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ABSTRACT 

 

Synthetic turf research plots containing crumb rubber (CR) infill were established in 

Knoxville, TN in 2012 and 2013. Calcined clay (CC) was amended to CR in several ratios: a 

50:50 (vol vol
-1

) blend; a 50:50 blend with a polymer coating on CC (50 CR:50 CCC); a 15 mm 

layer of CC under 15 mm of CR (CR over CC); and a 15 mm layer of CC over 15 mm of CR 

(CC over CR).  A 100% CR and a 70:30 blend of CR to sand (70 CR:30 S) were included for 

comparison.  Surface temperature was measured in the summer of 2012 and 2013 at -10, 0, 30, 

60, 90, 120, and 150 minutes following 2.8 cm of irrigation.  Irrigation reduced surface 

temperature 60 to 85% regardless of treatment.  By 30 minutes after irrigation, surface 

temperature increased to 74 to 102% of the temperature recorded 10 minutes prior to irrigation.  

Temperature on the 50 CR:50 CC and CC over CR treatments 150 minutes after irrigation were 

10 to 24% and 20 to 21% lower than the hottest surfaces, which ranged from 95 to 137% of the 

pre-irrigation temperature.  Simulated traffic was applied using the Cady Traffic Simulator for a 

total of 180 traffic events each year.  Trends in surface hardness among treatments were 

inconsistent over years with values ranging from 70 to 160. CC modified infill treatments 

resulted in a faster increase of surface hardness with traffic compared to 100% CR and 70:30 S.  

Traffic affected particle size diameter of infill materials. Infill particles ranging in size from 3.35 

to 1.0 mm decreased in diameter an average of 1.0 to 12.0%.  Particles ranging from 1.0 to 

<0.002 mm increased in diameter an average of 0.3 to 3.8%.  This increase in size was least 

pronounced for the 100% and 70 CR:30 S treatments and most pronounced for treatment CC 

over CR.  Significant temperature differences were not consistent among treatments and surface 
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hardness with CC tended to measure higher than 100% CR and 70 CR:30 S.  The results of this 

experiment indicate the use of CC in synthetic turf may be limited.        
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INTRODUCTION 

 
Athletic fields are difficult to manage due to the high volume of foot traffic surfaces 

receive and the expectations of end-users (Carrow and Petrovic 1992; Christians 2011).  A safe 

and uniform surface is required by players and coaches that must also be aesthetically pleasing to 

spectators (Christians 2011).  The design and construction of athletic fields has changed 

throughout the past forty years.  In the 1970s and early 1980s, a nylon synthetic turf was widely 

used for upper-level athletic fields due to its multiuse properties (Serensits et al. 2013).  Many of 

these fields were replaced with natural turfgrass grown over sand-based root zone in the 1990s.  

In the late 1990s and 2000s, a new generation of synthetic turf surfaces emerged (Christians 

2011; McNitt 2005).  These new third-generation synthetic turf surfaces consist of upright, 

polypropylene or polyethylene pile fibers infilled with crumb rubber or a combination of crumb 

rubber and sand (McNitt 2005; McNitt et al. 2004; Menichini et al. 2011; Serensists et al. 2013).    

  Excessive surface temperatures associated with third-generation synthetic turf have been 

measured to be as high as 93°C (Williams and Pulley 2002).  The heat transfer from the synthetic 

turf surface to the inner soles of athlete’s shoes has been reported to raise physiological stress to 

a point where it could result in heat-related illnesses (Buskirk et al. 1971).  Consequently, the 

New York City Department of Health and Mental Hygiene has recognized excessive surface 

temperature as the number one health concern associated with third-generation synthetic turf 

athletic fields (Denly et al. 2008).  Irrigation has been reported to lower surface temperatures on 

synthetic turf for 20 to 30 minutes (McNitt et al. 2008; Williams and Pulley 2002).  The addition 

of an inorganic amendment, such as calcined clay, to crumb rubber infill has the potential to 

increase the water holding capacity of the infill potentially prolonging the evaporative cooling 

effect of irrigation. 
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CHAPTER 1 

LITERATURE REVIEW 
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OVERVIEW OF ATHLETIC FIELD DESIGN AND CONSTRUCTION 

 

  Athletic fields are difficult to manage due to the high volume of foot traffic playing 

surfaces receive and the expectations of end-users (Carrow and Petrovic 1992; Christians 2011).  

A safe and uniform surface is required by players and coaches that must also be aesthetically 

pleasing to spectators (Christians 2011).  Puhalla et al. (2010) described two basic requirements 

for athletic field design: 1) fields must have the area and shape requirements necessary for a 

specific sport to be conducted based on rules and regulations, and 2) the surface must allow 

players to compete safely at a realistic level of competition.  Athletic field safety is affected by 

three surface characteristics:  traction, hardness, and evenness (Puhalla et al. 2010).   

Traction is defined as a range which allows cleats to be released from the surface during 

forceful movements while also limiting excessive rotational resistance (Shorten et al. 2003).  

Traction is essential for player acceleration, the controlling of speed, and changing direction.  

Poor traction can lead to lower extremity injuries (Puhalla et al. 2010; Shorten et al. 2003).  The 

hardness of an athletic field surface is similar to traction in that it both positively and negatively 

impacts player safety and performance.   

An important characteristic of an athletic field is its ability to absorb shock (Serensits et 

al. 2013).  The harder the surface, the less shock is absorbed.  The shock absorbing ability is a 

strong indication of the safeness associated with an athletic field surface (Morehouse 1992).  The 

less shock that is absorbed by the playing surface, the greater the potential for an injury to occur 

during impact (Morehouse 1992; Serensits et al. 2013).  The third quality of evenness works in 

combination with surface hardness for ensuring consistent ball response in sports such as soccer, 

baseball, and field hockey (Puhalla et al. 2010; Serensits et al. 2013). 
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The design and construction of athletic fields has changed over the past forty years.  

Throughout the 1970s and early 1980s, a synthetic turf system was widely used for upper-level 

athletic fields.  This traditional synthetic turf system consisted of nylon fibers knitted into a 

horizontal backing without infill materials (Morehouse 1992; Serensits et al. 2013; Stanitski et 

al. 1974).  These synthetic turf surfaces could withstand high volumes of use which allowed 

them to be multiuse facilities (Serensits et al. 2013).  The traditional synthetic turf systems were 

receiving criticism for their involvement to athlete injuries (Powell and Schootman 1993; 

Skovron et al. 1990), therefore in the late 1980s and into the 1990s, a large amount of these 

fields were replaced with natural turfgrass grown in a sand-based root zone (Christains 2011).  In 

the late 1990s and 2000s, a new generation of synthetic turf surfaces emerged (Christians 2011; 

McNitt 2005).  These new third-generation synthetic turf surfaces consist of upright, 

polypropylene or polyethylene pile fibers infilled with crumb rubber or a combination of crumb 

rubber and sand (McNitt 2005; McNitt et al. 2004; Menichini et al. 2011; Serensists et al. 2013). 

 

HISTORY AND DEVELOPMENT OF SYNTHETIC TURF 

 

The evolution of synthetic turf has attempted to create a product that more closely 

resembles the functional and aesthetic characteristics of natural turfgrass (Menichini et al. 2011; 

Puhalla et al. 2010; Ruffino et al. 2013; Serensits et al. 2013).  The origins of synthetic turf are 

based on providing a safe playground surface for inner city children to improve their physical 

fitness.  In the early 1960s, the Ford Foundation’s Education Facilities Laboratory and 

Chemstrand worked to develop a suitable playing surface which would withstand heavy traffic, 

be easily maintained, and would keep its functional characteristics year round.  The first 
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installation of this synthetic turf, known as Chemgrass, was installed in 1964 in the field-house 

of Moses Brown School of Providence, R.I.  Chemgrass consisted of 12.7 mm long nylon fibers 

without infill materials (Morehouse 1992; Serensits et al. 2013; Stanitski et al. 1974). The first 

installation of Chemgrass in a major venue took place in 1966 in the Houston Astrodome, 

resulting in Chemgrass becoming known as AstroTurf (Levy et al. 1990; Morehouse 1992; 

Puhalla et al. 2010; Serensits et al. 2013).  As the popularity of AstroTurf rose, two similar 

synthetic turf products were introduced in the late 1960s.  Tartan Turf was manufactured by the 

3M Company and Poly-Turf was a product of the American Biltrite Company (Levy et al. 1990; 

Morehouse 1992; Stanitski et al. 1974).  At the same time, the Adolff Company in Germany 

developed Poligrass for use primarily for soccer and field hockey (Morehouse 1992).  Chemgrass 

(AstroTurf), Tartan Turf, Poly-Turf, and Poligrass are all considered first-generation synthetic 

turf systems (Levy et al. 1990; Morehouse 1992; Serensits et al. 2013). 

In 1976, second-generation, or sand-filled synthetic turf systems, were invented by 

Frederick T. Haas, Jr. (McNitt 2005; Serensits et al. 2013).  The main differences between first- 

and second-generation synthetic turf systems are that second-generation systems have longer 

fibers (pile height) containing silica sand infill.  Second-generation synthetic turf systems also 

included the introduction of polypropylene and polyethylene fibers; however, the majority of 

fibers remained nylon (McNitt 2005; Morehouse 1992; Serensits et al. 2013).  Omniturf was a 

popular second-generation synthetic turf system in Europe.  The first installation of a second-

generation system in the United States occurred in 1983; however, these systems were not 

widely adopted because the sand infill resulted in surface hardness and abrasion potentially 

becoming hazardous for American football (Levy et al. 1990; McNitt 2005; Morehouse 1992; 

Serensits et al. 2013).   
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Third-generation synthetic turf replaced the sand infill with crumb (i.e., granulated) 

rubber or a combination of crumb rubber and silica sand.  Additionally, nylon fibers were 

replaced with polypropylene or polyethylene (Christians 2011; Goatley et al. 2008; McNitt 2005; 

McNitt et al. 2004; Menichini et al. 2011; Puhalla et al. 2010; Ruffino et al. 2013; Schiliro et al. 

