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ABSTRACT 
 

 
The objective of this thesis is to better estimate extremely small percentiles of 

strength distributions for measuring failure process in continuous improvement 

initiatives. These percentiles are of great interest for companies, oversight organizations, 

and consumers concerned with product safety and reliability.  The thesis investigates the 

lower percentiles for the quality of medium density fiberboard (MDF). The international 

industrial standard for measuring quality for MDF is internal bond (IB, a tensile strength 

test).  The results of the thesis indicated that the smaller percentiles are crucial, especially 

the first percentile and lower ones.  

The thesis starts by introducing the background, study objectives, and previous 

work done in the area of MDF reliability.  The thesis also reviews key components of 

total quality management (TQM) principles, strategies for reliability data analysis and 

modeling, information and data quality philosophy, and data preparation steps that were 

used in the research study. 

Like many real world cases, the internal bond data in material failure analysis do 

not follow perfectly the normal distribution.  There was evidence from the study to 

suggest that MDF has potentially different failure modes for early failures.  Forcing of the 

normality assumption may lead to inaccurate predictions and poor product quality.  We 

introduce a novel, forced censoring technique that closer fits the lower tails of strength 

distributions, where these smaller percentiles are impacted most.  In this thesis, such a 

forced censoring technique is implemented as a software module, using JMP® Scripting 

Language (JSL) to expedite data processing which is key for real-time manufacturing 
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settings. 

Results show that the Weibull distribution models the data best and provides 

percentile estimates that are neither too conservative nor risky.  Further analyses are 

performed to build an accelerated common-shaped Weibull model for these two product 

types using the JMP® Survival and Reliability platform.  The use of the JMP® Scripting 

Language helps to automate the task of fitting an accelerated Weibull model and test 

model homogeneity in the shape parameter.  At the end of modeling stage, a package 

script is written to readily provide the field engineers customized reporting for model 

visualization, parameter estimation, and percentile forecasting.   

Furthermore, using the powerful tools of Splida and S Plus, bootstrap estimates of 

the small percentiles demonstrate improved intervals by our forced censoring approach 

and the fitted model, including the common shape assumption.    Additionally, relatively 

more advanced Bayesian methods are employed to predict the low percentiles of this 

particular product type, which has a rather limited number of observations.  Model 

interpretability, cross-validation strategy, result comparisons, and habitual assessment of 

practical significance are particularly stressed and exercised throughout the thesis. 

Overall, the approach in the thesis is parsimonious and suitable for real time 

manufacturing settings.  The approach follows a consistent strategy in statistical analysis 

which leads to more accuracy for product conformance evaluation.  Such an approach 

may also potentially reduce the cost of destructive testing and data management due to 

reduced frequency of testing.  If adopted, the approach may prevent field failures and 

improve product safety.  The philosophy and analytical methods presented in the thesis 

also apply to other strength distributions and lifetime data. 
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CHAPTER I.   INTRODUCTION 
 
 

Medium Density Fiberboard (MDF) is a superior engineered wood product of 

high reliability with desirable machining capabilities.  MDF provides enhanced qualities 

of a consistent surface, uniform core density, and freedom from irregularities found in 

naturally grown wood products.  MDF is a non-structural wood composite which is used 

primarily in furniture, cabinets, shelving, flooring, molding, etc.  Reliability of products 

made from MDF is important to the end-user. 

  Product “life” for MDF can be measured in terms of the strength to failure, as 

opposed to the time to failure.  The strength to failure is a crucial reliability parameter of 

the product.  Estimation of the strength allows the producer to make assurances to 

customers about the safe, useful “strength” range of the product.  The key measure of 

reliability for MDF is internal bond (IB) which is a tensile strength destructive test (units 

of measure are p.s.i. - pounds per square inch; or metric units of kilograms per square 

centimeter).  See Guess, Walker, and Gallant (1992), Guess and Proschan (1988), and 

Guess, Hollander and Proschan (1986) for other measures of reliability.   

The lower percentiles may be of particular interest for companies, oversight 

organizations, and consumers in specifying the product reliability of MDF.  Compare 

Kim and Kuo (2003), Kuo, Chien, Kim (1998), and Kuo, Prasad, Tillman, and Hwang 

(2000) for more on percentiles.  Also, see Walker and Guess (2003) for strengths of 
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container bottles using Kaplan and Meier graphs and nonparametric approaches.  Guess, 

Edwards, Pickrell and Young (2003) explored and viewed graphically MDF data, but did 

not provide confidence intervals for percentiles.  We compute and discuss in later 

chapters of this thesis for a new MDF IB data set such interval estimates for lower 

percentiles using accepted statistical methods such as parametric modeling, 

nonparametric, bootstrapping, and Bayesian prediction.   

In this research, we investigate two important MDF product types defined as 

“Type 1” and “Type 5”.  The physical difference between the two product types is 

density.  Type 1 is more demanded which requires higher production volume, while Type 

5 provides more value for a consumer niche requiring higher density MDF.  Both types 

are of great commercial interest to both the manufacturer and consumer.  The production 

costs of Type 5 is higher than Type 1 given its higher density, i.e., higher density requires 

higher raw material inputs of wood and resin which requires slower pressing speed.  

Different sample sizes of Type 1 and Type 5 products existed given the differences in the 

production volume for each product (Table 1).   

 

Table 1.   Key Specifications of Type 1 and 5 Products 
 

Type Density Thickness Width Tests Note 

1 A same same 396 Standard density 

5 B same same 74 High density 
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The objectives of the research are: 

• Estimate the first percentile of internal bond for both product types; 

• Investigate the failure mode based on statistical evidence; 

• Demonstrate a complete case study of sound analytical strategy; 

• Develop new statistical methods for data preparation and analysis. 

We introduce a novel technique called median censoring to weight lower 

observations.  Results of the analyses for the complete data and forced censoring at the 

median for product Type I are discussed in Chapter III of the thesis.  There is evidence 

from the forced censoring analyses to suggest that MDF has potentially different failure 

modes for early failures.  Probability plots illustrate that expected failure distributions 

like the Weibull, do not fit the raw data satisfactorily.  Even the distribution of overall 

best fit assuming the normal distribution provides poor estimates of the smaller 

percentiles.  After applying this technique, a better goodness of fit in the lower tails is 

obtained where the smaller percentiles are impacted the most.   

The exploratory results discussed in more detail in Chapter III show that the 

Weibull distribution fits the lower strength MDF tests better, while the overall strength 

appears to be best fit by the normal distribution.  This conclusion supports Weibull’s 

theory of a “weakest link model” for early failures (Weibull 1939, 1951); and assuming 

overall failures are normally distributed by the use of the Central Limit Theorem (CLT) is 

more appropriate .  The CLT normality may be a result of the physical properties making 
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up the overall strength which is typically the sum of many individual fiber strengths.  

Chapter III also presents results of percentile estimates using a simple model. 

Chapter IV explains in greater detail the mechanism of median censoring and the 

extended forced censoring technique at any percentile in any censoring type (left, right, 

interval).  Another practical example for the application of this technique is discussed in 

Chapter IV as an extension of the results presented in Chapter III.   

In Chapter V, both modeling methods and the median censoring technique are 

cross-validated by the bootstrapping method. The confidence intervals for various 

parametric models for both the complete and the forced censoring cases are included.  

The Weibull distribution is the best model for the strength of Type 1 product.  Bootstrap 

estimates of the small percentiles improve the consistency of the fitted model’s percentile 

confidence intervals and support the use of the forced censoring technique.  Both 

percentile bootstraps and t bootstrap intervals algorithms are described in detail in 

Chapter V. 

With confidence in the Weibull model and given the uniqueness of the Type 5 

product, we illustrate graphically and parametrically both product Types 1 and 5 in 

Chapter VI.  JMP® is used extensively for its simplicity, interactivity and graphic 

discovery capabilities (SAS Institute, Inc. 2004).  An interesting discovery presented in 

this chapter is the similar shape that both product types demonstrate on the probability 

plot.  
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Chapter VII starts by reexamining the graphical significance of the common 

shape location-scale model.  A rigorous statistical test is performed to prove the common-

shape or homogeneity hypothesis.  The automation of this customized test in JSL is also 

introduced with the interpretation of hypothesis test results.  Chapter VII concludes with 

an additional examination of the common-shape model through the residual plot.  

