45 
slope (%) 0.3  - 35 2.0  - 31.7 19.0 ± 3.26 19.8 ± 2.42 0.89 0.83 
heat load (ln(MJ cm-2 yr-1)) 0.8  - 0.99 0.8  - 0.99   0.9 ± 0.02   0.9 ± 0.01 0.01 0.58 
Soil pH 3.7  - 5.3 3.9  - 5.3   4.2 ± 0.11   4.5 ± 0.12 0.36 0.03* 
soil cation exchange capacity (meq/100g) 7.3  - 12.2 6.2  - 8.4   9.4 ± 0.40   7.1 ± 0.16 2.28 < 0.0001** 
soil K (ppm) 40  - 176 38  - 113 68.5 ± 9.04 64.8 ± 4.93 3.67 0.73 
soil Ca (ppm) 61  - 971 25  - 384  326 ± 71.9  165 ± 27.1 161 0.05* 
soil Mg (ppm) 18  - 121 11 - 58 44.9 ± 6.63 32.3 ± 3.45 12.53 0.11 
soil P (ppm)   7  - 34  6  - 40 14.3 ± 1.70 15.4 ± 2.46 1.07 0.72 
soil organic matter (%) 4.1  - 8.5 1.2  - 5.2   5.1 ± 0.28   3.1 ± 0.33 2.00 < 0.0001** 

196 
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Table A.2. Understory indicator species analysis for logged and unlogged plots. 196 

Understory species include herbs, shrubs, and seedlings < 1 m tall. Indicator values 197 

(IV) represent the degree to which a species is an indicator of the listed group, with 198 

100 representing perfect indication. Species with significant IV in at least one year 199 

are listed alphabetically. One asterisk (*) indicates P ≤ 0.05 and two asterisks (**) 200 

indicate P ≤ 0.01. 201 

  1978 understory frequency 2007 understory frequency 
Species   Group IV    P   Group IV    P 
Acer saccharum unlogged 44.6 0.16 unlogged 55.0 0.03* 
Amphicarpaea bracteata unlogged 31.7 0.04* unlogged 18.7 0.45 
Arisaema triphyllum unlogged 63.6 0.001** unlogged 45.1 0.02* 
Athyrium filix-femina  unlogged 12.6 0.91 unlogged 44.6 0.02* 
Betula alleghaniensis logged 44.9 0.03* logged 20.0 0.25 
Betula lenta unlogged 10.0 0.87 unlogged 40.0 0.02* 
Calycanthus floridus unlogged 53.3 0.002** unlogged 37.0 0.06 
Collinsonia canadensis unlogged 60.0 0.002** unlogged 6.7 1.00 
Dioscorea villosa unlogged 48.0 0.01* unlogged 20.0 0.25 
Eurbyia divaricatus unlogged 51.2 0.16 unlogged 59.3 0.04* 
Liriodendron tulipifera unlogged 51.2 0.02* unlogged 37.2 0.29 
Osmunda claytoniana logged 40.0 0.02* -- -- -- 
Prunus serotina logged 72.5 0.001** logged 51.4 0.15 
Quercus rubra unlogged 58.9 0.01** unlogged 31.7 0.63 
Rhododendron maximum logged 42.9 0.02* logged 49.9 0.01* 
Rubus spp. logged 55.7 0.02* unlogged 33.7 0.97 
Thalictrum thalictroides unlogged 22.2 0.23 unlogged 36.7 0.05* 
Trillium spp. unlogged 29.2 0.15 unlogged 72.3 0.002** 
Viola hastata unlogged 49.6 0.07 unlogged 58.4 0.003** 

 202 

203 
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Table A.3. Tree (≥ 10 cm) indicator species analysis for logged and unlogged plots. 203 

Indicator values (IV) represent the degree to which a species is an indicator of the 204 

listed group, with 100 representing perfect indication. All observed tree species are 205 

listed alphabetically. One asterisk (*) indicates P ≤ 0.05 and two asterisks (**) 206 

indicate P ≤ 0.01. 207 

  1978 tree density   2007 tree density   
Species   Group IV    P   Group IV    P 
Acer pensylvanicum logged 17.6 0.81 logged 31.1 0.31 
Acer rubrum logged 45.5 0.29 logged 57.4 0.12 
Acer saccharum unlogged 39.2 0.24 unlogged 62.2 0.03* 
Aesculus flava unlogged 18.7 0.83 unlogged 26.9 0.59 
Betula alleghaniensis logged 55.3 0.17 logged 31.1 0.54 
Betula lenta logged 68.3 0.005** logged 60.4 0.02* 
Carya spp. unlogged 16.0 0.52 unlogged 17.1 0.47 
Castanea dentata -- -- -- unlogged 6.7 1.00 
Cornus florida unlogged 30.6 0.12 unlogged 13.3 0.48 
Fagus grandifolia unlogged 28.8 0.44 unlogged 37.3 0.16 
Fraxinus americana unlogged 24.2 0.23 unlogged 11.1 0.74 
Halesia tetraptera logged 41.7 0.85 unlogged 45.7 0.59 
Hamamelis virginiana logged 10.0 0.75 -- -- -- 
Ilex montana logged 13.3 0.49 logged 6.7 1.00 
Ilex opaca logged 6.7 1.00 logged 6.7 1.00 
Liriodendron tulipifera logged 22.2 0.73 logged 20.0 0.86 
Magnolia acuminata logged 13.3 0.74 logged 23.8 0.39 
Magnolia fraseri logged 40.0 0.05 logged 43.9 0.05* 
Nyssa sylvatica logged 9.9 0.73 logged 13.3 0.50 
Oxydendrum arboreum logged 22.8 0.41 logged 11.7 0.80 
Pinus pungens logged 6.7 1.00 logged 6.7 1.00 
Prunus pensylvanica logged 33.3 0.03* -- -- -- 
Prunus serotina logged 56.9 0.02* logged 50.0 0.02* 
Quercus alba unlogged 13.3 0.45 unlogged 13.3 0.48 
Quercus coccinea logged 6.7 1.00 logged 6.7 1.00 
Quercus prinus unlogged 7.7 1.00 unlogged 7.2 1.00 
Quercus rubra unlogged 26.1 0.58 unlogged 22.2 0.51 
Robinia pseudoacacia logged 15.4 0.70 logged 12.7 0.59 
Sassafras albidum logged 16.7 0.59 logged 5.1 1.00 
Tilia americana logged 30.8 0.34 logged 33.6 0.21 
Tsuga canadensis logged 51.5 0.19 logged 55.7 0.12 

