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ABSTRACT 

 

Prognostics and timely maintenance of components are critical to the continuing operation of a 

system. By implementing prognostics, it is possible for the operator to maintain the system in the 

right place at the right time. However, the complexity in the real world makes near-zero 

downtime difficult to achieve partly because of a possible shortage of required service parts. This 

is realistic and quite important in maintenance practice. To coordinate with a prognostics-based 

maintenance schedule, the operator must decide when to order service parts and how to compete 

with other operators who also need the same parts. This research addresses a joint decision-

making approach that assists two operators in making proactive maintenance decisions and 

strategically competing for a service part that both operators rely on for their individual 

operations. To this end, a maintenance policy involving competition in service part procurement 

is developed based on the Stackelberg game-theoretic model. Variations of the policy are 

formulated for three different scenarios and solved via either backward induction or genetic 

algorithm methods. Unlike the first two scenarios, the possibility for either of the operators being 

the leader in such competitions is considered in the third scenario. A numerical study on wind 

turbine operation is provided to demonstrate the use of the joint decision-making approach in 

maintenance and service part logistics. 
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CHAPTER I  

 

1. Introduction and General Information 

1.1  Preventive maintenance and replacement scheduling  

It is well documented that managing maintenance activities in a proactive rather than a 

reactive manner results in lower operation and maintenance costs and superior asset 

performance. This is easy to say but difficult to do in actual practice. As components in a 

system are aging with time, preventive maintenance (PM) that prevents failures may be 

economically justified. Unlike corrective maintenance (CM) involving repair or 

replacement of failed components, the intention of performing PM is to restore system 

reliability by maintaining the aged components or replacing them before they actually 

fail. Among many PM strategies, preventive replacement can be implemented for non-

repairable components, which can be classified into two categories:  time-based 

replacement and condition-based replacement. There are two types of time-based 

replacement schemes, i.e., age replacement and block replacement [1]. In age 

replacement, a scheduled replacement occurs whenever an operating unit reaches a 

certain age T, while for block replacement all operating units are replaced at regular time 

intervals regardless of the actual age of individual units. For condition-based 

replacement, an action to be taken on a single unit after each inspection (or upon 

condition monitoring via an in-situ sensor) is determined based on the unit‟s current state. 
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Possible actions are (1) replacing the unit right away, (2) determining the next service 

time to replace the unit or (3) no action.    

 

                         

Figure 1. Degradation process and remaining useful life distribution 

Fig. 1 illustrates the methodology of condition-based replacement. As the unit‟s 

degradation process  * ( )    + evolves, the remaining useful life (RUL) of the unit can 

be predicted based on a stochastic model for  * ( )    + with unit-specific parameters. 

Let    be the failure threshold and        *    ( )        + be the actual failure 

time of the unit. The distribution of the unit‟s            at time t, can be 

expressed as   (     ) where    . One of the possible actions will be determined 

based on the predicted RUL at present. When the unit is decided to be replaced either 

right away or for the next service time, it would be straightforward to do so if a service 

part is currently in hand or will be available prior to the next service time. However, a 

shortage of a required service part often makes timely replacement difficult to achieve. In 

addition to inherent delays, such as replenishment lead time, operators sometimes are 
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forced to compete with others for a service part that all of them rely on for their 

individual operations. This makes the availability of service parts questionable to each 

operator. 

This thesis studies a joint decision-making mechanism for proactive replacement and 

competition in service part procurement between two operators. A specific type of 

component is considered, and the joint decision is made based on the predicted values of 

RUL of the units being used by the operators. Considering the limited availability of 

service part and their affordable prices and losses, the two operators must determine the 

best times for replacing their units and for ordering the service part with a possible 

competition with each other. Three different scenarios based on the Stackelberg game-

theoretic model are formulated in this thesis. The backward induction method for solving 

Stackelberg games is used in finding the optimal preventive replacement and ordering 

times. In addition, a genetic algorithm (GA) is utilized for a multi objective case. 

1.2  Research Contributions 

In this thesis the following contributions are made: 

1. In this work the competition between two operators on optimizing their 

maintenance policies based on minimizing the costs is modeled by a new 

optimization model. 

2. The relationship between the operators is modeled based on a leader-follower 

game theoretic model.  
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3. A multi objective model is developed based on a set of assumptions. This model 

is optimized via either backward induction or genetic algorithms. 

4. Finally, a numerical example based on real numbers from wind turbine gearbox 

reliability databases will be considered as the application of the developed model. 

1.3  Outline of the study  

The remainder of this thesis is organized as follows:  

In chapter 2, a comprehensive literature review of various models and algorithms in spare 

and service  part inventory control and PM optimization problems is presented.  

Chapter 3 clearly provides the problem description and mathematical formulations of the 

joint decision-making models and also addresses the proposed optimization methods for 

solving three scenarios.  

In chapter 4, a numerical example on wind turbine operation is provided to demonstrate 

the use of the proposed models and their solution methods. Effect of competition is 

assessed in this section.   

Finally, chapter 5 gives concluding remarks and recommendation for future work. 
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CHAPTER II  

 

2. Literature Review 

In this chapter, the studies in the literature that are related with this study are 

summarized. The subjects of the papers and proposed models are explained for each of 

them. 

Under sections 2.1, 2.2, 2.3 and 2.4 literature related to reliability and maintainability 

optimization models, service part inventory control, multi objective optimization models 

and game theory are discussed. In part 2.5 by discussing the reliability issues of wind 

turbines, the reason of using a wind turbine problem as the numerical example in chapter 

4 will be cleared. 

2.1 Reliability and maintainability 

IEEE defines reliability as: 

“The ability of a system or component to perform its required functions under stated 

conditions for a specified period of time”.  

The study of maintenance policies is one of the most important areas of interest in 

reliability field. The two different criteria that are known in the optimization of 

replacement intervals are PM and CM. PM is defined as the activity undertaken regularly 

at pre-selected intervals while the device is satisfactorily operating, to reduce or eliminate 

the accumulated deterioration [18]. 
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A performance criterion for maintenance systems is minimizing the total cost of 

maintenance, which includes PM cost, CM cost or cost of failure. (fig2) 

 

Figure 2. Total Maintenance Cost 

PM has been extensively investigated in the reliability field. In terms of mathematical 

modeling, most PM models are focused on the minimum cost, economic system lifetime, 

and highest system availability. Chen and Feldman [19] presented a repair/replacement 

problem based on age-replacement policy. Panagiotidou and Tagaras [20] presented an 

economic model for the optimization of PM in a production process with two quality 

states (in-control and out-of-control).They found the optimum time to perform PM based 

on the actual (observable) state of the process. Yeh et al. [21] analyzed the effects of a 

free-repair warranty on the optimal periodic replacement policy for both a warranted and 

non-warranted repairable products by optimizing the long-run cost rate. Dehayem Nodem 

et al. [22] presented a hierarchical decision-making approach in production and 

repair/replacement planning with imperfect repairs under uncertainties to minimize the 

total costs over an infinite planning horizon. A semi-Markov decision model was used to 
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determine the optimal repair and replacement policy, and the production rate was 

determined based on the obtained repair and replacement policy. Berg [23] extended 

existing maintenance policies that are based only on the present repair cost by 

considering the future costs. Essentially, the repair and replacement policy is analyzed 

and optimized using the marginal cost analysis. 

The integration of preventive replacement and service part logistics has also been studied 

in many papers. Zohrul Kabir and Al-Olayan [24] presented a simulation model that 

minimizes the total cost of replacement and inventory by incorporating both age-

replacement policy and continuous review of stocking inventory policy. Vaughan [25] 

developed a stochastic dynamic programming model to characterize the ordering policy 

due to regularly scheduled PM and random failure of units in service. Wang et al. [26] 

optimized the presented simulation model for deteriorating systems which combines the 

condition-based replacement policy with periodic inspections and the base stock 

inventory policy. Wang [27] presented a joint optimization model for both the inventory 

control of the spare parts and the PM inspection interval to find the optimum value for the 

order interval, PM interval and order quantity via dynamic programming. Liao et al. [28] 

introduces a condition-based availability limit policy which achieves the maximum 

availability of a system by optimally scheduling maintenance actions. 

In order to optimize the maintenance policy for a component with deterioration and 

random failure rate, a linear programming model was proposed by Jayakumar and 

Asgarpoor [29]. In their model, they determined optimal mean times of minor and major 

PM actions based on maximizing the availability of the component. 

file:///C:/Users/faranak/Downloads/thesis%20template.docx%23_ENREF_22
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Duarte et al. [30] considered a system with series component that have linearly increasing 

failure rate and constant improvement factor for imperfect maintenance. They presented a 

model and algorithm to optimize the interval of time between maintenance actions by 

considering the total cost and total downtime as the objective functions.  

In another study, Tam et al. [31] presented three models to determine the optimal 

maintenance intervals for a multi component system under maintenance actions without 

considering the replacement actions. He considered three different models to minimize 

total cost subject to satisfying a required reliability, one that maximizes reliability at a 

given budget, and one that minimizes the expected total cost including expected 

breakdown outages cost and maintenance cost. 

Another paper is by Shirmohammadi et al. [32] which developed an age based nonlinear 

optimization model to determine the optimal PM schedule for a single component 

system. They considered the cost per unit time as the objective function to find the 

optimal time between preventive replacements and the cut-off age. They utilized MAPLE 

to solve the optimization model. 

2.1.1 Multi Objective Algorithm 

Multi objective optimization involves trying to simultaneously optimize two or more 

objectives. In addition to single objective problems, multi objective PM optimization 

models have also been investigated. The problem usually has a number of constraints, 

which must be satisfied by any feasible solution. 

file:///C:/Users/faranak/Downloads/thesis%20template.docx%23_ENREF_23
file:///C:/Users/faranak/Downloads/thesis%20template.docx%23_ENREF_24
file:///C:/Users/faranak/Downloads/thesis%20template.docx%23_ENREF_25
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Berrichi et al. [33] considered an algorithm based on bi-objective Ant Colony 

Optimization in handling both production and maintenance scheduling problem to 

simultaneously determine the best assignment of production tasks to machines as well as 

PM (PM) periods of the production system. Moradi et al. [34] investigated integrated 

flexible job shop problem with PM activities under the multi objective optimization 

approaches. Two decisions are made at the same time: finding the appropriate assignment 

of n jobs on m machines in order to minimize the makespan and the best time to execute 

PM to minimize the system unavailability. Quan et al. [35] presented a novel 

evolutionary algorithm to solve a PM scheduling problem, which is formulated as a multi 

objective problem.  

In a paper by Herabat [36], they developed a multi objective optimization model to 

support the multi year decision making process of the highway maintenance management 

in Thailand. PM is focused in this research since it helps prolong the life of the 

infrastructures. This study selects the flexible pavements in the Pathumthani province to 

be the study area. Both single- and multi objective optimization models are developed for 

a multi year maintenance planning by incorporating the constraint-based genetic 

algorithms to deal with the combined characteristics of the network-level maintenance 

planning. Two constraints of budget limitation and the network system preservation are 

employed in the developed models.  

Certa [37] recently presented a paper which aims to propose a resolution approach for a 

multi objective maintenance problem with relation to a system that needs to operate 

without interruption between two consecutive fixed stops. The proposed algorithm has 
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several advantages compared with both the classical methods and the most recent genetic 

approaches. In particular, it goes over the limits of the other approaches due to the 

incapability in individuating all Pareto solutions and in exploring a not convex Pareto 

frontier. 

A comprehensive study on multi objective genetic algorithms and their applications in 

reliability optimization problems is presented in a paper by Konak et al. [38]. They 

reviewed 55 research papers and discussed the recent techniques and methodologies. 

2.2  Service part inventory control optimization 

Spare parts inventories differ from work-in-process (WIP) inventories and finished 

product inventories from many aspects and are kept in stock to support maintenance 

operations and to protect against equipment failures. Managing spare parts is an 

important component of an overall maintenance policy, which can be a major 

determinant of operational efficiency in a manufacturing system. 

Spare part definition in Wikipedia is: “A spare part, service part, or spare, is an item of 

inventory that is used for the repair or replacement of failed parts” “accessed on 

11/06/2011.” Service Parts Management is one of the main components of strategic 

service logistics, requiring a complex decision making process that companies use to 

ensure that right spare parts and resources are at the right place at the right time. From a 

producer point of view spare parts are considered uneconomical since they involve 

logistical and economical requirements. However, without spare parts on hand, 
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customers‟ satisfaction level may drop, since customers have to wait for a long time 

before their products can be fixed [2]. 

Spare parts can be generally classified into non-repairable and repairable. Repairable 

parts are parts that are deemed worthy of repair, usually by virtue of economic 

consideration of their repair cost. Parts that are not repairable are considered consumable 

parts. Consumable parts are usually scrapped, or condemned, when they are found to 

have failed. 

In the literature, the most commonly used approaches to develop a possible spare 

provisioning decision model are simulation and mathematical programming. 

Mathematical programming is based on linear programming, dynamic programming, goal 

programming, etc. [3].  

The question of how many spare parts to stock and when is the best time to order the 

spare part have been addressed by numerous researchers and has originated a wide 

variety of models. A survey of the literature by Kennedy [4] is an update of the 

discussion of maintenance inventories and a discussion of the future research needed. 

