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ABSTRACT 

 

PURPOSE: The purpose of this study was to explore how increasing the upper limit of the 

bandpass filter frequency range affected accelerometer counts collected during treadmill walking 

and running, car driving and intermittent lifestyle activities METHODS: Part A included 

treadmill walking, running, and car driving (N=20) (mean ± [plus or minus] SD; age, 24.4±3.4 

years; body mass index (BMI, 26.4±3.3 kg/m2 [kilograms per meter squared]). Part B included 

ten lifestyle activities ranging from sedentary behaviors to vigorous intensities (N=30) 

(mean±SD; age, 23.0±2.3 years; BMI, 25.1±3.8 kg/m2). Participants wore an ActiGraph 

accelerometer (GT3X+ in Part A and GT9X in Part B. on the hip. Participants completing Part B 

wore a Cosmed K4b2 [K4b squared] as a criterion measure of energy expenditure. Acceleration 

data were processed using a beta version of Actilife containing additional bandpass filter 

frequencies with upper limits of 5.0 Hz [Hertz] and 9.0 Hz, as well as, the 2.5 Hz default filter. 

Data were converted to 5-s epochs and the low frequency extension feature was employed. 

Cosmed data (VO2 [volume of oxygen] ml/min) were averaged over 30-s and then converted to 

relative VO2 (ml/kg/min) and metabolic equivalents (METs) for each activity. RESULTS: Part 

A: compared to the default bandpass filter, using a bandpass filter range of 0.25-9.0 Hz reduces 

the plateau effect seen during treadmill walking and running and significantly increases count 

values during car driving for all axes and vector magnitude. Part B: Increasing the bandpass filter 

frequency, significantly increased the count values on all axes during the lifestyle activities. 

Across all activities, the default filter had the strongest association between counts and METs, 

while the 5.0 Hz filter had the strongest association for lifestyle activities and the 9.0 Hz filter 

had the strongest association for locomotive activities. CONCLUSION: The plateau effect seen 

with the ActiGraph accelerometer can be reduced by increasing the bandpass filter frequency 

range. However, increasing the bandpass filter frequency range significantly increased the counts 

during car driving and lifestyle activities. Future work is needed to understand the impact that the 

increased count values will have on estimating energy expenditure. 

 

Key Words: Accelerometer; Indirect Calorimetry; Energy Expenditure, Physical Activity 

Counts, Plateau Effect 
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CHAPTER I: INTRODUCTION 

 

Research has shown that being physically inactive across one’s lifespan can be 

detrimental to overall health. Physical inactivity has been linked to an increased risk for 

development of non-communicable diseases, negative health consequences, and even premature 

death from all causes (29, 30, 31, 37). Physical activity research is conducted to develop general 

guidelines that can help adults achieve and maintain health. These recommendations include 

performing a minimum of 150 minutes of moderate, or 75 minutes of vigorous intensity aerobic 

activity per week to achieve most health benefits (1, 37). Despite the guidelines only 

recommending 150 minutes of physical activity per week, most U.S. adults do not reach that 

threshold. For instance, Troiano et al. (54), reported when examining an objective measurement 

of physical activity in a sample of U.S. adults that less than 5% of the population were not 

meeting the recommendations for physical activity when data were broken down into 8-10 

minute bouts. This value is considered an underestimate by many but illustrates the need for 

more research to be conducted to help improve the measurements of free-living activity.   

Researchers, using a variety of methods to measure physical activity, are able to establish 

guidelines for health, as well as gain insight into the metabolic requirements of various activities 

for locomotion and free-living activities. Historically, researchers have used short recall 

questionnaires and physical activity surveys and logs to get an estimate of how much physical 

activity was performed (58). These methods, while inexpensive and easy to administer rely 

heavily on participants’ ability to accurately estimate energy expenditure or intensity (58).  The 

standard method of measuring physical activity in recent years has shifted to using more 

objective measurement techniques using wearable monitors that are better at measuring intensity 

and duration and estimating energy expenditure (58).  
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There are several criterion measures for developing energy expenditure prediction 

equations using objective monitors to measure physical activity. These methods include the 

doubly labeled water method, indirect calorimetry and direct observation. Of those measures, the 

gold standard of measuring free-living energy expenditure is the doubly labeled water method. 

This method, while being very effective for measuring total daily energy expenditure, does not 

allow for specific details related to type, duration, intensity, or frequency of physical activity in 

free-living settings. This method is also relatively expensive and is therefore not an option for 

many physical activity measurement validation studies (23). A second method for measuring 

energy expenditure is indirect calorimetry which involves gas exchange analysis through 

capturing ventilatory data during physical activity while wearing a mask over the nose and 

mouth. This method allows for physical activity energy expenditure to be calculated for an exact 

time frame and is often used to validate energy expenditure estimations made using other 

methods. An additional validation method that is used to further classify intensity of an activity 

or estimate energy expenditure is direct observation. This method is inexpensive and is used to 

validate the amount of time spent performing various activities, but it is not ideal for classifying 

intensity. 

Motion sensors provide an additional method for measuring physical activity intensity, 

frequency, and duration and they can be used to estimate energy expenditure using the real-time 

data collected (4, 18, 57). However, researchers have found that no one sensor can capture all 

data necessary to accurately capture all dimensions of physical activity but they do allow 

researchers to forgo less precise methods previously used to gather physical activity information 

(18).  One wearable monitor that uses motion sensor technology is an accelerometer. These 

devices are small, non-invasive, and can be worn for extended periods of time (4, 6, 18, 55, 56). 
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Accelerometers are traditionally worn on the hip attached to an elastic or nylon belt but can also 

be worn on the wrist, ankle, thigh, and other locations. This type of technology has evolved 

greatly in the last decade moving from uniaxial accelerometers, basic heart rate monitors, and 

pedometers to multiple sensor units that have the ability to collect all of that same data with 

sensors housed in just one unit. For example, most of the newer accelerometers contain a triaxial 

accelerometer that measures acceleration in three planes, anteroposterior (z-axis), mediolateral 

(x-axis) and vertical (y-axis). This is an improvement from older generations that featured a 

uniaxial accelerometer that only measured acceleration in a single vertical plane.   

Chen and Bassett (10) compiled a comprehensive overview of the process through which 

acceleration signal is measured, filtered, and recorded. Accelerometers work by measuring the 

magnitude of acceleration and deceleration of the body. These data are typically collected at a 

given frequency (e.g. 30 Hz). This frequency is preset when the device is initialized meaning all 

acceleration data captured will be recorded at this frequency and then initially filtered through 

what is known as a low-pass filter in order to reduce the noise in the acceleration signal. This 

filter passes acceleration signal below a pre-set frequency and attenuates acceleration signal 

above this frequency. After acceleration signal passes through the low-pass filter, data is 

considered to be in raw form. The raw data is used in some cases but more commonly, the raw 

data is converted into more usable device output through a series of amplification, filtering and 

digitization (10). Raw acceleration signal is full-wave rectified meaning the bi-directional 

acceleration signal becomes uni-directional and only contains positive values (10). It is at this 

point the digital signal can be integrated and processed through a bandpass filter, a range of 

frequencies through which any acceleration signal outside of the upper and lower limits of the 

range is attenuated. The integration process yields the usable device output often referred to as 
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activity counts or simply counts (10). These counts can be accumulated over 1-minute or even 

smaller intervals, down to 1-second. These time periods are known as epochs (10). These more 

refined time stamped activity counts can be used to develop regression models and energy 

expenditure prediction equations when paired with measured energy expenditure data from a 

criterion measure, most often indirect calorimetry.  

One primary difference between devices is the bandpass filter frequency range employed 

during the acceleration signal filtering process. This filter frequency range varies based on the 

device that is used with some devices having a narrow filter frequency range while others have a 

wider filter frequency range. This accounts for some of the variability in the energy expenditure 

estimations across devices. This difference can account for additional acceleration being 

recorded at the low end of the spectrum through activities such as driving or computer work. The 

wider the bandpass frequency filter range, the more sensitive the device is to recording a broader 

range of acceleration signal which will directly affect counts. An example of this is provided by 

work conducted by John et al., (24, 26) with the ActiGraph GT3X+ and the Actical as well as the 

ActiGraph and the GENEA. These devices have different filter frequency ranges with the 

ActiGraph using a filtering range of 0.25-2.5 Hz and the Actical using a higher filtering range of 

0.5-3.0 Hz while the GENEA is open source and programs can be created through software such 

as Matlab (Matlab, Mathworks, Natick, MA) to establish bandpass filter ranges. Schaefer et al., 

in 2014 (49) reported that the greater range for the Actical causes less acceleration to be filtered 

out while the ActiGraph filters out more acceleration (24, 26). While there are other device 

differences, the bandpass filter frequency range was listed as a primary difference that would 

impact device output and account for most differences. 
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There has been substantial research conducted to establish the use of accelerometers as a 

valid and reliable method for estimating energy expenditure and measuring physical activity (5, 

25). One of the more commonly used accelerometers in research is made by ActiGraph 

(Pensacola, FL). Researchers have shown that energy expenditure equations are most valid and 

reliable for the activities that were used to develop the equation meaning that an equation 

developed using walking and running data will underestimate energy expenditure for lifestyle 

activities (12, 13). Several researchers have identified that while ActiGraph counts increase 

linearly up to about 6 miles per hour (10 km/hr) at which point the counts begin to level off and 

eventually begins to decrease as speed continues to increase beyond this threshold. This is 

known as the plateau effect (7, 21, 25, 44).  

Since counts are used to predict energy expenditure, any alteration of the count values 

will directly impact the way energy expenditure is predicted. Therefore if count values are 

leveling off or decreasing as exercise intensity is increasing, then the estimation of energy 

expenditure will result in an underestimate as is seen in the study of John et al. (25). While 

energy expenditure was not estimated in the study, a clear plateau and decline in counts was seen 

beyond running at 10 km/hr.  Researchers believe that the plateau effect is partly due to the 

bandpass filter frequency range of 0.25-2.5 Hz ActiGraph uses (7, 21, 25, 44). It has been 

hypothesized that increasing the upper limit of the bandpass filter frequency range ActiGraph 

uses could alter count values generated potentially leading to a reduction in the plateau effect (7, 

25). This could lead to the count values having a more linear relationship with intensity.  

Statement of the Problem 

The plateau effect occurs specifically when examining activity counts from a device 

placed on the hip with a uniaxial accelerometer (25). Researchers initially hypothesized that 
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when using a triaxial accelerometer such as the ActiGraph GT3X+ that the acceleration would 

not decrease at the anteroposterior (z-axis) and mediolateral (x-axis) axes like they do at the 

vertical axis (y-axis) (7). With the anterioposterior and mediolateral axes not being affected by 

the inverted-U phenomenon, it was further hypothesized that using vector magnitude counts 

(VM) would not exhibit the plateau effect (7, 25).  

The intensity and acceleration that occurs when running at approximately 6 mph occurs 

frequently when performing other moderate intensity lifestyle activities such as playing 

basketball or tennis so it has been hypothesized that this same effect is occurring at the hip for 

these activities as well and that is one of the primary focuses of this study. The lifestyle activities 

could potentially be affected by the change in bandpass filter frequency range similarly to 

walking and running because at certain time points during the lifestyle activities, the 

instantaneous acceleration generated can be equal to or greater than the acceleration generated 

when running at 6 mph. The aims of this two-part study are as follows:  

Part 1. Treadmill Walking and Running 

Aim: to reduce the plateau effect that occurs during treadmill walking and running by increasing 

the upper limit of the bandpass filter frequency range. 

