
University of Tennessee, Knoxville University of Tennessee, Knoxville

TRACE: Tennessee Research and Creative TRACE: Tennessee Research and Creative

Exchange Exchange

Masters Theses Graduate School

12-2011

Prognostics-Based Two-Operator Competition for Maintenance Prognostics-Based Two-Operator Competition for Maintenance

and Service Part Logistics and Service Part Logistics

Faranak Fathi Aghdam
faranak.fathi@utk.edu

Follow this and additional works at: https://trace.tennessee.edu/utk_gradthes

 Part of the Industrial Engineering Commons

Recommended Citation Recommended Citation
Fathi Aghdam, Faranak, "Prognostics-Based Two-Operator Competition for Maintenance and Service Part
Logistics. " Master's Thesis, University of Tennessee, 2011.
https://trace.tennessee.edu/utk_gradthes/1068

This Thesis is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and
Creative Exchange. It has been accepted for inclusion in Masters Theses by an authorized administrator of TRACE:
Tennessee Research and Creative Exchange. For more information, please contact trace@utk.edu.

https://trace.tennessee.edu/
https://trace.tennessee.edu/
https://trace.tennessee.edu/utk_gradthes
https://trace.tennessee.edu/utk-grad
https://trace.tennessee.edu/utk_gradthes?utm_source=trace.tennessee.edu%2Futk_gradthes%2F1068&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/307?utm_source=trace.tennessee.edu%2Futk_gradthes%2F1068&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:trace@utk.edu

To the Graduate Council:

I am submitting herewith a thesis written by Faranak Fathi Aghdam entitled "Prognostics-Based

Two-Operator Competition for Maintenance and Service Part Logistics." I have examined the

final electronic copy of this thesis for form and content and recommend that it be accepted in

partial fulfillment of the requirements for the degree of Master of Science, with a major in

Industrial Engineering.

Haitao Liao, Major Professor

We have read this thesis and recommend its acceptance:

Xueping Li, Joseph Wilck

Accepted for the Council:

Carolyn R. Hodges

Vice Provost and Dean of the Graduate School

(Original signatures are on file with official student records.)

Prognostics-Based Two-Operator Competition for

Maintenance and Service Part Logistics

A thesis

Presented for the

Master of Science

 Degree

University of Tennessee, Knoxville

Faranak Fathi Aghdam

December 2011

 ii

©Copyright 2011 by Faranak Fathi Aghdam

All Rights Reserved

 iii

DEDICATION

I dedicate my thesis to my God and Lord, to my parents and my fiancé for their understanding,

encouragement and support. I love you.

 iv

ACKNOWLEDGEMENTS

It is with great pleasure that I thank all of the people that helped me get to this point.

I would like to express my sincere gratitude to my advisor, Dr. Haitao Liao, for his guidance

into the world of academic research and the exciting world of game theory. I sincerely thank him

for giving me the opportunity to be part of his research group and for his persistent support and

understanding.

It is with an overwhelming sense of gratitude that I thank my reading committee: Dr. Xueping Li

and Dr. Joseph Wilck.

Words fail me to express my appreciation to the love of my life: my fiancé: Hamed. Thank you

for all your guidance, dedication, patience, love and endless support during this time. Although

we were far apart during this time, I‟ve felt your pure love in my heart every moment.

Last, but certainly not the least, I would like to acknowledge the commitment, sacrifice and

support of my parents, who have always motivated me.

 v

ABSTRACT

Prognostics and timely maintenance of components are critical to the continuing operation of a

system. By implementing prognostics, it is possible for the operator to maintain the system in the

right place at the right time. However, the complexity in the real world makes near-zero

downtime difficult to achieve partly because of a possible shortage of required service parts. This

is realistic and quite important in maintenance practice. To coordinate with a prognostics-based

maintenance schedule, the operator must decide when to order service parts and how to compete

with other operators who also need the same parts. This research addresses a joint decision-

making approach that assists two operators in making proactive maintenance decisions and

strategically competing for a service part that both operators rely on for their individual

operations. To this end, a maintenance policy involving competition in service part procurement

is developed based on the Stackelberg game-theoretic model. Variations of the policy are

formulated for three different scenarios and solved via either backward induction or genetic

algorithm methods. Unlike the first two scenarios, the possibility for either of the operators being

the leader in such competitions is considered in the third scenario. A numerical study on wind

turbine operation is provided to demonstrate the use of the joint decision-making approach in

maintenance and service part logistics.

 vi

TABLE OF CONTENTS

CHAPTER I

1. Introduction and General Information ..1

1.1 Preventive maintenance and replacement scheduling..1

1.2 Research Contributions ..3

1.3 Outline ...4

CHAPTER II

2. Literature Review ..5

2.1 Reliability and maintainability ...5

2.1.1 Multi Objective Algorithm ...8

 2.2 Service part inventory control optimization…...………………………...………....10

2.3 Optimization Models ... 16

2.3.1 Dynamic programming .. 16

2.3.2 Heuristics and Meta-Heuristics Algorithms .. 17

2.4 Game Theory ... 24

2.4.1 Basic Elements and Assumptions of Game Theory.. 25

2.4.2 Representation of games .. 25

2.4.3 Types of games .. 26

2.4.4 Equilibrium Solutions .. 28

2.4.5 Leader-Follower Game (Stackelberg Games) ... 30

2.5 Wind Turbine Reliability ... 31

 vii

2.5.1 Scheduled (Preventive) Maintenance of wind turbines 33

2.5.2 Unscheduled (Failure Related) Maintenance of wind turbines 34

2.5.3 Operation and Maintenance Costs of Wind Generated Power 35

2.5.4 Gearbox ... 38

2.6 Positioning of the study in cited literature……….……………………………………...40

CHAPTER III

3. Optimization Model ... 41

3.1 Introduction ... 41

3.2 Problem Statement ... 42

3.2.2 Acronyms and notation .. 44

3.2.3 Decision: Pay more or wait .. 45

3.2.4 Waiting times for getting a part ... 46

3.2.5 Cost functions for Operator j (leader) .. 47

3.2.6 Cost functions for Operator k (follower) ... 48

3.2.7 Decision-making criterion ... 48

3.3 Three scenarios of competition .. 49

3.3.1 Hierarchical game: Stackelberg equilibrium (with fix-leader and fix-follower roles)

 .. 49

 3.3.1.a Backward induction………………………………………...………………45

3.3.2 Hierarchical Stackelberg-Nash using GA ... 50

 3.2.2.a Joint decision-making considering priority…………………………………..48

 3.2.2.b Game with random leader-follower relationship………………...…………..48

 viii

3.4 Genetic Algorithm options ... 54

3.4.1 Population Options ... 54

3.4.2 Fitness Scaling Options .. 56

3.4.3 Selection Options ... 57

3.4.4 Reproduction Options .. 58

3.4.5 Mutation Options ... 59

3.4.6 Crossover Options .. 60

3.4.7 Stopping Criteria Options ... 62

3.4.8 Plot function .. 63

CHAPTER IV

4. Numerical Example ... 65

4.1 Computational results .. 66

 4.1.1 Case 1: Stackelberg game ... 66

 4.1.2 Selected options in Genetic Algorithm…………………………………………….71

4.1.3 Case 2: Joint decision-making considering priority ... 70

4.1.4 Case 3: Game with random leader-follower relationship 73

CHAPTER V

5. Conclusions and Recommendations ... 76

LIST OF REFERENCES .. 77

APPENDIX .. 86

Matlab Codes .. 87

VITA .. 99

 ix

LIST OF FIGURES

Figure 1. Degradation process and remaining useful life distribution ...2

Figure 2. Total Maintenance Cost ..6

Figure 3. Diagram of Wind Turbine Generator [71] ... 32

Figure 4. Wind Turbine Bathtub Curve [75] .. 35

Figure 5. Total Operations and Maintenance Costs Increase with Age Due to Wear-Out Related

Failures [75] .. 36

Figure 6. Decision: Pay more or wait... 46

Figure 7. Waiting times before receiving a part ... 47

Figure 10. 20 levels for each decision variable .. 68

Figure 11. GA diagram for scenario 3 ... 75

 x

LIST OF TABLES

Table 1. Parameters for the the case 1 .. 66

Table 2. Case1 Results (M=10000) ... 69

Table 3. Case1 Results (M=2000) ... 70

Table 4. Parameters for the the case 2 and 3 .. 72

Table 5. Parameters of the Genetic Algorithm ... 72

Table 6. Non-inferior solutions for different combinations of weights 73

 1

CHAPTER I

1. Introduction and General Information

1.1 Preventive maintenance and replacement scheduling

It is well documented that managing maintenance activities in a proactive rather than a

reactive manner results in lower operation and maintenance costs and superior asset

performance. This is easy to say but difficult to do in actual practice. As components in a

system are aging with time, preventive maintenance (PM) that prevents failures may be

economically justified. Unlike corrective maintenance (CM) involving repair or

replacement of failed components, the intention of performing PM is to restore system

reliability by maintaining the aged components or replacing them before they actually

fail. Among many PM strategies, preventive replacement can be implemented for non-

repairable components, which can be classified into two categories: time-based

replacement and condition-based replacement. There are two types of time-based

replacement schemes, i.e., age replacement and block replacement [1]. In age

replacement, a scheduled replacement occurs whenever an operating unit reaches a

certain age T, while for block replacement all operating units are replaced at regular time

intervals regardless of the actual age of individual units. For condition-based

replacement, an action to be taken on a single unit after each inspection (or upon

condition monitoring via an in-situ sensor) is determined based on the unit‟s current state.

 2

Possible actions are (1) replacing the unit right away, (2) determining the next service

time to replace the unit or (3) no action.

Figure 1. Degradation process and remaining useful life distribution

Fig. 1 illustrates the methodology of condition-based replacement. As the unit‟s

degradation process * () + evolves, the remaining useful life (RUL) of the unit can

be predicted based on a stochastic model for * () + with unit-specific parameters.

Let be the failure threshold and * () + be the actual failure

time of the unit. The distribution of the unit‟s at time t, can be

expressed as () where . One of the possible actions will be determined

based on the predicted RUL at present. When the unit is decided to be replaced either

right away or for the next service time, it would be straightforward to do so if a service

part is currently in hand or will be available prior to the next service time. However, a

shortage of a required service part often makes timely replacement difficult to achieve. In

addition to inherent delays, such as replenishment lead time, operators sometimes are

Failure Threshold D
f

Time

State

 X(t)

T
f

Remaining useful

life distribution

t 0

 3

forced to compete with others for a service part that all of them rely on for their

individual operations. This makes the availability of service parts questionable to each

operator.

This thesis studies a joint decision-making mechanism for proactive replacement and

competition in service part procurement between two operators. A specific type of

component is considered, and the joint decision is made based on the predicted values of

RUL of the units being used by the operators. Considering the limited availability of

service part and their affordable prices and losses, the two operators must determine the

best times for replacing their units and for ordering the service part with a possible

competition with each other. Three different scenarios based on the Stackelberg game-

theoretic model are formulated in this thesis. The backward induction method for solving

Stackelberg games is used in finding the optimal preventive replacement and ordering

times. In addition, a genetic algorithm (GA) is utilized for a multi objective case.

1.2 Research Contributions

In this thesis the following contributions are made:

1. In this work the competition between two operators on optimizing their

maintenance policies based on minimizing the costs is modeled by a new

optimization model.

2. The relationship between the operators is modeled based on a leader-follower

game theoretic model.

 4

3. A multi objective model is developed based on a set of assumptions. This model

is optimized via either backward induction or genetic algorithms.

4. Finally, a numerical example based on real numbers from wind turbine gearbox

reliability databases will be considered as the application of the developed model.

1.3 Outline of the study

The remainder of this thesis is organized as follows:

In chapter 2, a comprehensive literature review of various models and algorithms in spare

and service part inventory control and PM optimization problems is presented.

Chapter 3 clearly provides the problem description and mathematical formulations of the

joint decision-making models and also addresses the proposed optimization methods for

solving three scenarios.

In chapter 4, a numerical example on wind turbine operation is provided to demonstrate

the use of the proposed models and their solution methods. Effect of competition is

assessed in this section.

Finally, chapter 5 gives concluding remarks and recommendation for future work.

 5

CHAPTER II

2. Literature Review

In this chapter, the studies in the literature that are related with this study are

summarized. The subjects of the papers and proposed models are explained for each of

them.

Under sections 2.1, 2.2, 2.3 and 2.4 literature related to reliability and maintainability

optimization models, service part inventory control, multi objective optimization models

and game theory are discussed. In part 2.5 by discussing the reliability issues of wind

turbines, the reason of using a wind turbine problem as the numerical example in chapter

4 will be cleared.

2.1 Reliability and maintainability

IEEE defines reliability as:

“The ability of a system or component to perform its required functions under stated

conditions for a specified period of time”.

The study of maintenance policies is one of the most important areas of interest in

reliability field. The two different criteria that are known in the optimization of

replacement intervals are PM and CM. PM is defined as the activity undertaken regularly

at pre-selected intervals while the device is satisfactorily operating, to reduce or eliminate

the accumulated deterioration [18].

 6

A performance criterion for maintenance systems is minimizing the total cost of

maintenance, which includes PM cost, CM cost or cost of failure. (fig2)

Figure 2. Total Maintenance Cost

PM has been extensively investigated in the reliability field. In terms of mathematical

modeling, most PM models are focused on the minimum cost, economic system lifetime,

and highest system availability. Chen and Feldman [19] presented a repair/replacement

problem based on age-replacement policy. Panagiotidou and Tagaras [20] presented an

economic model for the optimization of PM in a production process with two quality

states (in-control and out-of-control).They found the optimum time to perform PM based

on the actual (observable) state of the process. Yeh et al. [21] analyzed the effects of a

free-repair warranty on the optimal periodic replacement policy for both a warranted and

non-warranted repairable products by optimizing the long-run cost rate. Dehayem Nodem

et al. [22] presented a hierarchical decision-making approach in production and

repair/replacement planning with imperfect repairs under uncertainties to minimize the

total costs over an infinite planning horizon. A semi-Markov decision model was used to

 7

determine the optimal repair and replacement policy, and the production rate was

determined based on the obtained repair and replacement policy. Berg [23] extended

existing maintenance policies that are based only on the present repair cost by

considering the future costs. Essentially, the repair and replacement policy is analyzed

and optimized using the marginal cost analysis.

The integration of preventive replacement and service part logistics has also been studied

in many papers. Zohrul Kabir and Al-Olayan [24] presented a simulation model that

minimizes the total cost of replacement and inventory by incorporating both age-

replacement policy and continuous review of stocking inventory policy. Vaughan [25]

developed a stochastic dynamic programming model to characterize the ordering policy

due to regularly scheduled PM and random failure of units in service. Wang et al. [26]

optimized the presented simulation model for deteriorating systems which combines the

condition-based replacement policy with periodic inspections and the base stock

inventory policy. Wang [27] presented a joint optimization model for both the inventory

control of the spare parts and the PM inspection interval to find the optimum value for the

order interval, PM interval and order quantity via dynamic programming. Liao et al. [28]

introduces a condition-based availability limit policy which achieves the maximum

availability of a system by optimally scheduling maintenance actions.

In order to optimize the maintenance policy for a component with deterioration and

random failure rate, a linear programming model was proposed by Jayakumar and

Asgarpoor [29]. In their model, they determined optimal mean times of minor and major

PM actions based on maximizing the availability of the component.

file:///C:/Users/faranak/Downloads/thesis%20template.docx%23_ENREF_22

 8

Duarte et al. [30] considered a system with series component that have linearly increasing

failure rate and constant improvement factor for imperfect maintenance. They presented a

model and algorithm to optimize the interval of time between maintenance actions by

considering the total cost and total downtime as the objective functions.