Maintenance, including tests, measurements, adjustments, and replacement, performed 

specifically to prevent faults from occurring. The goal of maintenance is to avoid or 

mitigate the consequences of failure of equipment. Maintenance has mainly been defined 

as two parts by its nature: PM and CM.  
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When discussing improvement opportunities in the plant, the PM discussion must occur. 

PM is preventing the failure before it actually occurs. It is designed to preserve and 

restore equipment reliability by replacing worn components before they actually fail.  

CM involves the repair or replacement of components which have failed or broken down. 

For failure modes which lend themselves to condition monitoring, CM should be the 

result of a regular inspection which identifies the failure in time for CM to be planned 

and scheduled, then performed during a routine plant outage.  

Today modern production systems are more complicated and mechanized. This causes 

unplanned failures to have a severe impact on the systems. Unplanned failures can 

decrease productivity and increase variance of production quality.  

In general, the maintenance and spare parts inventory policies are treated either 

separately or sequentially in industry. However, since the stock level of spare parts is 

often dependent on the maintenance policies, it is better to deal with these problems 

simultaneously [5].  

There are a limited number of published research papers that mentions the importance of 

integrating the maintenance strategy with spares and repair capacity (e.g. [6]; [7]). These 

articles do not present quantitative models. Spare provisioning policy has been taken into 

account simultaneously with the maintenance policy by Kabir and Farrash [8] and Park 

[9]. They deal with an age-based maintenance strategy and non-repairable components.  

Brezavscek and Hudoklin [10] considered the problem of joint optimization of “PM” and 

“spare-provisioning policy” for system components subject to wear-out failures. This 
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model can be readily applied to optimize maintenance procedures for variety of industrial 

systems and to upgrade maintenance policy in situations where block replacement PM is 

already in use.  

Huang [11] published a paper that considered a generalized joint optimization policy of 

block replacement & periodic review spare inventory with random lead time. In another 

paper the block replacement interval, the optimal stock level as well as the replenishment 

cycle is optimized simultaneously. Again the components are not repairable, which is 

encountered in most models that are concerned with joint optimization of a maintenance 

policy and a spares provisioning policy [12]. 

In another recent paper, Kolahan and Sharifinya [13] proposed a multi objective 

optimization problem in a single machine for simultaneous part sequencing and tool 

replacement schedule, with respect to tool reliability and sequence–dependent set up 

times has been addressed. The main objectives include determining optimal part 

sequence, tool selection for operations, tool replacement schedule, and number of spares 

for each tool type, in such a way that total expected production cost is minimized. 

Considering the defective cost by using tool reliability instead of tool life, processing 

operations with tool alternatives and tool loading by considering the limited tool 

magazine capacity, are the main originalities of this research. Since the problem under 

consideration is NP-hard, they propose a Simulated Annealing and Tabu Search heuristic 

algorithms to, simultaneously, provide part sequencing, tool replacement intervals and 

number of spare tools required. The proposed algorithms are examined and the results are 

compared by solving a real-sized example problem. The computational results 
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demonstrate the effectiveness of these methods towards solving large-sized, multi 

objective planning problems.  

As mentioned before, spare parts can be generally classified into non-repairable and 

repairable. After an initial applied study with the Canadian oil producer Syncrude (see 

[14]), researchers at the Condition-Based Maintenance Laboratory at the University of 

Toronto have investigated and Developed 3 models to calculate the optimal stock size in 

the cases of non-repairable and repairable components. A repairable part is one that upon 

removal from operation (due to a preventive replacement or failure), is sent to a repair or 

reconditioning facility, where it is returned to an operational (ready-to-operate) state. 

Non-repairable parts, on the other hand, have to be discarded once they have been 

removed from operation (as it is uneconomical or physically impossible to repair 

them).Inventory control models used in each case are different, thus they will be treated 

separately. They have presented a number of basic spares inventory models used to 

determine the optimal stock size for the cases of non-repairable and repairable critical 

components, according to different optimization criteria, namely: (i) reliability of the 

stock (instantaneous or interval, depending on the application), (ii) availability (in the 

case of repairable components), and (iii) cost. In addition, procedures to find the interval 

of supportability given a stock level and desired reliability are introduced. Three brief 

case studies were reviewed, illustrating industrial spares stockholding problems. Most of 

the models discussed have been incorporated into a prototype software called SMS 

(Spares Management Software), developed by the Condition-Based Maintenance 

Laboratory at the University of Toronto [15]. 
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Another paper in combination of spare parts and PM is by Tunali [16]. In this study, a 

simulation optimization approach using genetic algorithms (GAs) has been proposed for 

the joint optimization of PM and spare provisioning policies of a manufacturing system 

operating in the automotive sector. A factorial experiment was carried out to identify the 

best values for the GA parameters, including the probabilities of crossover and mutation, 

the population size, and the number of generations. The unavailability of spare parts at 

the time they are needed by the maintenance department is a major problem for many 

industrial organizations. The common approach to solve this problem is overstocking the 

spare parts at a substantial inventory-carrying cost. However, a cost effective solution to 

this problem requires a trade-off between overstocking and shortages of spare parts. In 

order to deal with this trade-off, the problem should be solved by joint, rather than 

separate or sequential optimization of PM and spare parts inventory policies. A 

simulation model of the manufacturing system was developed and a GA was integrated 

with this model to optimize the parameters of the simulation model. Moreover, a set of 

designed experiments was carried out to determine the best combination of GA 

parameters. The best solution proposed by the GA was compared to the current 

combination of control variables in terms of total annual cost and average monthly 

production. It was found that the total annual cost could be reduced by about 53% while 

achieving a larger amount of throughput.  

Nosoohi and Hejazi [17] presented a novel multi objective model that considers age 

replacement policy and provision of spare parts both together. Despite most of previous 

studies where the cost objective has been the main concern in maintenance planning, this 
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paper presents a novel multi objective model (Cost objective, Corrective failure 

objective, Residual lifetime objective and Investment objective) for preventive 

replacement of a part over a planning horizon. The proposed model considers different 

objectives and practical issues, such as corrective replacement and its consequences, 

residual lifetime objective, and kind of productivity index. Also, the model determines 

number of spare parts, required for replacement with the defected part, to be provided at 

the beginning of the planning horizon. In this paper, unlike the previous researches and 

regarding practical issues, a new multi objective model was proposed. The classical cost 

objective was developed based on Bernoulli distribution. Along these lines, a function in 

the form of exponential distribution was used to show the effects of working situations 

and number of surplus spare parts on the probability of having spare part at the 

replacement times. Also they have shown, how non-dominated and the preferred 

solutions can be generated based on the ɛ-constraint and min max methods, for the 

proposed model.  

2.3 Optimization Models 

2.3.1 Dynamic programming 

One of the most common techniques to solve the maintenance and replacement actions 

optimization models is dynamic programming. One of first studies in this field is a study 

by Canfield [39]. He mentions that PM actions do not change or affect deterioration 

behavior of failure rate, so the developed failure function is constant with maintenance 

actions. He proposed a model to minimize the cost of maintenance for a system that has 
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Weibull distribution failure rate. This model was solved by applying dynamic 

programming. Ben-Akiva [40] developed a dynamic programming method for finding an 

optimal maintenance and inspection policy, in the presence of inspection error. 

2.3.2 Heuristics and Meta-Heuristics Algorithms 

Genetic algorithm: 

Recently, artificial intelligent technologies have better results in solving the optimization 

of nonlinear models; one of them is genetic algorithm. Genetic algorithms are inspired by 

Darwin's theory about evolution. Genetic algorithms in general are searching procedures 

based on the principle of natural selection and genetic recombination. They imitate nature 

by using the mechanics of evolution and natural selection to improve a set of initial 

solutions called a population using recombination and mutation of the genetic material. 

Like any other optimization algorithm it begins by defining the optimization variables, 

the fitness function, and ends by testing for convergence. In between, however, this 

algorithm is quite different, i.e. it uses specific GA operators. 

Once we have the genetic representation and the fitness function defined, GA proceeds to 

initialize a population of solutions randomly and then improve it through repetitive 

application of mutation, crossover, inversion and selection operators. 

It consists of the following procedures: 

Initialization 

Initially many individual solutions are randomly generated to form an initial population. 

The population size depends on the nature of the problem, but typically contains several 
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hundreds or thousands of possible solutions. Traditionally, the population is generated 

randomly, covering the entire range of possible solutions (the search space). 

Occasionally, the solutions may be "seeded" in areas where optimal solutions are likely to 

be found. 

Selection 

During each successive generation, a proportion of the existing population is selected to 

breed a new generation. Individual solutions are selected through a fitness-based process, 

where fitter solutions (as measured by a fitness function) are typically more likely to be 

selected. Certain selection methods rate the fitness of each solution and preferentially 

select the best solutions. Other methods rate only a random sample of the population, as 

this process may be very time-consuming. 

Reproduction 

The next step is to generate a second generation population of solutions from those 

selected through genetic operators: crossover (also called recombination), 

and/or mutation. 

For each new solution to be produced, a pair of "parent" solutions is selected for breeding 

from the pool selected previously. By producing a "child" solution using the above 

methods of crossover and mutation, a new solution is created which typically shares 

many of the characteristics of its "parents". New parents are selected for each new child, 

and the process continues until a new population of solutions of appropriate size is 

generated. Although reproduction methods that are based on the use of two parents are 

http://en.wikipedia.org/wiki/Selection_(genetic_algorithm)
http://en.wikipedia.org/wiki/Fitness_(biology)
http://en.wikipedia.org/wiki/Fitness_function
http://en.wikipedia.org/wiki/Genetic_operator
http://en.wikipedia.org/wiki/Crossover_(genetic_algorithm)
http://en.wikipedia.org/wiki/Mutation_(genetic_algorithm)
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more "biology inspired", some research suggest more than two "parents" are better to be 

used to reproduce a good quality chromosome. 

These processes ultimately result in the next generation population of chromosomes that 

is different from the initial generation. Generally the average fitness will have increased 

by this procedure for the population, since only the best organisms from the first 

generation are selected for breeding, along with a small proportion of less fit solutions, 

for reasons already mentioned above. 

Although Crossover and Mutation are known as the main genetic operators, it is possible 

to use other operators such as regrouping, colonization-extinction, or migration in genetic 

algorithms.  

Termination 

This generational process is repeated until a termination condition has been reached. 

Common terminating conditions are: 

 A solution is found that satisfies minimum criteria 

 Fixed number of generations reached 

 Allocated budget (computation time/money) reached 

 The highest ranking solution's fitness is reaching or has reached a plateau such 

that successive iterations no longer produce better results 

 Manual inspection 

 Combinations of the above 
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Simple generational genetic algorithm procedure: 

 Choose the initial population of individuals 

 Evaluate the fitness of each individual in that population 

 Repeat on this generation until termination (time limit, sufficient fitness achieved, 

etc.): 

 Select the best-fit individuals for reproduction 

 Breed new individuals through crossover and mutation operations to give birth 

to offspring 

 Evaluate the individual fitness of new individuals 

 Replace least-fit population with new individuals 

The most popular example in Genetic Algorithm is the eight queens puzzle. In chess, a 

queen can move as far as she pleases, horizontally, vertically, or diagonally. A chess 

board has 8 rows and 8 columns. The standard 8 by 8 queen's problem asks how to place 

8 queens on an ordinary chess board so that none of them can hit any other in one move. 

Thus, a solution requires that no two queens share the same row, column, or diagonal.  

Solving this problem with a genetic algorithm is a basic example in tutorials. 

GAs, initially introduced by Holland [41], constitute meta-heuristic population based, 

derivative-free optimization techniques, which exploit the mechanics of natural evolution 

in order to gradually approach optimality conditions [42].  

http://en.wikipedia.org/wiki/Population
http://en.wikipedia.org/wiki/Individual
http://en.wikipedia.org/wiki/Fitness_(biology)
http://en.wikipedia.org/wiki/Generation
http://en.wikipedia.org/wiki/Reproduce
http://en.wikipedia.org/wiki/Breed
http://en.wikipedia.org/wiki/Crossover_(genetic_algorithm)
http://en.wikipedia.org/wiki/Mutation_(genetic_algorithm)
http://en.wikipedia.org/wiki/Offspring
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The main advantage of GA over the classical optimization methods is that GA uses a 

„fitness‟ function of various candidate solutions as the only information to guide the 

search. In addition, GA can easily deal with non-linear constraints and a large number of 

variables, and no derivatives or auxiliary information is needed [43]. GAs have been 

demonstrated to be particularly effective in determining solutions to multi objective 

optimization problems. Techniques such as MOGA (Multi Objective GA) and VEGA 

(Vector Evaluated GA) have been developed, and these algorithms have been refined so 

that they find the Pareto front in many problem instances. Munõz et al. [44] planned the 

component  maintenance model by using the genetic algorithm to find a maintenance 

policy, which  reached the minimum risk and cost. Tsai et al. [45] applied GA to provide 

PM and preventive replacement policies for a system from the viewpoint of unit lifetime 

cost. 

Chen et al. [46] applied GA to determine an optimal PM policy of an n-component series 

system with deteriorated components in a mechanical system, and the effect of PM 

activities with reliability and failure rates of components under an age reduction model 

was studied. Marseguerra et al. [47] used Monte Carlo simulation and genetic algorithms 

to determine the optimal degradation level beyond which a PM intervention should be 

taken by optimizing profit and availability. 

