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Chapter 1

Introduction

Terramechanics is a discipline which studies the performance of a vehicle in relation to

the terrain characteristics. Terrain-Vehicle mechanics is a branch of terramechanics

and deals with the tractive performance of vehicle over unprepared terrain and various

obstacles. Over the years terrain models have evolved to include more and more

factors, which in turn has helped in modelling the vehicle terrain interaction better

and calculate the dynamic forces more accurately.

The various performance characteristics like tractive effort, motion resistance and

drawbar pull are determined by the shear and normal stresses on the vehicle at the

point where it is in contact with the terrain. The main issue in the modeling off-road

vehicles is to predict the vehicle-terrain interaction.

In case of the trailer this is the track-terrain interaction. A model of this interac-

tion leads to a better understanding of the forces on the vehicle in various situations.

This helps us diagnose and problems and suggest design changes.

There have been many track models suggested, most dealing with metal tracks.

The wheels in these models have been modeled as rigid bodies. There is no complete

Track model that can stand by itself independent of the vehicle. This report lists out

the concepts behind creating an independent track model that takes the deformation

of rubber tires into consideration.
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1.1 Background

An extensive survey of literature on the field of off road vehicles has been done. Some

of the models are discussed in detail, especially with regard to the track model and

track terrain interaction. A complete description of the vehicle model being used is

also presented. The methodology of modeling the vehicle in described in detail. A

lumped mass model of the track is created and implemented in this study. A set of

tests are simulated for the vehicle under different conditions. The simulated results

are compared with results from the literature. Since there are no detailed test results

available for the actual trailer the model is run through many simulations and the

results are verified to see whether they are what would be accepted as reasonable

values for a vehicle of its kind.

The model will be used to characterize the performance of the vehicle in following

criteria:

1. Performance at different speeds

2. Soil performance

3. Rough terrain performance

The Vehicle

The vehicle that is modeled here is the M200 trailer shown in Figure 1.1. This trailer

is designed to carry a 2-ton load . The trailer is most often used to carry generators.

A particular configuration is used to carry the Miclic system. Due to the trailer facing

difficulties in the field, the trailer was modified from a single-axle 2-wheeled trailer to

a single-axle 4-wheeled trailer. A walking beam was welded at both ends of the bogey

axle, wheels were attached at the ends of the walking beam and a make shift rubber

band track was wrapped around the wheels. Since the whole operation was done in

the field there is no technical data package available for the modification. Some of

the technical data like the initial track tension and the stiffness of the track are taken

from comparable vehicles.

2



Figure 1.1: M200 trailer

The Miclic system is anti-mine system that consist of rocket that fires a line of

cord lined with C4 explosives that are detonated in a mine field. The trailers that

carried this configuration had problems related to vehicle sinkage in the desert; due

to this the vehicles were modified with a walking beam and band track such that the

mean maximum ground pressure was reduced.

1.2 Objectives

The objective of this thesis is to model the U.S army M200 trailer for application in

future durability/reliability studies.

1.3 Scope

1. Formulate models for the elastic track, radial spring tyre, multibody dynamics

of the vehicle

3



2. To implement a general trailer model for a elastic rubber track over wheels in

Matlab.

3. Verify performance on soil.

1.4 Thesis overview

Chapter 2 Presents a review of the literature. Several different track models are dis-

cussed. Formulations, track connectivity and terrain models are investigated.

Methods of modeling tires are detailed.

Chapter 3 Different kinds of soils and modeling methods are described. Various

models of terrain presentation are discussed. The principles and experiments

done to calculate the various parameters are given. Bekker’s equations and

Janosi and Hanamoto’s approximations are discussed in detail.

Chapter 4 The M200 trailer model is discussed in this chapter. The basics of recur-

sive multibody dynamics are mentioned. The analysis of body position, velocity

and acceleration are presented. The various joint formulations are detailed. The

dynamic analysis of the multibody trailer model is also presented.

Chapter 5 The lumped mass track model is presented in this chapter. The track

terrain interactions and the corresponding forces are discussed. The sinkage,

pressure distribution under the track, the normal force, shear displacement,

shear force, track tension and friction forces are analyzed. The tire force and

its effect on the track and vehicle are also described.

Chapter 6 Simulations results are run for different kinds of soils and speeds are pre-

sented. These simulations help to understand the effect of the terrain geometry,

4



vehicle speed and soil type. Due to lack of any test data the model cannot be

validated it can only be verified .

Chapter 7 The various advantages of the model are discusses and conclusions are

drawn.

5



Chapter 2

Literature review

2.1 Tire models from the literature

There are many tire models that have been proposed in the past, here a few of them

are discussed in detail. Most of these models are an extension of a previous model.

2.1.1 Simple tire models

The first model is the simplest model for tires; point contact model[6]. Th point

contact model is possibly the most commonly used tire model, it is mathematically

represented by a spring and a damper in parallel as shown in Figure 2.1 this results

in a fairly good model to calculate the tire forces when tire runs over smooth, long

wave length bumps. Its accuracy decreases for rough terrain.

The rigid tread band tire model[6] also follows the same spring and damper model

as the point contact, but is mounted on a rigid wheel as shown in Figure 2.2, it experi-

ences a forcing function when the wheel moves. In this model the contact point is not

constrained to be vertically below the axle, it can move forward and backward due

to encounters with local geometry. This model filters out small wavelength bumps.

The fixed footprint model uses distributed springs and dampers to form the con-

tact model as shown in Figure 2.3. The footprint in the model is constant in size, and

6



Figure 2.1: Point contact model[4]

Figure 2.2: Rigid tread band tire model[4]

Figure 2.3: Fixed foot print model[4]

7



independent of the tire deflection. Drag forces for the above models are predicted by

assuming that the resultant tire force is always normal to the local ground profile.

2.1.2 Linear radial spring tire model

To overcome the deficiencies of the point contact model the radial spring model was

suggested. It uses angularly distributed, independent, linear spring elements as shown

in Figure 2.4 [6]. This model has the capability of accurately simulating the tire en-

velopment of small surface irregularities. It accurately predicts the tire forces over

long wave length ground profiles. This tire model suits are needs for the simulation

and was used in this research.

The mathematical formulation for this model is as follows,

R − Z

R − Xj
= cosΘj (2.1)

XjcosΘj = R(cosΘj − 1) + Z − Zw (2.2)

Fvj = KXjcosΘj (2.3)

Fhj = Fvj ∗ tanΘj (2.4)

Fv =

n∑
j=1

Fvj (2.5)

Where Zw is the vertical displacement of the wheel, Xj is the linear displacement of

the element, Fvj , Fhj are the vertical and horizontal forces due to element j and Z is

the height of the bump.

8



Figure 2.4: Radial spring tire model [4]

2.1.3 Quadratic radial spring tire model

Quadratic radial spring tire model was suggested by Phillips and Cook [4]. This uses

radial quadratic spring elements to better approximate the non-linear load deflection

curve for a given tire. This model assumes that springs can deflect independent of

each other. Only elements in contact with the obstacles are affected; the elements

that are not in contact are fully extended to the radius of the tire.

Frj = D1Erj + D2E
2
rj (2.6)

The vertical component of force on flat ground in the element j is

Fvj = FrjsinΘi (2.7)

Where D1 is the linear spring constant, D2 is the quadratic spring constant, Frj

radial force on tire element j Fvj is the vertical force component due to tire element

j

The total vertical force is calculated by summing the vertical force due to each

tire element, is equal to

Fv =

N∑
j=1

Fvj (2.8)

9



Figure 2.5: Radial-interradial tire radial model[4]

The total drag force can be calculated using the relation

Fd =

N∑
j=1

Fvi/tanΘj (2.9)

2.1.4 Radial-interradial spring tire model

In this model shown in Figure 2.5 there are interradial springs that connect adjacent

radial springs, thereby making the deflection of a particular element dependent on

the deflection of its neighboring elements. This predicts more accurately the vertical

and drag forces when the tire is not completely supported by the ground or is in con-

tact with an obstacle. Two types of radial models were proposed, linear radial-linear

interradial model and the quadratic radial -linear interradial spring model[4].

The mathematical models for both the models are as follows

Linear radial-Linear interradial spring tire model

The radial force on element j is as follows

Frj = C1Erj + k(2Erj − Erj−1 − Erj+1)i = 2, 3, ..., n − 1 (2.10)

10



Fr1 = C1Er1 + k(Er1 − Er2) (2.11)

Frn = C1Ern + k(Ern − Ern−1) (2.12)

Fv =
n−2∑
j=2

[FrjsinΘj] + Fr1sinΘ1 + FrnsinΘn (2.13)

Where C1 is the linear spring constant,Frj radial force on tire element j Fvj is

the vertical force component due to tire element j.Erj is the radial displacement of

the tire element.c1 and k must be determined from a tire deflection curve and two

simultaneous equations.