In another study, Tam et al. [31] presented three models to determine the optimal

maintenance intervals for a multi component system under maintenance actions without

considering the replacement actions. He considered three different models to minimize

total cost subject to satisfying a required reliability, one that maximizes reliability at a

given budget, and one that minimizes the expected total cost including expected

breakdown outages cost and maintenance cost.

Another paper is by Shirmohammadi et al. [32] which developed an age based nonlinear

optimization model to determine the optimal PM schedule for a single component

system. They considered the cost per unit time as the objective function to find the

optimal time between preventive replacements and the cut-off age. They utilized MAPLE

to solve the optimization model.

2.1.1 Multi Objective Algorithm

Multi objective optimization involves trying to simultaneously optimize two or more

objectives. In addition to single objective problems, multi objective PM optimization

models have also been investigated. The problem usually has a number of constraints,

which must be satisfied by any feasible solution.

file:///C:/Users/faranak/Downloads/thesis%20template.docx%23_ENREF_23
file:///C:/Users/faranak/Downloads/thesis%20template.docx%23_ENREF_24
file:///C:/Users/faranak/Downloads/thesis%20template.docx%23_ENREF_25

 9

Berrichi et al. [33] considered an algorithm based on bi-objective Ant Colony

Optimization in handling both production and maintenance scheduling problem to

simultaneously determine the best assignment of production tasks to machines as well as

PM (PM) periods of the production system. Moradi et al. [34] investigated integrated

flexible job shop problem with PM activities under the multi objective optimization

approaches. Two decisions are made at the same time: finding the appropriate assignment

of n jobs on m machines in order to minimize the makespan and the best time to execute

PM to minimize the system unavailability. Quan et al. [35] presented a novel

evolutionary algorithm to solve a PM scheduling problem, which is formulated as a multi

objective problem.

In a paper by Herabat [36], they developed a multi objective optimization model to

support the multi year decision making process of the highway maintenance management

in Thailand. PM is focused in this research since it helps prolong the life of the

infrastructures. This study selects the flexible pavements in the Pathumthani province to

be the study area. Both single- and multi objective optimization models are developed for

a multi year maintenance planning by incorporating the constraint-based genetic

algorithms to deal with the combined characteristics of the network-level maintenance

planning. Two constraints of budget limitation and the network system preservation are

employed in the developed models.

Certa [37] recently presented a paper which aims to propose a resolution approach for a

multi objective maintenance problem with relation to a system that needs to operate

without interruption between two consecutive fixed stops. The proposed algorithm has

 10

several advantages compared with both the classical methods and the most recent genetic

approaches. In particular, it goes over the limits of the other approaches due to the

incapability in individuating all Pareto solutions and in exploring a not convex Pareto

frontier.

A comprehensive study on multi objective genetic algorithms and their applications in

reliability optimization problems is presented in a paper by Konak et al. [38]. They

reviewed 55 research papers and discussed the recent techniques and methodologies.

2.2 Service part inventory control optimization

Spare parts inventories differ from work-in-process (WIP) inventories and finished

product inventories from many aspects and are kept in stock to support maintenance

operations and to protect against equipment failures. Managing spare parts is an

important component of an overall maintenance policy, which can be a major

determinant of operational efficiency in a manufacturing system.

Spare part definition in Wikipedia is: “A spare part, service part, or spare, is an item of

inventory that is used for the repair or replacement of failed parts” “accessed on

11/06/2011.” Service Parts Management is one of the main components of strategic

service logistics, requiring a complex decision making process that companies use to

ensure that right spare parts and resources are at the right place at the right time. From a

producer point of view spare parts are considered uneconomical since they involve

logistical and economical requirements. However, without spare parts on hand,

 11

customers‟ satisfaction level may drop, since customers have to wait for a long time

before their products can be fixed [2].

Spare parts can be generally classified into non-repairable and repairable. Repairable

parts are parts that are deemed worthy of repair, usually by virtue of economic

consideration of their repair cost. Parts that are not repairable are considered consumable

parts. Consumable parts are usually scrapped, or condemned, when they are found to

have failed.

In the literature, the most commonly used approaches to develop a possible spare

provisioning decision model are simulation and mathematical programming.

Mathematical programming is based on linear programming, dynamic programming, goal

programming, etc. [3].

The question of how many spare parts to stock and when is the best time to order the

spare part have been addressed by numerous researchers and has originated a wide

variety of models. A survey of the literature by Kennedy [4] is an update of the

discussion of maintenance inventories and a discussion of the future research needed.

Maintenance, including tests, measurements, adjustments, and replacement, performed

specifically to prevent faults from occurring. The goal of maintenance is to avoid or

mitigate the consequences of failure of equipment. Maintenance has mainly been defined

as two parts by its nature: PM and CM.

 12

When discussing improvement opportunities in the plant, the PM discussion must occur.

PM is preventing the failure before it actually occurs. It is designed to preserve and

restore equipment reliability by replacing worn components before they actually fail.

CM involves the repair or replacement of components which have failed or broken down.

For failure modes which lend themselves to condition monitoring, CM should be the

result of a regular inspection which identifies the failure in time for CM to be planned

and scheduled, then performed during a routine plant outage.

Today modern production systems are more complicated and mechanized. This causes

unplanned failures to have a severe impact on the systems. Unplanned failures can

decrease productivity and increase variance of production quality.

In general, the maintenance and spare parts inventory policies are treated either

separately or sequentially in industry. However, since the stock level of spare parts is

often dependent on the maintenance policies, it is better to deal with these problems

simultaneously [5].

There are a limited number of published research papers that mentions the importance of

integrating the maintenance strategy with spares and repair capacity (e.g. [6]; [7]). These

articles do not present quantitative models. Spare provisioning policy has been taken into

account simultaneously with the maintenance policy by Kabir and Farrash [8] and Park

[9]. They deal with an age-based maintenance strategy and non-repairable components.

Brezavscek and Hudoklin [10] considered the problem of joint optimization of “PM” and

“spare-provisioning policy” for system components subject to wear-out failures. This

 13

model can be readily applied to optimize maintenance procedures for variety of industrial

systems and to upgrade maintenance policy in situations where block replacement PM is

already in use.

Huang [11] published a paper that considered a generalized joint optimization policy of

block replacement & periodic review spare inventory with random lead time. In another

paper the block replacement interval, the optimal stock level as well as the replenishment

cycle is optimized simultaneously. Again the components are not repairable, which is

encountered in most models that are concerned with joint optimization of a maintenance

policy and a spares provisioning policy [12].

In another recent paper, Kolahan and Sharifinya [13] proposed a multi objective

optimization problem in a single machine for simultaneous part sequencing and tool

replacement schedule, with respect to tool reliability and sequence–dependent set up

times has been addressed. The main objectives include determining optimal part

sequence, tool selection for operations, tool replacement schedule, and number of spares

for each tool type, in such a way that total expected production cost is minimized.

Considering the defective cost by using tool reliability instead of tool life, processing

operations with tool alternatives and tool loading by considering the limited tool

magazine capacity, are the main originalities of this research. Since the problem under

consideration is NP-hard, they propose a Simulated Annealing and Tabu Search heuristic

algorithms to, simultaneously, provide part sequencing, tool replacement intervals and

number of spare tools required. The proposed algorithms are examined and the results are

compared by solving a real-sized example problem. The computational results

 14

demonstrate the effectiveness of these methods towards solving large-sized, multi

objective planning problems.

As mentioned before, spare parts can be generally classified into non-repairable and

repairable. After an initial applied study with the Canadian oil producer Syncrude (see

[14]), researchers at the Condition-Based Maintenance Laboratory at the University of

Toronto have investigated and Developed 3 models to calculate the optimal stock size in

the cases of non-repairable and repairable components. A repairable part is one that upon

removal from operation (due to a preventive replacement or failure), is sent to a repair or

reconditioning facility, where it is returned to an operational (ready-to-operate) state.

Non-repairable parts, on the other hand, have to be discarded once they have been

removed from operation (as it is uneconomical or physically impossible to repair

them).Inventory control models used in each case are different, thus they will be treated

separately. They have presented a number of basic spares inventory models used to

determine the optimal stock size for the cases of non-repairable and repairable critical

components, according to different optimization criteria, namely: (i) reliability of the

stock (instantaneous or interval, depending on the application), (ii) availability (in the

case of repairable components), and (iii) cost. In addition, procedures to find the interval

of supportability given a stock level and desired reliability are introduced. Three brief

case studies were reviewed, illustrating industrial spares stockholding problems. Most of

the models discussed have been incorporated into a prototype software called SMS

(Spares Management Software), developed by the Condition-Based Maintenance

Laboratory at the University of Toronto [15].

 15

Another paper in combination of spare parts and PM is by Tunali [16]. In this study, a

simulation optimization approach using genetic algorithms (GAs) has been proposed for

the joint optimization of PM and spare provisioning policies of a manufacturing system

operating in the automotive sector. A factorial experiment was carried out to identify the

best values for the GA parameters, including the probabilities of crossover and mutation,

the population size, and the number of generations. The unavailability of spare parts at

the time they are needed by the maintenance department is a major problem for many

industrial organizations. The common approach to solve this problem is overstocking the

spare parts at a substantial inventory-carrying cost. However, a cost effective solution to

this problem requires a trade-off between overstocking and shortages of spare parts. In

order to deal with this trade-off, the problem should be solved by joint, rather than

separate or sequential optimization of PM and spare parts inventory policies. A

simulation model of the manufacturing system was developed and a GA was integrated

with this model to optimize the parameters of the simulation model. Moreover, a set of

designed experiments was carried out to determine the best combination of GA

parameters. The best solution proposed by the GA was compared to the current

combination of control variables in terms of total annual cost and average monthly

production. It was found that the total annual cost could be reduced by about 53% while

achieving a larger amount of throughput.

Nosoohi and Hejazi [17] presented a novel multi objective model that considers age

replacement policy and provision of spare parts both together. Despite most of previous

studies where the cost objective has been the main concern in maintenance planning, this

 16

paper presents a novel multi objective model (Cost objective, Corrective failure

objective, Residual lifetime objective and Investment objective) for preventive

replacement of a part over a planning horizon. The proposed model considers different

objectives and practical issues, such as corrective replacement and its consequences,

residual lifetime objective, and kind of productivity index. Also, the model determines

number of spare parts, required for replacement with the defected part, to be provided at

the beginning of the planning horizon. In this paper, unlike the previous researches and

regarding practical issues, a new multi objective model was proposed. The classical cost

objective was developed based on Bernoulli distribution. Along these lines, a function in

the form of exponential distribution was used to show the effects of working situations

and number of surplus spare parts on the probability of having spare part at the

replacement times. Also they have shown, how non-dominated and the preferred

solutions can be generated based on the ɛ-constraint and min max methods, for the

proposed model.

2.3 Optimization Models

2.3.1 Dynamic programming

One of the most common techniques to solve the maintenance and replacement actions

optimization models is dynamic programming. One of first studies in this field is a study

by Canfield [39]. He mentions that PM actions do not change or affect deterioration

behavior of failure rate, so the developed failure function is constant with maintenance

actions. He proposed a model to minimize the cost of maintenance for a system that has

 17

Weibull distribution failure rate. This model was solved by applying dynamic

programming. Ben-Akiva [40] developed a dynamic programming method for finding an

optimal maintenance and inspection policy, in the presence of inspection error.

2.3.2 Heuristics and Meta-Heuristics Algorithms

Genetic algorithm:

Recently, artificial intelligent technologies have better results in solving the optimization

of nonlinear models; one of them is genetic algorithm. Genetic algorithms are inspired by

Darwin's theory about evolution. Genetic algorithms in general are searching procedures

based on the principle of natural selection and genetic recombination. They imitate nature

by using the mechanics of evolution and natural selection to improve a set of initial

solutions called a population using recombination and mutation of the genetic material.

Like any other optimization algorithm it begins by defining the optimization variables,

the fitness function, and ends by testing for convergence. In between, however, this

algorithm is quite different, i.e. it uses specific GA operators.

Once we have the genetic representation and the fitness function defined, GA proceeds to

initialize a population of solutions randomly and then improve it through repetitive

application of mutation, crossover, inversion and selection operators.

It consists of the following procedures:

Initialization

Initially many individual solutions are randomly generated to form an initial population.

The population size depends on the nature of the problem, but typically contains several

 18

hundreds or thousands of possible solutions. Traditionally, the population is generated

randomly, covering the entire range of possible solutions (the search space).

Occasionally, the solutions may be "seeded" in areas where optimal solutions are likely to

be found.

Selection

During each successive generation, a proportion of the existing population is selected to

breed a new generation. Individual solutions are selected through a fitness-based process,

where fitter solutions (as measured by a fitness function) are typically more likely to be

selected. Certain selection methods rate the fitness of each solution and preferentially

select the best solutions. Other methods rate only a random sample of the population, as

this process may be very time-consuming.

Reproduction

The next step is to generate a second generation population of solutions from those

selected through genetic operators: crossover (also called recombination),

and/or mutation.

For each new solution to be produced, a pair of "parent" solutions is selected for breeding

from the pool selected previously. By producing a "child" solution using the above

methods of crossover and mutation, a new solution is created which typically shares

many of the characteristics of its "parents". New parents are selected for each new child,

and the process continues until a new population of solutions of appropriate size is

generated. Although reproduction methods that are based on the use of two parents are

http://en.wikipedia.org/wiki/Selection_(genetic_algorithm)
http://en.wikipedia.org/wiki/Fitness_(biology)
http://en.wikipedia.org/wiki/Fitness_function
http://en.wikipedia.org/wiki/Genetic_operator
http://en.wikipedia.org/wiki/Crossover_(genetic_algorithm)
http://en.wikipedia.org/wiki/Mutation_(genetic_algorithm)

 19

more "biology inspired", some research suggest more than two "parents" are better to be

used to reproduce a good quality chromosome.

These processes ultimately result in the next generation population of chromosomes that

is different from the initial generation. Generally the average fitness will have increased

by this procedure for the population, since only the best organisms from the first

generation are selected for breeding, along with a small proportion of less fit solutions,

for reasons already mentioned above.

Although Crossover and Mutation are known as the main genetic operators, it is possible

to use other operators such as regrouping, colonization-extinction, or migration in genetic

algorithms.

Termination

This generational process is repeated until a termination condition has been reached.

Common terminating conditions are:

 A solution is found that satisfies minimum criteria

 Fixed number of generations reached

 Allocated budget (computation time/money) reached

 The highest ranking solution's fitness is reaching or has reached a plateau such

that successive iterations no longer produce better results

 Manual inspection

 Combinations of the above

 20

Simple generational genetic algorithm procedure:

 Choose the initial population of individuals

 Evaluate the fitness of each individual in that population

 Repeat on this generation until termination (time limit, sufficient fitness achieved,

etc.):

 Select the best-fit individuals for reproduction

 Breed new individuals through crossover and mutation operations to give birth

to offspring

 Evaluate the individual fitness of new individuals

 Replace least-fit population with new individuals

The most popular example in Genetic Algorithm is the eight queens puzzle. In chess, a

queen can move as far as she pleases, horizontally, vertically, or diagonally. A chess

board has 8 rows and 8 columns. The standard 8 by 8 queen's problem asks how to place

8 queens on an ordinary chess board so that none of them can hit any other in one move.