Chapter VIII starts by discussing the sample size issue pertaining to the Type 5 

product and other potential types.  Bayesian methods are introduced to help solve the 

problem.  The roots of Bayesian philosophy are reviewed and the difference of Bayesian 

interpretation of results from the classical approach is stressed.  Chapter VIII also 

generalizes and critiques the results of low percentile estimates in all previous sections.  

Finally, Chapter IX is a summary of the overall strategy, methods and results of the 

thesis. 

The statistical software S+ (http://www.insightful.com/products/default.asp) and a 

free add-on called Splida (http://www.public.iastate.edu/~splida/) are used with some 

Matlab (http://www.mathworks.com) in the analysis for the thesis.  JMP® 

(http://www.jmp.com, a SAS® division), a statistical discovery software platform with 

scripting, is also used in the analysis for the thesis.  Tutorials on the use of both software 

for reliability applications can be found at Professor Ramón V. León’s course webpage at 

http://web.utk.edu/~leon/. 
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CHAPTER II.   LITERATURE REVIEW 
 
 

Chapter I outlined the objectives and methodologies of the thesis.  A review of the 

fundamental principles and scholarly work that are the basis of the thesis is presented in 

this chapter.   

Quality Management Principles 

What is quality?  In a popular sense, quality seems purely a judgment call.  Each 

person may have his/her own perception of the quality of something, product or service.  

Yet, this truly reveals the nature of “quality” because quality judgment is the response of 

customers.  Quality is not meeting written specifications and nothing more, as some 

writers on quality control may have suggested.  Quality must be judged in terms of 

customer satisfaction.  When Crosby (1979) defines quality as “conformance to 

requirements”, he does not just mean conformance to specifications.  Deming (1986) 

warns against the “fallacy of zero defects” and that “the supposition that everything is all 

right inside the specifications and all wrong outside does not correspond to this world”.  

Also see Taguchi’s customer loss function (1986).  Mendenhall and Sincich (1995) have 

discussed the operating characteristic curve that describes both the customer’s and the 

producer’s risk given an acceptable quality level (AQL).  English (1998) summarizes that 

quality is “consistently meeting customer’s expectations”, and “not necessarily exceeding 

them”.   
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 Quality is not intangible.  It can be measured with the most fundamental business 

measures, e.g., bottom line figures, cost of non-quality products and services, lost profit 

due to customer dissatisfaction, or created revenue because of return customers, goodwill, 

etc.  Quality is not a by-product; rather, it should be treated as genetic part of the asset, 

just like employees, working capital, and other resources.  Therefore, quality is 

manageable.  There are established principles by quality pioneers such as Deming, Juran, 

Crosby, Ishikawa, Shewhart, Imai, English and others (Deming 1986, Juran 1988, Crosby 

1979, Ishikawa 1994, Shewhart 1986, Imai 1989 & 1997, English 1998).  The key 

components of these principles can be summarized as follows: 

Customer focus: listen to the customer; understand the market; learn the 

customer’s needs; establish a partnership mind set and relationship with the customer; 

educate and help your business partner be successful. 

Continuous process improvement: or Kaizen; “the art of continuous and 

incremental improvement” in Japanese; always be the best and get ahead of the curve in 

knowing the customer’s needs; improve everything in the organization by encouraging 

everyone to take responsibility for the process.  

Scientific methods: statistical methodologies and techniques such as statistical 

process control (SPC), Shewhart Cycle, Six Sigma (Snee and Hoerl, 2003) including 

Design for Six Sigma (DFSS) and DMAIC (Define-Measure-Analyze-Improve-Control).  
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The integration of process thinking, understanding of variation, and data-based decision 

making is often referred to as statistical thinking (Hoerl and Snee, 2002). 

Strategy for Reliability Data Analysis and Modeling 

Technically, reliability is defined as the probability that a product or subject will 

perform its intended function under operating conditions, for a specific period of time 

(Meeker and Escobar, 1998).  Condra (1993) emphasizes that “reliability is quality over 

time”.  In today’s world, customers expect the product to be reliable and safe; on the 

other hand, the global marketplace forces the manufacturers to compete in multiple 

fronts, such as brands, price, quality, innovation, etc.  One successful business strategy is 

to build competitive advantage on the quality of products and services, enhanced by 

advanced technology and well-trained personnel, instead of relying purely on low price 

and cheap labor. 

To implement this strategy, it is essential to hire and train qualified employees 

with quantitative knowledge and skills for running designed experiments or tests, 

collecting quality data, assessing various facets of the data, and making accurate 

forecasts.  Meeker and Escobar (1998) provide a useful general strategy for data analysis 

and modeling:  

1. Start the analysis by visually examining the data without any distributional or 

strong model assumptions.  The primary tool for these initial steps is graphical 

analysis; 
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2. It is useful to fit one or more parametric models to the data for the purpose of 

description, estimation, or prediction.  Sometimes, one can combine prior 

knowledge or data into the current analysis.  Many software packages provide 

these model fitting functions or modules; 

3. Examine appropriate diagnostics and assess the adequacy of model assumption.  

Graphical tools, analytical measures, simulations, and validation techniques are 

useful at this stage; 

4. Once the assumed model is adequate, generally proceed to estimating 

parameters and predicting desired statistics.  However, state the results, with 

caution, which should include information that reflects uncertainty, variability, or 

conditions of model assumptions; 

5. Display the results graphically; pay attention to the importance of model 

interpretation. 

Information and Data Quality 

 There are still a few more issues that may go beyond the scope of Meeker and 

Escobar’s (1998) book but must be addressed in the practical world of reliability 

engineering.  First, data collection in the real world is often not simple.  In some 

applications, a massive amount of data or information need to be simultaneously 

collected and stored as the production process is running.  Field engineers or operators 

need prompt analysis results in order to monitor and manage the process.  See Young and 
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Guess (2002) for how such data is stored and used in a real time data base with regression 

modeling to predict strength. 

 English (1999) proposed 14 points of information quality, expanding upon 

Deming’s well-known 14 points for management transformation.  He relates data 

integrity to the information quality in a TQM setting and stresses that low-quality data 

scrap and rework is essentially the same as the physical product defects in the industrial 

age.  In the Total Information Quality Management (TIQM®) methodology developed by 

English (1999), low-quality data cost can and should be quantified, and eventually, 

businesses should design quality into the collection of data rather than depending on data 

inspection.  An alternative approach to English’s work is called Total Data Quality 

Management by Huang, Lee, and Wang (1999), which develops different metrics in the 

evaluation of data quality.  Also compare Redman (2001) for data accuracy, clear 

definition of terms, and the relevancy of data. 

Even though the data may not be severely contaminated, data cleansing and 

reengineering are often useful in preparing for better statistical analysis.  Sometimes, 

carefully devised data preparation can guard the analyst against mis-specified model 

assumptions and consequently erroneous estimates.  For example, the normal distribution 

is often assumed for many applications during the quality improvement process (Meeker 

and Escobar, 1998).  However, there are often many practical cases where a better fit of 

the data are from non-normal distributions.  Where normality is not appropriate, forcing 
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the normal distribution model can lead to inaccurate prediction of key process parameters 

and result in poor product quality.  Stanard and Osborn (2002) have discussed general 

strategies for handling non-normality in a “Six Sigma Quality” context.  Guess, León, 

Chen, and Young (2004) have presented a case study, in which the internal bond or 

strength of medium density fiberboard (MDF) does not follow perfectly a normal 

process.  The estimation of crucial lower percentiles can be poor when incorrectly 

assuming the normal distribution and such analytical errors can be very costly for 

manufacturers; compare Guess, Edwards, Pickrell and Young (2003).   
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CHAPTER III.   GRAPHICAL EXPLORATION AND 

PRELIMINARY STUDIES OF TYPE 1 PRODUCT DATA 
 
 

The complete data set of 396 failures for the Type 1 product is initially fitted to 

several popular distributions of lifetime data.  The qualities of the model fits are 

examined graphically on the respective probability plot in Figure 1.  It is highly 

recommended by the author to implement this exploratory step before making any further 

statistical inferences.  By plotting the data, one can quickly identify underlying issues and 

proceed with the most appropriate strategies including median censoring. Recall that the 

IB used throughout the thesis analysis is measured in pounds per square inches (psi) and 

is pressure to failure data compared to typical life to failure data. 

