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Abstract

This thesis presents a decentralized tool STATMOND - to monitor the status of

a peer-to-peer network. STATMOND provides an accurate measurement scheme

for parameters such as CPU load and memory utilization on Linux clusters. The

services of STATMOND are ubiquitous in that each computer measures and for-

wards its data over the network and also maintains the data of other nodes in

memory. The data are periodically updated, and users on any node can ‘see‘ the

status and performance of the network based on these parameters. This thesis

describes the problems confronting cluster computing, the necessity of monitoring

tools and how STATMOND can be a step towards better allocation of resources

for dynamic computing.
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Chapter 1

Introduction

1.1 Introduction

Parallel processing applications use more than one central processing unit (CPU)

to execute a program at speeds in excess of what can be achieved by a conven-

tional computer. Some problems in science and engineering are both memory and

computationally intensive, such as linear algebra routines on very large matrices,

finite element computing, and searches in large databases. The time required

for one processor (CPU) to execute these applications can be unacceptably long.

Such applications can require both gigabytes of memory and gigaflops (1 FLOPS

= 1 floating point operation/second, where the floating point operation is a mul-

tiply and add or equivalent) of performance. Often this is more than what can
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reasonably be expected to be available on a single processor machine. The main

objective of any computation is to obtain a sufficiently accurate solution within an

acceptable amount of time. One way to solve such complex problems is to divide

the computational work into discrete sections called tasks or jobs and assign them

to several CPUs, so that the tasks are performed simultaneously. Parallel process-

ing thus involves two or more CPUs interconnected through any communication

medium such as a network, with each CPU executing a task.

Parallel processing, also known as parallel computing, can be implemented in

several ways. These include cluster computing and meta-computing (grid com-

puting). Instead of spending millions of dollars on specialized supercomputers

such as a Cray X1, or a HP/Convex Exemplar SPP-1200, it is often more cost-

effective to build and maintain a cluster of computers that lets users plug into

computing power on a network very easily. Grid computing deals with a much

larger cluster of computers, that offers teraflops of performance and spans multi-

ple geographic and administrative domains. A cluster of computers/workstations,

popularly known as a Network of Workstations (NOW)[59], uses commodity mi-

croprocessors and high-speed local area network (LAN) interconnects such as Fast

or Gigabit Ethernet. It acts as a single system and can have performance com-

petitive with supercomputers that are more monolithic. Clusters also scale well,

accommodating a large number of computers that can be added in an incremental
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fashion.

A cluster can be built with common LAN resources, such as individual comput-

ers, high-speed (several GHz) processors, memory (several GB), disks, I/O cards,

network interface cards, cables, operating systems and other utility software (such

as mathematical libraries). To meet application requirements, several computers

in a cluster can be connected to two or more LAN architectures. Such comput-

ers, or nodes, associate themselves with different LANs through distinct interfaces

identified by unique IP addresses. One or more of these resources may fail, and

it is desired that the program tolerate such failures. This presents the parallel ar-

chitecture designers with both an opportunity and a challenge. The opportunity

is that the computation may be designed to survive despite the failure of one or

more resources. The challenge is to be able to monitor such a system, detect the

failures of individual resources, and design methods to adapt or reconfigure the

environment and parallel application to minimize the effects of failures.

1.2 Motivation

Dynamic resource allocation (DRA) in a cluster of workstations is one of the

most important problems that must be solved for efficient utilization of all re-

sources (nodes/parallel computers/hosts, databases, network links, storage, I/O

devices) in a cluster. The main objective of a DRA method is to allocate and map

3



workloads to each resource in proportion to its capability. A well-known similar

problem is how to manage, schedule, distribute, and delegate activities among

people working on a project in a company. The DRA method must adjust to

changes in its set of available information. Other objectives include:

1. Workload distribution over a set of processors and resources.

2. Intelligent planning of the distribution of workload, so that all the computers

are busy and at the same time not overloaded.

3. Assignment and adjustment of task priority.

4. Efficient and rapid completion of assigned work.

5. Maximization of task throughput on the machines.

A resource scheduler must use host capacity information to achieve these ob-

jectives. However, this information cannot be exact or complete. First, only a

finite (typically small) number of statistics can be available for each host. Sec-

ond, these statistics are measured infrequently (relative to the performance of the

hosts). This ensures that the measurement processes consume a small fraction of

the parallel machine’s resources. Third, once statistics are measured they must

be transmitted to other node(s) and made available to the resource scheduling

method. This process requires time and creates a randomly varying time delay

inherent to the measurement, transmission, and receipt of the information.

4



1.3 The Specific Problem

This thesis addresses a small but important step that may aid the DRA method.

The specific objective of this thesis is to develop a tool that executes as a service

daemon to monitor, gather, and distribute the capacity and utilization statistics

for DRA. As a daemon or background process, the tool should collect data from

the kernel data structures at specified discrete times. This information has to

be exchanged with all other nodes, and requests should be serviced to provide

information to other software applications. The daemon aims to provide status

information, that includes measures of CPU activity, memory and network utiliza-

tion for every host on the network. Specifically, the data that need to be collected

includes:

1. The number of CPUs on a node.

2. The clock speeds of the respective CPUs on a node.

3. The total RAM used by a node.

4. The total amount of memory available on a node.

5. The memory shared by various applications on a node.

6. The memory available in the buffer.

7. The memory available in cache.

5



8. The number of jiffies (a jiffy is defined as 1/100th of a second) the node has

been in user mode.

9. The number of jiffies the node executes tasks is in low priority mode.

10. The number of jiffies the node executes tasks in system mode.

11. The number of jiffies the node is idle.

12. The number of seconds for which the node has been up and was in idle state.

13. The utilization of the processor/s in the last 1, 5, and 10 minutes, and

14. The number of packets sent and received by a node on the network.

A DRA design effort can use this information, along with additional software

process information, to design methods to balance the distribution of databases or

other applications across the resources of the parallel machine. This distribution

can occur under dynamic conditions that include node failures, node mainte-

nance, and hardware/software upgrades. The tool’s design is unique: it provides

local estimates of properties of all participating nodes on all nodes of the parallel

computing environment. The tool is peer-to-peer since each node has the same

capabilities and either node can initiate or join a communication session. Other

models with which it might be contrasted include the client/server model and

the master/slave model. The nodes can use the ethernet connection to exchange

6



information with each other directly or through a mediating server. The infor-

mation provided by this tool can also be used by the system administrators and

developers to instrument system resources such as CPUs, memory, network, and

selected applications.

1.4 An Overview of the Solution

STATMOND (short for Status Monitor Daemon), is designed and implemented

to gather, store, transmit, receive, and report the environmental, kernel, system

configuration and process data for all the resources (nodes) on a parallel machine.

The key features of STATMOND are:

1. It provides accurate and timely statistics.

2. It maintains aggregate data on every node on the network.

3. It is non-intrusive; it uses a small fraction of CPU and network resources.

4. It is available at all times; it does not execute and die.

5. It is ubiquitous; it is locally available at all nodes, and it enables local access

to all performance and environmental data on all nodes.

STATMOND has been tested on a 24-node parallel machine and may subsequently

be used in the design of a DRA method. The statistics reported by STATMOND

7



are currently used by system administrators and developers who are responsible

for the system.

1.5 Summary

The problem statement and a broad overview of the thesis have been presented in

this chapter. The ”status and performance measurement of parallel computers”

problem has been outlined along with the aim and objectives of this thesis. The

next chapter will further describe the problem’s setting, its background, and who

will benefit from the solution.
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Chapter 2

Background

2.1 Introduction

Every cluster is designed to perform a certain set of computations and tasks effec-

tively. The cluster at the Laboratory for Information Technologies (LIT) at the

University of Tennessee, Knoxville (UTK) uses the computational power of several

(24) nodes to run tasks that store, retrieve and maintain DNA information. This

chapter describes, in brief, the setup of the cluster, the database framework that

stores and utilizes the DNA data, and the DRA method that uses the resources

to achieve desired performance. This overview will provide an insight to the use

of STATMOND in the above context.

9



2.2 Forensic Science And Solving Crime

Everyday, many crimes are committed in society. Forensic science has become

an essential tool to solve these crimes. The word ”forensic” in the past meant

anything relating to a law court. But today, it refers to using science to solve

crime.

What exactly is the role of a forensic scientist? At the scene of the crime,

the investigators will thoroughly examine the area. They take detailed notes and

photographs, look for fingerprints, marks of tools and weapons, marks from shoes

and palm prints, cloth or material fibers, glass and paint fragments, saliva, hair

and body fluids.

The presence of blood, saliva or hair, however, does not mean it is from a

human, or even that it had anything to do with a crime. Occasionally, people do

cut themselves, which can leave a tiny drop of blood on the carpet. Similarly an

uncleaned carpet may have hair that are dropped from a comb.

Hence, it is not the forensic experts’ job to confirm a crime. Forensic science

is similar to any form of science and requires an open mind. The crime scene

investigator or the lab scientist works to uncover facts that can be used as evidence.

Very often, these facts may serve to rule out many of the suspects.

Autopsy, fingerprinting, and DNA fingerprinting are tools used by forensic

pathologists to study the cause and nature of the crime. DNA identification is

10



an emerging technology that relies on the genetic information of each person.

Everyone’s DNA in certain regions, except from identical twins is different. DNA

can be extracted from any body fluid including blood, saliva, sweat, nasal mucus,

and semen and other fragments such as hair roots, skin flakes, or flesh. The

extracted DNA can be typed for human identification.

Forensic scientists look at a a sub-set of the DNA from body fluid sample and

perform tests to determine the parentage and pedigree, which is known as DNA

profiling. DNA profiles (obtained as a result of DNA profiling) are a very powerful

means of determining whether two or more samples may or may not have come

from the same person. If DNA profiles do not match, it is highly probable that

they came from different people.