Thus, a solution requires that no two queens share the same row, column, or diagonal.

Solving this problem with a genetic algorithm is a basic example in tutorials.

GAs, initially introduced by Holland [41], constitute meta-heuristic population based,

derivative-free optimization techniques, which exploit the mechanics of natural evolution

in order to gradually approach optimality conditions [42].

http://en.wikipedia.org/wiki/Population
http://en.wikipedia.org/wiki/Individual
http://en.wikipedia.org/wiki/Fitness_(biology)
http://en.wikipedia.org/wiki/Generation
http://en.wikipedia.org/wiki/Reproduce
http://en.wikipedia.org/wiki/Breed
http://en.wikipedia.org/wiki/Crossover_(genetic_algorithm)
http://en.wikipedia.org/wiki/Mutation_(genetic_algorithm)
http://en.wikipedia.org/wiki/Offspring

 21

The main advantage of GA over the classical optimization methods is that GA uses a

„fitness‟ function of various candidate solutions as the only information to guide the

search. In addition, GA can easily deal with non-linear constraints and a large number of

variables, and no derivatives or auxiliary information is needed [43]. GAs have been

demonstrated to be particularly effective in determining solutions to multi objective

optimization problems. Techniques such as MOGA (Multi Objective GA) and VEGA

(Vector Evaluated GA) have been developed, and these algorithms have been refined so

that they find the Pareto front in many problem instances. Munõz et al. [44] planned the

component maintenance model by using the genetic algorithm to find a maintenance

policy, which reached the minimum risk and cost. Tsai et al. [45] applied GA to provide

PM and preventive replacement policies for a system from the viewpoint of unit lifetime

cost.

Chen et al. [46] applied GA to determine an optimal PM policy of an n-component series

system with deteriorated components in a mechanical system, and the effect of PM

activities with reliability and failure rates of components under an age reduction model

was studied. Marseguerra et al. [47] used Monte Carlo simulation and genetic algorithms

to determine the optimal degradation level beyond which a PM intervention should be

taken by optimizing profit and availability.

Moreover, Usher et al. [48] proposed an optimization maintenance and replacement

model for a single-component system. They presented a new model to optimize the PM

schedule for a system with increasing failure rate and compared the results from genetic

algorithm method and branch and bound algorithm with each other.

 22

Levetin and Lisnianski [49] proposed an optimization model for a multi state system to

determine PM actions that affect the effective age of components. They used GA in order

to minimize the total cost with a required level of reliability as the constraint. They had

another paper in which they proposed a model to determine the optimal time for

replacement in a multi state series-parallel system with an increasing failure rate. They

utilized GA to solve the total cost objective function.[50]. In another paper by Wang [51],

he presents a more efficient GA for unit maintenance scheduling based on the specific

characteristic of PM scheduling problem for power systems. This new GA improves GA

computation performance by adopting a code-specific and constraint-transparent integral

coding method. To form a more promising convergence sequence and to refrain from the

occurrence of unfeasible solutions, in this new GA, GA operators are redesigned

according to the specific characteristics of the problem to be solved. Comparisons of this

new GA with a traditional binary GA are also discussed in this paper.

In a paper by Cavory [52], a model to optimize the schedule of maintenance tasks of all

the machines in a single product manufacturing production line was proposed. They

considered the total throughput of the line as the objective function and tried to maximize

it by applying genetic algorithm to find the best combination of PM tasks. They set the

GA parameters by constructing an experimental design and validated the results by

utilizing Taguchi method and statistical analysis. There are similar papers that used GA

to optimize the cost function, another one is a paper by Leou [53] that considered

maintenance crew and duration of maintenance as the additional constraints to this

method. He applied the optimization model in a case study with six electric generators.

 23

Han et.al. [54] illustrated the dynamic relationship between failure rate and PM activity.

The proposed nonlinear optimal PM policy model satisfies the reliability constraints in

finite time horizon following Weibull distribution. They applied GA as the optimization

method.

In another work by Limbourg [55], they used heuristics and meta-heuristics optimization

algorithms for PM scheduling models and presented several nonstandard input

representations and compares them to the standard binary representation by a heuristic

algorithm. An evolutionary algorithm with extensions to handle variable length genomes

is used for the comparison. The results demonstrate that two new representations perform

better than the binary representation scheme. A second analysis shows that the

performance may be even more increased using modified genetic operators.

There are some other meta-heuristics methods that have been used broadly for solving the

maintenance optimization problems. In a paper by Wang [56], they tried to minimize the

periodic PM cost for a series-parallel system using the particle swarm optimization

(IPSO). The importance measure of components is utilized to evaluate the effects of

components on system reliability when maintaining a component. I can mention another

paper by Samrout et al. [57]. This article is based on a previous study made by Bris [58].

They use genetic algorithm to minimize PM cost problem for the series–parallel systems.

Samrout proposed to improve their results developing a new method based on another

technique, the Ant Colony Optimization (ACO). The resolution consists in determining

the solution vector of system component inspection periods, TP. Those calculations were

 24

applied within the programming tool Matlab. They obtained highly interesting results and

improvements of previous studies.

2.4 Game Theory

Game theory is the formal study of decision making where several players must make

choices that potentially affect the interests of the other players.

Game theory is the formal study of conflict and cooperation. Game theoretic concepts

apply whenever the actions of several agents are interdependent. These agents may be

individuals, groups, firms, or any combination of these. The concepts of game theory

provide a language to formulate structure, analyze, and understand strategic scenarios.

The first theorem of game theory is from Zermelo who showed that chess is strictly

deterministic. But, the idea of general theory of games back to 1944 when Von Neumann

and Morgenstern published the book “Theory of Games and Economics Behavior.” They

proposed that most economic questions should be analyzed as games and introduced the

method of finding mutually consistent solutions for two-person zero-sum games. During

the late 1940s, cooperative game theory had been studied to analyze how groups of

individuals should cooperate with each other to improve their positions in a game.

A game consists of a set of players, a set of moves (or strategies) available to those

players, and a specification of payoffs for each combination of strategies.

http://en.wikipedia.org/wiki/Player_(game)
http://en.wikipedia.org/wiki/Strategy_(game_theory)

 25

2.4.1 Basic Elements and Assumptions of Game Theory

Player

An economic agent is, by definition, an entity with preferences. A player is an agent who

makes decisions in a game. Further, we also assume that each member acts rationally, i.e.

each member will not raise its own cost for the purpose of raising cost of the other

members.

Strategy

 A player's strategy will determine the action the player will take at any stage of the

game, for every possible history of play up to that stage.

Payoff

The payoffs represent the welfare of the players at the end of the game. They are the basis

on which each player chooses his strategy.

2.4.2 Representation of games

Strategic Form Games

A game in strategic form, also called normal form, is a compact representation of a game

in which players simultaneously choose their strategies. The resulting payoffs are

presented in a table with a cell for each strategy combination.

To define a game in strategic form we need only specify the set of players in the game,

the set of options available to each player, and the way that players' payoffs depend on

the options they choose (payoff functions) [59]. Classical example of a two-player finite

strategic form game is the famous prisoners' dilemma game.

http://en.wikipedia.org/wiki/Game_theory#Representation_of_games

 26

Extensive Form Games

An extensive game (or extensive form game) describes with a tree how a game is played.

It depicts the order in which players make moves, and the information each player has at

each decision point.

2.4.3 Types of games

Perfect information and imperfect information:

Games are often classified by the amount of information available to the players. If a

player has access to all the information they require about the game during play, then the

game can be classified as having perfect information. However, if some of that

information is hidden from the player the game is known as having imperfect

information. Take for example the game of chess. Chess is a game of perfect information

because each player can look down upon the board and obtain all the information

necessary to make their playing decisions. On the other hand, the game of poker is a

game of imperfect information. In poker, players are given cards which only they can see;

therefore players now have to make decisions based on hidden information because they

cannot see their opponents‟ cards. Games with incomplete information can be modeled as

Bayesian games, where the uncertainty is handled by using probability distributions.

Deterministic or stochastic:

Games can be further classified as either deterministic or stochastic. If a game contains

chance elements, such as the roll of a dice, this introduces randomness into the game.

These types of games are known as stochastic games and examples include bridge,

http://en.wikipedia.org/wiki/Game_theory#Types_of_games
http://en.wikipedia.org/wiki/Game_theory#Perfect_information_and_imperfect_information

 27

backgammon and poker. The absence of these chance elements ensures the game is

deterministic. Games such as chess, checkers and go are examples of deterministic

games.

Cooperative or non-cooperative:

The word non-cooperative means that the players' choices are based only on their

perceived self-interest. The most important models used for representing non-cooperative

games are the strategic form and the extensive form. The first is conceptually simpler and

is generally viewed as being derived from the extensive form, which is more richly

structured way to describe game situations.

Zero-sum and non-zero-sum:

Zero-sum games are a special case of constant-sum games, in which choices by players

can neither increase nor decrease the available resources. In zero-sum games the total

benefit to all players in the game, for every combination of strategies, always adds to

zero.

Simultaneous and sequential:

Simultaneous games are games where both players move simultaneously, or if they do

not move simultaneously, the later players are unaware of the earlier players' actions

(making them effectively simultaneous). Sequential games (or dynamic games) are

games where later players have some knowledge about earlier actions. This need not

be perfect information about every action of earlier players; it might be very little

knowledge.

http://en.wikipedia.org/wiki/Game_theory#Cooperative_or_non-cooperative
http://en.wikipedia.org/wiki/Game_theory#Zero-sum_and_non-zero-sum
http://en.wikipedia.org/wiki/Zero-sum
http://en.wikipedia.org/wiki/Simultaneous_game
http://en.wikipedia.org/wiki/Sequential_game
http://en.wikipedia.org/wiki/Perfect_information

 28

2.4.4 Equilibrium Solutions

A solution concept for a game is any rule for specifying predictions as to how players

might be expected to behave in any given game. The most important solution concept in

game theory is Nash‟s concept of equilibrium [60].

Nash equilibrium

A Nash equilibrium, also called strategic equilibrium, is a list of strategies, one for each

player, which has the property that no player can unilaterally change his strategy and get

a better payoff.

Nash equilibrium is widely considered as the solution of non-cooperative games.

 (

) (
)

For

i= 1,2,…,G and

Where (
) implies the payoff of player i when player i selects Si as his

strategy and at the same time all the other players except player i select

 as their

strategies.

That is,
 ,

 -

Si is the feasible strategy set of player i.

 29

Backward induction

Backward induction is a technique to solve a game of perfect information. It first

considers the moves that are the last in the game, and determines the best move for the

player in each case. Then, taking these as given future actions, it proceeds backwards in

time, again determining the best move for the respective player, until the beginning of the

game is reached.

There are several papers that use a game theoretic approach in maintenance scheduling.

A novel approach to a generating unit maintenance scheduling problem in competitive

electricity markets is presented in a paper by Kim [61]. The objective is to develop a

game-theoretic framework for analyzing strategic behaviors of generating companies

(Gencos) from the standpoint of the generating unit maintenance scheduling (GMS) game

and for obtaining the equilibrium solution for the GMS game. The GMS problem is

formulated as a dynamic non-cooperative game with complete information. The players

correspond to profit maximizing individual Gencos, and the payoff of each player is

defined as the profits from the energy market. The optimal schedule is defined by Nash

equilibrium (equilibriums) of the game. Numerical results for two-Genco system are used

to demonstrate that the proposed framework can be successfully applied to analyzing the

strategic behaviors of each Genco and to obtaining the corresponding Nash equilibrium.

The result indicates that generating unit maintenance schedule is one of the major

strategic behaviors whereby Gencos maximize their profits in a competitive market

environment.

 30

A tutorial on the subject is provided by Cachon and Netessine [62], where both non-

cooperative and cooperative game theories in static and dynamic settings are discussed.

For more extensive concepts of game theory, the readers are referred to [63].

2.4.5 Leader-Follower Game (Stackelberg Games)

As one of the most important types of game, Stackelberg games originate from H. von

Stackelberg who studied a duopoly model where the other company had a dominant

position being able to make its decision first. In general, Stackelberg games are leader-

follower games where the players act sequentially. Stackelberg solution is an important

hierarchical solution concept for both static and dynamic game models. From an

optimization point of view, two-player Stackelberg games are two level hierarchical

optimization problems where the leader optimizes his utility subject to follower‟s

optimization problem. When the players mutually benefit from the leadership of one of

them, the solution is called concurrent. If each player prefers to be the leader himself,

then the Stackelberg solution is called non-concurrent and the Stackelberg game where

neither of the players wants to be the leader is called stalemate [64].

Genetic algorithms have been applied in the distributed computation of both Stackelberg

and incentive Stackelberg solutions. Vallee and Basar[65][66] study off-line computation

of the Stackelberg solution (single-leader–single-follower) in a repeated game

framework, utilizing the Genetic Algorithm. In this paper they consider natural leader and

natural follower as fixed roles.

 31

Nedim and Sirakaya [67] develop a method to compute the Stackelberg equilibrium in

sequential games. They construct a normal form game which is interactively played by an

artificially intelligent leader, GAL, and a follower, GAF. The leader is a genetic algorithm

breeding a population of potential actions to better anticipate the follower‟s reaction. The

follower is also a genetic algorithm training on-line a suitable neural network to evolve a

population of rules to respond to any move in the leader‟s action space. When GAs

repeatedly plays this game updating each other synchronously, populations converge to

the Stackelberg equilibrium of the sequential game.

D‟Amato et al. [68] developed a computational methodology to obtain a Stackelberg -

Nash solution for a hierarchical game via genetic algorithm (GA). There is one (or more)

players acting as leader(s) in a two level leader-follower model, the rest of players play a

non-cooperative game and react to the optimal decision taken by the leader(s). The

leader(s) takes into account the followers' best reply and solve an optimization problem (a

Nash equilibrium problem). In this model the uniqueness of the Nash equilibrium of the

follower players has been supposed.

2.5 Wind Turbine Reliability

Wind turbine industry has gained a remarkable stand in the US industry since the turn of

the century. Reliability of wind turbines has attracted much attention especially in recent

years. Wind power is a fast growing renewable energy resource. Reliability evaluation

and enhancement are an important factor in modern power system planning and

 32

operation. Consequently, reliability assessment of wind turbines is of great importance

and will receive more attention in the future due to the increase in wind power utilization.

The reliability of wind turbines as a part of a large power system is assessed in many

references [69][70].

In another paper by Arabian [71], they propose a reliability model for the electrical

subassemblies of geared wind turbine systems with induction generators.

The wind turbine system consists of different subassemblies such as blades, tower,

bearings and shaft, gearbox for indirect drive, generator, converter for variable-speed and

the necessary control units.

Figure 3. Diagram of Wind Turbine Generator [71]

 33

Some of the power available in the wind is converted by the rotor blades to mechanical

power acting on the wind turbine rotor shaft.

The wind energy industry typically uses reactive maintenance approach or run-to-failure

maintenance. This form of maintenance has been shown to be the most costly Operations

and Maintenance (O&M) practice available to operators. There are several papers that

worked on the reliability wind turbines. For example, in a paper by Cohen [72], they

proposed a model by considering both scheduled and unscheduled maintenance.

2.5.1 Scheduled (Preventive) Maintenance of wind turbines

The objective of PM is to replace components and refurbish systems that have defined

useful lives, usually much shorter than the projected life of the turbine. Tasks associated

with scheduled maintenance fall into this category. These tasks include periodic

inspections of the equipment, oil and filter changes, calibration and adjustment of sensors

and actuators, and replacement of consumables such as brake pads and seals.