Figure 1 displays that observed early failures deviated from the straight lines of 

parametric Maximum Likelihood (ML) estimates.  There are a few data points on the 

lower tail and mostly the upper tail that were not well captured by any of the distribution 

models, evidenced by both tails stretching outside the coverage of pointwise 95% 

confidence interval of ML estimated models.  Later, it is important for quality goals that 

need both a specification number and pointwise confidence interval on the reliability of 

the product.  We notice that the amount of sampling variability at the extreme 

observations can be rather large, as suggested by the simultaneous confidence bands in 

Figure 2.  See, for example, Section 3.8 of Meeker and Escobar (1998) for more details.   
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Figure 1.   Complete Data Probability Plots with ML Estimates 
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Figure 2.   Normal Probability Plot for the Complete Data and Simultaneous 

Approximate 95% Confidence Bands 
 
 

The illustrations in Figures 1 and 2 suggest that the ML estimated normal 

distribution model seems to be the best fit to the entire data, and that some curvature 

change exists no matter which model is fitted.  The existence of such behavior in the data 

might be signs of potential different failure modes, or mixture of subpopulations at the 

extremes, or of outliers during the breakdown, or measurement error (section 6.6, Meeker 

and Escobar, 1998).  In these cases, a certain model, for example the normal distribution, 

may fit the majority of the data better than the other, but this is merely achieved by 

compromising the local approximation of failure modes toward extreme values, lower or 

upper.  Or, the shape of an empirical failure model, such as Weibull, happens to be 
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largely determined by the upper part of data, while the desired lower percentiles deviate 

from the observed data which are less influential.   

We will further present quantitative evidences in later chapters that the first 

percentile (and lower percentiles) estimates using the complete data naively were 

generally unreliable, either too optimistic or overly conservative.  This may lead to higher 

costs of manufacturing when product reliability is misjudged, e.g., “over-engineering” the 

product with higher raw material inputs than necessary.  With the existing data set that 

has included sufficient information for the small percentile estimates, it is a cost-efficient 

and statistically sound solution to reengineer and cleanse the data of potential outliers and 

reassess the pragmatic information quality for the lower percentiles.  See English (1999). 

Because the goodness of a global model fit sacrifices the more important lower 

percentile estimates, we may use a forced median-censoring technique to increase the 

model dependence on the lower tail information.  In a traditional reliability context, 

censoring refers to an observed subject’s true failure time recorded as being either before 

or after the time of inspection, if the subject does not fail at that exact time.  In the 

proposed forced censoring technique, we retain all the observations no larger than the 

median intact as exact failures.  Observations beyond the median are censored at a forced 

value slightly larger than the median, but less than the next true observed failure above 

the median.  Essentially, such a technique reengineers the data set so that the upper half 

of the complete data set is regarded as being censored at the median.  Hereby, these large 
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observations are not as informative as the smaller observations in that their breakdown 

strengths are only known to be larger than the median.  In other words, more weights are 

put on the observations of smaller values in fitting a model.  None of the data integrity is 

violated. 

This weighted data of Type 1 product is fitted by select models in Figure 3.  We 

retain 198 observations on the lower tail while censoring the upper half of data (198 

observations).   

 Upon censoring the upper half of the data, the fitted ML estimated lines of the 

Weibull and Smallest Extreme Value distributions (Figure 3) are able to capture the 

pattern of small extreme values more “closely” and more importantly, the data on the 

lower tail, than other models.  The lowest data, which would be considered incorrectly as 

outliers if it were without median censoring (compare both Figures 1 and 2), now falls 

completely within the 95% confidence interval of a Weibull or S.E.V. model.   

For additional specific numbers, say 90 psi or a previous first percentile, for 

example, with improved, continuous quality goals, we really want and prefer to have 

pointwise confidence intervals for their new, improved reliability to report to 

management.  When the interval fails to enclose the observed data, however, it is an 

appropriate conclusion that the data is not as consistent with the model hypothesis 

(Section 7.3.2, Meeker and Escobar, 1998).  Thus, we suspect different underlying failure 

modes over the whole range of observed failures.  The early failures are similar to the 
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Figure 3.   Probability Plots of Median Censored Data with ML Estimates 
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“infant mortality” for many manufacturing settings.  Recall the Weibull model (Weibull 

1939, 1951), which governs the “weakest link” of many competing failure processes for 

the catastrophic effect of even a very small external force upon a certain portion of 

inferior products, here mostly the lower percentiles.  However, the breakdown of the 

majority of MDF products is determined by a combined strength of individual fibers and 

bonding between the fibers, i.e., the Central Limit Theorem appears to be suitable. 

Table 2 illustrates the loglikelihood and AIC scores of select models as 

quantitative evidence for a different early failure mode than the normal model.  The 

Akaike’s Information Criterion (AIC) for model selection (Akaike, 1973, 1974, 1987; 

Bozdogan, 2004) favors the model that minimizes AIC score based on the same 

information (median censoring or not).  Therefore, the Weibull ML fit, also seen in 

Figure 4, is the best approximating model to the censored data set. 

 
 

Table 2.   Select Model Scores for the Complete and Censored Data 
 

With median censoring W/O median censoring ML fit Log likelihood AIC Log Likelihood AIC 
Weibull -868.8 1741.6 -1518 3040 
S.E.V.* -869.4 1742.8 -1527 3058 
normal -871.5 1747 -1469 2942 

lognormal -874.3 1752.6 -1471 2946 
exponential -1277.2 2558.4 -2293 4590 

logistic -869.2 1742.4 -1461 2926 
logLogistic -869.6 1743.2 -1463 2930 

L.E.V.* -885.1 1774.2 -1512 3028 
frechet -892.6 1789.2 -1539 3082 

* S.E.V. denotes the Smallest Extreme Value model where applicable in this 
thesis;   L.E.V. for the Largest Extreme Value model. 
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Figure 4.   Median Censored Data on the Weibull Probability Plot 

 
 

Figure 5 shows the Weibull probability plot and how the first percentile estimates 

are obtained from all three models in Table 3.  The solid straight line and the 

corresponding 95% pointwise confidence bands show the Weibull ML fit, while the 

curve of normal ML fit deviates the most severely from the lower tail of observed 

failures.  The difference between the Weibull and S.E.V. model on the first percentile is 

trivial.  The S.E.V. model may be of interest if a conservative estimate is preferred in the 

practical context of reliability evaluation.  It is noticeable that the S.E.V tends to produce  

overly underestimated results as the percentage (quantile) becomes smaller than 1% 

(0.01).   
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Figure 5. Estimating the First Percentiles from Select Models 

 
 
 

Table 3.   The First Percentile Normal-approximation Estimates of Select Models for the 
Censored Data 

 
ML fit p Percentile Std_Err_ 95%_Lower 95%_Upper

Weibull 0.01 94.746 1.47018 91.908 97.672 
S.E.V. 0.01 93.255 1.75203 89.821 96.689 
Normal 0.01  97.262   1.16150    94.986     99.539 

 
 

 

 

S.E.V. 

Normal 
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Splida also computes the asymptotic normal-approximation confidence intervals 

while generating the “probability plot with parametric ML fit”, which is a macro in the 

Splida menu.  Table 3 presents the 95% confidence intervals generated based on the 

Weibull, S.E.V., and normal ML fits.  The S.E.V. model gives the most conservative 

estimate, while the normal model is too optimistic because the data is unduly fitted.  See 

Section 7.3.3 and 8.4 of Meeker and Escobar (1998) for more details on the normal 

assumption of log-percentile in this estimation method.  Meeker and Escobar (1998) 

comment, that “with moderate-to-large samples (the normal approximation) are useful for 

preliminary confidence intervals” and “quick, useful, and adequate for exploratory 

work”.  Other alternatives of estimating confidence intervals, including a simple 

nonparametric estimation, various bootstrap and Bayesian methods, are discussed in the 

later chapters of the thesis.  There will be an overall assessment of the first percentile 

confidence interval estimates presented at the end of Chapter VIII. 
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CHAPTER IV.   FORCED CENSORING TECHNIQUE AND JSL 

IMPLEMENTATION 
 
 

In the last chapter, we have introduced a median censoring technique described 

as: “all the observations no larger than the median are retained intact as exact failures, 

while observations beyond the median are censored at a forced value slightly larger than 

the median but less than the next true observed failure above the median.”  After applying 

this censoring technique a better goodness of fit is found in the lower tails, where the 

smaller percentiles are impacted the most.   

We can further extend the median censoring technique to any portion of a data 

set.  Employing the power of JMP® Scripting Language (JSL), we scripted a module in 

JMP® that automatically “force-censors” the data from any percentile point of interest.  