Part 2. Lifestyle Activity  

Aim: to investigate whether lifestyle activities are also affected by the plateau effect and how 

increasing the upper limit of the bandpass filter frequency range affects counts for lifestyle 

activities.  

Statement of Purpose 

The primary purpose of this study is to determine if increasing the upper limit of the bandpass 

filter frequency range for the acceleration data collected at the hip using an ActiGraph GT3X+ 
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accelerometer will affect the relationship between activity counts and intensity and reduce the 

plateau effect. A secondary purpose of this study is to investigate if the plateau effect occurs at 

the hip using an ActiGraph GT9X accelerometer during lifestyle activities and how increasing 

the upper limit of the bandpass filter frequency range affects counts measured for those 

activities.   

Research Questions 

Question 1: Does increasing the upper limit of the bandpass filter frequency range for 

acceleration data collected at the hip reduce the plateau in counts during treadmill walking and 

running?  

 

Hypothesis 1: It is hypothesized that increasing the upper limit of the bandpass filter frequency 

range will reduce the plateau in counts during treadmill walking and running.  

 

Question 2: Do counts generated from performing lifestyle activities exhibit the plateau effect? If 

so, will increasing the bandpass filter frequency range reduce the plateau effect seen during these 

activities? 

 

Hypothesis 2: It is hypothesized that counts generated while performing lifestyle activities will 

exhibit the plateau effect. It is also hypothesized that increasing the bandpass filter frequency 

range will reduce the plateau effect and increase counts generated during these activities.  

 

Question 3: Does increasing the frequency range of the bandpass filter change the relationship 

between estimated and measured energy expenditure? 

 

Hypothesis 3: It is hypothesized that increasing the bandpass filter frequency range will change 

the relationship between estimated and measured energy expenditure. 

 

Delimitations 

1. Participants shall be between 18-65 years  

2. Participants must be able to answer “No” to all questions on a PAR-Q.  

3. Participants will be excluded if they are obese, pregnant, or have orthopedic or 

musculoskeletal issues that would limit activity.   
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Limitations 

1. Participants will be exposed to some risk inherent to vigorous intensity PA, and are 

expected to answer the PAR-Q truthfully.  

2. Weather and campus events may interfere with outdoor activities.  

3. Reasonable time commitment for participants will limit the total duration of data 

collection; data should be collected within one hour and thirty minutes.  
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CHAPTER II: REVIEW OF LITERATURE 

Introduction 

Physical activity is defined as any bodily movement that requires the contraction of 

skeletal muscle which in turn increases energy expenditure above the resting value (9). Physical 

activity measurement has been of interest to researchers, physiologists, and epidemiologists alike 

for decades because of the implications of physical inactivity and related negative health 

outcomes such as chronic disease associated morbidity and mortality. Examples of these 

outcomes are summarized in a pair of reviews by Kokkinos et al. (29, 30). These reviews 

document the close inverse association between physical activity and fitness with chronic disease 

and overall mortality (29, 30). Chronic diseases highlighted by these reviews include Type 2 

diabetes mellitus, obesity, and hypertension to name a few of the most common and also most 

prevalent conditions in U.S. adults. These reviews contrast one another by highlighting the 

detriments of physical inactivity on health across the lifespan compared with the health benefits 

gained from performing adequate levels of physical activity and the reduced mortality risk 

associated with it.  

Troiano et al. (54) reported that most U.S. adults do not participate in sufficient physical 

activity to maintain health and gain protection from development of chronic diseases. These 

results are found through nationally representative population surveys such as the National 

Health and Nutrition Examination Survey (NHANES). An example of this is seen in the 2003-

2004 NHANES data analyzed by Troiano et al. (54) that was collected using accelerometers and 

was the first objective measurement of physical activity in a national survey. These data 

provided insight into how much physical activity U.S. adults were getting from a method other 

than self-report. These findings were in contrast to self-report data from other representative 
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population surveys that found anywhere from 25-33% of U.S. adults were meeting the 

recommendations based on self-report.  These findings call into question the reliability of the 

self-report measurements as well as how accurate the accelerometers are assessing physical 

activity. Additional evidence of this is seen in a 2011 paper by Tucker et al., (57) that showed 

similar lack of adherence to the 2008 Physical Activity Guidelines for U.S. Adults with less than 

10% of American adults meeting the recommendation of 150 minutes of moderate, 75 minutes of 

vigorous activity per week, or a combination of the two when measured by accelerometer. This 

is in stark contrast to the self-report data for the same population which showed over 60% 

meeting the recommendation (57).  

There is a disparity between the amount of physical activity being self-reported and the 

amount of physical activity being measured by accelerometers and with this being the case, 

researchers have set out to develop more accurate methods for using accelerometers to measure 

physical activity and estimate energy expenditure. The purpose of this review of literature is to 

further explore how physical activity and energy expenditure are measured, and the validity and 

reliability of these methods. In addition, it will examine how accelerometers are used to estimate 

energy expenditure.  

Criterion Measures of Energy Expenditure 

Doubly Labeled Water 

 The doubly labeled water (DLW) method is the criterion measure for free-living energy 

expenditure. Originally developed for use in animals, this method was refined and approved for 

use in human subjects and has been found to be useful but somewhat cost inefficient in most 

situations. The DLW method involves taking a dose of  2H18O isotope water that is proportional 

to the amount of total body water a participant has which is often approximately 60% of total 



 

11 

 

body weight. The loaded dose of DLW equilibrates with the body water within a few hours and 

over the course of one to several weeks is used to determine total energy expenditure. This is 

determined through the examination of bodily fluid, most commonly urine. The isotopes are 

excreted as carbon dioxide and water at different rates as energy is expended. Water is excreted 

through the body in several forms including urine and sweat whereas carbon dioxide exits only 

through expired breath. This being the case, the 18O isotope exits the body more quickly than the 

2H isotope. The difference in rate at which the isotopes are lost from the body is used to 

determine the rate and amount of carbon dioxide produced and this in turn is used to estimate 

energy expenditure (38).  

It has been noted that the DLW method is between 92-98% accurate for measuring total 

daily energy expenditure based upon the dosage level taken and amount of time given to expire 

(50). While this method is reliable and valid, many researchers are interested in more refined 

measures of energy expenditure that can be narrowed down to a more precise time period or 

interval rather than the broad total energy expenditure values obtained using the DLW method.     

Room Calorimetry 

 Room calorimetry measures energy expenditure using an open circuit system that 

measures total daily energy expenditure. This measure includes the thermic effect of food, basal 

metabolic rate, resting energy expenditure and individual activity energy expenditure (32). This 

type of system is useful but for most research unfeasible. A room calorimetry system is very 

costly, often times a million dollars in addition to requiring a trained technician to run the system 

plus maintenance. For this reason, in addition to the fact that behavior is altered from normal 

daily life, these systems are not used as often. As useful as these systems are, Seale and Rumpler 
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(51) concluded that room calorimetry underestimates total daily energy expenditure by 2-8% and 

they recommend using the DLW method instead when applicable.  

Indirect Calorimetry  

 Indirect calorimetry involves measuring gas exchange, specifically the amount of oxygen 

consumed and carbon dioxide produced. These measurements allow a ratio to be calculated, the 

respiratory exchange ratio, which indicates which metabolic substrate is being used. Stationary 

metabolic carts such as the ParvoMedics metabolic cart are often used when performing exercise 

tests to obtain a measure of energy expenditure but due to their lack of portability they are 

limited to controlled, lab based activities such as treadmill walking and running and cycle 

ergometry. Portable versions of the metabolic cart have been developed and they too use indirect 

calorimetry for measurement. Two popular devices are the Cosmed K4b2 and the Oxycon 

Mobile. Both devices have been validated as a reliable method of measuring energy expenditure 

and are both useful especially in free-living situations (2, 34, 39, 43). These devices use a 

facemask and tubes to capture expired gas for analysis. These tubes run into a battery powered 

unit that reads and records the values obtained during collection.  

Cosmed K4b2 

The Cosmed K4b2 (Cosmed, Rome, Italy) is a portable indirect calorimeter (170 x 55 x 

100 mm) that provides measures of oxygen consumption (VO2) and carbon dioxide production 

(VCO2). The Cosmed system has two units, a gas analyzer unit that is affixed to the chest and a 

battery unit that is affixed to the back, both via a manufacturer designed harness. The device is 

lightweight (approximately 800 grams) and is accompanied by a facemask that covers the mouth 

and nose for inspired and expired air collection. The Cosmed K4b2 is valid for measuring oxygen 

consumption during physical activity (34, 39). In order to initialize the device there are four 
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calibration steps to run through before each use. The calibration process involves a room air 

calibration using the temperature and relative humidity of the room as well as a known reference 

gas calibration with a specialized gas mixture 15.98% O2 and 4.008% CO2 (11). In addition to 

this, a turbine calibration is performed using a 3 L Hans Rudolf syringe. Lastly, a delay 

calibration is conducted to account for any delay that may occur between exhalation and 

measurement by the gas analyzer sensors (11). 

Measurement of Physical Activity: Self-Report and Objective Methods 

Self-Report Methods 

 Self-report measurements of physical activity have long been used in research for their 

practicality, feasibility, low cost, and general familiarity and acceptance in most populations (23, 

46). Self-report methods include survey instruments, recall questionnaires, diaries and logs, all of 

which involve the subjective response that varies with each participant (23, 46). This subjectivity 

leaves room for large amounts of fluctuation in responses which leads to discrepancies in the 

types of activities being performed and at what intensity (23, 46). Comparisons between self-

report methods and more direct measurements have been made in work by Prince et al. (42) who 

compiled an exhaustive review of these comparisons. Prince et al. (42) found that on average, 

accelerometers were used most often to directly measure physical activity and that the mean 

percent difference between self-report physical activity and the accelerometer measured physical 

activity was 44%. Correlations between self-report methods and directly measured methods 

varied greatly (-0.71 to 0.96) with the majority being low-to-moderately correlated (42).  

Accelerometer Methods 

 Accelerometer-based devices are used in physical activity research as a means of 

objectively measuring physical activity. Researchers have identified multiple advantages to using 
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an accelerometer for physical activity measurement. These advantages include more specific 

information related to volume, frequency, intensity, and time spent in physical activity and 

activities of daily living in contrast to the DLW method which can provide accurate energy 

expenditure measurement over longer periods of time. A combination of these methods is 

recommended for best outcomes (41). It is noted that it is rarely feasible and that energy 

expenditure prediction equations derived from the DLW measurements are sufficient in most 

cases as they are found to be valid (41).  