Moreover, Usher et al. [48] proposed an optimization maintenance and replacement 

model for a single-component system. They presented a new model to optimize the PM 

schedule for a system with increasing failure rate and compared the results from genetic 

algorithm method and branch and bound algorithm with each other. 
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Levetin and Lisnianski [49] proposed an optimization model for a multi state system to 

determine PM actions that affect the effective age of components. They used GA in order 

to minimize the total cost with a required level of reliability as the constraint. They had 

another paper in which they proposed a model to determine the optimal time for 

replacement in a multi state series-parallel system with an increasing failure rate. They 

utilized GA to solve the total cost objective function.[50]. In another paper by Wang [51], 

he presents a more efficient GA for unit maintenance scheduling based on the specific 

characteristic of PM scheduling problem for power systems. This new GA improves GA 

computation performance by adopting a code-specific and constraint-transparent integral 

coding method. To form a more promising convergence sequence and to refrain from the 

occurrence of unfeasible solutions, in this new GA, GA operators are redesigned 

according to the specific characteristics of the problem to be solved. Comparisons of this 

new GA with a traditional binary GA are also discussed in this paper. 

In a paper by Cavory [52],  a model to optimize the schedule of maintenance tasks of all 

the machines in a single product manufacturing production line was proposed. They 

considered the total throughput of the line as the objective function and tried to maximize 

it by applying genetic algorithm to find the best combination of PM tasks. They set the 

GA parameters by constructing an experimental design and validated the results by 

utilizing Taguchi method and statistical analysis. There are similar papers that used GA 

to optimize the cost function, another one is a paper by Leou [53] that considered 

maintenance crew and duration of maintenance as the additional constraints to this 

method. He applied the optimization model in a case study with six electric generators. 
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Han et.al. [54] illustrated the dynamic relationship between failure rate and PM activity. 

The proposed nonlinear optimal PM policy model satisfies the reliability constraints in 

finite time horizon following Weibull distribution. They applied GA as the optimization 

method. 

In another work by Limbourg [55], they used heuristics and meta-heuristics optimization 

algorithms for PM scheduling models and presented several nonstandard input 

representations and compares them to the standard binary representation by a heuristic 

algorithm. An evolutionary algorithm with extensions to handle variable length genomes 

is used for the comparison. The results demonstrate that two new representations perform 

better than the binary representation scheme. A second analysis shows that the 

performance may be even more increased using modified genetic operators. 

There are some other meta-heuristics methods that have been used broadly for solving the 

maintenance optimization problems. In a paper by Wang [56], they tried to minimize the 

periodic PM cost for a series-parallel system using the particle swarm optimization 

(IPSO). The importance measure of components is utilized to evaluate the effects of 

components on system reliability when maintaining a component. I can mention another 

paper by Samrout et al. [57]. This article is based on a previous study made by Bris [58]. 

They use genetic algorithm to minimize PM cost problem for the series–parallel systems. 

Samrout proposed to improve their results developing a new method based on another 

technique, the Ant Colony Optimization (ACO). The resolution consists in determining 

the solution vector of system component inspection periods, TP. Those calculations were 
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applied within the programming tool Matlab. They obtained highly interesting results and 

improvements of previous studies. 

2.4 Game Theory 

Game theory is the formal study of decision making where several players must make 

choices that potentially affect the interests of the other players. 

Game theory is the formal study of conflict and cooperation. Game theoretic concepts 

apply whenever the actions of several agents are interdependent. These agents may be 

individuals, groups, firms, or any combination of these. The concepts of game theory 

provide a language to formulate structure, analyze, and understand strategic scenarios. 

The first theorem of game theory is from Zermelo who showed that chess is strictly 

deterministic. But, the idea of general theory of games back to 1944 when Von Neumann 

and Morgenstern published the book “Theory of Games and Economics Behavior.” They 

proposed that most economic questions should be analyzed as games and introduced the 

method of finding mutually consistent solutions for two-person zero-sum games. During 

the late 1940s, cooperative game theory had been studied to analyze how groups of 

individuals should cooperate with each other to improve their positions in a game.  

A game consists of a set of players, a set of moves (or strategies) available to those 

players, and a specification of payoffs for each combination of strategies. 
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2.4.1 Basic Elements and Assumptions of Game Theory 

Player 

An economic agent is, by definition, an entity with preferences. A player is an agent who 

makes decisions in a game. Further, we also assume that each member acts rationally, i.e. 

each member will not raise its own cost for the purpose of raising cost of the other 

members.  

Strategy 

 A player's strategy will determine the action the player will take at any stage of the 

game, for every possible history of play up to that stage. 

Payoff 

The payoffs represent the welfare of the players at the end of the game. They are the basis 

on which each player chooses his strategy.  

2.4.2 Representation of games 

Strategic Form Games 

A game in strategic form, also called normal form, is a compact representation of a game 

in which players simultaneously choose their strategies. The resulting payoffs are 

presented in a table with a cell for each strategy combination. 

To define a game in strategic form we need only specify the set of players in the game, 

the set of options available to each player, and the way that players' payoffs depend on 

the options they choose (payoff functions) [59]. Classical example of a two-player finite 

strategic form game is the famous prisoners' dilemma game. 

http://en.wikipedia.org/wiki/Game_theory#Representation_of_games
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Extensive Form Games 

An extensive game (or extensive form game) describes with a tree how a game is played. 

It depicts the order in which players make moves, and the information each player has at 

each decision point. 

2.4.3 Types of games 

Perfect information and imperfect information: 

Games are often classified by the amount of information available to the players. If a 

player has access to all the information they require about the game during play, then the 

game can be classified as having perfect information. However, if some of that 

information is hidden from the player the game is known as having imperfect 

information. Take for example the game of chess. Chess is a game of perfect information 

because each player can look down upon the board and obtain all the information 

necessary to make their playing decisions. On the other hand, the game of poker is a 

game of imperfect information. In poker, players are given cards which only they can see; 

therefore players now have to make decisions based on hidden information because they 

cannot see their opponents‟ cards. Games with incomplete information can be modeled as 

Bayesian games, where the uncertainty is handled by using probability distributions. 

Deterministic or stochastic: 

Games can be further classified as either deterministic or stochastic. If a game contains 

chance elements, such as the roll of a dice, this introduces randomness into the game. 

These types of games are known as stochastic games and examples include bridge, 

http://en.wikipedia.org/wiki/Game_theory#Types_of_games
http://en.wikipedia.org/wiki/Game_theory#Perfect_information_and_imperfect_information
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backgammon and poker. The absence of these chance elements ensures the game is 

deterministic. Games such as chess, checkers and go are examples of deterministic 

games. 

Cooperative or non-cooperative: 

The word non-cooperative means that the players' choices are based only on their 

perceived self-interest. The most important models used for representing non-cooperative 

games are the strategic form and the extensive form. The first is conceptually simpler and 

is generally viewed as being derived from the extensive form, which is more richly 

structured way to describe game situations.  

Zero-sum and non-zero-sum: 

Zero-sum games are a special case of constant-sum games, in which choices by players 

can neither increase nor decrease the available resources. In zero-sum games the total 

benefit to all players in the game, for every combination of strategies, always adds to 

zero. 

Simultaneous and sequential: 

Simultaneous games are games where both players move simultaneously, or if they do 

not move simultaneously, the later players are unaware of the earlier players' actions 

(making them effectively simultaneous). Sequential games (or dynamic games) are 

games where later players have some knowledge about earlier actions. This need not 

be perfect information about every action of earlier players; it might be very little 

knowledge. 

http://en.wikipedia.org/wiki/Game_theory#Cooperative_or_non-cooperative
http://en.wikipedia.org/wiki/Game_theory#Zero-sum_and_non-zero-sum
http://en.wikipedia.org/wiki/Zero-sum
http://en.wikipedia.org/wiki/Simultaneous_game
http://en.wikipedia.org/wiki/Sequential_game
http://en.wikipedia.org/wiki/Perfect_information
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2.4.4 Equilibrium Solutions 

A solution concept for a game is any rule for specifying predictions as to how players 

might be expected to behave in any given game. The most important solution concept in 

game theory is Nash‟s concept of equilibrium [60]. 

Nash equilibrium 

A Nash equilibrium, also called strategic equilibrium, is a list of strategies, one for each 

player, which has the property that no player can unilaterally change his strategy and get 

a better payoff. 

Nash equilibrium is widely considered as the solution of non-cooperative games. 
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Backward induction 

Backward induction is a technique to solve a game of perfect information. It first 

considers the moves that are the last in the game, and determines the best move for the 

player in each case. Then, taking these as given future actions, it proceeds backwards in 

time, again determining the best move for the respective player, until the beginning of the 

game is reached. 

There are several papers that use a game theoretic approach in maintenance scheduling.  

A novel approach to a generating unit maintenance scheduling problem in competitive 

electricity markets is presented in a paper by Kim [61]. The objective is to develop a 

game-theoretic framework for analyzing strategic behaviors of generating companies 

(Gencos) from the standpoint of the generating unit maintenance scheduling (GMS) game 

and for obtaining the equilibrium solution for the GMS game. The GMS problem is 

formulated as a dynamic non-cooperative game with complete information. The players 

correspond to profit maximizing individual Gencos, and the payoff of each player is 

defined as the profits from the energy market. The optimal schedule is defined by Nash 

equilibrium (equilibriums) of the game. Numerical results for two-Genco system are used 

to demonstrate that the proposed framework can be successfully applied to analyzing the 

strategic behaviors of each Genco and to obtaining the corresponding Nash equilibrium. 

The result indicates that generating unit maintenance schedule is one of the major 

strategic behaviors whereby Gencos maximize their profits in a competitive market 

environment. 
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A tutorial on the subject is provided by Cachon and Netessine [62], where both non-

cooperative and cooperative game theories in static and dynamic settings are discussed. 

For more extensive concepts of game theory, the readers are referred to [63]. 

2.4.5 Leader-Follower Game (Stackelberg Games) 

As one of the most important types of game, Stackelberg games originate from H. von 

Stackelberg who studied a duopoly model where the other company had a dominant 

position being able to make its decision first. In general, Stackelberg games are leader-

follower games where the players act sequentially. Stackelberg solution is an important 

hierarchical solution concept for both static and dynamic game models. From an 

optimization point of view, two-player Stackelberg games are two level hierarchical 

optimization problems where the leader optimizes his utility subject to follower‟s 

optimization problem. When the players mutually benefit from the leadership of one of 

them, the solution is called concurrent. If each player prefers to be the leader himself, 

then the Stackelberg solution is called non-concurrent and the Stackelberg game where 

neither of the players wants to be the leader is called stalemate [64]. 

Genetic algorithms have been applied in the distributed computation of both Stackelberg 

and incentive Stackelberg solutions. Vallee and Basar[65][66] study off-line computation 

of the Stackelberg solution (single-leader–single-follower) in a repeated game 

framework, utilizing the Genetic Algorithm. In this paper they consider natural leader and 

natural follower as fixed roles.  
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Nedim and Sirakaya [67] develop a method to compute the Stackelberg equilibrium in 

sequential games. They construct a normal form game which is interactively played by an 

artificially intelligent leader, GAL, and a follower, GAF. The leader is a genetic algorithm 

breeding a population of potential actions to better anticipate the follower‟s reaction. The 

follower is also a genetic algorithm training on-line a suitable neural network to evolve a 

population of rules to respond to any move in the leader‟s action space. When GAs 

repeatedly plays this game updating each other synchronously, populations converge to 

the Stackelberg equilibrium of the sequential game. 

D‟Amato et al. [68] developed a computational methodology to obtain a Stackelberg - 

Nash solution for a hierarchical game via genetic algorithm (GA). There is one (or more) 

players acting as leader(s) in a two level leader-follower model, the rest of players play a 

non-cooperative game and react to the optimal decision taken by the leader(s). The 

leader(s) takes into account the followers' best reply and solve an optimization problem (a 

Nash equilibrium problem). In this model the uniqueness of the Nash equilibrium of the 

follower players has been supposed. 

2.5  Wind Turbine Reliability 

Wind turbine industry has gained a remarkable stand in the US industry since the turn of 

the century. Reliability of wind turbines has attracted much attention especially in recent 

years. Wind power is a fast growing renewable energy resource. Reliability evaluation 

and enhancement are an important factor in modern power system planning and 
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operation. Consequently, reliability assessment of wind turbines is of great importance 

and will receive more attention in the future due to the increase in wind power utilization. 

The reliability of wind turbines as a part of a large power system is assessed in many 

references [69][70]. 

In another paper by Arabian [71], they propose a reliability model for the electrical 

subassemblies of geared wind turbine systems with induction generators.  

The wind turbine system consists of different subassemblies such as blades, tower, 

bearings and shaft, gearbox for indirect drive, generator, converter for variable-speed and 

the necessary control units. 

 

Figure 3. Diagram of Wind Turbine Generator [71] 
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Some of the power available in the wind is converted by the rotor blades to mechanical 

power acting on the wind turbine rotor shaft. 

The wind energy industry typically uses reactive maintenance approach or run-to-failure 

maintenance. This form of maintenance has been shown to be the most costly Operations 

and Maintenance (O&M) practice available to operators. There are several papers that 

worked on the reliability wind turbines. For example, in a paper by Cohen [72], they 

proposed a model by considering both scheduled and unscheduled maintenance. 

