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ABSTRACT 
 

The forest products industry is a significant contributor to the U.S. economy 

contributing six percent of the total U.S. manufacturing gross domestic product (GDP), 

placing it on par with the U.S. automotive and plastics industries.  Sustaining business 

competitiveness by reducing costs and maintaining product quality will be essential in 

the long term for this industry.  Improved production efficiency and business 

competitiveness is the primary rationale for this work.  A challenge facing this industry is 

to develop better knowledge of the complex nature of process variables and their 

relationship with final product quality attributes.  Quantifying better the relationships 

between process variables (e.g., press temperature) and final product quality attributes 

plus predicting the strength properties of final products are the goals of this study.  

Destructive lab tests are taken at one to two hour intervals to estimate internal bond (IB) 

tensile strength and modulus of rupture (MOR) strength properties. Significant amounts 

of production occur between destructive test samples.   

In the absence of a real-time model that predicts strength properties, operators 

may run higher than necessary feedstock input targets (e.g., weight, resin, etc.).  

Improved prediction of strength properties using boosted regression tree (BRT) models 

may reduce the costs associated with rework (i.e., remanufactured panels due to poor 

strength properties), reduce feedstocks costs (e.g., resin and wood), reduce energy 

usage, and improve wood utilization from the valuable forest resource.   

Real-time, temporal process data sets were obtained from a U.S. particleboard 

manufacturer.  In this thesis, BRT models were developed to predict the continuous 
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response variables MOR and IB from a pool of possible continuous predictor variables.  

BRT model comparisons were done using the root mean squared error for prediction 

(RMSEP) and the RMSEP relative to the mean of the response variable as a percent 

(RMSEP%) for the validation data set(s).  Overall, for MOR, RMSEP values ranged 

from 0.99 to 1.443 MPa, and RMSEP% values ranged from 7.9% to 11.6%.  Overall, for 

IB, RMSEP values ranged from 0.074 to 0.108 MPa, and RMSEP% values ranged from 

12.7% to 18.6%.  
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CHAPTER I. INTRODUCTION 

Wood composite products (e.g., particleboard) is a name given to a material that 

is manufactured by binding the strands, fibers, particles, or veneers of wood, together 

with adhesives, to form composite materials.  These products are engineered to precise 

design specifications, which are tested to meet national and international standards.  

Wood composite products are growing in popularity with the forest products industry 

because design can be done to meet application-specific performance requirements, 

products have improved wood recovery (i.e., can be made from waste wood or other 

non-merchantable wood with defects), increased product reliability, etc.  These products 

are growing in popularity with consumers because they provide the consumer with the 

natural warmth and beauty of wood, versatility, and availability in a wide variety of 

thicknesses, sizes, and grades, etc. Wood composite products are used in a variety of 

applications, such as home construction, commercial buildings, and industrial products.  

The forest products industry is an important contributor to the U.S. economy.  

The U.S. forest products industry accounts for approximately six percent of the total 

U.S. manufacturing gross domestic product (GDP), placing it on par with the U.S. 

automotive and plastics industries (American Forest and Paper Association 2010). The 

industry generates more than $200 billion a year in sales and employs approximately 

900,000 people earning $50 billion in annual payroll (American Forest and Paper 

Association 2010). The industry is among the top 10 manufacturing employers in 42 

states (American Forest and Paper Association 2010).     
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Sustaining business competitiveness by reducing costs and maintaining product 

quality will be essential in the long-term for this industry.  One of the challenges facing 

this industry is to develop better knowledge of the complex nature of process variables 

and their relationship with final product quality attributes.  Quantifying the relationships 

between process variables (e.g., line speed, press temperature, etc.) and final product 

quality attributes (e.g., internal bond tensile strength, modulus of rupture, etc.) is the 

goal of this thesis.  The final quality attributes of interest in this study are internal bond 

(IB) tensile strength and modulus of rupture (MOR) (i.e., flexural strength).  IB tensile 

strength is measured as the tensile strength perpendicular to the surface.  Importantly, 

increasing the amount of smaller particles (i.e., density) and/or resin used to create a 

board increases IB tensile strength (Gamage 2007).  MOR strength is defined as the 

ultimate bending strength of the board, which is generally determined after a static 

bending test (Gamage 2007).  MOR strength is an extremely important property that 

“controls the usability” of a board as a building element (Gamage 2007).  In this thesis, 

both IB and MOR are measured in megapascals (MPa).   

Of at least as great an importance as the number of process variables and the 

often complex inter-relationships as related to final product attributes, is the delay 

between the time at which a destructive test sample is taken at the output end of the 

production line and the time at which the strength characteristics of this sample (e.g., IB, 

MOR, etc.) have been determined in a testing laboratory.  This delay can be one to 

three hours in particleboard.  In the absence of a real-time model that predicts 

mechanical properties, it is difficult to optimize production and correct for possible poor 
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mechanical properties of the final manufactured product.  Improved prediction using 

boosted regression tree (BRT) models can directly influence minimizing the risk of 

producing hours of defective or off-grade product, or hours of production that is 

unnecessarily over-engineered and of higher cost.  Prediction using BRT models can 

possibly reduce the costs associated with rework (i.e., remanufactured panels due to 

poor strength properties), reduce feedstocks costs (e.g., resin and wood), reduce 

energy usage, and improve wood utilization from the valuable forest resource.  

Improved production efficiency and business competitiveness are essential for the wood 

composites industry and are the primary rationale for this work. 

The remaining thesis is organized into the following chapters.  Chapter II of this 

thesis is a literature review focusing on the main topics of this thesis.  The literature 

review begins with a brief history and description of wood composites.  A specific 

subgroup of wood composites known as “engineered wood products” is discussed.  

Since the data sets analyzed in this thesis are from a U.S. particleboard manufacturer, 

some discussion and background information on particleboard production, which is an 

engineered wood product, is provided.  Next, the research literature related to the topic 

of data mining is reviewed.  The development of data mining from “knowledge discovery 

in databases” (KDD) is summarized.  The large number of the methodologies that are 

used in data mining and the evolution of the machine learning research community as 

part of the statistical research community are encapsulated.  An emphasis is given on 

data mining practices as related to large data sets.  Several data mining tasks are 

mentioned, but more detail is presented on predictive modeling is the only task given its 
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relevance to the research of this thesis.  “Decision trees,” which is a machine learning 

and/or data mining predictive modeling technique, is reviewed.  A synopsis of decision 

tree methods and advantages of decision trees for predictive modeling are given.  

“Boosting” is elaborated on and the genesis of boosting is discussed, e.g., the ensemble 

method of boosting allows for the combination of “base classifiers” (also known as weak 

learners) to produce a committee whose performance can be significantly better than 

that of any of the base classifiers (Freund 1995).  The history of the AdaBoost algorithm 

(Freund and Schapire 1997), one of the first and most popular boosting algorithms, and 

various research applications of the AdaBoost algorithm are mentioned.  Next, the idea 

of boosted decision trees, which combines the ideas of boosting and decision trees, as 

well as various studies using boosted decision trees for predictive modeling are 

discussed.  Finally, the relevance of real-time predictive modeling (using boosted 

decision trees) for engineered wood product strength properties is mentioned.  Also, 

numerous studies on real-time predictive modeling of final product quality 

characteristics of wood composites using statistical methods are cited.  

In Chapter III, a summary of the statistical and data mining methods used to 

predict MOR and IB is given.  More information is provided on regression trees for 

prediction and the CART algorithm (Breiman et al. 1984) in particular.  The general 

construction of a regression tree is mentioned.  More importantly, since the CART 

algorithm for regression trees is used in Chapter IV of this thesis, the process of this 

algorithm is discussed in detail.  Next, the topic of BRT is also introduced.  Given that 

regression trees generally having poor predictive power, the boosting technique is used 
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to enhance the predictive performance of regression trees.  The combination of these 

two techniques (i.e., boosting and regression trees) and the design for producing an 

improved predictive a model is introduced.  After mentioning the topic of BRT, the 

Stochastic Gradient Boosting algorithm (Friedman 2002) is explored.  This is the 

algorithm that is used to build the hundreds of BRT models discussed throughout this 

thesis.  The software (STATISTICA) used to perform all of the statistical analysis for this 

study is presented.  Information on the various parameters used to control the BRT 

algorithm of STATISTICA is discussed in detail.  The basic of idea of missing value 

imputation and the imputation methods used in this thesis are briefly mentioned in this 

chapter.  Further discussion on these techniques is provided in Chapter V.  The 

statistical methods used in Chapter IV are slightly different than the statistical methods 

used in Chapter V, and these differences are highlighted.   

Chapter IV summarizes a manuscript that was developed as part of the thesis 

which is an analysis of BRT and CART regression tree models for predicting MOR and 

IB strength metrics.  The particleboard data set obtained from a U.S. particleboard 

manufacturer is discussed in detail.   

 Chapter V summarizes an analysis that compares several different missing value 

imputation methods using BRT models for predicting MOR and IB.  Three different 

imputation methods (i.e., median, expectation-maximization, and last observation 

carried forward) and one non-imputation method are compared.  Four different data sets 

corresponding to each of these four methods are discussed.  These data sets are 

similar to the data set used in Chapter IV in that they were provided by the same U.S. 
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particleboard manufacturer, but have been imputed due to missing values.  An analysis 

comparing the different imputation methods using BRT for predicting MOR is done, and 

then the same is done for IB.  Some general remarks regarding the analysis are 

provided at the end of the chapter. 