Quadratic Radial-Linear Interradial tire model

The radial force in element j is

Frj = C1Erj + C2Erj2 + k(2Erj − Erj−1 − Erj+1)i = 2, 3, ...., n − 1 (2.14)

Fr1 = C1Er1 + C2Er12 + k(Er1 − Er2) (2.15)

Frn = C1Ern + C2E
2
rn + k(Ern − Ern−1) (2.16)

Fv =
n−2∑
j=2

[FrjsinΘj] + Fr1sinΘ1 + FrnsinΘn (2.17)

Where C1 is the linear spring constant, C2 is the quadratic spring constant, and Frj

is the radial force on tire element j. Fvj is the vertical force component due to tire

element j. C1,C2 and k must be determined from a tire force deflection curve and 3

simultaneous equations.

2.2 Track models

There are many individuals and groups of people doing research on tracked vehicles.

A large collection of papers on the subject of tracks and track-terrain interaction

exists. In this section some of those papers will be investigated.
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2.2.1 Approaches to modeling

J.Y.Wong[8] wrote a paper about terramechanics, in which he discusses the measure-

ment of various parameters of the soil using the cone penetrometer and bevameter

techniques. The paper also discusses the various methods of approach to terrame-

chanics. These methods are:

1. Empirical approach

This method came into being to circumvent the difficulty in modeling the inter-

action between an off-road machine and the terrain. Vehicles are tested in on

various different types of soils, the soil parameters are also calculated using sim-

ple measurements. The values are then empirically correlated. This gives us a

scale between the two parameters. Nowadays this method is used to empirically

correlate some performance parameters of tires with mobility numbers based on

the cone index. This method has had some success but cannot work for certain

type of sands, the empirical relationship is valid only within a specific range for

which it was tested. Thereby extrapolation of the relationship need not be valid.

2. Theoretical approach

The theory of plastic equilibrium is applied to the soil, this generally provides

a good insight into the physical nature of the machine-terrain interaction and

can establish a theoretical reference with which performance of off-road vehicles

can be compared under ideal conditions. There are some limitations to the

application of the theoretical method for prediction of performance of vehicles.

The theory of plastic equilibrium is based on the assumption that the terrain

behaves like a rigid plastic material, the terrain does not deform much till

the stress it reaches a point where failure occurs, beyond this point the strain

increase rapidly while the stress remains constant. Most terrains do not display

this property. The theory of plastic equilibrium is mainly concerned with the

prediction of the load that will cause failure of soil, it does not really deal with

deformation of soil under load.
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Figure 2.6: The chassis subsystem [12]

3. Semi-empirical approach

Many different semi-empirical methods for predicting off-road performance have

been proposed, the most commonly used of them is based on the bevameter tech-

nique. In this model terrain characteristics like pressure-sinkage relationship,

shear strength and response to repetitive loading obtained using the bevameter

technique, are used as inputs. Vehicle parameters like weight, track dimension,

track tension, and road wheel arrangement and dimension, are taken into ac-

count. The normal and shear stress distributions, normal pressure and motion

resistance are the outputs from this model. This is the approach followed for

calculation of the parameters in this particular model.

2.2.2 Mettalic tracks

Nakanishi and Shabana[12] modeled a hydraulic excavator tracked vehicle as shown

in Figure 2.6. The vehicle is modeled as two kinematically decoupled systems, having

a total of fifty five degrees of freedom. The track is modeled as a closed kinematic

chain that consist of fifty four rigid links connected by revolute joints as shown in

13



Figure 2.7: Track subsystem [12]

Figure 2.7. The track has forty two degrees of freedom. To define the track con-

figuration in global coordinate system, the author choose two translation cartesian

coordinates, the other forty coordinates are chosen as rotational angles. Dependent

coordinates are expressed in terms of the independent angles using the described loop

closure equations. The dependent velocities and accelerations are calculated in terms

of the independent variables by the differentiating the loop equation, these in turn

has been used to calculate the velocity and acceleration equations for the track links.

The solution for the nonlinear dynamics for the multi-body equations are obtained

by the authors, using two different methods. The methods are described below

The first method is based on the principle of formulating nonlinear algebraic

equations are adjoined to the differential equations using the technique of legrange

multipliers. The independent coordinates of the tracked vehicle are identified and the

associated state equations are integrated for the independent joints and velocities.

Iterative Newton-Raphson algorithm is used to solve the constraint equations.
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Figure 2.8: Finite element analysis [10]

In the second method in order to avoid the use of Newton-Raphson algorithm in

solving the mixed system of differential and algebraic equations of motion, a velocity

transformation method is used. The dependent coordinates, velocities are obtained

in terms of the independent coordinates.

Both the results agree quiet well, but the second method only uses 54 percent of

the cpu time than the first method.

Sarwar, Nakanishi, and Shabana [10] investigated the chain link deformation in the

nonlinear dynamics of tracked vehicles. The purpose of the study is to demonstrate

the errors that may result from the use of static-force analysis. The track model

presented in this paper is the used. In the analysis presented in this paper assumes

that the deformation of the steel track links does not have a significant effect on the

rigid-body motion of the tracked vehicle. The results of this analysis as shown in

Figure 2.8 proves that the dynamic stresses can be significantly different from the

static stresses. This is due to the fact that dynamic stress analysis takes into effect

the time history of forces.

In their paper about modeling of agricultural vehicles Gianni and Roberto [5], look

at the steerability, ride characteristics and prediction of ground pressure distribution
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Figure 2.9: Forces acting on track
[5]

an tractive forces. A three dimensional model of the agricultural tracked vehicle is

developed which has 8 degrees of freedom and two independently applied sprocket

torques as applied input. While looking at steerability the track is assumed to behave

as though it were sliding on the ground, the terrain is assumed to be non deformable

in the analysis of the vehicle ride characteristics. A two dimensional static model

of track-terrain interaction has been developed, as shown in Figure 2.9, the track is

divided into four parts an upper run supported by rollers a lower run in contact with

the ground and the sections in contact with the idler and the sprocket. The interac-

tion along the track is averaged and the internal forces acting at the pins are ignored,

to gain computational efficiency in the numerical solution of the overall model. While

calculating the shear stress the track is assumed to be infinitely stiff horizontally, so

the track cannot expand, the speed of slip of the track with reference to the ground

is is the same for every point of the track in contact with the terrain. The shear

displacement under the track is as shown in Figure 2.10. The parameter analysis is

based on the bevameter technique proposed by Bekker [9]. The dynamic model gives

satisfactory results, however the model to simplified to provide a realistic description

16



Figure 2.10: Shear displacement in forward motion [5]

of the dynamics of the overall tracked vehicle system.

Dhir and Sankar[2] created a computer simulation model for predicting the dynam-

ics of off-road tracked vehicles. A two-dimensional tracked vehicle model is developed

as shown in Figure 2.11, with detailed analytical representation of the trailing arm

suspension and dynamic wheel-track-terrain interaction. The wheel-track-terrain in-

teraction is modeled via an improved adaptive footprint formulation. The track is

made of steel tracks interconnected with rubber pads of both the inner and outer

surfaces. The terrain is assumed to be a non-deformable. The terrain profile is mod-

eled like a set of linear segments adjoining the coordinates of successive points. It

is represented by a table containing horizontal and vertical coordinates of successive

points, the values of the intermediate points are calculated by linear interpolation.

The kinematics of the vehicle model is described by 2+N generalized coordinates.

The track sag is calculated by using a quadratic polynomial approach, which per-

mits a direct visualization of track sag as shown in Figure 2.12 as a function of track

tension. The track connectivity for the track is modeled as shown in Figure 2.13.

The horizontal and vertical forces due to the dynamic vehicle-terrain interaction
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Figure 2.11: In plane model representation of high-mobility tracked vehicle [2]

Figure 2.12: Force consideration of track sag [2]
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Figure 2.13: Track connectivity [2]

are computed. The suspension forces and moments are computed based on the road

arm orientation. The equations of motion are integrated based on hammings modified

predictor-corrector method.

2.2.3 Elastic band tracks

The model that the present research is primarily derived from is based on the thesis

by Corina Sandu [3]. In this study the track is modeled as a continuous flexible belt.

The band has only longitudinal elasticity and therefore one degree of freedom. This

model is used for straight line testing. This model takes into account the moment of

inertia of the road wheel and it adds friction force model at the at the road wheel-

track interface. It is a scalar model. The assumptions that are made are that the

track doesn’t slip on the sprocket, or the idler, the track is quasi static and the track

tension acts along the tangent to the wheel at the wheel track separation point. The

suspension of each road wheel is modeled using rotational spring dampers. The way

the track is modeled there is no shear between the road wheels. The track is modeled

as a single force element. The track terrain interaction is modeled in detail, the

19



Figure 2.14: Trackpost[3]

vehicle-terrain interaction is modeled using relationships developed by Bekker [9] and

Wong [7]. A detailed connectivity algorithm is written, which divides the track into

segments as shown in Figure 2.14. The forces on each of the track segments are shown

in Figure 2.15.