More specifically, the implementation of this JMP® script is to replace the observations 

larger than a specified percentile value with this new percentile value, and label the 

replaced observation as “censored”.  Note that in JMP® by default, censor label values of 

zero indicate the event (e.g., 0: failure) and a non-zero (e.g., 1: able to customize) code is 

a censored value; whereas Splida uses 1 for exact failures and 2 as censors.   

The script of JSL-implemented forced censoring can be found in the Appendix.  

Figure 6 includes the illustrations of interactive JMP® dialog before censoring and an 

example data table readily useful for further modeling. 
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Figure 6.   Screen Illustrations of Forced Censoring Implemented in JMP® 

 
 

The right-censoring mechanism is sufficient in our case study of extremely small 

percentiles.  Other product applications may require modeling the upper part or an 

intermittent portion of data.  For example, a process engineer may want to estimate the 

number of particles on a silicon wafer which leads to defective computer chips.  Both the 

small and large percentiles of the distribution of particle numbers per wafer would be key 

indicators of the quality of the production run.  The normal probability plot may show a 

severe departure from the straight line on both the lower and upper parts of the 

distribution.  Further analysis may reveal inherently non-normal data with no known 

simple distribution function yielding satisfactory estimates to the key percentiles on 

either end of the distribution.  Different portions of the distribution would need to be 

examined by themselves in such a complex case.  Observations may be treated as right-

a.) JMP® dialog asking for customized censor 
quantile 

b.) Data prepared for further analysis 
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censored, left-censored, interval-censored, or remain entirely uncensored dependent on 

analytical needs.  The example script (Appendix) should be able to implement a modified 

all-purpose forced censoring mechanism in JSL.  All three types of censoring mechanism, 

right, left, or interval can be customized in one uniform format of interval censoring, also 

called “arbitrary censoring”.  See JMP® Manual: Statistics and Graphics Guide, section 

“Interval Censoring” in the topic titled “Survival and Reliability Analysis”. 

The central philosophy of the forced censoring technique is to preserve as much 

useful information as possible in the raw data and to extract desired local information 

from leveraged data.  This is a very useful technique when data is complex in nature and 

the data collection is expensive.  The forced censoring technique is different from other 

known strategies such as truncation, Box-Cox transformation, or segmentation, when 

working with non-normal data.  The complexity of data structure, like multiple failure 

modes, is well respected and captured as a whole even when estimating a local parameter. 

The forced censoring technique can be used for many other applications beside 

strengths of materials and their lower percentiles.  For example, it can be employed 

successfully for warranty or lifetime data analysis when estimates of new warranties are 

based on smaller percentiles.   
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CHAPTER V.   USING THE BOOTSTRAPPING METHOD FOR 

MODEL VALIDATION AND PERCENTILE ESTIMATION 
 
 

The novel technique of forced median censoring shows its capability in helping 

detect possibly different failure modes and improving the model fit, as well as percentile 

estimates on the lower tail.  However, there are some potential weaknesses, both theoretic 

and practical, in the approach thus far.  Figure 2 has suggested that the sampling 

variability at the extremes can be rather large so that the ML fit plots may give the false 

impression in model comparisons (Section 6.4.1 Meeker and Escobar, 1998).  The 

entropic information model selection criterion such as AIC affirms our conclusions 

drawn from probability plotting; yet, the normal-approximation confidence interval still 

has its theoretic shortcomings. For example, the normal assumption of transformed data 

may not be the case especially when the sample size is not large.  In this section, we rely 

on the bootstrap method to further demonstrate the estimation improvements from 

applying the forced median censoring technique, which will provide more accurate 

confidence intervals.  This may help practitioners’ work and improve the decision-

making capabilities of management.  Table 4 presents the 95% confidence intervals of the 

first percentile for both complete and median censored data, using the approximate and 

bootstrap nonparametric and parametric methods.   
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Table 4.   95% Confidence Intervals of the First Percentile Computed Under Various 
Model Assumptions and With/Without Median Censoring Technique 

 
With median censoring W/O median censoring Model assumption 

95%_Lower 95%_Upper 95%_Lower 95%_Upper
Interval Method 

Nonparametric 87.2 98.7 87.2 98.7 Normal-Approximation
Nonparametric 86.647 100.035 86.151 101.242 Bootstrap-t 
Nonparametric 87.200 100.630 87.200 100.676 Bootstrap-Percentile 

      
Weibull 91.908 97.672 87.969 91.601 Normal-Approximation
Weibull 91.834 97.392 88.085 97.164 Bootstrap-t 
Weibull 91.836 97.711 78.134 92.051 Bootstrap-Percentile 

      
S.E.V. 89.821 96.689 81.305 86.346 Normal-Approximation
S.E.V. 89.878 96.358 80.456 94.572 Bootstrap-t 
S.E.V. 89.808 96.347 64.647 87.956 Bootstrap-Percentile 

      
Normal 94.986 99.539 95.402 99.147 Normal-Approximation
Normal 94.363 99.672 94.552 99.607 Bootstrap-t 
Normal 94.175 99.771 94.741 99.739 Bootstrap-Percentile 

 
 

The main idea of the bootstrap method is to simulate the repeated sampling 

process, reduce the sampling variations in the data, and compute intervals from the 

simulated distribution of needed statistics without having to making assumptions about 

the appropriate sampling distribution.  The following are three standard steps: 1.) 

generate a resampled data set, called bootstrap sample, repeatedly for a large number of 

times, 2.) compute the desired statistic for each bootstrap sample, and 3.) extract 

information from the distribution of the statistics obtained in 2.), which is the simulated 

sampling distribution of the population statistic. 

For step 1.), the resampling method can be either parametric or nonparametric.  

See Section 9.2.2 of Meeker and Escobar (1998).  We choose the nonparametric 
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bootstrap sampling scheme for all of our bootstrap samples.  There are B = 2000 

bootstrap samples, each consisting of 396 failures resampled with replacement from the 

actual data cases, bound with their respective original censoring information.  For step 

2.), the statistic (first percentile here) for each bootstrap sample is computed both 

parametrically and nonparametrically, specified by the first column of Table 4 as 

“nonparametric”, “Weibull”, etc.   

To avoid confusion of terminology in step 1.), we stress again that all the 

resampling schemes in this paper are assumed to be nonparametric.  The term 

“nonparametric” (Table 4) refers to the “totally nonparametric bootstrap method” 

(compare Martinez and Martinez 2002 and their notation which we use).  Not only is the 

resampling scheme nonparametric in the “totally nonparametric method,” but the 

population parameter θ (here the first percentile) is calculated nonparametrically as θ̂ ; 

the same nonparametric computation of estimate of θ  repeats to each bootstrap sample, 

producing the empirical bootstrap distribution of *ˆ ,θ where *ˆ bθ  is the thb  bootstrap 

estimate.  All the other confidence intervals in Table 4, which are not labeled under the 

“nonparametric model assumption”, are obtained in the parametric way: a ML estimated 

model is used to generalize the sample data and statistical inference is drawn from the 

model parameters.  For other different general details on asymptotic normality of 

percentiles, see Serfling (1980).  
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Under each model assumption, there are different confidence interval methods, 

noted by “interval method” as the last column of Table 4, to construct a confidence 

interval for the desired statistic, namely the first percentile.  “Normal-approximation” 

refers to the pointwise normal-approximation confidence intervals under the 

nonparametric model assumption (Section 3.4.2, Meeker and Escobar, 1998), or to a log-

percentile normal-approximation confidence interval under respective parametric model 

assumptions (Section 7.3.3, Meeker and Escobar, 1998).  When using bootstrap method, 

one can select either “bootstrap-t” or “bootstrap-percentile” method to compute the 

confidence intervals from the simulated sampling distribution of bootstrap step 3.).  If 

appropriately used, the bootstrap-t confidence intervals can be expected to usually be 

more accurate than the normal-approximation ones.  The mathematical descriptions of 

these confidence intervals can be found, for example, in Section 3.6, 7.3.3, and 9.3, 

respectively, of Meeker and Escobar (1998), or compare Edwards, Guess, Young (2004).  

Splida has provided GUI modules to compute all but the nonparametric bootstrap 

confidence intervals for the first percentile.  A MATLAB code was written as part of this 

thesis to compute the bootstrap-t and bootstrap-percentile confidence intervals under the 

nonparametric model assumption.   

There is no significant difference in the nonparametric confidence intervals of 

first percentile between the complete and median censored data, or bootstrap and non-

bootstrap method.  The nonparametric method only makes use of the data points local to 
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the first percentile.  These nonparametric confidence intervals are much wider, however, 

than the ones obtained under parametric model assumptions.  Although these 

nonparametric intervals can serve as fairly broad, robust comparisons for intervals 

obtained by other methods, they do not allow for practical precision of more importance 

in the real world.  