Acceleration data has been used to calibrate objective monitors and to develop energy 

expenditure prediction equations for locomotive activities such treadmill walking and running to 

activities of daily living such as sweeping and cleaning as well as recreational sports like tennis 

and basketball. Accelerometers measure and store the magnitude of acceleration and deceleration 

and this raw acceleration signal can be processed and filtered through a series of steps outlined in 

detail by Chen and Bassett (10). Raw digital acceleration signal passes through a low-pass filter 

first where a pre-set frequency passes all acceleration signal below that threshold while 

attenuating acceleration signal above that threshold. The acceleration signal is bi-directional by 

nature and in order to further process it, full-wave rectification is used to convert negative signal 

to positive values (10). It is at this point that a bandpass filter can be applied before the signal is 

fully integrated and generated into output per unit of time better known as counts per epoch (e.g. 

counts per 30 seconds) (10).The bandpass filtering process involves the digital acceleration 

signal passing through a range of frequencies with an upper and lower limit (e.g. 0.25-2.5 Hz) 

where any acceleration signal that falls outside of those limits is attenuated. This process 

provides researchers with output that can be interpreted to determine time spent in different 

activities as well as the intensity at which an activity is performed. There are a variety of 
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prediction equations that exist in the literature, all of which are developed using a specific set of 

activities. Some equations are walking and running specific and valid only for those activities 

while others are more encompassing as they were developed using a more diverse routine of 

activities. The processing of the raw acceleration signals for each device vary as the filtering of 

the signal is done differently across devices with much of the process being proprietary. This 

allows for little direct comparison across devices when using counts.  

 Accelerometer technology has evolved over time with early uniaxial (vertical axis) 

devices measuring acceleration in a single plane. Current models have triaxial accelerometers in 

addition to other sensors such as magnetometers to measure direction, gyroscopes to measure 

rotation, and even thermometers to measure temperature.  In addition to being able to measure 

acceleration in more planes, the accelerometer technology has also improved making 

accelerometers a more cost-effective method than they have been historically (59). This 

improvement in technology has shifted from an analog signal measured using a mechanical 

cantilever beam that required calibration before use to a digital signal measured with a micro-

electromechanical system (MEMS) that requires no calibration and uses less battery allowing for 

longer periods of data collection (10, 59). Accelerometers operate based on a mechanical sensing 

element that is generally comprised of a seismic mass that is mechanically suspended (59). The 

mass is then acted on by inertial forces from both gravity and acceleration and the displacement 

of the mass is measured electrically and that is the raw acceleration signal recorded and stored on 

the device (59). The most commonly used types of accelerometers are piezoresistive, 

piezoelectric, and differential capacitive models.  

There have been many energy expenditure prediction equations developed using 

accelerometers with some being more frequently used than others. Some examples are the 
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Freedson 1998 (20) and Swartz 2000 (53) equations both of which use a linear regression 

between measured energy expenditure via calorimetry to the predicted energy expenditure 

calculated using counts collected using the accelerometers. These equations were developed 

using a CSA accelerometer, now known as ActiGraph, which is one of the more commonly 

studied research devices. ActiGraph has produced several generations of accelerometers that 

have been researched heavily and have been shown to perform reliably and provide valid results 

when compared to criterion measures. de Vries et al (17) reported that the ActiGraph models 

were the most studied physical activity monitor and the literature supported the continued use of 

ActiGraph devices with them being used in nationally representative studies such as NHANES.  

With the ActiGraph being the most widely used and many of the energy expenditure 

prediction models having been developed on ActiGraph devices, the remainder of this literature 

review will focus on ActiGraph devices specifically as well as an issue that is specifically related 

to the ActiGraph.   

 Validation of energy expenditure prediction equations is vital to ensure the proper 

performance and function of a device to collect reliable data for the activities on which the 

equations were developed. One of the main issues with equation validation is the wide variety of 

protocols used by researchers. The most common criterion measure that equations are validated 

against is indirect calorimetry since it can be used in free-living situations and provide measures 

of energy expenditure over short time intervals as well as provide information on intensity of 

physical activity. This method is often used for validation procedures lasting for a few hours with 

anything longer than that requiring use of the DLW method. While indirect calorimetry is more 

cost-effective, the gold standard for energy expenditure equation validation is the DLW method. 
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Review Articles 

 Plasqui and colleagues (40, 41) conducted reviews of the work done validating energy 

expenditure prediction equations against the DLW method. These reviews intended to identify 

the best DLW derived energy expenditure equations and corresponding accelerometer models to 

assess physical activity during free-living activities. In 2007, Plasqui et al. (41) identified a total 

of 28 studies highlighting 8 different accelerometer models. Of these models, the 

CSA/MTI/ActiGraph was one of the two most extensively validated devices along with the 

Tracmor. The authors note that many of the other devices including the Lifecorder, Caltrac, 

Actiwatch AW16, Tritrac-R3D, and ActiReg, performed poorly and had little to no correlation 

for count values and obtained from the devices and energy expenditure (41). In 2013, Plasqui 

and colleagues (40), reviewed additional models of accelerometers validated against the DLW 

method including 25 studies published between 2007 and 2011 that highlighted 18 different 

models of accelerometers from 15 different manufacturers. There was high variability among 

devices with correlations ranging from 0.06 for the Lifecorder between physical activity level 

and activity counts up to 0.91 for the Actiheart when predicting Total Energy Expenditure (TEE) 

after correcting for participant characteristics (40). These reviews highlighted that the ActiGraph 

was the most validated accelerometer and that when used to predict Activity Energy Expenditure 

(AEE) accounting for body mass the correlation with activity counts was 0.37 (40, 41). The 

sample populations for the studies reviewed were broad and included participants of all age 

groups, both healthy and unhealthy, men and women, children and adults, and pregnant and non-

pregnant so the results cover a diverse range of populations which makes it more challenging to 

compare results across devices. Plasqui at al., (40) noted that while more sensors are being added 
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to current accelerometers, there is little evidence to show that these additional sensors 

significantly improve energy expenditure estimation.  

Device Comparison 

John et al., (28) published a study comparing four different ActiGraph models in 2010 to 

determine if there was any variability between models for measuring activity counts for walking 

and running. Participants walked and ran at ten different speeds ranging from 3 km/hr to 20 

km/hr on a treadmill for three minutes at each stage. The study compared three versions of the 

GT1M model as well as the 7164 model. The monitors were worn on the left and right hips using 

an elastic belt and testing was done on separate days to account for differences between device 

placements to account for test-retest bias (28). No significant differences between count values at 

any speed for walking and running were seen (28). This indicates that all devices are valid for 

use in research investigating walking and running and that using any of the four models will be 

sufficient as there are no significant differences in performance. A major finding of this study 

was that energy expenditure prediction equations developed using the ActiGraph 7164 can also 

be used for all generations of the ActiGraph GT1M as well (28).  

In 2011, Sasaki et al. (48) conducted a study to compare the ActiGraph GT1M model and 

the newer GT3X model during treadmill walking and running (4.8, 6.4, 9.7, and 12 km/hr). Fifty 

participants were recruited and all wore the ActiGraph devices on the hip in addition to an 

Oxycon Mobile portable metabolic system which was the criterion measure. Data for participants 

who could complete all four stages for at least 1 minute were included in analyses with the mean 

counts per minute for each stage being used as the metric. This allowed the authors to compare 

the count values across devices for the vertical (VT) axis as well as the anterioposterior (AP) axis 

and vector magnitude (VM2) of both axes (48). Results indicated significant differences between 
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the mean AP counts between ActiGraph models. The GT1M AP counts were significantly higher 

than GT3X AP counts at 4.8 km/hr, 9.7 km/hr, and 12 km/hr with absolute mean percent 

differences of 21%, 38%, and 45% respectively. There were no significant differences between 

VT counts between devices but there were differences between VM2 counts between devices 

that the authors attributed to the significant differences between AP counts between devices. The 

VM2 counts for the GT1M were significantly higher than the VM2 counts for the GT3X by 5%, 

15%, and 25% at the speeds of 4.8, 9.7, and 12 km/hr, respectively. Authors noted a leveling off 

in count values for the VM2 in the GT1M while a downward trend in counts was seen at 12 

km/hr for the GT3X (48).  

Dannecker et al. in 2013 (16) conducted a device validation for a new physical activity 

monitor, a prototype device that is worn on the shoe. In this validation, comparisons were made 

with other popular research accelerometers, among those were the Actical and the ActiGraph 

GT3X. Nineteen total subjects were used for the study all of which fasted for four hours prior to 

a four hour testing window in a room calorimeter (16). EE estimates made using the respective 

devices were compared to total energy expenditure (TEE) from the three and a half hours of 

testing as the first half hour was omitted.  Authors used the Actical as the primary device for 

comparing the new prototype shoe device to but some general conclusions were drawn about the 

performance of the ActiGraph. Results determined that like other previous studies, the ActiGraph 

does significantly underestimate EE over a range of low intensity to vigorous intensity lifestyle 

activities. In fact, the Freedson equation (20) underestimated EE by an average of 132.6 kcals 

(26.8%) which does model performance seen in other studies using DLW and portable indirect 

calorimetry methods (16). The primary reason listed for this error in estimation was the wide 
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range of activities used and the flaw in accelerometry based EE estimation not mirroring the 

metabolic demand of such a range of activities (16). 

Anastasopoulou et al. (3) conducted a comparison and validation study on two means of 

studying energy expenditure during activities of daily living, namely, locomotion. The study 

compared using a single regression model for the entire bout of activities to an activity specific 

model that is entirely activity dependent. For the single regression model EE estimate, an 

ActiGraph GT3X was used (3). Participants included nineteen participants, a mix of males and 

females and all wore the ActiGraph GT3X as well as the Move II accelerometers during the 

entire bout of locomotive activities. A portable indirect calorimeter, the MetaMax 3B was used 

as the criterion measure for this study (3). Activities performed were mostly locomotive in nature 

including sitting, standing, slow and fast walking, jogging, walking up and down a hill and 

walking up and down stairs. Results showed that the Freedson VM3 equation (48) overestimated 

EE using the single regression model for both walking speeds, as well as walking up and down 

the hill and walking up and down stairs and then underestimated EE for sitting, standing, and 

jogging (3). The largest differences were seen for walking up and down stairs (-2.45 and 1.92 

kcals/min). These results are understandable as this shortcoming is well known about 

accelerometers, especially those worn on the hip and using a single regression model to predict 

EE for free-living activities.  

Evaluation of Energy Expenditure Prediction Equations 

 Lyden et al. in 2011 (33) performed an evaluation of the most commonly used energy 

expenditure and MET prediction equations. The study included 277 participants that completed 

on average six treadmill tests ranging from 1.34-2.23 m/s and between 0-3% grade in addition to 

five self-paced activities of daily living chosen at random from a list of fourteen different 
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activities ranging from sweeping and doing laundry to basketball and tennis (33). Participants 

wore accelerometers (ActiGraph GT1M, Actical, RT3) in addition to the Oxycon mobile 

portable metabolic system which was used as the criterion measure. In total, eleven different 

energy expenditure prediction models were used for analyses, four ActiGraph, five Actical, and 2 

RT3 (33). Results showed that for all activities each model used significantly underestimated 

energy expenditure (-0.1 to -1.4 METS, -0.5 to -1.3 kcals). In addition to this, energy expenditure 

for the activities of daily living was also significantly underestimated by all models (-0.2 to -2.0 

METS and -0.2 to -2.8 kcals) (33). On the contrary, there were mixed results of over- and under-

estimation for the treadmill activity with seven equations underestimating and four equations 

overestimating energy expenditure. Lastly, it should be noted that vigorous activity was most 

often misclassified as moderate activity. Authors concluded that there are limitations with 

current methodologies to estimate energy expenditure using accelerometer count values (33).  