Housekeeping and blade cleaning generally fall into this category. The specific tasks and

their frequency are usually explicitly defined in the maintenance manuals supplied by the

turbine manufacturer. Costs associated with planned maintenance can be estimated with

reasonable accuracy, but can vary with local labor costs and the location and accessibility

of the site. Scheduled maintenance costs are also dependent on the type and cost of

consumables used.

 34

2.5.2 Unscheduled (Failure Related) Maintenance of wind turbines

A certain amount of unscheduled maintenance must be anticipated with any project.

Commercial wind turbines contain a variety of complex systems that must all function

correctly for the turbine to perform; rarely are redundant components or systems

incorporated. Failure or malfunction of a minor component will frequently shut down the

turbine and require the attention of maintenance personnel.

Unscheduled costs can be separated into direct and indirect costs. The direct costs are

associated with the labor and equipment required to repair or replace, with the component

costs themselves, and with any consumables used in the process. The indirect costs result

from lost revenue due to turbine downtime.

Labor costs are driven by the difficulty of accessing and working on the components.

With the exception of some switchgear and power conversion equipment, most the

turbine equipment is accessed by climbing the tower. For safety reasons, a two-person

crew is generally required for any up-tower activity. In remote locations, access to the

turbine itself may be difficult and limited by weather. Working conditions can be in

extreme temperature conditions and may be curtailed by high winds. Some turbines are

equipped with hoists and rigging equipment, but in general, all tools and equipment, in

addition to spares, must be lifted into the nacelle. Space is limited inside the nacelle and

working positions may be awkward. Work outside of the nacelle, including transitions

into the hub on some turbines, requires working with a safety harness and lanyards [73].

A good source for reliability information is the renowned reliability expert Paul

Barringer, who has developed a Weibull reliability database for failure data for various

 35

components, available on his websites (http://www.barringer1.com/) as a service to

reliability engineers. This database lists components that are also found in wind turbines

including roller bearings, gears, lubrications pumps, couplings, gaskets, circuit breakers,

AC motors, and synthetic lubrications oils that all have typical Weibull characteristic life

in the 50,000 to 100,000 hours [74].

2.5.3 Operation and Maintenance Costs of Wind Generated Power

The industry-wide accepted turbine lifetime is 20 years (Due to the relative infancy of the

wind energy industry, there are only a few turbines that have reached their life

expectancy of 20 years). Thus, the reliability of a turbine is the percentage of time

(probability) that turbine will be functioning at full capacity (intended function) during

appropriate wind conditions at a site with specified wind resource characterization (stated

conditions) for a 20-year life (time).

Figure 4. Wind Turbine Bathtub Curve [75]

http://www.barringer1.com/

 36

In the wind turbine reliability, understanding and minimizing wind turbine operation and

maintenance costs have been made through a number of studies. The annual O&M cost is

indicated in $/kWh as the plant age ranges from the first year of operation through year

20 as shown in Figure 4.

Figure 5. Total Operations and Maintenance Costs Increase with Age Due to Wear-

Out Related Failures [75]

Operation and maintenance (O&M) costs constitute a sizeable share of the total annual

costs of a wind turbine. For a new turbine, O&M costs may easily make up 20-25 per

cent of the total levelised cost per kWh produced over the lifetime of the turbine. If the

turbine is fairly new, the share may only be 10-15 per cent, but this may increase to at

least 20-35 per cent by the end of the turbine‟s lifetime. As a result, O&M costs are

attracting greater attention, as manufacturers attempt to lower these costs significantly by

developing new turbine designs that require fewer regular service visits and less turbine

downtime.

 37

O&M costs are related to a limited number of cost components, including:

 Insurance;

 Regular maintenance;

 Repair;

 Spare parts, and

 Administration.

Some of these cost components can be estimated relatively easily. For insurance and

regular maintenance, it is possible to obtain standard contracts covering a considerable

share of the wind turbine‟s total lifetime. Conversely, costs for repair and related spare

parts are much more difficult to predict. And although all cost components tend to

increase as the turbine gets older, costs for repair and spare parts are particularly

influenced by turbine age; starting low and increasing over time [75].

More simply, the Electric Power Research Institute (EPRI) has detailed case studies in

the electric power industry and has shown that reactive maintenance (running the

machine until it fails) is the least effective and the most costly approach to power

generation equipment maintenance. EPRI's comparative maintenance costs are listed

below:

 Reactive maintenance (run to failure) costs $17.00 USD per horsepower per year

(This is the baseline.)

 38

 PM (scheduled maintenance according to the manufacturer's recommendations)

costs $24.00 USD per horsepower per year (a savings of 24 percent compared to

reactive maintenance)

 Predictive maintenance (using condition monitoring to predict maintenance

needs) costs $9.00 USD per horsepower per year (a savings of 47 percent

compared to reactive maintenance)

If turbine components are allowed to run to failure, the overall energy production is

significantly decreased due to unscheduled downtime. At the same time, the cost of

rushed parts and crane operations, as well as collateral damage caused by the failing

component leading to additional damage, further increases maintenance costs. Reactive

maintenance costs are then significant cost increases far above the cost of predictive

maintenance using an online condition monitoring system. The condition monitoring

system‟s function is to continuously monitor components and predict mechanical

problems, enabling operators to schedule maintenance and avoid catastrophic failures.

2.5.4 Gearbox

According to the gearbox's reputation for a high failure rate, one of the biggest concerns

remaining in the wind industry is the reliability of the gearbox. Gearboxes in WTs are

used to increase the speed from the main shaft to the generator shaft, which turns at 1500

rpm (with mains frequency 50 Hz) for conventional generators. The gearbox is one of the

heaviest and most expensive components in a WT. In this context, it is unfortunate that

under dimensioned gearboxes have had a large part in WT failures. The reason for under-

 39

dimensioned gearboxes can be that the gearbox manufacturers do not fully understand the

operating conditions.

Indeed, gearbox failures are regarded as one of the most serious breakdown causes in a

wind turbine for two reasons. Firstly, because of the high cost of repairing or replacing

the gearbox and, secondly, because of the resulting downtime. Replacing a wind turbine

gearbox involves primarily the gearbox cost itself, which typically represents around 10%

of the total wind turbine cost. On top of this expense, must be added its transportation to

site, crane rental and mobilization cost, and the man-hours spent on the replacement. It

means that the value can quickly reach about €200,000 – €500,000, depending on the

turbine size and the wind farm's location.

A gearbox failure typically causes two to three times more downtime than any other

component failure. In general, a gearbox replacement takes about a week, assuming that

the required spare gearbox is available. Customers may have invested in a few spare

gearboxes to handle isolated failure cases, but mobilizing the cash to keep spares in

inventories for a complete fleet of wind turbines approaching the critical '7 – 11 year'

milestone will be a challenge of a different magnitude for wind farm owners. This

uncertainty therefore adds to the gearbox replacement cost a significant unavailability

risk that is difficult to assess and include in wind farm business plans.

Gearboxes are built up of shafts, gears, bearings and seals, mounted in a metal cover. The

weight of the gearbox increases dramatically in relation to the rated power of the WT.

The main load a gearbox has to handle is torque of the rotor. This load is sometimes

constant and sometimes fluctuating. It also suffers loads from the generator when starting

 40

up. These loads mainly affect bearings, gear teeth and seals, causing them to fail. To

minimize fatigue of gearbox parts, a functional and efficient lubrication system is highly

relevant [76]. A problem with the gearbox is that even if it is only a small cog breaking.

The whole system needs to be cleaned out and thoroughly tested. Faults with gearboxes

are primarily discovered within the first two years of operation. If a gearbox last the first

two years it is likely that it will last for many years.

2.6 Positioning of the study in cited literature

Although the modeling concept of this work is new, four of the studies in the literature

discussed up to this point are closer to this study than the others in terms of its modeling

aspects ([65][66][67][68]). They developed a computational methodology to obtain a

Stackelberg - Nash solution for a hierarchical game via genetic algorithm. It should be

mentioned that these studies considered fixed roles for players (leader and follower). This

thesis tries to look upon the probabilities of being leader for each of the operators rather

than having fixed roles, so two cases based on cooperative game concept and joint

optimization will be proposed. The proposed model can be used for various problems in

industry, wherever there is a competition on resource allocation.

 41

CHAPTER III

3 Optimization Model

3.5 Introduction

This chapter describes the goals that this research seeks to accomplish. We will present a

novel model for maintenance policy evaluation based upon a game theoretic model and

optimize the proposed model by backward induction and Genetic Algorithm methods and

compare the results.

The goal of this thesis is to introduce a joint maintenance decision-making mechanism

for the two operators that minimize the average of the expected operational costs. In fact,

these two operators should compete with each other on ordering the gearbox in the best

time that minimizes the total cost.

As the optimization methodology, at first, the common method for solving Stackelberg

game problems, backward induction, has been conducted to find the optimal PM and

ordering times. Then, genetic algorithm for a multi objective model is utilized and the

results are compared with each other. The effectiveness of the approach is presented

through the use of numerical examples.

 42

3.6 Problem Statement

3.2.1 Assumptions and overview

The following assumptions are considered.

Assumptions:

Two repairable systems are considered, which are operated by two individual operators.

Each system requires one unit of a specific type of component for being operable. When

the two systems are working, both units are operational and subject to failures.

Without loss of generality, the Weibull distribution is assumed for the RUL of each aging

unit (with an increasing failure rate). For the Weibull distribution, the associate reliability

function at time t can be expressed as

R (t) =
 .

/

, (1)

where is the shape parameter and is the scale parameter. This can be justified by

considering a degradation process (), which after an appropriate transformation ()

can be expressed as () (()) , where is a constant, and

follows the reciprocal Weibull distribution with probability density function:

 ()
 [.

/

] ,

with parameters and . It can be shown that the corresponding failure time of ()

for a predetermined failure threshold follows the Weibull distribution with

probability density function ()

.

/

 .

/

, where and

.

There is only one supplier who makes the service part for the two operators, and a make-

to-order (MTO) strategy is implemented by the supplier.

 43

There are two causes of downtime: failure replacement and preventative replacement.

Each unit will be maintained after time Ti, and the system is good-as-new after corrective

replacement or preventive replacement. When a failure occurs, the failed unit is replaced

by a ready-for-use part from the temporary storage. If the part required for replacement is

not available at the storage, an order must be placed and the replenishment takes τ1 days.

We suppose when a failure occurs, the operator will replace the failed part with a new

one. It will take τ3 days to diagnose and replace the part. The time needed to perform a

preventive replacement at a fix interval of Ti is τ2 days.

We consider a leader-follower relationship between these two operators. The assumption

which we make for this problem is that for a new part, its failure-free time period >> τ1

(i.e., the operators will not compete again before the operator, who lost in the previous

competition, eventually receives the needed part). First, like regular cases, we consider

fixed roles, which means that one of the operators is always the leader and the other one

is always the follower. We will optimize the Stackelberg game model by backward

induction. Second, we will consider the possible probabilities for each of these operators

to be leader and decide first and solve this new model by computing the Stackelberg

solution with the GA. Our algorithm uses a weighted sum and an expected sum (based on

the RULs of units) of multiple objectives as fitness functions. The fitness function is

utilized when a pair of parent solutions is selected for generating a new solution by

crossover and mutation operations.

 44

3.2.2 Acronyms and notation

RUL remaining useful life

MTO make-to-order

ETRC expected total replacement cost

τ1 replenishment lead time under MTO

τ2 time needed to perform preventive replacement

τ3 time needed to perform corrective replacement (τ3 > τ2)

Co regular ordering cost

M extra charge for bidding on a part

 () failure downtime cost for Operator k

 (()) indicator function

{ (())

 () probability density function of RUL of the unit owned by Operator

j

 () cumulative distribution function of RUL of the unit owned by

Operator j

 () objective function of Operator j

 weight assigned to the objective function of Operator j

 probability for Operator j to be the leader

 () unit downtime cost due to preventive replacement for Operator j

 () unit downtime cost due to a failure for Operator j

 45

 () unit holding cost for Operator j

 time to perform preventive replacement for Operator j

 () time to order a service part for Operator j

 () random failure time of the unit being used by Operator j

 (() ()) indicator function

2

3.2.3 Decision: Pay more or wait

Without loss of generality, let Operator j be the leader and Operator k be the follower. We

define the following indicator functions first:

 (() ())

 = 2

and (()) =

{ (())

To explain possible cases, let j=2 and k=1 for example. In Fig. 2, the two diagrams at the

top show the two possible situations for the operators. The left diagram depicts the case

in which ()- ()is less than replenishment lead time. In this case, there is a

competition between these two operators to achieve the service part. If the downtime cost

 () is greater than the extra charge (M), Operator 1 will pay Co+M to get the part

(i.e., (())). Otherwise, it is not beneficial for Operator 1 to pay the

 46

extra for bidding on the part and he/she would prefer to wait and pay the downtime cost

(i.e., (())). The right diagram depicts the case where ()- () is not

less than replenishment lead time. In this case, there is no interference between their

ordering times, so the lead operator will first order the service part and the follower

operator can order another one after that without any competition.

Figure 6. Decision: Pay more or wait

3.2.4 Waiting times for getting a part

Considering an MTO strategy, whenever the leader places an order and if the order is not

interrupted by the follower, the leader has to wait for τ1 days to get the part. In Fig. 3, the

upper diagram shows that if Operator 1 decides to bid on the service part (δ1=1), he/she

should wait for τ1 days until the blue triangle, and Operator 2 should wait for ()-

 ()+2τ1 days to receive the part (yellow circle). In case Operator 1 doesn‟t tend to pay

more on the service part, he/she should wait for ()- ()+ 2τ1 days (green triangle), and

Yes

Competition

if Failure Downtime Cost > Extra Charge

Operator 1 pays Co and extra

charge M to take the part

No

NoYes

No competition at all, and both are happy

No competition

and let Operator 2 take the part

TO(1)-TO(2) < τ1

τ1

TO(2) TO(1)

If Opr 1 bid If Opr 1 not bid

τ1τ1τ1

τ1

TO(2) TO(1)

τ1

0 0

 47

Operator 2 will receive the part after τ1 days (red circle). The other diagram depicts the

case in which there is no competition between the two operators and each of them should

wait for τ1 days to receive the part (Fig. 3).

Figure 7. Waiting times before receiving a part

3.2.5 Cost functions for Operator j (leader)

The actual waiting time for Operator j can be expressed as:

 ()= (() ()), (() >) max (1 + () ()

, 0) + τ1]

 ((() ())) τ1 (2)

By taking into account the preventive replacement downtime cost, holding cost, and

regular ordering cost for the service part, the total preventive replacement cost for

Operator j is given by:

 ()= ()(max (()+ ()- , 0) + τ2) + ()(max (- ()- (), 0)) + Co (3)

TO(1) - TO(2) < τ1

 j

TO(1) - TO(2)≥ τ1

No competition at all, and both are happy j

τ1

TO(2) TO(1)

If Opr 1 bid If Opr 1 not bid

τ1τ1τ1

τ1

TO(2) TO(1)

τ1

0

0

 48

Likewise, considering the failure replacement downtime cost along with others, the total

corrective replacement cost is:

 ()= ()(max (()+ ()- (), 0) + τ3) + ()(max (()- ()- (), 0)) + Co (4)

3.2.6 Cost functions for Operator k (follower)

The actual waiting time for Operator k is given by:

 ()= (() ())[(1- (() > M)) max (τ1+ () - (), 0) + τ1]

 +((() ())) τ1 (5)

In this problem we have:

 () = ()(max (()+ ()- (), 0) + τ3) (6)

Therefore, the total preventive replacement cost can be expressed as:

 ()= ()(max (()+ ()- , 0) + τ2) + ()(max (- ()- (), 0))

 +Co+ (()>M) M (7)

and the total corrective replacement cost is:

 ()= () + ()(max (()- ()- (), 0)) +Co+ (()>M) M (8)

3.2.7 Decision-making criterion

Considering both preventive replacement and corrective replacement, the expected total

replacement cost (ETRC) for each operator can be expressed as:

ETRCi(, ()) [] () () ∫ () (()) ()

,

= () () ∫ ()

.
 ()

/

 (
 ()

)

 () i =1, 2 (9)

where () is the reliability function of the Weibull distribution given in Eq. (1), and

 49

 (())
 (())

 ()
 is the corresponding probability density function.