2.5.1 Scheduled (Preventive) Maintenance of wind turbines 

The objective of PM is to replace components and refurbish systems that have defined 

useful lives, usually much shorter than the projected life of the turbine. Tasks associated 

with scheduled maintenance fall into this category. These tasks include periodic 

inspections of the equipment, oil and filter changes, calibration and adjustment of sensors 

and actuators, and replacement of consumables such as brake pads and seals. 

Housekeeping and blade cleaning generally fall into this category. The specific tasks and 

their frequency are usually explicitly defined in the maintenance manuals supplied by the 

turbine manufacturer. Costs associated with planned maintenance can be estimated with 

reasonable accuracy, but can vary with local labor costs and the location and accessibility 

of the site. Scheduled maintenance costs are also dependent on the type and cost of 

consumables used. 
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2.5.2 Unscheduled (Failure Related) Maintenance of wind turbines 

A certain amount of unscheduled maintenance must be anticipated with any project. 

Commercial wind turbines contain a variety of complex systems that must all function 

correctly for the turbine to perform; rarely are redundant components or systems 

incorporated. Failure or malfunction of a minor component will frequently shut down the 

turbine and require the attention of maintenance personnel. 

Unscheduled costs can be separated into direct and indirect costs. The direct costs are 

associated with the labor and equipment required to repair or replace, with the component 

costs themselves, and with any consumables used in the process. The indirect costs result 

from lost revenue due to turbine downtime. 

Labor costs are driven by the difficulty of accessing and working on the components. 

With the exception of some switchgear and power conversion equipment, most the 

turbine equipment is accessed by climbing the tower. For safety reasons, a two-person 

crew is generally required for any up-tower activity. In remote locations, access to the 

turbine itself may be difficult and limited by weather. Working conditions can be in 

extreme temperature conditions and may be curtailed by high winds. Some turbines are 

equipped with hoists and rigging equipment, but in general, all tools and equipment, in 

addition to spares, must be lifted into the nacelle. Space is limited inside the nacelle and 

working positions may be awkward. Work outside of the nacelle, including transitions 

into the hub on some turbines, requires working with a safety harness and lanyards [73]. 

A good source for reliability information is the renowned reliability expert Paul 

Barringer, who has developed a Weibull reliability database for failure data for various 
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components, available on his websites (http://www.barringer1.com/) as a service to 

reliability engineers. This database lists components that are also found in wind turbines 

including roller bearings, gears, lubrications pumps, couplings, gaskets, circuit breakers, 

AC motors, and synthetic lubrications oils that all have typical Weibull characteristic life 

in the 50,000 to 100,000 hours [74]. 

2.5.3 Operation and Maintenance Costs of Wind Generated Power 

The industry-wide accepted turbine lifetime is 20 years (Due to the relative infancy of the 

wind energy industry, there are only a few turbines that have reached their life 

expectancy of 20 years). Thus, the reliability of a turbine is the percentage of time 

(probability) that turbine will be functioning at full capacity (intended function) during 

appropriate wind conditions at a site with specified wind resource characterization (stated 

conditions) for a 20-year life (time). 

 

 

 

 

 

 

 

Figure 4. Wind Turbine Bathtub Curve [75] 

http://www.barringer1.com/
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In the wind turbine reliability, understanding and minimizing wind turbine operation and 

maintenance costs have been made through a number of studies. The annual O&M cost is 

indicated in $/kWh as the plant age ranges from the first year of operation through year 

20 as shown in Figure 4. 

 

Figure 5. Total Operations and Maintenance Costs Increase with Age Due to Wear-

Out Related Failures [75] 

Operation and maintenance (O&M) costs constitute a sizeable share of the total annual 

costs of a wind turbine. For a new turbine, O&M costs may easily make up 20-25 per 

cent of the total levelised cost per kWh produced over the lifetime of the turbine. If the 

turbine is fairly new, the share may only be 10-15 per cent, but this may increase to at 

least 20-35 per cent by the end of the turbine‟s lifetime. As a result, O&M costs are 

attracting greater attention, as manufacturers attempt to lower these costs significantly by 

developing new turbine designs that require fewer regular service visits and less turbine 

downtime.  
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O&M costs are related to a limited number of cost components, including: 

 Insurance; 

 Regular maintenance; 

 Repair; 

 Spare parts, and 

 Administration. 

Some of these cost components can be estimated relatively easily. For insurance and 

regular maintenance, it is possible to obtain standard contracts covering a considerable 

share of the wind turbine‟s total lifetime. Conversely, costs for repair and related spare 

parts are much more difficult to predict. And although all cost components tend to 

increase as the turbine gets older, costs for repair and spare parts are particularly 

influenced by turbine age; starting low and increasing over time [75]. 

More simply, the Electric Power Research Institute (EPRI) has detailed case studies in 

the electric power industry and has shown that reactive maintenance (running the 

machine until it fails) is the least effective and the most costly approach to power 

generation equipment maintenance. EPRI's comparative maintenance costs are listed 

below: 

 Reactive maintenance (run to failure) costs $17.00 USD per horsepower per year 

(This is the baseline.) 
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 PM (scheduled maintenance according to the manufacturer's recommendations) 

costs $24.00 USD per horsepower per year (a savings of 24 percent compared to 

reactive maintenance) 

 Predictive maintenance (using condition monitoring to predict maintenance 

needs) costs $9.00 USD per horsepower per year (a savings of 47 percent 

compared to reactive maintenance) 

If turbine components are allowed to run to failure, the overall energy production is 

significantly decreased due to unscheduled downtime. At the same time, the cost of 

rushed parts and crane operations, as well as collateral damage caused by the failing 

component leading to additional damage, further increases maintenance costs. Reactive 

maintenance costs are then significant cost increases far above the cost of predictive 

maintenance using an online condition monitoring system. The condition monitoring 

system‟s function is to continuously monitor components and predict mechanical 

problems, enabling operators to schedule maintenance and avoid catastrophic failures. 

2.5.4 Gearbox 

According to the gearbox's reputation for a high failure rate, one of the biggest concerns 

remaining in the wind industry is the reliability of the gearbox. Gearboxes in WTs are 

used to increase the speed from the main shaft to the generator shaft, which turns at 1500 

rpm (with mains frequency 50 Hz) for conventional generators. The gearbox is one of the 

heaviest and most expensive components in a WT. In this context, it is unfortunate that 

under dimensioned gearboxes have had a large part in WT failures. The reason for under-
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dimensioned gearboxes can be that the gearbox manufacturers do not fully understand the 

operating conditions. 

Indeed, gearbox failures are regarded as one of the most serious breakdown causes in a 

wind turbine for two reasons. Firstly, because of the high cost of repairing or replacing 

the gearbox and, secondly, because of the resulting downtime. Replacing a wind turbine 

gearbox involves primarily the gearbox cost itself, which typically represents around 10% 

of the total wind turbine cost. On top of this expense, must be added its transportation to 

site, crane rental and mobilization cost, and the man-hours spent on the replacement. It 

means that the value can quickly reach about €200,000 – €500,000, depending on the 

turbine size and the wind farm's location. 

A gearbox failure typically causes two to three times more downtime than any other 

component failure. In general, a gearbox replacement takes about a week, assuming that 

the required spare gearbox is available. Customers may have invested in a few spare 

gearboxes to handle isolated failure cases, but mobilizing the cash to keep spares in 

inventories for a complete fleet of wind turbines approaching the critical '7 – 11 year' 

milestone will be a challenge of a different magnitude for wind farm owners. This 

uncertainty therefore adds to the gearbox replacement cost a significant unavailability 

risk that is difficult to assess and include in wind farm business plans. 

Gearboxes are built up of shafts, gears, bearings and seals, mounted in a metal cover. The 

weight of the gearbox increases dramatically in relation to the rated power of the WT. 

The main load a gearbox has to handle is torque of the rotor. This load is sometimes 

constant and sometimes fluctuating. It also suffers loads from the generator when starting 
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up. These loads mainly affect bearings, gear teeth and seals, causing them to fail. To 

minimize fatigue of gearbox parts, a functional and efficient lubrication system is highly 

relevant [76]. A problem with the gearbox is that even if it is only a small cog breaking. 

The whole system needs to be cleaned out and thoroughly tested. Faults with gearboxes 

are primarily discovered within the first two years of operation. If a gearbox last the first 

two years it is likely that it will last for many years.  

 

2.6 Positioning of the study in cited literature 

Although the modeling concept of this work is new, four of the studies in the literature 

discussed up to this point are closer to this study than the others in terms of its modeling 

aspects ([65][66][67][68]). They developed a computational methodology to obtain a 

Stackelberg - Nash solution for a hierarchical game via genetic algorithm. It should be 

mentioned that these studies considered fixed roles for players (leader and follower). This 

thesis tries to look upon the probabilities of being leader for each of the operators rather 

than having fixed roles, so two cases based on cooperative game concept and joint 

optimization will be proposed. The proposed model can be used for various problems in 

industry, wherever there is a competition on resource allocation. 
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CHAPTER III 

 

 

 

3 Optimization Model 

3.5 Introduction 

This chapter describes the goals that this research seeks to accomplish.  We will present a 

novel model for maintenance policy evaluation based upon a game theoretic model and 

optimize the proposed model by backward induction and Genetic Algorithm methods and 

compare the results.  

The goal of this thesis is to introduce a joint maintenance decision-making mechanism 

for the two operators that minimize the average of the expected operational costs. In fact, 

these two operators should compete with each other on ordering the gearbox in the best 

time that minimizes the total cost.   

As the optimization methodology, at first, the common method for solving Stackelberg 

game problems, backward induction, has been conducted to find the optimal PM and 

ordering times. Then, genetic algorithm for a multi objective model is utilized and the 

results are compared with each other. The effectiveness of the approach is presented 

through the use of numerical examples.  
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3.6 Problem Statement  

3.2.1 Assumptions and overview 

The following assumptions are considered. 

Assumptions: 

Two repairable systems are considered, which are operated by two individual operators. 

Each system requires one unit of a specific type of component for being operable. When 

the two systems are working, both units are operational and subject to failures.  

Without loss of generality, the Weibull distribution is assumed for the RUL of each aging 

unit (with an increasing failure rate). For the Weibull distribution, the associate reliability 

function at time t can be expressed as 

R (t) =  
 .

 

 
/
 

,                                                        (1) 

where   is the shape parameter and   is the scale parameter. This can be justified by 

considering a degradation process  ( ), which after an appropriate transformation  ( ) 

can be expressed as  ( )   ( ( ))           , where    is a constant, and   

follows the reciprocal Weibull distribution with probability density function: 

 ( )      
           [ .

 

  
/
   
]         , 

with parameters    and   . It can be shown that the corresponding failure time of  ( ) 

for a predetermined failure threshold       follows the Weibull distribution with 

probability density function    (  )  
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, where      and   
     

  
. 

There is only one supplier who makes the service part for the two operators, and a make-

to-order (MTO) strategy is implemented by the supplier.  
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There are two causes of downtime: failure replacement and preventative replacement. 

Each unit will be maintained after time Ti, and the system is good-as-new after corrective 

replacement or preventive replacement. When a failure occurs, the failed unit is replaced 

by a ready-for-use part from the temporary storage. If the part required for replacement is 

not available at the storage, an order must be placed and the replenishment takes τ1 days. 

We suppose when a failure occurs, the operator will replace the failed part with a new 

one. It will take τ3 days to diagnose and replace the part. The time needed to perform a 

preventive replacement at a fix interval of Ti is τ2 days.  

We consider a leader-follower relationship between these two operators. The assumption 

which we make for this problem is that for a new part, its failure-free time period >> τ1 

(i.e., the operators will not compete again before the operator, who lost in the previous 

competition, eventually receives the needed part). First, like regular cases, we consider 

fixed roles, which means that one of the operators is always the leader and the other one 

is always the follower. We will optimize the Stackelberg game model by backward 

induction. Second, we will consider the possible probabilities for each of these operators 

to be leader and decide first and solve this new model by computing the Stackelberg 

solution with the GA. Our algorithm uses a weighted sum and an expected sum (based on 

the RULs of units) of multiple objectives as fitness functions. The fitness function is 

utilized when a pair of parent solutions is selected for generating a new solution by 

crossover and mutation operations. 
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3.2.2  Acronyms and notation 

RUL            remaining useful life 

MTO   make-to-order 

ETRC   expected total replacement cost 

τ1    replenishment lead time under MTO 

τ2    time needed to perform preventive replacement 

τ3    time needed to perform corrective replacement (τ3 > τ2)        

Co    regular ordering cost 

M    extra charge for bidding on a part 

     ( )  failure downtime cost for Operator k 

  (     ( )     ) indicator function 

{                                          (          ( )     )

          
    

  ( )           probability density function of RUL of the unit owned by Operator         

j 

  ( )             cumulative distribution function of RUL of the unit owned by 

Operator j        

  (  )              objective function of Operator j 

               weight assigned to the objective function of Operator j 

     probability for Operator j to be the leader 

  ( )   unit downtime cost due to preventive replacement for Operator j 

  ( )    unit downtime cost due to a failure for Operator j                                  
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  ( )   unit holding cost for Operator j 

         time to perform preventive replacement for Operator j 

   ( )    time to order a service part for Operator j 

  ( )                            random failure time of the unit being used by Operator j 

 (  ( )      ( )    ) indicator function    

2
                                                               
          

     

3.2.3  Decision: Pay more or wait 

Without loss of generality, let Operator j be the leader and Operator k be the follower. We 

define the following indicator functions first: 

 (  ( )       ( )    )   

    =  2
                                                               
          

 

and   (      ( )     ) = 

{                                          (          ( )     )

          
 

To explain possible cases, let j=2 and k=1 for example. In Fig. 2, the two diagrams at the 

top show the two possible situations for the operators. The left diagram depicts the case 

in which   ( )-  ( )is less than replenishment lead time. In this case, there is a 

competition between these two operators to achieve the service part. If the downtime cost 

      ( ) is greater than the extra charge (M), Operator 1 will pay Co+M to get the part 

(i.e.,   (      ( )     )   ). Otherwise, it is not beneficial for Operator 1 to pay the 
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extra for bidding on the part and he/she would prefer to wait and pay the downtime cost 

(i.e.,   (      ( )     )   ). The right diagram depicts the case where   ( )-  ( ) is not 

less than replenishment lead time. In this case, there is no interference between their 

ordering times, so the lead operator will first order the service part and the follower 

operator can order another one after that without any competition. 