McMinn et al. in 2013 (35) compared energy expenditure predictions using an ActiGraph 

GT3X+ and an Actiheart accelerometer to measured energy expenditure for 19 participants 

during three categories of treadmill walking speeds (slow, medium, and fast) for ten minutes at 

each speed. Participants wore an ActiGraph GT3X+ on the right wrist and right hip, an Actiheart 

on the chest, and an Ultima CPX indirect calorimeter. All devices were calibrated and initialized 

prior to each trial which was conducted in the same environmental conditions of 18°C and 50% 

humidity inside a controlled chamber. Results showed that mean speeds for the three phases 

were 2.59, 3.74, and 5.12 km/hr for slow, medium, and fast, respectively. There were no 

significant differences between device derived EE using the Freedson VM3 equation (48) and 

measured EE using the Ultima CPX for the medium walking trial but there were significant 

differences for the slow and fast trials (p < 0.01; p = 0.02) for both the waist and the wrist (35). 
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For the slow trial, the ActiGraph underestimated EE at the waist and wrist significantly (p = 

0.04; p = 0.02) and for the fast trial the ActiGraph overestimated EE at the waist and wrist 

significantly (p < 0.01). Authors note that there were no significant differences between 

measured EE using the Ultima CPX and EE estimates for the Actiheart, made using the branched 

heart rate equation, for any of the three trials (35). Conclusions drawn from the study include the 

high correlation between EE estimates using the ActiGraph GT3X+ on the waist and wrist and 

measured EE. It should be noted that authors warn against using the Freedson VM3 (48) 

equation for the wrist since it was developed on waist worn device data. It should also be noted 

that the low frequency extension feature was turned on for this study to register the slow walking 

data yet despite this precaution, energy expenditure was significantly underestimated during slow 

walking. 

Santos-Lozano et al. (47) conducted a study in 2013 to compare EE estimates made using 

the Work-Energy Theorem, the combined equation, and the Freedson VM3 equation (48) to 

measured EE using indirect calorimetry. The study involved 97 participants across three age 

group categories of youth (N = 31), adults (N = 31), and older adults (N = 35). Participants 

completed six activities for ten minutes each. The activities included rest, treadmill walking and 

running at 4 speeds (3, 5, 7, and 9 km/hr), and repeated sit to stand exercises. The analyses 

included three factors, (METs, Activity, and Age) to determine between EE predictions and EE 

obtained through indirect calorimetry. It was determined that the GT3X counts increased as 

speed increased for the treadmill activities (47). These findings including the VM results 

obtained using the GT3X for treadmill walking and running were in accordance with the results 

of previous work such as that of Sasaki et al. in 2011 (48).  
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Use of Accelerometers to Determine Minute-by-Minute Energy Expenditure 

Crouter, Churilla, and Bassett (12) examined in 2006 energy expenditure prediction 

equations developed for the ActiGraph, Actical, and AMP-331 accelerometers. There were 14 

ActiGraph equations, two Actical equations, and one AMP equation. Forty-eight participants 

were asked to complete a minimum of one out of three structured activity routines comprised of 

six activities, each lasting for ten minutes allotting one to two minutes rest between each activity. 

In total there were 18 activities between the three routines. Each of the three routines was 

completed by at least 20 participants with most participants completing only one routine. 

Throughout each routine, participants wore all three devices in addition to a Cosmed K4b2. A 

primary finding from the study was that no one equation was found to predict energy expenditure 

accurately for all 18 activities. Overall, the results indicate that the equations do not work well 

across light, moderate, and vigorous intensity activities as there was misclassification between 

categories as well as time spent in each category. Most notably, the equations developed on 

lifestyle activities overestimated all sedentary activities in addition to slow and fast walking and 

underestimated all activities over 6 METs meaning that only light to moderate intensity lifestyle 

activities between 3 and 6 METs were measured closely which is a pretty narrow window. In 

addition to this, the equations developed on walking and running activities closely measured 

those activities while overestimating light intensity activity but underestimating moderate and 

vigorous intensity activities (12). Although the results were in agreement with the study of 

Bassett et al. 2000 (4) showing that the Hendelman lifestyle equation for the ActiGraph 

estimated on average for 28 different activities energy expenditure within 0.5 METs of the 

criterion measurement using the Cosmed K4b2, there was an overestimation for walking and an 
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underestimation for nearly all of the other lifestyle activities (12). These results called for the 

development of a new approach to estimate energy expenditure. 

Crouter, Clowers, and Bassett (13) developed a novel approach for estimating energy 

expenditure by developing a two regression model to improve the under- and over-estimation of 

energy expenditure encountered with previously developed equations. Forty-eight participants 

were asked to complete at least one of three structured activity routines comprised of six 

activities, each lasting for ten minutes allowing for a one to two minute rest between each 

activity. In total there were 18 activities between the three routines. Each of the three routines 

was completed by a minimum of 20 participants with most participants completing only one of 

the three routines. Throughout each routine, participants wore a Cosmed K4b2 in addition to the 

Actigraph on the hip. Of the tests completed, 45 tests were selected at random for analyses and 

development of the two-regression model (C2RM). Fifteen of the 45 tests were selected for 

cross-validation against previously developed single regression models. To determine which 

regression equation should be used, the coefficient of variation (CV) was used. If the CV ≤ 10, a 

walking/running equation was used and if CV > 10 then a lifestyle equation was used (13). The 

results of the study determined that the new predictions made with the C2RM were more 

accurate than using any single regression equation previously developed for the ActiGraph for 

either walking and running or lifestyle or leisure time physical activities for (13).  

Use of Accelerometers to Determine Time Spent in Activity 

Strath et al. (52) conducted a study examining the accuracy of accelerometer equations to 

predict time in different intensity categories (light, moderate, hard) over a six hour period. The 

equations examined include the Freedson equation (20), the Swartz equation (53), the Nichols 

equation (36), and two versions of the Hendelman equation (24), one for lifestyle activity and 
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one for walking and running only: Hendelman1 and Hendelman2, respectively. For all equations, 

the prediction of time spent in hard activity did not differ from the Cosmed values. The Freedson 

(20) equation significantly overestimated time spent in light intensity activity by 13% and 

significantly underestimated time spent in moderate intensity activity by 60%. Hendelman1 (24) 

significantly underestimated light intensity activity by 29% and significantly overestimated 

moderate activity by 120% (52). In contrast, Hendelman2 (24) significantly overestimated light 

intensity activity by 14% and significantly underestimated moderate intensity by 60% (52). 

Additionally, the Nichols (36) equation significantly overestimated light intensity activity by 

12% and significantly underestimated moderate intensity by 55% (52). Finally, there were no 

significant mean differences for all three categories using the Swartz equation (52, 53). These 

findings illustrate that there is great variability between prediction equations for time spent in 

intensity using accelerometers worn on the hip. This serves as a warning that it is difficult to 

accurately determine time spent in activity intensity using current methods.  

Crouter et al. (14) examined the validity of the 2006 Crouter (13) and 2010 Crouter (15) 

algorithms for assessing free-living activity over the course of a six hour period. These 

algorithms use a two regression approach instead of the standard single regression approach that 

had been previously used. When compared to mean measured energy expenditure (1.90 ± 0.68 

METs) for the bout, the Crouter 2010 (15) algorithm (2.08 ± 0.77 METs) was not significantly 

different but the 2006 Crouter (13) algorithm (2.32 ± 0.84 METs) was significantly different (p < 

0.05). The Crouter 2010 (15) algorithm significantly underestimated sedentary time by 20.8% (p 

< 0.05) but significantly underestimated time spent in light, moderate and vigorous activity by 

9.5%, 44.5% and 62.4% (p < 0.05) respectively. In contrast, the Crouter 2006 (13) algorithm 

showed no significant differences between measured time and time spent in sedentary behavior 
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and vigorous activity. Light intensity activity was significantly underestimated by 34.4% (p < 

0.05) and moderate intensity activity was significantly overestimated by 76.5% (p < 0.05). 

Additionally, there were significant differences between algorithms for time spent in sedentary, 

light and moderate activity but not vigorous activity (p < 0.05). The findings in this study call in 

to question the ability of two regression models to be more accurate than single regression 

models. While the Crouter 2010 (15) algorithm was an improvement from the Crouter 2006 (13) 

algorithm, there are still issues that need to be resolved to reduce the over-and under-estimation 

that occurs across all activity types.  

The Plateau Effect 

One major flaw that has been with the ActiGraph is best known as the plateau effect. This 

issue stems from the error that occurs when count values do not increase as energy expenditure 

and running speed or exercise intensity increases. Several notable articles have been published 

outlining this flaw with the ActiGraph devices (7, 12, 13, 22, 25, 26, 28, 44). The most studied 

example of this occurs during high intensity vigorous running at and above approximately 6 

miles per hour (22, 25, 26, 28). This phenomena was first noted when Brage et al (7) were 

examining the ActiGraph, formerly CSA, accelerometer model 7164 for walking and running 

activities. The results indicated that the device output increased linearly for walking but not 

during running beginning at speeds of 9 km/hr. The margins of error ranged from 11% at 10 

km/hr all the way up to 48% at 16 km/hr (7). The error was attributed to the fact that there is 

relatively constant vertical acceleration at faster running speeds and the model 7164 device 

utilizes a uniaxial accelerometer exclusively (7).  

 The inverted-u phenomenon has been seen not only in the uniaxial models of the 

ActiGraph such as the 7164 but also in the triaxial GT3X devices for the vertical axis as well 
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(25, 27). It should also be noted that the activity counts were similar across all generations of 

ActiGraph models for the vertical axis (25). The underlying issue is the inability of the 

ActiGraph to detect acceleration above a specific threshold of approximately 2.5 Hz, the known 

upper limit of the ActiGraph’s default bandpass filter frequency range (7, 44, 45). This means 

that as running speed or exercise intensity increases count values level off and decrease due to 

the higher acceleration signal frequency associated with higher intensity activity being filtered 

out by the bandpass filter limits. This results in similar activity count values and thus similar EE 

prediction values for two very different intensities (22). In addition to the upper limit of the 

bandpass filter being important, recent research has explored the low frequency extension (LFE) 

feature available for the ActiGraph GT3X+ devices in the Actilife software. Cain et al. (8) 

studied whether the LFE being turned on or off impacted results, specifically for low intensity 

activities. Results indicated that the LFE should be used for low intensity activities because it 

increases sensitivity at the low end of the bandpass frequency filter range. In doing so, results 

gathered using newer ActiGraph devices such as the GT3X+ can be more readily compared to 

older devices such as the 7164 (8).   