2013; Serensits et al. 2013).  Replacing the 100 percent sand infill with crumb rubber or crumb 

rubber/sand mix reduced surface hardness and abrasiveness (Serensits et al. 2013).  In 1997, the 

first third-generation synthetic turf system was installed at Ringgold High School in 

Monongahela, PA with the brand name FieldTurf, manufactured by FieldTurf, Inc. (Calhoun, 

GA).  This first installation of a third-generation system began the latest period of synthetic turf 

expansion (McNitt 2005; Serensits et al. 2013).  An important advancement in the world-wide 

acceptance of third-generation synthetic turf occurred when the Federation Internationale de 

Football Association (FIFA) allowed official matches to be played on these surfaces.  The 

demand for third-generation systems increased, several many new synthetic turf companies 

introduced new products the marketplace.  Although third-generation synthetic turf 

specifications vary from manufacturer to manufacturer, the basic components are similar 

(Goatley et al. 2008; Serensits et al. 2013).   

 

MAIN COMPONENTS AND MAINTENANCE OF THIRD-GENERATION 

SYNTHETIC TURF 

Base Construction 

The integrity of a synthetic turf system begins with proper base construction meeting two 

requirements:  adequate drainage and firm stability (McNitt and Petrunak 2004; Serensits et al. 

2013).  Gravel is the typical base material used with synthetic turf because of its hydraulic 
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conductivity and ability to maintain the specified grade or contours (Goatley et al. 2008; McNitt 

2005; McNitt and Petrunak 2004; Puhalla et al. 2010; Serensits et al. 2013).  The Synthetic Turf 

Council, formed in 2002, developed a set of minimum specifications to protect consumers from 

poor-quality field installations (McNitt and Petrunak 2004; Serensits et al. 2013).  The council 

has specified that adequate drainage of a gravel base system must meet a minimum hydraulic 

conductivity of 50 cm h
-1 

(Serensits et al. 2013).  In order to protect the uniformity of the base 

system, a concrete or asphalt base can be installed instead of gravel where events such as 

concerts or monster truck races frequently occur (Morehouse 1992; Serensits et al. 2013).          

Backing and Pile Fibers 

 Depending upon the type and manufacturer of the synthetic turf system, the backing and 

pile fibers will vary.  A common characteristic of all backing is the ability to provide adequate 

drainage by natural or manufactured pores (Puhalla et al. 2010; Serensits et al. 2013).  The 

material of the backing can be either polyester or polypropylene to resist ultraviolet light 

degradation and prevent rotting.  The backing can be woven or nonwoven, single or multilayer, 

thick or thin, and the pile fibers can either be glued or tufted to the backing.  A thin backing will 

be weak resulting in long-term loss of pile fibers while a thick, strong backing will hold the 

fibers firmly in place (Christians 2011; Morehouse 1992; Serensits et al. 2013).   

The face weight of synthetic turf provides an indication of the density of pile fibers.  Face 

weight is a measure of the amount of pile (yarn) expressed as grams per square meter.  Typical 

face weight values range from 927 to 3708 g m
-2

 (Serensits et al. 2013). Face weight is 

controlled by the gauge (distance) between rows of fibers, which can vary from 9.5 to 19 mm 

(Serensits et al. 2013).  Pile fibers of first-generation synthetic turf were 12.7 mm long compared 

to 40 to 70 mm long for third-generation synthetic turf (Serensits et al. 2013).  Additionally, 
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third-generation synthetic turf fibers can have either slit-film or monofilament architecture.  Slit-

film pile fibers are produced in large sheets, cut into thin strips that are sub-divided further and 

twisted together for ease of tufting into the backing.  Once these thin strips are sewn into the 

backing they are coated with polyurethane and/or latex.  Slit-film pile fibers separate over time to 

reduce the “splash” of infill caused by athletes running on the surface (Serensits et al. 2013).  

The majority of new synthetic athletic field installations contain monofilament pile fibers due to 

their more grass-like appearance and resistance to matting.  The monofilament systems are single 

strands of yarn tufted or directly glued to the backing.  Direct gluing to the backing created a 

problem with early monofilament systems.  Pile fibers would separate from the backing due to 

improper gluing; however, this problem has been reduced as the systems continue to be refined 

(Sandkuehler et al. 2010; Serensits et al. 2013).   

Infill Materials 

Depending on the manufacturer, infill materials consist of 100 percent crumb rubber or a 

combination of crumb rubber and silica sand with infill depth ranges from 25 to 45 mm 

(Christians 2011; Goatley et al. 2008; McNitt 2005; McNitt et al. 2004; Menichini et al. 2011; 

Puhalla et al. 2010; Ruffino et al. 2013; Schiliro et al. 2013; Serensits et al. 2013).  Crumb rubber 

is styrene-butadiene rubber (SBR) produced from recycled car and/or truck tires with an average 

granule size of 2 to 3 mm (Menichini et al. 2011; Ruffino et al. 2013; Schiliro et al. 2013; 

Serensits et al. 2013).  SBR has a high elasticity and resistance to weathering, making it an 

excellent infill material (Serensits et al. 2013).  Two types of SBR are currently available for use 

in synthetic turf.  Ambient SBR is produced by grinding tire treads at room temperature while 

cryogenic SBR is made by freezing and shattering tires.  Compared to ambient SBR particles, 

cryogenic SBR particles are rounder, smoother and do not float in water, which reduces the 



9 

 

potential for infill movement (Christians 2011; Gomes et al. 2010; Serensits et al. 2013).  

Alternatives to SBR have been used in third-generation systems due to potential health and 

environmental impactions associated with human exposure to crumb rubber (Menichini et al. 

2011; Ruffino et al. 2013; Schiliro et al. 2013; Serensits et al. 2013).  Alternatives include 

ethylene propylene diene monomer (EPDM), thermoplastic elastomers (TPE), elastomer-coated 

sand, polyurethane-coated SBR, coconut fibers, cork, and ground walnut shells (Serensits et al. 

2013).    

Maintenance Practices  

 In order to sustain playability and safety of synthetic turf athletic fields, they must receive 

regular, routine maintenance (Goatley et al. 2008; McLaren et al. 2012; McNitt 2005; Puhalla et 

al. 2010; Serensits et al. 2013).  Surface grooming and cleaning, reduction of static electricity, 

and weed control must be part of a routine maintenance program.  Grooming utilizes a series of 

brushes to raise matted pile fibers and loosens the top layer of the infill to reduce compaction 

(McLaren et al. 2012; McNitt 2005; McNitt and Petrunak 2004; Puhalla et al. 2010; Serensits et 

al. 2013).  Contaminants on the pile fibers and infill surface warrant cleaning and disinfecting by 

spraying antimicrobial and detergent solutions.  Surface debris such as leaves, garbage, and 

metal fragments must be removed by sweepers, blowers, vacuums, and magnets (McLaren et al. 

2012; Morehouse 1992; Puhalla et al. 2010; Serensits et al. 2013).  Spraying a dilute solution of a 

fabric softener limits static electricity that causes infill materials to stick to pile fibers and 

athletes (Goatley et al. 2008; McNitt and Petrunak 2004; Serensits et al. 2013).  Weeds, moss, 

and algae should also be controlled on a regular basis depending on specific locations and 

environmental conditions within an athletic field (McLaren et al. 2012; Goatley et al. 2008; 

Puhalla et al. 2010; Serensits et al. 2013).  
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SURFACE TEMPERATURE ISSUES OF SYNTHETIC TURF 

 

Excessive surface temperatures have been a problem of synthetic turf since its origins 

with temperatures reported to be as much as 35 to 60°C higher than natural turfgrass (Buskirk et 

al. 1971).  On third-generation systems, surface temperatures as high as 93°C have been recorded 

(Williams and Pulley 2002).  The New York City Department of Health and Mental Hygiene 

have recognized excessive surface temperatures as the number one health concern associated 

with third-generation synthetic turf systems (Denly et al. 2008).  Buskirk et al. (1971) reported 

that heat transfer from the synthetic turf surface to the inner soles of athletes’ shoes was 

significant enough to raise physiological stress to a level that could cause heat-related illnesses 

such as heat stroke and exhaustion.  Several researchers have studied why synthetic turf surface 

temperatures are so extreme and ways to reduce them (Buskirk et al. 1971; Devitt et al. 2007; 

Koon et al. 1972; McNitt et al. 2008; Williams and Pulley 2002). 

Irrigation applied to first-generation synthetic turf lowered surface temperatures similar 

to those measured on natural turfgrass (Koon et al. 1972).  It has been suggested that the 

evaporation of 1.2 L m
-2

 of water will cool the surface of first-generation synthetic turf to a 

temperature similar to natural turfgrass (Morehouse 1992; Serensits et al. 2013).  Irrigation has 

also been found to reduce the surface temperatures of third-generation synthetic turf systems.  

However, the duration of the cooling effect of irrigation is shorter on third-generation systems 

compared to first generation systems due to the decrease in longevity of surface wetness (McNitt 

et al. 2008; Williams and Pulley 2002). Williams and Pulley (2002) irrigated third-generation 

turf for 30 minutes, lowering the surface temperature from 79°C to 29°C, but five minutes after 

irrigation the temperature increased to 49°, and then rose to 73°C after 20 minutes.  Similar 
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results were reported by McNitt et al. (2008) who found that irrigating synthetic turf reduced 

surface temperatures for approximately 20 minutes, although temperatures three hours after 

irrigation were only lowered by 10°C compared to a non-irrigated synthetic turf. 