 In Chapter VI, a summary of the overall research and thesis findings is given.  A 

discussion of future research possibilities is given.  Expansion of the thesis work to 

predictive modeling for other manufacturing systems other than word composites and 

particleboard is given. 
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CHAPTER II. LITERATURE REVIEW 

This chapter provides a brief description of wood composites and particleboard in 

particular plus succinct basic information on data mining, decision trees, boosting, 

boosted decision trees, and predictive modeling of engineered wood products.  It is 

assumed that the reader has an elementary knowledge of wood composites but some 

prior knowledge of statistical methodology and various applications.   

Wood Composites 

 “Wood composites” is a term that refers to many different materials that have 

been developed by using small wood particles together with resins/glues or other 

elements to create larger materials.  Most of today’s wood composites “have an origin 

within the past [60] years” (Maloney 1996).  Many wood composites today use what was 

once considered waste wood residues (e.g., wood particles, wood chips, and waste 

fibers) from infrequently used tree species or noncommercial species, which may also 

include agricultural residues (LeVan-Green and Livingston 2001; Maloney 1996).  

According to LeVan-Green and Livingston (2001), the fact that wood composites are 

assembled from small pieces of wood, or agricultural residues, provides a technology 

that is easily adaptable to a changing resource base.   

 A certain assemblage of composites is grouped together and referred to as 

engineered wood products, for example, plywood, oriented strand board, and glued 

laminated timber.  Some composites such as particleboard, medium density fiberboard 

(MDF), and oriented strand board (OSB) have been described as composite panel 

products (LeVan-Green and Livingston 2001; Maloney 1996).  Most wood composites 
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can be engineered to assorted specifications, thus taking advantage of wood’s inherent 

properties and at the same time improving these properties by using materials science 

and technology (Maloney 1996).  Many wood composites can be used structurally (e.g., 

roofing, floors, and structural panels in buildings).  Importantly, these technologies make 

it possible to use small-diameter and underutilized material (LeVan-Green and 

Livingston 2001).  Small-diameter and underutilized material refers to timber that is left 

out in the woods because it is not economical to remove, or local capacity to process it 

does not exist (LeVan-Green and Livingston 2001). 

 Particleboard is a term for a multi-layer panel that is manufactured from 

lignocellulosic materials (generally custom-made softwood that is mostly in the form of 

discrete pieces or particles) combined with a blended resin or other binder and then 

bonded together under heat and pressure in a hot press (Gamage 2007; Maloney 

1996).1  Particleboard includes different panel types called flakeboard and chipboard, 

where the size and shape of the wood particles used to make the board are varied 

(Wood Handbook 1999).  According to Maloney (1996), particleboards are defined by 

the “method of pressing” that is used in the manufacturing process.  When pressure is 

applied in the direction perpendicular to the faces, they are defined as flat-platen 

pressed; and when pressure is applied parallel to the faces, they are defined as 

extruded (Maloney 1996). 

 The first platen-pressed particleboard plant started operation in Dubuque, Iowa, 

in 1933, but this plant was only operational until 1942, while a larger commercial plant 

started operation in Germany in 1941 (Maloney 1996).  Extruded particleboard was 

                                                 
1
 Some examples of softwood are Douglas fir, southern pines, etc. and some low-value wood sources 

such as aspen or cottonwood. 
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developed in Germany between 1947 and 1949 (Maloney 1996).  Numerous plants 

manufacturing this type of particleboard were built throughout the world and the U.S., 

but low production capacities and some board physical property limitations kept 

extruded particleboard from becoming a major product line (Maloney 1996). 

 The great increase in particleboard production started in the 1950s (Maloney 

1996).  To this day, particleboard remains one of the world’s dominant furniture panels, 

but significant amounts of its production also go into structural applications such as 

manufactured home floors, roof sheathing, wall panels, and stair treads (Gamage 2007; 

Maloney 1996).   

Data Mining 

 Hand et al. (2001) noted that the science of mining information from large data 

sets or databases is known as data mining.  Data mining is a huge subject area and a 

large amount of literature exists on the topic.  The discussion of data mining in this 

literature review is not meant to be extensive, but it is intended to be an antecedent to 

the methods discussed later in this thesis. 

Hand et al. (2001) stated, “Data mining is often set in the broader context of 

knowledge discovery in databases, or KDD,” which originated in the artificial intelligence 

research field.  According to Giudici (2003), “the term ‘data mining’ was used to 

describe the component of the KDD process where the learning algorithms were applied 

to the data.”  The KDD process involves several stages: “selecting the target data, 

preprocessing the data, transforming them if necessary, performing data mining to 
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extract patterns and relationships, and then interpreting and assessing the discovered 

structures” (Hand et al. 2001).  

Many of the methodologies that are used in data mining come from two branches 

of research, one developed in the machine learning community and the other developed 

in the statistical community, particularly in multivariate and computational statistics 

(Giudici 2003).  Hence, a mastery of data mining requires both an understanding of 

statistical and computational issues.  Importantly, the methodologies in both of these 

research communities are essential when dealing with large data sets.  Statistically, 

data mining can be viewed as computer automated exploratory data analysis of large 

data sets (Friedman 2001).  Friedman (2001) notes, “Statistics can potentially have a 

major influence on Data Mining.” 

Data mining can be fittingly categorized into types of tasks, which correspond to 

the distinctive objectives of the individual that is studying the data (Hand et al. 2001).  

According to Hand et al. (2001), some of these tasks are exploratory data analysis, 

descriptive modeling, discovering patterns and rules, predictive modeling, etc.  

Predictive modeling is the task of interest in this thesis and will be briefly discussed 

here.   

The aim in predictive modeling is to construct a model that will permit one value 

of a variable to be predicted (estimated) from the known values of other variables 

(Friedman 2001).  In classification, the variable being predicted is categorical; whereas, 

in regression, the variable being predicted is quantitative (Hand et al. 2001).  There 

have a been a large number of methods that have been developed in the fields of 
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machine learning and statistics that tackle predictive modeling, and work in this area 

has led to “significant theoretical advances and improved understanding of deep issues 

of inference” (Hand et al. 2001).  

Decision Trees 

A machine learning and/or data mining technique that uses a decision tree as a 

predictive model, which maps observations about a certain item to conclusions about a 

certain item’s target value, is known as “decision tree learning.”  Decision tree learning 

is also known as “decision trees.”2  Decision tree methodology has roots in both the 

statistics and computer science literature as cited in the following references and 

comments.  A precursor to current tree methodology was “Automatic Interaction 

Detector” (AID) developed by Morgan and Sonquist (1963), Kass (1975), and Fielding 

(1977).  Breiman et al. (1984) were the first to introduce the main ideas of tree 

methodology to statistics.  Quinlan (1993) provided an overview of how tree 

methodology was developed in machine learning.  Hastie et al. (2009) described 

decision trees from a statistical perspective.   

As Young (2007) noted, “Decision trees are one of the most popular predictive 

learning methods used in data mining.”  A single decision tree model can be 

represented by a two-dimensional graphic, which can be plotted and easily interpreted, 

no matter how high the dimensionality of the predictor space or how many variables are 

used for prediction (Friedman 2001; Hastie et al. 2009).  This ease of interpretation from 

two-dimensional plots makes decision trees a powerful tool for the practitioner (Young 

2007).  

                                                 
2
 http://en.wikipedia.org/wiki/Decision_tree_learning referenced on 06/01/10 
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In the simplest of forms, tree-based methods work by partitioning the predictor 

space into rectangular regions, using a series of rules to identify regions having the 

most homogeneous responses to predictors, and then assigning a simple model (e.g., a 

constant, regression model, etc.) to each region (Bishop 2006; Elith et al. 2008; Loh 

2008).  The growing of a tree involves recursive binary splits implying a binary split is 

repeatedly applied to its own output until some stopping specification is obtained.  

Decision trees are insensitive to outliers and can accommodate missing data in 

predictor variables by using surrogates (Breiman et al. 1984).  As well, decision trees 

have the advantage of seldom selecting irrelevant predictor variables (i.e., the recursive 

tree building algorithm estimates the optimal variable on which to split at each step 

implying predictors not related to the response variable(s) tend not to be selected for 

splitting) (Breiman et al. 1984; Elith et al. 2008; Young 2007).  Also, Elith et al. (2008) 

noted, “The hierarchical structure of a tree means that the response to one input 

variable depends on values of inputs higher in the tree, so interactions between 

predictors are automatically modeled.”  Decision trees are liked for these 

aforementioned reasons.  In all, decision trees are “conceptually simple yet powerful” 

(Hastie et al. 2009).   

A decision tree for numerical data is known as a “regression tree,” and a decision 

tree for categorical data is known as a “classification tree.”  These two types of decision 

trees will not be discussed any further here.  Since this thesis uses numerical data from 

industrial processes, the analyses performed throughout this thesis are based around 
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regression trees and BRT.  Refer to Chapter III for more discussion on regression trees 

and BRT, in particular. 

Boosting 

Boosting has its roots in the theoretical framework for studying machine learning 

called the “Probably Approximately Correct” (PAC) learning model.  The PAC learning 

model is due to Valiant (1984).  Kearns and Vazirani (1994) provided a nice introduction 

into the PAC learning model.  Kearns and Valiant (1994) were the first to pose the 

question of whether a weak learning algorithm that is moderately better than random 

guessing in the PAC model can be “boosted” into an arbitrarily accurate “strong” 

learning algorithm.  Schapire (1990) derived the first provable polynomial-time boosting 

algorithm in 1989.  One year later, Freund (1995) developed a more efficient boosting 

algorithm.  Drucker et al. (1993) carried out the first experiments with these early 

boosting algorithms. 