Because the parametric model is built to best generalize a whole bulk of data and 

extract information in terms of a few parameters, the computation of the normal-

approximation confidence interval under a parametric model may come quick and be 

conditionally useful only at the cost of a local approximation, especially at the extremes.  

Such an approach may be correct when the model fit is good globally over the data range; 

however, when the globally good fit disagrees with the local data, the estimates become 

very unreliable.  In the case of Type 1 product, the complete data set includes outliers and 

multiple failure modes.  The normal-approximation confidence intervals from the 

Weibull and S.E.V. ML fits tend to severely underestimate the lower tail, compared to the 

generally more accurate bootstrap estimates (Meeker and Escobar, 1998).  The gap 

between the bootstrap and normal-approximation confidence intervals ranges from a few 

to more than twenty pounds per square inch.   

Not surprisingly, due to the speculations about overall physical breakdowns made 

in Chapter III, the normal ML fit may seem to produce close confidence intervals 

between the bootstrap and non-bootstrap results.  This may occur by consistently 
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ignoring the smallest extreme values and fitting the majority.  The consequence, 

therefore, is that the ML fit tends towards overestimating the lowest percentile. 

The bootstrap estimates are, to a certain extent, resistant to the influence of 

outliers, but not unconditionally.  Even though empirically better than the approximate 

method, the bootstrap confidence intervals computed from the complete data might be as 

misleading in the complete data case.  During step 3 of the bootstrap procedures, a 

histogram of the statistics from bootstrap samples can be drawn out as a simulation of the 

true sample distribution of the statistic.  Such bootstrap histograms can warn us of 

potentially false structure in the complete data or reassure us in the censoring case of 

their likely usefulness.  Figure 7 from the complete data shows much more variations in 

the first percentile nonparametric estimates of bootstrap samples, compared to the other 

percentiles, which corresponds to Figure 2 normal plot and causes the estimates of lowest 

percentiles to be difficult as discussed previously.  Figure 8, also generated from the 

complete data, further shows a strong sign of ambiguity lying in the estimation of first 

percentile from Weibull ML fit of bootstrap samples.  There are apparently two peaks in 

the histogram-simulated distribution of bootstrap first percentile estimates, caused 

potentially by different failure modes, or even possibly two different-shaped Weibull’s 

over different failure range, that are previously speculated in this paper.  Outliers in the 

data could be another reason that affected the bootstrapping histograms.  The bootstrap 

estimates reaffirm that a simple complete data ML fit is insufficient to capture the failure 
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Figure 7.   The Histograms of a.) 1st, b.) 5th, c.) 10th, and d.) 25th  Percentile 

Nonparametric Estimates from Bootstrap Samples of the Complete Data for Type 1 
Product 
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Figure 8.   The Histograms of First Percentile Weibull ML Estimates from Bootstrap 

Samples of the Complete Data for Type 1 Product 
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Figure 9.   The Histogram of First Percentile Weibull ML Estimates from Bootstraps 

Samples of the Median Censored Data for Type 1 Product 

 

mode of Type 1 product and produce reliable estimates of the lowest percentiles.  

The bootstrap method supports the methodology of the median censoring 

technique, i.e., the data is reengineered by different weights so that a simple model can fit 

the observed data very well.  Moreover, the desired information of the lower percentiles 

is protected from the influence of overall failure complexity as well as upper outliers in 

the complete data. 

As a comparison, the histograms of bootstrap estimate on the median censored 

data in Figure 9 show no such bimodal patterns.  Also, note carefully the scale is different 

in Figure 9 for the normal to not be as spread out as the other previous Figures.  If we 

look at the computed confidence intervals from the median censored data in Table 4, all 



 33

three types of estimation methods, normal-approximation, bootstrap-t, and bootstrap-

percentile, produce very close results under the a simple model assumption.  We slightly 

favor the Weibull model because the S.E.V. has the tendency of underestimating the data, 

and because the Weibull model is further supported by the information model selection 

criterion.  On different occasions the choice between the Weibull and S.E.V. fit may 

depend on whether a more accurate or conservative estimate is preferred.   
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CHAPTER VI.   PARAMETRIC MODELS FOR TYPE 1 AND TYPE 5 

PRODUCTS 
 
 

A sound statistical analysis always starts with graphical explorations of the data.  

We now take advantage of the powerful graphics provided by the JMP® 

Survival/Reliability platform and present comparisons of both Type 1 and Type 5 

products side by side in the next several figures: 

A few important observations can be made from the graphical analysis presented 

in Figure 10.  First, the forced censoring technique provides a closer fit to the focus 

portion of data for Type 1.  Second, there is departure on the lower tail of Type 5 which 

 

 
Figure 10.   Comparisons of Type 1 and Type 5 on the Weibull Probability Plots in 

JMP® 
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the median censoring does not improve upon as much. 

Note, the manufacturing process for these MDF products is not a batch process 

and is continuous flow i.e., there is a gradual transition from Type 1 to Type 5.  The 

variations observed in the upper percentiles of Type 1 and lower percentiles of Type 5 

may likely be the result of this gradual production transition phase.  We have successfully 

applied the median censoring technique to Type 1 to reduce the upper-tail influence in the 

case of modeling lower percentiles.  In Type 5 an undesired outcome is that the lower-tail 

variance will affect our estimation on the small percentiles. 

A practical strategy is to have a relatively conservative estimate of the percentile.  

Figure 11 illustrates the 95% simultaneous confidence interval for both types of products, 

generated in JMP® 6.0 beta test version.  In both Figures 10 and 11, the median censoring 

technique helpfully improves the fit of the lower tail of Type 1 product to the Weibull 

model.  For Type 5 product, even though Figure 10 does not show much difference 

between the fits of uncensored data and censored data of Type 5 product, it can be seen in 

Figure 11 that the Weibull fit to median-censored Type 5 product data renders a relatively 

wider confidence interval that realistically accommodates the rather large variations on 

the lower tail that is inherent there with the smaller sample.  In fact, had the Type 5 data 

not been censored, one crucial lower percentile data point would be beyond the Weibull 

95% confidence bands of the uncensored Type 5 product data (not shown in Figure 11).  

Based on the above reasoning, we prefer the more conservative results from the censored 
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Figure 11.   95% Simultaneous Confidence Intervals of Median-censored Type 1 and 5 
Products on the Weibull Probability Plot 

 

Type 5 data. 

Recall that the censoring technique does not truncate the data; rather the data 

portion of interest is given more weight for modeling.  In the case of Type 5, the result is 

that more leeway is given to the lower percentile estimate given the relatively large local 

variations. (Aside: The plot option of fitted confidence interval is a newly-added feature 

of JMP® Survival/Reliability Platform in the beta 6.0 version we are reviewing.) 

Table 5 shows the estimates of Weibull model fit to the both product types before 

median censoring.  Note that the 95% confidence intervals for the shape parameter β of 

each product type do not even overlap.  However, a refit of the Weibull model to the 

median censored Types 1 and 5 failure data produced similar range of confidence interval 

estimates of the shape parameter β (Table 6).   
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Table 5.   Weibull Parameter Estimates Based on Uncensored Types 1 and 5 Product 
Data 

 
Product type Parameter Estimate Lower 95% Upper 95% N Tests 

Type 1 α 124.76 123.61 125.90 396 
Type 1 β 11.38 10.66 12.10 396 
Type 5 α 190.03 186.83 193.18 74 
Type 5 β 14.60 12.18 17.22 74 

 
Table 6.   Weibull Parameter Estimates Based on Median Censored Types 1 and 5 

Product Data 
 

Product type Parameter Estimate Lower 95% Upper 95% N Tests 
Type 1 α 122.71 121.70 123.87 198 
Type 1 β 17.79 15.59 20.18 198 
Type 5 α 189.51 185.73 194.88 37 
Type 5 β 15.55 11.38 20.57 37 

 

The results from individual model fits are not sufficient to conclude that the two 

product types have the same shape parameters, or the same type of failure modes.  In the 

next chapter, we conduct a rigorous statistical hypothesis test to determine whether the 

two products had a common shape parameter (similar to the strategy for analyzing 

accelerated life test data).  We will consider density for each product type as the 

accelerated variable.   
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CHAPTER VII.   COMMON SHAPE WEIBULL MODEL FOR TYPE 

1 AND TYPE 5 PRODUCTS 
 

 We fit both type 1 and 5 product data to a common shape model, as shown in 

Figure 12, considering the similarity between the values of shape parameters from 

separate Weibull model fits.  For comparisons, individual model fits of both product 

types are shown in Figure 13.  The increased overall sample size leads to confidence 

interval bandwidth which is indeed narrower (compare Figures 12 and 13).  It is apparent 

the common shape Weibull model provides a very good coverage of data for both product 

types. 