Connectivity Algorithm

1. Track segment wrapped around the idler

2. Track segment along the common tangent between the first road wheel and idler

3. Track segment around the sprocket

4. Lower portion of the track, in contact with the road wheel and ground.

5. Upper portion of the track segment between the sprocket and the idler

After calculating the track-terrain interaction forces and wheel-track forces the

tensions for the whole model are calculated.
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Figure 2.15: Track segments[3]
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Chapter 3

Terrain

3.1 Soils

There are various forms of soil. Soils are classified in many different ways to suit

different purposes, these are used by different fields like engineering, agricultural

ventures and military. The basic classification from a geological perspective is as

follows

1. Alluvial soils :- Deep deposits of homogenous soil particles like clay soils and

sandy soils

2. Moraine soils :- Mixture of soil particles of different sizes, Moraine soils are often

shallow because the rock bottom is near the surface.

3. Organic soil :- Organic terrain consist of a mat of living vegetation on the surface

and a layer of saturated peat beneath it.

The soils are also classified from a engineering perspective as friction and cohesion

soils. In terramechanics, the main distinction is made between friction and cohesion

soils because the typical behavior under the wheel loads differs. The main features of

each type are listed in table 3.1
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Table 3.1: Main trafficability features of friction and cohesion soils[11]
Friction soil Cohesion soil
Changes in water content have small When wet very poor trafficability,
variation in trafficability but increases toward drier conditions
Soil density plays a remarkable role Soil moisture plays a remarkable role
in trafficabilty in trafficability
Trafficability increases under repetitive Trafficability worsens after soil
loading increases upto a certain strength disturbance, and soil have only

residual strength

3.1.1 Soil bearing capacity

The soil bearing capacity differs according to the method used to measure it. In

the forest, soil bearing capacity is usually considered as the maximal allowable wheel

contact pressure. The actual wheel contact pressure however, is difficult to assess

because the true contact area depends on tire and soil properties. In the WES method,

the soil bearing capacity is linked directly to the soil penetration resistance, and the

Cone index can be considered as an indicator of bearing capacity. Soil engineering

studies the sinkage of the wheel or track, which in turn is the output of various soil

models developed. The input for these soil models vary. Bekker’s [9] model uses the

concept of flotation as a description of soil bearing capacity. The method is based

on the elastic theory, in which the load sinkage relationship is measured using round

plates with different diameters. The constants are calculated from the load-sinkage

curve.

3.2 Terrain

The evaluation of terrain-vehicle interaction is based on a number of parameters which

pertain to both the terrain and the vehicle. Off-road vehicles will have to work in

physical environments that contain plants, ice, snow, water, surface soils, natural and

artificial static objects etc. Investigation of terrain-vehicle relationships with respect

to mechanical efficiency of motion and effectiveness of mission accomplishment led to

the usage of mathematical models of terrain. These models involved the physical and
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geometrical properties of the terrain. These mathematical models yield definition of

design and performance parameters, which in turn lead to optimization of vehicle

concept.

The two most commonly used terrain models are based on the cone-penetrometer

and bevameter test. During World War II, the Americans and British developed

methods to measure the various parameters of the soil. The Americans used a non-

recording penetrometer equipped with a conical head to define soil trafficability; resis-

tance to penetration encountered by the cone was empirically was correlated with ’go’

and ’no go’ performance of the vehicle. The British military developed a penetrom-

eter with a circular plate and a recorder to plot the constant rate load-penetration

curve for the measured soil. In the early 1950’s Dr.Bekker [9] created a mathematical

model for the vertical and horizontal stress strain relationship, with the help of data

from a bevameter. A common bevameter is shown in Figure 3.1. This mathematical

model is still used widely.

3.2.1 Bevameter test in homogenous and non-homogenous
soils

Mechanical properties of soil like soil failure are defined by the stress-strain rela-

tionships. Due to lack of rigorous and practical solutions for soil failure, only semi-

empirical methods have been able to define such relationships for predicting vehicle

performance and design parameters. For a successful semi-empirical solution to be

created, it is important to make sure that the loading condition of both the vehicle

and soil measuring apparatus are as similar as possible. Since the horizontal and

vertical loads produced by the vehicle are balanced by the soil thrust and motion

resistance, a formulation for the vertical and horizontal stress-strain relation can be

calculated from any such model. A bevameter as shown in Figure 3.1, is a suitable

device to measure the terrain values.

This type of instrumentation affects the readings quiet a bit, the instrument that

best simulates vehicle ground contact areas are those with rectangular or annular

plates, which shear the terrain under predetermined vertical loads, that correspond to
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Figure 3.1: A model of a bevameter[9]
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the vehicle ground pressure. This technique can be used to determine both the vertical

and horizontal stress-strain relationship. The vertical stress strain relationship is

described as follows.

An experimentally proven fact [9]; that if a plate penetrates soil to depth z under

pressure p then the empirical curve can be fitted with equation

p ∼= kz0.5 (3.1)

Where k is the modulus of inelastic deformation and 0.5 is the exponent of sinkage.

After numerous tests and computation a more generalized formulation was achieved.

p = [(kc/b) + kϕ]zn (3.2)

Where kc and kϕ are cohesive and frictional moduli of deformation, these are

insensitive to plate radius and width. b is the smaller dimension of the loading area.

The parameters kc, kϕ and n can be calculated if two test with 2 different radii are

conducted. With a two plate bevameter, each test produces two curves, on a log-log

scale they represent the following equations.

ln p1 = ln [(kc/b1) + kϕ] + n ln z (3.3)

ln p2 = ln [(kc/b2) + kϕ] + n ln z (3.4)

From the following equations kc, kϕ and n can be easily calculated. This formulation,

which only works for homogeneous soils, fits most natural conditions, due to the fact

that in shallow depth soil behaves as if it were homogeneous. This model fails under

certain circumstances. The constants are insensitive to the plate size only if the test

plate deforms the soil the same way the vehicle deforms it. In some soils small plate

sizes do not deform the soil the way the vehicles do, the other factor in determining

the minimum are impurities in the soil and localized density functions. Due to these

defects the formulation does not work very well when scaled, therefore cannot be used

in analyzing the terrain-vehicle interaction for small robots etc.
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The model also calculates the horizontal shear-strain relationship. The horizontal

stress strain relationship is based on the coulomb’s equation τ = (c+p tanϕ). Where

shear stress τ is related to two parameters, cohesion, ’c’ and friction ’ϕ’ . The plotting

of τ(j) curves for various normal loads p serves to determine the envelope of Mohr

circles based on coulomb’s criterion of soil failure. From this envelope we can deduce

the values of c and ϕ.

To account for the slip of the vehicle, the Coulomb-Micklethwaite equation can

be modified as follows.

τ = (c + p tanϕ)(exp[(−k2 +
√

k2
2 − 1)k1j] − exp[(−k2 −

√
k2

2 − 1)k1j] (3.5)

Where k1 and k2 are slip coefficients and j is the amount of soil deformation that

produces stress τ .

The equation was approximated for soils that behave as a plastic by Janosi and

Hanamoto [7] as follows.

τ = (c + p tanϕ)(1 − e−j/k) (3.6)

Where k is the slip coefficient. c, ϕ and k are found from fitting curves into

empirical data collected under simulated vehicle action.

Figure 3.2 represents the pressure under a tire.

3.2.2 Cone penetrometer

Another method of determining soil characteristics is the cone penetrometer as shown

in Figure 3.3 , here the soil drag and soil thrust are lumped into one value called the

cone index. cone index is defined in terms of the average load exerted by the soil upon

a conical head forced into the ground to the depth to which the vehicle is expected to

act. The head of the penetrometer is generally a 30-degree cone with a base area of 2
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Figure 3.2: Pressure under the tire[7]

Figure 3.3: Cone penetrometer[9]
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square inches. The cone index is empirically correlated with ’go,’no go’ performance

of many existing vehicles. The towing force is also empirically correlated with the

cone index, at the moment immobilization appears maximum, towing force equals

approximately the maximum soil thrust. The ratio of that force to vehicle weight

also gives a measure of maximum negotiable slope[9].

The cone index does not discriminate between vehicle creep and high speed, it is

commonly used by field operators who want to know whether their vehicle can move

in a given area. The simplicity of the penetrometer make it possible to use it in

studies of trafficabilty for remote and inaccessible areas.