Human DNA is classified as either nuclear or mitochondrial DNA. Nuclear

DNA originates in the nucleus of each cell, while mitochondrial DNA originates in

the mitochondria outside the nucleus of the cell. Mitochondrial DNA are strictly

inherited from the maternal side of a person.

Nuclear DNA is the same in every cell of the body, and stays the same through-

out life. Therefore, DNA profiles taken at different times and places can be com-

pared in order to determine whether or not they come from the same person.

DNA profiling is used to compare different DNA samples, and to assist in the

determination of whether or not they could be from the same person. Various

11



probabilities of DNA matching can be carried out to assess the likelihood of two

DNA profiles being the same if they are from different sources.

2.3 The Combined DNA Index System

The Combined DNA Index System or CODIS [11], established by the Federal Bu-

reau of Investigation (FBI), is a database software that can store (maintain), track,

and search DNA profiles. These profiles can originate from offenders convicted

of serious crimes that include felony and sexual assault, from forensic investiga-

tions of crime scenes, and other related sources such as DNA data for missing

persons. The CODIS software is used in local, state and national repositories of

DNA profiles created from convicted offender samples and case evidence (such as

saliva, blood, chewing gum, hair, cigarette butts, etc.) left behind by individuals

at a crime scene. Law enforcement agencies use CODIS to match DNA profiles

in the database with those obtained from DNA samples collected from various

crime scenes or from suspects in custody. In short, CODIS makes effective use of

forensic science and computer technology to trace criminals and solve crimes.
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2.3.1 The CODIS Framework

The CODIS software currently is used at three geographic levels:

1. National DNA Index System (NDIS)

2. State DNA Index System (SDIS)

3. Local DNA Index System (LDIS)

At the national level, CODIS stores DNA profiles from crime scenes, convicted

offenders, and from people who have submitted a blood sample in compliance

with the existing law. NDIS is maintained by the Federal Bureau of Investigation

and is used by federal, state, and law enforcement agencies. This was formalized

by the DNA Identification Act of 1994. Through the NDIS, DNA profiles are

exchanged and interstate comparisons are performed.

Each member state has a respective SDIS database, and may have one or

more LDIS databases. Each LDIS database is comprised of at least three indices:

casework, convicted offender, and population. To search for matching DNA pro-

files, law enforcement agencies use the casework and convicted offender indexes.

The crime scene evidence is searched against the DNA profiles maintained within

the convicted offender indexes. This enables the forensic science agencies to link

unsolved and unrelated cases and also to identify unknown suspect cases.

13



Figure 2.1: Parallel Database System[37]

2.4 Parallel Machine at LIT and the Parallel

Search System

A parallel computer system was constructed at LIT for architecture, software

development tools, and applications research. The parallel system is a collection

of networked computers that can support parallel databases and collections of

databases. Primarily built for the FBI Laboratory, this system implements a

parallel DNA profile database [39][40]. The layout of the parallel database is

shown in Figure 2.1[37].

The structure of the parallel database is hierarchical. It consists of a root

node that communicates with k groups of computer networks. Each group is

assigned a portion of the database and is composed of one or more computer
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nodes based on their hardware configurations, that is, processor speed, memory

size, and other features that contribute to the computational speed of the node.

All of the nodes within a group contain identical data , and the nodes share the

computational burden of database searches involving that group. Different groups

contain different DNA profile data, but one or more groups can store redundant

copies of portions of the total data population to ensure data integrity in the

event of dynamic node failures. In the LIT parallel computer cluster each node

has one or two AMD Athlon processors. The single processor machines use a

1.3 GHz processor and 768 MB RAM (Random Access Memory), and the dual

processor machines use two 1.6 GHz processors and 1GB RAM. Red Hat Linux

is the operating system. The TCP/IP and UDP protocol suite on both Gigabit

and Fast Ethernet is used for communications between the nodes.

The LIT parallel system has 2 root nodes, 24 nodes, 40 processors, and 3.5

Terabytes of disk storage. The database implements a tree-structured index that

specifies a sequence of tests on a DNA target profile to determine where it should

be stored (or where matching profiles would be stored). Data records or DNA

profiles are stored as sets of clusters. The database responds to client queries

for search, storage, deletion and retrieval of data. The root node creates a query

based on the request from the client. The root along with all the nodes maintains

a list of the processing capacity of each processor, available memory, queue length
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and the number of tasks on each processor. Based on this information a set of

tests are defined by the root node, and each node is associated with a different

test. These tests are processed by each node in parallel. The result of a test is the

response to the query and each node routes it to the root node. The root evaluates

the responses for the query and sends the appropriate result to the client.

This parallel data processing architecture is the basis for the parallel search

system at LIT. In short, the parallel database server is a tree of cooperating

hosts organized in groups. Cooperation is necessary as the search requests are not

created only by the clients but by any node that executes a search thread. Pending

search requests, placed on queues associated with each node may be moved among

the processing nodes of a group to achieve a balance of the load.

2.5 Dynamic Resource Allocation on a Parallel

Computer

The objective of dynamic resource allocation (DRA) is to allocate available sys-

tem resources to tasks under dynamic conditions caused by the completion and

insertion of new tasks, changing utilization patterns of system resources, node fail-

ures, system and software maintenance, database growth, and hardware/software

upgrades, in a manner that maintains suitable performance. The entire search
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system discussed in the previous section consists of a space server (root node)

and a group of nodes connected through a switch. The resources of this system

include:

1. Processors on each node (A node can have 1 or 2 processors).

2. Memory on each node.

3. Bandwidth available to two communicating nodes across the network.

Issues that need to be taken into consideration in assigning resources to the DNA

profile database search include:

1. The initial size of the entire database (The initial quality of DNA profiles

to be allocated to each node depends on the available RAM and processor

speed of the respective node).

2. The rate of growth of the database.

3. The number of node-failures that can be handled.

4. The size of database that will be redistributed in case of failure of a particular

node.

5. The size of the database that will be reassigned when new nodes or resources

are introduced.

17



6. The role of the hot spare (back up computer).

7. Overlapping or non-overlapping databases

In addition, maintenance of these nodes is required from time to time, and there

should be a procedure that accomplishes this without severely impacting perfor-

mance, that is the service time of the requests.

The resources of the network are subject to constraints. In order to maintain

suitable performance of the system, the relationships between the resources and

their constraints are analyzed to determine the amount of resources required and

their allocation [47][45].

2.5.1 Nodes, Processors and their Constraints

This section introduces the parameters and the variables that characterize the

number of nodes, the size of the database, and the rate of incoming search and

store requests. The entire search system needs to be designed to achieve faster

search rates. However, the database grows with time. So, the number of records

that need to be searched to find a match increases the average search time over

time. One possible solution is to add more nodes, as the database size grows so

as to maintain a constant search time. To analyze several possible alternative

solutions, the parameters and variables, and their units, are defined in Table 2.1.
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Table 2.1: Nodes, Processors, and their Constraints
Symbol Description

n The number of nodes on the network.
DB(t) The total database of profiles (Gbytes) that must be searched

at time t.
Qi(t) The number of searches per second of the ith node

at time t.
Si(t) The number of new profile stores per second of the ith node

at time t.
DBi(t) The database size on the ith node (Gbytes) at time t.

Constraint:
∑n

i=1 DBi(t) = DB(t)
CPUi The processor capacity of the ith node (GHz)

With α ln(Gbytes)-searches deduced empirically, a model of
the search rate is: Qi(t) = α CPUi

ln(DBi(t))

q(t) Maximum number of search requests by the clients at time t.
s(t) Maximum number of store requests by the clients at time t.
λ(t) The maximum number of searches/store requests per second

at time t, i.e.,
λ(t) = q(t) + s(t)

1/Qi(t) Maximum search time by the ith node at time t.
1/Si(t) Maximum store time by the ith node at time t.

Thus the minimum rate of store and search is at time t is
1

1
Qi(t)

+ 1
Si(t)

= Qi(t)Si(t)
Qi(t)+Si(t)

Constraint: This minimum rate of stores and searches must be
the better than the requested rate of stores and searches,

i.e., Qi(t)Si(t)
Qi(t)+Si(t)

≥ λ
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2.5.2 Memory and its Constraints

The focus of parallel computer development is moving from the processor perspec-

tive to the memory system perspective. While the performance of processors in

general doubles every 18 months (Moore’s law)[50], the performance of memory

increases by 8 % each year. Hence a fast processor can spend a lot of time waiting

for data from memory. In general, fast memories are small and large memories are

slow. This is due to selection delays, and dense storage cells. Hence, very large

data sets may be accessed more quickly by dividing them into smaller memories

connected to different processors. This leads to the distributed memory parallel

computers. In these systems, each processor has its own local memory to which

it has direct access; together they form a node. The other processors can only

access the data in the local memory of another node through a communication

network, by asking the local processor to send or receive the data. Most appli-

cation programs work with multiple address spaces for each local memory, and

for the explicit organization of data transfer between address spaces. This makes

parallel computers more difficult to program than their single processor counter-

parts. Various message passing libraries such as MPI (Message Passing Interface)

or PVM (Parallel Virtual Machine) are used to program such systems. Also, key

information about the memory requirements of the running tasks, the nature of

their accesses to memory, and the frequency with which the memory is searched,
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Table 2.2: Memory and its Constraints
Symbol Description
RAMi The total memory available locally at the ith node (Gbytes).
DBi res(t) The memory (Gbytes) of the ith node reserved to store new

profiles and to restore the database for a failed node at time t.
DBi res(t) is a decreasing function as more profiles are added
to the database.