 Boosting is a powerful technique for combining several “base classifiers” (also 

known as weak learners) to produce a committee whose performance can be 

significantly better than that of any of the base classifiers (Freund 1995).  Sutton (2005) 

provided an example of weak learners as being a simple classifier such as a two-node 

decision tree (also known as a stump).  Boosting can yield good results even if the weak 

learners have performance that is only slightly better than random guessing.  Since 

random guessing has an error rate equal to 0.5, a weak learner just has to predict 

correctly a little more than 50% of the time (Sutton 2005).  Boosting was originally 

designed for classification problems, but it can be “profitably be extended to regression” 
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as well (Hastie et al. 2009).  According to Bishop (2006), the main difference between 

boosting and the committee methods such as bagging is that the weak learners are 

trained in sequence.  Each weak learner is trained using a weighted form of the data set 

in which the weighting coefficient associated with each data point is conditional upon 

the performance of the previous classifiers.  Points that are misclassified by one of the 

base classifiers are given greater weight when used to train the next classifier in the 

sequence. 

 Freund and Schapire (1997) commented that they introduced, in 1995, one of the 

first and most popular boosting algorithms named AdaBoost, which is short for “adaptive 

boosting.”  AdaBoost solved many of the practical difficulties of boosting algorithms that 

came before (Freund and Schapire 1999).  Much like the original boosting algorithms, 

AdaBoost was developed for two-class classification problems.  Importantly, the most 

basic theoretical property of AdaBoost concerns its ability to reduce the training error, 

i.e., the fraction of mistakes on the training set (Schapire 2003).  One can refer to 

Freund and Schapire (1999) for the precise form of their AdaBoost algorithm. 

 According to Freund and Schapire (1999), the AdaBoost algorithm has been 

tested empirically by many researchers.  As an example, Freund and Schapire (1996) 

tested AdaBoost on a set of UCI benchmark datasets3 using an algorithm that finds the 

best “decision stump” or single-best decision tree.   Also, Schapire and Singer (2000) 

used the idea of boosting for text categorization tasks.  In this set of experiments, base 

classifiers were used that test for a word or phrase being present or absent.  Schapire 

(2003) noted that boosting has also been applied to problems in fields dealing with text 

                                                 
3
 http://archive.ics.uci.edu/ml/ referenced on 06/20/2011 
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filtering (Schapire et al.1998) and document routing (Iyer et al. 2000), “ranking” 

problems (Freund et al. 2004), medical diagnosis (Merler et al. 2001), and many more 

problems in various fields.  As well, Schapire and Singer (2000) used a generalization of 

AdaBoost that provides an interpretation of boosting as a gradient-descent method.  For 

additional information on boosting and other “learning methods,” refer to Valiant (1984), 

Schapire (1990), Drucker et al. (1993), Kearns and Vazirani (1994), Kearns and Valiant 

(1994), Freund (1995), and a lecture given by Dr. Rich Caruana.4 

Boosted Decision Trees 

 Boosted decision trees are a relatively new technique that has within the past 

decade burst onto the scene of predictive modeling.  In this chapter, the discussion of 

boosted decision trees and BRT in particular will be brief but will mention early 

discussions about the idea of boosted decision trees and studies in which boosted 

decision trees were used for prediction.  A more in depth discussion of the methodology 

behind boosted decision trees will occur in Chapter III.  Importantly, the boosting 

technique helps to improve the predictive performance of decision trees. 

 Freund and Schapire (1997) provided a suggestion as to how boosting might 

produce regression model using their algorithm “AdaBoost.R.”  Breiman (1998) 

discussed applying boosting to CART to create a classifier (see Olshen 2001).  Breiman 

(1999) suggested how boosting might apply to regression problems using his algorithm 

“arc-gv.”  Sutton (2005) mentioned the concept of a “weak learner” as being a simple 

classifier such as a two-node decision tree (i.e., tree stump).   

                                                 
4
 http://videolectures.net/solomon_caruana_wslmw/ referenced on 12/15/2010 
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There have been studies published in various fields that used boosted decision 

trees for prediction, and some of these studies are discussed below.  Drucker (1997) 

was the first to actually implement and experiment with boosting regression models.  

Drucker (1997) used regression trees as the fundamental building blocks in “boosting 

committee machines.”  Drucker (1997) applied an ad hoc modification of “AdaBoost.R” 

(Freund and Schapire 1997) to regression problems and obtained promising results.  

Ridgeway et al. (1999) brought together ideas from boosting, naïve Bayes learning, and 

additive modeling, to create a “BNB.R” algorithm that fit a boosted naïve Bayes 

regression model, which they compared the performance of their “BNB.R” algorithm to 

three other interpretable multivariate regression procedures.  Zhou et al. (2005) 

assessed the performance of boosted decision trees on publicly available email data in 

filtering out unsolicited bulk emails, while comparing this method to various other 

methods.  Deconinck et al. (2007) evaluated BRT for the modeling and predicting blood-

brain barrier passage of drugs.  De’ath (2007) proposed a form of boosted trees, 

“aggregated boosted trees,” and through a simulation study on regression data showed 

that this form of boosted trees reduced prediction error relative to other forms of 

boosted trees.  Robinson (2008) assessed the ability of “regression tree boosting” to 

risk-adjust health care cost predictions, and he used diagnostics groups and 

demographic variables as inputs.  Robinson (2008) used BRT because it is a method 

that systematically searches the data for consequential interactions, which it 

automatically incorporates into a risk-adjustment model.  Elith et al. (2008) 

demonstrated the practicalities and advantages of using BRT through a distributional 
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analysis of the short-finned eel, a native freshwater fish of New Zealand.  Abeare (2009) 

evaluated the performance of BRT as a potential tool for catch-rate standardization of 

Yellow Fin tuna.  Carslaw and Taylor (2009) used BRT to analyze air pollution data at a 

mixed-source location.  They used BRT to draw inferences concerning the source 

characteristics at a location of high source complexity.  Li et al. (2010) used BRT to 

identify modern processor configurations between a key processor structure’s 

“architectural vulnerability factor” and various performance metrics.  These 

aforementioned studies are just a few studies that used boosted decision trees for 

prediction.  As evident from the previous citations, boosted decision tree modeling for 

prediction is a contemporary statistical-based data mining topic applied to many fields, 

most notably medicine and ecology. 

Predictive Modeling of Engineered Wood Products 

A major challenge for engineered wood products manufacturers is developing 

better knowledge of the complex nature of process variables and their relationship with 

engineered wood product strength properties (e.g., IB, MOR, etc.).  Some key process 

variables might be line speed, press temperature, wood chip dimensions, etc.  At the 

time of production, the quality of engineered wood is not known, i.e., strength properties 

of the samples are determined at a later time in a laboratory through destructive testing.  

The time span between destructive tests can be two to six hours depending on the type 

of product (Young 2007).  The delay can be two to three hours in particleboard.  Hours 

of producing defective or off-grade product, or hours of production that is unnecessarily 

over-engineered and of higher cost could take place during the hours between these 
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destructive tests.  Improved production efficiency and business competitiveness are 

essential for the wood composites industry.   

Real-time predictive modeling of strength properties can reduce costs (e.g., 

rework costs, feedstocks costs, etc.), reduce energy usage, and improve wood 

utilization.  With today’s economy, the reduction of costs while continuing to 

manufacture the same (or better) quality product is crucial.  Numerous studies on real-

time predictive modeling of final product quality characteristics of wood composites 

using statistical methods have been published (Young 1996; Cook and Chiu 1997; 

Bernardy and Scherff 1998; Greubel 1999; Erilsson et al. 2000; Cook et al. 2000; Young 

and Guess 2002; Young et al. 2004; Lei et al. 2005; Xing et al. 2007; André et al. 2008; 

Clapp et al. 2008; Young et al. 2008; Mora and Schimleck 2010).  Greubel (1999) 

showed how the use of “off-line” first-order statistical models led to medium density 

fiberboard manufacturing cost savings of five to ten percent.  Erilsson et al. (2000) 

discussed the potential for statistical models in engineered wood manufacturing.  André 

et al. (2008) presented new data mining-based multivariate calibration models for 

predicting IB strength from medium density fiberboard process variables.  Clapp et al. 

(2008) used a modified principal components analysis to develop an empirical model to 

predict the IB of medium density fiberboard based on a selected subset of process 

variables.  It is evident from the literature the engineered wood products manufacturing 

industry could benefit greatly from improved real-time predictive modeling using BRT.  
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CHAPTER III. METHODS 

This chapter provides, in detail, the statistical and data mining methods that were 

used as analysis tools for this research.  There will be more discussion than in the 

previous chapter on regression trees (i.e., decision trees for numerical data) and 

specifically the CART algorithm (Breiman et al. 1984).  BRT methodology, as well as the 

Stochastic Gradient Boosting algorithm (Friedman 2002) used by STATISTICA 10 to 

build BRT models, will be presented and discussed.  A brief description/background of 

the software package STATISTICA will be provided followed by some discussion of the 

relevant parameters used to control the stochastic gradient boosting algorithm in 

STATISTICA 10.  The topic of imputation will be briefly mentioned but needs to be 

presented.  Statistical techniques used to compare BRT models will be explained. 