 

Figure 6. Decision: Pay more or wait 

 

3.2.4 Waiting times for getting a part 

Considering an MTO strategy, whenever the leader places an order and if the order is not 

interrupted by the follower, the leader has to wait for τ1 days to get the part. In Fig. 3, the 

upper diagram shows that if Operator 1 decides to bid on the service part (δ1=1), he/she 

should wait for τ1 days until the blue triangle, and Operator 2 should wait for   ( )-

  ( )+2τ1 days to receive the part (yellow circle). In case Operator 1 doesn‟t tend to pay 

more on the service part, he/she should wait for   ( )-  ( )+ 2τ1 days (green triangle), and 

Yes

Competition

if Failure Downtime Cost > Extra Charge

Operator 1 pays Co and extra 

charge M to take the part

No

NoYes

No competition at all, and both are happy

No competition 

and let Operator 2 take the part

TO(1)-TO(2) < τ1

τ1

TO(2) TO(1)

If Opr 1 bid If Opr 1 not bid

τ1τ1τ1

τ1

TO(2) TO(1)

τ1

0 0
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Operator 2 will receive the part after τ1 days (red circle). The other diagram depicts the 

case in which there is no competition between the two operators and each of them should 

wait for τ1 days to receive the part (Fig. 3). 

 

Figure 7. Waiting times before receiving a part 

 

3.2.5 Cost functions for Operator j (leader) 

The actual waiting time for Operator j can be expressed as: 

  ( )=  (  ( )     ( )    ),   (     ( ) >  )   max ( 1 +   ( )     ( )
 
, 0) + τ1] 

 (   (  ( )    ( )    ) ) τ1                    (2)    

By taking into account the preventive replacement downtime cost, holding cost, and 

regular ordering cost for the service part, the total preventive replacement cost for 

Operator j is given by:  

         ( )=   ( )(max (  ( )+  ( )-  , 0) + τ2) +   ( )(max (  -   ( )-  ( ), 0)) + Co         (3) 

TO(1) - TO(2) < τ1

   

                                

                                          j         
 
           

                                                     
 
             

                            
    

TO(1) - TO(2)≥ τ1

No competition at all, and both are happy    j  

τ1

TO(2) TO(1)

If Opr 1 bid If Opr 1 not bid

τ1τ1τ1

τ1

TO(2) TO(1)

τ1

0

0



 

 48 

Likewise, considering the failure replacement downtime cost along with others, the total 

corrective replacement cost is:  

    ( )=   ( )(max (  ( )+  ( )-  ( ), 0) + τ3) +   ( )(max (  ( )-  ( )-  ( ), 0)) + Co       (4)        

3.2.6 Cost functions for Operator k (follower) 

The actual waiting time for Operator k is given by: 

  ( )=  (  ( )     ( )    )[(1-  (     ( ) > M))  max (τ1+   ( ) -   ( ), 0) + τ1] 

 +(   (  ( )    ( )    ) )  τ1                  (5)     

In this problem we have: 

                                   ( ) =   ( )(max (  ( )+  ( )-  ( ), 0) + τ3)                                    (6) 

Therefore, the total preventive replacement cost can be expressed as:  

  ( )=   ( )(max (  ( )+  ( )-   , 0) + τ2) +  ( )(max (  -   ( )-  ( ), 0)) 

        +Co+   (     ( )>M) M                                 (7)    

and the total corrective replacement cost is:  

            ( )=      ( ) +   ( )(max (  ( )-  ( )-  ( ), 0)) +Co+   (     ( )>M) M          (8)    

3.2.7 Decision-making criterion 

Considering both preventive replacement and corrective replacement, the expected total 

replacement cost (ETRC) for each operator can be expressed as: 

ETRCi(   ,   ( ))  [                         ]    ( )  (  )  ∫   ( )  (  ( ))   ( )
  
 

, 

=   ( )  (  )  ∫   ( ) 
  
 

 

 
.
  ( )

 
/
   

 
 (
  ( )

 
)
 

   ( )               i =1, 2                (9)    

where   (  ) is the reliability function of the Weibull distribution given in Eq. (1), and 
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 (  ( ))   
   (  ( ))

   ( )
 is the corresponding probability density function. 

3.3 Three scenarios of competition 

3.3.1  Hierarchical game: Stackelberg equilibrium (with fix-leader and fix-follower 

roles) 

Originally Stackelberg game is a model for a leader-follower game in which two players 

act sequentially such that the first player (the leader) chooses her strategy and the other 

player (the follower) reacts rationally to that strategy. Any player is assumed to minimize 

her own payoff function corresponding to a cost function. 

We consider the following basic assumptions for the game:  

1. Perfect information: Each player has perfect information about the other‟s actions and 

strategy. 

2. Rationality: Both players act optimally. 

3. Determinism: Each player chooses deterministically among alternative optima. 

For each strategy proposed by the leader, the follower has in fact to determine a strategy 

that minimizes his/her objective function until equilibrium is found when the leader has 

also minimized his/her objective function. In mathematical terms: 

(x
*
,y

*
)   A B is Stackelberg equilibrium if and only if: 

     fA (x
*
,y

*
) = inf ΠA(x,Y)          x                                                   (10)    

Y = min ΠB(x,y)               y                                                   (11)    
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3.3.1.a  Backward induction 

For solving this game theory problem we can find Y from Backward Induction method, 

which works as follows: since the leader will make the first move she knows that a 

rational follower will react by minimizing her payoff. The leader takes that into account 

before making the first move.  

For solving the problem by using backward induction we should start from the follower‟s 

problem. First the fixed leader (say Operator 1) bid on the component and propose a price 

for that, then Operator 2 which is the follower with regard to the probability of failure 

time and preventive time and holding cost, will decide whether she wants to pay more 

and add extra M $ to the proposed price by the leader and attain the part or she prefers to 

not compete at that time. So first we suppose the follower knows the bidding cost and 

ordering time of the leader and optimize the follower cost function. Then we will 

substitute the optimum solutions for the follower in the leader‟s objective function to find 

the Nash Equilibrium.  

3.3.2  Hierarchical Stackelberg-Nash using GA 

Because of the computational complexity of dynamic programming to solve real large-

scale problems and its weakness to solve such problems in a reasonable time, we apply a 

heuristic method to tackle the problem. This part presents a multi objective optimization 

model to find the optimal PM and replacement schedule. The obtained results from this 

approach will then compare to the results obtained from backward induction method. 

Stackelberg solution is a hierarchical solution concept, so finding a Stackelberg solution 
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requires solving a hierarchical optimization problem. One possible heuristic for solving 

the problem is the GA that is suitable for solving complex optimization problems and, 

particularly, bi-objective programming problems. The GA is implemented in the two-

player incentive Stackelberg game problem through the following procedure: 

1. Calculation of (  
 ,   ( )

 ), (the initial population for the players is provided with a 

random seeding in the leader‟s strategy space). 

2. Choice of a population of K incentives (λ1,…, λK) (note: λ is the player‟s strategy) 

3. For i = 1 to K 

 The leader announces an incentive strategy λi. 

 The follower reacts to minimize his/her own cost function. 

 The leader performs his/her strategy. 

 The fitness of the incentive strategy λi is evaluated.  

 4. A new generation of solutions is created using the genetic operators. 

 5. Go to Step 2 and start of a new round if the termination condition is not met. 

In this paper, we consider the probability for each of the operators to be the leader. This 

is accomplished by introducing a weight or distance into the fitness function. There are 

two general approaches to multiple-objective optimization. One is to combine the 

individual objective functions into a single composite function. Determination of a single 

objective is possible with methods such as utility theory, weighted sum method, etc., but 

the problem lies in the correct selection of the weights or utility functions to characterize 

the decision-makers preferences. In practice, it can be difficult to precisely and accurately 

select these weights. The second general approach is to determine an entire Pareto 
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optimal solution set or a representative subset. A Pareto optimal set is a set of solutions 

that are non-dominated with respect to each other. While moving from one Pareto 

solution to another, there is always a certain amount of sacrifice in one objective to 

achieve a certain amount of gain in the other. Pareto optimal solution sets are often 

preferred to single solutions because they can be practical when considering real-life 

problems, since the final solution of the decision maker is always a trade-off between 

crucial parameters. Pareto optimal sets can be of varied sizes, and the size of Pareto set 

increases with the increase in the number of objectives. 

3.2.2.a  Joint decision-making considering priority  

Weighted sum approach 

The classical approach to solve a multi objective optimization problem is to assign a 

weight wi to each normalized objective function so that the problem is converted to a 

single objective problem with a scalar objective function as follows: 

Fitness = w1Π1(X) + w2 Π 2(X) +…+ wm Π m(X)                                       (12)    

where w1,w2,…,wm are nonnegative weights such that w1+w2+…+wm=1, W = 

(w1,w2,…,wm) is a weight vector, and X is the vector of decision variables. 

This approach is called a priori approach since the user is expected to provide the 

weights. If multiple solutions are desired, the problem should be solved multiple times 

with different weight combinations. The main difficulty with this approach is selecting a 

weight vector for each run. 

In our codes, in order to show the probability of being leader we consider different 
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combinations of weights for the cost function. As the fitness function is equal to a 

weighted sum of respective objective functions, it will be dominated by the objective 

function assigned with a larger weight (i.e., if a fitness function is equal to a weighted 

sum of objective functions, it may be dominated by the objective functions with larger 

weights). 

The fitness function (overall objective function) can be expressed as: 

                           JP (  ,   ( )) = w1Π1 (  ,   ( )) + w2Π2 (  ,   ( ))                              (13) 

3.2.2.b Game with random leader-follower relationship 

The overall objective function can be formulated as: 

            JR = p1 (Π1 (  ,   ( )) + Π2 (  ,   ( ))) + p2 (Π1 (  ,   ( )) + Π2 (  ,   ( )))     (14)                

where p1 is the probability for Operator 1 to be the leader, for which p1+p2 = 1. We 

assume that: 

pj = 

 

 ,    -

 

 ,    -
 

 

 ,    -
 
 = 

 ,    -

 ,    -  ,    -
                                            (15)    

where E[RULj] is the expected RUL of the unit owned by Operator j: 

E[RULj]  =    Г ( 
 

  
 + 1)                                                         (16)    

in which Г(n) = ∫    
 

 
      dx is the gamma function.  
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3.4  Genetic Algorithm options 

There are two ways to specify options for the genetic algorithm. We can write the codes 

in command line or use the optimization tool (optimtool). In this thesis, we directly use 

the optimization tool. In problem setup and results section, we should define our fitness 

function, number of variables and constraints. For fitness function simply we call our 

fitness weighted sum fitness function in the main code (@fitness).  

In the right section of the page we can specify the options for the genetic algorithm code.  

3.4.1 Population Options 

In this section we can specify the data type of the input to the fitness function. You can 

set Population type to be one of the following: 

 Double Vector: Use this option if the individuals in the population have type 

double. This is the default. 

 Bit string: Use this option if the individuals in the population are bit strings. 

 Custom: Use this option to create a population whose data type is neither of the 

preceding. If you use a custom population type, you must write your own 

creation, mutation, and crossover functions that accept inputs of that population 

type. 

Population size 

It specifies how many individuals there are in each generation. With a large population 

size, the genetic algorithm searches the solution space more thoroughly, thereby reducing 
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the chance that the algorithm will return a local minimum that is not a global minimum. 

However, a large population size also causes the algorithm to run more slowly. 

 

Creation function 

In this part we can specify the function that creates the initial population for ga. You can 

choose from the following functions: 

 Uniform: creates a random initial population with a uniform distribution. This is 

the default if there are no constraints or bound constraints. 

 Feasible population: creates a random initial population that satisfies all bounds 

and linear constraints. It is biased to create individuals that are on the boundaries 

of the constraints, and to create well-dispersed populations. This is the default if 

there are linear constraints. 

 Custom: enables you to write your own creation function, which must generate 

data of the type that you specify in Population type.  