RAMoverhead The memory overhead (Gbytes) for the operating system and
applications.
Constraint: The reserved memory and the memory used for
database must be less than the total available memory, i.e.,
DBi(t) + DBi res(t) ≤ RAMi − RAMoverhead

data is inserted or deleted has to be known to effectively model and program

the system. Table 2.2 shows variables and constraints defined to characterize the

memory requirements of the search system.

2.5.3 The Network and its Constraints

Parallel application performance is the key objective for users of a system. The

features and limitations of the underlying messaging and network system have

different implications in different applications. Characterization of the system

interconnect provides qualitative analysis for comparing various platforms in order

to choose the most suitable platform for a given application. Most performance

measurements of the communication systems are given in terms of two parameters:

Latency and Bandwidth. Latency is the delay or the time for a packet of data to
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get from one designated point to another. Bandwidth on the other hand refers

to the data rate supported by a network. Table 2.3 defines the parameters that

characterizes the communication of messages between nodes.

2.5.4 Goal of DRA

The goal here is to formulate the resource allocation problem using the quantities

defined for the parallel search system. The initial distribution problem is:

Given the average values of qavg, savg of q(t) and s(t) respectively, the time

period tlife, the capabilities of the nodes (CPUi, RAMi), the initial database size

DB(0), the network bandwidth Li and the required search/store rate performance

(Mλ), determine the number n of nodes required and the initial distribution of the

database DB(0) to the ith node (i.e., DBi(0)) and the RAM reserved DBi res(0)

required on each node to meet database growth requirement and node failures.

That is, given CPUi , DB(0), RAMi , RAMoverhead, qavg, savg,and Li determine

n, DBi(0),and DBi res(0), such that the constraints:

Qi(t)Si(t)

Qi(t) + Si(t)
≥ λ(t)

DBi(t) + DBi res(t) ≤ RAMi − RAMoverhead

TDBm + Tbuild ≤ ∆Tmax
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Table 2.3: Network and its Constraints
Symbol Description
Li The available effective bandwidth (meaning the rate at

which profile data can be transferred) between the ith node
and server (Gbps; 1 bps = 1 bit/sec).

∆Tmax The specified maximum amount of time allowed for a recovery
from a node failure.

TDBm(t) The actual time required to restore the mth node’s database on the
remaining working nodes. If the mth node fails, its database DBm(t)
is restored from the network drive. That is, a portion DBmi(t) of
DBm(t) is sent to the ith working node in such a way that

DBm(t) =
n∑

i=1,i6=m

DBmi(t)

If all nodes have identical resources, then DBmi(t) = DBm(t)/ (n − 1)
is sent to each of the remaining n − 1 nodes. The time to transfer the

data DBmi(t) from the network drive is: TDBm
=

n∑
j=1,j 6=m

1
Lj
×DBmi(t)

Tbuild The total time required to extend the decision tree on each of the nodes
to accommodate other additional data DBmi(t). This time is assumed
to be proportional to the size of the transferred database, i.e.,
Tbuild = β × maxi{DBmi}, where
β is deduced empirically and DBmi(t) is the portion of the DBm(t)
allocated to the ith node.
This assumption has been found to be reasonably valid in practice.
Hence the constraint: TDBm(t) + Tbuild ≤ ∆Tmax
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are satisfied. The main performance objective is to keep the rate of service of

search requests Qi(t) approximately equal over all nodes 1 through n (represented

by i and j ), or minimize

n∑

i,j=1,i6=j

(Qi(t) − Qj(t) )2.

2.6 STATMOND and DRA

Run-time monitoring of the parallel machine is essential for the successful opera-

tion of applications and their tasks. The tasks include calls to I/O, access shared

data from memory, insertion of data, and computations. Any of these tasks may

show a high dynamic behavior and consume more resource time than necessary.

Unless run-time monitoring is used to determine the appropriate parameters that

affect the system DRA of resources to applications and tasks, it is unlikely that

high performance will be attained. STATMOND selectively monitors resource

utilization and environmental parameters at regular intervals of time and this in-

formation can be dynamically applied to DRA to keep the Qi(t) approximately

the same and respond to failures. This can thereby optimize resource allocation

to cluster applications and may achieve smooth progress and performance of all

tasks that run on the cluster.
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2.7 Summary

This chapter covered in brief the role of the parallel machine at LIT to store

profiles and conduct searches for matching profiles in large DNA databases. The

use of CODIS database by the FBI, the law enforcement agencies at state and

local levels was described in this chapter. A novel method employed by LIT to set

up the CODIS database on the parallel machine to perform searches and stores of

DNA profiles has been explained. This chapter introduced the problem of DRA

on the parallel machine and how the information provided by STATMOND can

be used to solve a part of this complex problem.

The next chapter reviews and discusses several existing tools as reported in

the literature that achieve objectives similar to or different from STATMOND and

that are used to solve DRA problems.
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Chapter 3

Survey of Related Tools

3.1 Introduction

There are several tools that provide clients with information about availability of

resources in a cluster for both high performance and high throughput computing.

A good queuing system and an efficient workload distribution method are desired

for a system that processes a lot of independent tasks. But a parallel application

with highly communicating tasks needs a method to balance not only CPU load

but also network load. There is still room for development of good freely available

monitoring systems with low intrusiveness usable in computer clusters; none of the

existing were judged to adequately meet the needs of dynamic resource allocation

methods in this project.
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3.2 Monitoring Tools Developed in Academia

In recent years, computational grid software infrastructures such as Globus[48],

Legion[38], Condor[60] and Netsolve[46] have been developed at various research

centers. These software infrastructures combine distributed computing and data

resources in high performance applications. Most computational grid architectures

and clusters employ scheduling features to select the most appropriate resources

based on parameters such as CPU load and memory availability. Schedulers de-

cide when and which resources are to be used by various tasks run by the cluster.

These scheduling decisions must be based on the performance of each resource

that performs the task it has been assigned. The performance of each resource

can be measured by systems that are designed and implemented to take peri-

odic measurements about the resource’s activity. Numerical models can then be

developed to generate forecasts of dynamic performance levels. Several systems

that monitor, measure, and forecast dynamic resource performance conditions are

reviewed below.

The NWS (short for Network Weather Service) [55, 56, 57]is a tool that pro-

vides dynamic resource performance forecasts in grid computing environments

(Figure 3.1). Forecasts are that of CPU availability and network performance are

based on measurements taken on a short-term (10 seconds to 60 seconds) basis.

These forecasting methods are based upon:
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Figure 3.1: The Structure of Network Weather Service[57]

1. mean-based methods on the measurement sample

2. median-based methods

3. autoregressive methods

NWS sensors execute on every host that is monitored. Figure 3.2 shows the

monitored hosts A, B, and C that are within the cluster being monitored. NWS

is a centralized system, and the measurements are forwarded to a admistrative

client utility that controls the system. This utility can run on any machine inside
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Figure 3.2: NWS Servers Running on Three Monitored Hosts[57]

or outside the monitored network.

NWS opearates an arbitrary set of performance sensors and generates forecasts

from the periodic readings it obtains. This tool does not use the wide range of

information that is available in the /proc directory, but is based on conventional

Unix utilities such as vmstat, which can be a significant source of measurement

error. This error is propagated when NWS predicts the availability of the CPU.

Any monitoring tool in parallel computing is primarily used by scheduling methods

to distribute tasks or jobs. Network Weather Service does not monitor, measure

or forecast memory availability on a node, which is vital for resource allocation

or load balancing. However, the NWS was enhanced to provide a broader metric

set, forecast trend visualization, and asynchronous notification[54]. A new SNMP
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sensor has been integrated with NWS that is used to collect data tracked by

SNMP agents.

NetLogger (short for Networked Application Logger) [44, 42, 43, 41] attempts

to determine the source of performance problems by performing a detailed in-

strumentation of all software components including the applications, OS, and the

nodes. This tool comprises several other tools that generate precision event logs

to provide detailed system monitoring, a Java based agent to manage logging of

data, and tools to visualize the data on an interface. NetLogger monitors the

behavior of the entire communication path between the source and the destina-

tion application and produces time-stamped logs of the events at all the critical

points of the complex system. Code is inserted in application software that makes

calls to the NetLogger application programmer interface (API) to produce event

logs. Neither NetLogger nor NWS maintains aggregate information on each node

about all the other nodes in the network, which is a key feature of STATMOND.

This allows each node to have equal responsibility in implementing the scheduling

method.

ClusterProbe [61] is a Java-based tool for monitoring large clusters of work-

stations. The tool provides a multiple-protocol communication interface that can

be connected to various types of external accesses from the clients. ClusterProbe

has three main components:

30



1. The monitoring server

2. The monitoring proxy

3. The agent

The monitoring server handles the requests from various nodes on the network

and forwards the results to clients that requested the information. This commu-

nication takes place through a communication adaptor. ClusterProbe provides

several communication adaptors that support various communication protocols.

The monitoring proxy manages a subset of nodes that perform similar tasks. Such

a subset can also be constructed for nodes with similar hardware or software con-

figuration. The monitoring proxy provides scalability of the tool. Agents execute

as daemons on all nodes that need to be monitored. Each agent collects and re-

ports local resources parameters to the monitoring proxy using a RMI (Remote

Method Interface) protocol.

As a Java based monitoring tool, ClusterProbe is an open, flexible, and exten-

sible tool. However, RMI has several disadvantages: (1) It does not provide a full

feature set. (2) There is no mechanism for object description. (3) There is no lan-

guage independence. The resources monitored by ClusterProbe and STATMOND

are similar except for a few parameters such as IP and ICMP packets received

and sent. While in the STATMOND framework, each node acts as an individual
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information source, in ClusterProbe, information is aggregated through the mon-

itoring server. In addition, no detail is mentioned on whether ClusterProbe scales

to a large number of computers, without consuming significant system resources.