3.3 Three scenarios of competition

3.3.1 Hierarchical game: Stackelberg equilibrium (with fix-leader and fix-follower

roles)

Originally Stackelberg game is a model for a leader-follower game in which two players

act sequentially such that the first player (the leader) chooses her strategy and the other

player (the follower) reacts rationally to that strategy. Any player is assumed to minimize

her own payoff function corresponding to a cost function.

We consider the following basic assumptions for the game:

1. Perfect information: Each player has perfect information about the other‟s actions and

strategy.

2. Rationality: Both players act optimally.

3. Determinism: Each player chooses deterministically among alternative optima.

For each strategy proposed by the leader, the follower has in fact to determine a strategy

that minimizes his/her objective function until equilibrium is found when the leader has

also minimized his/her objective function. In mathematical terms:

(x
*
,y

*
) A B is Stackelberg equilibrium if and only if:

 fA (x
*
,y

*
) = inf ΠA(x,Y) x (10)

Y = min ΠB(x,y) y (11)

 50

3.3.1.a Backward induction

For solving this game theory problem we can find Y from Backward Induction method,

which works as follows: since the leader will make the first move she knows that a

rational follower will react by minimizing her payoff. The leader takes that into account

before making the first move.

For solving the problem by using backward induction we should start from the follower‟s

problem. First the fixed leader (say Operator 1) bid on the component and propose a price

for that, then Operator 2 which is the follower with regard to the probability of failure

time and preventive time and holding cost, will decide whether she wants to pay more

and add extra M $ to the proposed price by the leader and attain the part or she prefers to

not compete at that time. So first we suppose the follower knows the bidding cost and

ordering time of the leader and optimize the follower cost function. Then we will

substitute the optimum solutions for the follower in the leader‟s objective function to find

the Nash Equilibrium.

3.3.2 Hierarchical Stackelberg-Nash using GA

Because of the computational complexity of dynamic programming to solve real large-

scale problems and its weakness to solve such problems in a reasonable time, we apply a

heuristic method to tackle the problem. This part presents a multi objective optimization

model to find the optimal PM and replacement schedule. The obtained results from this

approach will then compare to the results obtained from backward induction method.

Stackelberg solution is a hierarchical solution concept, so finding a Stackelberg solution

 51

requires solving a hierarchical optimization problem. One possible heuristic for solving

the problem is the GA that is suitable for solving complex optimization problems and,

particularly, bi-objective programming problems. The GA is implemented in the two-

player incentive Stackelberg game problem through the following procedure:

1. Calculation of (
 , ()

), (the initial population for the players is provided with a

random seeding in the leader‟s strategy space).

2. Choice of a population of K incentives (λ1,…, λK) (note: λ is the player‟s strategy)

3. For i = 1 to K

 The leader announces an incentive strategy λi.

 The follower reacts to minimize his/her own cost function.

 The leader performs his/her strategy.

 The fitness of the incentive strategy λi is evaluated.

 4. A new generation of solutions is created using the genetic operators.

 5. Go to Step 2 and start of a new round if the termination condition is not met.

In this paper, we consider the probability for each of the operators to be the leader. This

is accomplished by introducing a weight or distance into the fitness function. There are

two general approaches to multiple-objective optimization. One is to combine the

individual objective functions into a single composite function. Determination of a single

objective is possible with methods such as utility theory, weighted sum method, etc., but

the problem lies in the correct selection of the weights or utility functions to characterize

the decision-makers preferences. In practice, it can be difficult to precisely and accurately

select these weights. The second general approach is to determine an entire Pareto

 52

optimal solution set or a representative subset. A Pareto optimal set is a set of solutions

that are non-dominated with respect to each other. While moving from one Pareto

solution to another, there is always a certain amount of sacrifice in one objective to

achieve a certain amount of gain in the other. Pareto optimal solution sets are often

preferred to single solutions because they can be practical when considering real-life

problems, since the final solution of the decision maker is always a trade-off between

crucial parameters. Pareto optimal sets can be of varied sizes, and the size of Pareto set

increases with the increase in the number of objectives.

3.2.2.a Joint decision-making considering priority

Weighted sum approach

The classical approach to solve a multi objective optimization problem is to assign a

weight wi to each normalized objective function so that the problem is converted to a

single objective problem with a scalar objective function as follows:

Fitness = w1Π1(X) + w2 Π 2(X) +…+ wm Π m(X) (12)

where w1,w2,…,wm are nonnegative weights such that w1+w2+…+wm=1, W =

(w1,w2,…,wm) is a weight vector, and X is the vector of decision variables.

This approach is called a priori approach since the user is expected to provide the

weights. If multiple solutions are desired, the problem should be solved multiple times

with different weight combinations. The main difficulty with this approach is selecting a

weight vector for each run.

In our codes, in order to show the probability of being leader we consider different

 53

combinations of weights for the cost function. As the fitness function is equal to a

weighted sum of respective objective functions, it will be dominated by the objective

function assigned with a larger weight (i.e., if a fitness function is equal to a weighted

sum of objective functions, it may be dominated by the objective functions with larger

weights).

The fitness function (overall objective function) can be expressed as:

 JP (, ()) = w1Π1 (, ()) + w2Π2 (, ()) (13)

3.2.2.b Game with random leader-follower relationship

The overall objective function can be formulated as:

 JR = p1 (Π1 (, ()) + Π2 (, ())) + p2 (Π1 (, ()) + Π2 (, ())) (14)

where p1 is the probability for Operator 1 to be the leader, for which p1+p2 = 1. We

assume that:

pj =

 , -

 , -

 , -

 =

 , -

 , - , -
 (15)

where E[RULj] is the expected RUL of the unit owned by Operator j:

E[RULj] = Г (

 + 1) (16)

in which Г(n) = ∫

 dx is the gamma function.

 54

3.4 Genetic Algorithm options

There are two ways to specify options for the genetic algorithm. We can write the codes

in command line or use the optimization tool (optimtool). In this thesis, we directly use

the optimization tool. In problem setup and results section, we should define our fitness

function, number of variables and constraints. For fitness function simply we call our

fitness weighted sum fitness function in the main code (@fitness).

In the right section of the page we can specify the options for the genetic algorithm code.

3.4.1 Population Options

In this section we can specify the data type of the input to the fitness function. You can

set Population type to be one of the following:

 Double Vector: Use this option if the individuals in the population have type

double. This is the default.

 Bit string: Use this option if the individuals in the population are bit strings.

 Custom: Use this option to create a population whose data type is neither of the

preceding. If you use a custom population type, you must write your own

creation, mutation, and crossover functions that accept inputs of that population

type.

Population size

It specifies how many individuals there are in each generation. With a large population

size, the genetic algorithm searches the solution space more thoroughly, thereby reducing

 55

the chance that the algorithm will return a local minimum that is not a global minimum.

However, a large population size also causes the algorithm to run more slowly.

Creation function

In this part we can specify the function that creates the initial population for ga. You can

choose from the following functions:

 Uniform: creates a random initial population with a uniform distribution. This is

the default if there are no constraints or bound constraints.

 Feasible population: creates a random initial population that satisfies all bounds

and linear constraints. It is biased to create individuals that are on the boundaries

of the constraints, and to create well-dispersed populations. This is the default if

there are linear constraints.

 Custom: enables you to write your own creation function, which must generate

data of the type that you specify in Population type.

Initial population

This part specifies an initial population for the genetic algorithm. The default value is [],

in which case ga uses the default Creation function to create an initial population. If you

enter a nonempty array in the Initial population field, the array must have no more than

Population size rows, and exactly Number of variables columns. In this case, the genetic

algorithm calls a Creation function to generate the remaining individuals, if required.

 56

Initial scores

We can specify initial scores for the initial population. The initial scores can also be

partial.

Initial range

It specifies the range of the vectors in the initial population that is generated by a creation

function. You can set Initial range to be a matrix with two rows and Number of variables

columns, each column of which has the form [lb; ub], where lb is the lower bound and ub

is the upper bound for the entries in that coordinate. If you specify Initial range to be a 2-

by-1 vector, each entry is expanded to a constant row of length Number of variables.

3.4.2 Fitness Scaling Options

Fitness scaling converts the raw fitness scores that are returned by the fitness function to

values in a range that is suitable for the selection function. You can specify options for

fitness scaling in the Fitness scaling pane.

Scaling function: specifies the function that performs the scaling. The options are:

 Rank: The default fitness scaling function, Rank, scales the raw scores based on

the rank of each individual instead of its score. The rank of an individual is its

position in the sorted scores. An individual with rank r has scaled score

proportional to. So the scaled score of the most fit individual is proportional to 1,

the scaled score of the next most fit is proportional to, and so on. Rank fitness

scaling removes the effect of the spread of the raw scores. The square root makes

poorly ranked individuals more nearly equal in score, compared to rank scoring.

 57

 Proportional: Proportional scaling makes the scaled value of an individual

proportional to its raw fitness score.

 Top: Top scaling scales the top individuals equally. Selecting Top displays an

additional field, Quantity, which specifies the number of individuals that are

assigned positive scaled values. Quantity can be an integer between 1 and the

population size or a fraction between 0 and 1 specifying a fraction of the

population size. The default value is 0.4. Each of the individuals that produce

offspring is assigned an equal scaled value, while the rest are assigned the value 0.

The scaled values have the form [01/n 1/n 0 0 1/n 0 0 1/n ...].

3.4.3 Selection Options

Selection options specify how the genetic algorithm chooses parents for the next

generation. You can specify the function the algorithm uses in the Selection function field

in the Selection options pane. The options are:

 Stochastic uniform: The default selection function, stochastic uniform, lays out a

line in which each parent corresponds to a section of the line of length

proportional to its scaled value. The algorithm moves along the line in steps of

equal size. At each step, the algorithm allocates a parent from the section it lands

on. The first step is a uniform random number less than the step size.

 Remainder: Remainder selection assigns parents deterministically from the

integer part of each individual's scaled value and then uses roulette selection on

the remaining fractional part. For example, if the scaled value of an individual is

2.3, that individual is listed twice as a parent because the integer part is 2. After

 58

parents have been assigned according to the integer parts of the scaled values, the

rest of the parents are chosen stochastically. The probability that a parent is

chosen in this step is proportional to the fractional part of its scaled value.

 Uniform: Uniform selection chooses parents using the expectations and number

of parents. Uniform selection is useful for debugging and testing, but is not a very

effective search strategy.

 Roulette: Roulette selection chooses parents by simulating a roulette wheel, in

which the area of the section of the wheel corresponding to an individual is

proportional to the individual's expectation. The algorithm uses a random number

to select one of the sections with a probability equal to its area.

 Tournament: Tournament selection chooses each parent by choosing Tournament

size players at random and then choosing the best individual out of that set to be a

parent. Tournament size must be at least 2. The default value of Tournament size

is 4.

3.4.4 Reproduction Options

Reproduction options specify how the genetic algorithm creates children for the next

generation:

 Elite count: specifies the number of individuals that are guaranteed to survive to

the next generation. We should set Elite count to be a positive integer less than or

equal to the population size. The default value is 2.

 Crossover fraction: specifies the fraction of the next generation, other than elite

children, that are produced by crossover. Set Crossover fraction to be a fraction

 59

between 0 and 1, either by entering the fraction in the text box or moving the

slider. The default value is 0.8.

3.4.5 Mutation Options

Mutation options specify how the genetic algorithm makes small random changes in the

individuals in the population to create mutation children. Mutation provides genetic

diversity and enables the genetic algorithm to search a broader space. You can specify the

mutation function in the Mutation function field in the Mutation options pane. You can

choose from the following functions:

 Gaussian: The default mutation function, Gaussian, adds a random number taken

from a Gaussian distribution with mean 0 to each entry of the parent vector. The

standard deviation of this distribution is determined by the parameters Scale and

Shrink, which are displayed when you select Gaussian, and by the Initial range

setting in the Population options.

 The Scale parameter determines the standard deviation at the first generation.

 The Shrink parameter controls how the standard deviation shrinks as

generations go by.

 Uniform: Uniform mutation is a two-step process. First, the algorithm selects a

fraction of the vector entries of an individual for mutation, where each entry has a

probability Rate of being mutated. The default value of Rate is 0.01. In the second

step, the algorithm replaces each selected entry by a random number selected

uniformly from the range for that entry.

 60

 Adaptive Feasible: randomly generates directions that are adaptive with respect to

the last successful or unsuccessful generation. The feasible region is bounded by

the constraints and inequality constraints. A step length is chosen along each

direction so that linear constraints and bounds are satisfied.

 Custom enables you to write your own mutation function.

3.4.6 Crossover Options

Crossover options specify how the genetic algorithm combines two individuals, or

parents, to form a crossover child for the next generation.

The following functions are provided in the toolbox:

 Scattered: the default crossover function, creates a random binary vector and

selects the genes where the vector is a 1 from the first parent, and the genes where

the vector is a 0 from the second parent, and combines the genes to form the child.

 Single point: chooses a random integer n between 1 and Number of variables and

then

 Selects vector entries numbered less than or equal to n from the first parent.

 Selects vector entries numbered greater than n from the second parent.

 Concatenates these entries to form a child vector.

 Two points: selects two random integers m and n between 1 and Number of

variables. The function selects

 Vector entries numbered less than or equal to m from the first parent

 Vector entries numbered from m+1 to n, inclusive, from the second parent

 Vector entries numbered greater than n from the first parent.

 61

 Intermediate: creates children by taking a weighted average of the parents. You

can specify the weights by a single parameter, Ratio, which can be a scalar or a

row vector of length Number of variables. The default is a vector of all 1's. The

function creates the child from parent1 and parent2 using the following formula.

 Heuristic: returns a child that lies on the line containing the two parents, a small

distance away from the parent with the better fitness value in the direction away

from the parent with the worse fitness value. You can specify how far the child is

from the better parent by the parameter Ratio, which appears when you select

Heuristic. The default value of Ratio is 1.2. If parent1 and parent2 are the parents,

and parent1 has the better fitness value, the function returns the child

 Arithmetic: creates children that are the weighted arithmetic mean of two parents.

Children are always feasible with respect to linear constraints and bounds.

 Custom enables you to write your own crossover function.