208 
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Table A.4. Correlation matrix between measured topographic and edaphic variables in historically logged and unlogged plots. 208 

Values are Pearson’s correlation coefficients. One asterisk (*) indicates P ≤ 0.05. 209 

  elevation slope heat load soil pH soil CEC soil K soil Ca soil Mg soil P 

slope -0.08         
heat load 0.07 -0.94*        
soil pH -0.55* -0.07 0.03       
soil CEC -0.05 -0.11 0.28 -0.26      
soil K -0.52* -0.20 0.19 0.54* 0.42*     
soil Ca -0.28 -0.22 0.38 0.32 0.69* 0.75*    
soil Mg -0.14 -0.40* 0.44* 0.35 0.56* 0.73* 0.83*   
soil P 0.51* -0.13 0.11 -0.20 0.01 -0.03 0.08 0.19  
soil organic matter 0.24 -0.06 0.01 -0.41* 0.51* 0.02 0.12 0.18 -0.04 

 210 

211 
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 Table A.5. Change in species richness and abundance over 30 years in historically logged and unlogged plots. 211 

All understory includes herbs, shrubs, and seedlings. Understory abundance is the total percent cover of all species in each category 212 

and tree abundance is stem density (stems ha-1).  P-values represent differences in species richness or abundance across years within a 213 

disturbance type. One asterisk (*) indicates P ≤ 0.05 and two asterisks (**) indicate P ≤ 0.01. 214 

  Herbs        Shrubs        Seedlings     All understory     Trees     

  logged unlogged logged unlogged logged unlogged logged unlogged logged unlogged 
Species richness           

Plots with increase 3 6 7 7 5 5 4 4 2 5 
Plots with no change 1 1 1 3 4 1 1 2 6 2 
Plots with decrease 11 8 7 5 6 9 10 9 7 8 
1978 mean 18.2 24.5 5.3 4.8 8.8 10.5 32.3 39.9 9.71 82 
2007 mean 14.3 21.9 4.9 5.3 8.7 10 27.9 37.4 8.91 7.82 
Mean difference -3.9 -2.7 -0.3 0.5 0.1 -0.5 -4.3 -2.5 -0.71 -0.22 
P-value (paired t-test) 0.0004** 0.1 0.48 0.31 0.89 0.65 0.03* 0.31 0.081 0.762 

           
Abundance           

Plots with increase 9 12 10 12 13 13 10 13 4 3 
Plots with no change 0 0 0 1 0 0 0 0 2 0 
Plots with decrease 6 3 5 2 2 2 5 2 9 12 
1978 mean 23.7 27.4 3.2 5.6 2.4 5.9 29.3 39 700 411 
2007 mean 34.4 60.7 6.7 11.5 5.6 13.6 46.7 85.8 555 399 
Mean difference 10.6 33.3 3.5 5.9 3.2 7.8 17.4 46.9 -145 -11 

P-value (paired t-test) 0.08 0.002** 0.08 0.009** 0.0006** 0.002** 0.02* 0.0003**  <0.0001** 0.77 
1observed richness; rarefied values for logged plots are: 1978 mean  =  6.3, 2007 mean  =  6.2, mean difference  =  0.1, P-value  =  0.65. 
2observed richness; rarefied values for unlogged plots are: 1978 mean  =  5.8, 2007 mean  =  5.8, mean difference  =  0.04, P-value  =  0.91. 
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Table A.6. Correlation between topographic and edaphic variables and change in species richness and compositional turnover. 215 

Understory includes herbs, shrubs, and seedlings  < 1 m tall and trees includes trees ≥ 10 cm dbh. Values are Pearson’s correlation 216 

coefficients. One asterisk (*) indicates P ≤ 0.05 and two asterisks (**) indicate P ≤ 0.01. All variables listed in Table 1 were tested for 217 

correlations with richness change and turnover, but only those variables with correlations significant at P ≤ 0.05 are listed here. 218 

  Richness change Turnover (1 - Bray Curtis) Turnover (1 - Chao Sørensen) 
Variable Understory Tree Understory Tree Understory Tree 
Logging history      n/a 
Elevation   -0.46*  -0.41* n/a 
soil pH   0.37* 0.41*  n/a 
soil CEC    -0.57**  n/a 
soil organic matter      n/a 
1978 understory cover  n/a -0.49** n/a -0.45* n/a 
1978 understory richness  n/a  n/a   n/a 
1978 tree richness n/a -0.45** n/a  n/a n/a 

 219 

 220 

221 
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Table A.7. Correlation matrix between topographic and edaphic variables and understory and tree community attributes. 221 

Values are Pearson’s correlation coefficients. One asterisk (*) represents significant correlation at P ≤ 0.05. 222 

  understory richness understory % cover tree richness tree basal area (m2ha-1) 
Variable 1978 2007 1978 2007 1978 2007 1978 2007 

elevation -0.38* -0.31 0.27 0.08 -0.20 -0.07 -0.15 0.05 
slope 0.07 0.02 0.16 0.14 0.19 0.04 0.18 -0.12 
heat load -0.08 -0.09 -0.19 -0.23 -0.24 -0.05 -0.23 0.20 
soil pH 0.75* 0.58* 0.28 0.15 0.08 0.17 -0.11 -0.15 
soil CEC -0.12 -0.12 -0.35 -0.34 0.08 0.01 -0.002 0.46* 
soil K 0.51* 0.50* -0.07 0.11 -0.01 -0.06 -0.07 -0.02 
soil Ca 0.37* 0.26 -0.05 -0.06 -0.12 -0.04 -0.06 0.29 
soil Mg 0.24 0.21 0 -0.11 -0.20 -0.1 0.01 0.34 
soil P -0.16 0.01 0.04 0.11 -0.39* -0.21 -0.14 0.02 
soil organic matter -0.34 -0.28 -0.29 -0.32 0.13 -0.09 0.19 0.17 