GARDMON [52], utilizes client-server methodology and provides transpar-

ent access between the monitoring server and the nodes on the network. The

Gardmon-server is the system utilization provider, whereas the Gardmon-client is

responsible for interacting with Gardmon-server and users for data gathering in

real-time and presenting information graphically for visualization. The client is

implemented with object-oriented, client-server, and Java computing technologies.

The Gardmon architecture can significantly load the server when the number

of nodes is large. Also Gardmon does not supply data in a standard format, such

as XML, that is accessible by parallel applications or subsystems, except for the

gardmon-client.

SCMS [51] is an advanced open source integrated cluster management tool for

Beowulf Clusters. SCMS allows users to perform administrative tasks, including

software installation and replication of control files. The tool provides a real-

time monitoring subsystem, many command tools, and a powerful graphical user

interface. Another feature of this tool is its alarm system service that notifies a

user with email or by executing a script when a certain condition occurs. This

tool uses Java for an effective GUI development framework. However, this tool is
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intrusive since it uses a rich set of GUI tools including the Swing Class Library.

3.3 Monitoring Tools Developed in the Industry

Big Brother [4] is a web-based performance monitor that reports availability of

software services at each node of a cluster. The most attractive feature of Big

Brother is its display, which is available to any web browser. Big Brother supports

plugins and extensions, and STATMOND can be integrated with Big Brother so

that statistics gathered by STATMOND can be reported to users via Big Brother.

The other features of Big Brother are:

1. Redundancy: Multiple instances of Big Brother can run in parallel;hence a

problem is reported even if one monitoring system fails.

2. Platform Independent: Big Brother can run on Unix/Linux and also on

NT/Win2K with a scaled down version.

3. Flexibility: The web display is customizable, and alarms and warning bells

can be easily redefined.
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3.4 Other Monitoring Tools

Presented below are several monitoring tools that obtain a specific measurement.

• Network Related Measurements

1. Active Measurement Program[1]: Round-trip time, packet loss, and

routing.

2. Surveyor[34]: One-way delay and routing between sites.

3. Iperf[13]: Maximum end-to-end TCP and UDP bandwidth.

• Application Related Measurements

1. Prophesy[28]: Average and standard deviation of code segments.

2. Pablo[21]: Log of data about performance events.

3. Kappa-PI[16]: Performance analyzer for parallel MPI and PVM pro-

grams.

4. Paradyn[23]: Dynamic instrumentation and performance consultant.

5. Peridot[26]: Automatic performance analysis tools for teraflop comput-

ers.

6. S-Check[31]: Automated program sensitivity analysis tool.

7. KOJAK[15]: Kit for Objective Judgement and Knowledge-based De-

tection of Performance Bottlenecks.
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8. DELPHI[6]: An Integrated, Language-Directed Performance Predic-

tion, Measurement, and Analysis Environment.

• Input/Output Activity

1. Pablo[21]: Log of I/O events data.

• CPU

1. Autopilot Performance Monitor[1]: CPU load measurements.

2. ATLAS[3]: CPU usage

3. GRIDVIEW[12]: Grid status information on the web.

4. SvPablo[35]: Hardware performance counters.

5. PAPI[22]: Hardware performance counter.

6. PCL[25]: Hardware performance counter.

7. RABBIT[30]: Hardware performance counter.

• Disks

1. Autopilot[1]: Disk Measurements

• Memory Access

1. MUTT[18]: Tracks memory utilization.
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• Tracing Formats

1. JUMPSHOT[14]: CLOG format.

2. UPSHOT/NUPSHOT[2]: ALOG format,Visualization tools for MPI

generated trace files.

3. SDDF[32]: Self Defining Data Format for trace files.

4. SIMPLE[33]: Generic event trace analysis environment.

5. PICL[27]: Timestamped trace data on interprocessor communication,

processor busy/idle times and simple user-defined events.

6. MPICL[17]: MPI based PICL.

7. ParaGraph[24]: Tool for graphical view the trace data by PICL and

MPICL.

8. VAMPIR[36]: An event trace browser.

9. DIMEMAS[7]: Performance prediction by using a VAMPIR trace file

of a real program execution.

• Timer

1. PTR[29]: API for measuring intervals of program execution, in terms

of wall clock, user CPU, and system CPU time.

2. CARNIVAL[5]: Waiting time analysis.
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• Online Process Information Access and Control

1. Falcon[10]: On-line monitoring and steering tools for parallel/distributed

applications at the thread-level, based on a custom threads package.

2. OMIS[20]: Portable interface to event-based monitoring.

3. DPCL[8]: On-line monitoring and steering tool.

4. DYNINST[9]: On-line monitoring and steering tool.

3.5 Summary

Clusters and grids are used extensively for research, scientific and commercial

applications. As the load of the cluster increases, effective tools to monitor and

manage the cluster become necessary for the efficient administration and utiliza-

tion of the system. Several tools are available in research labs and industries

that monitor several parameters such as round-trip time, delays, CPU load, pro-

gram performance, hardware performance and memory utilization. However, it

is not easy to build a tool that meets all requirements for DRA. Moreover, not

many tools are available that are flexible and scalable on a network. Though

STATMOND has the limitation that it can monitor only Linux based systems,

it is decentralized, and it collects kernel and process information directly rather

than through intermediate tools provided by the OS. Work still needs to be done
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to improve the scalability of STATMOND and this will be discussed in the last

chapter.

The next chapter details the STATMOND design and framework as a relatively

simple and flexible monitoring system.
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Chapter 4

STATMOND Design Overview

4.1 Introduction

This chapter describes STATMOND’s mechanisms that probe, forward and gather

information, and provide the basic building blocks to implement an effective mon-

itoring system. The high level design of the essential features is discussed. Specif-

ically, those features that enable STATMOND to be simple, flexible, and scalable

are highlighted.

4.2 STATMOND Process

STATMOND, as the name suggests, is a service-daemon, which runs in the back-

ground on all the nodes of the cluster that are to be monitored. The basic ar-

39



Figure 4.1: STATMOND Framework with 6 Nodes

chitecture is shown in Figure 4.1. The nodes can be independent workstations

or a cluster of servers within the same subnet connected through a low-latency,

high-bandwidth interconnect. The system shares measurement data among all

participating nodes (those running STATMOND), enabling application or system

software on any node to access a local copy of all measurement data.

STATMOND on each node has 5 main functions.

1. STATMOND periodically probes the node for kernel and process information

and stores the data in a local data structure. The time interval between 2

probes is user-defined and can be anywhere from a few seconds to a few
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minutes. However, the time interval is chosen as large as it is reasonable to

expect changes in the information that is collected to minimize STATMOND

resource utilization.

2. STATMOND forwards collected information to other nodes as it becomes

available. The data structure is accessed, and information is sent to desig-

nated nodes thorough the communications medium.

3. STATMOND receives and interprets the information from other nodes, and

updates the local data structure. The information received is categorized

based on the node and the time at which it was sent. The data structure is

locked while the update takes place.

4. STATMOND receives and responds to special information requests clients

such as system administration and application software. Specific information

may be requested from time-to-time on an as-needed basis. STATMOND

processes these requests while it carries out its other functions.

5. STATMOND logs the entire information in the local data structure to a file

of user-selected format. This file exists on the local machine and can be

accessed by several tasks, applications or methods that need the data.
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4.3 STATMOND Kernel Instrumentation

STATMOND collects data from the kernel’s data structures made available through

the /proc virtual file system of Linux. The /proc file system is located off the root

directory in /proc and is the user’s interface to the system’s kernel. The /proc

file system is not a standard file system; it provides a hierarchically structured

method for access to information provided by device drivers, network resources,

and the kernel. Since the /proc file system does not occupy space on the hard

drive, it is referred to as a ”virtual file system”; its ”files” are actually interfaces to

reporting software in the kernel and device drivers. In fact, the ”files” use access

points to kernel and device driver structures that are maintained in the memory.

The /proc directory has several read-only files and sub-directories that provide

both system and process information. A few system specific files and subdirecto-

ries that STATMOND uses to collect data are:

1. /proc/cpuinfo: Provides information about the collection of CPU and sys-

tem architecture-dependent items with a different list for each supported

architecture.

2. Loadavg: The load average numbers give the number of jobs in the run

queue (state R) or waiting for disk I/O (state D) averaged over 1, 5, 15

minutes.
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3. Meminfo: Reports the amount of free and used memory in bytes (both

physical and swap) on the system as well as the shared memory and buffers

used by the kernel.

4. Stat: Reports the number of ”jiffies” (1/100ths of a second) that the system

spent in user mode, user mode with low priority (nice), system mode, and

idle.

5. Uptime: Reports the uptime of the system (seconds), and the amount of

time spent in the idle process (seconds).

6. /proc/devices: Shows the available devices.

7. /proc/interrupts: Provides directions for interrupt usage.

8. /proc/iomem: Provides a memory map of system’s memory and various

devices.

9. /proc/ioports: Provides input/output (I/O) port usage and status.

10. /proc/kmsg: Shows the kernel messages

11. /proc/meminfo: Provides memory related information.

12. /proc/modules: Provides information about loaded kernel software modules.

13. /proc/net: Provides statistics about packets received and transmitted.
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14. /proc/version: Provides kernel and system version data.

The other category of sub-directories helps users fetch process-specific infor-

mation. Each running process has a sub-directory under /proc, named after its

process id (PID). A few files in this category are:

1. /proc/PID/cmdline: Provides the command line with its arguments.

2. /proc/PID/cwd: Provides the current working directory of the running pro-

cess.

3. /proc/PID/environ: Provides values of environment variables available to

the process.

4. /proc/PID/mem: Provides information about memory allocated to the pro-

cess.

5. /proc/PID/status: Provides the status of the process,such as sleep mode

and run mode.

6. /proc/PID/statm: Provides process memory utilization data.