Regression Trees 

A decision tree for numerical/continuous data is known as a “regression tree.”  A 

regression tree is a piece-wise linear estimate of a regression function, which is 

constructed by the recursive partitioning of the data and the sample space (Loh 2002).  

The simplest form of regression tree fits the mean response for the observations in a 

partitioned region (Elith et al. 2008).  If skewness exists in the data, Loh (2002) 

suggested using the sample median as the constant.  Young (2007) noted that the 

construction of a regression tree generally consists of the following four steps performed 

iteratively: (1) partition the data, (2) fit a model to the data after each partition, (3) stop 

when the residuals of the model are approximately zero, or there are only a few 

observations left, and (4) pruning the tree (if the tree overfits).  Not all regression tree 
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algorithms agree on the first and the second step above, and some software packages 

possessing regression tree algorithms lack the capability to automatically perform step 

four.   

The AID (“Automatic Interaction Detector”) algorithm by Morgan and Sunquist 

(1963), Kass (1975), and Fielding (1977) was the first implementation of the decision 

tree method.  The CART (“Classification and Regression Trees”) algorithm by Breiman 

et al. (1984) followed the AID algorithm and is one of the most popular decision tree 

algorithms.  The CART algorithm uses a backward-elimination strategy to develop the 

decision tree (Loh 2002).  The algorithm works by growing an overly large tree and 

pruning away some of the branches using a test sample or v-fold cross-validation to 

estimate the total sum of squared errors.  For regression, CART builds a piecewise-

constant model with each leaf node fitted with a mean function (Loh 2008).  The CART 

algorithm is the decision tree method used by STATISTICA 10 to fit regression tree 

models discussed in Chapter IV of this thesis.  Even though the two-dimensional 

hierarchical interactions displayed by regression trees provide very good explanatory 

value, a limitation of regression trees is poor predictive power (Hastie et al. 2009). 

Boosted Regression Trees 

Boosting is a technique used to enhance the predictive performance of 

regression trees.  Again, the main point of boosting is to sequentially apply the weak 

learning algorithm to repeatedly modified versions of the data, hence creating a 

sequence of weak learners (i.e., base classifiers).  The predictions from all of the weak 

learners are combined through a weighted majority vote to produce the final prediction 
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(Hastie et al. 2009).  In boosting, models are fit iteratively to the training data using 

methods to increase emphasis on observations that are modeled poorly by the existing 

collection of models (Elith et al. 2008).   

As related to regression problems, boosting is a form of functional gradient 

descent (Elith et al. 2008).  Take a loss function that represents the loss in predictive 

performance due to a suboptimal model.  Boosting is a numerical optimization 

technique for minimizing the loss function by adding, at each step, a new model (e.g., a 

regression tree) that best reduces, or steps down the gradient of, the loss function (Elith 

et al. 2008).  The boosting approach used in BRT methodology places its origins within 

the machine learning community (Schapire 2003), but more recent developments in the 

statistical community interpret it as an advanced form of regression (Friedman et al. 

2000).  

Elith et al. (2008) explained BRT as follows.  The initial regression tree is the one 

that reduces the loss function the most.  At each iteration the focus is on the residuals 

and root mean square error reduction.  In the second step, a regression tree, which can 

contain different variables and split points than the first tree, is fit to the prediction 

residuals of the first tree.  The overall model now contains two trees (i.e., two terms), 

and the residuals from this two-term model are estimated.  The process is stage-wise, 

i.e., existing trees are left unchanged as the model grows increasingly larger.  Only the 

fitted value for each observation is re-estimated at each step to reflect the contribution 

of the newly added tree.  In the end, the final BRT model is a linear combination of 
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numerous trees and can be thought of as a regression model with each term being a 

tree. 

Stochastic Gradient Boosting 

 Stochastic gradient boosting is just one of numerous algorithms for modeling 

BRT.  Friedman (2002) stated “gradient boosting constructs additive regression models 

by sequentially fitting a simple parameterized function (i.e., base learner) to current 

‘pseudo’-residuals by least-squares at each iteration.”  With respect to the model values 

at each training data point, the “pseudo” residuals are the gradient of the loss function 

being minimized (Friedman 2002).  Friedman (2002) explained the gradient boosting 

procedure as follows.  In the function estimation problem, one has a response variable 

y and a set of random explanatory values x = {x1,...,xn}.  Friedman (2002) noted, given 

a training sample {y i,x i}1

N  of known (y,x) values, the objective is to find a function 

F
*
(x)  that maps x onto y, such that over the joint distribution of all (y,x) values, the 

expected value of some loss function Ψ(y,F (x)) is minimized 

 
F

*(x) = argmin
F (x )

E y,xΨ(y,F (x)). [1]  

Boosting approximates F
*(x)  by an additive expansion of the form 

 
F(x) = βmh(x;am )

m= 0

M

∑ , [2] 

where functions h(x;a)  (i.e., “base learner”) are generally simple functions of x with 

parameters a = {a1,a2,...}, see Friedman (2002).  In a forward stage-wise manner, the 

expansion coefficients βm  and the parameters am  are jointly fit to the training data.  
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According to Friedman (2002), one starts with a preliminary guess F0(x), and then for 

m  = 1,2,..., M  

 
(βm,am ) = argmin

β ,a
Ψ(y i,Fm−1(x i) + βh(x;a))

i=1

N

∑  [3]  

and 

 Fm (x) = Fm−1(x) + βmh(x;am ) . [4] 

Gradient boosting approximately solves [3] for arbitrary differentiable loss 

functions Ψ(y,F (x)) with a two-step procedure (Friedman 2001).  First, the function 

h(x;a)  is fit using least squares  

 
am = argmin

a,ρ
˜ y im − ρh(x i;a)[ ]2

i=1

N

∑  [5] 

to the current “pseudo” residuals 

 

˜ y im = −
∂Ψ(y i,F(x i))

∂F(x i)

 

 
 

 

 
 

F(x )= Fm−1 (x )

.            [6] 

Second, given h(x;am ) , the optimal value for the coefficient βm  is calculated to be  

 
βm = argmin

β
Ψ(y i,Fm−1(x i) + βh(x;am ))

i=1

N

∑ .     [7] 

According to Friedman (2002), gradient tree boosting concentrates this technique 

to the specific case where h(x;a)  is an L -terminal node regression tree.  Thus, L  is a 

meta-parameter of the whole boosting procedure, and L  is to be adjusted to maximize 

estimated performance for the data at hand (Hastie et al. 2009).  Friedman (2002) 

stated, at each iteration m  a regression tree partitions the x-space into L  disjoint 

regions {Rlm}l=1

L  and predicts a different constant value in each one 
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h(x;{Rlm}1

L
) = y lm1(x ∈ Rlm )

l=1

L

∑ .                    [8] 

In [8], y lm = mean
x i ∈Rlm

( ˜ y im )
 
is the mean of [6] in each separate region Rlm  (Friedman 

2002).  Now, with regression trees, [7] can be solved separately within each region Rlm  

defined by the related terminal node l of the m th tree (Friedman 2002).  Friedman 

(2002) noted that because the tree [8] predicts a separate constant value y lm  within 

each region Rlm , the solution to [7] diminishes to a simple “location” estimate based on 

Ψ 

 

γ lm = argmin
γ

Ψ(y i,Fm−1(x i) + γ)
x i ∈R lm

∑ .                    [9] 

Friedman (2002) clarified the existing approximation Fm−1(x)  is separately updated in 

each related region  

 Fm (x) = Fm−1(x) + v ∗γ lm1(x ∈ Rlm ).                     [10] 

The “shrinkage” parameter5
 0 < v ≤1 controls the learning rate of the boosting procedure 

(Friedman 2002).  In other words, the simplest implementation of shrinkage in the 

context of boosting is to scale the contribution of each tree by a factor of v  when it is 

added to the current approximation (Hastie et al. 2009).  Empirically it has been found 

that small values (v  ≤ 0.1) favor better test error (i.e., lead to models with better 

predictive validity), and require a corresponding larger number of boosting iterations 

(Friedman 2001, 2002).   

                                                 
5
 STATISTICA 10 Boosted Trees module will compute a weighted “additive” expansion of simple 

regression trees.  The specific weight with which consecutive simple trees are added into the prediction 
equation is usually a constant, and referred to as the learning rate or shrinkage parameter. 
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With motivation from the hybrid bagging-boosting6 procedure(i.e., “adaptive 

bagging”), a minor modification was made by Friedman (2002) to the gradient boosting 

algorithm to include randomness as an essential part of the procedure which led to 

Friedman’s (2002) Stochastic Gradient Boosting algorithm.  At each iteration a 

subsample of the training data is drawn at random without replacement from the full 

training data set.  The subsample is used to fit the base learner and compute the 

updated model for the existing iteration (Friedman 2002).  The randomization helps 

protect against overfitting, reduce the variance of the final model, and improve 

predictive performance (Friedman 2002; Hastie et al. 2009).  

 Friedman (2002) explained the stochastic procedure as it is applied to the 

Gradient Boosting algorithm as follows.  Take {y i,x i}1

N  to be the entire training data set 

and {π (i)}1

N  to be a random permutation of the integers {1,...,N}, and then a random 

subsample of size ˜ N < N  is given by {yπ (i),xπ (i)}1

˜ N  (Friedman 2002).  Now, Friedman’s 

(2002) stochastic gradient boosting algorithm is identical to the gradient boosting 

algorithm except that {π (i)}1

N = rand _ perm{i}1

N  is inserted after the second step and is 

used throughout the algorithm.  Refer to Friedman (2002) for the step-by-step 

procedure associated with the generalized Gradient Boosting and Stochastic Gradient 

Boosting algorithms. 