The application of a tarp on the surface and the addition of infill amendments have been 

studied as tools for to maximizing and prolonging the cooling effect of irrigation on synthetic 

turf (McNitt et al. 2008).  Placing a tarp on the surface following a predawn irrigation application 

had little effect on surface temperature (McNitt et al. 2008).  An additional irrigation application 

in the afternoon just before tarp removal also had only minor effects on surface temperatures 

(McNitt et al. 2008).  McNitt et al. (2008) also attempted to prolong the cooling effect of 

irrigation by mixing calcined clay with crumb rubber (20% by volume) prior to installation.  The 

calcined clay amended infill was tested on Sprinturf, a third-generation system with an infill 

depth of 28 mm.  The addition of calcined clay (20% by volume) to the infill did not reduce 

surface temperatures of the synthetic turf (McNitt et al. 2008).   

Altering the color of traditional black crumb rubber has also been investigated as a 

method to reduce surface temperatures on third-generation synthetic turf.  Devitt et al. (2007) 

reported that a loose pile of black crumb rubber painted white measured 9.1°C cooler than a 

loose pile of black crumb rubber.  When installed into a synthetic turf pile, temperatures were 

only 5.3°C less than the traditional black crumb rubber (Devitt et al. 2007).  This response is 

similar to previous reports on first-generation synthetic turf, (Buskirk et al. 1971; Koon et al. 

1972) that all synthetic turf surfaces produce high surface temperatures regardless of the 

presence of infill. 
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CALCINED CLAY 

 

Inorganic amendments, such as calcined clay, have been suggested for use in sandy soils 

or constructed sand-based root zones to increase moisture retention and cation exchange 

capacity, while also maintaining excellent drainage and aeration properties (Beard 1973; Li et al. 

2000; Wasura and Petrovic 2001). 

Calcined clays are naturally occurring clay minerals that are mined and then heated at 

temperatures of up to 760° C in a rotary kiln where they expand (Evanylo and Goatley 2011).  

Expansion during the firing process results in calcined clay materials lacking the particle size and 

plasticity properties to be included in the definition of clay (Waddington 1992).  Bigelow et al. 

(2004) reported that the addition of inorganic amendments, such as calcined clay, to sand-based 

root zones significantly increased porosity.  An increase in capillary porosity was found when 

calcined clay was amended to sand-based root zones increasing water retention (Bigelow et al. 

2004; Githinji et al. 2011).  Bigelow et al. (2004) determined the total and capillary porosity of 

calcined clay was 0.734 cm
3 

cm
-3 

and 0.354 cm
3 

cm
-3

, respectively.  In this study, the total and 

capillary porosity of the calcined clay were greater than coarse sand.  However, the 

macroporosity of calcined clay, 0.380 cm
3 

cm
-3

, was similar to that of the coarse sand (Bigelow 

et al. 2004). 

Githinji et al. (2011) measured the saturated volumetric water content (VWC) of calcined 

clay compared to 100 percent sand.  Calcined clay resulted in a saturated VWC of 0.696 cm
3
cm

-3
 

and the 100 percent sand measured saturated VWC of 0.227 cm
3 

cm
-3

.  Saturated VWC for 

calcined clay was significantly greater than 100 percent sand (Githinji et al. 2011).  The water 

held by calcined clay is available for plant uptake (Miller 2000).  Miller (2000) reported a 
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calcined clay amended sand-based root zone provided 56 to 128 grams of more transpirable soil 

water than a 100 percent sand root zone by subtracting final sample weight from initial sample 

weight following a two week drying cycle.   

Bulk density, saturated hydraulic conductivity, and particle density of calcined clay has 

also been investigated, along with chemical properties such as pH and cation exchange capacity 

(Bigelow et al. 2004; Githinji et al. 2011; Li et al. 2000).  Bigelow et al. (2004) reported a bulk 

density of 0.64 g cm
-3

 while Githinji et al. (2011) reported a bulk density of 0.66 g cm
-3

, both 

significantly lower than sand.  Particle density and saturated hydraulic conductivity of calcined 

clay were reported to be 2.24 g cm
-3

 and 0.60 m h
-1

, whereas sand’s particle density and 

hydraulic conductivity were reported to be 2.67 g cm
-3

and 0.41 m h
-1 

(Githinji et al. 2011).  Li et 

al. (2000) reported that calcined clay had a water pH 6.3 and cation exchange capacity of 30.7 

cmolc
 
kg

-1
.  The physical and chemical properties of calcined clay allow it to be used as a 

substitute for peat moss as a soil amendment in sand-based turfgrass root zones (Bigelow and 

Soldat 2013).   

Calcined clay has also been studied as a topdressing material due to its coarse-texture 

(Miller 2008).  Miller (2008) reported that topdressing with calcined clay on natural turfgrass 

resulted in a decrease in surface temperature compared to topdressing with crumb rubber due to 

its lighter color and its ability to retain moisture in internal pore spaces.  Temperatures were 

reduced for 4 to 8 weeks until the topdressing material worked into the soil or thatch layer.  Soil 

moisture and surface hardness were also affected by the addition of calcined clay.  Topdressing 

calcined clay at 75 kg ha
-1

 yielded greater soil moisture than the crumb rubber topdressing 

treatments, sand treatments, or the unamended controls (Miller 2008).  Two and three sequential 
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applications of calcined clay produced a positive linear rate response with increasing calcined 

clay rates and increasing surface hardness (Miller 2008).  

One advantage of inorganic amendments, such as calcined clay, over organic 

amendments is that they are not subject to microbial degradation (Bigelow and Soldat 2013).  

Inorganic substances are subject to physical forces of impact, abrasion, weathering, freezing and 

thawing.  These forces have the potential to fracture inorganic materials into finer particles 

leading to a decrease in pore space (Li et al. 2001; Wasura and Petrovic 2001; Bigelow and 

Soldat 2013).  When subjected to simulated abrasion and impact using the L.A. Abrasion Test, 

calcined clay lost 16.5% of the weight of the original sample compared to 8.5% for sand (Wasura 

and Petrovic 2001).  Li et al. (2001) reported a 25% increase in hydraulic conductivity following 

20 freeze/thaw cycles on a sand-based root zone amended with 15% calcined clay.  The 20 

freezing/thawing cycles did not have a significant effect on the amount of the finest particle 

fraction of calcined clay retained when compared to the sand control (Li et al. 2001). 
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CHAPTER 2 

 

SYNTHETIC TURF SURFACE TEMPERATURE REDUCTION 

AND PERFORMANCE CHARACTERISTICS AS AFFECTED BY 

CALCINED CLAY MODIFIED INFILL 
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ABSTRACT 

 

Synthetic turf research plots containing crumb rubber (CR) infill were established in 

Knoxville, TN in 2012 and 2013. Calcined clay (CC) was amended to CR in several ratios: a 

50:50 (vol vol
-1

) blend; a 50:50 blend with a polymer coating on CC (50 CR:50 CCC); a 15 mm 

layer of CC under 15 mm of CR (CR over CC); and a 15 mm layer of CC over 15 mm of CR 

(CC over CR).  A 100% CR and a 70:30 blend of CR to sand (70 CR:30 S) were included for 

comparison.  Surface temperature was measured in the summer of 2012 and 2013 at -10, 0, 30, 

60, 90, 120, and 150 minutes following 2.8 cm of irrigation.  Irrigation reduced surface 

temperature 60 to 85% regardless of treatment.  By 30 minutes after irrigation, surface 

temperature increased to 74 to 102% of the temperature recorded 10 minutes prior to irrigation.  

Temperature on the 50 CR:50 CC and CC over CR treatments 150 minutes after irrigation were 

10 to 24% and 20 to 21% lower than the hottest surfaces, which ranged from 95 to 137% of the 

pre-irrigation temperature.  Simulated traffic was applied using the Cady Traffic Simulator for a 

total of 180 traffic events each year.  Trends in surface hardness among treatments were 

inconsistent over years with values ranging from 70 to 160. CC modified infill treatments 

resulted in a faster increase of surface hardness with traffic compared to 100% CR and 70:30 S.  

Traffic affected particle size diameter of infill materials. Infill particles ranging in size from 3.35 
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to 1.0 mm decreased in diameter an average of 1.0 to 12.0%.  Particles ranging from 1.0 to 

<0.002 mm increased in diameter an average of 0.3 to 3.8%.  This increase in size was least 

pronounced for the 100% and 70 CR:30 S treatments and most pronounced for treatment CC 

over CR.  Significant temperature differences were not consistent among treatments and surface 

hardness with CC tended to measure higher than 100% CR and 70 CR:30 S.  The results of this 

experiment indicate the use of CC in synthetic turf may be limited.        
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INTRODUCTION 

 

Surface temperatures on synthetic turf have been reported to be 35 to 60°C higher than 

natural turfgrass (Buskirk et al. 1971).  Temperatures on infilled synthetic turf systems can be as 

high as 93°C (Williams and Pulley 2002).  Buskirk et al. (1971) reported that the heat transfer 

from the synthetic turf surface to the inner soles of athletes’ shoes was significant enough to raise 

physiological stress to a point where it could result in heat-related illnesses, such as heat stroke 

and exhaustion.  The New York City Department of Health and Mental Hygiene have recognized 

excessive surface temperatures as the number one health concern associated with infilled 

synthetic turf systems (Denly et al. 2008).   