For example, to get the status of a running process, the file /proc/PID/status

can be read. Most Linux utilities collect data from the /proc directory. The ’ps’

command, for instance, uses the /proc file system to obtain information about
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the running processes on the system. STATMOND does not gather information

from standard Linux utilities such as vmstat and top for two reasons. First, the

executable size of Linux utilities is large since they provide more than the required

functionality. Second, some information from the utilities is not as easily accessible

as it is from the /proc directory. By using information in the /proc filesystem,

STATMOND eliminates the ”middleman” and goes directly to the source. The

advantage of this approach is efficiency; the disadvantage, however, is that the

method is specific to Linux.

4.4 STATMOND Data

The current implementation of STATMOND supports the instrumentation of the

following information:

1. Kernel data: Aggregate and per-CPU data, including:

(a) Measures of percentages of time spent in user, low-priority user, system,

and idle modes,

(b) Measures of network activity on a per-NIC (network interface card)

basis.

(c) Measures of real and virtual memory utilization.

(d) Measures of page faults (read and written).
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(e) Measures of swap space utilization (read and written).

(f) Measures of input and output to data storage devices.

2. System configuration data: Number of CPUs and their perfomance, the size

of available disk storage, and the configuration of network connections.

3. Process data: This is mainly the process execution information such as the

PID, %CPU used by the process, and the memory occupied by a process.

STATMOND collects the data from the /proc/PID subdirectory of the /proc

file system. This output along with the PID, is used to identify one or

more specific executing processes to be monitored. Once a process on a

host is identified, a request can be made to execute a script to that host

(typically written to execute under a shell, Perl, or a similar utility). Such a

script must produce one or more data items separated by white space on its

standard output, and these data items are appended to the reports provided

by the reporting STATMOND process. Because of the scripting capability,

an authentication procedure is utilized to ensure that only digitally signed

STATMOND processes may request execution of a script and collection of

new data fields.

The STATMOND process formats measurement data as a table (Figure 4.2).

One row is added whenever the process receives data from a host for the first
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Figure 4.2: General STATMOND Table Structure

time. Each row is time-stamped with the date and time at which it received the

last update from a host. Each column is labelled by a unique identifier for one

type of measurement, such as CPU1TEMP for the temperature of CPU 1. The

STATMOND process periodically sends its most recent measurements for its local

host to other nodes, and it can be configured to save its table data to a file in

either HTML or XML format, and/or to respond to interprocess queries on the

local host. The saved file is updated by the STATMOND process on a periodic

basis, and the period can be specified on its command line.
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4.5 Data Transfer Between STATMOND Pro-

cesses

STATMOND employs multicast network communications. Multicast allows a sin-

gle message transmitted from one node to be received by several hosts dispersed

over the network. The network hardware, rather than the transmitting host, repli-

cates the transmission so that all hosts receive it. Communications take place

through a socket. A socket is a network endpoint associated with a process that

communicates with another endpoint (socket) associated with another process.

Both sockets can lie on the same machine, or they can be on different nodes.

Communication between any two processes through their respective sockets takes

place in an agreed-upon format called a protocol.

Traffic should be sent as efficiently as possible - the less bandwidth used, the

better. Without multicast technology, unicast (point-to-point) communication is

available, but this is, we suspect not sufficient for the current problem. TELNET,

FTP, SMTP and HTTP are unicast-based protocols with one source and one

destination. To send to multiple destinations, different communication paths are

needed between the source and each of the destinations (see Figure 4.3). Therefore,

a copy of each update is made by the transmitting node and sent separately to

each receiver. This does not scale well to a network with a large number of
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Figure 4.3: Unicast Loads the Sender

hosts. TCP (short for Transmission Control Protocol) cannot be used in multicast

applications, as it is unicast-oriented. UDP (short for User Datagram Protocol),

on the other hand, does not require a sender-receiver channel and offers a direct

way to send and receive datagrams over a network.

An IP address is a 32 bit integer that uniquely identifies a comptuer (host) on

a network. The IP address is usually divided into four one-byte unsigned integer

values (from 0 through 255, inclusive), and these are written as decimal integers

separated by periods (’.’). A sample IP address is: 128.69.54.87.

The range of IP addresses is divided into classes, based on the first eight bits

(leftmost decimal integer of its dotted notation) of the IP address. Multicast ad-
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dresses are class D addresses: these addresses start with the first three bits set

to one and the fourth set to zero. This means multicast addresses range from

224.0.0.0 to 239.255.255.255, and multicast traffic can be received by, or trans-

mitted from , hosts in this range of addresses. Each address, analogous to a radio

frequency, identifies a different and specific multicast group to which listening

nodes can ”tune” as shown in Figure 4.4. Some of these multicast addresses are

well-known and reserved for a specific purpose. For instance, 224.0.0.1 is the all-

hosts group. Any multicast-capable host must join this group at start-up on all its

multicast-capable interfaces. 224.0.0.2 is the all-routers group for network routers,

and so on. Multicast applications never send datagrams to addresses 224.0.0.0

through 224.0.0.255, as they won’t be forwarded across multicast routers. Sim-

ilarly, groups 239.0.0.0 through 239.255.255.255 should be avoided, as they are

reserved to administratively limit multicast traffic to a defined topological region.

As shown in Figure 4.5, when a group is multicast enabled a single packet is

sent which is replicated by the group router and forwarded to all the nodes in the

network.

4.6 The STATMOND-Client

In the STATMOND monitoring framework, the client (Figure 4.6) refers to any

system within the subnet that wants to obtain information from STATMOND
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Figure 4.4: Sending Packet to a Multicast Group

Figure 4.5: Multicast Enables the Sender to Send Just Once

51



Figure 4.6: Client-STATMOND Interaction

about the status and performance of the nodes on the cluster. The client can

also be loaded on any of the nodes in the cluster. The node on which it is loaded

may or may not be a functional part of the cluster, and therefore the client is

completely independent of STATMOND and its architecture.

However, the client has to follow certain rules to talk to STATMOND. The

client establishes an independent connection with STATMOND. This lets STAT-

MOND carry out its other functions in parallel without interruption. However,

the information requested by the client is given top priority. For such communica-

tions the TCP/IP suite of protocols is used. TCP is designed to perform well for

connections that are held for a long time, and transfer a lot of data. TCP offers

reliable, connection oriented transmission for upper layer protocols by establish-

ing a connection between source and destination machines and terminating the
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connection when transmission is complete. The protocol offers error checking of

packets, acknowledgement of successful receipt of packets after error checking and

packet sequencing. TCP performs two additional functions to prevent slowdown

of the network:

1. Flow control: ensuring that a fast sender (client) does not bombard the

relatively slower receiver (STATMOND) with packets.

2. Congestion control: slowing or increasing transmission speed to match total

load (or congestion) of the Internet paths separating the client and STAT-

MOND.

4.7 Summary

The design of STATMOND as a distributed architecture is presented in this chap-

ter. Any node on the network can be monitored from other nodes that belong

to a group. A detailed description of the kernel and process information that

is collected from the /proc filesystem of the Linux operating system is also laid

out. This process is observed to be faster than the use of Linux tools such as

vmstat or top to acquire data. A special section is dedicated to the UDP suite

of sockets along with the multicast protocol for data transfer. Multicast ensures

that only one packet of information is sent irrespective of the number of nodes
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on the network. The data structure that is maintained as a table in the mem-

ory is introduced and will be discussed in detail in the next chapter. This data

structure is important as it is the only source of aggregate data in the memory.

Moreover, it has to be simultaneously accessed by all functions of STATMOND.

This data structure is flexible, and parameters can be added or deleted without

major changes in the code. This makes STATMOND quite extensible in terms of

the parameters it monitors.

This chapter also brings out the importance of independent clients that talk

to STATMOND for specific information. As such, the clients use TCP/IP to

connect with STATMOND for a reliable connection. The next chapter describes

how the various features of STATMOND are implemented in code and highlights

any problems that were encountered during the implementation.
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Chapter 5

Implementation of STATMOND

5.1 Introduction

This chapter presents a detailed design of the STATMOND server and client. It

performs an analysis of the monitoring framework through a thread-level abstrac-

tion. Threads are lightweight processes and sequences of a program that perform

certain functions within the program. Threads allow programs to break down

their processing into smaller “chunks.” This chapter also discusses the data han-

dling and forwarding mechanism through the use of data structures and custom

filters in STATMOND. Hence a clear picture of the implementation details and

various design features incorporated into the system is obtained.
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5.2 Detailed Design of STATMOND

Unix processes can execute in either the foreground or background. A process that

runs in the foreground interacts with the user at a terminal or console through

I/O communication, whereas a background process runs without user involve-

ment. The user does not directly perceive its presence (or a display), but can

check its status and interact with it using an agreed-upon protocol. As mentioned

before, the term ‘daemon’ is used for processes that perform service in background.

STATMOND begins execution when loaded (run at command line) by the user

or other system software. It runs forever and does not die or get restarted. It

operates in the background, waits for requests to arrive, processes these requests

and possibly responds by returning information to the software that generated the

requests. It can spawn other processes to handle multiple client requests. STAT-

MOND’s command set includes the several options listed below (also see Figures

5.1 and 5.2). When executed correctly STATMOND runs in the background and

one way its PID can be determined is shown in Figure 5.3.