                                                 
6
 Refer to Leo Breiman’s 1999 University of California at Berkeley technical report titled “Using adaptive 

bagging to debias regressions.”  http://www.stat.berkeley.edu/tech-reports/547.pdf referenced on 
06/20/2011 
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Software and Parameters 

STATISTICA 107 was used in this thesis to estimate the BRT models discussed 

in Chapter IV and V as well as the CART regression tree models discussed in Chapter 

IV.  STATISTICA is a statistics and analytics software package developed by StatSoft.  

STATISTICA provides the user with data analysis, data management, data mining, and 

data visualization procedures.  The first DOS version of STATISTICA was released in 

1991.8   

The BRT algorithm of STATISTICA 10 is a “full featured implementation of the 

stochastic gradient boosting method” (Friedman 2002; Hastie et al. 2009).  Five key 

parameters used to control the Stochastic Gradient Boosting algorithm were 

manipulated in the BRT analysis.  First, the “learning rate,” or the shrinkage parameter, 

(lr) specified the specific weight with which consecutive simple regression trees are 

added into the prediction equation, i.e., lr specified the shrinkage applied to each tree in 

the final boosted regression tree model (Elith et al. 2008).  For example, a BRT model 

with 500 trees fitted and lr equal to 0.01 will produce predictions that are the sum of 

predictions from each of the 500 trees multiplied by 0.01.  Second, the “number of 

additive terms” (nat) specified the number of simple regression trees (i.e., additive 

terms) to be computed in successive boosting steps.  According to Elith et al. (2008), a 

smaller lr and larger nat are preferable, conditional on the number of observations and 

available computation time.  Since smaller values for lr (i.e., more shrinkage) result in 

larger training risk for the same nat, both lr and nat control the prediction risk on the 

                                                 
7
 http://www.statsoft.com/ referenced on 06/20/2011 

8
 http://en.wikipedia.org/wiki/STATISTICA referenced on 06/15/2011 
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training data (Hastie et al. 2009).  Third, the “maximum number of nodes” (mnn) 

specified the maximum number of nodes allowed for each individual tree in the boosting 

sequence.  This is used as a stopping parameter in a sense that each time a parent 

node is split, the total number of nodes in the tree is examined, and the splitting is 

stopped if this number exceeds the number specified by mnn.  Setting mnn equal to 

three (i.e., single split regression trees or stumps) produced BRT models with only main 

effects.  Setting mnn equal to five produced BRT models with main effects and two-

variable interactions, and so on.  For illustration, three and five were the values used for 

mnn throughout this research.  As noted by Elith et al. (2008), BRT modeling 

regularization involved jointly optimizing nat, lr, and mnn.  Fourth, the “subsample 

proportion” (sp) was used for selecting the random learning sample for consecutive 

boosting steps.  Given the work of Hastie et al. (2009) and Elith et al. (2008), a 

reasonable, balanced sp value of 0.5 was used to perform the BRT modeling analysis.  

Fifth, a value of 0.2 (or 20%), which is standard, was used for the “random test data 

proportion” parameter.  This implies 80% of the observations were randomly selected 

used for the training (i.e., modeling) sample and the other 20% of the observations were 

used for the testing (i.e., validation) sample.  Such an 80% and 20% split is quite typical 

in practice. 

Imputation of the Data Set and BRT Models 

In data mining and statistics, imputation is the substitution of some value for a 

missing data point or a missing component of a data point.9  Three different imputation 

methods were used to replace missing predictor variable records with values, and a 

                                                 
9
 http://en.wikipedia.org/wiki/Imputation_(statistics) referenced on 06/12/2011 
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non-imputation method (NI) was used that does not replace missing predictor variable 

records with values.  The three different imputation methods used are “Expectation-

Maximization” (EM), “Last Observation Carried Forward” (LOCF), and “Median” (MED).  

EM imputation replaces missing values in a (predictor) variable using an expectation 

and maximum likelihood estimation procedure.  LOCF imputation replaces missing 

values in a predictor variable with the last known value for the predictor variable.  MED 

imputation replaces missing values in a predictor variable with the median value of the 

predictor variable.   Zeng (2011) provided more discussion of these imputation methods 

and an explanation of these different algorithms.  The literature on missing data in 

manufacturing industry applications is sparse.  For additional information on using these 

methods and other forms of imputation, refer to Little (1992), Schafer (1997), Enders 

(2001), Faraway (2005), Truxillo (2005), Gelman and Hill (2007), Horton and Kleinman 

(2007), and Hamer (2009).  In Chapter V, the discussion is on comparing the different 

imputation methods in terms of the predictive performance of BRT models.  Importantly, 

the implementation of the Stochastic Gradient Boosting Algorithm (Friedman 2002) in 

STATISTICA 10 can easily incorporate missing data in the predictors.  During BRT 

model building, when missing data are encountered for a particular observation (i.e., 

case), then the prediction for that observation is made based on the last preceding 

(non-terminal) node in the respective tree.  For example, if at a particular point in the 

sequence of trees a predictor variable is selected at the root (or other non-terminal) 

node for which some cases have no valid data, then the prediction for those cases is 

simply based on the overall mean at the root (or other non-terminal) node. 
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Model Comparison 

To compare the predictive performance of the models, the root mean squared 

error for prediction (RMSEP) and the RMSEP relative to the mean of the response 

variable as a percent (RMSEP%) were used as performance measures for the 

validation data set.  The RMSEP value was given by 

 
(y i − ˆ y i)

2

i=1

n

∑
n

,                     [11] 

where y i was the observed value, ˆ y i was the predicted value, and n was the total 

number of records in the validation data set.  The RMSEP% value was given by  

 
RMSEP

ˆ µ y

 

 
  

 

 
  *100%, [12] 

where ˆ µ y  was the mean of the observed response values in the validation data set.  The 

use of ˆ µ y  allowed for easier comparison of each BRT model to a similar baseline.  

Importantly, single values of RMSEP and RMSEP% (on the validation data set for each 

model) will be used to compare BRT models to CART regression tree models in 

Chapter IV; whereas, a repeated random sub-sampling validation technique to compare 

BRT models across imputation methods will be used in Chapter V.   

An advantage of regression trees is the high explanatory value and ability to 

detect multiple levels of interactions.  However, sometimes regression tree models do 

not predict well.  Boosting creates a model with hundreds to thousands of potential 

smaller trees, which has been demonstrated to improve prediction quality.  However, 

interpretation of the final BRT model can be challenging.  One way to help understand 
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or interpret the BRT model is to assess the predictor importance values or contribution 

of each input variable in predicting the response (Hastie et al. 2009).  Often, only a few 

of the predictor variables have a substantial influence on the response variable, and the 

vast majority of predictor variables are extraneous and could have just as well not been 

included in the analysis for predicting the response (Hastie et al. 2009).  STATISTICA 

10 has a feature that estimates “predictor importance values.”  During the building of 

each tree, for every split, predictor statistics (i.e., sums of squares regression) are 

computed for each predictor variable.  The best predictor variable, which yields the best 

split at the respective node, is chosen as a split.  The particular predictor variable 

chosen is the one that gives “maximal estimated improvement in squared error risk over 

that for a constant fit over the entire region” (Hastie et al. 2009).  An average of the 

predictor statistic for all variables over all splits and over all trees in the boosting 

sequence is then computed.  The final predictor importance values are computed by 

normalizing those averages so that the highest average is assigned the value of one, 

and the importance of all other predictors is expressed in terms of the relative 

magnitudes of the average values of the predictor statistic, relative to the most 

important predictor.  Because of “shrinkage” (i.e., learning rate) the masking of 

important variables by others with which they are highly correlated is less of a problem 

(Hastie et al. 2009).  Predictor importance values will only be discussed in Chapter IV. 
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CHAPTER IV. PREDICTING THE STRENGTH PROPERTIES OF WOOD 
COMPOSITES USING BOOSTED REGRESSION TREES 

 
 In this chapter, an analysis of BRT and CART regression tree models for 

predicting two different strength property metrics (i.e., IB and MOR) of particleboard 

wood composite will be discussed.  First, the U.S. particleboard manufacturer data set 

used for the BRT and CART regression tree models is reviewed.  Second, the analysis 

of BRT and CART regression tree models for predicting MOR and IB strength metrics of 

particleboard wood composite is discussed.  Third, remarks in regards to the analyses 

for MOR and IB are given. 

Data Set 

 A time-ordered data set was obtained from a U.S. particleboard (wood 

composite) manufacturer.  The key quality strength metrics (i.e., response variables) for 

this manufacturer’s product were MOR and IB.  The data set consisted of 4,307 

records,10 which spanned the time period from March 2009 to June 2010.  There were 

189 possible continuous predictor variables.11  There were 118 different particleboard 

product types manufactured by the producer within the 4,307 records.  Product types 

were not differentiated in the overall BRT model predictions of MOR and IB.  Of the 

4,307 observations in the data set, 3,449 observations were used for training and 858 

observations were randomly selected for validation. 