Irrigation has been found to reduce the surface temperatures of infilled synthetic turf 

systems (McNitt et al. 2008; Williams and Pulley 2002).  Williams and Pulley (2002) irrigated 

synthetic turf for 30 minutes, lowering the surface temperature from 79°C to 29°C, but five 

minutes after irrigation the temperature increased to 49°C, and then to 73°C by 20 minutes after 

irrigation.  Similarly, McNitt et al. (2008) observed that 2 cm of irrigation reduced surface 

temperature 20 to 35°C for approximately 20 minutes; however, temperatures three hours after 

irrigation were only 10°C less than non-irrigated synthetic turf.   

Calcined clay (CC) is a natural occurring material mined and then produced by firing clay 

minerals at temperatures up to 760° C in a rotary kiln where it expands (Evanylo and Goatley 

2011).  Expansion during the firing process results in CC materials lacking the particle size and 

plasticity properties to be included in the definition of clay (Waddington 1992).  Githinji et al. 

(2011) measured CC to have a saturated VWC of 0.696 cm
3 

cm
-3

, whereas 100 percent sand 

yielded a saturated VWC of 0.227 cm
3 

cm
-3

, respectively.  Water retained by the capillary and 

macroporosity of CC is available for plant uptake (Miller 2000).  Miller (2000) found that a CC 
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amended sand-based root zone to provide 56 to 128 grams of more transpirable soil water than a 

100 percent sand root zone by subtracting final sample weight from initial sample weight 

following a two week drying cycle.  Use of CC as an infill amendment in synthetic turf has the 

potential to increase water content in the pile allowing for a prolonged period of evaporative 

cooling compared to simply irrigating crumb rubber (CR).  

A potential reduction in synthetic turf surface temperature from CC modified infill may 

come at the expense of increased surface hardness or reduced drainage. Miller (2008) reported 

higher surface hardness values on bermudagrass (Cynodon dactylon) topdressed with CC at 50 

and 75 kg ha
-1

.  Impact and abrasion forces associated with foot traffic on athletic fields may 

cause CC particles to fracture into finer diameter inorganic materials reducing hydraulic 

conductivity (Bigelow and Soldat 2013; Li et al. 2001; Wasura and Petrovic 2001).  When 

subjected to simulated abrasion and impact using the L.A. Abrasion Test, CC lost 16.5% of the 

weight of the original sample compared to 8.5% for sand (Wasura and Petrovic 2001).   

 Research regarding the use of CC in synthetic turf systems is limited. McNitt et al. (2008) 

tested the amendment of blending CC (20% by volume) to 80% CR infill with the addition of 

irrigation on a third-generation synthetic turf system.  Researchers utilized the third-generation 

Sprinturf (Atlanta, GA) with an infill depth of 28 mm.  A total of 2 cm of irrigation was applied 

using hand-held irrigation beginning at 12:40 PM.  McNitt et al. (2008) were unsuccessful in 

prolonging the cooling effect of irrigation by amending CR infill with CC (20% by volume).  

The researchers only examined one percentage of CC and a single technique for incorporating 

the amendment (e.g., mixed by volume).  More research on the use of CC to lower synthetic turf 

surface temperature is warranted.  Multiple configurations of CR infill amended with CC (e.g., 

layering by depth and mixing by volume) has the potential to provide a prolonged cooling effect 
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of irrigation on third-generation synthetic turf, not documented by McNitt et al. (2008).  

Increasing the percentage of CC in the infill to 50% by volume also has the potential to provide a 

prolonged cooling effect of irrigation.  Uniformity of irrigation may have the potential to affect 

the irrigation’s cooling of the synthetic turf surface.  McNitt et al. (2008) applied 2 cm of 

irrigation using hand-held methods, where it would be difficult to measure the precipitation rate 

across the entire study area.  Given the importance of irrigation in synthetic turf temperature 

studies, automatic irrigation could provide the accuracy required to ensure uniform irrigation 

coverage.  Additionally, a Brinkman traffic simulator was used by McNitt et al. (2008) to apply 

simulated traffic to the plots; however, no data were reported to quantify the amount of infill 

material particle breakdown.     

Our primary hypothesis is that the addition of CC at a higher rate of 20% by volume 

would prolong the beneficial cooling effect of irrigation on synthetic turf.  A secondary 

hypothesis is the incorporation of CC into synthetic turf infill will increase surface hardness and 

CC particles will fracture with simulated traffic.  Therefore, the primary objective of this study 

was to evaluate changes in surface temperature on infilled synthetic turf amended with varying 

percentages of CC. A secondary objective was to evaluate changes in surface hardness on these 

surfaces and determine particle stability when subjected to simulated traffic. 

.         

MATERIALS AND METHODS 

Plot Construction  

Construction of synthetic turf plots began in May 2012 at the East Tennessee Research 

and Education Center Plant Sciences Unit (Knoxville, TN; 35° 57' N Lat.).  Existing vegetation 

and topsoil were removed and the native soil (Sequatchie loam; fine-loamy, siliceous, 
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semiactive, thermic humic Hapludult) was graded to accommodate installation of drainage, 

irrigation, and a gravel sub-base beneath synthetic turf. This gravel sub-base consisted of a 15 

cm deep layer of washed aggregate (diameter range 2.4 to 25 mm) capped with a 5 cm deep layer 

of fine aggregate (diameter range 0.3 to 9.5 mm).  The aggregate layers were compacted using a 

vibratory compactor to maximize stability and uniformity.  The entire synthetic turf research area 

was 13.7 x 22.9 m with water uniformly applied using an in ground irrigation system (Hunter 

Pro-Spray PRS40; Hunter Industries; San Marcos, CA) calibrated to apply 2.8 cm hr
-1 

with an 

average distribution uniformity of 70%. 

A monofilament synthetic turf (LS21; AstroTurf USA; Dalton, GA) was installed over 

each whole plot.  Monofilament fibers in the pile were polyethylene strands, extruded to a 

diamond shape, and coated with polyurethane before being tufted into a woven backing.  The 

pile height was 50 mm with a specified face weight of 1,390 g m
-2 

(ASTM Test F-1551; Method 

D-5848).  Synthetic turf was installed on 19 June 2012, removed on 14 April 2013.  The study 

was repeated with new synthetic turf installed on 3 June 2013.  A small, triangular section of turf 

from each corner was cut out to allow clearance for irrigation heads. 

Infill Treatment Installation 

Particle size distribution for all infill materials prior to installation is presented in Table 1.  

The CC used in the study (Turface Pro League; Profile Products LLC; Buffalo Grove, IL) was 

non-swelling illite and silica clays with 74% as SiO2, 11% Al2O3, and 5% Fe2O3.  A coated-

calcined clay (CCC) (Experimental; Profile Products LLC; Buffalo Grove, IL) were coated with 

a proprietary polymer to increase stability and moisture retention.  The bulk density of the CC 

was 0.635 g cm
-3

 compared to 0.613 g cm
-3

 for CCC.  CR used in this study (Liberty Tire 

Recycling; Pittsburgh, PA) is produced by shredding and grinding truck tires and sieving the 
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particles to the desired distribution.  The silica sand utilized in this study is typical to that of most 

synthetic turf installations.  The CR has had a bulk density of 0.52 g cm
-3

, while the bulk density 

of the silica sand used measured 1.36 g cm
-3

.    

The 13.7 x 22.9 m area were divided into 4.6 x 1.5 m sub-plots to accommodate different 

infill treatments. Four CC modified infill treatments were evaluated: a 15 mm layer of CR placed 

over 15 mm of CC (CR over CC); a 15 mm layer of CC placed over 15 mm CR (CC over CR); 

CR and CC blended in a 50:50 ratio (50 CR:50 CC); and CR and CCC blended similarly (50 

CR:50 CCC).  A 100% CR infill and a blend of CR and silica sand (70 CR:30 S) were included 

for comparison. Blended treatments were based on a volume per volume basis and blended in a 

drum mixer (Model # CM305A; Portable Electric Cement Mixer; Northern Industrial Tool and 

Equipment; Burnsville, MN) prior to installation. 

Infill treatments were incorporated into individual plots on 26 July 2012 and 10 June 

2013 to a depth of 30 mm (exposing 20 mm of synthetic turf pile fiber).  Infill was applied to 

plots using a gasoline powered turf cart (Cushman Turf Truckster 4W; Cushman; Augusta, GA) 

equipped with a 1.5 m wide belt-fed topdresser (Cushman TD 1500; Cushman; Augusta, GA).  

Treatments were finalized to the correct depth using a manual drop spreader (Scotts AccuGreen 

3000; The Scotts Company LLC; Maryville, OH).  Infill was incorporated into the synthetic turf 

pile with a gasoline powered, 60 cm wide rotary brush (STIHL Powerbrush KM110R; STIHL 

Inc; Virginia Beach, VA) and manual push brooms.  The infill depth was measured using a metal 

ruler graduated in 3 mm increments. A 2.5% solution of fabric softener (Ultra Downy; Procter & 

Gamble Co.; Cincinnati, OH) and water was applied twice daily (and allowed to dry) during 

infill installation to reduce static electricity within the pile which prevented proper incorporation 
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of CR.  After installation plots were not groomed or brushed to preserve the integrity of the CC 

treatments within the pile.  

Surface Temperature   

Surface temperature data were collected on three dates in the summer of 2012 and 2013.  

Data collection began 10 minutes prior to irrigation until 150 minutes after irrigation.  A total of 

2.8 cm of irrigation was applied from 12 PM to 1 PM on each date surface temperature data were 

collected.  This method of measuring synthetic turf temperature in response to irrigation is 

similar to those previously reported by Williams and Pulley (2002) and McNitt et al. (2008).   

Data loggers (Watchdog B-100 2K; Model No. 3619WD; Spectrum Technologies Inc.; Aurora, 

IL) placed in the center of each plot measured surface temperature in 2012.  These data loggers 

had a measurement range of -30 to 70°C with an accuracy range of ± 1°C.  Data were collected 

every ten minutes during the measurement window.  After each temperature measurement date, 

data from each logger were retrieved using Specware 6 software (Spectrum Technologies Inc.; 

Aurora, IL).   