Usage: statmond [-Common option] [-Data option] data

Common options:

-p : to display physical measurements (default false)

-t : to standard output (default false)
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Figure 5.1: Incorrect Command Line Execution of STATMOND

Figure 5.2: A Correct Command Line Execution of STATMOND
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Figure 5.3: STATMOND’s PID

-x : to encode output, xml (default false)

-w : to encode output, html (default false)

-s : to encode output, ascii (default false)

Data options:

-a : IP address to be used(default : taken from /proc/sys/kernel/hostname)

-g : Multicast-group to be used(default : 235.6.7.8)

-h : Hostname or interface to be used for multicast(default:from -a

above)

-o : Output filename to be used with suitable suffix

(default: <IP>.log, <IP>.html, <IP>.xml)

-i : Time interval between successive probes (default: 5 secs)
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STATMOND’s design is symmetric: All hosts have the same statistics on the

population of hosts from which they are able to receive data, although typically

such information is delayed by different amounts of time at each host, and all hosts

execute the same STATMOND software. The hosts participate in a multicast

group defined by the monitoring daemon processes. Each host periodically sends

information to the multicast group in order to distribute its local information

to the group’s members, regardless of the group’s size. The network switches

replicate, distribute, and eliminate the need for each host to send point-to-point

message traffic to every other host. Each host must, however, read message traffic

from all the other hosts, and this is a limitation to the current implementation

of STATMOND. A possible solution to this limitation is proposed and under

investigation, which combines multicast and unicast UDP message protocols to

adaptively route aggregate data throughout a cluster.

STATMOND, has to determine the IP address it will use for its communica-

tions to and from other nodes when it starts. This is because a node may be

connected to more than one LANs, each through an interface. An IP address is

assigned on a per-interface basis, so a node may possess several IP addresses, as

many as the interfaces. For example, a node with both Fast Ethernet and Gigabit

Ethernet will have at least one IP address for each interface. The node is therefore

known by multiple addresses, and every service on this host can be referred to by
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multiple names. STATMOND picks up the IP address that was used to join the

multicast group as the reference address. However, the exact ramifications of this

effect depend heavily on the network design. In particular, careless design can

result in a node becoming reachable by one address but not by another.

The activities of STATMOND as a daemon can be conceptually divided into

2 parts that will be handled in the next couple of sections:

1. Data structure that stores values for the monitored parameters

2. The methods that act on the data structure to carry out STATMOND’s

functions.

5.2.1 Data Handling in STATMOND

STATMOND uses the concepts of object-oriented programming to implement its

architecture. The STATMOND data structure is an object of the Parameters

class that contains and manages its own internal data (parameters) and provides

well-defined interface services that allow STATMOND functions to use the pa-

rameters. One characteristic of the object-oriented style is that each parameter

is contained within and managed by a Parameters object declared from the Pa-

rameters Class. This object is an association of the various parameters with the

operations that manipulate that them. The Parameters object’s internal state
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affects how it delivers services to other such objects or functions but, other func-

tions and objects cannot directly manipulate these internal data structures. The

internal data of the Parameters object can only be altered indirectly by invoking

one of the services associated with that the Parameters object.

Each STATMOND process on the network has only one Parameters object

with its own internal data, but all the instances of a Parameters class on the

network provide the same set of services. The Parameters class implements a se-

rialize function that converts the entire data contained in the object into a stream

of bytes. STATMOND, in order to notify other nodes of its current state, for-

wards this stream through the network(s) using a multicast protocol. A receiving

STATMOND unserializes the stream into a new Parameters object. This method

enables the statistics of nodes to be transferred on a network as contiguous bits

of data. Each such received stream is identified by the time stamp and the IP

address of the node that sent it. STATMOND generates a map in the memory

for the Parameters objects of remote nodes received across the network with their

corresponding IP addresses. Each node has a map that consists of values for each

of the parameters objects. This map is sorted by the IP addresses of remote

parameter objects. Due to delays experienced during the probe and transfer of

data, each system may receive a different stream corresponding to one sender

node. Thus each node may have a different parameter object for a remote node
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and the same instant of time.

Many programming languages (such as SmallTalk, C++, Ada9X) include fea-

tures that can support the object-oriented style to store, forward and receive

data, but C++ is preferred in this implementation. This is because C++ has

the ability to interact with the kernel of the Linux OS. Also, C++ provides a

powerful library (Standard Template Library(STL)) to insert or delete data, or to

allocate/reallocate memory dynamically and perform other operations. Moreover,

C++ allows STATMOND to perform more than one task at a time, through a

design described in the next section. This enables various tasks of STATMOND

to cooperate for system resources instead of competing for them.

5.2.2 Multithreading in STATMOND

Computers in the early days used to run a single-task or a single job at a time.

Once a job was completed, the next job was started and so on. Most computer

programmers were frustrated by such batch-oriented processing, and computer

vendors developed multitasking operating systems. Multitasking refers to a com-

puter’s ability to execute multiple jobs concurrently. Most modern operating sys-

tems such as Linux and Windows have the ability to run more than one program

at the same time. While users download a big file through a web browser, they

can play their favorite game; both programs run at the same time. Multithreading
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extends the multitasking paradigm. Instead of multiple programs, multithreading

involves multiple threads of control within a single program. Hence the operating

system runs multiple programs, and each program runs multiple threads of control

within the program.

A thread is a single sequence of execution within a program. It is a lightweight

process and requires relatively lesser memory and startup time than a usual pro-

cess. Each process can include many threads; limitations are unique to each OS.

All threads of a process share memory that includes program code and global

data. In fact, they share the entire working environment such as the current di-

rectory, socket descriptors, and user ID. However, each thread is identified by a

unique Thread ID, and threads communicate with each other through the shared

memory.

The STATMOND program involves four distinct threads as shown in Figure

5.4.

The Probe Thread (Figure 5.5) runs in the background to collect the mea-

surements. The thread populates the Parameters object if the values are different

from the previous measurement. The thread inserts the updated object to a map

that maintains the statistics of all nodes identified by the IP address. The probe

thread invokes the send thread to notify the nodes about its current status. The

thread then goes to sleep until it needs to probe again. This probe time interval
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Figure 5.4: Internal Software Structure of STATMOND

Figure 5.5: The Probe Thread
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Figure 5.6: The Send Thread

can be set by the user on the command line.

The Send Thread (Figure 5.6), sends the serialized measurements as a byte

stream on a pre-determined interface. Since the send thread uses UDP sockets it

does not wait for an acknowledgement from the receiver. It goes into the sleep

mode and waits there to receive the next call from the probe thread. It is a costly

operation in terms of time and memory, to create a new thread whenever data

needs to be sent onto the network. The send thread hence prefers to wait in sleep

mode until the probe thread call it.

The Receive Thread (Figure 5.7) receives the serialized data and stores the IP
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Figure 5.7: The Send Thread

address from which the byte stream was sent. It also assigns a time stamp at the

time of arrival. This time stamp is compared with the time stamp at which the

sender forwards the packet to determine the delay in the network and also to find

out if the data is reasonably current. This packet is unserialized and the contents

are stored in the map at a position referenced by the sender’s IP address.

The Client Thread (Figure 5.8) responds to specific requests regarding a par-

ticular parameter made by a user present on any node of the subnet. The data

is sent in the order requested. However, the client thread is memoryless. It does

not wait until it receives all requests from the client. It responds to every single
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Figure 5.8: The Client Thread

request separately through a new TCP/IP connection.

5.2.3 Multicasting through STATMOND

STATMOND as described before uses multicast to deliver content to multiple

receivers (Section 4.5, Page 48) . As such, STATMOND acts as multicast

receiver and sender, and so data flow is full duplex. As a receiver STATMOND:

1. Gets a UDP socket,

2. Binds to the application’s port number,
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3. Joins the multicast address group,

4. Receives the packets, and

5. Waits for more packets.

Alternately, STATMOND as a sender:

1. Gets a UDP socket, and

2. Sets the IP Time-To-Live (TTL) as desired by user at command line. The

TTL has a double significance in multicast. First, it controls the live time of

the datagram to avoid being routed forever due to routing errors. Second,

TTL limits how far multicast traffic will expand across routers. Every router

has TTL threshold assigned to each of its interfaces. Only datagrams greater

than the interface’s threshold are forwarded. For example, a datagram with

TTL < 128 may be restricted to the same continent while a TTL = 1 is

restricted to the same subnet.

3. Sends the packet to the multicast address and port number, and

4. Waits for more packets to be sent when complete.

Though multicast is a mature technology, there are areas that need improve-

ment:
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1. There is no established standard for reliable data delivery via multicast.

Several implementations exist since different applications have different mul-

ticast requirements.

2. There is no standard way to confirm whether the local router is multicast

enabled. Even though the router responds to an ICMP Router Discovery

Message (RFC 1256), this is not a guarantee that the router is configured

to support multicast.

3. There is no standard way to determine neighbors in a group. Hence, two

groups on a subnet can have a conflict if they use the same multicast address.

4. There exist no diagnostic or debugging tools that determine problems in

case multicast fails. This can cause users to never find out what’s wrong

with the setup.

STATMOND still has several hurdles before it is a fully scalable tool. In

spite of the bottlenecks, multicast is convenient for any application or service that

requires several nodes to interact. It is difficult to scale the size of the network

without the savings multicast provides.
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5.2.4 STATMOND’s Output Representation

STATMOND uses the eXtensible Markup Language (XML) to output its data.

XML adds structure and conveys information about documents and data. XML

supplies information by ordering the document with ”elements” comprising a

”start tag”, some content (optional), and an ”end tag”. XML is similar in concept

to HTML, but whereas HTML conveys graphical information about a document,

XML represents structured data in a document.

STATMOND’s XML output does not contain information on how the data

contained within the content is rendered. An ”eXtensible Style Language” (XSL)

style sheet achieves the graphical rendering of the XML document. XSL style

sheets can not only render XML information graphically but can also transform

XML documents into other formats. STATMOND’s XML output is designed to

be easily interpreted and used by other software applications using standard XML

parsing methods.

The XML output document is made up of elements that consist of textual

information contained between a ”start tag”, and an ”end tag”. The parameters’

information between the ”start tag” and the ”end tag” is sometimes referred to

as the ”content” (or sometimes the ”data”). Unlike HTML, the set of tags is

not pre-defined, and all elements must be either at the top level, or be contained

within another unique element; that is, the document structure is a directed tree
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of elements with a single ”root” element.