223 
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Table A.8.  Among-community similarity (multivariate dispersion) in logged and 223 

unlogged plots in 1978 and 2007. 224 

Mean distance of plots within a group from the group centroid (multivariate 225 

dispersion) in multivariate space is defined by Bray-Curtis dissimilarity. The pseudo 226 

F-statistics and P-values were generated from permutational ANOVA tests of 227 

differences in among-community similarity between 1978 and 2007. Understory 228 

frequency is an abundance measure based on the percentage of the 25 subplots 229 

within a 20 m × 50 m forest plot in which each species occurred. Understory cover is 230 

an abundance measure based on the average of the cover values for an individual 231 

species within a 20 m × 50 m forest plot. Tree density is an abundance measure 232 

based on the number of individual trees of a species within a 20 m × 50 m forest plot. 233 

    Mean ± SE distance to centroid     
Abundance variable  Group 1978 2007 F P-value 
understory frequency logged 53.05 ± 2.14 51.68 ± 2.39 0.18 0.74 
 unlogged 50.92 ± 2.09 49.59 ± 2.21 0.19 0.69 
understory cover logged 58.01 ± 2.02 57.44 ± 2.14 0.04 0.88 
 unlogged 58.83 ± 1.44 55.57 ± 2.53 1.25 0.34 
tree density logged 51.70 ± 2.22 50.87 ± 2.41 0.06 0.82 
  unlogged 51.16 ± 2.58 47.72 ± 1.87 1.17 0.35 

234 
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 234 

 235 

Figure A.1. Layout of 20 m × 50 m forest plots in Great Smoky Mountains National Park. 236 

Trees ≥ 10 cm dbh were measured in the entire plot. Understory (< 1 m tall) woody shrubs and seedlings were recorded in 237 

2 m × 2 m subplots, represented by white boxes. Understory herbaceous species were recorded in 1 m × 1 m subplots, 238 

represented by black boxes, nested within the woody species subplots. 239 
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 240 

Figure A.2. Mean (±SE) change in species richness over 30 years in historically 241 

logged (black bars) and unlogged (gray bars) plots. 242 

All understory includes herbs, shrubs, and seedlings  < 1 m tall and trees includes 243 

trees ≥ 10 cm dbh.  Asterisk (*) indicates significant differences at P < 0.05. 244 

 245 

246 
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 246 

 247 

Figure A.3. Change in mean (±SE) tree (≥ 10 cm dbh) density over 30 years in 248 

historically logged and unlogged plots. 249 

Filled circles represent logged plots and unfilled circles represent unlogged plots. 250 

251 
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 251 

Figure A.4. Correlation between two measures of understory temporal turnover 252 

across 30 years and elevation (a, b), soil pH (c, d), and 1978 understory productivity 253 

measured as total percent cover (e, f). 254 

Regression lines indicate significant correlations at P < 0.05. Filled circles represent 255 

logged plots and unfilled circles represent unlogged plots. Arrows in panels e and f 256 

point to an outlying data point that was excluded from the correlation. 257 
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 259 

Figure A.5. Correlation between tree temporal turnover and soil cation exchange 260 

capacity (a) and soil pH (b). 261 

Regression lines indicate significant correlations at P < 0.05. Filled circles represent 262 

logged plots and unfilled circles represent unlogged plots. 263 
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Table B.1. Number of logged (n = 15) and unlogged (n = 15) plots in which each 265 