                                                 
10

 The 4,307 records were derived after 104 records were removed from the original data set given 
incomplete cell data in the records. 
11

 The 189 continuous predictor variables were obtained after 33 predictor variables were removed from 
the initial set of 222 predictor variables.  The 33 predictor variables were removed due to the fact that at 
least 2.5% of each variable’s records were null values or a single constant value was represented in the 
variable for the whole data set. 
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BRT and CART Regression Tree Models for MOR 

Table 1 provides statistics obtained from analysis performed on the validation 

data set for 70 different BRT models predicting MOR.  Each of these 70 aforementioned 

BRT models used a mnn parameter value equal to three, but the values for the lr and 

nat parameters were not held constant.  The range of RMSEP% values resulting from 

BRT models for MOR with various combinations of the lr and nat parameters and the 

value three for the mnn parameter is given in Figure 1.  The 70 different BRT models 

represented in Table 1 and Figure 1 were the product of testing 10 different levels of lr 

values (0.005, 0.01, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.4, and 0.5), a mnn value equal to 

three, and seven different levels of nat values (100, 200, 300, 400, 500, 600, and 

1,000).  Table 1 and Figure 1 both provide RMSEP% values on the validation data set 

for the 70 different BRT models predicting MOR.  Plus, Table 1 provides RMSEP values 

and the Pearson correlation coefficient values between the predicted and observed 

MOR values of the validation data set for the 70 different BRT models predicting MOR.  

The Pearson correlation coefficient measures the correlation (linear dependence) 

between two variables X and Y, which is a value between -1 and +1 inclusive.12  For 

MOR and a parameter value of three for mnn, the lowest RMSEP value obtained was 

1.051 MPa (refer to Table 1), while the other parameter settings were 0.15 for lr and 

1,000 for nat (refer to Table 1 and Figure 1).  For the BRT model with a RMSEP value 

equal to 1.051 MPa, the Pearson correlation coefficient value between the predicted 

and observed MOR values was equal to 0.91, and the RMSEP% value was equal to 

8.5% (refer to Table 1). 

                                                 
12

 http://en.wikipedia.org/wiki/Pearson_product-moment_correlation_coefficient referenced on 06/19/2011 
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Table 1: Statistics obtained from analysis performed on the validation data set for 70 different BRT 
models predicting MOR, with a value of three being used for the parameter mnn.*   

lr nat = 100 nat = 200 nat = 300 nat = 400 nat = 500 nat = 600 nat = 
1,000 

0.005 0.83, 
1.443, 
11.6% 

0.83,  
1.42, 

11.5% 

0.84, 
1.403, 
11.3% 

0.84,  
1.39, 

11.2% 

0.84, 
1.379, 
11.1% 

0.85, 
1.368, 
11% 

0.85, 
1.336, 
10.8% 

0.01 0.83, 
1.419, 
11.4% 

0.84,  
1.39, 

11.2% 

0.85,  
1.37,  
11% 

0.85, 
1.352, 
10.9% 

0.85, 
1.337, 
10.8% 

0.86, 
1.323, 
10.7% 

0.87, 
1.281, 
10.3% 

0.05 0.85, 
1.339, 
10.8% 

0.87, 
1.281, 
10.3% 

0.87, 
1.243, 
10% 

0.88, 
1.212, 
9.8% 

0.89, 
1.187, 
9.6% 

0.89,  
1.17,  
9.4% 

0.9, 
1.119, 

9% 
0.1 0.86, 

1.294, 
10.4% 

0.88, 
1.221, 
9.9% 

0.89, 
1.177, 
9.5% 

0.89, 
1.151, 
9.3% 

0.9,  
1.137, 
9.2% 

0.9,  
1.116,  

9% 

0.91, 
1.077, 
8.7% 

0.15 0.87, 
1.267, 
10.2% 

0.89, 
1.184, 
9.6% 

0.89, 
1.145, 
9.2% 

0.9, 
1.115, 

9% 

0.9,  
1.092, 
8.8% 

0.91, 
1.081, 
8.7% 

0.91, 
1.051, 
8.5% 

0.2 0.88, 
1.238, 
10% 

0.89, 
1.168, 
9.4% 

0.9,  
1.129, 
9.1% 

0.9,  
1.104, 
8.9% 

0.9,  
1.1,  

8.9% 

0.91, 
1.084, 
8.7% 

0.91, 
1.059, 
8.5% 

0.25 0.88, 
1.216, 
9.8% 

0.9,  
1.14,  
9.2% 

0.9,  
1.097, 
8.8% 

0.91, 
1.085, 
8.8% 

0.91, 
1.072, 
8.7% 

0.91,  
1.07,  
8.6% 

0.91, 
1.062, 
8.6% 

0.3 0.88, 
1.199, 
9.7% 

0.9,  
1.134, 
9.1% 

0.9,  
1.099, 
8.9% 

0.91, 
1.084, 
8.7% 

0.91, 
1.079, 
8.7% 

0.91, 
1.078, 
8.7% 

0.91,  
1.07,  
8.6% 

0.4 0.89, 
1.163, 
9.4% 

0.9,  
1.12,  
9% 

0.9,  
1.105, 
8.9% 

0.9,  
1.101, 
8.9% 

0.9,  
1.091, 
8.8% 

0.91,  
1.09,  
8.8% 

0.91, 
1.089, 
8.8% 

0.5 0.89, 
1.187, 
9.6% 

0.89,  
1.15,  
9.3% 

0.9,  
1.13,  
9.1% 

0.9,  
1.129, 
9.1% 

0.9,  
1.129, 
9.1% 

0.9,  
1.129, 
9.1% 

0.9,  
1.129, 
9.1% 

*A total of 10 different values for the parameter lr and seven different values for the parameter nat are 
shown here.  The statistics provided in Table 1 from top to bottom of each cell are: (1) the Pearson 
correlation coefficient (e.g., 0.87) between the observed and predicted MOR values for the validation data 
set, (2) the RMSEP value (e.g., 1.243) obtained for the validation data set, and (3) the RMSEP% value 
(e.g., 10%) obtained for the validation data set. 
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Figure 1: The relationship between learning rate (lr) and MOR RMSEP% for the 70 different BRT models 
with seven values chosen for the number of additive terms (nat) and a value of three chosen for the 
maximum number of nodes (mnn). 
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Table 2 and Figure 2 have similarities to Table 1 and Figure 1, respectively.  Just 

like Table 1, Table 2 provides Pearson correlation coefficient, RMSEP, and RMSEP% 

values obtained from analysis performed on the validation data set for 70 different BRT 

models predicting MOR.  Just like Figure 1, the range of RMSEP% values resulting from 

BRT models for MOR with various combinations of the lr and nat parameters is given in 

Figure 2.  As well, The 70 different BRT models represented in Table 2 and Figure 2 

were the product of testing the same 10 different levels of lr values and same seven 

different levels of nat values as above.  The difference between the tables and the 

figures was that the mnn parameter value changed from three to five.  For MOR and a 

parameter value of five for mnn, the lowest RMSEP value obtained was 1.056 MPa 

(refer to Table 2), while the other parameter settings were 0.1 for lr and 1,000 for nat 

(refer to Table 2 and Figure 2).  For the BRT model with a RMSEP value equal to 1.056 

MPa, the Pearson correlation coefficient value between the predicted and observed 

MOR values was equal to 0.91, and the RMSEP% value was equal to 8.5% (refer to 

Table 2).  So, the parameter settings for the lowest RMSEP for MOR of 1.051 MPa 

were an lr value of 0.15, an mnn value of three, and a nat value of 1,000.  Importantly, 

the optimal number of trees obtained for these 1,000 iterations was 943 (i.e., the 

smallest average squared error for the validation sample was obtained at 943 trees for 

these 1,000 boosting steps).  The RMSEP% for this BRT model was 8.5%.  A 

scatterplot of the observed MOR values and the predicted MOR values for the validation 

data set is given in Figure 3.  The Pearson correlation coefficient value between the 

observed MOR values and the predicted MOR values was 0.91.  Overall, RMSEP  
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Table 2: Statistics obtained from analysis performed on the validation data set for 70 different BRT 
models predicting MOR, with a value of five being used for the parameter mnn.* 