STATMOND chooses the best set of tags for a particular purpose. When

STATMOND responds to a client one or more tags may not be present. Infor-

mation represented in the form of an XML document can be useful to assist local

processing on the node without incurring a round trip transaction with another

node. In addition, an XML representation of information is useful for passing

data between nodes. Because XML parsers are available for many platforms, and

if a suitable XML vocabulary is defined for the information, then the informa-

tion can be passed between several nodes regardless of the underlying platform or

operating environment.

A sample STATMOND output when all the nodes (24) are up is show in Figure

5.9. Each node represented by its IP address has information concealed in its tree.

For example NODE03 (IP Address: 192.168.1.3) holds the information as in Figure

5.10. A much detailed information is obtained by expanding the remaining tags

(Figure 5.11). NODE03 has just one processor and data corresponding to this

processor is obtained by parsing the /proc directory. However, this is not the case

with multi-processor nodes. Information relevant to each and every processor of a

multi-processor node is made available by STATMOND to the user (Figure 5.12).
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Figure 5.9: Snapshot of XML Data File Contents
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Figure 5.10: XML Data File Contents of a Uni-processor Node
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Figure 5.11: XML Data File Detailed Contents of a Uni-processor Node
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Figure 5.12: XML Data File Detailed Contents of a Multi-processor Node
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Figure 5.13: Custom Filter - STATMOND Interaction

5.2.5 Custom Filters

In addition to standard measurement functions, STATMOND uses dynamic, user-

defined filters for complex, application-specific conditions. These customized fil-

ters work invisibly with the system to influence the event-collection process (Fig-

ure 5.13). The filters are implemented to minimize this impact on system perfor-

mances, in which case they can be used on all nodes with minimal system impact.

Flexible custom utilities can be used to monitor and generate reports based on

any user-defined fields. Reports are in XML format and can be easily modified,

viewed, and printed.

Two such sample filters are:

getProcInfo <Server> <PortNo> u username e executable

getProcInfo is the name of the filter and the corresponding script. This
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Figure 5.14: Processes on Node10 (192.168.1.10)

script specifies the executable and user names of the process (example,

Figure 5.14 whose information needs to be obtained periodically. get-

ProcInfo communicates with STATMOND on the remote host when

executed (example, Figure 5.15). The STATMOND on the remote

host extracts the information about the process from the /proc di-

rectory and periodically sends the process data to the STATMOND

on the user’s node. The process data includes allocated memory, user

time used, system time used, and total time used for that process. The

STATMOND on the user’s node dumps this data into an XML file for

its use by another application (Figure 5.16).
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Figure 5.15: Command Line Execution of Custom Filter

Figure 5.16: XML Data File of Custom Filter
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getParamInfo <Server> <PortNo> <Param1> ... <ParamN>

getParamInfo is another filter similar to getProcInfo. However, this

filter is used to acquire packet information such as recvpkts, and

sendpkts periodically from a remote host. This information is par-

ticularly useful to determine the bandwidth utilization of the remote

host. These values are also returned and stored in XML format with

a time stamp.

5.3 Detailed Design of the Client

STATMOND Client is a program that when executed fetches requested data from

a node and stores it in a XML file. This communication takes place over TCP/IP

sockets. A user (system administrator or a developer) executes the client program

at the command line prompt. The user sets the IP address of the receiver (which

acts as a server in this case), and the port on which STATMOND listens for

requests at the receiver as arguments for the client program. The user also passes

the various parameters for which values are desired. The usage of the client

program is as shown below.

Usage: ./client <server> <portno> <param1> <param2> ... <paramN>
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The Parameters:

cpus : Find the ] of CPUs on the server

clockspeed : Find the clock speed of the server

memused : Find the total RAM used by the server

memfree : Find the memory free on the server

memshared : Find the shared memory

membuff : Find the memory in the buffer

memcached : Find the memory cached

cpuuser : Find the ] of jiffies (defined as 1/100 of a second) the server

has been in user mode

cpunice : Find the ] of jiffies the server is in low priority mode

cpusystem : Find the ] of jiffies the server is in system mode

cpuidle : Find the ] of jiffies the server is in idle mode

uptime : Find the ] of seconds for which which the server has been up

idletime : Find the ] of seconds for which the server was in idle state

last1min : Utilization of the processor in the last 1 Min

last5min : Utilization of the processor in the last 5 Min

last10min : Utilization of the processor in the last 10 Min

recvpkts : Find the number of packets received

sentpkts : Find the number of packets sent
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recvbytes : Find the number of bytes received

sentbytes : Find the number of bytes sent

The server (STATMOND) receives the parameters as a series of strings. The

server validates the parameters and collects their values from the data structure.

Specifically, the client thread of STATMOND retrieves the values and returns

them in the order requested by the client. This organized information is sent as

a stream of bytes through the respective TCP/IP connection. The client dumps

the received values into an XML file for use by other tasks or applications on that

node (Figure 5.17).

A single STATMOND server can receive multiple requests at the same time.

More than one client thread may be spawned to process multiple requests from

different clients. Both the server and client maintain a list of all connections

and the respective values of parameters processed for a particular connection. A

system administrator can use this information to monitor a particular activity on

a node at any instant.

81



Figure 5.17: XML Data File for Client
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5.4 Summary

STAMOND is implemented using a multithreaded architecture. This helps the

system to remain fast, promotes extensibility and flexibility, and provides an easy

mechanism for reporting results in user-requested formats. Client may connect

with STATMOND to obtain more specific information from time to time. The

next chapter presents a review of the work performed. An analysis of the system

is given and possible future avenues of work to further extend and improve the

capabilities of STATMOND are suggested.
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Chapter 6

Analysis and Future Work

6.1 Introduction

The previous chapter explains STATMOND’s implementation, the detailed in-

structions for its use, and its sample outputs. This chapter presents an analysis of

the tool and assesses whether the goals and requirements of the project have been

met. The chapter also suggests the future work that may extend and improve the

system.

6.2 Review of Work

Good measurement and management tools are necessary in exploiting computer

clusters as platforms for high performance computing. With Linux leading the
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pack as the most popular operating system for clusters, new hardware and software

tools are being developed to meet the needs and to push the capability limits

of clusters. This thesis, however, addresses the lack of status and performance

measurement tools, which renders resource allocation for parallel computers more

tedious. An accurate status and performance diagnosis of a parallel machine is one

of the most important tasks. The goals of this thesis were to design and implement

a scalable and reliable system that will measure the key parameters of a Linux

based parallel computer in a manner that provides the available measurement

data on all nodes and whose operation on running nodes is not sensitive to other

nodes’ failures.

STATMOND is designed and implemented to serve as a status monitor for

a parallel computer. Several versions of this software have been tested. The

software uses the IP multicast network protocol, which utilizes features of net-

work switches to replicate transmitted data packets so that a single transmission

from one computer can be received by all computers in a multicast group. The

software has been tested on the 24 node parallel machine in the Laboratory for In-

formation Technologies. The software is currently using both Fast Ethernet and

Gigabit Ethernet LANs for communication. Multicast substantially lowers the

CPU overhead to maintain status information on a large population of machines

and implements a distributed monitoring system where all hosts have information
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on all other hosts.

STATMOND is a peer-to-peer network tool. Each node maintains its own table

of the existing conditions for all nodes of the network. The information about

the existing conditions is collected from the files located in the /proc filesystem.

Though the format and structure of the tables across all the nodes is the same, the

data that they hold might differ based on the probe time interval, communication

errors, and network delays. If the probed data on a node have changed, the current

dynamic status of that node is multicast to all other nodes on the network. In this

way, the measurement data is ubiquitous and is present at all the potential sites

on the network. Moreover, the STATMOND processes running in the background

on each node all use exactly the same software and thus provide identical features

and functionality. Even if one or more nodes fail, the measurement process is

not terminated. The STATMOND processes on the remaining nodes continue to

communicate. However, STATMOND tables do not reflect the current data of

the failed nodes unless they (failed nodes) rejoin the multicast group. Since the

data from each node are time-stamped, failed nodes can be identified by their old

data on any other node. STATMOND typically stores the data from its table in a

XML file in the /tmp directory, and this provides a standard interface between the

STATMOND process, and other programs that may run on the parallel computer.
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6.3 Analysis of STATMOND

The main goal in developing a new status monitoring tool is to achieve a decen-

tralized, detailed, flexible, and non-intrusive information collection and reporting

system, whose services can be used for dynamic resource allocation. The statistics

are collected, delivered, and received accurately in a timely fashion with accept-

ably low levels of system consumption. The current features and functionality of

STATMOND are analyzed in the next subsections.

6.3.1 Non-Intrusiveness

The parallel cluster at LIT is built to perform computationally intensive database

searches. A 0.5% CPU consumption by STATMOND can affect the time taken

by a task perform a search on the same machine. It is essential that STATMOND

meet the CPU, communication, and memory monitoring requirements without

affecting the regular activities of the cluster.

STATMOND when run on all the 24 nodes of the network consumes less than

0.1% of the total memory available. This conclusion is drawn after several memory

usage observations taken over 3 days time. The observations were taken from the

/proc/STATMOND-PID directory as well as the top utility provided by Linux.

The observations showed that the peak memory consumption is 0.1 %. This

is primarily due to the changes in the space occupied by the data structure of
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STATMOND.

The typical message size sent or received by STATMOND is less than or equal

to 160 bytes. All parameters (20 in number) are stored in ’double’ format (64

bits). Hence, 3840 bytes bytes transmitted to the network by the 24 nodes every

probe time interval (for example every 5, 10, or 15 secs). Thus the data rate

for a 5 second interval is 768 bytes/sec or 6124 bits/sec. Multicast reduces the

use of bandwidth by enabling STATMOND to send an update packet just once

to communicate to all other nodes, rather than sending a packet to each node

sequentially. This reduces bandwidth utilization by approximately a factor of

two. Multicast also reduces excess CPU utilization in sending more than one

packet and prevents congestion in the network due to a larger volume of packets.