understory species was recorded in 1978. 266 

    # plots present 
Family Species logged unlogged 
Aceraceae Acer pensylvanicum 11 10 
Aceraceae Acer rubrum 12 8 
Aceraceae Acer saccharum 7 10 
Aceraceae Acer spicatum 0 2 
Apiaceae Osmorhiza claytonii 2 6 
Apiaceae Osmorhiza longistylis 2 0 
Apiaceae Sanicula spp. 2 4 
Apiaceae Thaspium trifoliatum 0 1 
Aquifoliaceae Ilex montana 2 4 
Aquifoliaceae Ilex opaca 1 2 
Araceae Arisaema triphyllum 3 11 
Araliaceae Panax quinquefolius 1 2 
Aristolochiaceae Aristolochia macrophylla 6 2 
Aristolochiaceae Asarum canadense 1 0 
Aspleniaceae Asplenium platyneuron 2 0 
Asteraceae Achillea millefolium var. occidentalis 0 1 
Asteraceae Ageratina altissima 9 8 
Asteraceae Aster spp. 0 2 
Asteraceae Eupatorium maculatum 2 0 
Asteraceae Eupatorium purpureum 1 3 
Asteraceae Eurbyia divaricatus 10 12 
Asteraceae Helianthus decapetalus 1 0 
Asteraceae Prenanthes spp. 7 10 
Asteraceae Solidago curtisii 10 13 
Asteraceae Solidago spp. 1 3 
Asteraceae Symphyotrichum lateriflorum var. lateriflorum 0 1 
Asteraceae Symphyotrichum lowrieanum 3 0 
Asteraceae Symphyotrichum undulatum 0 1 
Balsaminaceae Impatiens pallida 2 3 
Berberidaceae Caulophyllum thalictroides 5 7 
Berberidaceae Diphylleia cymosa 3 1 
Betulaceae Betula alleghaniensis var. alleghaniensis 8 2 
Betulaceae Betula lenta 2 2 
Brassicaceae Cardamine concatenata 0 1 
Brassicaceae Cardamine diphylla 4 7 
Calycanthaceae Calycanthus floridus var. glaucus 0 8 
Campanulaceae Campanula divaricata 1 0 
Caprifoliaceae Viburnum acerifolium 3 5 
Caprifoliaceae Viburnum lantana 2 2 
Caryophyllaceae Silene stellata 1 2 
Caryophyllaceae Stellaria pubera 10 11 
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Table B.1. Continued. 
    # plots present 
Family Species logged unlogged 
Celastraceae Euonymus americana 3 2 
Celastraceae Euonymus obovata 2 1 
Clethraceae Clethra acuminata 0 1 
Cornaceae Cornus alternifolia 3 3 
Cornaceae Cornus florida 3 6 
Cuscutaceae Cuscuta spp. 2 1 
Cyperaceae Carex debilis 0 1 
Cyperaceae Carex pensylvanica 1 0 
Cyperaceae Carex plantaginea 2 0 
Cyperaceae Carex spp. 4 3 
Dennstaedtiaceae Dennstaedtia punctilobula 0 2 
Diapensiaceae Galax urceolata 2 2 
Dioscoreaceae Dioscorea villosa 1 8 
Dryopteridaceae Athyrium filix-femina ssp. asplenioides 4 3 
Dryopteridaceae Cystopteris protrusa 0 2 
Dryopteridaceae Deparia acrostichoides 3 7 
Dryopteridaceae Dryopteris intermedia 12 11 
Dryopteridaceae Dryopteris marginalis 3 0 
Dryopteridaceae Polystichum acrostichoides 8 9 
Ericaceae Gaylussacia ursina 2 3 
Ericaceae Kalmia latifolia 2 1 
Ericaceae Leucothoe fontanesiana 3 0 
Ericaceae Oxydendrum arboreum 2 2 
Ericaceae Rhododendron calendulaceum 1 2 
Ericaceae Rhododendron maximum 7 1 
Ericaceae Vaccinium corymbosum 1 0 
Ericaceae Vaccinium erythrocarpum 3 0 
Ericaceae Vaccinium pallidum 0 1 
Ericaceae Vaccinium stamineum 0 1 
Fabaceae Amphicarpaea bracteata 1 5 
Fabaceae Cercis canadensis 0 1 
Fabaceae Desmodium spp. 1 0 
Fabaceae Robinia pseudoacacia 4 3 
Fagaceae Castanea dentata 1 5 
Fagaceae Fagus grandifolia 4 5 
Fagaceae Quercus alba 0 1 
Fagaceae Quercus prinus 1 2 
Fagaceae Quercus rubra 4 11 
Gentianaceae Gentiana decora 0 1 
Hamamelidaceae Hamamelis virginiana 3 5 
Hippocastanaceae Aesculus flava 8 9 
Hydrangeaceae Hydrangea arborescens 6 5 
Hydrophyllaceae Hydrophyllum canadense 1 0 
Hydrophyllaceae Hydrophyllum virginianum var. atranthum 0 1 
Iridaceae Iris cristata 0 1 
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Table B.1. Continued. 
    # plots present 
Family Species logged unlogged 
Juglandaceae Carya cordiformis 1 3 
Juglandaceae Carya glabra 3 2 
Juncaceae Luzula spp. 0 1 
Lamiaceae Collinsonia canadensis 0 9 
Lamiaceae Monarda didyma 0 1 
Lamiaceae Pycnanthemum montanum 1 1 
Lamiaceae Stachys clingmanii 0 1 
Lauraceae Lindera benzoin 4 2 
Lauraceae Sassafras albidum 3 4 
Liliaceae Allium tricoccum 1 1 
Liliaceae Clintonia umbellulata 3 2 
Liliaceae Lilium superbum 0 1 
Liliaceae Maianthemum racemosum ssp. racemosum 7 3 
Liliaceae Medeola virginiana 3 7 
Liliaceae Melanthium parviflorum 0 2 
Liliaceae Polygonatum biflorum 10 6 
Liliaceae Polygonatum pubescens 0 2 
Liliaceae Prosartes lanuginosa 6 8 
Liliaceae Stenanthium gramineum 1 0 
Liliaceae Trillium spp. 3 7 
Liliaceae Uvularia grandiflora 0 4 
Liliaceae Uvularia perfoliata 0 2 
Liliaceae Uvularia sessilifolia 1 2 
Liliaceae Veratrum viride 0 1 
Lycopodiaceae Huperzia lucidula 4 0 
Lycopodiaceae Lycopodium obscurum 1 0 
Magnoliaceae Liriodendron tulipifera 4 9 
Magnoliaceae Magnolia acuminata 3 5 
Magnoliaceae Magnolia fraseri 5 7 
Monotropaceae Monotropa uniflora 0 1 
Nyssaceae Nyssa sylvatica 0 4 
Oleaceae Fraxinus americana 3 6 
Onagraceae Circaea alpina 0 1 
Onagraceae Circaea lutetiana ssp. canadensis 0 1 
Ophioglossaceae Botrychium dissectum 1 1 
Ophioglossaceae Botrychium virginianum 2 4 
Orchidaceae Galearis spectabilis 0 1 
Orchidaceae Goodyera pubescens 1 2 
Osmundaceae Osmunda cinnamomea 0 1 
Osmundaceae Osmunda claytoniana 6 0 
Oxalidaceae Oxalis montana 4 2 
Papaveraceae Sanguinaria canadensis 2 4 
Pinaceae Tsuga canadensis 7 5 
Poaceae Brachyelytrum erectum 1 0 
Poaceae Cinna latifolia 1 1 
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Table B.1. Continued. 
    # plots present 
Family Species logged unlogged 
Poaceae Danthonia compressa 0 1 
Poaceae Dichanthelium boscii 0 1 
Poaceae Dichanthelium dichotomum var. dichotomum 1 0 
Poaceae Panicum spp. 1 0 
Poaceae Poa spp. 2 1 
Primulaceae Lysimachia quadrifolia 0 1 
Pteridaceae Adiantum pedatum 0 3 
Pteridaceae Cheilanthes spp. 0 1 
Pyrolaceae Chimaphila maculata 0 3 
Ranunculaceae Actaea pachypoda 3 0 
Ranunculaceae Actaea racemosa var. racemosa 5 7 
Ranunculaceae Anemone quinquefolia 2 2 
Ranunculaceae Hepatica nobilis 1 0 
Ranunculaceae Ranunculus recurvatus 0 1 
Ranunculaceae Thalictrum clavatum 0 2 
Ranunculaceae Thalictrum dioicum 0 2 
Ranunculaceae Thalictrum pubescens 0 1 
Ranunculaceae Thalictrum thalictroides 1 4 
Ranunculaceae Trautvetteria caroliniensis 0 1 
Rosaceae Amelanchier arborea 4 3 
Rosaceae Aruncus dioicus 0 1 
Rosaceae Porteranthus stipulatus 1 0 
Rosaceae Porteranthus trifoliatus 0 1 
Rosaceae Potentilla simplex 0 1 
Rosaceae Prunus pensylvanica 2 0 
Rosaceae Prunus serotina 12 4 
Rosaceae Rubus spp. 11 5 
Rubiaceae Galium lanceolatum 2 3 
Rubiaceae Galium triflorum 2 7 
Rubiaceae Houstonia purpurea var. purpurea 1 1 
Rubiaceae Houstonia serpyllifolia 1 1 
Rubiaceae Mitchella repens 6 5 
Santalaceae Pyrularia pubera 2 6 
Saxifragaceae Astilbe biternata 1 0 
Saxifragaceae Chrysosplenium americanum 0 1 
Saxifragaceae Mitella diphylla 1 0 
Saxifragaceae Saxifraga michauxii 0 1 
Saxifragaceae Tiarella cordifolia 7 10 
Smilacaceae Smilax glauca 1 1 
Smilacaceae Smilax hugeri 0 2 
Smilacaceae Smilax rotundifolia 10 6 
Smilacaceae Smilax spp. 0 1 
Smilacaceae Smilax tamnoides 0 2 
Styracaceae Halesia tetraptera var. monticola 9 11 
Thelypteridaceae Phegopteris hexagonoptera 7 10 