Initial population 

This part specifies an initial population for the genetic algorithm. The default value is [], 

in which case ga uses the default Creation function to create an initial population. If you 

enter a nonempty array in the Initial population field, the array must have no more than 

Population size rows, and exactly Number of variables columns. In this case, the genetic 

algorithm calls a Creation function to generate the remaining individuals, if required. 
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Initial scores 

We can specify initial scores for the initial population. The initial scores can also be 

partial. 

 

Initial range 

It specifies the range of the vectors in the initial population that is generated by a creation 

function. You can set Initial range to be a matrix with two rows and Number of variables 

columns, each column of which has the form [lb; ub], where lb is the lower bound and ub 

is the upper bound for the entries in that coordinate. If you specify Initial range to be a 2-

by-1 vector, each entry is expanded to a constant row of length Number of variables. 

3.4.2 Fitness Scaling Options 

Fitness scaling converts the raw fitness scores that are returned by the fitness function to 

values in a range that is suitable for the selection function. You can specify options for 

fitness scaling in the Fitness scaling pane. 

Scaling function: specifies the function that performs the scaling. The options are: 

 Rank: The default fitness scaling function, Rank, scales the raw scores based on 

the rank of each individual instead of its score. The rank of an individual is its 

position in the sorted scores. An individual with rank r has scaled score 

proportional to. So the scaled score of the most fit individual is proportional to 1, 

the scaled score of the next most fit is proportional to, and so on. Rank fitness 

scaling removes the effect of the spread of the raw scores. The square root makes 

poorly ranked individuals more nearly equal in score, compared to rank scoring.  
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 Proportional: Proportional scaling makes the scaled value of an individual 

proportional to its raw fitness score.  

 Top: Top scaling scales the top individuals equally. Selecting Top displays an 

additional field, Quantity, which specifies the number of individuals that are 

assigned positive scaled values. Quantity can be an integer between 1 and the 

population size or a fraction between 0 and 1 specifying a fraction of the 

population size. The default value is 0.4. Each of the individuals that produce 

offspring is assigned an equal scaled value, while the rest are assigned the value 0. 

The scaled values have the form [01/n 1/n 0 0 1/n 0 0 1/n ...]. 

3.4.3 Selection Options 

Selection options specify how the genetic algorithm chooses parents for the next 

generation. You can specify the function the algorithm uses in the Selection function field 

in the Selection options pane. The options are: 

 Stochastic uniform: The default selection function, stochastic uniform, lays out a 

line in which each parent corresponds to a section of the line of length 

proportional to its scaled value. The algorithm moves along the line in steps of 

equal size. At each step, the algorithm allocates a parent from the section it lands 

on. The first step is a uniform random number less than the step size. 

 Remainder: Remainder selection assigns parents deterministically from the 

integer part of each individual's scaled value and then uses roulette selection on 

the remaining fractional part. For example, if the scaled value of an individual is 

2.3, that individual is listed twice as a parent because the integer part is 2. After 
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parents have been assigned according to the integer parts of the scaled values, the 

rest of the parents are chosen stochastically. The probability that a parent is 

chosen in this step is proportional to the fractional part of its scaled value. 

 Uniform: Uniform selection chooses parents using the expectations and number 

of parents. Uniform selection is useful for debugging and testing, but is not a very 

effective search strategy. 

 Roulette: Roulette selection chooses parents by simulating a roulette wheel, in 

which the area of the section of the wheel corresponding to an individual is 

proportional to the individual's expectation. The algorithm uses a random number 

to select one of the sections with a probability equal to its area. 

 Tournament: Tournament selection chooses each parent by choosing Tournament 

size players at random and then choosing the best individual out of that set to be a 

parent. Tournament size must be at least 2. The default value of Tournament size 

is 4. 

3.4.4 Reproduction Options 

Reproduction options specify how the genetic algorithm creates children for the next 

generation: 

 Elite count: specifies the number of individuals that are guaranteed to survive to 

the next generation. We should set Elite count to be a positive integer less than or 

equal to the population size. The default value is 2. 

 Crossover fraction: specifies the fraction of the next generation, other than elite 

children, that are produced by crossover. Set Crossover fraction to be a fraction 
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between 0 and 1, either by entering the fraction in the text box or moving the 

slider. The default value is 0.8. 

3.4.5 Mutation Options 

Mutation options specify how the genetic algorithm makes small random changes in the 

individuals in the population to create mutation children. Mutation provides genetic 

diversity and enables the genetic algorithm to search a broader space. You can specify the 

mutation function in the Mutation function field in the Mutation options pane. You can 

choose from the following functions: 

 Gaussian: The default mutation function, Gaussian, adds a random number taken 

from a Gaussian distribution with mean 0 to each entry of the parent vector. The 

standard deviation of this distribution is determined by the parameters Scale and 

Shrink, which are displayed when you select Gaussian, and by the Initial range 

setting in the Population options.  

 The Scale parameter determines the standard deviation at the first generation.  

 The Shrink parameter controls how the standard deviation shrinks as 

generations go by.  

 Uniform: Uniform mutation is a two-step process. First, the algorithm selects a 

fraction of the vector entries of an individual for mutation, where each entry has a 

probability Rate of being mutated. The default value of Rate is 0.01. In the second 

step, the algorithm replaces each selected entry by a random number selected 

uniformly from the range for that entry. 
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 Adaptive Feasible: randomly generates directions that are adaptive with respect to 

the last successful or unsuccessful generation. The feasible region is bounded by 

the constraints and inequality constraints. A step length is chosen along each 

direction so that linear constraints and bounds are satisfied. 

 Custom enables you to write your own mutation function.  

3.4.6 Crossover Options 

Crossover options specify how the genetic algorithm combines two individuals, or 

parents, to form a crossover child for the next generation. 

The following functions are provided in the toolbox: 

 Scattered: the default crossover function, creates a random binary vector and 

selects the genes where the vector is a 1 from the first parent, and the genes where 

the vector is a 0 from the second parent, and combines the genes to form the child.  

 Single point: chooses a random integer n between 1 and Number of variables and 

then  

 Selects vector entries numbered less than or equal to n from the first parent. 

 Selects vector entries numbered greater than n from the second parent. 

 Concatenates these entries to form a child vector.  

 Two points: selects two random integers m and n between 1 and Number of 

variables. The function selects  

 Vector entries numbered less than or equal to m from the first parent 

 Vector entries numbered from m+1 to n, inclusive, from the second parent 

 Vector entries numbered greater than n from the first parent.  
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 Intermediate: creates children by taking a weighted average of the parents. You 

can specify the weights by a single parameter, Ratio, which can be a scalar or a 

row vector of length Number of variables. The default is a vector of all 1's. The 

function creates the child from parent1 and parent2 using the following formula. 

 Heuristic: returns a child that lies on the line containing the two parents, a small 

distance away from the parent with the better fitness value in the direction away 

from the parent with the worse fitness value. You can specify how far the child is 

from the better parent by the parameter Ratio, which appears when you select 

Heuristic. The default value of Ratio is 1.2. If parent1 and parent2 are the parents, 

and parent1 has the better fitness value, the function returns the child 

 Arithmetic: creates children that are the weighted arithmetic mean of two parents. 

Children are always feasible with respect to linear constraints and bounds. 

 Custom enables you to write your own crossover function.  

Mutation and Crossover 

The genetic algorithm uses the individuals in the current generation to create the children 

that make up the next generation. Besides elite children, which correspond to the 

individuals in the current generation with the best fitness values, the algorithm creates: 

 Crossover children by selecting vector entries, or genes, from a pair of individuals 

in the current generation and combines them to form a child 

 Mutation children by applying random changes to a single individual in the 

current generation to create a child 
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Both processes are essential to the genetic algorithm. Crossover enables the algorithm to 

extract the best genes from different individuals and recombine them into potentially 

superior children. Mutation adds to the diversity of a population and thereby increases the 

likelihood that the algorithm will generate individuals with better fitness values. 

3.4.7 Stopping Criteria Options 

Stopping criteria determine what causes the algorithm to terminate. You can specify the 

following options: 

 Generations: Specifies the maximum number of iterations for the genetic 

algorithm to perform. The default is 100. 

 Time limit: Specifies the maximum time in seconds the genetic algorithm runs 

before stopping. 

 Fitness limit: The algorithm stops if the best fitness value is less than or equal to 

the value of Fitness limit. 

 Stall generations: The algorithm stops if the weighted average change in the 

fitness function value over Stall generations is less than Function tolerance. 

 Stall time limit: The algorithm stops if there is no improvement in the best fitness 

value for an interval of time in seconds specified by Stall time. 

 Function tolerance: The algorithm runs until the cumulative change in the fitness 

function value over Stall generations is less than or equal to Function Tolerance. 

 Nonlinear constraint tolerance: The Nonlinear constraint tolerance is not used as 

stopping criterion. It is used to determine the feasibility with respect to nonlinear 

constraints. 
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3.4.8 Plot function 

Plot options enable us to plot data from the genetic algorithm while it is running. When 

you select plot functions and run the genetic algorithm, a plot window displays the plots 

on separate axes. You can select any of the following plot functions in the Plot functions 

pane: 

 Best fitness: plots the best function value versus generation. 

 Expectation: plots the expected number of children versus the raw scores at each 

generation. 

 Score diversity: plots a histogram of the scores at each generation. 

 Stopping: plots stopping criteria levels. 

 Best individual: plots the vector entries of the individual with the best fitness 

function value in each generation. 

 Genealogy: plots the genealogy of individuals. Lines from one generation to the 

next are color-coded as follows: 

  Red lines indicate mutation children. 

  Blue lines indicate crossover children. 

  Black lines indicate elite individuals. 

 Scores: plots the scores of the individuals at each generation. 

 Max constraint: plots the maximum nonlinear constraint violation at each 

generation. 
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 Distance: plots the average distance between individuals at each generation. 

 Range: plots the minimum, maximum, and mean fitness function values in each 

generation. 

 Selection: plots a histogram of the parents 

Differences between gamultiobj and ga: 

The syntax and options for gamultiobj are similar to those for ga, with the following 

differences: 

 gamultiobj does not have nonlinear constraints, so its syntax has fewer inputs. 

 gamultiobj takes an option DistanceMeasureFcn, a function that assigns a distance 

measure to each individual with respect to its neighbors. 

 gamultiobj takes an option ParetoFraction, a number between 0 and 1 that 

specifies the fraction of the population on the best Pareto frontier to be kept 

during the optimization. If there is only one Pareto frontier, this option is ignored. 

 gamultiobj uses only the Tournament selection function. 

 gamultiobj uses elite individuals differently than ga. It sorts noninferior 

individuals above inferior ones, so it uses elite individuals automatically. 

 gamultiobj has only one hybrid function, fgoalattain. 

 gamultiobj does not have a stall time limit. 

 gamultiobj has different plot functions available. 

 gamultiobj does not have a choice of scaling function. 
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CHAPTER IV 
 

 

 

4. Numerical Example     

Wind turbine industry has gained a remarkable stand in the US industry since the turn of 

the century. Studying the reliability of wind turbines is a critical factor in the success of 

related projects. The wind energy industry typically uses reactive maintenance approach 

or run-to-failure maintenance. This form of maintenance has been shown to be the most 

costly Operations and Maintenance (O&M) practice available to operators. 

According to the gearbox's reputation for a high failure rate, one of the biggest concerns 

remaining in the wind industry is the reliability of the gearbox. In this work, The Weibull 

distribution was chosen due to the good representation provided for components under 

aging effects (increasing failure rate). 

Prognostics and timely maintenance of components are critical to the continuing 

operation of a wind farm. To maximize the power generation of the wind farm, limited 

maintenance resources with uncertainty must be appropriately dealt with based on the 

current health status of wind turbines. This numerical example will show the application 

of the proposed models for two gearboxes in two wind turbines. 

In order to illustrate the model numerically and the proposed solution procedure, we used 

data set presented in Table 1. The mathematics formulations fully coded in MATLAB 

7.12 was run on a Sony VAIO computer, with an Intel Pentium processor operating at 

2.30 GHz and 6 GB of RAM. In addition, we set the GA parameters as presented in Table 
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2. MATLAB Genetic Algorithm and direct search toolbox is used to obtain Pareto-

optimal solutions to this problem as well as to define the fitness functions.  

Table 1. Parameters for the the case 1 

 
η 

(year) 
Β 

M 

($) 

τ1 

(year) 

τ2 

(year) 

τ3 

(year) 

  ( )  

($/year) 

  ( )  

($/year) 

  ( )  

($/year) 

   

 ($) 

Gearbox 1 3 3 
10000 , 

2000 
2.08 0.41 0.83 12500 25000 5000 20000  

Gearbox 2 2.5 2.5 
10000 , 

2000 
2.08 0.41 0.83 12500 25000 5000 20000 

 

4.1 Computational results  

4.1.1 Case 1: Stackelberg game 

In this example, Because of the complexity of this decision-making problem, it is 

difficult, if not impossible, to foresee the behavior of objective functions. One viable tool 

for overcoming this challenge is the space-filling experimental design method that aids in 

getting information about the entire strategy space [77][78]. In particular, a Constrained 

Maximin Design [78] is used to select typical strategies that cover the leader‟s strategy 

space under the constraints on the decision variables. Such a sampling scheme maximizes 

the minimum distance between two design points. Let   
( )
 0   

( )
    
( )
1  

0   
( )
   ( )
( ) 1    *       +, be the n design points (i.e., the leader‟s strategies) within 

the leader‟s feasible strategy space A. These strategies can be determined by solving the 

following optimization problem:  
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                         Subject to             ‖  
( )
   

( )
‖
 
,   for all         

                                                    
( )
    

( )
, for all   *       +. 