In 2013, instrumentation to collect surface temperature data was upgraded to increase the 

speed and accuracy of measurement. Thermistors (100K; US Sensor Corporation; Orange, CA) 

were used to collect surface temperature data in 2013 within a range of -80 to 150°C at an 

accuracy of ±0.1°C.  The thermistor used in our study was comprised of an 80.6 KOhm resistor.  

The resistor measures temperature by the model of the Steinhart-Hart Equation. A data logger 

(CR1000; Campbell Scientific Inc.; Logan, UT) excited the thermistor with 2500 mV while 

reading the voltage.  A calibration equation was used measure surface temperature by converting 

voltage output from the thermistors (Wright 2014, personal communication).  The sensors were 

calibrated by comparing the temperature readings of the sensors to a lab grade thermometer 
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measuring ice water heated to boiling point.  The entire system was powered by a 115 amp-hr 

marine battery charged by a 30 watt solar panel and a Morningstar 4.5 amp PWM charge 

controller.  The data collection software (LoggerNet 4.1; Campbell Scientific Inc.; Logan, UT) 

read the thermistors every 30 seconds, averaged, and reported the readings in ten minute 

intervals. 

In the summer of 2012, surface temperature data were collected on 29 August, 2 

September, and 5 September.  Average ambient air temperature on these dates from 10 AM to 4 

PM measured 31°C, 29 °C, and 30 °C, respectively.   In 2013, surface temperature data were 

collected on 24 June, 18 July, and 25 July. Average ambient air temperature on these dates from 

10 AM to 4 PM measured 30°C, 30°C, and 28°C, respectively.  Dates of surface temperature 

collection were chosen based the forecasted absence of rainfall the day prior to and after 

measurement dates.  Surface temperature data collected at 0, 30, 60, 90, 120, and 150 minutes 

after irrigation were analyzed and reported as a percentage of the surface temperature recorded 

10 minutes prior to applying 2.8 cm of irrigation using the following equation:  

 ercent of te perature prior to irrigation (
Te perature after irrigation

Te perature prior to irrigation
)  100  

 Application of Simulated Traffic Events   

Simulated traffic was applied to all plots using a Cady Traffic Simulator similar to 

Henderson et al. (2005). The Cady Traffic Simulator used in our study was a modified aerator 

(Ryan Greensaire GA-24; Jacobsen, A Textron Co.; Charlotte, NC) with artificial rubber feet as 

described by Henderson et al. (2005).  Simulated traffic was applied from 12 September to 3 

December 2012 and 16 September to 19 December 2013.  A total of 180 simulated traffic events 

were applied at a rate of 15 traffic events per week to half of the 4.6 x 1.5 m plot, while the other 

half of the plot remained non-trafficked.  



29 

 

Surface Hardness   

Surface hardness of an athletic field describes the surface’s ability to absorb i pact 

forces (Rogers III 1992).  Surface hardness of an athletic field is measured in Gmax.  Gmax, as 

reported by Rogers III (1992), is the ratio of the maximum negative acceleration and the 

acceleration due to gravity.  A playing surface with a low Gmax has the ability to absorb more 

energy, while a surface with a high Gmax has a limited ability to absorb impact forces.  High Gmax 

values have been associated with an increased risk of head injury while low Gmax values can 

increase muscle fatigue (Gadd 1966; Kolitzus 1984).  The United States Consumer Products 

Safety Division (ASTM 2009a) has set a maximum threshold for Gmax at 200; however there is 

currently no minimum value.        

 In this study, surface hardness data were collected using devices similar to Brosnan et al. 

(2009).  Surface hardness was measured using the F355 Apparatus-A (F355) (Triax 2000; 

Playground Clearing House, USA; Malvern, PA) that consisted of a 9.1 kg missile with a flat 

face of 120 cm
3
.  The missile was dropped in a tube from a height of 61 cm (ASTM 2009b).  The 

Gmax value reported was the average of three sub-samples taken from each plot.  Each sub-sample 

was the average of two missile drops with the F355 at the same location with a one minute (± 30 

seconds) interval between drops.  Values from the first drop of the F355 were discarded as they 

are only used for conditioning.    

A Clegg Impact Soil Tester (CIST) was also used to measure surface hardness in this 

study (Clegg 1976).  This device is commonly used on natural turfgrass surfaces, but can also be 

used on synthetic turf (ASTM 2009c).  The CIST (Lafayette Instrument Company; Lafayette, 

Indiana) is equipped with a 2.25 kg missile dropped from a height of 45.5 cm. The Gmax value 

reported with this device was the average of three sub-samples taken from each plot.  Data for 
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each sub-sample were collected by dropping the missile in three separate locations within each 

plot. Surface hardness data with both instruments were collected before simulated traffic was 

applied and after every 45 simulated traffic events were applied each year.                  

Particle Size Analysis 

Particle size analysis was conducted after 180 simulated traffic events were applied to 

plots to characterize changes in CC (or CR) particle size due to traffic stress. Three samples were 

removed from both the trafficked and non-trafficked portions of each sub-plot.  A 176 (± 20) cm
2
 

area of synthetic turf was removed using a circular template. These samples consisted of 

synthetic turf and infill materials.  All samples were dried for 24 hours at 25°C prior to particle 

size analysis. 

 Infill materials were separated from the synthetic turf fibers and backing, ran through a 

3.35 mm sieve to catch any remaining fibers or large particles, and then weighed to measure the 

initial mass of the sample.  The sample was then transferred to a portable sieve shaker (Model 

RX-24; W.S. Tyler Inc.; Mentor, OH) where the different particle sizes were separated through 

sieves (USA Standard Test Sieve; ASTM E-11; Fisher Scientific Company; Hampton, NH) 

ranging in size from 2.0 to 0.05 mm. Samples weighing less than 125 grams remained on the 

shaker for 5 minutes, compared to 10 minutes for those weighing more than 125 grams (Gee and 

Or 2002). The mass retained in each sieve was then divided by the initial mass of the sample to 

determine the percentage of the sample retained on each sieve.  The United States Golf 

Association specifications for sand-based root zones (USGA 1993) were used to determine the 

particle size distribution of the infill treatments.               
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Experimental Design and Statistical Analysis 

The experiment was arranged as a randomized complete block design with three 

replications and repeated in time.  The surface temperature and hardness measurements were 

analyzed using a single factor analysis of variance (ANOVA) to determine changes in 

temperature and hardness due to infill treatment.  To assess changes in particle size following 

traffic stress, a split-plot ANOVA was used with infill treatments serving as the whole plot and 

simulated traffic (0 or 180 events) serving as the subplot treatment.  Data were analyzed in SAS 

(SAS version 9.3; SAS Institute; Cary, NC).  Significant year-by-treatment interactions resulted 

in data from 2012 and 2013 being analyzed separately.  Similarly, significant treatment-by-date 

interactions resulted in surface temperature data collected on each date to be analyzed separately 

as well.  

Surface temperature and particle size analysis  eans were separated using Fisher’s 

Protected Least Significant Difference with a 5% probability level. Surface hardness means were 

separated by determining best-fit parameter estimates using a sums-of-squares reduction F-test 

for linear equations in Prism software (Prism 6.0 for Windows; GraphPad Software; La Jolla, 

CA).   

RESULTS AND DISCUSSION 

Surface Temperature   

Temperatures recorded for each infill treatment 10 minutes prior to applying irrigation 

are presented in Table 2. Surface temperature data at 0, 30, 60, 90, 120, and 150 minutes after 

irrigation are presented as percentage of the surface temperature 10 minutes prior to applying 2.8 

cm of irrigation (pre-irrigation temperature) in Tables 4 and 5.  Table 3 displays the analysis of 

variance results for infill treatment significance at each time after irrigation.   
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No differences in surface temperature were detected 0 minutes after irrigation in either 

year (Table 4 and 5).  However, irrigation resulted in a 15 to 40% reduction of surface 

temperature.  These percentages are similar to previous reports of irrigation cooling synthetic turf 

by Williams and Pulley (2002) and McNitt et al. (2008).  These two previous studies have 

reported surface temperatures immediately after irrigation to be approximately 30 to 60% of the 

surface temperature prior to applying irrigation (McNitt et al. 2008; Williams and Pulley 2002). 

Thirty minutes after irrigation, date 1 and date 2 of 2012, and date 3 of 2013 had 

significant treatment differences; however, sixty minutes after irrigation, the percentages of the 

pre-irrigation surface temperatures did not produce any significant results (Tables 4 and 5).  Date 

1 2012 and date 2 2013, had significantly different percentages at 90 minutes after irrigation, 

then at 120 minutes after irrigation, treatments on date 1 2012 and dates 1 and 3 in 2013 were 

significantly different (Tables 4 and 5).  The temperature measurement time of 150 minutes after 

irrigation produced two significant dates for infill treatments (Tables 4 and 5).  On date 1 2012, 

treatments 100% CR and 70 CR:30 S, with 132 and 137%, were greater than CC over CR at 

116%.  In 2013, date 2 had significant treatment differences, where 50 CR:50 CCC (122%) was 

greater than the other treatments (98 to 104%).   