 

61 

Table B.1. Continued.   
    # plots present 
Family Species logged unlogged 
Tiliaceae Tilia americana 4 4 
Urticaceae Laportea canadensis 7 8 
Violaceae Viola blanda 7 6 
Violaceae Viola canadensis 6 6 
Violaceae Viola hastata 5 10 
Violaceae Viola macloskeyi ssp. pallens 1 0 
Violaceae Viola rotundifolia 6 6 
Violaceae Viola spp. 3 8 
Vitaceae Parthenocissus quinquefolia 3 5 
Vitaceae Vitis spp. 6 6 
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Table B.2. Number of logged (n = 15) and unlogged (n = 15) plots in which each 267 

tree (≥ 10 cm dbh) species was recorded in 1978. 268 

    # plots present 
Family Species logged unlogged 
Aceraceae Acer pensylvanicum 6 3 
Aceraceae Acer rubrum 11 7 
Aceraceae Acer saccharum 6 9 
Aquifoliaceae Ilex montana 2 0 
Aquifoliaceae Ilex opaca 1 0 
Betulaceae Betula alleghaniensis var. alleghaniensis 10 9 
Betulaceae Betula lenta 11 5 
Cornaceae Cornus florida 1 5 
Ericaceae Oxydendrum arboreum 5 3 
Fabaceae Robinia pseudoacacia 4 3 
Fagaceae Fagus grandifolia 5 7 
Fagaceae Quercus alba 0 2 
Fagaceae Quercus coccinea 1 0 
Fagaceae Quercus prinus 2 2 
Fagaceae Quercus rubra 6 6 
Hamamelidaceae Hamamelis virginiana 2 1 
Hippocastanaceae Aesculus flava 3 7 
Juglandaceae Carya spp. 2 4 
Lauraceae Sassafras albidum 3 2 
Magnoliaceae Liriodendron tulipifera 4 7 
Magnoliaceae Magnolia acuminata 3 2 
Magnoliaceae Magnolia fraseri 7 3 
Nyssaceae Nyssa sylvatica 2 1 
Oleaceae Fraxinus americana 1 4 
Pinaceae Pinus pungens 1 0 
Pinaceae Tsuga canadensis 13 7 
Rosaceae Prunus pensylvanica 5 0 
Rosaceae Prunus serotina 10 3 
Styracaceae Halesia tetraptera var. monticola 12 12 
Tiliaceae Tilia americana 6 6 
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APPENDIX C 270 
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Table C.1. Number of logged (n = 15) and unlogged (n = 15) plots in which each 271 