 The factors that cause the plateau effect are unknown. An early theory suggested that it 

was because the ActiGraph models were uniaxial and only measured acceleration along the 

vertical axis (7, 25). This theory is incorrect because even the triaxial GT3X+ model still 

experiences the plateau effect for other axes including the vector magnitude of the axes for data 

collected at the hip. Another theory is that the plateau effect is due to the acceleration signal 

filtering properties of the device (7, 44, 45). The study of John et al., (26) noted that the peak 

acceleration measured occurred when running at speeds between 10 and 12 km/hr rather than 18 

to 20 km/hr illustrating marked attenuation of the acceleration signal at the fastest running 
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speeds. This suggests that increasing the upper limit of the bandpass filter frequency range would 

reduce the attenuation of the acceleration signal at faster running speeds and thus given a better 

representation of the energy expenditure for those intensities via more accurate count values.  
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CHAPTER III: MANUSCRIPT 

Introduction  

 Obtaining an accurate measure of physical activity is vital for establishing guidelines for 

health and to better understand the metabolic requirements of physical activity. This is especially 

true for free-living physical activity, which can be more challenging for researchers to measure. 

Objective monitoring through the use of wearable, accelerometer-based devices has been shown 

to be an effective method for measuring physical activity over short durations ranging from one 

day down to 1-minute in free-living environments (12, 13, 14, 33). One of these devices, the 

ActiGraph, has been shown to provide valid and reliable measures of physical activity for a wide 

range of lifestyle and locomotive activity (33). The ActiGraph can be used to estimate energy 

expenditure through the use of prediction equations developed using criterion methods such as 

indirect calorimetry or doubly labeled water (12, 13, 33). This process, known as calibration, 

uses the device output from the ActiGraph, typically counts, to predict energy expended during 

specific time points and activities (10).  

Counts are derived from the instantaneous acceleration signal detected by the device, 

which corresponds to the intensity of an activity (10). The instantaneous acceleration signal is 

passed through a low-pass filter that allows acceleration below a certain threshold to pass while 

attenuating any acceleration above that threshold. Acceleration data is then full-wave rectified 

where the absolute value of all the acceleration signals is essentially taken, converting any 

negative values to positive values (10). ActiGraph employs a bandpass filter that includes a 

range of frequencies with an upper and lower limit (e.g. 0.25-2.5 Hz). The bandpass filter is 

applied to the positive acceleration values where any acceleration signal falling outside of the 

upper and lower limits of the bandpass filter frequency range is attenuated. At this time, an 
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algorithm is used to integrate the digital acceleration signal and generate output in the form of 

counts per epoch e.g. counts per 30 seconds) (10). The filtering properties employed by 

ActiGraph have a direct impact on the counts generated from collected data. This is evident with 

running speeds above 6 miles per hour where count values begin to level off and eventually 

begin decreasing (7, 22, 26, 45). This issue been termed the plateau effect and is characteristic of 

all ActiGraph models (26). This plateau effect is believed to be related to the filtering properties 

of the ActiGraph, specifically bandpass filter employed by ActiGraph (0.25-2.5 Hz) (7, 22, 26). 

While the plateau effect has been well documented in the literature, it has become of point of 

interest to resolve the issue. With the help of ActiGraph, a beta version of their ActiLife software 

has been developed that allows for structured manipulation of the upper limit of the bandpass 

filter frequency range. 

To date, no study has investigated manipulating the bandpass filter frequency range of the 

ActiGraph mostly due to the inability to do so in the device software, Actilife. In order to explore 

the effects of the bandpass filter issue further, ActiGraph provided a beta version of Actilife with 

additional bandpass frequency filtering options. The purposes of this study were: 1) to explore 

how increasing the bandpass filter frequency range affected counts collected during treadmill 

walking and running, car driving, as well as light, moderate, and vigorous intensity lifestyle 

activities, 2) to investigate to see if increasing the bandpass filter frequency range would reduce 

the plateau in counts with increasing intensity during treadmill running, 3) to explore how 

increasing the bandpass filter frequency range affected sedentary activities such as car driving 

with the low frequency extension (LFE) feature turned on, and 4) to investigate to see if there 

was also a plateau in counts for moderate to vigorous lifestyle activities with a similar MET 

value to running at 6 mph and if so how the plateau would be affected by increasing the bandpass 



 

31 

 

filter frequency range. It was hypothesized that: 1) increasing the bandpass filter frequency range 

would reduce the plateau in counts with increasing running speeds and result in a more linear 

relationship between speed and counts 2) counts for sedentary activity such as car driving will 

increase as the bandpass frequency filter range is increased 3) moderate to vigorous intensity 

lifestyle activities would experience a plateau in counts but increasing the bandpass filter 

frequency range would reduce the plateau resulting in a more linear relationship between counts 

and intensity.  

Methods 

Participants  

Participants were recruited via word of mouth, flyers, and email from The University of 

Tennessee, Knoxville and the Knoxville Community. Exclusion criteria included pregnancy, 

Class II obesity (BMI ≥ 35 kg/m2), or orthopedic or musculoskeletal issues that would limit 

activity. Participants were given a verbal explanation of the study, screened for exclusion criteria 

using the Physical Activity Readiness Questionnaire (PAR-Q), and prior to participation, signed 

an informed consent form. This study was conducted with approval from The University of 

Tennessee Institutional Review Board.  

Procedures  

This study was divided into two parts. Part A included treadmill walking and running, as 

well as car driving and included twenty participants (mean ± SD; age, 24.4 ± 3.4 years; Body 

Mass Index (BMI, 26.4 ± 3.3 kg/m2). Part B included lifestyle activities and included thirty 

participants (mean ± SD; age, 23.0 ± 2.3 years; BMI, 25.1 ± 3.8 kg/m2).  

In part A, participants (N = 20) were asked to walk (3, 5, 7 km/hr) and run (8, 10, 12, 14, 16, 

18, 20 km/hr) on a treadmill for 30 seconds at each speed with a 30 second rest between stages. 
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Following the treadmill walking and running, participants drove a car for approximately 12 

minutes around a pre-measured loop totaling about three miles with a maximum speed of 45 

miles per hour. In part B, participants (N = 30) were asked to complete a structured routine of 

physical activities consisting of ten total activities that took approximately 90 minutes to 

complete. Start and completion times for each activity were recorded. Participants were asked to 

perform each activity for seven minutes, with a minimum of two minutes of transition time 

between activities. Activities were completed as follows: 

1) Supine rest 

2) Seated computer work 

3) Table top cleaning 

4) Sweeping the floor 

5) Overground walking at a self-selected pace on a tennis court, track, or gym floor 

6) Ascending and descending stairs at a self-selected pace   

7) One-on-one basketball 

8) Singles tennis 

9) Over-ground slow running at a self-selected pace on a tennis court, track, or gym floor 

10) Over-ground fast running at a self-selected pace on a tennis court, track, or gym floor 

 

Participant’s height and weight were measured in light clothing and without shoes, using a 

stadiometer and calibrated physician’s scale, respectively. All Participants were fitted with a 

heart rate monitor. Participants in part A wore an ActiGraph GT3X+ while participants in part B 

wore an ActiGraph GT9X (right hip, each wrist, each ankle). In addition to the ActiGraph 
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GT9X, part B participants were fitted with a Cosmed K4b2 portable calorimeter as a criterion 

measure of energy expenditure.  

Devices  

ActiGraph GT3X+: The ActiGraph GT3X+ is a small (4.6 x 3.3 x 1.5 cm) tri-axial 

accelerometer that can be mounted to the wrist, ankle, waist, and thigh. It is lightweight (19 

grams) and has a sampling rate of 30-100 Hz that measures acceleration in the dynamic range of 

±6 G’s. Devices were initialized to sample data at 30 Hz.  

ActiGraph GT9X Link: The ActiGraph GT9X is a small (3.5 x 3.5 x 1.0 cm) tri-axial 

accelerometer that is lightweight (14 grams) and has a sampling rate of 30-100 Hz that measures 

acceleration in the dynamic range of ±8 G’s. Devices were initialized to sample data at 80 Hz.  

Cosmed K4b2: Participants wore a Cosmed K4b2 (Cosmed, Rome, Italy) portable metabolic 

system (170 x 55 x 100 mm) for the entirety of the activity routine. The Cosmed system consists 

of a gas analyzer unit and a battery unit. The device is lightweight (approximately 800 grams) 

and is worn using a harness designed by the manufacturer in addition to a facemask. The 

Cosmed K4b2 is valid for use in measuring oxygen consumption during physical activity (30, 

34). Following manufacturer guidelines, a 4-step calibration was performed before each test (11). 

A room air calibration was performed using the temperature and relative humidity of the room. 

Next, a reference gas calibration was performed with a specialized gas mixture 15.98% O2 and 

4.008% CO2. A flow meter calibration was performed using a 3-L Hans Rudolf syringe. Lastly, a 

delay calibration is conducted to account for any delay that may occur between exhalation and 

the gas analyzer sensors. 
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Data Processing  

All acceleration data collected were analyzed using a beta version of ActiGraph’s Actilife 

software that was exclusively provided for the purpose of this study. This software includes 

several band pass filter frequency ranges that allowed acceleration data to be filtered at several 

different frequencies including ActiGraph’s default filter (0.25-2.5 Hz) as well filters with upper 

limits of 5.0 Hz and a 9.0 Hz, respectively. All acceleration data were downloaded and converted 

to 5-second epochs to provide a mean count value per five seconds. The low frequency extension 

(LFE) feature was enabled for all analyses.  

VO2 (ml/min) data collected by the Cosmed were averaged over 30-second time periods 

and then converted to relative VO2 (ml/kg/min) for each activity performed. Each participant’s 

body weight in kilograms was used for supine rest and computer work. An additional 2 

kilograms was added to bodyweight for the other eight activities to account for the weight of all 

devices. These values were then converted to METs by dividing by 3.5. MET values from the 

average of minutes 1.5-5.5 for each activity were used for comparative analysis between 

measured energy expenditure and count values for each bandpass filter frequency.  

Statistical Analysis 

Statistical analyses were conducted through IBM SPSS statistical software version 23 

(IBM, Armonk, NY). For all analyses, alpha of 0.05 was used to denote statistical significance. 

All data are presented as mean ± standard deviation.  

For the treadmill walking and running a one-way 3x10 repeated measures ANOVA 

(counts x speed) was used to determine main effects and interaction effects between speeds for 

each bandpass filter frequency condition for each axis. Pairwise comparisons with Bonferroni 
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adjustments were performed to determine significant differences in counts between speeds 

within a single bandpass filter condition for each axis.  

For car driving, a one-way repeated measures ANOVA (counts x bandpass filter) was 

used to determine main effects and interaction effects between counts and each bandpass filter 

frequency condition for each axis. Pairwise comparisons with Bonferroni adjustments were 

performed to determine significant differences in counts between bandpass filter conditions for a 

single axis.  

For the lifestyle activities a one-way repeated measures ANOVA (counts x bandpass 

filter) was used to determine main and interaction effects between counts and each bandpass 

filter frequency condition for each activity. Pairwise comparisons with Bonferroni adjustments 

were performed to determine significant differences in counts between bandpass filter conditions 

within a single activity for each axis.  Regression analyses were performed to determine the 

relationship between count values and measured energy expenditure. These analyses were 

performed for all activities. Strong associations were defined as R = 0.8 – 1.0, moderate 

associations were R = 0.4 - 0.79, and weak associations were R = 0.1 - 0.39. 

Results 

Participant characteristics are presented in Table 1 for treadmill walking, running and car 

driving and in Table 2 for lifestyle activities.  