 Surface temperature on nearly all of the treatments evaluated did not reach 100% of the 

pre-irrigation temperature until 60 to 120 minutes after irrigation (Tables 4 and 5). This suggests 

that the cooling effect of irrigation will not last the entire length of an athletic competition. Our 

findings also support previous reports by Williams and Pulley (2002) who reported that surfaces 

temperatures on irrigated synthetic turf surface temperature increased to 92% of pre-irrigation 

levels 20 minutes after irrigation.  
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Few consistently significant differences in surface temperature were detected among 

infill treatments over the course of the two-year study (Tables 4 and 5).  Treatments CC over CR 

and 50 CR:50 CC resulted in a lower range of percentages of 91 to 116% and 81 to 126% at 150 

minutes after irrigation compared to 100% CR at 91 to 137% and 70 CR:30 S at 91 to 132% 

(Tables 4 and 5).  McNitt et al. (2008) did not report a cooling effect of CR infill amended with 

20% by volume CC with irrigation; however, increasing this percentage to at least 50% by 

volume may provide a cooling effect on synthetic turf surface temperatures.  Miller (2008) did 

report a decrease in surface temperature when CC was topdressed on natural turfgrass compared 

to topdressing with CR due to a higher moisture content associated with the CC.  Applying a 

layer of CC over CR or blending CC without a polymer coating with CR will lower surface 

temperatures longer than using a 100% CR or a 70 CR:30 S blend.   

Surface Hardness 

Linear regression equations fit surface hardness (Gmax) data collected with the F-355 

Apparatus.  A sums-of-squares reduction F-test determined that best-fit parameter estimates for 

the linear equations were significantly different among treatments in 2012 (P <0.0001) and 2013 

(P = 0.0004) (Figure 1).  Best-fit lines for all treatments had positive slopes indicating that 

surface hardness increase following the application of simulated traffic, regardless of treatment 

(Table 6).  

In 2012, slope (β1) indicated that surface hardness increased at faster rate on plots infilled 

with CC over CR and 50 CR:50 CC than the other infill treatments (Table 6). Surface hardness 

increased more than 1.5 times faster on plots infilled with CC over CR and 50 CR:50 CC than 70 

CR: 30 S. In 2013, surface hardness increased fastest on plots infilled with CR over CC and 50 

CR:50 CCC (Table 6).  The difference between 2012 and 2013 could be contributed to the 
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mixing of CR over CC treatment layers at a faster rate than the CC over CR treatment when 

exposed to simulated traffic. 

Linear regression equations also fit surface hardness (Gmax) data collected with the CIST. 

A sums-of-squares reduction F-test determined that best-fit parameter estimates for the linear 

equations were significantly different among treatments in 2012 (P <0.0001) and 2013 (P 

<0.0001) (Figure 2).    

Best-fit lines for all treatments had positive slopes indicating that surface hardness 

increase following the application of simulated traffic, regardless of treatment (Table 6). In 2012, 

slope (β1) indicated that surface hardness increased at faster rate on plots infilled with 50 CR:50 

CCC and 50 CR:50 CC than the other infill treatments (Table 6). Surface hardness increased 

more than 2.8 times faster on plots infilled with either CC blended treatments than CR over CC. 

In 2013, surface hardness increased fastest on plots infilled with CR over CC (Table 6). The 

difference between 2012 and 2013 could be contributed to the mixing of CR over CC treatment 

layers at a faster rate in 2012 than 2013 when exposed to simulated traffic.   

The use of CC as a synthetic turf infill amendment produced an increase in surface 

hardness compared to using CR alone or a blend of 70 CR:30 S.  These results are similar to 

Miller (2008) who reported the use of CC as a topdressing material on natural turfgrass increased 

the surface hardness compared to using CR.  Increases in surface hardness on layered plots could 

be attributed to the fact that layers combine when exposed to simulated traffic.  It is also 

important to note the differences in y-intercept values (β0) from 2012 to 2013 for linear 

regression equations used to model changes in surface hardness (Table 6).  Y-intercept values 

increased more than 10 Gmax units from 2012 to 2013 with both instruments.  The increase may 
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have been caused by the synthetic turf in 2013 being re-installed over the same sub-base system 

which sustained compaction from traffic application the previous year.                     

Particle Size Analysis 

Year by-treatment and treatment-by-traffic level interactions were detected in particle 

size analysis data (Tables 7, 8, and 9).  In both years of the study, percent change of particle sizes 

diameter decreased from non-trafficked to trafficked plots for the 3.35 to 1.0 mm particle sizes 

and increased for the 1.0 to <0.002 mm particle sizes (Tables 8 and 9).  Treatments 100% CR 

and 70 CR:30 S resulted in only five significant changes in percent change in diameter with 

application of simulated traffic (Tables 8 and 9).  Average percent change in diameter for these 

treatments across all particle sizes in 2012 was 0.6% and 1.0% in 2013.  Treatments with any 

incorporation of CC produced significant changes for most particle sizes from non-trafficked to 

trafficked plots (Tables 8 and 9).  The particle size 2.0 to 1.0 mm resulted in the greatest percent 

change at 8.4 and 14.8% in 2012 and 2013 across all CC amended infill treatments.  The 100% 

CR and 70 CR:30 S treatments only produced a 2.5% change in diameter for the 2.0 to 1.0 mm 

particle size in 2012 and 1.1% in 2013.  Treatments CC over CR and 50 CR:50 CC produced the 

highest percent changes in diameter across both years and all particle sizes.  CC over CR and 50 

CR:50 CC resulted in a percent change of 5.3 and 4.6% in 2012, and 6.3 and 5% in 2013.  The 

treatments of CR over CC and 50 CR:50 CCC resulted in lower percent changes than the other 

two CC infill treatments at 3.1 and 2.8% in 2012, and 3.2 and 3.6% in 2013 across all particle 

sizes.  The addition of a polymer coating on the CC particles when blended with CR and 

applying a layer of CR over a layer of CC increases the particle stability of the CC infill 

amendments when subjected to simulated athletic field traffic.  
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A concern with using CC as an infill amendment for synthetic turf is the potential for the 

particles to fracture to a smaller diameter; consequently reducing macroporosity and restricting 

hydraulic conductivity (Bigelow and Soldat 2013; Li et al. 2001; Wasura and Petrovic 2001).  

The United States Golf Association specifications for sand-based root zones suggests that less 

than 33% of root zone should be comprised of particles 0.25 to < 0.002 mm in diameter to 

maintain a hydraulic conductivity of 15 to 30 cm h
-1 

(USGA 1993). After applying 180 simulated 

traffic events in the current study, a total of 0 to 8.4% of particles ranged from 0.25 to <0.002 

mm in diameter suggesting that plots have hydraulic conductivity > 15 cm h
-1

.   
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Table 1.  Particle size distribution analysis of infill materials prior to installation into 

synthetic turf plots located in Knoxville, TN in 2012 and 2013.  Materials were installed 

alone, in homogenous blends, or in layering configurations.    

 

  

Crumb 

Rubber 

Silica 

Sand 

Calcined 

Clay
b
 

Coated 

Calcined Clay
c
 

Sieve No.
a
 Particle Size ----------------------Percent Retained

d
--------------------- 

10 > 2.0 mm 8.18 0.00 34.44 30.27 

18 2.0 - 1.0 mm 78.52 4.97 64.98 68.17 

35 1.0 mm - 0.5 mm 12.63 93.03 0.44 1.30 

60 0.5 - 0.25 mm 0.23 1.99 0.02 0.04 

100 0.25 - 0.15 mm 0.21 0.00 0.02 0.04 

140 0.15 - 0.1 mm 0.14 0.00 0.00 0.00 

270 0.1 - 0.05 mm 0.02 0.00 0.00 0.00 

Pan
e 

0.05 - < 0.002 mm 0.00 0.00 0.00 0.00 
a
 Sieve number based on number of holes per linear inch associated with the sieve screen 

b
 Calcined clay material is Turface Pro League from Profile Products LLC 

c
 Coated calcined clay material is Turface Pro League with a polymer coating surrounding the 

clay particles 
d
 Percent retained calculated by dividing the mass retained in each sieve by the initial total mass 

of the sample 
e 
Pan retains all remaining particles which include silt and clay particle factions  
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Table 2. Surface temperatures (°C) at 10 minutes prior to application of 2.8 cm of 

irrigation for individual infill treatments on three dates during 2012 and 2013 located in 

Knoxville, TN.  The temperatures were used to calculate the percentage of surface 

temperature for respective infill treatments at 0, 30, 60, 90, 120, and 150 minutes after 

irrigation reported in Tables 4 and 5.    

   

  

    Temperature (°C) 10 Minutes Prior to Irrigation 

  

   2012     2013 

Date 1
a 

100% CR
d 

40 55 

 
70 CR:30 S

e 
40 56 

 
50 CR:50 CC

f 
39 57 

 
50 CR:50 CCC

g 
40 53 

 
CR over CC

h 
40 56 

 
CC over CR

i 
40 54 

Date 2
b 

100% CR
 

36 53 

 
70 CR:30 S 36 52 

 
50 CR:50 CC 37 51 

 
50 CR:50 CCC 31 49 

 
CR over CC 37 53 

 
CC over CR 31 49 

Date 3
c 

100% CR 31 51 

 
70 CR:30 S 32 49 

 
50 CR:50 CC 32 46 

 
50 CR:50 CCC 33 47 

 
CR over CC 31 48 

 
CC over CR 31 47 

a  
Date 1, 29 August 2012 and 24 June 2013, average air temperature 10 AM to 4 

PM was 30.8 and 29.7°C  
b
 Date 2, 2 September 2012 and 18 July 2013, average air temperature 10 AM to 

4 PM was 29.3 and 29.7°C 
c
 Date 3, 5 September 2012 and 25 July 2013, average air temperature 10 AM to 

4 PM was 29.9 and 28.3°C 
d 
100% crumb rubber infill treatment at 30 mm depth 

e 
70% crumb rubber: 30% silica sand by volume homogenous blend infill 

treatment at 30 mm depth  
f 
50% crumb rubber: 50% calcined clay by volume homogenous blend infill 

treatment at 30 mm depth  
g 
50% crumb rubber: 50% coated-calcined clay by volume homogenous blend 

infill treatment at 30 mm depth 
h
15 mm crumb rubber over 15 mm calcined clay infill treatment 

i 
15 mm calcined clay over 15 mm crumb rubber infill treatment 
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Table 3. Analysis of variance for infill treatment surface temperature data on 6 dates 

during 2012 and 2013 located at Knoxville, TN.  Statistical analysis was performed on 

data at 0, 30, 60, 90, 120, and 150 minutes after irrigation expressed as a percentage of 

the surface temperature 10 minutes prior to applying 2.8 cm of irrigation.   