Mutation and Crossover

The genetic algorithm uses the individuals in the current generation to create the children

that make up the next generation. Besides elite children, which correspond to the

individuals in the current generation with the best fitness values, the algorithm creates:

 Crossover children by selecting vector entries, or genes, from a pair of individuals

in the current generation and combines them to form a child

 Mutation children by applying random changes to a single individual in the

current generation to create a child

 62

Both processes are essential to the genetic algorithm. Crossover enables the algorithm to

extract the best genes from different individuals and recombine them into potentially

superior children. Mutation adds to the diversity of a population and thereby increases the

likelihood that the algorithm will generate individuals with better fitness values.

3.4.7 Stopping Criteria Options

Stopping criteria determine what causes the algorithm to terminate. You can specify the

following options:

 Generations: Specifies the maximum number of iterations for the genetic

algorithm to perform. The default is 100.

 Time limit: Specifies the maximum time in seconds the genetic algorithm runs

before stopping.

 Fitness limit: The algorithm stops if the best fitness value is less than or equal to

the value of Fitness limit.

 Stall generations: The algorithm stops if the weighted average change in the

fitness function value over Stall generations is less than Function tolerance.

 Stall time limit: The algorithm stops if there is no improvement in the best fitness

value for an interval of time in seconds specified by Stall time.

 Function tolerance: The algorithm runs until the cumulative change in the fitness

function value over Stall generations is less than or equal to Function Tolerance.

 Nonlinear constraint tolerance: The Nonlinear constraint tolerance is not used as

stopping criterion. It is used to determine the feasibility with respect to nonlinear

constraints.

 63

3.4.8 Plot function

Plot options enable us to plot data from the genetic algorithm while it is running. When

you select plot functions and run the genetic algorithm, a plot window displays the plots

on separate axes. You can select any of the following plot functions in the Plot functions

pane:

 Best fitness: plots the best function value versus generation.

 Expectation: plots the expected number of children versus the raw scores at each

generation.

 Score diversity: plots a histogram of the scores at each generation.

 Stopping: plots stopping criteria levels.

 Best individual: plots the vector entries of the individual with the best fitness

function value in each generation.

 Genealogy: plots the genealogy of individuals. Lines from one generation to the

next are color-coded as follows:

 Red lines indicate mutation children.

 Blue lines indicate crossover children.

 Black lines indicate elite individuals.

 Scores: plots the scores of the individuals at each generation.

 Max constraint: plots the maximum nonlinear constraint violation at each

generation.

 64

 Distance: plots the average distance between individuals at each generation.

 Range: plots the minimum, maximum, and mean fitness function values in each

generation.

 Selection: plots a histogram of the parents

Differences between gamultiobj and ga:

The syntax and options for gamultiobj are similar to those for ga, with the following

differences:

 gamultiobj does not have nonlinear constraints, so its syntax has fewer inputs.

 gamultiobj takes an option DistanceMeasureFcn, a function that assigns a distance

measure to each individual with respect to its neighbors.

 gamultiobj takes an option ParetoFraction, a number between 0 and 1 that

specifies the fraction of the population on the best Pareto frontier to be kept

during the optimization. If there is only one Pareto frontier, this option is ignored.

 gamultiobj uses only the Tournament selection function.

 gamultiobj uses elite individuals differently than ga. It sorts noninferior

individuals above inferior ones, so it uses elite individuals automatically.

 gamultiobj has only one hybrid function, fgoalattain.

 gamultiobj does not have a stall time limit.

 gamultiobj has different plot functions available.

 gamultiobj does not have a choice of scaling function.

 65

CHAPTER IV

4. Numerical Example

Wind turbine industry has gained a remarkable stand in the US industry since the turn of

the century. Studying the reliability of wind turbines is a critical factor in the success of

related projects. The wind energy industry typically uses reactive maintenance approach

or run-to-failure maintenance. This form of maintenance has been shown to be the most

costly Operations and Maintenance (O&M) practice available to operators.

According to the gearbox's reputation for a high failure rate, one of the biggest concerns

remaining in the wind industry is the reliability of the gearbox. In this work, The Weibull

distribution was chosen due to the good representation provided for components under

aging effects (increasing failure rate).

Prognostics and timely maintenance of components are critical to the continuing

operation of a wind farm. To maximize the power generation of the wind farm, limited

maintenance resources with uncertainty must be appropriately dealt with based on the

current health status of wind turbines. This numerical example will show the application

of the proposed models for two gearboxes in two wind turbines.

In order to illustrate the model numerically and the proposed solution procedure, we used

data set presented in Table 1. The mathematics formulations fully coded in MATLAB

7.12 was run on a Sony VAIO computer, with an Intel Pentium processor operating at

2.30 GHz and 6 GB of RAM. In addition, we set the GA parameters as presented in Table

 66

2. MATLAB Genetic Algorithm and direct search toolbox is used to obtain Pareto-

optimal solutions to this problem as well as to define the fitness functions.

Table 1. Parameters for the the case 1

η

(year)
Β

M

($)

τ1

(year)

τ2

(year)

τ3

(year)

 ()

($/year)

 ()

($/year)

 ()

($/year)

 ($)

Gearbox 1 3 3
10000 ,

2000
2.08 0.41 0.83 12500 25000 5000 20000

Gearbox 2 2.5 2.5
10000 ,

2000
2.08 0.41 0.83 12500 25000 5000 20000

4.1 Computational results

4.1.1 Case 1: Stackelberg game

In this example, Because of the complexity of this decision-making problem, it is

difficult, if not impossible, to foresee the behavior of objective functions. One viable tool

for overcoming this challenge is the space-filling experimental design method that aids in

getting information about the entire strategy space [77][78]. In particular, a Constrained

Maximin Design [78] is used to select typical strategies that cover the leader‟s strategy

space under the constraints on the decision variables. Such a sampling scheme maximizes

the minimum distance between two design points. Let
()
 0

()

()
1

0
()
 ()
() 1 * +, be the n design points (i.e., the leader‟s strategies) within

the leader‟s feasible strategy space A. These strategies can be determined by solving the

following optimization problem:

 67

 * +

‖
()

()
‖

 (17)

 Subject to
()

()
, for all * +,

where ‖
()

()
‖

 √.

()

()
/

 .
()

()
/

) is the Euclidean distance of

two design points
()

 and
()

. It is equivalent to solving:

 (18)

 Subject to ‖
()

()
‖

, for all

()

()
, for all * +.

In this example, twenty levels for each of and () are considered. Fig. 5 shows the

resulting design with K = 20 design points (
 = 3.60555).

Leader’s Strategy Space discrete

Maximin design to discretize the leader‟s strategy space

 68

Figure 8. 20 levels for each decision variable

Tables 1 and 2 show the results for two cases. In the first case (Table1) we assumed

M=10000 and based on the calculations, in this case operator 1 (The follower) prefers to

wait more and not to pay the extra M charge to take the part. This shows the downtime

cost is not greater than M. In the second case (Table 2), We changed the value of M

(M=2000) and optimized the players‟ objective functions again. In this case the

downtime cost will be greater than M and the follower prefers to pay M extra dollors to

take the part first. The red rectangular show the Nash Equilibrium solution of the game

and no player can benefit by changing his or her strategy while the other player keep

his/her unchanged

1 2 3 4 5 6 7 8 9 1011121314151617181920
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

Level of T
2

L
e
v

e
l

o
f

T
o

(2
)

Infeasible region

 69

Table 2. Case1 Results (M=10000)

Design point in

the leader’s

strategy space

1 2 3 4 5 6 7 8 9 10

()

()
 16 1 4 12 7 7 9 11 12 14

()
 ()

()
 1 1 4 1 1 6 9 6 11 14

()
(
()

()
)

()

18 14 20 18 18 20 20 20 20 20

()
(
()

()
)

 ()
()

4 4 11 4 4 11 11 11 15 15

 he follo er’s

objective* ($)
8920 6727 1740 5576 5382 2528 2761 3094 3155 4431

 he leader’s

corresponding

objective ($)

8432 89352 123509 47414 90652 123946 105633 70948 67924 35217

Design point in

the leader’s

strategy space

11 12 13 14

15 16 17 18 19 20

()

()
 20 14 17 14 20 18 18 16 20 20

()
 ()

()
 1 8 17 4 11 4 8 11 15 20

()
(
()

()
)

()

18 20 20 20 20 20 20 20 20 -

()
(
()

()
)

 ()
()

4 15 20 11 15 11 11 15 20 -

 he follo er’s

objective* ($)
8727 2209 5578 3081 3342 2470 3944 4058 5669 -

 he leader’s

corresponding

objective ($)

1096 40858 14347 37503 1879 4815 5857 15384 2476 -

 70

Table 3. Case1 Results (M=2000)

Design point in

the leader’s

strategy space

1 2 3 4 5 6 7 8 9 10

()

()
 16 1 4 12 7 7 9 11 12 14

()
 ()

()
 1 1 4 1 1 6 9 6 11 14

()
(
()

()
)

()

18 18 20 18 18 20 20 20 20 20

()
(
()

()
)

 ()
()

4 4 11 4 4 11 11 11 15 15

 he follo er’s

objective* ($)
5839 5661 2906 5822 5911 2908 2875 2862 3668 3645

 he leader’s

corresponding

objective ($)

10720 89840 125570 41980 89380 121090 101380 73400 67900 37640

Design point in

the leader’s

strategy space

11 12 13 14 15 16 17 18 19 20

()

()
 20 14 17 14 20 18 18 16 20 20

()
 ()

()
 1 8 17 4 11 4 8 11 15 20

()
(
()

()
)

()

18 20 20 20 20 20 20 20 20 -

()
(
()

()
)

 ()
()

4 11 20 11 15 11 11 15 20 -

 he follo er’s

objective* ($)
5775 2883 4664 2909 3588 2878 2941 3682 4699 -

 he leader’s

corresponding

objective ($)

12300 32540 13000 32540 2020 5650 5650 17460 2400 -

 71

4.1.2 Selected options in Genetic Algorithm toolbox

Population size

The Population size field in population options determines the size of the population at

each generation. Increasing the population size enables the genetic algorithm to search

more points and thereby obtain a better result. However, the larger the population size,

the longer the genetic algorithm takes to compute each generation. As the proposed

model is complicated with lots of variables and it takes a long time to compute the

integral parts, we determine this section by 10 individuals in each generation.

Fitness Scaling

Top scaling is used in this part because it restricts parents to the fittest individuals and

creates less diverse populations than rank scaling which is the default option.

Selection

A more deterministic selection option is Remainder, which performs two steps:

 In the first step, the function selects parents deterministically according to the

integer part of the scaled value for each individual. For example, if an individual's

scaled value is 2.3, the function selects that individual twice as a parent.

 In the second step, the selection function selects additional parents using the

fractional parts of the scaled values, as in stochastic uniform selection. The

function lays out a line in sections, whose lengths are proportional to the

 72

fractional part of the scaled value of the individuals, and moves along the line in

equal steps to select the parents.

Note that if the fractional parts of the scaled values all equal 0, as can occur

using top scaling, the selection is entirely deterministic.

The other parts are kept as the default.

Table 4. Parameters for the the case 2 and 3

η

(year)
Β

M

($)

τ1

(year)

τ2

(year)

τ3

(year)

 ()

($/year)

 ()

($/year)

 ()

($/year)

 ($)

Gearbox 1 8 3 10000 0.013 0.0027 0.01 360000 720000 144000 20000

Gearbox 2 7.7 2.5 10000 0.013 0.0027 0.01 360000 720000 144000 20000

Table 5. Parameters of the Genetic Algorithm

Parameter Value

Number of generations

Population size

50

10

Scaling function

Selection function

Crossover function

Top

Remainder

Intermediate

4.1.3 Case 2: Joint decision-making considering priority

As stated before weighted sum method is the most common approach to multi-objective

optimization models. Minimizing of the joint objective function is sufficient for Pareto

optimality [79]. We consider different combination of weights and run GA for weighted

sum fitness function for the set of weights for both objective functions and achieved non-

 73

inferior solutions for the optimum PM time and ordering time are presented in Table 3.

Up to the decision maker each of these combinations can be used.

Table 6. Non-inferior solutions for different combinations of weights

Weights Decision variables
Objective

function

w1 w2

(days)

(days)

 ()

(days)

 ()

(days)

 ($)

0.1 0.9 307 283 281 255 31,585.51

0.2 0.8 303 281 270 266 34,772.62

0.3 0.7 284 230 240 193 24,285.87

0.4 0.6 248 230 241 195 24,103.73

0.6 0.4 303 317 193 225 26,261.99

0.7 0.3 313 315 200 222 25,375.76

0.8 0.2 314 328 259 262 27,098.98

0.9 0.1 310 306 226 229 25,944.22

4.1.4 Case 3: Game with random leader-follower relationship

For case 3 we defined the formula for the remaining useful life time and the proportion of

them as the Pi in our Matlab codes. By the use of Pi we converted multi objective

optimization model to single-objective model. In this case each generation took about 2

hours to be completed. The computed PM replacement time for operator 1 is after 344.92

days and for Operator 2 is after 342.83 days. The best time to order the part for Operator

1 is after 235.42 days and for Operator 2 is after 336.16 days. So this scenario

recommends it‟s better for Operator1 to pay more and get the part before Operator 2.

Although the preventive time for Operator 1 is after Operator 2 but based on the provided

numbers Operator 1 should get the part first in order to prevent the downtime cost due to

unexpected failures. Figs. 9 shows the Genetic Algorithm optimization process and the

optimum solutions. Best fitness diagram plots the best function value versus 50

http://www.mathworks.com/help/toolbox/gads/f6174dfi10.html

 74

generations. Best individual diagram plots the vector entries of the individual with the

best fitness function value in each generation. Genealogy plots the genealogy of

individuals. Lines from one generation to the next are color-coded as follows:

 Red lines indicate mutation children.

 Blue lines indicate crossover children.

 Black lines indicate elite individuals (As the default for the number of elite

children in each generation is 2 you see two black dots in each generation.)

And Distance diagram plots the average distance between individuals at each generation.

High values of distance show high diversity in population and vice versa.

http://www.mathworks.com/help/toolbox/gads/f6174dfi10.html

 75

Figure 9. GA diagram for scenario 3

0 10 20 30 40 50
0

5

10

15
x 10

4

Generation

F
it
n
e
s
s
 v

a
lu

e
Best: 47155.0107 Mean: 58542.8599

1 2 3 4
0

0.5

1

Number of variables (4)

C
u
rr

e
n
t

b
e
s
t
in

d
iv

id
u
a
l

Current Best Individual

10 20 30 40 50
0

0.05

0.1

0.15

0.2

Generation

A
v
e
rg

a
e
 D

is
ta

n
c
e

Average Distance Between Individuals

0 10 20 30 40 50
0

5

10

Generation

In
d
iv

id
u
a
l

Genealogy Plot

Best f itness

Mean fitness

T
o(2)

T
o(1)

T
2

T
1

 76

CHAPTER V

5. Conclusions and Recommendations

In this thesis, we presented a new approach based upon game theoretic models for PM

and replacement scheduling of two competitive systems. These models seek to find the

best time to ordering the service part and performing PM subject to minimizing the total

cost. Three different cases were defined and utilized as the solution procedures to achieve

the best non-inferior solutions (Pareto optimal solutions) and GA was utilized to solve the

models. By analyzing the computational results of each algorithm with each fitness

function, we could show the efficiency and effectiveness of algorithms and fitness

functions. The developed models in this thesis can be applied in a wide variety of

industries. In this work, the provided numerical example which is based on real numbers

from wind turbine gearbox reliability databases will be considered as the application of

developed model. Future work in this area is needed to investigate the models for n-

player games, single-leader multiple-follower Stackelberg game as well as other

techniques to solve the optimization problem and estimating key model parameters.