.0003
.003
.02
.1
.5

 60 100 140 180

Smallest Extreme Value Probability Plot  

.0001
.002
.02
.2
.5

 80 100 120 140 160 180 200

Normal Probability Plot  

IB

.0001
.01
.1
.3
.6

 80 100 120 140 160 180 200

Largest Extreme Value Probability Plot  

.0003
.003
.02
.1
.5

 80 100 120 140 160 190

Weibull Probability Plot  

.0001
.002
.02
.2
.5

 90 110 130 150 170

Lognormal Probability Plot  

IB

.0001
.01
.1
.3
.6

 90 110 130 150 170

Frechet Probability Plot  

Fr
ac

tio
n 

Fa
ilin

g

type.1.and.5.censored data subset Estimable Subsets 
 Probability Plots with and Pointwise 95% Confidence Intervals class Model MLE

 
Figure 12.  Fitting Both Type 1 and 5 Product Data to Common Shape Location-Scale 

Models 
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Figure 13.   Fitting Both Type 1 and 5 Product Data to Individual Location-Scale Models 

 
 

The graphical exploration (Figure 12) and parameter β confidence interval 

estimates (Table 6) both suggest a common shape, or similarity of failure modes between 

product types.  Recall the Weibull model and linearized Weibull CDF as seen on the 

Weibull probability plot.  The Weibull CDF can be often written as 

( ; ; ) 1 exp , 0.tP T t t
β

α β
α

  ≤ = − − >  
   

 

β > 0 is the shape parameter and α > 0 is the scale parameter as well as 0.632 quantile 

(Weibull 1939, 1951).  Meeker and Escobar (1998) have pointed out that the practical 

value of the Weibull distribution is to describe failure distributions with many different 
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commonly occurring shapes.  To better display or compare parametric models such as 

Weibull, we linearize a model CDF on the probability plot.  In the Weibull case, one can 

derive the p quantile from the above CDF function: ( ) 1/
log 1pt p

β
α= − −   .  This leads 

to 

( ) ( ) 1log log log log 1pt pα
β

= + − −    

If we use special scales to tp and p on the probability, which is to take ( )log pt and 

( )log log 1 p− −    on the x and y axis, there is a linear relationship between 

( )log log 1 p− −    and ( )log pt  provided a perfect Weibull distribution where the shape 

parameter β is the slope of the straight line.  This justification underlies all the Weibull 

probability plots shown so far.  Hence, if two models appear to have similar slopes on the 

Weibull probability plots, we may hypothesize that the two models have the same shape 

parameter, which is also an indicator of failure mode.  In our case study, the Weibull 

probability plots for Types 1 and 5 failure modes have similar slopes (Figures 14).   

We assume a constant-shape parameter assumption that is an overall constrained 

Weibull model {α1, α2, and common shape β} for the replacement of two individual 

unconstrained Weibull models {W1: α1, β1} and {W2: α2, β2}.  The total likelihood for the 

unconstrained models is always larger than the likelihood of the constrained model.  A 

likelihood ratio test is conducted to determine if the total likelihood for the unconstrained  
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Figure 14.   Median Censored Type 1 and 5 Product Data Fitted by Common Shape 

Weibull Models Plotted on Weibull Probability Plot 

 

models is large enough to indicate lack of fit for the constrained model.  The null and 

alternate hypotheses for the likelihood ratio test are: 

H0: The shape parameters are the same.  

H1: The shape parameters are different; the unconstrained models are better. 

The test statistic ( ) ( )1 2
2 2constrained unconstrained constrained W WQ L L L L L = − − = − − +  , L denoting 

the log likelihood of each model, follows a 2
1χ  distribution, in which the one degree of 

freedom comes from the difference between the number of parameters in constrained and 

unconstrained models.   
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Table 7.   Demonstration of Likelihood Ratio Test Based on JMP® “Fit Parametric 
Survival” Output 

 

Model Log 
likelihood ChiSquare d.f. Prob>ChiSq 

W1 (Type 1) -66.3138    

W2 (Type 5) -7.4132    

Unconstrained (W1+ W2) -73.7271  4  
Constrained (common 

shape β) -73.3324  3  

Test Statistic Q  0.7894 1 0.3744 

 

An individual survival model is built using JMP® “Fit Parametric Survival” 

platform from its “Survival and Reliability” submenu.  The accelerated Weibull model, 

we include the accelerating variable (density) as the regressor or “model effect” with the 

model specified.  Table 7 illustrates the log likelihood values from three models: 

1 2
, ,W W constrainedL L L  and the chi-square test results. 

The estimated value of Q = -2 × [-73.3324 - (-66.3138 - 7.4132) ] = 0.7894 is less 

than the critical 2
0.95,1χ = 3.84 (p-value = 0.3744), indicating no evidence of inadequacy of 

the constrained model.  Based on this test, there is insufficient evidence to reject the null 

hypothesis that shape parameters for Types 1 and 5 were the same. (Aside: Another way 

to check the model adequacy is to use Akaike’s Information Criterion (AIC): 2 2L k− + , k 

being the number of parameters in the model Akaike (1973).)  The conclusion was the 

same using the AIC test, i.e., the common shape model is adequate for modeling both 

Type 1 and Type 5 products. 
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 Constructing data tables, fitting separate models, and extracting log likelihood 

results from different reports for statistical testing can be very tedious and may be subject 

to human error even when an easy-to-use interactive interface such as JMP® is used.  We 

develop a JMP® script to automate the data preparation and model computing process to 

complement graphical exploration and model building (see Figure 15 which is a JMP® 

output of a customized report of likelihood ratio test for common shape model using our 

customized JSL).  See Young and Guess (2002) for more on process automation and 

storage of data in a relational database.  Also, see English (1999) on designing a high 

information quality model for less information scrap and rework.   

We are more interested in this investigation of the practical implications 

suggested by the common shape model associated with the Weibull distribution.  For this  

 

 
 
 

Figure 15.   Customized JMP® Report of Likelihood Ratio Test for Common Shape 
Weibull Model 
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data, Type 5 was a product of high value to the producer and consumer but is not sampled 

at the same level of intensity as Type 1, another important product.  To understand the 

confidence in the estimates for Type 5 key parameters for the common shape Weibull 

model we investigate several methods to ensure product reliability.  Given that dissimilar 

sample sizes of Types 1 and 5, we use the abundant information from Type 1 to assist in 

the model building and prediction of Type 5.  A comparison of the various percentile 

estimates for each product is presented in Table 8. 

 

Table 8.   95% Confidence Intervals of First Percentiles Computed Under Various Model 
Assumptions With and Without Median Censoring  

 
a.) Type 1 product 

With median censoring W/O median censoring Model 
Assumption 95%_Lower 95%_Upper 95%_Lower 95%_Upper

Interval Method 

Weibull 91.834 97.392 88.085 97.164 Bootstrap-t 

Weibull 91.206 98.424 81.276 85.312 JMP® Individual Model

Weibull 90.886 97.656 82.359 86.061 JMP® Common Shape 
Model 

 
b.) Type 5 product 

With median censoring W/O median censoring Model 
Assumption 95%_Lower 95%_Upper 95%_Lower 95%_Upper

Interval Method 

Weibull 139.6 154.46 130.38 148.54 Bootstrap-t 

Weibull 127.31 155.60 131.71 146.00 JMP® Individual Model

Weibull 139.36 150.79 123.60 131.07 JMP® Common Shape 
Model 
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Table 8 shows consistent confidence interval estimates from the bootstrapped and 

JMP® common shape models, for both product types after being median censored.  One 

exception is the estimate for product Type 5 from the JMP® individual model.  Recall the 

relatively large variations on the lower tail of Type 5 in Figures 2 and 3 due to production 

transition phase.  The JMP® common shape model performs as well as the bootstrap 

method, even though the methodologies are different.  However, because of the relatively 

large variation right at the percentile point of interest, more evidence and cross-validation 

results are needed to enhance our confidence in recommending one of these estimates. 