The CPU utilization of STATMOND is less than 1% when STATMOND does

not store the output (information in data structure) in XML, HTML, or ASCII

files (Figure 6.1). It is intuitive that STATMOND will consume more CPU cycles

to store output in XML format than otherwise. The plots (Figures 6.2 and 6.3)

show STATMOND’s CPU usage (y axis) on NODE 01 (IP:192.168.1.1) and its

dependence on the number of nodes (x axis).

These plots indicate that the CPU resources required to run STATMOND scale

linearly with cluster size when output has to be stored. An increase in the num-

ber of nodes increases the number of packets received to perform updates to the
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Figure 6.1: %CPU usage on NODE01, No output stored

Figure 6.2: %STATMOND NODE 01 CPU usage, Monitoring Interval: 5 secs
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Figure 6.3: %STATMOND NODE 01 CPU usage, Monitoring Interval: 15 secs

data structure and the output file. This causes the extra utilization of the CPU

to perform updates and stores to the XML file. For a 5 second update interval,

STATMOND requires approximately 0.1% of a CPU on each node per monitored

CPU. An objective of future research work is to develop efficient storage of data

during regular intervals of time. Another objective is to develop an adaptive mes-

saging strategy that allows CPU utilization to scale logarithmically with cluster

size. This will be briefly discussed in the next section. Figures 6.4 and 6.5 show

CPU usage on a dual processor machine NODE00 (IP:192.168.1.254). The CPU

usage does not improve significantly; this suggests that an efficient method to

store output in XML form needs to be developed.
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Figure 6.4: %STATMOND NODE 00 CPU usage, Monitoring Interval: 5 secs

Figure 6.5: %STATMOND NODE 00 CPU usage, Monitoring Interval: 15 secs
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6.3.2 Fault-tolerance

In a cluster of nodes, failures are bound to occur. For example, the CPU of a node

may fail, or a node may require maintenance and software upgrades. STATMOND

has been implemented and tested to work independently of these failures. Though

the STATMOND process on a failed node does not participate in the measurement

process, the STATMOND process on the other nodes communicate their statistics.

Once a failed node is up, it re-joins the multicast group and resumes sending

and receiving data. Thus STATMOND is able to tolerate failures in the face of

dynamically changing conditions.

6.3.3 Management of Monitored Data

Having a single, centralized repository for dynamic data causes two distinct prob-

lems. The first is that the centralized repository for information or control rep-

resents a single point of failure for the entire system. Such a failure causes the

entire measurement process to stop. Moreover, the data collected over a period

of time is neither available to the DRA method nor to other applications. The

second problem is that other nodes have to depend on data stored elsewhere and

they do not have ready access to dynamic data. The centralized server thus has a

overhead to send this data as and when requested by the other nodes of the net-

work. The current implementation of STATMOND hence stores aggregate data
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on all nodes in a cluster in standard file formats. These files are accessible to

developers, system administrators and to applications that need these data.

6.3.4 Use of Standard Data Formats

STATMOND provides simple options to the user at the command prompt to

choose the standard output format. This gives the user of the system flexibility

to work with data in ASCII, HTML, or XML formats based on the applications’

needs. However, the preferred method is for STATMOND use XML for storing

the output. This is because XML parsing is well-defined and widely-implemented,

making it possible to retrieve information from XML documents in a variety of

environments. Moreover, they are easy to debug compared to other formats such

as ASCII. In the case of STATMOND, XML documents are observed to be more

verbose than the binary formats and this increases CPU utilization. However,

choosing suitable libraries and algorithms can significantly reduce this problem.

6.4 Comparison of STATMOND and Other Tools

Cluster monitoring tools such as NWS, ClusterProbe, PARMON, and GARD-

MON, typically use daemon processes installed in participating cluster nodes [19]

[61] [53] [52]. As a result they can capture data that include both node and net-
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work attributes, including CPU loads, memory and swap usage, communication

bandwidth, and message round-trip times. STATMOND differs from the above

tools in the way the monitoring data is collected, maintained, and sent across the

network. The tools above rely on standard Unix utilities such as vmstat and top

to access operating system data. STATMOND uses its own kernel probe to the

/proc directory, and this increases the speed of access and reduces the level of in-

trusiveness. Most monitoring subsystems are still based on a centralized daemon

that collects information from the distributed agents running on every node of

the system. This limits the scalability of the system. The measurement system

is also rendered inactive in the event of failure of the central server. Also, such

monitoring structures suffer from high latency in data access. STATMOND, on

the other hand aggregates data on all the participating nodes. Applications and

users can directly pick up the information from a standard output file. A fail-

ure of any participating node does not stop the measurement process. While the

tools addressed above use traditional communication techniques, STATMOND

employs multicast to enhance the scalability. However, it should be noted that

the design of each tool is rather different due to the goal and complexity of the

monitoring subsystem itself. The focus of NWS is primarily to use the information

collected to predict the behavior of large wide area systems. Higher level services

that interpret and analyze monitoring data are not the subject of this thesis but
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can be a very useful extension to STATMOND. Unlike PARMON, GARDMON,

and SCMS, STATMOND does not have a user interface. One of the aims of

STATMOND was to integrate the monitoring capability with the user interfaces

provided by BigBrother, but this was not achieved.

6.5 Future Work

Though STATMOND is a useful tool for the measurement of system parameters,

a number of possibly significant enhancements have been identified that were not

implemented within the time frame of this project.

6.5.1 Improve STATMOND’s Scalability

One of STATMOND’s main features is that it maintains aggregate data on every

node on the network. This aggregate data is stored in the form of a table (data

structure) in the main memory by the STATMOND process. Each row of the table

contains the status and performance metrics corresponding to a particular node on

the network. The STATMOND process on each node receives measurement data

updates from the respective STATMOND processes on other nodes. STATMOND

updates the row in the table that corresponds to the node that has sent the update.

Each update is marked by a timestamp: the time at which the update was sent. In
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the event several updates are received during one processing interval, STATMOND

processes one update at a time.

As the cluster size increases, the frequency of updates to each STATMOND

table (data structure) also increase. Often STATMOND receives these updates

within a short interval time. This requires more CPU cycles, to process the

information received, and this becomes increasingly intrusive as the cluster grows.

This limits STATMOND’s ability to monitor very large clusters. For instance if

a cluster has 500 nodes, it is estimated that STATMOND will use 50% of the

CPU time, and this is not an acceptable result for a measurement tool. A method

must be designed where STATMOND maintains the most recent data, without

receiving too many packets too frequently from all the nodes on the network.

One solution is to use a manageable number of multicast groups (Figure 6.6).

This technique has been particularly useful in serving multimedia and Media-

on-Demand efficiently across a network [49][58]. Each group has a master node

and all master nodes form a different group. Every other node is part of a single

group that has a master node. Measurement statistics are forwarded at two levels.

The first is at the regular node group level and each node of this group forwards

its data through multicast. This information is not available to other groups.

The master node at each group then uses muliticast to forward this group level

information from to other master nodes. By this time all master nodes have the
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Figure 6.6: Scalability Problem: A Much Better Solution

entire information about all the nodes on the network. The master nodes now

transfer this data to the nodes in their respective groups. Hence all nodes get to

maintain aggregate statistics.

This method improves scalability because the number of packets received by

each node is the size of the subgroup plus as many packets sent by the master

node with data from other groups. This number of packets to be processed is

significantly smaller that the packets received from all nodes on the network.

6.5.2 Provide a Front-End

A low CPU intensive front end such as a web interface enhances the overall flex-

ibility of the system. Access to the system from any node is made simpler for
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the users of the system. Also, several security features and user privileges can be

handled by the front end such as a web interface.

This approach has many advantages. The most obvious is that there is no

need to write procedural GUI code; instead, it is easier to represent the GUI in

specialized languages (HTML and JavaScript). This avoids a lot of expensive

and complex single-purpose coding and limits CPU usage. However, there are

disadvantages to such a front end. The two most important are:

1. The batch style of interaction that the web enforces where the user fills out

a form and clicks a submit button that sends the form contents through a

script (such as CGI). The script then runs and the server returns a page

of HTML that it generates. This process does not enable a character-by-

character or GUI-gesture-by-GUI-gesture I/O through a gateway.

2. The difficulties of managing persistent sessions using a stateless protocol,

though these are not exclusively Linux issues. Most front-ends make it

easier to keep per-user state on the server. That per-user state can be a

problem; it consumes resources, and it has to be timed out, because between

transactions there is no way to know that the user is still on the other end

of the server.
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6.5.3 Extend the Filter Framework

A filter configuration file can make the system very extensible, allowing new filter

scripts to be easily added to the system without the need for reprogramming or

recompiling. Though this mechanism can deal with some filters, reprogramming

is needed for more complicated filters and commands.

6.6 Conclusions

STATMOND is a first step towards an integrated monitoring measurement tool

that can facilitate easier dynamic resource allocation on a Linux cluster. As

currently implemented the tool provides a simple, text based measurement mech-

anism that probes, stores, and forwards information across a cluster through the

use of multicast. Though this is an improvement over centralized tools, the scal-

ability problem with STATMOND has to be solved to make it more robust and

less intrusive. Within the development time frame involved, much was achieved,

and the groundwork for further development has been laid.

6.7 Summary

This chapter presents an analysis of the STATMOND tool. It reviews the work

carried out and details why STATMOND is more suitable than other tools for

99



DRA on the LIT cluster. This chapter also addresses further efforts needed to

improve STATMOND’s scalability and its ease of use.
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