Due to continuous loading and unloading, strength and soil characteristics some-

times change, due to this additional remolding test become necessary. In this a test

a soil sample is remolded by drop hammering it, the cone index is measured before

and after the remolding; the ratio between the original cone index(CI) to the re-

molded cone index is the remolding index(RI). Another concept of soil consistency is

derived from this. The rating cone index expresses the soil strength at a point that

is subjected to sustained traffic. It is given by the formulation,

RemoldedConeIndex = (ConeIndex ∗ RemoldingIndex) (3.7)

3.2.3 Penetrometer vs Bevameter

The differences between the penetrometer and bevameter methods are as follows

1. The bevameter technique applies to all soils and snows, it consist of a number

of penetration and shear test, and measures a number of soil parameters. The

penetrometer technique was conceived for measuring soil consistency in fine

grained soil, measures only one parameter.

2. The correlation between the bevameter data and the vehicle design and per-

formance parameters is achieved through experimentally tested mathematical

model, whereas the correlation of cone indices with the ’go’, ’no-go’ parameters

is achieved by empirical correlation.
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3. Several parameters that are calculated using the bevameter method contain

more information about the soil than the single parameter calculated using

the cone penetrometer. Cone index does not provide enough information for

concept or design evaluation of terrain vehicle systems.

The cone index(CI) can be calculated from the bevameters parameters kc, kϕ, n.

The approximate formulation is as follows

CI = 1.625{ kc

n + 1
[(z + 1.5)n+1 − zn+1] + 0.517kϕ[

(z + 1.5)n+2

(n + 1)(n + 2)

+
zn+2

n + 2
− (z + 1.5)zn+1

n + 1
]}

(3.8)

3.3 Model used in the research

The models used in this research follow Bekker’s and Wong’s formulae.

1. Homogenous soil :- In this type of soil it is assumed that the soil is homogenous

by nature within the depth of interest. the sinkage pressure relationship is the

one proposed by Bekker[9].

pi = (
kc

b
+ kϕ)zn (3.9)

Where p, z represent the pressure and sinkage respectively, b is the smaller of

the dimensions of the track. The rest are pressure sinkage parameters.

The shear due to this pressure is represented by

τ sh = c + ptan(φsh)(1 − e
j

ksh ) (3.10)

Where c is the cohesion of the soil, φsh is the soil angle of shearing.
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2. Organic soil:- The organic terrain consist of a layer of living vegetables on the

surface and a layer of peat below it. An empirical relationship for soil that fit

this description was empirically calculated by Wong.

pi = kpzi +
4mmz2

i

Dh
(3.11)

Where zi and pi are the sinkage and pressure respectively, kp is the stiffness

parameter of the peat, mm is a strength parameter for the surface layer, and

Dh is called the hydraulic diameter of the contact area.

For organic soil, the shear stress initially increases with displacement and reaches

a maximum where the ”shear off” of the mat is initiated. The shear stress is

given by

τ sh = τ sh
max

j

Kw
e1−(j/Kw) (3.12)

Where Kw is the shear displacement where the maximum shear stress τ sh
max

occurs.
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Chapter 4

Vehicle model

4.1 Tracked vehicle model

Traditionally mathematical models created for tracked vehicles combined both the

track and the vehicle to form one single model. This made it quiet difficult to change

the track model to suit any other vehicle. Most models did not include large numbers

of degrees of freedom for the sake of saving computing time. The complexity of the

vehicle model depends on the amount of information one wants about the overall

performance of the vehicle.

For the purpose of this study a recursive dynamics model [1] is chosen to simulate

the vehicle. All computations are performed using relative coordinates. The model

is simple and accurate for rigid body motion.

The track model is created as a separate module, such that it can be easily adapted

to suit and any kind of of tracked vehicle combined with, the vehicle model,it helps

us analyze whether the track model is able to correctly predict the track-terrain

interaction for a tracked vehicle.
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4.2 Formulation of the model

The trailer model developed in this study uses the recursive dynamics [1] for the

formulation. This formulation if explained here for a pair of bodies with relative

motion between them . Let x0 y0 z0 be the global coordinates for the systems body i

(inboard body) can be located by the position vector ri from the origin in the global

frame to the origin (oi) of the body frame x
′
i y

′
i z

′
i . Ai is the transformation matrix,

that transforms any vector in the body i reference frame to the global reference frame.

A joint reference frame, x
′′
ijy

′′
ijz

′′
ij, is defined and fixed on body i at the joint connection

O
′′
ij , which is located at a distance sij from the origin Oi. The the origin (O

′
j) of joint

reference frame x
′
jy

′
jz

′
j of body j (outboard body) is located at a distance of dij from

the joint reference frame of body i. The joint reference frame of body j is also located,

at a distance of rj from the origin of the system in the global reference frame.

Reference frames for each successive body in the kinematic chain are defined in the

same way as those for body i.

The local coordinate reference frame of each body can be defined anywhere, generally

it is more advantageous to place all the coordinate reference frames at the center of

gravity.

The present vehicle model formulation considers the chassis to be the base body. All

bodies except the chassis have both an inboard and an outboard body. The chassis

is connected to the axle by a combination revolute-translational joint. The axle is

connected to the left and right walking beams by means of revolute joints. The

wheels are attached to the ends of the two walking beams using revolute jopints. The

configuration and the respective formulations will be explained later in the chapter.

Except for the base body, all the reference frames are placed at the center of gravity.

4.2.1 Position analysis

Once position of body i is located, position of body j can be easily located by the

position vector given by

rj = ri + sij + dij (4.1)
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In Eq( 4.1) ri represents the global position of coordinate reference frame for body i,

sij represents the the body fixed vector from the body i reference frame to the joint

reference frame of body i, dij represents the vector that connects that connects the

joint reference frame of body i to joint reference frame of body j. In Eq( 4.1) all the

vectors are expressed with respect to the global reference frame.

The vector s
′
ij is a fixed vector which connects the body reference frame to the joint

reference frame of body i. It can be expressed as

sij = Aijs
′
ij (4.2)

where in the global reference frame Aij represents the transformation from body

reference frame of i to the global reference frame,s
′
ij is a constant vector represented

in the local coordinates. The vector dij is represented as follows

dij = AiCijd
′′
ij (4.3)

In Eq (4.3) d
′′
ij is the joint vector represented in terms of the joint reference frame

of body i, Cij is the constant relative transformation matrix from body reference of

body i to the joint reference frame. Cij is the orthonormal transformation matrix, in

this study Cij is an identity matrix everywhere, except for the joint reference frames

between the axle and the walking beams.

The global transformation matrix for body j can be represented as

Aj = AiCijAij (4.4)

where Aij represents the relative transformation between bodies i and j.

Aij =


cos θj − sin θj 0

sin θj cos θj 0
0 0 1


 (4.5)

Where θj is the relative coordinate of the revolute joint.
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4.2.2 Velocity analysis

The velocity of body j can be expressed using relative coordinates and velocities by

differentiating Eq (4.1) with respect to time. It can be expressed as

ṙj = ṙi + ṡij + ḋij (4.6)

by expanding ṡij and ḋij we can represent the same equation as follows

ṙj = ṙi + Ȧis
′
ij + ȦiCijd

′′
ij + ȦiCij

∂d
′′
ij

∂qi
q̇i (4.7)

Where q̇j is the relative generalized coordinates of the joint connecting bodies i and

j, Ȧi is the time derivative of the body orientation matrix, which can be represented

in terms of the local angular velocity, ω̇
′
i, or in terms of the global angular velocity,

ω̇i, as follows

Ai = Aiω̃
′
i = ω̃iAi (4.8)

Where ω̃ is defined

ω̃ =


 0 −ωz ωy

ωz 0 ωx

ωy ωx 0


 (4.9)

substituting this in Eq (4.7) we get the global velocity of body j in terms of the

relative coordinates is

ṙj = ṙi + ω̃isij + ω̃idij +
∂dij

∂qi
q̇i (4.10)

ȦiCij
∂d

′′
ij

∂qi
=

∂dij

∂qi
q̇i (4.11)

The body fixed joint reference frame vector sij can be substituted in the velocity

Eq (4.10) as sij = rj − ri − dij , thereby eliminating it. This is done as follows
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ṙj = ṙi + ω̃i(rj − ri − dij) + ω̃idij +
∂dij

∂qi
q̇i (4.12)

ṙj = ṙi + ω̃irj − ω̃iri +
∂dij

∂qi
q̇i (4.13)

ṙj = ṙi + r̃iωi − r̃j(ωj − ωij) +
∂dij

∂qi
q̇i (4.14)

Using the definition

ωij = Hj(Ai,qj)q̇j (4.15)

This can be substituted in the velocity equation to get are final form of the equation.