    

  
Minutes after Irrigation 

Year Dates 0 30 60 90 120 150 

2012 Date 1
a 

NS
 

* NS *** *** *** 

 
Date 2

b 
NS ** NS NS NS NS 

 
Date 3

c 
NS NS NS NS NS NS 

2013 Date 1
d 

NS NS NS NS * NS 

 
Date 2

e 
NS NS NS * * * 

 
Date 3

f 
NS

g 
* NS NS NS NS 

a  
Date 1, 29 August 2012, average air temperature from 10 AM to 4 PM was 30.8°C 

b
 Date 2, 2 September 2012, average air temperature from 10 AM to 4 PM was 29.3°C 

c
 Date 3, 5 September 2012, average air temperature from 10 AM to 4 PM was 29.9°C 

d 
Date 1, 24 June 2013, average air temperature from 10 AM to 4 PM was 29.7°C 

e
 Date 2, 18 July 2013, average air temperature from 10 AM to 4 PM was 29.7°C 

f
 Date 3, 25 July 2013, average air temperature from 10 AM to 4 PM was 28.3°C 

g 
NS, non-significant 

*, **, *** indicates significance at p ≤ 0.05, p ≤ 0.01, and p ≤ 0.001 level 

 

  



44 

 

 

Table 4. Infill treatment surface temperature results at 0, 30, 60, 90, 120, and 150 minutes 

after application of 2.8 cm of irrigation during 2012 at Knoxville, TN.  Data are presented 

at a percentage of the surface temperature 10 minutes prior to irrigation.  Dates and times 

were analyzed separately.  

    

  Minutes after Irrigation 

  
0 30 60 90 120 150 

Infill Treatments Percentage of the Pre-Irrigation Temperature
a
 

Date 1
j 

100% CR
b 

85 99 110 128 133 137 

 
70 CR:30 S

 
84 100 115 128 131 132 

 
50 CR:50 CC

d 
82 102 113 121 125 126 

 
50 CR:50 CCC

e 
81 90 105 122 127 129 

 
CR over CC

f 
80 101 117 126 128 128 

 
CC over CR

g 
81 101 109 113 115 116 

 
LSD0.05

h
 NS

i 
6.9 NS 5.1 4.6 5.0 

        
Date 2

k 
100% CR 63 83 79 82 87 94 

 
70 CR:30 S 63 79 85 81 87 91 

 
50 CR:50 CC 63 86 81 75 79 87 

 
50 CR:50 CCC 63 89 86 83 88 95 

 
CR over CC 60 74 80 80 86 91 

 
CC over CR 64 93 86 82 84 91 

 
LSD0.05 NS 8.8 NS NS NS NS 

        
Date 3

l 
100% CR 70 81 91 128 125 105 

 
70 CR:30 S 70 80 91 132 126 104 

 
50 CR:50CC 70 80 92 131 124 103 

 
50 CR:50CCC 71 80 91 128 123 102 

 
CR over CC 71 83 92 131 126 106 

 
CC over CR 73 79 89 125 124 105 

 
LSD0.05 NS NS NS NS NS NS 

a 
Temperature 10 minutes prior to irrigation. See Table 2 for specific values 

b 
100% crumb rubber infill treatment at 30 mm depth 

c 
70% crumb rubber: 30% silica sand by volume homogenous blend infill treatment at 30 mm depth  

d 
50% crumb rubber: 50% calcined clay by volume homogenous blend infill treatment at 30 mm depth  

e 
50% crumb rubber: 50% coated-calcined clay by volume homogenous blend infill treatment at 30 mm 

depth 
f 
15 mm crumb rubber over 15 mm calcined clay infill treatment 

g 
15 mm calcined clay over 15 mm crumb rubber infill treatment 

h
 Fisher’s  rotected Least Significant Difference at 5% significance level

 

i  
NS, non-significant

 

j  
Date 1, 29 August 2012, average air temperature from 10 AM to 4 PM was 30.8°C 

k
 Date 2, 2 September 2012, average air temperature from 10 AM to 4 PM was 29.3°C 

l  
Date 3, 5 September 2012, average air temperature from 10 AM to 4 PM was 29.9°C 



45 

 

 

Table 5. Infill treatment surface temperature results at 0, 30, 60, 90, 120, and 150 minutes 

after application of 2.8 cm of irrigation during 2013 at Knoxville, TN.  Data are presented 

at a percentage of the surface temperature 10 minutes prior to irrigation.  Dates and times 

were analyzed separately.  

    

  Minutes after Irrigation 

  
0 30 60 90 120 150 

Infill Treatments Percentage of the Pre-Irrigation Temperature
a
 

Date 1
j 

100% CR
b 

74 79 83 83 90 91 

 
70 CR:30 S

 
73 79 86 86 93 92 

 
50 CR:50 CC

d 
72 76 79 79 81 81 

 
50 CR:50 CCC

e 
74 80 89 89 106 103 

 
CR over CC

f 
67 82 89 89 95 95 

 
CC over CR

g 
77 82 84 84 91 93 

 
LSD0.05

h
 NS NS NS NS 13.6 NS 

        
Date 2

k 
100% CR 70 84 90 93 94 98 

 
70 CR:30 S 69 87 94 98 101 104 

 
50 CR:50 CC 71 86 91 95 96 98 

 
50 CR:50 CCC 75 92 101 111 118 122 

 
CR over CC 69 90 95 98 98 101 

 
CC over CR 74 90 94 95 98 102 

 
LSD0.05 NS NS NS 11.5 11.9 12.6 

        
Date 3

l 
100% CR 71 88 96 98 108 118 

 
70 CR:30 S 71 91 98 95 98 105 

 
50 CR:50 CC 75 92 95 94 98 106 

 
50 CR:50 CCC 75 95 101 97 102 108 

 
CR over CC 70 90 97 97 102 108 

 
CC over CR 77 93 97 93 97 103 

 
LSD0.05 NS 3.6 NS NS NS NS 

a 
Temperature 10 minutes prior to irrigation 

b 
100% crumb rubber infill treatment at 30 mm depth 

c 
70% crumb rubber: 30% silica sand by volume homogenous blend infill treatment at 30 mm depth  

d 
50% crumb rubber: 50% calcined clay by volume homogenous blend infill treatment at 30 mm depth  

e 
50% crumb rubber: 50% coated-calcined clay by volume homogenous blend infill treatment at 30 mm 

depth 
f 
15 mm crumb rubber over 15 mm calcined clay infill treatment 

g 
15 mm calcined clay over 15 mm crumb rubber infill treatment 

h
 Fisher’s  rotected Least Significant Difference at 5% significance level

 

i  
NS, non-significant

 

j  
Date 1, 24 June 2013, average air temperature from 10 AM to 4 PM was 29.7°C 

k
 Date 2, 18 July 2013, average air temperature from 10 AM to 4 PM was 29.7°C 

l 
 Date 3, 25 July 2013, average air temperature from 10 AM to 4 PM was 28.3°C 
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Figure 1.  Changes in infill treatment surface hardness (Gmax) as measured by 

the F355 Apparatus-A following 180 simulated traffic events during 2012 and 

2013 in Knoxville, TN.  Data for each year was analyzed separately.  Standard 

errors of the mean values are presented for statistical comparison.  Best-fit 

parameter estimates for linear regression equations are presented in Table 6.    
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Figure 2.  Changes in infill treatment surface hardness (Gmax) as measured by the 

Clegg Impact Soil Tester following 180 simulated traffic events during 2012 and 

2013 in Knoxville, TN.  Data for each year was analyzed separately.  Standard 

errors of the mean values are presented for statistical comparison.  Best-fit 

parameter estimates for linear regression equations are presented in Table 6.    
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Table 6.  Best-fit parameter estimates for linear regression equations characterizing changes in infill treatment surface 

hardness (Gmax) following 180 simulated traffic events during 2012 and 2013 in Knoxville, TN.  Both F355 Apparatus-A and 

Clegg Impact Soil Tester measuring devices are included.  Standard errors for each parameter are listed in parentheses.   