In this example, twenty levels for each of    and   ( ) are considered. Fig. 5 shows the 

resulting design with K = 20 design points (    
 = 3.60555).  

Leader’s Strategy Space  discrete  

Maximin design to discretize the leader‟s strategy space 
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Figure 8. 20 levels for each decision variable 

 

Tables 1 and 2 show the results for two cases. In the first case (Table1) we assumed 

M=10000 and based on the calculations, in this case operator 1 (The follower) prefers to 

wait more and not to pay the extra M charge to take the part. This shows the downtime 

cost is not greater than M. In the second case (Table 2), We changed the value of M 

(M=2000) and optimized the players‟ objective functions again. In this case the 

downtime cost will be greater than M and the follower prefers to pay M extra dollors to 

take the part first. The red rectangular show the Nash Equilibrium solution of the game 

and no player can benefit by changing his or her strategy while the other player keep 

his/her unchanged 
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Table 2. Case1 Results (M=10000) 

Design point in 

the leader’s 

strategy space 

1 2 3 4 5 6 7 8 9 10 

   
( )
   

( )
 16 1 4 12 7 7 9 11 12 14 

   
( )
   ( )

( )
 1 1 4 1 1 6 9 6 11 14 

 
   
( ) 
(   
( )
    
( )
)

   
( ) 

 
18 14 20 18 18 20 20 20 20 20 

   
( ) 
(   
( )
    
( )
)

   ( )
( ) 

 
4 4 11 4 4 11 11 11 15 15 

 he follo er’s 

objective* ($) 
8920 6727 1740 5576 5382 2528 2761 3094 3155 4431 

 he leader’s 

corresponding 

objective ($) 

8432 89352 123509 47414 90652 123946 105633 70948 67924 35217 

Design point in 

the leader’s 

strategy space 

11 12 13 14 

 

15 16 17 18 19 20 

   
( )
   

( )
 20 14 17 14 20 18 18 16 20 20 

   
( )
   ( )

( )
 1 8 17 4 11 4 8 11 15 20 

   
( ) 
(   
( )
    
( )
)

   
( ) 

 
18 20 20 20 20 20 20 20 20 - 

   
( ) 
(   
( )
    
( )
)

   ( )
( ) 

 
4 15 20 11 15 11 11 15 20 - 

 he follo er’s 

objective* ($) 
8727 2209 5578 3081 3342 2470 3944 4058 5669 - 

 he leader’s 

corresponding 

objective ($) 

1096 40858 14347 37503 1879 4815 5857 15384 2476 - 
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Table 3. Case1 Results (M=2000) 

Design point in 

the leader’s 

strategy space 

1 2 3 4 5 6 7 8 9 10 

   
( )
   

( )
 16 1 4 12 7 7 9 11 12 14 

   
( )
   ( )

( )
 1 1 4 1 1 6 9 6 11 14 

 
   
( ) 
(   
( )
    
( )
)

   
( ) 

 
18 18 20 18 18 20 20 20 20 20 

   
( ) 
(   
( )
    
( )
)

   ( )
( ) 

 
4 4 11 4 4 11 11 11 15 15 

 he follo er’s 

objective* ($) 
5839 5661 2906 5822 5911 2908 2875 2862 3668 3645 

 he leader’s 

corresponding 

objective ($) 

10720 89840 125570 41980 89380 121090 101380 73400 67900 37640 

 

Design point in 

the leader’s 

strategy space 

11 12 13 14 15 16 17 18 19 20 

   
( )
   

( )
 20 14 17 14 20 18 18 16 20 20 

   
( )
   ( )

( )
 1 8 17 4 11 4 8 11 15 20 

   
( ) 
(   
( )
    
( )
)

   
( ) 

 
18 20 20 20 20 20 20 20 20 - 

   
( ) 
(   
( )
    
( )
)

   ( )
( ) 

 
4 11 20 11 15 11 11 15 20 - 

 he follo er’s 

objective* ($) 
5775 2883 4664 2909 3588 2878 2941 3682 4699 - 

 he leader’s 

corresponding 

objective ($) 

12300 32540 13000 32540 2020 5650 5650 17460 2400 - 
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4.1.2 Selected options in Genetic Algorithm toolbox 

Population size  

The Population size field in population options determines the size of the population at 

each generation. Increasing the population size enables the genetic algorithm to search 

more points and thereby obtain a better result. However, the larger the population size, 

the longer the genetic algorithm takes to compute each generation. As the proposed 

model is complicated with lots of variables and it takes a long time to compute the 

integral parts, we determine this section by 10 individuals in each generation. 

Fitness Scaling 

Top scaling is used in this part because it restricts parents to the fittest individuals and 

creates less diverse populations than rank scaling which is the default option. 

Selection 

A more deterministic selection option is Remainder, which performs two steps: 

 In the first step, the function selects parents deterministically according to the 

integer part of the scaled value for each individual. For example, if an individual's 

scaled value is 2.3, the function selects that individual twice as a parent. 

 In the second step, the selection function selects additional parents using the 

fractional parts of the scaled values, as in stochastic uniform selection. The 

function lays out a line in sections, whose lengths are proportional to the 
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fractional part of the scaled value of the individuals, and moves along the line in 

equal steps to select the parents. 

Note that if the fractional parts of the scaled values all equal 0, as can occur 

using top scaling, the selection is entirely deterministic. 

The other parts are kept as the default.  

Table 4. Parameters for the the case 2 and 3 

 
η 

(year) 
Β 

M 

($) 

τ1 

(year) 

τ2 

(year) 

τ3 

(year) 

  ( )  

($/year) 

  ( )  

($/year) 

  ( )  

($/year) 

   

 ($) 

Gearbox 1 8 3 10000 0.013 0.0027 0.01 360000 720000 144000 20000  

Gearbox 2 7.7 2.5 10000 0.013 0.0027 0.01 360000 720000 144000 20000 

 

Table 5. Parameters of the Genetic Algorithm 

Parameter Value 

Number of generations 

Population size 

50 

10 

Scaling function 

Selection function 

Crossover function 

Top 

Remainder 

Intermediate 

 

4.1.3 Case 2: Joint decision-making considering priority 

As stated before weighted sum method is the most common approach to multi-objective 

optimization models. Minimizing of the joint objective function is sufficient for Pareto 

optimality [79]. We consider different combination of weights and run GA for weighted 

sum fitness function for the set of weights for both objective functions and achieved non-
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inferior solutions for the optimum PM time and ordering time are presented in Table 3. 

Up to the decision maker each of these combinations can be used. 

Table 6. Non-inferior solutions for different combinations of weights 

Weights Decision variables 
Objective 

function 

w1 w2 
  
  

(days) 

  
  

(days) 

  ( )
  

(days) 

  ( )
  

(days) 
  
  ($) 

0.1 0.9 307 283 281 255 31,585.51 

0.2 0.8 303 281 270 266 34,772.62 

0.3 0.7 284 230 240 193 24,285.87 

0.4 0.6 248 230 241 195 24,103.73 

0.6 0.4 303 317 193 225 26,261.99 

0.7 0.3 313 315 200 222 25,375.76 

0.8 0.2 314 328 259 262 27,098.98 

0.9 0.1 310 306 226 229 25,944.22 

 

4.1.4 Case 3: Game with random leader-follower relationship 

For case 3 we defined the formula for the remaining useful life time and the proportion of 

them as the Pi in our Matlab codes. By the use of Pi we converted multi objective 

optimization model to single-objective model. In this case each generation took about 2 

hours to be completed. The computed PM replacement time for operator 1 is after 344.92 

days and for Operator 2 is after 342.83 days. The best time to order the part for Operator 

1 is after 235.42 days and for Operator 2 is after 336.16 days. So this scenario 

recommends it‟s better for Operator1 to pay more and get the part before Operator 2. 

Although the preventive time for Operator 1 is after Operator 2 but based on the provided 

numbers Operator 1 should get the part first in order to prevent the downtime cost due to 

unexpected failures. Figs. 9 shows the Genetic Algorithm optimization process and the 

optimum solutions. Best fitness diagram plots the best function value versus 50 

http://www.mathworks.com/help/toolbox/gads/f6174dfi10.html
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generations. Best individual diagram plots the vector entries of the individual with the 

best fitness function value in each generation. Genealogy plots the genealogy of 

individuals. Lines from one generation to the next are color-coded as follows: 

 Red lines indicate mutation children. 

 Blue lines indicate crossover children. 

 Black lines indicate elite individuals (As the default for the number of elite 

children in each generation is 2 you see two black dots in each generation.) 

And Distance diagram plots the average distance between individuals at each generation. 

High values of distance show high diversity in population and vice versa.  

  

http://www.mathworks.com/help/toolbox/gads/f6174dfi10.html
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Figure 9. GA diagram for scenario 3  
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CHAPTER V  

 

 

5. Conclusions and Recommendations 

In this thesis, we presented a new approach based upon game theoretic models for PM 

and replacement scheduling of two competitive systems. These models seek to find the 

best time to ordering the service part and performing PM subject to minimizing the total 

cost. Three different cases were defined and utilized as the solution procedures to achieve 

the best non-inferior solutions (Pareto optimal solutions) and GA was utilized to solve the 

models. By analyzing the computational results of each algorithm with each fitness 

function, we could show the efficiency and effectiveness of algorithms and fitness 

functions. The developed models in this thesis can be applied in a wide variety of 

industries. In this work, the provided numerical example which is based on real numbers 

from wind turbine gearbox reliability databases will be considered as the application of 

developed model. Future work in this area is needed to investigate the models for n-

player games, single-leader multiple-follower Stackelberg game as well as other 

techniques to solve the optimization problem and estimating key model parameters. 
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APPENDIX  
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Matlab Codes 

Case 1:  

 

% Failure Function Parameters (Weibull Distribution) 

etta1=3;       %Scale parameter 

betta1=3;      %Shape parameter 

etta2=2.5; 

betta2=2.5; 

%-------------------------------------------------------------------------- 

M=2000;          %Extra charge for bidding on a part 

  

tao1=2.08;       %Time for replenishment 

tao2=0.41;      %Time to perform preventive maintenance 

tao3=0.83;        %Time to perform corrective replacement (tao3 > tao2)        

  

P1=12500;        %Unit downtime cost due to preventive maintenance ($ per day) 

P2=12500;  

C1=25000;        %Unit downtime cost due to a failure 

C2=25000;  

Ch1=5000;       %Unit holding cost 

Ch2=5000; 

co=20000;         %Regular ordering cost 

%-------------------------------------------------------------------------- 

% to1=1; 

% t1=4.5; 

% t2=0.25; 

% to2=0.25; 

load exam.txt 

t1=exam(:,1); 

t2=exam(:,1); 
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to1=exam(:,2); 

to2=exam(:,2); 

for ii=1:20 

    for jj=1:20 

         

%-------------------------------------------------------------------------- 

for i=1:500, 

tf1(i)=wblrnd(etta1,betta1,1,1); 

tf2(i)=wblrnd(etta2,betta2,1,1); 

%-------------------------------------------------------------------------- 

% RUL1=etta1*gamma(1/betta1 + 1);   %Remaining useful life 

% RUL2=etta2*gamma(1/betta2 + 1); 

%-------------------------------------------------------------------------- 

    

%if RUL2<RUL1     

if (to2(ii)<to1(jj)) && (to1(jj)-to2(ii)<tao1)     

    ro=1; 

    tw1=max(tao1+to2-to1(jj),0)+tao1;   

    dcost1=C1*(max(tw1+to1(jj)-tf1(i),0)+tao3);   

    if dcost1>M,           

        delta=1; 

    else                       

        delta=0; 

    end           

   

    tw1=ro*((1-delta)*max(tao1+to2(ii)-to1(jj),0)+tao1)+(1-ro)*tao1; 

    tw2=ro*(delta*max(tao1+to1(jj)-to2(ii),0)+tao1)+(1-ro)*tao1; 

%%%% 

    dcostp1=P1*(max(tw1+to1(jj)-t1(jj),0)+tao2); 

    hcostp1=Ch1*(max(t1(jj)-tw1-to1(jj),0)); 



 

 89 

    dcostu1=C1*(max(tw1+to1(jj)-tf1(i),0)+tao3);    

    hcostu1=Ch1*(max(tf1(i)-tw1-to1(jj),0)); 

  

    dcostp2=P2*(max(tw2+to2(ii)-t2(ii),0)+tao2); 

    hcostp2=Ch2*(max(t2(ii)-tw2-to2(ii),0)); 

    dcostu2=C2*(max(tw2+to2(ii)-tf2(i),0)+tao3);    

    hcostu2=Ch2*(max(tf2(i)-tw2-to2(ii),0)); 

  

    cp1=dcostp1+hcostp1+co+delta*M; 

    cu1=dcostu1+hcostu1+co+delta*M; 

    cp2=dcostp2+hcostp2+co; 

    cu2=dcostu2+hcostu2+co; 

     

  