 Finally, Figure 16 strongly suggests the adequacy of common shape Weibull 

model assumptions as the residuals show a linear pattern on the Weibull probability plot. 

Standardized Residuals

.0003

.0005

.001

.003

.005

.01

.02

.03

.05

.1

.2

.3

.5

.7

0.002 0.005 0.010 0.020 0.050 0.100 0.200 0.500 1.000

P
ro

ba
bi

lit
y

type.1.and.5.censored data subset Estimable Subsets
 Residual Probability Plot with 95% Simultaneous Confidence Bands

typeclass, Dist:Weibull 
 Weibull Probability Plot  

Fri Oct 14 02:21:30 EDT 2005

-
-

 

Figure 16.   Residual Plot of the Common Shape Weibull Model 
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CHAPTER VIII.   BAYESIAN METHODS FOR PERCENTILE 

ESTIMATION 
 
 

There is evidence as illustrated in the last chapter that Type 5 product shares the 

same shape parameter for the Weibull distribution model, with Type 1 product if we 

performed median censoring.  This is probably the result of a common failure mode.  

Therefore, even though the sample size of Type 5 product is relatively small, we are able 

to make reliable predictions of lower percentiles given the abundance of information for 

Type 1 product.   

Yet, it may not always be the case with other product types.  There may be a 

situation when we do not have data on another comparable product such as Type 1 to 

Type 5 product.  Furthermore, there may be only limited amount of data available, such 

as Type 5 product data; however, we may feel that we know something about the likely 

range of values of the shape parameter.  Bayesian methods come to mind in this situation 

as a promising approach. 

The basic idea of Bayesian methods comes from Beyes’ Theorem (Papoulis 

1984): 

1

( ) ( ) ( | )( | )
( ) ( ) ( | )
i i i

i N
j jj

P A A P A P A AP A A
P A P A P A A

=

= =
∑

I , S=
1

N
ii

A
=U  and i jA A = ∅I  for i≠j 

The philosophy is that there exists a set of mutually exclusive and exhaustive states (Ai); 
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one and only one of these states actually happens at a time.  The uncertainty revolves 

exactly which one of the Ai’s the outcome (A) would result from.  If one obtains some 

additional information on the occurrence of A, the new information will more than likely 

improve assessing the probability of one of the states (Ai).  We call the probabilities of 

these states, P(Ai), priors, and updated probability P(Ai|A) posterior. 

The Bayesian probabilities can be described in probability density functions 

similarly, as following: 

( | ) ( ) ( ) ( )( | )
( | ) ( ) ( ) ( )

L DATA f R ff DATA
L DATA f d R f d

θ θ θ θθ
θ θ θ θ θ θ

= =
∫ ∫

 

( )f θ  is the prior subjective probability of parameter(s) θ ; ( )L θ  is the likelihood for the 

available data and specified model; ˆ( ) ( ) / ( )R L Lθ θ θ=  is the relative likelihood.  

( | )f DATAθ  is the posterior probability density of θ  given the update of newly 

available data.  Meeker and Escobar (1998) have described simulation-based numerical 

methods to evaluate the posterior probability. 

The prior information can be expert opinion or a noninformative (diffuse) prior 

distribution.  Meeker and Escobar (1998) suggest eliciting the prior information for a 

straightforward parameter, such as the first percentile and the shape parameter of a 

Weibull model, preferably with physical or practical meaning for which the prior can be 

asserted independently.  Also, because it is difficult to construct a meaningful joint prior 

distribution, marginal distributions for individual parameters are sufficient and one 
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should avoid potential dependences among parameters.  For example, the shape 

parameter β  and location parameter η  in the Weibull model would not be a good choice 

of prior pair because the two parameters are often dependent.  Instead, a quantile on 

either tail of the distribution and the shape parameter would be approximately 

independent; and it would be meaningful to survey the field experts on the likely value of 

these parameters.  Splida has a built-in module of single distribution Bayesian analysis. 

There are a total of 74 samples of Type 5 product collected.  The median 

censoring technique has proved useful on a relatively large dataset, e.g., Type 1 product.  

This censoring technique is also helpful when building the Weibull model with Type 5 

product.  Half of the Type 5 product data is censored so that the common shape Weibull is 

marginally more robust.  But there is not much difference about the Weibull parameters 

between uncensored and censored data.  In the Bayesian analysis, we can entertain both 

and compare the results later. 

First, we specify the prior distribution of shape parameter β  as lognormal 

between 5 and 25, reasonably based on Table 6.  Also, the first percentile t0.01 is estimated 

to fall between 100 and 160, according to elicited information.  It is then decided to 

describe the uncertainty in log(t0.01) as a conservative and relatively wide range: 

UNIF[log(100), log(160)], in which we do not give any particular preference for the point 

of interest.  Such a noninformative prior distribution has worked well on the Weibull 0.01 

quartile (Meeker and Escobar 1998). 
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Splida uses the inverse cdf method to simulate the prior distribution.  Figure 17 

shows the simulated points from the joint prior distribution for t0.01 and β .  Figure 18 

shows the simulated prior, transformed from the points in Figure 17, plus the histograms 

of sample shape and location parameters denoted as β  and η .  Splida uses an algorithm 

to retain a random sample of prior points and computes relative likelihood ( )iR θ  on these 

selected sample points. 

Figure 19 shows the same prior points given in Figure 17 with the relative 

likelihood contour superimposed.  These contours filter out the prior points with very low 

relative likelihood (with probability equal to the relative likelihood at that point).  The 

remaining prior points within the contours, shown in Figure 20, are computed to provide 

the Monte Carlo approximation to the posterior function of (t0.01, β ). 
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Figure 17.   Simulated Points from the Joint Prior for t0.01 and β  
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Figure 18.   Simulated Points from the Joint and Corresponding Marginal Prior 

Distributions for η  and β  
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Figure 19.   Simulated Points from the Join Prior Distribution with Weibull Relative 

Likelihood Contour Superimposed 
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Figure 20.   Simulated Points from the Joint Posterior for t0.01, β  

 

Figure 21 and 22 show the marginal posterior distributions of parameters of our 

interests, β  and t0.01, respectively.  Note that the vertical dashed lines on both figures 

indicate the Bayesian 95% prediction intervals.  In this manner, we obtain Bayesian 

credibility intervals for the shape parameter and first percentile of both censored and 

uncensored data, shown in Table 9.  Traditional confidence and bootstrapped intervals for 

the same parameters are also provided in the table.  However, the fundamental difference 

between these approaches is that prediction interval speaks about the uncertainty of the 

parameter, while the confidence interval is interpreted as the resampling coverage 

probabilities assuming fixed parameters.  While these two methods should produce close 

results in large samples, it appears that the Bayesian prediction interval bounds tend to be  
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Figure 21.   Marginal Posterior Distribution for Shape Parameter β  

 

t_0.01
115 120 125 130 135 140 145 150f(t

_0
.0

1 
| D

A
TA

)

Wed Oct 26 23:32:40 EDT 2005

Weibull Model Posterior Distribution for Type5Censored data

 
Figure 22.   Marginal Posterior Distribution for the First Percentile t0.01 
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Table 9.   95% Prediction and Confidence Intervals for β  and t0.01 of Type 5 Product  

 
With median censoring W/O median censoring 

Parameter 
95%_Lower 95%_Upper 95%_Lower 95%_Upper

Interval Method 

β  10.68 18.24 11.8 16.47 Bayesian NormBeta 

β  11.65 21.01 12.28 17.34 Individual Model 

β  11.45 20.69 12.18 17.22 Relative Likelihood 

β  11.97 19.35 11.91 16.80 Bootstrap-t 

β  11.08 20.18 12.06 17.06 Bayesian UniformBeta 

β  11.1 19.37 12.05 16.83 Bayesian NormQuantile

β  11 20 12 17 Bayesian widerQprior 

 

With median censoring W/O median censoring 
Parameter 

95%_Lower 95%_Upper 95%_Lower 95%_Upper
Interval Method 

t0.01 124.6 147 127.6 144.7 Bayesian NormBeta 

t0.01 130.4 152.8 130.37 147.5 Individual Model 

t0.01 128.1 150.8 129.3 146.5 Relative Likelihood 

t0.01 130.44 148.92 128.52 145.29 Bootstrap-t 

t0.01 126.5 150.3 128.9 146.2 Bayesian UniformBeta 

t0.01 127.1 149 128.9 145.8 Bayesian NormQuantile

t0.01 126.6 150 128.6 146.1 Bayesian widerQprior 
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slightly smaller than the confidence interval bounds for Type 5 product with a relatively 

small sample size. 