ṙj + r̃ijωj = ṙi + r̃iωi +
(

∂dij

∂qi
+ r̃jHj(Ai,qj)

)
q̇j (4.16)

[
ṙj + r̃jωj

ωj

]
=

[
ṙi + r̃iωi

ωi

]
+

[
∂dij

∂qi
+ r̃jHj(Ai,qj)

Hj(Ai,qj)

]
q̇j (4.17)

The equation can be written in a simpler format by substituting

Ŷj =

[
ṙj + r̃jωj

ωj

]
(4.18)

and

Bj =

[
∂dij

∂qi
+ r̃jHj(Ai,qj)

Hj(Ai,qj)

]
(4.19)

Ŷj is the state velocity vector and Bj the velocity transformation matrix. Substitut-

ing this in Eq 4.17 we get

Ŷj = Ŷi + Bjq̇j (4.20)
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The Cartesian velocity vector, denoted Yk, can be expressed in terms of the state

velocity vector, Ŷk as

Yk =

(
ṙk

ωk

)
=

[
I −r̃k

0 I

](
ṙk + r̃kωk

ωk

)
(4.21)

4.2.3 Acceleration analysis

The acceleration of the state velocity vector can be calculated by differentiating

Eq (4.20) with respect to time.

˙̂Yj = ˙̂Yj + Bjq̈j + Ḃjq̇j (4.22)

The Cartesian accelration vector can be derived from the state accelration vector as

follows,

Ẏk =

[
I −r̃k

0 I

]
˙̂Yk +

[
I − ˙̃rk

0 I

]
Ŷk (4.23)

4.2.4 Joint formulation

The vehicle model that is presented in this study consist only of revolute and translation-

revolute joints, therefore only the following joint formulations will be presented in this

study.

Revolute joint

A revolute joint and the positions of its joint reference frames are presented in Fig-

ure 4.1. An assumption that is made in the derivation of the formulation of a revolute

joint is that a pair of coordinates of the joint reference frames coincide.

Since dij and d
′′
ij are equal to zero,

rj = ri + sij (4.24)
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Figure 4.1: Revolute joint[1]
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The transformation matrix Aj for the joint is as following

Aj = AiCijAij (4.25)

Where Aij is an orthonormal rotation matrix about a single axis. The generalized

coordinate associated with the joint is its rotation θj . In the figure, the axis of rotation

is the Z axis

The rotation matrix for rotation about Z axis is given by

Aij =


cos(θj) − sin(θj) 0

sin(θj) cos(θj) 0
0 0 1


 (4.26)

Revolute joint velocity analysis

Since the revolute joint as shown in Figure 4.1 is represented as a rotation about a

single axis vector, the relative angular velocity between the bodies can be expressed

as follows:

ωij = AijCijω
′′
ij = AijCiju

′′
ijq̇j = uijq̇j (4.27)

Where uij is the unit vector about which the rotation occurs.In the figure this is the

Z axis. By substituting this in Eq 4.15 we get the Hj to be

Hj(Ai,qi) = uij (4.28)

Given that dij = 0, Bj the velocity transformation becomes

Bj =

[
r̃uij

uij

]
(4.29)
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Revolute joint acceleration transformation

The remaining value that has to be calculated for a revolute joint is the Ḃjq̇, this

term can be calculated by differentiating Bj

Dj =

[
˙̃rjuij + r̃ju̇ij

u̇ij

]
q̇j (4.30)

substituting

u̇ij = ω̃iuij (4.31)

Dj =

[
˙̃rjuij + r̃jω̃iuij

ω̃iuij

]
q̇j (4.32)

Translational joint

The assumption that is made in the translation joint is that one pair of axis are

coincidental and oriented along the direction of translation as shown in Figure 4.2.

The position of body j is calculated as follows

rj = ri + sij + dj (4.33)

The global transformation matrix for body j can be expressed as follows

Aj = AiCijAij (4.34)

For a translation joint the relative transformation, Aij is I.

By orienting dij in the direction of translation we get

dij = qjuij (4.35)

Where uij is the direction of translation.
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Figure 4.2: Translation joint[1]
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Translational joint velocity transformation

Since the relative velocity of the two bodies connected by the translational joint is

represented by a change in the length of the dij vector; the relative angular velocity

between the two bodies is zero, therefore Aij

ωj = ωi (4.36)

Hj(Ai,qi) = 0 (4.37)

The Bj matrix can be expressed as

Bj =

[
∂dij

∂qi

0

]
=

[
uij

0

]
(4.38)

Translational joint acceleration transformation

The Dj vector for a translational joint can be found by differentiating Bj with respect

to time as follows

Dj =

[
u̇ij

0

]
q̇j =

[
ω̃iuij

0

]
q̇j (4.39)

4.3 Dynamic formulation of the vehicle model

The dynamic formulation of the vehicle model follows the principles presented in the

NADS document [1].

The equation of motion for the tracked vehicle model can be written in a matrix

format as follows,

M̄¨̄q = Q̄ (4.40)
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Where M̄ is the articulated inertia matrix

M̄ =




K1 K2B2 K3B3 K4B4 · · · K8B8

BT
2 K2 BT

2 K2B2 BT
2 K3B3 · · · BT

2 K8B8

BT
3 K3 BT

3 K3B2 BT
3 K3B3 BT

3 K4B4 · · · 0
...

...
...

...
. . .

...
BT

8 K8 BT
8 K8B2 0 0 · · · BT

8 K8B8


 (4.41)

q̈ =




ẍ
ÿ
z̈

ω̇x

ω̇y

ω̇z

θ̈2

θ̈3
...

θ̈8




(4.42)

Q̄ =




L1

B′
2(L2 − K2D2)

B′
3(L3 −K3(D2 + D3))

B′
4(L4 −K4(D3 + D4))

B′
5(L5 −K5(D3 + D5))

B′
6(L6 −K6(D2 + D6))

B′
7(L7 −K7(D6 + D7))

B′
8(L8 −K8(D6 + D8))




(4.43)

The terms Ki and Li are calculated from the equations given below,

Km =
n∑

i=m

M̂i (4.44)

Li = Li+1 − Ki+1Di+1 + Q̂i (4.45)

For each body the mass matrix Mi and the force vector Qi are given as the following
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Mi =

[
miI −miρ̄i

miρ̄i Ji

]
(4.46)

Qi =

[
Fi − miω̃iω̃iρi

ηi − ω̃iJiωi

]
(4.47)

For each body the generalized velocity state mass matrix, M̂i, and the generalized

force vector, Q̂i are expressed in terms of Mi, Qi and the state transformation matrix

Ti as stated below

M̂i = T′
iMiTi =

[
miI −mi(r̃i + ρ̃i)

mi(r̃i + ρ̃i) Ji − mi(r̃ir̃i + ρ̃ir̃i + r̃iρ̃i

]
(4.48)

Q̂i = T′
i(Qi + MiRi) =

[
Fi + mi

˙̃riωi − miω̃iω̃iρi

ηi + r̃iFi − ω̃iJiωi + miρ̃i
˙̃riωi + mir̃i

˙̃riωi − mir̃iω̃iω̃iρi

]
(4.49)

Where mi is the mass of body, ρi is the distance from the joint to the center of

gravity, Ji is the inertia of the body in the global reference frame, Fi is the total force

applied to body i and ηi is the total torque applied to the body i.

4.4 External forces

4.4.1 Translational spring damper actuators

The leaf springs in this trailer are modeled as a translational spring damper actuators,

these are placed in-between the base body and the axle. The forces acting between

the pair of bodies are equal and opposite. The co-ordinates for TSDA are shown in

Figure 4.3. Pi and Pj are locations where the ends of the TSDA are connected. The

vector dij is the distance between them and is calculated as follows,

dij = rj + sji − ri − sij (4.50)
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Figure 4.3: Translation spring damper actuators[1]
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The length between the two point is given by,

l = (dT
ijdij)

1
2 (4.51)

The rate of change of length is as follows,

l̇ =
1

L
dT

ij(ṙj − s̃jiωj − ṙi + s̃ij) (4.52)

The magnitude of the force is,

f = k(l − l0) + cl̇ (4.53)

where c is the damping coefficient and k is the spring constant. The corresponding

Cartesian space generalized forces acting on body i and j are

Qi =
f

l

[
dij

s̃ijdij

]
(4.54)

Qj = − f

l

[
dij

s̃ijdij

]
(4.55)

4.4.2 Rotational spring damper actuator

The rotational spring damper actuators (RSDA) is shown in Figure (4.4). The friction

between the axle and the walking beam is modeled using an RSDA. The RSDA

generates a torque between the pair of bodies. The magnitude of torque

n = kθ(θ − θ0) + cθθ̇ (4.56)

Where kθ is the spring constant, cθ is the damping coefficient. Due to the fact

that this is used to model friction damping, the stiffness factor is made zero kθ = 0

The torque vector acts along uij , the axis of rotation of the joint connecting bodies i

and j.
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Figure 4.4: Rotational spring damper actuator[1]

The velocity state space generalized forces associated with the RSDA are

Q̂i =

[
0

nuij

]
(4.57)

Q̂j = −
[

0
nuij

]
(4.58)

4.5 The layout and algorithm for the current model

The layout of the trailer is shown as a tree-structure in Figure 4.5 starting from the

base body, the layout shows,

1. Frame

2. Translation revolute joint that connects the Frame to the axle

3. Axle

4. Revolute joints that connect the axle to the walking beams
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Figure 4.5: Layout of the vehicle
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5. Walking beams

6. Revolute joints connecting the walking beam to the wheels

7. Wheels
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Chapter 5

Track model

This chapter details the rubber band track model used. It is a dynamic, spatial model,

the model takes into account the moment of inertia of the road wheels, shear between

the track and the road. The suspension components of the vehicle are also taken into

account and is modeled using a translation spring damper actuators. It takes into

account the tire deformation and develops a complete track connectivity algorithm.