lr nat = 100 nat = 200 nat = 300 nat = 400 nat = 500 nat = 600 nat = 
1,000 

0.005 0.84, 
1.384, 
11.2% 

0.85,  
1.36,  
11% 

0.85, 
1.342, 
10.8% 

0.86, 
1.326, 
10.7% 

0.86, 
1.313, 
10.6% 

0.86, 
1.302, 
10.5% 

0.87,  
1.262, 
10.2% 

0.01 0.85,  
1.36,  
11% 

0.86, 
1.327, 
10.7% 

0.86, 
1.303, 
10.5% 

0.87,  
1.28, 

10.3% 

0.87, 
1.263, 
10.2% 

0.87, 
1.249, 
10.1% 

0.88, 
1.202, 
9.7% 

0.05 0.87, 
1.272, 
10.3% 

0.88, 
1.208, 
9.7% 

0.89, 
1.168, 
9.4% 

0.9,  
1.138, 
9.2% 

0.9,  
1.114,  

9% 

0.9,  
1.101, 
8.9% 

0.91, 
1.062, 
8.6% 

0.1 0.88, 
1.211, 
9.8% 

0.9,  
1.128, 
9.1% 

0.9,  
1.101, 
8.9% 

0.91, 
1.088, 
8.8% 

0.91, 
1.077, 
8.7% 

0.91, 
1.068, 
8.6% 

0.91, 
1.056, 
8.5% 

0.15 0.89, 
1.172, 
9.5% 

0.9,  
1.113,  

9% 

0.9,  
1.102, 
8.9% 

0.91, 
1.087, 
8.8% 

0.91, 
1.079, 
8.7% 

0.91, 
1.076, 
8.7% 

0.91, 
1.066, 
8.6% 

0.2 0.89, 
1.172, 
9.5% 

0.9,  
1.126, 
9.1% 

0.9,  
1.112,  

9% 

0.9,  
1.108, 
8.9% 

0.9,  
1.102, 
8.9% 

0.9,  
1.1,  

8.9% 

0.9,  
1.1,  

8.9% 
0.25 0.9,  

1.143, 
9.2% 

0.91, 
1.086, 
8.8% 

0.91, 
1.076, 
8.7% 

0.91, 
1.076, 
8.7% 

0.91, 
1.076, 
8.7% 

0.91, 
1.076, 
8.7% 

0.91, 
1.076, 
8.7% 

0.3 0.89,  
1.15,  
9.3% 

0.9,  
1.137, 
9.2% 

0.9,  
1.124, 
9.1% 

0.9,  
1.124, 
9.1% 

0.9,  
1.124, 
9.1% 

0.9,  
1.124, 
9.1% 

0.9,  
1.124, 
9.1% 

0.4 0.89, 
1.156, 
9.3% 

0.9,  
1.139, 
9.2% 

0.9,  
1.138, 
9.2% 

0.9,  
1.135, 
9.2% 

0.9,  
1.135, 
9.2% 

0.9,  
1.135, 
9.2% 

0.9,  
1.135, 
9.2% 

0.5 0.89, 
1.162, 
9.4% 

0.9,  
1.141, 
9.2% 

0.9,  
1.138, 
9.2% 

0.9,  
1.138, 
9.2% 

0.9,  
1.138, 
9.2% 

0.9,  
1.138, 
9.2% 

0.9,  
1.138, 
9.2% 

*A total of 10 different values for the parameter lr and seven different values for the parameter nat are 
shown here.  The statistics provided in Table 2 from top to bottom of each cell are: (1) the Pearson 
correlation coefficient (e.g., 0.89) between the observed and predicted MOR values for the validation data 
set, (2) the RMSEP value (e.g., 1.168) obtained for the validation data set, and (3) the RMSEP% value 
(e.g., 9.4%) obtained for the validation data set. 
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Figure 2: The relationship between learning rate (lr) and MOR RMSEP% for the 70 different BRT models 
with seven values chosen for the number of additive terms (nat) and a value of five chosen for the 
maximum number of nodes (mnn). 

 

 
 

 

 

 

 

 

 

 



 

 38 

 

Figure 3: Scatterplot of the observed values versus the predicted values of the validation data set for the 
BRT model that best predicts MOR. 
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values ranged from 1.051 to 1.443 MPa, and RMSEP% values ranged from 8.5% to 

11.6%. 

For the sake of comparison, a regression tree model with MOR as the response 

variable was fit to the same data using the CART algorithm of STATISTICA 10 (Breiman 

et al. 1984).  The regression tree model can be seen in Figure 4.  The RMSEP and 

RMSEP% values obtained for the validation data set of the regression tree model were 

1.263 MPa and 10.2%, respectively.  A scatterplot of the observed MOR values and the 

predicted MOR values can be seen in Figure 5.  The Pearson correlation coefficient 

value between the observed MOR values and the predicted MOR values was 0.87.  

Comparing the “observed vs. predicted” scatterplots revealed the predictive modeling 

weakness of regression tree models (compare Figures 3 and 5).   For the regression 

tree model, the scatterplot showed “step-like” predictions, and the number of these 

“steps” had to do with the number of terminal nodes in the tree; whereas, the scatterplot 

for the BRT model showed more of the desired linear correlation.  The BRT model for 

MOR with the lowest RMSEP and RMSEP% predicted better than the regression tree 

model for MOR on the validation data set.  

It was important to examine the top-five predictor importance values in an 

attempt to understand or interpret the BRT model for MOR.  For MOR, the predictors 

with the top five importance values were related to particleboard “pressing temperature 

zones,” “thickness of pressing,” and “pressing pressure.”  The predictor importance 

values for these predictor variables ranged from 0.97 to one. 
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Figure 4: Regression tree model for MOR. 
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Figure 5: Scatterplot of the observed values versus the predicted values of the validation data set for the 
regression tree model that predicts MOR. 
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BRT and CART Regression Tree Models for IB 

Table 3 provides statistics obtained from analysis performed on the validation 

data set for 70 different BRT models predicting IB.  These 70 BRT models used a mnn 

parameter value equal to three, but the values for the lr and nat parameters were again 

not held constant.  The range of RMSEP% values resulting from BRT models for IB with 

the various combinations of the lr and nat parameters and the value three for the mnn 

parameter is given in Figure 6.  The 70 BRT models represented in Table 3 and Figure 

6 were the product of testing the aforementioned 10 different levels of lr values and 

seven different levels of nat values.  Table 3 and Figure 6 both provide RMSEP% 

values on the validation data set for the 70 BRT models predicting IB.  Plus, Table 3 

provides RMSEP values and the Pearson correlation coefficient values between the 

predicted and observed IB values of the validation data set for the 70 BRT models 

predicting IB.  For IB and a parameter value of three for mnn, the lowest RMSEP value 

obtained was 0.076 MPa (refer to Table 3), while the other parameter settings were 

0.15 for lr and 1,000 for nat (refer to Table 3 and Figure 6).  For the BRT model with a 

RMSEP value equal to 0.076 MPa, the Pearson correlation coefficient value between 

the predicted and observed IB values was equal to 0.85, and the RMSEP% value was 

equal to 13% (refer to Table 3). 

Much like the case in MOR, for IB, Table 4 and Figure 7 have similarities to Table 

3 and Figure 6, respectively.  Just like Table 3, Table 4 provides Pearson correlation 

coefficient, RMSEP, and RMSEP% values obtained from analysis performed on the 

validation data set for 70 different BRT models predicting IB.  Figure 7 is similar to   
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Table 3: Statistics obtained from analysis performed on the validation data set for 70 different BRT 
models predicting IB, with a value of three being used for the parameter mnn.*   

lr nat = 100 nat = 200 nat = 300 nat = 400 nat = 500 nat = 600 nat = 
1,000 

0.005 0.66, 
0.108, 
18.6% 

0.69, 
0.105, 
18% 

0.7,  
0.103, 
17.6% 

0.71, 
0.101, 
17.4% 

0.72,  
0.1,  

17.2% 

0.73, 
0.099, 
17% 

0.75, 
0.095, 
16.4% 

0.01 0.69, 
0.105, 
18% 

0.71, 
0.101, 
17.3% 

0.73, 
0.099, 
17% 

0.74, 
0.097, 
16.7% 

0.75, 
0.096, 
16.4% 

0.76, 
0.094, 
16.2% 

0.78, 
0.091, 
15.6% 

0.05 0.75, 
0.095, 
16.4% 

0.78, 
0.091, 
15.6% 

0.79, 
0.088, 
15.1% 

0.8,  
0.086, 
14.8% 

0.81, 
0.085, 
14.6% 

0.82, 
0.084, 
14.4% 

0.84, 
0.079, 
13.6% 

0.1 0.77, 
0.092, 
15.8% 

0.8,  
0.087, 
15% 

0.82, 
0.083, 
14.3% 

0.83, 
0.081, 
14% 

0.83,  
0.08, 

13.8% 

0.84, 
0.079, 
13.6% 

0.85, 
0.076, 
13.1% 

0.15 0.79, 
0.089, 
15.3% 

0.81, 
0.084, 
14.5% 

0.83, 
0.081, 
13.9% 

0.84, 
0.079, 
13.7% 

0.84, 
0.078, 
13.5% 

0.84, 
0.078, 
13.3% 

0.85, 
0.076, 
13% 

0.2 0.8,  
0.087, 
14.9% 

0.83, 
0.081, 
14% 

0.84, 
0.079, 
13.5% 

0.84, 
0.078, 
13.4% 

0.84, 
0.077, 
13.3% 

0.85, 
0.077, 
13.2% 

0.85, 
0.077, 
13.1% 

0.25 0.81, 
0.085, 
14.6% 

0.84, 
0.079, 
13.6% 

0.84, 
0.077, 
13.3% 

0.84, 
0.077, 
13.3% 

0.84, 
0.077, 
13.2% 

0.85, 
0.077, 
13.2% 

0.85, 
0.077, 
13.2% 

0.3 0.82, 
0.083, 
14.3% 

0.84, 
0.078, 
13.4% 

0.84, 
0.078, 
13.4% 

0.84, 
0.078, 
13.4% 

0.84, 
0.077, 
13.3% 

0.85, 
0.077, 
13.2% 

0.85, 
0.077, 
13.2% 

0.4 0.82, 
0.083, 
14.2% 

0.83, 
0.079, 
13.7% 

0.84, 
0.079, 
13.6% 

0.84, 
0.079, 
13.6% 

0.84, 
0.079, 
13.6% 

0.84, 
0.079, 
13.6% 

0.84, 
0.079, 
13.6% 

0.5 0.82, 
0.082, 
14.1% 

0.84, 
0.079, 
13.6% 

0.84, 
0.079, 
13.6% 

0.84, 
0.079, 
13.6% 

0.84, 
0.079, 
13.6% 

0.84, 
0.079, 
13.6% 

0.84, 
0.079, 
13.6% 

*A total of 10 different values for the parameter lr and seven different values for the parameter nat are 
shown here.  The statistics provided in Table 3 from top to bottom of each cell are: (1) the Pearson 
correlation coefficient (e.g., 0.79) between the observed and predicted MOR values for the validation data 
set, (2) the RMSEP value (e.g., 0.088) obtained for the validation data set, and (3) the RMSEP% value 
(e.g., 15.1%) obtained for the validation data set. 
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Figure 6: The relationship between learning rate (lr) and IB RMSEP% for the 70 different BRT models 
with seven values chosen for the number of additive terms (nat) and a value of three chosen for the 
maximum number of nodes (mnn). 
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Table 4: Statistics obtained from analysis performed on the validation data set for 70 different BRT 
models predicting IB, with a value of five being used for the parameter mnn.*   