Treadmill Walking and Running 

For treadmill walking and running, there were significant main effects for speed 

(F=231.34, df=2, p<0.001) and bandpass filter condition (F=452.57, df=2, p<0.001) as well as a 

significant interaction effect for speed x bandpass filter (F=100.59, df=18, p<0.001) for axis 1. 

Significant differences between speeds within each bandpass filter frequency condition were 



 

36 

 

examined with Bonferroni adjustments and can be seen in Table 3 showing count values for axis 

1. Using the default bandpass filter (0.25-2.5 Hz) counts increase significantly (p < 0.05) 

between speeds up to 10 km/hr at which point counts begin to level off and eventually decrease 

significantly (p < 0.05) from 16 to 20 km/hr . For axis 1 using the 0.25-5.0 Hz filter, counts 

increase significantly (p < 0.05) up to 12 km/hr at which point they continue to increase but not 

significantly up to 16 km/hr where counts level off and decrease but not significantly. For axis 1 

using the 0.25-9.0 Hz filter, counts increase significantly (p < 0.05) up to 16 km/hr at which 

point they continue to increase but not significantly.  

 Table 4 presents results for axis 2 where there were significant main effects for speed 

(F=132.13, df=2, p<0.001) and bandpass filter condition (F= F=278.78, df=2, p<0.001) as well 

as a significant interaction effect for speed x bandpass filter (F=52.06, df=18, p<0.001). 

Bonferroni adjustments showed intermittent significant (p < 0.05) increases across speeds for all 

three bandpass filter frequency ranges with the most consistent significant increases in counts 

between speeds occurring when using the 0.25-9.0 Hz filter. For all three bandpass filter 

frequency ranges, counts increased across speed with no leveling off or decreases in counts 

occurring. Table 5 presents results for axis 3 where there were again significant main effects for 

speed (F=13.46, df=2, p<0.001) and bandpass filter condition (F=143.77, df=2, p<0.001) as well 

as a significant interaction effect for speed x bandpass filter (F=103.58, df=18, p<0.001). Also 

similarly to axis 2, axis 3 Bonferroni adjustments show continuous increases between speeds for 

all three bandpass filter frequency ranges. There were no significant differences between speeds 

for the default filter and only intermittent significant (p < 0.05) increases in speeds for the 0.25-

5.0 and 0.25-9.0 Hz filters.   
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 Table 6 shows results for the vector magnitude of axes 1, 2, and 3 where there were 

significant main effects for speed (F=405.49, df=2, p<0.001) and bandpass filter condition (F= 

F=560.60, df=2, p<0.001) as well as a significant interaction effect for speed x bandpass filter 

(F=193.12, df=18, p<0.001).  Similarly to axis 1, Bonferroni adjustments showed significant (p < 

0.05) increases in counts for the default filter up to 10 km/hr at which point counts begin to level 

off and decrease and eventually significantly decrease from 18-20 km/hr. Using the 0.25-5.0 Hz 

filter showed significant (p < 0.05) increases in counts up to 12 km/hr at which point counts 

continued to increase and eventually leveled off between 18-20 km/hr. The 0.25-9.0 Hz filter 

showed significant (p < 0.05) increases in counts between all speeds.  

 Figure 1 illustrates the relationship between mean counts per five seconds and speed for 

all three axes and vector magnitude. For all axes and vector magnitude, an improvement in R2 

was seen indicating an improvement in the linearity of the relationship between counts and 

intensity. This is most evident in the change in R2 for the default filter to 9.0 Hz filter for axis 1 

and vector magnitude. R2 changed from 0.43 to 0.83 for axis 1 and 0.53 to 0.90 for vector 

magnitude showing significant improvement.  

Car Driving 
 

 For car driving, there was a significant main effect for bandpass frequency filter 

condition on counts for all axes and vector magnitude with axis 1 (F=161.39, df=2, p<0.001), 

axis 2 (F=53.93, df=2, p<0.001), axis 3 (F=72.05, df=2, p<0.001), and vector magnitude 

(F=135.82, df=2, p<0.001), respectively. Bonferroni adjustments were performed to determine 

significant differences in counts between bandpass filter conditions for each axis. These results 

can be seen in Figure 2. There were significant differences (p < 0.05) between each bandpass 

filter frequency condition for all axes and vector magnitude. 
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Lifestyle Activity 
 

Mean measured METs for each of the 10 lifestyle activities are presented in Table 7. There were 

significant main effects for bandpass filter frequency condition (F=1203.06, df=2, p<0.001) and 

activity (F=349.49, df=2, p<0.001) as well as an interaction effect for bandpass filter x activity 

(F=113.42, df=18, p<0.001) for axis 1. For axis 2, there were significant main effects for 

bandpass filter frequency condition (F=558.10, df=2, p<0.001) and activity (F=204.99, df=2, 

p<0.001) as well as an interaction effect for bandpass filter x activity (F=51.98, df=18, p<0.001). 

For axis 3, there were significant main effects for bandpass filter frequency condition (F=261.86, 

df=2, p<0.001) and activity (F=181.91, df=2, p<0.001) as well as an interaction effect for 

bandpass filter x activity (F=68.87, df=18, p<0.001). Lastly for vector magnitude, there were 

significant main effects for bandpass filter frequency condition (F=1593.44, df=2, p<0.001) and 

activity (F=348.52, df=2, p<0.001) as well as an interaction effect for bandpass filter x activity 

(F=180.73, df=18, p<0.001). Bonferroni adjustments were performed to determine significant 

differences in count values between bandpass filter frequency conditions for each activity. 

Significant differences were seen for the following activities: table cleaning, sweeping, walking, 

stair walking, basketball, tennis, slow running, and fast running for all axes including vector 

magnitude (Tables 8 through 11, p < 0.05). No significant differences in counts were seen 

between the default and 0.25-5.0 Hz filter conditions for supine rest. For computer work there 

were no significant differences between the default and 0.25-5.0 Hz bandpass filter frequency 

conditions for axis 3 only. 

Regression lines were generated for each axis for 1) the full activity routine (Figures 3, 4, 

5, 6), 2) locomotive activity only (Figures 7, 8, 9, 10), and 3) lifestyle activity only (Figures 11, 

12, 13, 14).  
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For the full activity routine axis 1 (Figure 3), all three bandpass filter conditions showed 

strong associations (R ≥ 0.80) with the default filter producing the best result (R = 0.87). For axis 

2 (Figure 4), all three bandpass filters again showed strong associations between counts and 

energy expenditure with the 0.25-5.0 Hz filter producing the strongest result (R = 0.87). For axis 

3 (Figure 5), the 0.25-5.0 Hz and 0.25-9.0 Hz filter produced strong associations (R ≥ 0.80) 

while the default filter showed a moderate association (R = 0.74). The best result for axis 3 was 

the 0.25-5.0 Hz filter with an R = 0.85. Lastly, the results from the vector magnitude (Figure 6) 

showed that similar to axis 1 the default filter performed the best with an R = 0.91 but all three 

bandpass filters produced a strong association between counts and energy expenditure. 

For the locomotive activity, axis 1 (Figure 7) and vector magnitude (Figure 10) showed 

the 0.25-5.0 and 0.25-9.0 Hz filters produced similar results both having strong associations (R ≥ 

0.80) between counts and energy expenditure with R = 0.92. Axis 2 (Figure 8) and axis 3 (Figure 

9) showed lower R values with the highest being the moderate associations of the 0.25-9.0 Hz 

filter with an R = 0.77 and R = 0.71, respectively.  

For the lifestyle activities (Figures 11 through 14), all three bandpass filter conditions produced 

strong associations (R ≥ 0.80) for all axes including vector magnitude. The highest performing 

bandpass filter was the 0.25-5.0 Hz filter with R values = 0.94, 0.93, 0.87, and 0.95 for axis 1 

(Figure 11), 2 (Figure 12), 3 (Figure 13), and vector magnitude (Figure 14), respectively 

 

Discussion 
 

 The primary findings from this study are that: 1) increasing the bandpass filter frequency 

range significantly alters count values for all activities including laboratory-based as well as 

intermittent, lifestyle activities, 2) increasing the bandpass filter frequency range reduces the 
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plateau in counts at increasing speeds for treadmill walking and running, and 3) There is no 

discernable plateau in counts based on the results for the activities chosen for this study.  

 As hypothesized, increasing the upper limit of the bandpass filter frequency range 

improved the relationship between counts and intensity for treadmill walking and running. The 

relationship between counts and speed becomes more linear, and counts no longer level out and 

then decrease at higher running speeds. Improvement was seen from the default setting by 

increasing the upper limit of the bandpass filter frequency range to 5.0 Hz but the best results are 

seen when using an upper limit of 9.0 Hz as there is a significant increase in counts between all 

speeds for vector magnitude. This illustrates an improved relationship between counts and speed 

as thus should allow for improved energy expenditure estimation and a more linear relationship 

between counts and energy expenditure for these activities since the plateau effect can be 

minimized. Conversely, increasing the upper limit of the bandpass filter frequency range also 

significantly altered the count values for car driving. This issue is one of the reasons the low 

frequency of 2.5 Hz was employed as the upper limit of the default filter frequency range to 

begin with. As the filter frequency range was increased, count values for each axis also 

significantly increased producing nearly 40 counts per 5 seconds for vector magnitude with the 

0.25-9.0 Hz filter. This could significantly impact energy expenditure estimation for sedentary 

activities such as car driving since count values could be going from < 100 counts per minute to 

nearly 250 counts per minute. This would become an issue since the standard cut-point for 

sedentary activity is 100 counts per minute, and thus car driving would then be considered light 

intensity physical activity unless a new threshold and cut-point for sedentary behavior were to be 

developed.  
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 It was hypothesized that there would be a plateau in counts for moderate to vigorous 

lifestyle activities that generate similar acceleration values and have similar MET values to 

running at 6 mph, where the plateau effect starts to be exhibited. This however was not the case, 

as no discernable plateau was seen in the counts for the lifestyle activities with increasing 

intensity for the activities selected for this study. It was hypothesized that increasing the 

bandpass filter frequency would increase the counts for light, moderate, and vigorous intensity 

lifestyle activities. This hypothesis was correct as significant differences were seen in count 

values across bandpass filters and the strength of association and linearity of the relationship 

between count and METs also varied across bandpass filter conditions depending on the type of 

activity being performed.  

 After studying the results from the Crouter 2-regression (13) model (C2RM) it was 

believed that increasing the bandpass frequency filter would cause counts to increase causing 

convergence of the two regression lines in the C2RM (13) model. The C2RM (13) model was 

developed to improve the accuracy of energy expenditure estimation. It uses two regression lines 

instead of the traditional single regression to better fit the locomotive activity and lifestyle 

activity. Together those two regression lines do a better job of predicting energy expenditure in 

most cases. Results from this study show the opposite occurring with the two lines diverging 

instead of converging and becoming singularly more linear. This is evident with the default filter 

producing the most linear results for axis 1 and vector magnitude when looking at the full 

routine. As the bandpass filter is increased, the counts for locomotive and lifestyle activities 

diverge and produce a less linear relationship for the full activity routine. When split out 

individually, results for locomotive and lifestyle activities differed. Increasing the upper limit of 

the bandpass filter frequency range to 9.0 Hz for locomotive activity produced the best results 
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similarly to what is seen with the results from treadmill walking and running, while the upper 

limit of 5.0 Hz produced the strongest results for lifestyle activities.  