understory species was recorded in 2007. 272 

    # plots present 
Family Species logged unlogged 
Aceraceae Acer pensylvanicum 8 14 
Aceraceae Acer rubrum 14 11 
Aceraceae Acer saccharum 6 10 
Aceraceae Acer spicatum 2 1 
Apiaceae Osmorhiza claytonii 1 4 
Apiaceae Osmorhiza longistylis 1 0 
Apiaceae Thaspium trifoliatum 0 1 
Aquifoliaceae Ilex montana 2 0 
Aquifoliaceae Ilex opaca 1 2 
Araceae Arisaema triphyllum 2 8 
Araliaceae Panax quinquefolius 0 2 
Aristolochiaceae Aristolochia macrophylla 7 4 
Aristolochiaceae Asarum canadense 1 0 
Asteraceae Ageratina altissima 6 6 
Asteraceae Aster spp. 1 0 
Asteraceae Eupatorium maculatum 0 1 
Asteraceae Eupatorium purpureum 1 5 
Asteraceae Eurbyia divaricatus 9 13 
Asteraceae Helianthus decapetalus 0 3 
Asteraceae Prenanthes spp. 7 7 
Asteraceae Solidago curtisii 9 12 
Asteraceae Solidago spp. 0 1 
Asteraceae Symphyotrichum acuminata 0 1 
Asteraceae Symphyotrichum lowrieanum 1 0 
Balsaminaceae Impatiens pallida 0 4 
Berberidaceae Caulophyllum thalictroides 5 5 
Berberidaceae Diphylleia cymosa 0 1 
Betulaceae Betula alleghaniensis var. alleghaniensis 3 0 
Betulaceae Betula lenta 0 6 
Brassicaceae Cardamine diphylla 4 2 
Calycanthaceae Calycanthus floridus var. glaucus 2 7 
Caprifoliaceae Viburnum acerifolium 2 1 
Caprifoliaceae Viburnum lantana 1 3 
Caryophyllaceae Stellaria pubera 10 11 
Celastraceae Euonymus americana 3 3 
Celastraceae Euonymus obovata 1 0 
Clethraceae Clethra acuminata 0 1 
Cornaceae Cornus alternifolia 1 1 
Cuscutaceae Cuscuta spp. 0 1 
Cyperaceae Carex debilis 1 0 
Cyperaceae Carex digitalis 0 1 
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Table C.1. Continued. 
    # plots present 
Family Species logged unlogged 
Cyperaceae Carex pensylvanica 0 1 
Cyperaceae Carex plantaginea 2 1 
Cyperaceae Carex spp. 3 2 
Dennstaedtiaceae Dennstaedtia punctilobula 0 1 
Diapensiaceae Galax urceolata 2 2 
Dioscoreaceae Dioscorea villosa 0 3 
Dryopteridaceae Athyrium filix-femina ssp. asplenioides 2 7 
Dryopteridaceae Deparia acrostichoides 5 6 
Dryopteridaceae Dryopteris intermedia 12 10 
Dryopteridaceae Polystichum acrostichoides 8 10 
Ericaceae Gaylussacia ursina 2 2 
Ericaceae Kalmia latifolia 2 1 
Ericaceae Leucothoe fontanesiana 3 0 
Ericaceae Oxydendrum arboreum 2 3 
Ericaceae Rhododendron calendulaceum 0 1 
Ericaceae Rhododendron maximum 8 2 
Ericaceae Vaccinium erythrocarpum 2 0 
Ericaceae Vaccinium pallidum 0 4 
Fabaceae Amphicarpaea bracteata 2 4 
Fabaceae Robinia pseudoacacia 3 2 
Fagaceae Castanea dentata 0 2 
Fagaceae Fagus grandifolia 5 6 
Fagaceae Quercus alba 1 2 
Fagaceae Quercus prinus 3 3 
Fagaceae Quercus rubra 7 11 
Hamamelidaceae Hamamelis virginiana 1 3 
Hippocastanaceae Aesculus flava 7 7 
Hydrangeaceae Hydrangea arborescens 2 5 
Hydrophyllaceae Hydrophyllum canadense 1 0 
Iridaceae Iris cristata 0 1 
Juglandaceae Carya cordiformis 4 5 
Juglandaceae Carya glabra 2 1 
Juncaceae Luzula spp. 1 0 
Lamiaceae Collinsonia canadensis 0 1 
Lamiaceae Monarda clinopodia 0 1 
Lamiaceae Monarda didyma 2 1 
Lamiaceae Pycnanthemum montanum 1 0 
Lamiaceae Stachys clingmanii 0 2 
Lauraceae Lindera benzoin 1 2 
Lauraceae Sassafras albidum 4 3 
Liliaceae Allium tricoccum 1 1 
Liliaceae Clintonia umbellulata 1 0 
Liliaceae Lilium superbum 0 1 
Liliaceae Maianthemum canadense 1 1 
Liliaceae Maianthemum racemosum ssp. racemosum 9 3 
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Table C.1. Continued. 
    # plots present 
Family Species logged unlogged 
Liliaceae Medeola virginiana 3 5 
Liliaceae Melanthium parviflorum 0 1 
Liliaceae Polygonatum biflorum 7 10 
Liliaceae Prosartes lanuginosa 7 9 
Liliaceae Streptopus roseus 0 1 
Liliaceae Trillium spp. 4 13 
Liliaceae Veratrum viride 0 1 
Lycopodiaceae Huperzia lucidula 4 1 
Magnoliaceae Liriodendron tulipifera 6 8 
Magnoliaceae Magnolia acuminata 2 2 
Magnoliaceae Magnolia fraseri 7 3 
Monotropaceae Monotropa uniflora 0 1 
Nyssaceae Nyssa sylvatica 0 2 
Oleaceae Fraxinus americana 3 8 
Onagraceae Circaea alpina 0 2 
Ophioglossaceae Botrychium virginianum 2 1 
Orchidaceae Galearis spectabilis 0 1 
Orchidaceae Goodyera pubescens 2 5 
Orchidaceae Platanthera spp. 1 0 
Osmundaceae Osmunda cinnamomea 0 2 
Oxalidaceae Oxalis montana 3 4 
Papaveraceae Sanguinaria canadensis 2 3 
Phytolaccaceae Phytolacca americana 0 1 
Pinaceae Tsuga canadensis 7 5 
Poaceae Cinna latifolia 0 1 
Poaceae Danthonia compressa 1 0 
Poaceae Dichanthelium boscii 0 1 
Poaceae Dichanthelium dichotomum var. dichotomum 1 0 
Primulaceae Lysimachia quadrifolia 1 1 
Pteridaceae Adiantum pedatum 0 3 
Ranunculaceae Actaea pachypoda 1 0 
Ranunculaceae Actaea racemosa var. racemosa 3 7 
Ranunculaceae Anemone quinquefolia 0 1 
Ranunculaceae Hepatica nobilis 1 0 
Ranunculaceae Thalictrum clavatum 0 3 
Ranunculaceae Thalictrum dioicum 0 2 
Ranunculaceae Thalictrum thalictroides 1 6 
Ranunculaceae Trautvetteria caroliniensis 0 1 
Rosaceae Amelanchier arborea 5 3 
Rosaceae Aruncus dioicus 0 1 
Rosaceae Potentilla simplex 0 1 
Rosaceae Prunus pensylvanica 1 0 
Rosaceae Prunus serotina 11 10 
Rosaceae Rubus spp. 10 10 
Rubiaceae Galium lanceolatum 0 3 
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Table C.1. Continued. 
    # plots present 
Family Species logged unlogged 
Rubiaceae Galium triflorum 1 4 
Rubiaceae Houstonia purpurea var. purpurea 0 4 
Rubiaceae Mitchella repens 7 5 
Santalaceae Pyrularia pubera 3 6 
Saxifragaceae Chrysosplenium americanum 0 2 
Saxifragaceae Saxifraga michauxii 2 0 
Saxifragaceae Tiarella cordifolia 7 10 
Smilacaceae Smilax glauca 4 8 
Smilacaceae Smilax hugeri 1 0 
Smilacaceae Smilax rotundifolia 9 10 
Smilacaceae Smilax spp. 1 1 
Smilacaceae Smilax tamnoides 0 1 
Styracaceae Halesia tetraptera var. monticola 12 12 
Thelypteridaceae Phegopteris hexagonoptera 1 6 
Thelypteridaceae Thelypteris noveboracensis 2 5 
Tiliaceae Tilia americana 3 5 
Urticaceae Laportea canadensis 8 10 
Violaceae Viola blanda 2 4 
Violaceae Viola canadensis 8 8 
Violaceae Viola hastata 1 9 
Violaceae Viola pedata 0 1 
Violaceae Viola rotundifolia 5 5 
Violaceae Viola spp. 6 10 
Vitaceae Parthenocissus quinquefolia 2 4 
Vitaceae Vitis spp. 6 4 
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Table C.2. Number of logged (n = 15) and unlogged (n = 15) plots in which each 273 