  

F355 Apparatus-A 

 
2012 2013 

Infill Treatment β0 β1 R
2 

β0 β1 R
2 

100% CR
a 

98.18 (±2.87) 0.20 (±0.03) 0.57 109.9 (±4.19) 0.12 (±0.04) 0.19 

70 CR:30 S
b 

95.37 (±2.79) 0.18 (±0.03) 0.54 108 (±3.72) 0.13 (±0.03) 0.25 

50 CR:50 CC
c 

107.80 (±3.82) 0.27 (±0.03) 0.59 115.2 (±4.15) 0.10 (±0.04) 0.14 

50 CR:50 CCC
d 

91.58 (±2.34) 0.23 (±0.02) 0.73 117.2 (±4.52) 0.19 (±0.04) 0.14 

CR over CC
e 

95.18 (±2.36) 0.23 (±0.02) 0.74 115.8 (±3.69) 0.20 (±0.03) 0.44 

CC over CR
f 

91.58 (±4.53) 0.30 (±0.04) 0.56 119.7 (±3.06) 0.12 (±0.03) 0.30 

Clegg Impact Soil Tester 

 
2012 2013 

Infill Treatment β0 β1 R
2 

β0 β1 R
2 

100% CR 77.94 (±3.62) 0.10 (±0.03) 0.17 85.79 (±4.12) 0.21 (±0.04) 0.43 

70 CR:30 S 85.22 (±3.94) 0.07 (±0.04) 0.07 96.15 (±4.98) 0.10 (±0.05) 0.09 

50 CR:50 CC 83.88 (±4.20) 0.17 (±0.04) 0.32 98.27 (±4.86) 0.12 (±0.04) 0.14 

50 CR:50 CCC 74.22 (±3.35) 0.18 (±0.03) 0.46 92.13 (±4.01) 0.19 (±0.04) 0.39 

CR over CC 96.83 (±5.20) 0.06 (±0.05) 0.04 97.72 (±4.54) 0.27 (±0.04) 0.50 

CC over CR 83.40 (±4.4) 0.13 (±0.04) 0.19 99.28 (±3.53) 0.15 (±0.03) 0.35 
a 
100% crumb rubber infill treatment at 30 mm depth 

b 
70% crumb rubber: 30% silica sand by volume homogenous blend infill treatment at 30 mm depth  

c 
50% crumb rubber: 50% calcined clay by volume homogenous blend infill treatment at 30 mm depth  

d 
50% crumb rubber: 50% coated-calcined clay by volume homogenous blend infill treatment at 30 mm depth 

e 
15 mm crumb rubber over 15 mm calcined clay infill treatment 

f 
15 mm calcined clay over 15 mm crumb rubber infill treatment 
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Table 7.  Analysis of variance for particle size distribution analysis performed on infill treatments receiving 0 or 

180 simulated traffic events using the Cady Traffic Simulator in 2012 and 2013 located in Knoxville, TN.   

   

  

Sieve Number
a 

  

#10 #18 #35 #60 #100 #140 #270  Pan
b 

  

Particle Size (mm) 

Year Source 3.35-2.0 2.0-1.0 1.0-0.5 0.5-0.25 0.25-0.15 0.15-0.1 0.1-0.05 0.05 - <0.002 

          

2012 Infill x Traffic *** *** ** *** *** *** *** *** 

          

2013 Infill x Traffic * *** *** *** *** *** *** ** 

          
a 
 Sieve number based on number of holes per linear inch associated with the sieve screen 

b 
 Pan retains all remaining particles which include silt and clay particle factions 

*, **, *** indicates significance at p ≤ 0.05, p ≤ 0.01, and p ≤ 0.001 level 
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 Table 8.  Particle size distribution analysis performed on individual infill treatments receiving 0 or 180 simulated traffic events 

using the Cady Traffic Simulator during 2012 located in Knoxville, TN.   

  

  

Particle Size (mm) 

  

3.35-2.0 2.00-1.0 1.0-0.5 0.5-0.25 0.25-0.15 0.15-0.1 0.1-0.05 0.05 - <0.002 

Infill Treatments -----------------------------------------Percent Retained
a
-------------------------------------- 

Non-Trafficked 100% CR
b 4.1 81.7 13.3 0.2 0.1 0.1 0.1 0.0 

 

70 CR:30 S
c 1.9 37.5 57.8 2.2 0.1 0.0 0.0 0.0 

 

50 CR:50 CC
d 18.0 72.9 8.0 0.4 0.1 0.1 0.1 0.0 

 

50 CR:50 CCC
e 18.2 71.8 8.3 0.4 0.1 0.7 0.0 0.0 

 

CR over CC
f 16.6 74.9 7.5 0.3 0.1 0.1 0.1 0.0 

 

CC over CR
g 15.6 76.6 6.7 0.3 0.1 0.1 0.1 0.0 

Trafficked
h 

100% CR 4.1 77.9 16.2 0.6 0.1 0.2 0.2 0.0 

 

70 CR:30 S 2.0 36.4 58.2 3.0 0.1 0.1 0.1 0.0 

 

50 CR:50 CC 6.5 66.0 15.7 4.9 2.1 2.3 1.4 1.0 

 

50 CR:50 CCC 12.4 66.9 13.3 3.4 1.3 1.3 0.8 1.0 

 

CR over CC 11.5 67.7 12.8 3.5 1.3 1.5 0.8 0.6 

 

CC over CR 8.5 62.2 13.9 6.0 2.6 3.4 1.4 1.0 

 

LSD0.05
i 

2.9 3.2 2.9 0.7 0.3 0.7 0.2 0.4 
a 
Percent retained calculated by dividing the mass retained in each particle size by the initial total mass of the sample 

b 
100% crumb rubber infill treatment at 30 mm depth 

c 
70% crumb rubber: 30% silica sand by volume homogenous blend infill treatment at 30 mm depth  

d 
50% crumb rubber: 50% calcined clay by volume homogenous blend infill treatment at 30 mm depth  

e 
50% crumb rubber: 50% coated-calcined clay by volume homogenous blend infill treatment at 30 mm depth 

f 
15 mm crumb rubber over 15 mm calcined clay infill treatment 

g 
15 mm calcined clay over 15 mm crumb rubber infill treatment 

h 
Trafficked sub plot received a total of 180 simulated trafficking events using the Cady Traffic Simulator from 12 September to 3 December 2012

 

i 
Fisher’s  rotected Least Significant Difference at 5% significance level 
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 Table 9.  Particle size distribution analysis performed on individual infill treatments receiving 0 or 180 simulated traffic events 

using the Cady Traffic Simulator during 2013 located in Knoxville, TN.    

 

  
Particle Size (mm) 

  
3.35-2.0 2.00-1.0 1.0-0.5 0.5-0.25 0.25-0.15 0.15-0.1 0.1-0.05 0.05 - <0.002 

Infill Treatments -----------------------------------------Percent Retained
a
-------------------------------------- 

Non-Trafficked 100% CR
b 12.1 73.1 12.4 1.3 0.1 0.1 0.0 0.0 

 

70 CR:30 S
c 8.4 36.4 52.4 2.3 0.1 0.0 0.0 0.0 

 

50 CR:50 CC
d 19.9 74.1 4.9 0.4 0.1 0.1 0.1 0.0 

 

50 CR:50 CCC
e 17.4 76.4 5.3 0.3 0.0 0.0 0.0 0.0 

 

CR over CC
f 21.6 73.0 4.6 0.2 0.0 0.0 0.0 0.0 

 

CC over CR
g 19.8 74.5 4.6 0.2 0.1 0.1 0.1 0.0 

Trafficked
h 

100% CR 12.2 72.8 12.1 1.6 0.3 0.2 0.2 0.0 

 

70 CR:30 S 6.2 34.6 55.4 2.9 0.2 0.1 0.1 0.0 

 

50 CR:50 CC 16.7 56.6 11.3 7.1 3.4 2.5 0.6 0.2 

 

50 CR:50 CCC 15.1 63.9 11.0 4.6 2.2 1.5 0.4 0.2 

 

CR over CC 15.4 66.3 9.3 4.1 1.9 1.4 0.3 0.1 

 

CC over CR 15.8 52.2 13.8 8.3 4.4 2.1 0.4 0.1 

 

LSD0.05
i 

3.8 5.6 4.6 1.4 0.4 0.3 0.1 0.1 
a 
Percent retained calculated by dividing the mass retained in each particle size by the initial total mass of the sample 

b 
100% crumb rubber infill treatment at 30 mm depth 

c 
70% crumb rubber: 30% silica sand by volume homogenous blend infill treatment at 30 mm depth  

d 
50% crumb rubber: 50% calcined clay by volume homogenous blend infill treatment at 30 mm depth  

e 
50% crumb rubber: 50% coated-calcined clay by volume homogenous blend infill treatment at 30 mm depth 

f 
15 mm crumb rubber over 15 mm calcined clay infill treatment 

g 
15 mm calcined clay over 15 mm crumb rubber infill treatment 

h 
Trafficked sub plot received a total of 180 simulated trafficking events using the Cady Traffic Simulator from16 September to 19 December 2013

 

i 
Fisher’s  rotected Least Significant Difference at 5% significance level 
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CONCLUSIONS 

 

Irrigation of synthetic turf reduced surface temperatures to 60 to 85% of the surface 

temperatures 10 minutes prior to irrigation.  However, by thirty minutes after irrigation, surface 

temperatures increased to 74 to 102% of the pre-irrigation temperature.  By 150 minutes after 

irrigation, plots infilled with 50 CR:50 CC and CC over CR were 10 to 24% and 20 to 21% 

lower than the surfaces with the highest percentage of pre-irrigation temperature, which ranged 

from 95 to 137%.  While CC modification had a transient effect on surface temperature, 

inclusion within crumb rubber infill increased surface hardness.  In 2012, plots infilled with CC 

increased at a faster rate of surface hardness compared to 100% CR and 70 CR:30 S with 

application of 180 simulated traffic events.  In 2013, surface hardness increased plots receiving 

CR over CC infill increase faster than the remaining five treatments.  Infill material particles, 

specifically the CC treatments, fractured with simulated traffic.  Applying a 15 mm layer of CR 

over a 15 mm layer of CC or having a polymer coating on the CC particles reduces the 

breakdown.  While CC particles did fracture to a smaller size following simulated traffic, 82 to 

99% of the infill was > 0.5 mm in diameter and 0 to 8.4% of the infill was 0.25 to <0.002 mm in 

diameter. This suggests that plots have hydraulic conductivity > 15 cm h
-1

. Significant 

temperature differences were not consistent among treatments and surface hardness with CC 

tended to measure higher than 100% CR and 70 CR:30 S.  The results of this experiment indicate 

the use of CC in synthetic turf may be limited.        
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