  %------------------------------------------------------------------------ 

  

  

 X1(i)= cp2*(exp(-(t2(ii)/etta2)^betta2))+ cu2*((betta2/etta2)*(t2(ii)/etta2)^(betta2-

1)*exp(-(t2(ii)/etta2)^betta2)); 

   

 Y1(i)= cp1*(exp(-(t1(jj)/etta1)^betta1))+cu1*((betta1/etta1)*(t1(jj)/etta1)^(betta1-

1)*exp(-(t1(jj)/etta1)^betta1)); 

 else 

     X1(i)=inf; 

     Y1(i)=inf; 

 end 

  

  

end 

X(ii,jj)=mean(X1); 
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Y(ii,jj)=mean(Y1); 

    end 

end 

X 

Y 

  

  

 

Case 2: 

%Fitness Function for both Objective Functions 

  

function fcombined = fitness2(x) 

% x = [t1 t2 to1 to2]; 

  

t1 = x(1);       %Preventive time of gearbox 1 

t2 = x(2);       %Preventive time of gearbox 2 

to1= x(3);       %Ordering time of gearbox 1 

to2= x(4);       %Ordering time of gearbox 2  

%-------------------------------------------------------------------------- 

% Failure Function Parameters (Weibull Distribution) 

etta1=8;          %Scale parameter 

betta1=3;        %Shape parameter 

etta2=7.7; 

betta2=2.5; 

%-------------------------------------------------------------------------- 

M=10000;           %Extra charge for bidding on a part 

tao1=0.013;         %Time for replenishment 

tao2=0.0027;       %Time to perform preventive maintenance 

tao3=0.01;           %Time to perform corrective replacement (tao3 > tao2)        

P1=360000;         %Unit downtime cost due to preventive maintenance ($ per day) 
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P2=360000;  

C1=720000;        %Unit downtime cost due to a failure 

C2=720000; 

Ch1=144000;        %Unit holding cost 

Ch2=144000; 

co=20000;             %Regular ordering cost 

%-------------------------------------------------------------------------- 

for i=1:200, 

tf1=wblrnd(etta1,betta1,1,1); 

tf2=wblrnd(etta2,betta2,1,1); 

%-------------------------------------------------------------------------- 

if to2<to1, 

  if to1-to2<tao1 

    ro=1; 

    tw1=max(tao1+to2-to1,0)+tao1; 

    dcost1=C1*(max(tw1+to1-tf1,0)+tao3);    

    if dcost1>M, 

        delta=1; 

    else 

        delta=0; 

    end 

  end 

    tw1=ro*((1-delta)*max(tao1+to2-to1,0)+tao1)+(1-ro)*tao1; 

    tw2=ro*(delta*max(tao1+to1-to2,0)+tao1)+(1-ro)*tao1; 

%%%% 

dcostp1=P1*(max(tw1+to1-t1,0)+tao2); 

hcostp1=Ch1*(max(t1-tw1-to1,0)); 

dcostu1=C1*(max(tw1+to1-tf1,0)+tao3);    

hcostu1=Ch1*(max(tf1-tw1-to1,0)); 
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dcostp2=P2*(max(tw2+to2-t2,0)+tao2); 

hcostp2=Ch2*(max(t2-tw2-to2,0)); 

dcostu2=C2*(max(tw2+to2-tf2,0)+tao3);     

hcostu2=Ch2*(max(tf2-tw2-to2,0)); 

  

cp1=dcostp1+hcostp1+co+delta*M; 

cu1=dcostu1+hcostu1+co+delta*M; 

cp2=dcostp2+hcostp2+co; 

cu2=dcostu2+hcostu2+co; 

  

else 

  if to2-to1<tao1 

    ro=1; 

    tw2=max(tao1+to1-to2,0)+tao1; 

    dcost2=C2*(max(tw2+to2-tf2,0)+tao3);       

    if dcost2>M, 

        delta=1; 

    else 

        delta=0; 

    end 

  end 

    tw2=ro*((1-delta)*max(tao1+to1-to2,0)+tao1)+(1-ro)*tao1; 

    tw1=ro*(delta*max(tao1+to2-to1,0)+tao1)+(1-ro)*tao1; 

%%%% 

dcostp1=P1*(max(tw1+to1-t1,0)+tao2); 

hcostp1=Ch1*(max(t1-tw1-to1,0)); 

dcostu1=C1*(max(tw1+to1-tf1,0)+tao3);     

hcostu1=Ch1*(max(tf1-tw1-to1,0)); 

  

dcostp2=P2*(max(tw2+to2-t2,0)+tao2); 
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hcostp2=Ch2*(max(t2-tw2-to2,0)); 

dcostu2=C2*(max(tw2+to2-tf2,0)+tao3);     

hcostu2=Ch2*(max(tf2-tw2-to2,0)); 

  

cp1=dcostp1+hcostp1+co; 

cu1=dcostu1+hcostu1+co; 

cp2=dcostp2+hcostp2+co+delta*M; 

cu2=dcostu2+hcostu2+co+delta*M; 

end     

  %------------------------------------------------------------------------ 

  syms tf1  

  f(1)= (cp1*(exp(-(t1/etta1)^betta1))+int(cu1*((betta1/etta1)*(tf1/etta1)^(betta1-1)*exp(-

(tf1/etta1)^betta1)),tf1,0,t1)); 

  

  syms tf2  

  f(2)= (cp2*(exp(-(t2/etta2)^betta2))+int(cu2*((betta2/etta2)*(tf2/etta2)^(betta2-1)*exp(-

(tf2/etta2)^betta2)),tf2,0,t2)); 

  

w1=0.4; 

w2=0.6; 

 fcombined=w1*f(1)+w2*f(2); 

end 
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Case  3: 

 

 %Fitness Function for both Objective Functions 

function fcombined = fitness3(x) 

  

% x = [t1 t2 to1 to2]; 

  

t1 = x(1);       %Preventive time of gearbox 1 

t2 = x(2);       %Preventive time of gearbox 2 

to1= x(3);      %Ordering time of gearbox 1 

to2 = x(4);     %Ordering time of gearbox 2  

%-------------------------------------------------------------------------- 

% Failure Function Parameters (Weibull Distribution) 

etta1=8;        %Scale parameter 

betta1=3;      %Shape parameter 

etta2=7.7; 

betta2=2.5; 

%-------------------------------------------------------------------------- 

M=10000;       %Extra charge for bidding on a part 

tao1=0.013;     %Time for replenishment 

tao2=0.0027;   %Time to perform preventive maintenance 

tao3=0.01;       %Time to perform corrective replacement (tao3 > tao2)        

P1=360000;     %Unit downtime cost due to preventive maintenance ($ per day) 

P2=360000;  

C1=720000;     %Unit downtime cost due to a failure 

C2=720000; 

Ch1=144000;    %Unit holding cost 

Ch2=144000; 

co=20000;         %Regular ordering cost 

%-------------------------------------------------------------------------- 
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for i=1:200, 

tf1=wblrnd(etta1,betta1,1,1); 

tf2=wblrnd(etta2,betta2,1,1); 

%-------------------------------------------------------------------------- 

RUL1=etta1*gamma(1/betta1 + 1);   %Remaining useful life 

RUL2=etta2*gamma(1/betta2 + 1); 

%-------------------------------------------------------------------------- 

if RUL2<RUL1     

  if abs(to1-to2)<tao1      

    ro=1; 

    tw1=max(tao1+to2-to1,0)+tao1;   

    dcost1=C1*(max(tw1+to1-tf1,0)+tao3);   

    if dcost1>M,           

        delta=1; 

    else                       

        delta=0; 

    end           

   

    tw1=ro*((1-delta)*max(tao1+to2-to1,0)+tao1)+(1-ro)*tao1; 

    tw2=ro*(delta*max(tao1+to1-to2,0)+tao1)+(1-ro)*tao1; 

%%%% 

    dcostp1=P1*(max(tw1+to1-t1,0)+tao2); 

    hcostp1=Ch1*(max(t1-tw1-to1,0)); 

    dcostu1=C1*(max(tw1+to1-tf1,0)+tao3);    

    hcostu1=Ch1*(max(tf1-tw1-to1,0)); 

  

    dcostp2=P2*(max(tw2+to2-t2,0)+tao2); 

    hcostp2=Ch2*(max(t2-tw2-to2,0)); 

    dcostu2=C2*(max(tw2+to2-tf2,0)+tao3);    

    hcostu2=Ch2*(max(tf2-tw2-to2,0)); 
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    cp1=dcostp1+hcostp1+co+delta*M; 

    cu1=dcostu1+hcostu1+co+delta*M; 

    cp2=dcostp2+hcostp2+co; 

    cu2=dcostu2+hcostu2+co; 

     

  else 

      fcombined=inf; 

      return 

  end   

 %------------------------------------------------------------------------- 

elseif RUL1<RUL2       

  if abs(to2-to1)<tao1      

    ro=1; 

    tw2=max(tao1+to1-to2,0)+tao1; 

    dcost2=C2*(max(tw2+to2-tf2,0)+tao3);      

    if dcost2>M,     

        delta=1; 

    else          

        delta=0; 

    end             

    

    tw2=ro*((1-delta)*max(tao1+to1-to2,0)+tao1)+(1-ro)*tao1; 

    tw1=ro*(delta*max(tao1+to2-to1,0)+tao1)+(1-ro)*tao1; 

%%%% 

    dcostp1=P1*(max(tw1+to1-t1,0)+tao2); 

    hcostp1=Ch1*(max(t1-tw1-to1,0)); 

    dcostu1=C1*(max(tw1+to1-tf1,0)+tao3);     

    hcostu1=Ch1*(max(tf1-tw1-to1,0)); 
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    dcostp2=P2*(max(tw2+to2-t2,0)+tao2); 

    hcostp2=Ch2*(max(t2-tw2-to2,0)); 

    dcostu2=C2*(max(tw2+to2-tf2,0)+tao3);     

    hcostu2=Ch2*(max(tf2-tw2-to2,0)); 

  

    cp1=dcostp1+hcostp1+co; 

    cu1=dcostu1+hcostu1+co; 

    cp2=dcostp2+hcostp2+co+delta*M; 

    cu2=dcostu2+hcostu2+co+delta*M; 

     

  else 

      fcombined=inf; 

      return 

  end  

 else 

     fcombined = inf; 

    return 

end 

  %------------------------------------------------------------------------ 

 syms tf1  

  f(1)= (cp1*(exp((t1/etta1)^betta1))+int(cu1*((betta1/etta1)*(tf1/etta1)^(betta1-1)*exp(-

(tf1/etta1)^betta1)),tf1,0,t1)); 

  

 syms tf2  

  f(2)= (cp2*(exp((t2/etta2)^betta2))+int(cu2*((betta2/etta2)*(tf2/etta2)^(betta2-1)*exp(-

(tf2/etta2)^betta2)),tf2,0,t2)); 

  

 p1=RUL2/(RUL1+RUL2); 

 p2=RUL1/(RUL2+RUL1); 
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 fcombined=p1*(f(1)+f(2))+p2*(f(2)+f(1)); 

end 

  

 

Genetic Algorithm Code: 

  

 function [x,fval,exitflag,output,population,score] = untitled(nvars,lb,ub,TimeLimit_Data) 

% This is an auto generated MATLAB file from Optimization Tool. 

  

% Start with the default options 

options = gaoptimset; 

% Modify options setting 

options = gaoptimset(options,'TimeLimit', TimeLimit_Data); 

options = gaoptimset(options,'CrossoverFcn', {  @crossoverintermediate [] }); 

options = gaoptimset(options,'Display', 'off'); 

options = gaoptimset(options,'PlotFcns', {  @gaplotbestf @gaplotbestindiv 

@gaplotdistance @gaplotexpectation @gaplotgenealogy @gaplotrange 

@gaplotscorediversity @gaplotscores @gaplotselection @gaplotstopping 

@gaplotmaxconstr }); 

options = gaoptimset(options,'OutputFcns', { [] }); 

[x,fval,exitflag,output,population,score] = ... 

ga(@fitness3,nvars,[],[],[],[],lb,ub,[],options); 

 

 

 

 

 

 

 



 

 99 

VITA 

 

Faranak Fathi Aghdam is a graduate research assistant under Dr. Haitao Liao at the 

Industrial and Information Engineering of University of Tennessee, Knoxville. She plans 

to graduate from the University of Tennessee with a Master of Science degree in 

Industrial and Information Engineering in December 2011. Faranak received a Bachelor 

of Science degree in Industrial Engineering in 2010 from the University of Science and 

Technology (Tehran/IRAN).  

Conference Presentations: 

 Liao. H., Fathi Aghdam. F., Niknam. S.A., Predictive maintenance and service 

logistics for wind turbine fleet, IERC 2011 Conference. 

 Fathi Aghdam. F., Prognostics-Based Two-Operator Competition for Maintenance 

and Service Part Logistics, INFORMS 2011 Conference. 

Papers: 

 Fathi Aghdam. F., Liao. H., Prognostics-Based Two-Operator Competition for 

Maintenance and Service Part Logistics, working paper. 

 

Email Address: faranak.fathi@utk.edu 

 

 


	Prognostics-Based Two-Operator Competition for Maintenance and Service Part Logistics
	Recommended Citation

	tmp.1321411025.pdf.WCiNE