tree (≥ 10 cm dbh) species was recorded in 2007. 274 

    # plots present 
Family Species logged unlogged 
Aceraceae Acer pensylvanicum 6 5 
Aceraceae Acer rubrum 13 8 
Aceraceae Acer saccharum 9 13 
Aquifoliaceae Ilex montana 1 0 
Aquifoliaceae Ilex opaca 1 0 
Betulaceae Betula alleghaniensis var. alleghaniensis 7 7 
Betulaceae Betula lenta 10 5 
Cornaceae Cornus florida 0 2 
Ericaceae Oxydendrum arboreum 3 2 
Fabaceae Robinia pseudoacacia 3 1 
Fagaceae Castanea dentata 0 1 
Fagaceae Fagus grandifolia 5 7 
Fagaceae Quercus alba 0 2 
Fagaceae Quercus coccinea 1 0 
Fagaceae Quercus prinus 2 2 
Fagaceae Quercus rubra 4 5 
Hippocastanaceae Aesculus flava 3 9 
Juglandaceae Carya spp. 2 4 
Lauraceae Sassafras albidum 1 1 
Magnoliaceae Liriodendron tulipifera 4 7 
Magnoliaceae Magnolia acuminata 5 2 
Magnoliaceae Magnolia fraseri 8 3 
Nyssaceae Nyssa sylvatica 2 0 
Oleaceae Fraxinus americana 1 2 
Pinaceae Pinus pungens 1 0 
Pinaceae Tsuga canadensis 14 8 
Rosaceae Prunus serotina 10 3 
Styracaceae Halesia tetraptera var. monticola 12 12 
Tiliaceae Tilia americana 6 5 
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70 

 Table D.1. Understory species recorded in only logged or only unlogged plots. 276 

The # plots present columns indicate the number of plots in which the species was 277 