5.1 Model description

There are many types of tracks available like Continuous rubber belts, Metal tracks,

Track with grouser. There are many environments where tracked vehicles are used and

there are also different design criteria. This model is designed to represent continuous

elastic track belts .

The rubber band track model has one degree of freedom, the model is used for

straight line testing with without obstacles, rough terrain and different soil charac-

teristics, the model does not give results for steering maneuvers. The shear force is

calculated by taking the track terrain interaction with the soil, this depends on the

soil characteristics the sinkage of the vehicle. The model does not take into account

the vibration modes of the track.

The track model is completely described by:

1. Track-wheel-terrain interaction – This defines the forces on the track due to the

track terrain interaction, forces on the wheel due to the interaction between the
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wheel and the terrain; and the interaction between the track and the wheel.

2. Track connectivity algorithm – This defines how the track wraps around the

wheels and terrain features, takes into account the various possible track terrain

situations.

3. Soil model – This describes the terrain type and its features, this is essential to

model the track-terrain interaction accurately

The principle difference between this model and the previously described ones

is that this model involves deformable tires. The deformable tire in this model is

modeled using a radial spring tire model. The track is modeled as discrete elements

such that their interaction with the ground as well as the interaction of the track with

the radial springs of the tire. There are few assumptions made with the track terrain

interaction, it is assumed that the soil is plastic by nature and there is no rebound,

this is done due to the fact that there is no terrain model that accurately models

the rebound in terrain; this assumption does not affect the model due to the fact

that most soils tend to act like a plastic material rather than elastic model; the other

assumption is that the bumps in the terrain are made of concrete, this assumption is

made due to the nature of the test course. The terrain data also has no memory of

previous deformations.

The algorithm that is followed in this model is as follows.

1. Locate the positions of the two wheels and calculate the positions of the radial

springs of the tire

2. Calculate the tire deflection and the tire forces generated due to it

3. Locate the positions of each of the track elements

4. Calculate the shear forces generated due to track terrain interaction

5. Calculate the tension in each track element

6. Calculate the forces due to the track tension
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7. Calculate the change in length in the track, using which calculate the track

tension for the next time step

5.2 Location of the radial springs, calculation of

tire deflections and tire forces

The location of the tire and the joint location of the walking beams are found from

the multi-body vehicle model at each time step. Using the following locations and

the rotation of the walking beam the positions of the radial springs relative to the

wheel center are calculated as follows

xi = sin(i ∗ 5) ∗ (R + t) (5.1)

yi = 0 (5.2)

zi = cos(i ∗ 5) ∗ (R + t) (5.3)

Where R is the radius of the tire and t is the thickness of the track, xi, yi and zi

are the relative positions of the radial spring element. The entire tire is described by

radial springs set 5 degrees apart.

di = [xi, yi, zi] (5.4)

Di = rw + Adi (5.5)

Where Di is the global position of the radial spring element rw is the position of the

wheel and A is the rotation about the walking beam Here A is a rotation about the

y axis, given as
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Figure 5.1: Tire deflection

A =


cos θ − sin θ 0

sin θ cos θ 0
0 0 1


 (5.6)

As per Figure (5.1) we can calculate the tire deflection

cos θi =
R − Z

R − X
(5.7)

R − Z = R cos θi − X cos θi (5.8)

X = (R cos θ − R + Z)/ cos θi (5.9)

Since the soil is plastic by nature the ground level for the second tire will be different

from the ground level for the first tire, this is taken into account by adding the ground

level to the formulation. This is illustrated in Figure( 5.2)
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Figure 5.2: Ground profile
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X =
(R cos θi − R + Z + ground)

cos θi

(5.10)

Taking the vertical displacement Zi into account the formula changes as follows.

X =
(R cos θi − R + Z + ground − Zi)

cos θi
(5.11)

For each time step the undeflected positions of the radial springs are calculated.

The deflected length of the radial springs are calculated by equating the forces gen-

erated by the radial springs and the force generated by the soil due to sinkage. Due

to the fact that the pressure generated by the soil sinkage is a nonlinear equation it

cannot be solved using matrices, so a simple iterative method is used to equate the

forces generated by sinkage and forces due to tire deflections.

ts ∗ defi = ss ∗ sinkagen
i (5.12)

Where def and sinkage are the tire deflection and the soil sinkage respectively, ts is

the stiffness of the radial spring and ss is the soil stiffness.

ss = (Kc/b + Kφ) (5.13)

Kc and Kφ are soil constants, b is the width of the tire.

The horizontal and vertical forces generated are as follows

Fh =

n∑
i=1

ts ∗ Xi ∗ sin θi (5.14)

Fv =
n∑

i=1

ts ∗ Xi ∗ cos θi (5.15)

Fv and Fh are the vertical and horizontal forces generated by the tire deflection.
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5.3 Track connectivity algorithm

After the deflection of the tires are calculated, the position of the track can be found.

The track is divided into many massless units. The track is made of three components;

The component around the first tire, the component track between the wheels, the

component around the second tire. To make the solution for the component around

the tires easier, each track unit is associated with a radial spring.

Track around the front tire

The vertical and horizontal positions of the track around the tire is found using Eq 5.5

are as follows

tx = Dix (5.16)

ty = Diy (5.17)

tz = Diz − defi (5.18)

ti = [tx, ty, tz] (5.19)

Track between the wheels

The track between the wheels is divided into a fixed number of units. The location

of these units are calculated from the last unit in contact with the tire. The direc-

tion of the tangent to the last element C is used, the assumption is that the track is

tangential to the tire. The distance

The following algorithm is used to calculate the position of the track elements

ti+n = tn + C ∗ nu ∗ j
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Figure 5.3: Bump between the wheels

where C is the tangential direction and nu is distance between the wheels divided

number of track elements between the wheels.

If the height of the track element is less than the ground level plus the height of the

terrain the it is assumed that the track element is on the surface, otherwise the track

element follows the ground profile as shown in Figure 5.3

IF t(i+n)z < ground + Z then t(i+n)z = ground + Z ELSE it remains the same

If the horizontal position of the track element lies within the horizontal extremes of

the front tire then it is checked whether the vertical position of the track element falls

inside the tire, if so it is changed to fit the tire profile as shown in fig 5.4.

IF t(i+n)z >
√

R2
f + t2(i+n)x then t(i+n)z =

√
R2

f + t2(i+n)x
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Figure 5.4: Tire on top of bump
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If the horizontal position of the track element lies within horizontal extremes of the

rear tire, then it is checked whether the vertical position of the track element falls

inside the tire, if so it is changed to fit the undeflected tire position and this is the

position of the undeflected position of the radial spring. The position of the track is

calculated after calculating the deflection of the radial spring.

IF t(i+n)z >
√

R2
f + t2(i+n)x then t(i+n)z =

√
R2

f + t2(i+n)x

where t(i+n)z is the undeflected length, after the tire deflection is calculated

t(i+n)Z = t(i+n)Z − defi+n

Track around the second tire

The track around the second tire is wrapped the same way as the track around the

first tire, where each element is associated with a radial spring.

tx = Dix (5.20)

ty = Diy (5.21)

tz = Diz − defi (5.22)

t(n+nu)+i = [tx, ty, tz] (5.23)

5.4 Forces generated by track terrain interaction

In this model it is assumed that there is no slip between the tire and the track,

therefore the forces generated by the track is essentially is done by the shear forces

generated by the interaction of the track with the terrain.
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The slip of the track is calculated by using the following formulation.

AV ti = V bb + ω̃wbposti (5.24)

TV = ri ∗ ωwheel (5.25)

Since this model is not designed to simulate turns, we only calculate the horizontal

slip.

slip = 1 − AV ti/TV (5.26)

Where AV ti is the actual track velocity for track element i, V bb is the velocity of the

base body, ω is the rotational velocity of the walking beam and posti is the distance

from the walking beam to the track element, TV is the theoretical track velocity

Using the track slip and the pressure under the track we can calculate the shear force

for homogenous soil using the Janosi-Hanamoto [9] approximation. The shear stress

produced is as follows.

τ sh = τ sh
max(1 − e−

slip

Ksh ) (5.27)

τ sh = (c + p tan(φsh))(1 − e−
slip

Ksh ) (5.28)

Where p is the pressure under the track, c is the constant which depends on the water

content.