 There are several strengths and limitations to this study with one of the main limitations 

stemming from the 9.0 Hz bandpass filter. ActiGraph confirmed after consultation that there is 

an error in the software for the 9.0 Hz filter that led to errors with counts most notably the low 

intensity lifestyle activities such as supine rest and computer work. This issue will be resolved 

and results corrected to reflect the changes but it should be noted that the significant differences 

seen for supine rest and computer work across bandpass filters may be due to this software error. 

A major strength of this study is the combination of lifestyle activities coupled with treadmill 

walking and running as well as car driving. These activities give a broad overview of how the 

bandpass filter affects different activities for all axes as well as vector magnitude at the hip. 

Additionally, this study is the first to attempt to manipulate the bandpass filter frequency range 

for the ActiGraph. 

 The results of this study are promising for the continued use of ActiGraph devices. More 

work needs to be done to refine this process but there is promise in the ability to manipulate the 

bandpass filter frequency for future research. This could lead to more accurate energy 

expenditure prediction models developed using counts obtained through a wider bandpass filter 

frequency range.  

 In conclusion, it should be noted that increasing the upper limit of the bandpass filter 

frequency range to 9.0 Hz for the ActiGraph will improve the relationship between counts and 

energy expenditure for treadmill walking and running therefore reducing the plateau effect. 

Additionally, increasing the bandpass filter frequency range for lifestyle activities can produce 

more linear results between measured METs and counts but this should be done with caution as 
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this improvement is activity-specific. Using the upper limit of 9.0 Hz for locomotive activities 

and 5.0 Hz for lifestyle activities excluding locomotive activity such as walking and running 

worked best. If the dataset contains a mix of both types of activities the default bandpass filter 

setting remains the most effective option.  
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Table 1. Physical characteristics of participants – treadmill walking, running, and car driving. 

Values are mean ± SD.  

  Male (N = 17 ) Female (N = 3) All Participants (N=20 ) 

Age (years) 24.4 ± 3.4  23.0 ± 3.0 24.2 ± 3.3 

Height (cm) 181.2 ± 5.2 168.0 ± 5.7 179.2  ± 11.3 

Weight (kg) 86.6 ± 8.3 64.8 ± 6.8 83.4  ± 11.3 

BMI (kg/m2) 26.4 ± 2.2 22.9 ± 2.1 25.9 ± 2.5 

BMI: body mass index. 

 

Table 2. Physical characteristics of participants – lifestyle activities. Values are mean ± SD. 

 Male (N = 20 ) Female (N = 10) All Participants (N = 30 ) 

Age (years) 23.1 ± 2.5   22.9 ± 1.9 23.0 ± 2.3 

Height (cm) 179.0 ± 7.6  161.8 ± 6.4 173.2  ± 10.9 

Weight (kg) 85.1 ± 15.0  59.4 ± 12.6 76.5  ± 18.7 

BMI (kg/m2) 26.4 ± 3.3  22.5 ± 3.5 25.1 ± 3.8 
BMI: body mass index. 

 

 

Table 3. Mean counts ± SD treadmill walking and running ActiGraph GT3X+ hip axis 1. 

 Speed Default  0.25-5.0 Hz  0.25-9.0 Hz  

3 km/hr 94.1 ± 27.3 189.9 ± 42.2 246.0 ± 58.0 

5 km/hr 268.1 ± 45.1*  475.3 ± 69.9* 550.2 ± 76.0* 

7 km/hr 417.1 ± 84.9* 866.2 ± 262.5* 990.4 ± 330.3* 

8 km/hr 662.3 ± 134.1* 1742.0 ± 340.1* 2037.5 ± 405.9* 

10 km/hr 728.0 ± 129.7* 2022.6 ± 312.6* 2368.7 ± 356.6* 

12 km/hr 735.5 ± 123.1 2160.0 ± 316.1* 2558.5 ± 359.3* 

14 km/hr 706.9 ± 125.5 2208.3 ± 308.1 2663.4 ± 342.5* 

16 km/hr 664.5 ± 118.5* 2237.5 ± 301.0 2754.5 ± 337.4* 

18 km/hr 603.6 ± 121.3* 2211.4 ± 336.8 2785.9 ± 368.6 

20 km/hr 543.7 ± 109.7* 2157.4 ± 339.3 2802.0 ± 386.1 

ANOVA F=75.46, df=9, p<0.001 F=267.86, df=9, p<0.001 F=156.08, df=9, p<0.001 

Average Counts per 5 seconds; * significantly different from previous speed, Alpha < p = 0.05; Default equal to 0.25-2.5 Hz 
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Table 4. Mean counts ± SD treadmill walking and running ActiGraph GT3X+ hip axis 2.  

Speed Default  0.25-5.0 Hz  0.25-9.0 Hz  

3 km/hr 109.6 ± 43.4 189.1 ± 56.0 236.6 ± 60.7 

5 km/hr 147.6 ± 43.0* 306.8 ± 80.6* 390.0 ± 98.0* 

7 km/hr 202.7 ± 56.9* 467.0 ± 117.2* 605.1 ± 145.3* 

8 km/hr 143.2 ± 65.8* 410.2 ± 133.1 570.9 ± 147.9 

10 km/hr 163.3 ± 86.8 484.6 ± 175.5* 690.8 ± 191.3* 

12 km/hr 183.4 ± 94.0* 560.0 ± 193.8* 834.0 ± 227.2* 

14 km/hr 189.8 ± 87.7 623.0 ± 186.6 956.3 ± 238.7* 

16 km/hr 210.9 ± 88.4* 689.3 ± 185.4* 1096.4 ± 263.1* 

18 km/hr 240.1 ± 98.5* 779.8 ± 191.6* 1291.7 ± 286.2* 

20 km/hr 272.4 ± 102.8 897.7 ± 169.9* 1554.5 ± 276.4* 

ANOVA F=14.92, df=9, p<0.001 F=95.70, df=9, p<0.001 F=143.04, df=9, p<0.001 

Average Counts per 5 seconds; * significantly different from previous speed, Alpha < p = 0.05; Default equal to 0.25-2.5 Hz 

 

 

 

 

Table 5. Mean counts ± SD treadmill walking and running ActiGraph GT3X+ hip axis 3.  

Speed Default  0.25-5.0 Hz  0.25-9.0 Hz  

3 km/hr 94.1 ± 54.0 126.2 ± 56.0 142.7 ± 51.9 

5 km/hr 94.4 ± 45.6 169.3 ± 64.1* 206.4 ± 65.6* 

7 km/hr 110.7 ± 64.8 239.4 ± 103.0* 308.4 ± 110.5* 

8 km/hr 142.0 ± 71.5 378.9 ± 172.9* 427.5 ± 191.4* 

10 km/hr 152.5 ± 79.3 410.1 ± 189.1 522.7 ± 205.7* 

12 km/hr 161.1 ± 76.6 428.7 ± 203.2 569.3 ± 226.5 

14 km/hr 178.5 ± 73.9  480.2 ± 202.2 647.7 ± 237.7 

16 km/hr 190.8 ± 74.3 494.5 ± 196.5 692.3 ± 229.5* 

18 km/hr 203.1 ± 64.0 525.1 ± 199.8 776.8 ± 238.0* 

20 km/hr 219.7 ± 68.2 551.1 ± 193.4 867.5 ± 246.1* 

ANOVA F=8.082, df=9, p=0.001 F=10.01, df=9, p<0.001 F=15.37, df=9, p<0.001 

Average Counts per 5 seconds; * significantly different from previous speed, Alpha < p = 0.05; Default equal to 0.25-2.5 Hz 
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Table 6. Mean counts ± SD treadmill walking and running ActiGraph GT3X+ hip vector 

magnitude.  

 Speed Default 0.25-5.0 Hz 0.25-9.0 Hz 

3 km/hr 184.7 ± 37.4 306.0 ± 51.1 377.5 ± 68.8 

5 km/hr 328.0 ± 42.1* 599.7 ± 75.6* 713.6 ± 94.7* 

7 km/hr 483.8 ± 93.8* 1024.1 ± 267.4* 1213.2 ± 337.8* 

8 km/hr 698.4 ± 142.3* 1841.0 ± 349.2* 2179.9 ± 417.5* 

10 km/hr 769.4 ± 140.6* 2135.1 ± 318.0* 2536.3 ± 368.9* 

12 km/hr 783.1 ± 135.7 2288.1 ± 327.8* 2766.0 ± 384.9* 

14 km/hr 761.3 ± 136.3 2360.0 ± 315.7 2920.2 ± 368.2* 

16 km/hr 731.2 ± 127.2 2408.4 ± 301.0 3063.2 ± 352.0* 

18 km/hr 690.1 ± 130.1* 2420.1 ± 329.8 3188.1 ± 380.6* 

20 km/hr 657.9 ± 117.0* 2417.1 ± 321.7 3341.8 ± 371.7* 

ANOVA F=46.56, df=9, p<0.001 F=452.64, df=9, p<0.001 F=250.75, df=9, p<0.001 

Average Counts per 5 seconds; * significantly different from previous speed, Alpha < p = 0.05; Default equal to 0.25-2.5 Hz 

 

 

 
Table 7: Measured metabolic equivalents (METs) by activity.  
 

Activity METS ± SD 

Supine Rest 1.45 ± 0.25 

Computer Work 1.52 ± 0.27 

Table Cleaning 2.78 ± 0.68 

Sweeping 3.39 ± 0.93 

Walking (m/min) 3.62 ± 0.85 

Stair Walking 6.48 ± 1.22 

Basketball 7.83 ± 1.72 

Tennis 7.40 ± 1.85 

Slow Running (m/min) 8.14 ± 1.48 

Fast Running (m/min) 9.68 ± 1.62 
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Table 8. Mean counts ± SD lifestyle activities ActiGraph GT9X hip axis 1. 

Activity Default  0.25-5.0 Hz   0.25-9.0 Hz  ANOVA 

Supine Rest 0.0 ± 0.04 0.0 ± 0.06 62.7 ± 68.9*# F=12.14, df=2, p<0.001 

Computer Work 0.1 ± 0.16 1.0 ± 0.98* 331.2 ± 64.6*# F=380.20, df=2, p<0.001 

Table Cleaning 32.7 ± 32.0 74.5 ± 40.2* 342.1 ± 52.0*# F=412.47, df=2, p<0.001 

Sweeping 44.7 ± 36.9 93.0 ± 42.7* 370.1 ± 57.7*# F=531.06, df=2, p<0.001 

Walking 285.1 ± 85.8 508.8 ± 158.8* 680.1 ± 145.8*# F=659.28, df=2, p<0.001 

Stair Walking 327.6 ± 56.5 551.7 ± 111.2* 709.9 ± 112.3*# F=708.26, df=2, p<0.001 

Basketball 424.3 ± 111.3 765.5 ± 200.6* 976.4 ± 207.1*# F=797.91, df=2, p<0.001 

Tennis 314.9 ± 74.6 618.9 ± 162.0* 876.9 ± 214.2*# F=203.51, df=2, p<0.001 

Slow Running 701.0 ± 121.1 1890.7 ± 307.4* 2280.9 ± 330.8*# F=565.28, df=2, p<0.001 

Fast Running 767.5 ± 107.2 2151.3 ± 257.8* 2568.8 ± 304.7*# F=742.29, df=2, p<0.001 

Average Counts per 5 seconds; * significantly different from Default, # significantly different from 5.0 Hz, Alpha < 

p = 0.05; Default equal to 0.25-2.5 Hz  

 

 

 

Table 9. Mean counts ± SD lifestyle activities ActiGraph GT9X hip axis 2 counts.  