recorded in the 1978 and 2007 survey periods combined. 278 

    # plots present 
Family Species logged unlogged 
Apiaceae Osmorhiza longistylis 2 0 
Apiaceae Thaspium trifoliatum 0 1 
Aristolochiaceae Asarum canadense 1 0 
Aspleniaceae Asplenium platyneuron 2 0 
Asteraceae Achillea millefolium var. occidentalis 0 1 
Asteraceae Symphyotrichum acuminata 0 1 
Asteraceae Symphyotrichum lateriflorum var. lateriflorum 0 1 
Asteraceae Symphyotrichum lowrieanum 3 0 
Asteraceae Symphyotrichum undulatum 0 1 
Brassicaceae Cardamine concatenata 0 1 
Campanulaceae Campanula divaricata 1 0 
Clethraceae Clethra acuminata 0 2 
Cyperaceae Carex digitalis 0 1 
Dennstaedtiaceae Dennstaedtia punctilobula 0 2 
Dryopteridaceae Cystopteris protrusa 0 2 
Dryopteridaceae Dryopteris marginalis 3 0 
Ericaceae Leucothoe fontanesiana 3 0 
Ericaceae Vaccinium corymbosum 1 0 
Ericaceae Vaccinium erythrocarpum 4 0 
Ericaceae Vaccinium pallidum 0 4 
Ericaceae Vaccinium stamineum 0 1 
Fabaceae Cercis canadensis 0 1 
Fabaceae Desmodium spp. 1 0 
Gentianaceae Gentiana decora 0 1 
Hydrophyllaceae Hydrophyllum canadense 1 0 
Hydrophyllaceae Hydrophyllum virginianum var. atranthum 0 1 
Iridaceae Iris cristata 0 1 
Lamiaceae Collinsonia canadensis 0 9 
Lamiaceae Monarda clinopodia 0 1 
Lamiaceae Stachys clingmanii 0 2 
Liliaceae Lilium superbum 0 1 
Liliaceae Melanthium parviflorum 0 2 
Liliaceae Polygonatum pubescens 0 2 
Liliaceae Stenanthium gramineum 1 0 
Liliaceae Streptopus roseus 0 1 
Liliaceae Uvularia grandiflora 0 4 
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Table D.1. Continued. 
    # plots present 
Family Species logged unlogged 
Liliaceae Uvularia perfoliata 0 2 
Liliaceae Veratrum viride 0 1 
Lycopodiaceae Lycopodium obscurum 1 0 
Monotropaceae Monotropa uniflora 0 2 
Nyssaceae Nyssa sylvatica 0 4 
Onagraceae Circaea alpina 0 2 
Onagraceae Circaea lutetiana ssp. canadensis 0 1 
Orchidaceae Galearis spectabilis 0 2 
Orchidaceae Platanthera spp. 1 0 
Osmundaceae Osmunda cinnamomea 0 2 
Osmundaceae Osmunda claytoniana 6 0 
Phytolaccaceae Phytolacca americana 0 1 
Poaceae Brachyelytrum erectum 1 0 
Poaceae Dichanthelium boscii 0 1 
Poaceae Dichanthelium dichotomum var. dichotomum 1 0 
Poaceae Panicum spp. 1 0 
Pteridaceae Adiantum pedatum 0 4 
Pteridaceae Cheilanthes spp. 0 1 
Pyrolaceae Chimaphila maculata 0 3 
Ranunculaceae Actaea pachypoda 3 0 
Ranunculaceae Hepatica nobilis 1 0 
Ranunculaceae Ranunculus recurvatus 0 1 
Ranunculaceae Thalictrum clavatum 0 3 
Ranunculaceae Thalictrum dioicum 0 2 
Ranunculaceae Thalictrum pubescens 0 1 
Ranunculaceae Trautvetteria caroliniensis 0 1 
Rosaceae Aruncus dioicus 0 2 
Rosaceae Porteranthus stipulatus 1 0 
Rosaceae Porteranthus trifoliatus 0 1 
Rosaceae Potentilla simplex 0 1 
Rosaceae Prunus pensylvanica 2 0 
Saxifragaceae Astilbe biternata 1 0 
Saxifragaceae Chrysosplenium americanum 0 2 
Saxifragaceae Mitella diphylla 1 0 
Smilacaceae Smilax tamnoides 0 2 
Violaceae Viola macloskeyi ssp. pallens 1 0 
Violaceae Viola pedata 0 1 
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Table D.2. Tree (≥ 10 cm) species recorded in only logged or only unlogged plots. 279 

The # plots present columns indicate the number of plots in which the species was 280 

recorded in the 1978 and 2007 survey periods combined. 281 

    # plots present 
Family Species logged unlogged 
Aquifoliaceae Ilex montana 2 0 
Aquifoliaceae Ilex opaca 1 0 
Fagaceae Castanea dentata 0 1 
Fagaceae Quercus alba 0 2 
Fagaceae Quercus coccinea 1 0 
Pinaceae Pinus pungens 1 0 
Rosaceae Prunus pensylvanica 5 0 
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Table D.3. Species recorded in only 1978 (n = 30) or only 2007 (n = 30). 282 

The # plots present columns indicate the number of plots in which the species was 283 

recorded in the logged and unlogged areas combined. 284 

    # plots present 
Family Species 1978 2007 
Apiaceae Sanicula spp. 6 0 
Aspleniaceae Asplenium platyneuron 2 0 
Asteraceae Achillea millefolium var. occidentalis 1 0 
Asteraceae Symphyotrichum acuminata 0 1 
Asteraceae Symphyotrichum lateriflorum var. lateriflorum 1 0 
Asteraceae Symphyotrichum undulatum 1 0 
Brassicaceae Cardamine concatenata 1 0 
Campanulaceae Campanula divaricata 1 0 
Caryophyllaceae Silene stellata 3 0 
Cornaceae Cornus florida 9 0 
Cyperaceae Carex digitalis 0 1 
Dryopteridaceae Cystopteris protrusa 2 0 
Dryopteridaceae Dryopteris marginalis 3 0 
Ericaceae Vaccinium corymbosum 1 0 
Ericaceae Vaccinium stamineum 1 0 
Fabaceae Cercis canadensis 1 0 
Fabaceae Desmodium spp. 1 0 
Gentianaceae Gentiana decora 1 0 
Hydrophyllaceae Hydrophyllum virginianum var. atranthum 1 0 
Lamiaceae Monarda clinopodia 0 1 
Liliaceae Maianthemum canadense 0 2 
Liliaceae Polygonatum pubescens 2 0 
Liliaceae Stenanthium gramineum 1 0 
Liliaceae Streptopus roseus 0 1 
Liliaceae Uvularia grandiflora 4 0 
Liliaceae Uvularia perfoliata 2 0 
Liliaceae Uvularia sessilifolia 3 0 
Lycopodiaceae Lycopodium obscurum 1 0 
Onagraceae Circaea lutetiana ssp. canadensis 1 0 
Ophioglossaceae Botrychium dissectum 2 0 
Orchidaceae Platanthera spp. 0 1 
Osmundaceae Osmunda claytoniana 6 0 
Phytolaccaceae Phytolacca americana 0 1 
Poaceae Brachyelytrum erectum 1 0 
Poaceae Panicum spp. 1 0 
Poaceae Poa spp. 3 0 
Pteridaceae Cheilanthes spp. 1 0 
Pyrolaceae Chimaphila maculata 3 0 
Ranunculaceae Ranunculus recurvatus 1 0 
Ranunculaceae Thalictrum pubescens 1 0 
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Table D.3. Continued.  
    # plots present 
Family Species 1978 2007 
Rosaceae Porteranthus stipulatus 1 0 
Rosaceae Porteranthus trifoliatus 1 0 
Rubiaceae Houstonia serpyllifolia 2 0 
Saxifragaceae Astilbe biternata 1 0 
Saxifragaceae Mitella diphylla 1 0 
Thelypteridaceae Thelypteris noveboracensis 0 7 
Violaceae Viola macloskeyi ssp. pallens 1 0 
Violaceae Viola pedata 0 1 
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