 77

LIST OF REFERENCES

 78

1. Elsayed, E.A., 1996. Reliability Engineering, Addison-Wesley, New York, NY.

2. Wang, H., 2002. A survey of maintenance policies of deteriorating systems.

European Journal of Operational Research 139 (3), 469-489.

3. Ilgin, M.A., Tunali, S., Joint optimization of spare parts inventory and

maintenance policies using genetic algorithms, International Journal of Advanced

Manufacturing Technology 34(5-6) (2007) 594–604.

4. Vaurio, J.K., On time-dependent availability and maintenance optimization of

standby units under various maintenance policies, Reliability Engineering &

System Safety 56 (1) (1997) 79–89.

5. Lonardo, P., Anghinolfi, D., Paolucci, M., Tonelli, F., A stochastic linear

programming approach for service parts optimization, CIRP Annals -

 Manufacturing Technology 57(1) (2008) 441–444.

6. Gross, R., Miller, D., Soland, R., On common interests among

reliability,inventory and queuing, IEEE Transactionson Reliability 34(3) (1985)

204–208.

7. Kumar, U.D., Crocker, J., Knezevic, J., El-Haram, M., Reliability, Maintenance

and Logistic Support: A Life Cycle Approach, Kluwer Academic; 2000.

8. Kabir, A.B.M., Farrash, S.H.A., Simulation of an integrated age replacement and

spare provisioning policy using SLAM, Reliability Engineering and System

Safety 52(2) (1996) 129–138.

9. Park, Y.T., Park,K.S., Generalized spare ordering policies with random lead time,

European Journal of Operational Research 23 (1986) 320–30.

10. Brezavscek, A., Hudoklin, A., Joint optimization of block-replacement and

periodic-review spare-provisioning policy. IEEE Transactions on Reliability 52(1)

(2003) 112-117.

11. Huang, R., Meng, L., Xi, L., Liu, C.R., Modeling and Analyzing a Joint

Optimization Policy of Block-Replacement and Spare Inventory With Random-

Leadtime, IEEE Transactions on Reliability 57(1) (2008) 113 - 124

http://www.sciencedirect.com/science/journal/00078506
http://www.sciencedirect.com/science/journal/00078506

 79

12. Chelbi, A., At-Kadi, D., Spare provisioning strategy for preventively replaced

systems subjected to random failure, International Journal of Production

Economics 74(1) (2001) 183–189.

13. Kolahan, F., Sharifinya, A., Combinatorial Part sequencing and tool replacement

based reliability by heuristic algorithms, Journal of Amirkabir, 18(66-B) (2007)

35-44.

14. Wong, J.Y.F., Chung, D.W.C., Ngai, B.M.T., Banjevic, D., Evaluation of spares

requirements using statistical and probability analysis techniques. Transactions of

Mechanical Engineering, I.E. Aust (22) (1997) 77-84.

15. Louit, D., Pascual, R., Banjevic, D., Optimization models for critical spare parts

inventories-a reliability approach, Journal of the Operational Research Society 62

(2011) 992–1004

16. Kennedy, W.J., Patterson, J.W., Fredendall, L.D., An overview of recent literature

on spare parts inventories, International Journal of Production Economics 76(2)

(2002) 201–215.

17. Nosoohi, I., Hejazi, S.R., A multi-objective approach to simultaneous

determination of spare part numbers and preventive replacement times, Applied

Mathematical Modelling, 35(3) (2011) 1157-1166.

18. Sim, S.H., Endrenyi, J., Optimal preventive maintenance with repair, IEEE

Transactions on Reliability 37 (1) (1988) 92–96.

19. Chen, M., Feldman, R.M., 1997. Optimal replacement policies with minimal

repair and age-dependent costs. European Journal of Operational Research 98 (1),

75-84.

20. Panagiotidou, S., Tagaras, G., 2007. Optimal preventive maintenance for

equipment with two quality states and general failure time distributions. European

Journal of Operational Research 180 (1), 329-353.

21. Yeh, R.H., Chen, M., Lin, C., 2007. Optimal periodic replacement policy for

repairable products under free-repair warranty. European Journal of Operational

Research 176 (3), 1678-1686.

22. Dehayem Nodem, F.I., Kenne, J.P., Gharbi, A., 2009. Hierarchical decision

 80

making in production and repair/replacement planning with imperfect repairs

under uncertainties. European Journal of Operational Research 198 (1), 173-189.

23. Berg, M.P., 1995. The marginal cost analysis and its application to repair and

replacement policies. European Journal of Operational Research 82 (2), 214-224.

24. Zohrul Kabir, A.B.M., Al-Olayan, A.S., 1996. A stocking policy for spare part

provisioning under age based preventive replacement. European Journal of

Operational Research 90 (1), 171-181.

25. Vaughan, T.S., 2005. Failure replacement and preventive maintenance spare parts

ordering policy. European Journal of Operational Research 161 (1), 183-190.

26. Wang, L., Chu, J., Mao, W., 2009. A condition-based replacement and spare

provisioning policy for deteriorating systems with uncertain deterioration to

failure replacement. European Journal of Operational Research 194 (1), 184-205.

27. Wang,W., 2012. A stochastic model for joint spare parts inventory and planned

maintenance optimization. European Journal of Operational Research 216 (1),

127-139.

28. Berrichi, A., Yalaoui, F., Amodeo, L., Mezghiche, M., Bi-Objective ant colony

optimization approach to optimize production and maintenance scheduling,

Computers & Operations Research 37 (9) (2010) 1584–1596.

29. Moradi, E., Fatemi Ghomi, S.M.T., Zandieh, M., Bi-objective optimization

research on integrated fixed time interval preventive maintenance and production

for scheduling flexible job-shop problem, Expert Systems with Applications 38

(6) (2011) 7169–7178.

30. Quan, G., Greenwood, G.W., Liu, D., Hu, S., 2007. Searching for multiobjective

preventive maintenance schedules: Combining preferences with evolutionary

algorithms. European Journal of Operational Research 177 (3), 1969-1984.

31. Herabat, P., Tangphaisankun, A., Multi-Objective Optimization Model using

Constraint-Based Genetic Algorithms for Thailand Pavement Management,

Journal of the Eastern Asia Society for Transportation Studies 6 (2005) 1137 -

1152.

http://dl.acm.org/author_page.cfm?id=81413591719&coll=DL&dl=ACM&trk=0&cfid=43970151&cftoken=38565059
http://dl.acm.org/author_page.cfm?id=81458640445&coll=DL&dl=ACM&trk=0&cfid=43970151&cftoken=38565059
http://dl.acm.org/author_page.cfm?id=81458647740&coll=DL&dl=ACM&trk=0&cfid=43970151&cftoken=38565059

 81

32. Certa, A., Galante, G., Lupo, T., Passannanti, G., Determination of Pareto

frontier in multi-objective maintenance optimization, Reliability Engineering and

System Safety 96(7) (2011) 861–867.

33. Liao, H., Elsayed, E. A. and Chan, L.-Y, Maintenance of continuously monitored

degrading systems, European Journal of Operational Research, 175 (2006) (821-

835).

34. Jayakumar, A., Asagarpoor, S., Maintenance optimization of equipment by linear

programming, Probability in the Engineering and Information Science 20(1)

(2006) 183-193.

35. Duarte, J., Soares, C., Optimization of the preventive maintenance plan of a series

components system, Reliability: Theory & Applications (Special Issue) 2(3-4)

(2007) 33-39.

36. Tam, A.S.B., Chan, W.M., Price, J.W.H., Optimal maintenance intervals for

multi-component system, Production Planning and Control 17(8) (2006) 769-779.

37. Shirmohammadi, A.H., Zhang, Z.G., Love, E., A computational model for

determining the optimal preventive maintenance policy with random breakdowns

and imperfect repairs, IEEE Transactions on Reliability 52(2) (2007) 332-339.

38. Konak, A., Coit, D.W., Smith, .A.E., Multi-objective optimization using genetic

algorithms: A tutorial, Reliability Engineering and System Safety 91 (9) (2006)

992-1007.

39. Canfield, R.V., Cost optimization of periodic preventive maintenance, IEEE

Transactions on Reliability 35 (1) (1986) 78-81.

40. Madanat, S., Ben-Akiva, M., Optimal inspection and repair policies for

infrastructure facilities, Transportation Science 28(1) (1994) 55–62.

41. Holland, J.H., Adaptation in Natural and Artificial Systems, 2nd edition,

Cambridge, MA: MIT Press; 1992.

42. Goldberg, D.E., Genetic Algorithms in Search, Optimization and Machine

Learning, Reading, MA: Addison-Wesley; 1989.

 82

43. Kančev, D., Gjorgiev, B., Čepin, M., Optimization of test interval for ageing

equipment: A multi-objective genetic algorithm approach, Journal of Loss

Prevention in the Process Industries 24 (4) (2011) 397-404.

44. Munõz, A., Martorell, S., Serradell, V., Genetic algorithms in optimizing

surveillance and maintenance of components, Reliability Engineering & System

Safety 57 (2) (1997) 107-120.

45. Tsai, Y.T., Wang, K.S., Teng, H.Y., Optimizing preventive maintenance for

mechanical components using genetic algorithms, Reliability Engineering &

System Safety 74 (1) (2001) 89-97.

46. Chen, Y.S., Yang, W.N., Weng. C.J., A Study of Preventive Maintenance Policy

in Age Reduction Model, in: Proceedings of the Fifth Asia Pacific Industrial

Engineering and Management Systems Conference, 2004.

47. Marseguerra, M., Zio, E. and Podofillini, L., Condition-based maintenance

optimization by means of genetic algorithms and Monte Carlo simulation,

Reliability Engineering & System Safety 77(2) (2002) 151-165.

48. Usher, J.S., Kamal, A.H., Syed, W.H., Cost optimal preventive maintenance and

replacement scheduling, IIE Transactions 30 (12) (1998) 1121-1128.

49. Levitin, G., Lisnianski, A., Optimization of imperfect preventive maintenance for

multi-state systems, Reliability Engineering and System Safety 67(2) (2000) 193-

203.

50. Levitin, G., Lisnianski, A., Optimal replacement scheduling in multi-state series-

parallel systems, Quality and Reliability Engineering 16(2) (2000) 157-62.

51. Wang, Y., Handschin, E., A new genetic algorithm for preventive unit

maintenance scheduling of power systems. International Journal of Electrical

Power and Energy Systems, 22(5) (2000) 343-348.

52. Cavory, G., Dupas, R., Goncalves, G., A genetic approach to the scheduling of

preventive maintenance tasks on a single product manufacturing production line.

International Journal of Production Economics 74(1-3) (2001) 135-46.

53. Leou, R.C., A new method for unit maintenance scheduling based on genetic

algorithm. IEEE Power Engineering Society General Meeting (1) (2003) 246-251.

 83

54. Han, B.J., Pan, J., Fan, X.M., Ma, D.Z., Optimization of preventive maintenance

scheduling for production machine of production system in finite time horizon,

Journal of Donghua University (English Edition) 21(1) (2004) 112-116.

55. Limbourg, P., Kochs, H.D., Preventive maintenance scheduling by variable

dimension evolutionary algorithms, International Journal of Pressure Vessels and

Piping 83(4) (2006) 262-269.

56. Wang, C-H., Lin, T-W., Optimizing minimize periodic preventive maintenance

model for series-parallel systems based on particle swarm optimization, in

Computers and Industrial Engineering (CIE), 2010 40
th
 International Conference.

57. Samrout, M., Yalaoui, F., Chatelet, E., Chebbo, N., New methods to minimize the

preventive maintenance cost of series-parallel systems using ant colony

optimization, Reliability Engineering and System Safety 89 (3) (2005) 346-354.

58. Bris, R., Chatelet, E., Yalaoui, F., New method to minimise the preventive

maintenance cost of series–parallel systems, Reliab Eng Syst Saf 82 (2003) 247–

55.

59. Myerson, R.B., Game Theory: Analysis of Conflict, Harvard University Press,

Cambridge Massachusetts (1991).

60. Nash, J.F., Equilibrium points in N-person games, Proceedings of the National

Academy of Sciences of the United States of America 36(1) (1950) 48-49.

61. Kim, J.H., Park, J.B., Park, J.K., Chun, Y.H., Generating unit maintenance

scheduling under competitive market environments, Electrical Power and Energy

Systems 27 (3) (2005) 189–194.

62. Cachon, G., Netessine, S., Game theoretic applications in supply chain analysis,

in Handbook of Quantitative Supply Chain Analysis: Modeling in the E-Business

Era (International Series in Operations Research & Management Science),

Simchi-Levi, D., Wu, S.D., Shen, Z. (Eds.), 2004.

63. Chen, Y., Multimedia Social Networks: Game Theoretic Modeling and

Equilibrium Analysis. Ph.D. dissertation, University of Maryland, 2011.

 84

64. Basar, T., Olsder, G. J., Dynamic Non cooperative Game Theory, Academic

Press, Second Edition, 1995 (SIAM Classics in Applied Mathematics, number 23,

1998).

65. Vallée, T., Basar, T., Incentive Stackelberg Solutions and the Genetic Algorithm,

in: The International Symposium of Dynamic Games and Applications, 1998, pp.

633-639.

66. Vallée, T., Basar, T., Off-line computation of Stackelberg solutions with the

genetic algorithm, Computational Economics 13 (3) (1999) 201-209.

67. Nedim, M.A., Sirakaya, S., On-line computation of Stackelberg equilibria with

synchronous parallel genetic algorithms, Economic Dynamics and Control 27 (8)

(2003) 1503-1515.

68. D'Amato, E., Daniele, E., Mallozzi, L., Petrone, G., Hierarchical Multi-follower

Decision Making Models with Genetic Algorithms and Applications, 3 rd

International Conference on the Dynamics of Information Systems, University of

Florida (2011)

69. Stensgaard, H., Aqrensen, J., Reliability-based design of wind turbine blades,

Structural Safety, 2011.

70. Guo, H.T., Watson, S.J., Tavner, P.J., Jiangping Xiang, Reliability analysis for

wind turbines with incomplete failure data collected from after the date of initial

installation, Reliability Engineering and System Safety 94(6) (2009) 1057–1063.

71. Arabian-Hoseynabadi, H., Oraee, H., Tavner, P.J., Wind turbine productivity

considering electrical subassembly reliability, Renewable Energy 35(1) (2010)

190–197.

72. Cohen, J.M., A Methodology for Computing Wind Turbine Cost of Electricity

Using Utility Economic Assumptions, in Windpower 89 Proceedings (1989) San

Francisco, California.

73. Walford, C.A., Wind Turbine Reliability: Understanding and Minimizing Wind

Turbine Operation and Maintenance Costs (2006) Sandia National Laboratories.

http://dl.acm.org/author_page.cfm?id=81430595440&coll=DL&dl=ACM&trk=0&cfid=43117797&cftoken=20975119
http://dl.acm.org/author_page.cfm?id=81430595440&coll=DL&dl=ACM&trk=0&cfid=43117797&cftoken=20975119

 85

74. Hill, R., Stinebaugh, J., Briand, D., Sandia National Laboratories Dr. Benjamin.

A., Linsday, J., ARES Corporation, Wind Turbine Reliability: A Database and

Analysis Approach (2008) Sandia National Laboratories.

75. Iuga, D., European Wind Energy Association. Available from: URL:

http://www.wind-energy-the-facts.org.