Table 9 also includes the 95% Bayesian prediction intervals computed from other 

priors.  “UniformBeta” indicates a loguniorm prior distribution for the shape parameter, 

while the prior for first percentile and the range of both priors remain the same.  

Similarly, “NormQuantile” refers to changing the shape of first percentile prior 

distribution to lognormal, while keeping everything else constant.  “WiderQprior” only 

widens the range of loguniform t0.01 to [50, 250].  It appears that the diffuseness of prior 

does not affect the posterior prediction much, if any.  The shape of prior distribution 

seems to have more impact on the prediction; change of prior distribution from lognormal 

to loguniform provides larger predictions.   

In earlier chapters, small percentile confidence intervals are computed using 

nonparametric, normal-approximation maximum likelihood (ML) including both 

individual and common shape model, and bootstrapping methods.  More detailed 

references on these types of confidence intervals can be found in Meeker and Escobar 

(1998) with bootstrap intervals discussed by Davison and Hinkley (1997), Chernick 

(1999), Efron and Tibshirani (1993), and Efron (2003).  As shown in Tables 4 and 9, the 

results computed from different methods (even philosophies) are quite consistent and 

agreeable. 

Note that Polansky (1999, 2000) warned of using bootstrap estimates when the 
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percentiles are very small such as 1% or 5% and when the sample size is also small, e.g., 

less than 100.  In our case study, there are an adequate number (396; 198 after median 

censoring) of samples for Type 1 product, and we observe consistent Bootstrap estimates; 

however, the sample size (74) for Type 5 product should raise our concerns for the 

bootstrap method.  As a result of small sample size, the median censoring technique does 

not seem an appropriate and necessary preparation procedure for bootstrapping (Table 9).  

Instead, we should compare results from all methods from simple parametric model fit to 

relative likelihood estimates to Bayesian methods, and to bootstrapping without applying 

median censoring in advance and look for consistency in the estimates. 

It is reassuring to have different methods of confidence interval estimation 

agreeing so closely.  Besides the sample size issue, though we generally trust the 

bootstrap-t estimates more because of its resampling mechanism, the ML fit normal 

estimates are very close to them given the improvement in data quality by the median 

censoring technique.  From a practitioner’s point of view, even if a bootstrap-t macro or a 

computationally-intensive environment is unavailable, the conventional ML fit approach 

can still be acceptable as long as the median censoring technique has been applied.  Such 

a conclusion also helps the tasks that demand online feedback or timely solutions.   

As computing power has grown exponentially over the past two decades, all the 

simulation-based and Bayesian methods are more feasible and accessible for personal 

computing.  Statistical knowledge and the power of quantifying future uncertainties are 
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greatly enhanced by this PC accessibility.  As shown in the results of low percentile 

estimates, we gain confidence in believing the predictions, as long as the underlying 

physics or chemistry mechanism remains stable under operating conditions.  And as is 

learned from the Bayesian philosophy, we are forever going to incorporate new 

information to our knowledge and make our decisions of best action. 
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CHAPTER IX.   SUMMARY 
 
 

Be it the observed complexity within the complete data set of the Type 1 MDF 

product, or the limited observations of Type 5 MDF product, real world data will often 

present some “non-textbook” difficulties, therefore require careful evaluation and 

unconventional solutions.  The nonparametric methods are easy to implement but may 

not apply the full benefits of available information, and may be difficult to interpret for 

the practitioner.  Simply fitting a parametric model to primitive data may be problematic 

given the inadequate weighting of the most crucial information, e.g., lower percentiles.  

The resulting estimates for questionable assumptions of normality may lead to product 

failures at the plant and product failures in the field.  Product failures detected in the plant 

lead to rework and higher costs of manufacturing, product failures in the field lead to 

claims and loss of customer value.  Poor product information and knowledge result in 

poor product reliability, and as a result, poor product quality.  

Rather than building a complicated model to match every portion of the observed 

data, or being misled to unnecessarily collect expensive test data, we introduce a new 

technique of median censoring which places more weight on the lower tail of the data for 

critical estimates of the smallest percentile.  It is shown both graphically and 

quantitatively that with high quality data, a simple as well as empirical failure model like 

Weibull fits the lower tail exceptionally well and produces consistently reliable estimates 
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of the small percentiles.  Evidence presents that the forced censoring technique can 

enhance analyses of non-normal or highly complex data.   

Probability plots and ML fits are very supportive of the median censoring 

technique.  What is also crucial is the confirmation provided by bootstrapping.  We have 

shown that not only is the median censoring technique supported, but enhanced by the 

bootstrap method.  The bootstrap simulated sampling distribution reveals different failure 

modes existing in the complete data set, and that the median censoring technique resolves 

the bimodality difficulty in the ML fit.  The high degree of agreement between the 

normal-approximation C.I. and the bootstrapped C.I. is strong evidence that the median 

censoring technique is superior.  The exception is when the sample size is relatively 

small, e.g., less than 100, one must use the bootstrapping method with extreme caution.  

Other methods like Bayesian approach, restrained models (common shape, etc.) should 

be explored to leverage various sources of information into predictive modeling.  

Graphic exploration and interactive discovery helps identify patterns in the data 

that may be hidden by descriptive statistics alone.  We have further investigated an 

accelerated Weibull model to help increase the accuracies of extremely small percentile 

estimates which may be important methods for understanding product reliability and be 

helpful for improved product quality and lower manufacturing costs, especially when the 

samples are costly.  The easy to use JMP® platform facilitated the implementation of a 

sound statistical strategy in the context of process improvement in reliability engineering 
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that can be readily adopted by a large number of industrial users. 

 Finally, we caution practitioners that as straightforward as the practice seems to 

be by fitting a commonly known or accepted model to the raw lifetime data, it is 

dangerous and costly to draw any immediate or convenient inference merely from that 

type of preliminary analysis, which may mislead to over-engineering a product or over-

sampling.  We suggest that the data structure be examined via various probability plots 

first.  If these plots suggest deviations from the ML fit or possible outliers or curvatures, 

it is advised to apply the forced median censoring technique to put more weights on the 

part of data of best interest.  Then, refit a parametric model for better estimates of small 

percentiles.   

It is important that different methods, bootstrapping in particular, be used to 

validate the model and improve the estimates.  Under limited situations, the model fitting 

methods without bootstrapping may perform just fine and render quick and satisfactory 

results because of the critically improved data quality by the median censoring technique.  

Overall, our approach to analyzing complex real-world lifetime data is empirically 

successful, parsimonious, and suitable for real-time manufacturing settings.  It does not 

depend on the underlying distribution being Weibull, lognormal, or otherwise.  This 

approach is also applicable to lifetime or strength failure data for small sample sizes that 

are common during mill startups and new product development.  The methods of this 
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thesis could also be useful in “time to submission for rebates” or “times to return” a 

product common in marketing analyses.    
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Appendix 
 

JMP® script of the forced censoring technique: 

dt = Open(); 
/* Dialog to choose the censoring quantile */ 
  sdlg = Dialog( 
  "Enter censor quantile", 
  censorQt = EditNumber(0.50), 
  "Enter product type", 
  pType=EditText("Type 1"), 
  Button("OK"), 
  Button("Cancel") 
  ); 
  If (sdlg["Button"]==-1, 
 Throw("!Cancelled") 
  ); 
  show(sdlg["censorQt"]); 
  show(sdlg["pType"]); 
 
  censorValue = Col Quantile(:IB, sdlg["censorQt"]); 
 
/* Create new columns for censored data, cersor label, and product type info. */ 
  dt << New Column ("IBc", 
   Numeric, 
   Continuous 
  ); 
  dt << New Column ("NewCensor", 
   Numeric, 
   Nominal 
  ); 
  dt << New Column ("Type", 
   Char, 
   Nominal 
  ); 
 
/* Forced censoring from the specified quantile for each row */ 
  For Each Row ( 
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 If( 
  :IB <= censorValue, :NewCensor=0; :IBc=:IB, 
  :IB > censorValue, :NewCensor=1; :IBc=censorValue 
 ); 
 :Type=sdlg["pType"] 
  ); 
 
/* Create new data table; not overwrite the initial data file */ 
  dtnew = dt << Subset( 
   Output Table(sdlg["pType"]||" censored"), 
   Columns(:IB, :Censor, :IBc, :NewCensor, :Type) 
  ); 
 
  close(dt, no save); 
  close(dtnew); 
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