The shear stress of the track between the wheels is calculated by calculating the

normal force on the ground due to the bending of the track around the bump.

shear = K ∗ Slip (5.29)

60



ELEMENT 1(t1)

ELE
M

ENT 
2 

( t
2 

)

WHEEL
CENTER(rw)

RADIAL SPRING

R
A

D
IA

L S
P

R
IN

G

Figure 5.5: Track elements

5.5 Track tension

As per the free body diagram of each track element around the tire as shown in

Figure (5.5). For each equation the forces are balanced, For the first element

T1 ∗
[
t1x − t2x

t1z − t2z

]
+ F ∗

[
t1x − rwx

t1z − rwz

]
= To ∗

[
C1

C3

]
(5.30)

For the other elements the formulation is as below

Ti ∗
[
tix − t(i−1)x

tiz − t(i−1)z

]
+ F ∗

[
tix − rwx

tiz − rwz

]
+ T(i+1) ∗

[
tix − t(i+1)x

tiz − t(i+1)z

]
(5.31)

=

[
τsh

0

]
(5.32)

For the elements between the wheels,

Ti ∗
[
tix − t(i−1)x

tiz − t(i−1)z

]
+ F ∗

[
0
1

]
+ T(i+1) ∗

[
tix − t(i+1)x

tiz − t(i+1)z

]
(5.33)
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=

[
τsh

0

]
(5.34)

The whole tension matrix, The following substitutions in notation Krix = t1x −
rwx, Kiz = t1z − rwz, Ktix = tix − t(i+1)x, Ktiz = tiz − t(i+1)z

T =




Kr1x Kt1x 0 0 · · · · · · 0 0 0 0
Kr1z Kt1z 0 0 · · · · · · 0 0 0 0

0 −Kt1x Kr1x Kt2x · · · · · · 0 0 0 0
0 −Kt1x Kr1x Kt2x · · · · · · 0 0 0 0
...

...
...

. . .
. . .

. . .
. . .

. . .
...

...
0 0 0 · · · · · · −Kt(i−1)x 0 Ktix 0 · · ·
0 0 0 0 0 −Kt(i−1)z 0 Ktiz 0 · · ·
...

...
...

. . .
. . .

. . .
. . .

. . .
. . .

...
0 0 0 0 · · · · · · · · · −Kt(i−1)z Kr1z Ktiz




(5.35)

U =




F1

T1
...
...

Fn

Tn




(5.36)

B =




Cx ∗ To
Cz ∗ To

τi

0
...
τn

0




(5.37)

TU = B (5.38)

The track tension for the next time step is the initial track tension plus the tension

change due to the change in length.

To = To + (originallength − currentlength) ∗ K2 (5.39)
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Figure 5.6: Torque around the wheels

Forces due to the tension on the vehicle

The values of U give the force along the direction of the track and along the direction

of the radial spring or the normal to the ground. These forces are used to calculate

the torque for each wheel, horizontal and vertical forces due to the track tension.

For calculating the torque about the front tyre, we have to locate the last element

in contact with the tire dnf , since in this model the tension is always considered to

act along the track, we locate the direction between last element in contact with the

tire and next element (drfw). The track is assumed to be always tangential to the

tyre on the top. Therefore knowing both the directions and forces we can calculate

the torque. for the front tire as shown in Figure (5.6).

Torque at the wheels is

Torf = d̃nf(drfw ∗ U(2nf)) − d̃1(C ∗ To) (5.40)

Similarly the torque for the rear tire is

Torr = d̃nr(drrw ∗ U(2nr)) − d̃n(C ∗ U(2n)) (5.41)

The tension also produces a horizontal force which will try and slow the vehicle, this
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force also manafastises itself as the drawbar pull on the vehicle and a vertical force.

Since we know the forces due to tension in the direction of radial springs their com-

ponents in the horizontal and vertical direction can be easily calculated. Forces due

to tension on the tires,

[
horizontali
verticali

]
=

[
U(2i − 1) ∗ tix − rwx

U(2i − 1) ∗ tiz − rwz

]
(5.42)

The total horizontal and vertical forces are

horizontal =
n∑

i=1

horizontali (5.43)

vertical =
n∑

i=1

verticali (5.44)

5.6 The algorithm

1. The locations of all wheels are obtained from the vehicle model

2. The locations of all the radial springs are calculated for the tires

3. The tire deflection of the front tire is calculated

4. The location of the track elements around the front tire and the between the

wheels are calculated

5. The new ground level is calculated

6. The tire deflection of the rear tire is calculated

7. The position of the track elements around the rear tire are calculated

8. The slip and shear for all track elements are calculated

9. The tension matrix is formed and the new tensions are calculated
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10. Torque, horizontal and vertical forces are calculated for both the wheels

11. New track length is calculated to determine the tension for the next time step
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Chapter 6

Results

The trailer is expected to perform in desert conditions, therefore the model is tested

in sand and sandy loam at various speeds. Since there is no test data available

there is no way the simulation results can be validated, therefore the simulation data

are qualitativley compared to what might be expected for a vehicle running on the

ground. The shear stress generated and the sinkage of the vehicle is compared with

the theoretical values and available data for comparative vehicles.

6.1 Test of trailer model without the track model

First the vehicle model is tested to see whether it is able to run on the ground. The

following test are run on the trailer vehicle model, with the tire represented as a

single spring. The track model is not included in this set of simulations To test the

initial vehicle model dynamic settling is done. The trailer is then dragged at slow and

high speeds. No particular soil type is used to test the trailer model. The ground is

assumed to infinitely stiff and thereby only the tires deflect. The height of ground is

0.

The simulation is run as follows

1. The vehicle model is dropped from a certain height.

The Figure (6.1) represents the position of the center of gravity on the Z, Fig-

ure (6.2) and Figure (6.3) represent the position of center of gravity of the axle

on the Z and the length of the translation joint.
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Figure 6.3: Length of translation joint(dropped)

2. The trailer model is dragged at slow and high speed ([1 m/s-3.6 km/h] and [10

m/s-36 km/h)

Figures 6.4 and Figure 6.5 represent the center of gravity of the frame on the

Z and the horizontal position of the center of gravity of the frame respectively

when the trailer is run on flat terrain at a velocity of 1 m/s without the track

elements. The ground level is zero.

Figures 6.6 and Figure 6.7 represent the center of gravity of the frame on the

Z and the horizontal position of the center of gravity of the frame respectively

when the trailer is run on flat terrain at 10 m/s without the track elements.

The ground level is zero.
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70



6.1.1 Conclusions

From the results of the simulations run on the vehicle model it can be seen that,

1) The frame of the vehicle comes to a steady state. 2) The trailer reaches static

equilibrium. 3) All the bodies of the trailer are still attached to the vehicle. 4)The

vehicle moves in a straight line. From these we can safely assume that the trailer

model works.

6.2 Performance at different speeds

In this test the multibody vehicle model of the trailer is implemented along with the

track model and radial springs tire model. A damping element is added at the joint

connecting the axle to the walking beam, this is to be an equivalent viscous damper

for friction between the bogey-axle and the walking beam . The track model is tested

for two different soil conditions and three different speeds under which the trailer will

normally be operated

1. The vehicle is run at slow speed (1 m/s) on sandy loam

2. The vehicle is run at medium speed (5 m/s) on sandy loam

3. The vehicle is run at high speed (10 m/s) on sandy loam

4. The vehicle is run at slow speed (1 m/s) on sand

5. The vehicle is run at medium speed (5 m/s) on sand

6. The vehicle is run at high speed (10 m/s) on sand

6.2.1 Test of track model- sandy loam

The track model is first simulated using the sandy loam as soil. The soil characteristics

are published in the Theory of Ground Vehicles by J.Y.Wong. The vehicle is run at

three different speeds and the response values are noted. The Vehicle is run at three

different speeds, slow speed(1 m/s), medium speed(5 m/s) and high speed(10 m/s).
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Figure 6.8: Vertical position of frame(sandy)

The Z value of the vehicle center of gravity, the angle of the walking beam, length

of translation joint and the rotational velocity of the vehicle are plotted with respect

to the X value of the vehicle center of gravity for each of the cases. The grpahs are

compared to see the effect of speed on the model.

Figure 6.8 is the Z value of the vehicles center of gravity for each of the speeds

plotted against the X value of the center of gravity of the vehicle. Figure 6.10 is the

angle of the walking beam for each of the speeds. Figure 6.12 and Figure 6.11 are the

length of the translation joint and the rotational velocity of the vehicle for the three

speeds. Figure 6.9 plots the vertical position of the walking beam and the tires.

From the test that were run on sandy loam at different speeds we can observe the
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following

1. The vehicle settles down and moves on the ground

2. From the rotational velocities of the front tires for the three different speeds,

Figures 6.11, it can be noted that at steady state the slip ratio is the same.

3. From Figure 6.8 it can be seen that the vertical position of the frame remains

the same at different speeds.