76. Manwell J.F., McGowan, J., Rogers A.L., Wind Energy Explained: Theory,

Design and Application. 2nd Edition. John Wiley & Sons, Inc; 2002.

77. Petelet, M., Iooss, B., Asserin, O., Loredo, A., 2010. Latin hypercube sampling

with inequality constraints. Advances in Statistical Analysis 54 (4), 325-339.

78. Stinstra, E., Den Hertog, D.D., Stehouwer, P., Vestjens, A., 2003. Constrained

maximin designs for comupter experiments. Technometrics 45 (4), 340-346.

79. Zadeh, L.A., Optimality and non-scalar-valued performance criteria, IEEE Trans.

Autom. Control AC, 8 (1963) 59-60.

http://www.wind-energy-the-facts.org/

 86

APPENDIX

 87

Matlab Codes

Case 1:

% Failure Function Parameters (Weibull Distribution)

etta1=3; %Scale parameter

betta1=3; %Shape parameter

etta2=2.5;

betta2=2.5;

%--

M=2000; %Extra charge for bidding on a part

tao1=2.08; %Time for replenishment

tao2=0.41; %Time to perform preventive maintenance

tao3=0.83; %Time to perform corrective replacement (tao3 > tao2)

P1=12500; %Unit downtime cost due to preventive maintenance ($ per day)

P2=12500;

C1=25000; %Unit downtime cost due to a failure

C2=25000;

Ch1=5000; %Unit holding cost

Ch2=5000;

co=20000; %Regular ordering cost

%--

% to1=1;

% t1=4.5;

% t2=0.25;

% to2=0.25;

load exam.txt

t1=exam(:,1);

t2=exam(:,1);

 88

to1=exam(:,2);

to2=exam(:,2);

for ii=1:20

 for jj=1:20

%--

for i=1:500,

tf1(i)=wblrnd(etta1,betta1,1,1);

tf2(i)=wblrnd(etta2,betta2,1,1);

%--

% RUL1=etta1*gamma(1/betta1 + 1); %Remaining useful life

% RUL2=etta2*gamma(1/betta2 + 1);

%--

%if RUL2<RUL1

if (to2(ii)<to1(jj)) && (to1(jj)-to2(ii)<tao1)

 ro=1;

 tw1=max(tao1+to2-to1(jj),0)+tao1;

 dcost1=C1*(max(tw1+to1(jj)-tf1(i),0)+tao3);

 if dcost1>M,

 delta=1;

 else

 delta=0;

 end

 tw1=ro*((1-delta)*max(tao1+to2(ii)-to1(jj),0)+tao1)+(1-ro)*tao1;

 tw2=ro*(delta*max(tao1+to1(jj)-to2(ii),0)+tao1)+(1-ro)*tao1;

%%%%

 dcostp1=P1*(max(tw1+to1(jj)-t1(jj),0)+tao2);

 hcostp1=Ch1*(max(t1(jj)-tw1-to1(jj),0));

 89

 dcostu1=C1*(max(tw1+to1(jj)-tf1(i),0)+tao3);

 hcostu1=Ch1*(max(tf1(i)-tw1-to1(jj),0));

 dcostp2=P2*(max(tw2+to2(ii)-t2(ii),0)+tao2);

 hcostp2=Ch2*(max(t2(ii)-tw2-to2(ii),0));

 dcostu2=C2*(max(tw2+to2(ii)-tf2(i),0)+tao3);

 hcostu2=Ch2*(max(tf2(i)-tw2-to2(ii),0));

 cp1=dcostp1+hcostp1+co+delta*M;

 cu1=dcostu1+hcostu1+co+delta*M;

 cp2=dcostp2+hcostp2+co;

 cu2=dcostu2+hcostu2+co;

 %--

 X1(i)= cp2*(exp(-(t2(ii)/etta2)^betta2))+ cu2*((betta2/etta2)*(t2(ii)/etta2)^(betta2-

1)*exp(-(t2(ii)/etta2)^betta2));

 Y1(i)= cp1*(exp(-(t1(jj)/etta1)^betta1))+cu1*((betta1/etta1)*(t1(jj)/etta1)^(betta1-

1)*exp(-(t1(jj)/etta1)^betta1));

 else

 X1(i)=inf;

 Y1(i)=inf;

 end

end

X(ii,jj)=mean(X1);

 90

Y(ii,jj)=mean(Y1);

 end

end

X

Y

Case 2:

%Fitness Function for both Objective Functions

function fcombined = fitness2(x)

% x = [t1 t2 to1 to2];

t1 = x(1); %Preventive time of gearbox 1

t2 = x(2); %Preventive time of gearbox 2

to1= x(3); %Ordering time of gearbox 1

to2= x(4); %Ordering time of gearbox 2

%--

% Failure Function Parameters (Weibull Distribution)

etta1=8; %Scale parameter

betta1=3; %Shape parameter

etta2=7.7;

betta2=2.5;

%--

M=10000; %Extra charge for bidding on a part

tao1=0.013; %Time for replenishment

tao2=0.0027; %Time to perform preventive maintenance

tao3=0.01; %Time to perform corrective replacement (tao3 > tao2)

P1=360000; %Unit downtime cost due to preventive maintenance ($ per day)

 91

P2=360000;

C1=720000; %Unit downtime cost due to a failure

C2=720000;

Ch1=144000; %Unit holding cost

Ch2=144000;

co=20000; %Regular ordering cost

%--

for i=1:200,

tf1=wblrnd(etta1,betta1,1,1);

tf2=wblrnd(etta2,betta2,1,1);

%--

if to2<to1,

 if to1-to2<tao1

 ro=1;

 tw1=max(tao1+to2-to1,0)+tao1;

 dcost1=C1*(max(tw1+to1-tf1,0)+tao3);

 if dcost1>M,

 delta=1;

 else

 delta=0;

 end

 end

 tw1=ro*((1-delta)*max(tao1+to2-to1,0)+tao1)+(1-ro)*tao1;

 tw2=ro*(delta*max(tao1+to1-to2,0)+tao1)+(1-ro)*tao1;

%%%%

dcostp1=P1*(max(tw1+to1-t1,0)+tao2);

hcostp1=Ch1*(max(t1-tw1-to1,0));

dcostu1=C1*(max(tw1+to1-tf1,0)+tao3);

hcostu1=Ch1*(max(tf1-tw1-to1,0));

 92

dcostp2=P2*(max(tw2+to2-t2,0)+tao2);

hcostp2=Ch2*(max(t2-tw2-to2,0));

dcostu2=C2*(max(tw2+to2-tf2,0)+tao3);

hcostu2=Ch2*(max(tf2-tw2-to2,0));

cp1=dcostp1+hcostp1+co+delta*M;

cu1=dcostu1+hcostu1+co+delta*M;

cp2=dcostp2+hcostp2+co;

cu2=dcostu2+hcostu2+co;

else

 if to2-to1<tao1

 ro=1;

 tw2=max(tao1+to1-to2,0)+tao1;

 dcost2=C2*(max(tw2+to2-tf2,0)+tao3);

 if dcost2>M,

 delta=1;

 else

 delta=0;

 end

 end

 tw2=ro*((1-delta)*max(tao1+to1-to2,0)+tao1)+(1-ro)*tao1;

 tw1=ro*(delta*max(tao1+to2-to1,0)+tao1)+(1-ro)*tao1;

%%%%

dcostp1=P1*(max(tw1+to1-t1,0)+tao2);

hcostp1=Ch1*(max(t1-tw1-to1,0));

dcostu1=C1*(max(tw1+to1-tf1,0)+tao3);

hcostu1=Ch1*(max(tf1-tw1-to1,0));

dcostp2=P2*(max(tw2+to2-t2,0)+tao2);

 93

hcostp2=Ch2*(max(t2-tw2-to2,0));

dcostu2=C2*(max(tw2+to2-tf2,0)+tao3);

hcostu2=Ch2*(max(tf2-tw2-to2,0));

cp1=dcostp1+hcostp1+co;

cu1=dcostu1+hcostu1+co;

cp2=dcostp2+hcostp2+co+delta*M;

cu2=dcostu2+hcostu2+co+delta*M;

end

 %--

 syms tf1

 f(1)= (cp1*(exp(-(t1/etta1)^betta1))+int(cu1*((betta1/etta1)*(tf1/etta1)^(betta1-1)*exp(-

(tf1/etta1)^betta1)),tf1,0,t1));

 syms tf2

 f(2)= (cp2*(exp(-(t2/etta2)^betta2))+int(cu2*((betta2/etta2)*(tf2/etta2)^(betta2-1)*exp(-

(tf2/etta2)^betta2)),tf2,0,t2));

w1=0.4;

w2=0.6;

 fcombined=w1*f(1)+w2*f(2);

end

 94

Case 3:

 %Fitness Function for both Objective Functions

function fcombined = fitness3(x)

% x = [t1 t2 to1 to2];

t1 = x(1); %Preventive time of gearbox 1

t2 = x(2); %Preventive time of gearbox 2

to1= x(3); %Ordering time of gearbox 1

to2 = x(4); %Ordering time of gearbox 2

%--

% Failure Function Parameters (Weibull Distribution)

etta1=8; %Scale parameter

betta1=3; %Shape parameter

etta2=7.7;

betta2=2.5;

%--

M=10000; %Extra charge for bidding on a part

tao1=0.013; %Time for replenishment

tao2=0.0027; %Time to perform preventive maintenance

tao3=0.01; %Time to perform corrective replacement (tao3 > tao2)

P1=360000; %Unit downtime cost due to preventive maintenance ($ per day)

P2=360000;

C1=720000; %Unit downtime cost due to a failure

C2=720000;

Ch1=144000; %Unit holding cost

Ch2=144000;

co=20000; %Regular ordering cost

%--

 95

for i=1:200,

tf1=wblrnd(etta1,betta1,1,1);

tf2=wblrnd(etta2,betta2,1,1);

%--

RUL1=etta1*gamma(1/betta1 + 1); %Remaining useful life

RUL2=etta2*gamma(1/betta2 + 1);

%--

if RUL2<RUL1

 if abs(to1-to2)<tao1

 ro=1;

 tw1=max(tao1+to2-to1,0)+tao1;

 dcost1=C1*(max(tw1+to1-tf1,0)+tao3);

 if dcost1>M,

 delta=1;

 else

 delta=0;

 end

 tw1=ro*((1-delta)*max(tao1+to2-to1,0)+tao1)+(1-ro)*tao1;

 tw2=ro*(delta*max(tao1+to1-to2,0)+tao1)+(1-ro)*tao1;

%%%%

 dcostp1=P1*(max(tw1+to1-t1,0)+tao2);

 hcostp1=Ch1*(max(t1-tw1-to1,0));

 dcostu1=C1*(max(tw1+to1-tf1,0)+tao3);

 hcostu1=Ch1*(max(tf1-tw1-to1,0));

 dcostp2=P2*(max(tw2+to2-t2,0)+tao2);

 hcostp2=Ch2*(max(t2-tw2-to2,0));

 dcostu2=C2*(max(tw2+to2-tf2,0)+tao3);

 hcostu2=Ch2*(max(tf2-tw2-to2,0));

 96

 cp1=dcostp1+hcostp1+co+delta*M;

 cu1=dcostu1+hcostu1+co+delta*M;

 cp2=dcostp2+hcostp2+co;

 cu2=dcostu2+hcostu2+co;

 else

 fcombined=inf;

 return

 end

 %---

elseif RUL1<RUL2

 if abs(to2-to1)<tao1

 ro=1;

 tw2=max(tao1+to1-to2,0)+tao1;

 dcost2=C2*(max(tw2+to2-tf2,0)+tao3);

 if dcost2>M,

 delta=1;

 else

 delta=0;

 end

 tw2=ro*((1-delta)*max(tao1+to1-to2,0)+tao1)+(1-ro)*tao1;

 tw1=ro*(delta*max(tao1+to2-to1,0)+tao1)+(1-ro)*tao1;

%%%%

 dcostp1=P1*(max(tw1+to1-t1,0)+tao2);

 hcostp1=Ch1*(max(t1-tw1-to1,0));

 dcostu1=C1*(max(tw1+to1-tf1,0)+tao3);

 hcostu1=Ch1*(max(tf1-tw1-to1,0));

 97

 dcostp2=P2*(max(tw2+to2-t2,0)+tao2);

 hcostp2=Ch2*(max(t2-tw2-to2,0));

 dcostu2=C2*(max(tw2+to2-tf2,0)+tao3);

 hcostu2=Ch2*(max(tf2-tw2-to2,0));

 cp1=dcostp1+hcostp1+co;

 cu1=dcostu1+hcostu1+co;

 cp2=dcostp2+hcostp2+co+delta*M;

 cu2=dcostu2+hcostu2+co+delta*M;

 else

 fcombined=inf;

 return

 end

 else

 fcombined = inf;

 return

end

 %--

 syms tf1

 f(1)= (cp1*(exp((t1/etta1)^betta1))+int(cu1*((betta1/etta1)*(tf1/etta1)^(betta1-1)*exp(-

(tf1/etta1)^betta1)),tf1,0,t1));

 syms tf2

 f(2)= (cp2*(exp((t2/etta2)^betta2))+int(cu2*((betta2/etta2)*(tf2/etta2)^(betta2-1)*exp(-

(tf2/etta2)^betta2)),tf2,0,t2));

 p1=RUL2/(RUL1+RUL2);

 p2=RUL1/(RUL2+RUL1);

 98

 fcombined=p1*(f(1)+f(2))+p2*(f(2)+f(1));

end

Genetic Algorithm Code:

 function [x,fval,exitflag,output,population,score] = untitled(nvars,lb,ub,TimeLimit_Data)

% This is an auto generated MATLAB file from Optimization Tool.

% Start with the default options

options = gaoptimset;

% Modify options setting

options = gaoptimset(options,'TimeLimit', TimeLimit_Data);

options = gaoptimset(options,'CrossoverFcn', { @crossoverintermediate [] });

options = gaoptimset(options,'Display', 'off');

options = gaoptimset(options,'PlotFcns', { @gaplotbestf @gaplotbestindiv

@gaplotdistance @gaplotexpectation @gaplotgenealogy @gaplotrange

@gaplotscorediversity @gaplotscores @gaplotselection @gaplotstopping

@gaplotmaxconstr });

options = gaoptimset(options,'OutputFcns', { [] });

[x,fval,exitflag,output,population,score] = ...

ga(@fitness3,nvars,[],[],[],[],lb,ub,[],options);

 99

VITA

Faranak Fathi Aghdam is a graduate research assistant under Dr. Haitao Liao at the

Industrial and Information Engineering of University of Tennessee, Knoxville. She plans

to graduate from the University of Tennessee with a Master of Science degree in

Industrial and Information Engineering in December 2011. Faranak received a Bachelor

of Science degree in Industrial Engineering in 2010 from the University of Science and

Technology (Tehran/IRAN).

Conference Presentations:

 Liao. H., Fathi Aghdam. F., Niknam. S.A., Predictive maintenance and service

logistics for wind turbine fleet, IERC 2011 Conference.

 Fathi Aghdam. F., Prognostics-Based Two-Operator Competition for Maintenance

and Service Part Logistics, INFORMS 2011 Conference.

Papers:

 Fathi Aghdam. F., Liao. H., Prognostics-Based Two-Operator Competition for

Maintenance and Service Part Logistics, working paper.

Email Address: faranak.fathi@utk.edu

	Prognostics-Based Two-Operator Competition for Maintenance and Service Part Logistics
	Recommended Citation

	tmp.1321411025.pdf.WCiNE