Activity  Default   0.25-5.0 Hz  0.25-9.0 Hz ANOVA 

Supine Rest 0.0 ± 0.0  0.0 ± 0.1 256.6 ± 65.8*# F=220.70, df=2, p<0.001 

Computer 

Work 
0.7 ± 1.0 0.9 ± 1.2* 20.9 ± 34.7*# F=12.40, df=2, p<0.001 

Table Cleaning 81.8 ± 27.0 119.3 ± 36.3* 172.4 ± 50.9*# F=83.94, df=2, p<0.001 

Sweeping 104.5 ± 47.4 138.3 ± 53.0* 192.2 ± 79.4*# F=127.29, df=2, p<0.001 

Walking 165.2 ± 38.4 337.1 ± 88.7* 441.7 ± 119.3*# F=115.82, df=2, p<0.001 

Stair Walking 157.4 ± 25.0 300.9 ± 61.0* 398.9 ± 83.6*# F=162.17, df=2, p<0.001 

Basketball 266.8 ± 40.3 465.8 ± 79.5* 604.4 ± 104.1*# F=339.00, df=2, p<0.001 

Tennis 279.0 ± 33.6 469.1 ± 74.2* 607.4 ± 105.6*# F=257.39, df=2, p<0.001 

Slow Running 221.0 ± 59.1 558.0 ± 151.5* 812.6 ± 204.1*# F=195.92, df=2, p<0.001 

Fast Running 272.5 ± 69.2 732.1 ± 167.3* 1107.3 ± 237.5*# F=244.66, df=2, p<0.001 

Average Counts per 5 seconds; * significantly different from Default, # significantly different from 5.0 Hz, Alpha < 

p = 0.05; Default equal to 0.25-2.5 Hz  
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Table 10. Mean counts ± SD lifestyle activities ActiGraph GT9X hip axis 3.  

Activity Default  0.25-5.0 Hz  0.25-9.0 Hz  ANOVA 

Supine Rest 0.0 ± 0.1 0.0 ± 0.1 150.9 ± 85.4*# F=45.35, df=2, p<0.001 

Computer Work 1.8 ± 3.0 2.1 ± 3.7 50.3 ± 61.7*# F=13.59, df=2, p<0.001 

Table Cleaning 110.0 ± 53.6 120.9 ± 55.6* 134.1 ± 57.7*# F=87.57, df=2, p<0.001 

Sweeping 141.6 ± 62.8 153.4 ± 65.6* 170.8 ± 66.0*# F=65.44, df=2, p<0.001 

Walking 113.8 ± 55.5 184.5 ± 74.3* 233.7 ± 81.0*# F=95.80, df=2, p<0.001 

Stair Walking 188.1 ± 39.0 234.2 ± 41.6* 269.2 ± 50.0*# F=63.90, df=2, p<0.001 

Basketball 267.3 ± 51.5 372.1 ± 85.4* 429.3 ± 100.2*# F=155.81, df=2, p<0.001 

Tennis 289.9 ± 48.0 392.8 ± 65.4* 449.4 ± 71.8*# F=269.86, df=2, p<0.001 

Slow Running 170.8 ± 67.3 422.4 ± 160.9* 553.4 ± 180.0*# F=165.08, df=2, p<0.001 

Fast Running 213.1 ± 71.8 495.5 ± 167.6* 648.5 ± 200.4*# F=175.98, df=2, p<0.001 

Average Counts per 5 seconds; * significantly different from Default, # significantly different from 5.0 Hz, Alpha < 

p = 0.05; Default equal to 0.25-2.5 Hz  

 

 

 

Table 11. Mean counts ± SD lifestyle activities ActiGraph GT9X hip vector magnitude.  

Activity  Default   0.25-5.0 Hz  0.25-9.0 Hz ANOVA 

Supine Rest 0.0 ± 0.1 0.0 ± 0.1 323.5 ± 62.3*# F=391.28, df=2, p<0.001 

Computer Work 2.3 ± 3.1 3.2 ± 3.9* 343.3 ± 66.1*# F=391.34, df=2, p<0.001 

Table Cleaning 152.0 ± 61.9 195.5 ± 70.1* 419.1 ± 54.6*# F=540.48, df=2, p<0.001 

Sweeping 193.7 ± 80.7 236.9 ± 88.0* 463.3 ± 87.1*# F=220.23, df=2, p<0.001 

Walking 356.3 ± 83.7 645.2 ± 173.0* 849.4 ± 849.4*# F=547.99, df=2, p<0.001 

Stair Walking 418.4 ± 53.6 680.6 ± 111.7* 864.6 ± 127.9*# F=409.43, df=2, p<0.001 

Basketball 581.8 ± 112.1 985.8 ± 211.5* 1238.5 ± 231.3*# F=1008.76, df=2, p<0.001 

Tennis 527.1 ± 81.5 888.0 ± 172.2* 1169.9 ± 230.1*# F=228.45, df=2, p<0.001 

Slow Running 761.3 ± 117.8 2029.4 ± 303.0* 2499.1 ± 333.2*# F=658.36, df=2, p<0.001 

Fast Running 849.3 ± 104.0 2338.9 ± 256.6* 2888.3 ± 316.5*# F=855.74, df=2, p<0.001 

Average Counts per 5 seconds; * significantly different from Default, # significantly different from 5.0 Hz, Alpha < 

p = 0.05; Default equal to 0.25-2.5 Hz  
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Figure 1: Mean ActiGraph GT3X+ hip counts per 5 seconds by bandpass filter: A) axis 1, B) axis 2, C) axis 3, D) vector magnitude 

 



 

57 

 

 

 

 
* Significantly different from Default, # significantly different from 5.0 Hz, Alpha < p = 0.05 

 
Figure 2: Mean ActiGraph GT3X+ hip counts per 5 seconds, bandpass filter by axis – car driving 
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Figure 3: Relationship between ActiGraph GT9X means counts per 5 seconds versus measured energy expenditure [metabolic 

equivalents (METs)] for hip axis 1 by bandpass filter frequency – full activity routine: A) Default, B) 5.0 Hz, C) 9.0 Hz 
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Figure 4: Relationship between ActiGraph GT9X means counts per 5 seconds versus measured energy expenditure [metabolic 

equivalents (METs)] for hip axis 2 by bandpass filter frequency – full activity routine: A) Default, B) 5.0 Hz, C) 9.0 Hz 

 



 

60 

 

 

 

 
Figure 5: Relationship between ActiGraph GT9X means counts per 5 seconds versus measured energy expenditure [metabolic 

equivalents (METs)] for hip axis 3 by bandpass filter frequency – full activity routine: A) Default, B) 5.0 Hz, C) 9.0 Hz 
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Figure 6: Relationship between ActiGraph GT9X means counts per 5 seconds versus measured energy expenditure [metabolic 

equivalents (METs)] for hip vector magnitude by bandpass filter frequency – full activity routine: A) Default, B) 5.0 Hz, C) 9.0 Hz 
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 Figure 7: Relationship between ActiGraph GT9X means counts per 5 seconds versus measured energy expenditure [metabolic 

equivalents (METs)] for hip axis 1 by bandpass filter frequency – locomotive activities only: A) Default, B) 5.0 Hz, C) 9.0 Hz 
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Figure 8: Relationship between ActiGraph GT9X means counts per 5 seconds versus measured energy expenditure [metabolic 

equivalents (METs)] for hip axis 2 by bandpass filter frequency – locomotive activities only: A) Default, B) 5.0 Hz, C) 9.0 Hz 
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  Figure 9: Relationship between ActiGraph GT9X means counts per 5 seconds versus measured energy expenditure [metabolic 

equivalents (METs)] for hip axis 3 by bandpass filter frequency – locomotive activities only: A) Default, B) 5.0 Hz, C) 9.0 Hz 
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Figure 10: Relationship between ActiGraph GT9X means counts per 5 seconds versus measured energy expenditure [metabolic 

equivalents (METs)] for hip vector magnitude by bandpass filter frequency – locomotive activities only: A) Default, B) 5.0 Hz, C) 9.0 

Hz 
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 Figure 11: Relationship between ActiGraph GT9X means counts per 5 seconds versus measured energy expenditure [metabolic 

equivalents (METs)] for hip axis 1 by bandpass filter frequency – lifestyle activities only: A) Default, B) 5.0 Hz, C) 9.0 Hz 
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Figure 12: Relationship between ActiGraph GT9X means counts per 5 seconds versus measured energy expenditure [metabolic 

equivalents (METs)] for hip axis 2 by bandpass filter frequency – lifestyle activities only: A) Default, B) 5.0 Hz, C) 9.0 Hz 
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Figure 13: Relationship between ActiGraph GT9X means counts per 5 seconds versus measured energy expenditure [metabolic 

equivalents (METs)] for hip axis 3 by bandpass filter frequency –lifestyle activities only: A) Default, B) 5.0 Hz, C) 9.0 Hz 
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Figure 14: Relationship between ActiGraph GT9X means counts per 5 seconds versus measured energy expenditure [metabolic 

equivalents (METs)] for hip vector magnitude by bandpass filter frequency – lifestyle activities only: A) Default, B) 5.0 Hz, C) 9.0 Hz 
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Physical Activity Readiness Questionnaire (PARQ) 

 

Regular physical activity is fun and healthy, and increasingly more people are starting to 

become more active every day. Being more active is very safe for most people. 

However, people should check with their doctor before they start becoming much more 

physically active. 

 

If you are planning to become much more physically active than you are now, start by 

answering the seven questions in the box below. If you are between the ages of 15 and 

69, the PAR-Q will tell you if you should check with your doctor before you start. If you 

are over 69 years of age, and you are not used to being very active, check with your 

doctor. 

 

Common sense is your best guide when you answer these questions. Please read the 

questions carefully and answer each one honestly: check YES or NO. 

 

YES NO 1. Has your doctor ever said that you have a heart condition and that 

you should only do physical activity recommended by a doctor? 

 

YES NO 2. Do you feel pain in your chest when you do physical activity? 

 

YES NO 3. In the past month, have you had chest pain when you were not 

doing physical activity? 

 

YES NO 4. Do you lose your balance because of dizziness or do you ever lose 

consciousness? 

 

YES NO 5. Do you have a bone or joint problem that could be made worse by 

a change in your physical activity? 

 

YES NO 6. Do you know of any other reason why you should not be doing 

physical activity? 

 

I have read, understood and completed this questionnaire. Any questions I had were 

answered to my full satisfaction. 

 

 

 

Name (Print): _______________________________            

 

 

 

Signature: _________________________________ Date: _________________   
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