4. The angle of the walking beam also like the vertical position does not change

at steady state.

5. Though the transient values change according to the speed, at steady state the

vehicles behaves the same at different speeds.

The same results are noted when the vehicle is run over sand. The results are pre-

sented below.

6.2.2 Test of track model- sand

The track model is simulated using the sand as soil. The soil characteristics are

published in the Theory of Ground Vehicles by J.Y.Wong. Just as for sandy loam the

vehicle is run at three different speeds and the response values are noted. The Vehicle

is run at three different speeds, slow speed(1 m/s), medium speed(5 m/s) and high

speed(10 m/s). The Z value of the vehicle center of gravity, the angle of the walking

beam, length of translation joint and the rotational velocity of the vehicle are plotted

with respect to the X value of the vehicle center of gravity for each of the cases. The

grpahs are compared to see the effect of speed on the model.

Figure 6.13 is the Z value of the vehicles center of gravity for each of the speeds

plotted against the X value of the center of gravity of the vehicle. Figure 6.15 is the

angle of the walking beam for each of the speeds. Figure 6.17 and Figure 6.16 are the

length of the translation joint and the rotational velocity of the vehicle for the three

speeds. Figure 6.14 plots the vertical position of the walking beam and the tires.
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Figure 6.13: Vertical position of frame(sand)
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Figure 6.16: Rotaional velocity of the wheels(sand)
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Table 6.1: Theoritical shear vs Actual shear
Slip Shear from model Theoretical shear
.8 44 67
1.8 311 374
9.7 553 654
14.7 815 905
20.29 973 1135
26.2 1045 1322
33.2 1301 1496

6.3 Soil performance

The vehicle is run on different soils to check the performance characteristics. The

vehicle is run with different weights to check the effect of change in weight on sinkage

and other parameters. The vehicle is run with different slip values to calculate the

effect of slip on the shear force. The following test are run to see the effect of soil.

Figure 6.18 is the sinkage of the vehicle on three different soils. The Figures 6.20

and 6.21 are the shapes of the track when run on different soils. Figure 6.19 is

the shear under the wheel. Figure 6.22 is the shear of the wheel plotted against the

slip. Table 6.2 is compartive results between the theoritical sinkage and the sinkage

calculated by the model. Table 6.1 is the comparitive results between the theoritical

shear and the shear calculated by the model. Figure 6.23 is the bar chart of the

theoritical and actual shear.

1. The vehicle is run on sandy-loam, sand and clay

2. The vehicle is run with different weights

3. The vehicle is run with different slip values
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Figure 6.18: Comparative results between three different soils
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Table 6.2: Theoritical sinkage vs Actual sinkage
Weight (Kg) Theoretical sinkage (m) Actual sinkage (m)

504 .0028 .0014
554 .0030 .0015
604 .0032 .00155
654 .0033 .0016
704 .0035 .00165
754 .0037 .0017
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Figure 6.24: Vertical position of frame(1m/s)

6.4 Performance on rough terrain

The vehicle was run on the Belgian block course at different speeds to check the way

the vehicle behaves on rough terrain.

Figures 6.24 and 6.25 are the positions of the frame when the vehicle is run at slow

and high speeds over the belgian block course respectivley. Figures 6.26 and 6.27 are

the plot of the vertical position of all bodies when the vehicle is run on the Belgian

block course at slow and high speed respectively.
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Chapter 7

Conclusions and future work

7.1 Conclusions

This model was created to model the dynamics of a trailer with rubber band track.

The thesis set out to model the dynamics of the trailer, tire and the rubber band

track around the tires. This model was created for application in future durabil-

ity/reliability studies.

The model for the trailer takes into account the track-terrain interaction in detail.

The soil is modeled using Bekker’s equations as explained in chapter 3. A multibody

dynamics model was put together to model the dynamics of the trailer as explained

in chapter 4. A radial spring model is used to represent the tires in this model.

The rubber band track is modeled with emphasis on the track-tire and track-terrain

interaction. Chapter 6 details all the test that are done and the corresponding results.

The following conclusions can be drawn from the results presented.

1. The vehicle reaches steady state at all speeds and all the different soil conditions

are which the model has been tested. This proves a correct and consistent

behavior of the vehicle model.

2. From the positions of the wheels, it can be seen that the sinkage of the vehicle

changes with respect to soil. This is consistent with the behavior that would

be expected; the vehicle sinkage depends only on the soil parameters[9]. Differ-

ent soils have different stiffness properties therefore the sinkage of the vehicle
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changes with respect to the soil. Clay is stiffer than sandy loam which in turn

is stiffer than sand, the sinkage of the vehicle follows the same pattern. The

vehicle sinkage does not change with respect to the vehicle speed. This con-

trary to what might be expected. This phenomenon is due to the fact that the

soil model does not account for soil rebound or rate of change of sinkage. The

sinkage is instantaneous and therefore is not affected by the vehicle speed, for

each time step regardless of the vehicle speed the sinkage values is the same.

3. It can be noted that the slip ratio for the vehicle is maintained at different

speeds; the rotational velocities at steady state maintain the same slip ratio.

The rate of the increase of velocity initially changes. These two trends are what

would be expected, since the soil remains constant only the vehicle weight will

affect the slip ration at steady state. The rate of increase will change with

respect to the vehicle speed.

4. It can be seen that at steady state the angle of the walking beam changes with

respect to soil and does not change with respect to the vehicle speed. In real

conditions one would expect these values to change; this change is not noted

in the simulations due to the fact that the soil model does not account for any

rebound. The vehicle sinkage is instantaneous, therefore does not change with

respect to speed, only changes with respect to the weight of the vehicle and the

soil.

5. It can be seen that the front wheel is always situated above the rear wheel This

due to the fact that the soil is plastic and therefore as the front wheels rolls

over the soil it flattens the ground and the ground level is assumed to be the

lowest point of the front wheel. It can also be seen that the track follows the

tire profile and the track between wheels also follows the expected path.

6. The vehicle is unable to simulate correctly the mean maximum ground pressure

due to the fact that in the model there is no sinkage between the wheels. This

is due to the fact that there is no bending stiffness in the tracks and therefore
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the track is assumed to lie flat on the ground.

7. The shear forces for different slips and the sinkage for different weights are

tabulated. These values are compared to the theoretical values. The theoretical

values are calculated for a flat plate of area 0.12m2. The values match quiet

well. All the values are within the limits one might expect. There is a significant

difference between the theoretical and actual sinkages. This is due to the fact

that the actual sinkage takes into account the deflection of the tires and the

fact that theoretical values are meant for a flat rectangular plate.

8. Figure represent the plot of shear with respect to the slip. The curve is similar

to other curves generated by studies done by Dr. J. Y. Wong[7]

From all the above test we can conclude that the track model functions well on

different soil at different speeds. The model also is able to simulate the vehicle moving

on the Belgian block course.

From the results of the simulations conducted it can be concluded that this model

is suitable for use in future durability/reliability studies. The models deficiencies

are primarily due to the lack of a good soil model. The model can be improved by

adding bending stress to the track. The parameters of the model like the number

of elements, stiffness etc can be modified. The tire and track forces are calculated

accurately. This model further can be used as a test bed for improving the soil model.

The rate of sinkage could be added as a parameter to the soil model. The results of

the simulations could be used to calculate the rate of sinkage of the soil.

7.2 Future work

This model works effectively for straight line testing on different soils. The data

computed from the simulations have not been verified due to the unavailability of test

data on the vehicle. The model has only been verified. There are many limitations

to this model. The model does not accurately predict the Mean Maximum Ground

pressure due to the fact that the track does not have any bending stiffness. Due to
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this the track between the wheels is assumed to have no sinkage at all, therefore not

contributing to soil resistance to sinkage. Due to the limitations of the soil model the

sinkage of the vehicle at all speeds is the same. In this model the upper part of the

track is not modeled, it is assumed that the upper part of the track just deflects to

take care of the extra tension developed when the vehicle starts moving. The upper

part of the track has to be modeled accurately to increase the accuracy of the model.

This model also does not work when the vehicle is turned, the lateral forces are not

calculated in the model. The model can be improved in the following ways.

1. Due to the fact that there is no available test data for the particular trailer,

the model was not verified. To improve the model and change some of the

parameters the results got from the simulation have to be compared with test

data.

2. Addition of bending stiffness to the model is an important step to increase

the accuracy of the model. This in turn will help predict the effect of the

trailer running over large bumps as well as improve the prediction of the mean

maximum ground pressure.

3. An accurate model of the soil; which includes rebound and rate of sinkage,

has to be developed. This model will in turn help in predicting the sinkage

characteristics better. The rate of sinkage of the soil will help in modeling the

effect of speed on the trailer.

4. Develop a model to describe the upper portion of the track to improve the

connectivity algorithm and acquire a more complete picture of the tension in

the track.
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