lr nat = 100 nat = 200 nat = 300 nat = 400 nat = 500 nat = 600 nat = 
1,000 

0.005 0.71, 
0.102, 
17.4% 

0.73, 
0.099, 
17.1% 

0.74, 
0.097, 
16.7% 

0.75, 
0.096, 
16.5% 

0.75, 
0.095, 
16.3% 

0.76, 
0.094, 
16.1% 

0.78, 
0.091, 
15.6% 

0.01 0.72, 
0.099, 
17.1% 

0.74, 
0.096, 
16.5% 

0.76, 
0.094, 
16.2% 

0.77, 
0.093, 
15.9% 

0.77, 
0.091, 
15.7% 

0.78,  
0.09, 

15.4% 

0.81, 
0.085, 
14.6% 

0.05 0.78, 
0.091, 
15.6% 

0.81, 
0.085, 
14.6% 

0.82, 
0.082, 
14.1% 

0.83,  
0.08, 

13.7% 

0.84, 
0.078, 
13.5% 

0.85, 
0.077, 
13.2% 

0.86, 
0.075, 
12.8% 

0.1 0.8,  
0.086, 
14.7% 

0.83,  
0.08, 

13.7% 

0.84, 
0.077, 
13.3% 

0.85, 
0.076, 
13.1% 

0.85, 
0.075, 
12.9% 

0.86, 
0.075, 
12.8% 

0.86, 
0.074, 
12.7% 

0.15 0.81, 
0.084, 
14.4% 

0.84, 
0.078, 
13.5% 

0.85, 
0.077, 
13.2% 

0.85, 
0.076, 
13.1% 

0.85, 
0.075, 
12.9% 

0.85, 
0.075, 
12.8% 

0.86, 
0.075, 
12.8% 

0.2 0.83, 
0.081, 
14% 

0.84, 
0.078, 
13.5% 

0.84, 
0.078, 
13.3% 

0.85, 
0.077, 
13.2% 

0.85, 
0.077, 
13.2% 

0.85, 
0.077, 
13.2% 

0.85, 
0.077, 
13.2% 

0.25 0.83, 
0.081, 
13.9% 

0.84, 
0.078, 
13.4% 

0.84, 
0.078, 
13.4% 

0.84, 
0.078, 
13.4% 

0.84, 
0.078, 
13.4% 

0.84, 
0.078, 
13.3% 

0.84, 
0.078, 
13.3% 

0.3 0.83,  
0.08, 

13.7% 

0.84, 
0.079, 
13.6% 

0.84, 
0.079, 
13.6% 

0.84, 
0.079, 
13.6% 

0.84, 
0.079, 
13.6% 

0.84, 
0.079, 
13.6% 

0.84, 
0.079, 
13.6% 

0.4 0.83, 
0.081, 
13.9% 

0.84, 
0.079, 
13.6% 

0.84, 
0.079, 
13.6% 

0.84, 
0.079, 
13.6% 

0.84, 
0.079, 
13.6% 

0.84, 
0.079, 
13.6% 

0.84, 
0.079, 
13.6% 

0.5 0.83, 
0.081, 
13.9% 

0.84, 
0.079, 
13.6% 

0.84, 
0.079, 
13.6% 

0.84, 
0.079, 
13.6% 

0.84, 
0.079, 
13.6% 

0.84, 
0.079, 
13.6% 

0.84, 
0.079, 
13.6% 

*A total of 10 different values for the parameter lr and seven different values for the parameter nat are 
shown here.  The statistics provided in Table 4 from top to bottom of each cell are: (1) the Pearson 
correlation coefficient (e.g., 0.82) between the observed and predicted MOR values for the validation data 
set, (2) the RMSEP value (e.g., 0.082) obtained for the validation data set, and (3) the RMSEP% value 
(e.g., 14.1%) obtained for the validation data set. 
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Figure 7: The relationship between learning rate (lr) and IB RMSEP% for the 70 different BRT models 
with seven values chosen for the number of additive terms (nat) and a value of five chosen for the 
maximum number of nodes (mnn). 
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Figure 6 indicating the range of RMSEP% values resulting from BRT models for IB with 

various combinations of the lr and nat parameters can be seen.  As well, The 70 BRT 

models represented in Table 4 and Figure 7 were the product of testing the same 10 

levels of lr values and same seven levels of nat values as above.  The difference was 

that the mnn parameter value changed from three to five.  For IB and a parameter value 

of five for mnn, the lowest RMSEP value obtained was 0.074 MPa (refer to Table 4), 

while the other parameter settings were 0.1 for lr and 1,000 for nat (refer to Table 4 and 

Figure 7).  For the BRT model with a RMSEP value equal to 0.074 MPa, the Pearson 

correlation coefficient value between the predicted and observed IB values was equal to 

0.86, and the RMSEP% value was equal to 12.7% (refer to Table 4).   

 So, the parameter settings for the lowest RMSEP for IB of 0.074 MPa were an lr 

value of 0.1, an mnn value of five, and a nat value of 1,000.  Importantly, the optimal 

number of trees obtained for these 1,000 iterations was 957 (i.e., the smallest average 

squared error for the validation sample was obtained at 957 trees for these 1,000 

boosting steps).  The RMSEP% for this BRT model was 12.7%.  A scatterplot of the 

observed IB values and the predicted IB values for the validation data set is given in 

Figure 8.  The Pearson correlation coefficient value between the observed IB values 

and the predicted IB values was 0.86.  Overall, RMSEP values ranged from 0.074 to 

0.108 MPa, and RMSEP% values ranged from 12.7% to 18.6%. 

As was the case for MOR, for comparison, a regression tree model with IB as the 

response variable was fit to the same data using the CART algorithm of STATISTICA 

10 (Breiman et al. 1984).  The regression tree model can be seen in Figure 9.  The  
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Figure 8: Scatterplot of the observed values versus the predicted values of the validation data set for the 
BRT model that best predicts IB. 
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Figure 9: Regression tree model for IB. 

T.C.F. Lbs./Sq. Ft. > 6.816043 

Mean=0.626 Var.=1.304 N=90 

 

T P F 23R ≤ 61.885047 

Mean=0.534 Var.=1.222 N=127 

 

T P F 23R > 61.885047 

Mean=0.606 Var.=1.214 N=533 

 

IB 

Mean=0.582 Var.=3.013 N=858 

P T Z 5 > 212.549995 

Mean=0.282 Var.=1.511 N=78 

 

P T Z 5 ≤ 212.549995 

Mean=0.612 Var.=1.727 N=780 

 

A V D 22R ≤ 89.362503 

Mean=0.724 Var.=1.748 N=120 

 

A V D 22R > 89.362503 

Mean=0.592 Var.=1.333 N=660 

 

A V D 11L ≤ 86.572502 

Mean=0.776 Var.=1.287 N=57 

 

A V D 11L > 86.572502 

Mean=0.677 Var.=1.496 N=63 

 

MP 8 P T 1 ≤ 20.683754 

Mean=0.627 Var.=0.809 N=36 

 

MP 8 P T 1 > 20.683754 

Mean=0.744 Var.=1.271 N=27 

 

F D O T ≤ 161.950005 

Mean=0.637 Var.=1.128 N=204 

 

F D O T > 161.950005 

Mean=0.587 Var.=1.128 N=329 

 

MP 3 P T 1 ≤ 21.012096 

Mean=0.677 Var.=1.122 N=94 

 

MP 3 P T 1 > 21.012096 

Mean=0.602 Var.=0.765 N=110 

 

T.C.F. Lbs./Sq. Ft. ≤ 6.816043 

Mean=0.572 Var.=0.947 N=239 

 

T P F 23R > 76.041568 

Mean=0.657 Var.=1.151 N=56 

 

T P F 23R ≤ 76.041568 

Mean=0.574 Var.=0.928 N=34 

 

F R S S > 87.5 

Mean=0.589 Var.=1.04 N=141 

 

F R S S ≤ 87.5 

Mean=0.547 Var.=0.947 N=98 
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RMSEP and RMSEP% values obtained for the validation data set of the regression tree 

model were 0.085 MPa and 14.6%, respectively.  A scatterplot of the observed IB 

values and the predicted IB values can be seen in Figure 10.  The Pearson correlation 

coefficient value between the observed IB values and the predicted IB values was 0.81.  

Again, comparing the “observed vs. predicted” scatterplots revealed the predictive 

modeling weakness of regression tree models (compare Figures 8 and 10).   As 

expected, for the regression tree model, the scatterplot showed “step-like” predictions, 

and the number of these “steps” had to do with the number of terminal nodes in the tree; 

whereas, the scatterplot for the BRT model showed more of the desired linear 

correlation.  The number of terminal nodes in the regression tree model for IB was 

larger than the number in the regression tree model for MOR, but the “step-like” 

predictions were still evident.  The BRT model for IB with the lowest RMSEP and 

RMSEP% predicted better than the regression tree model for IB on the validation data 

set. 

It was important to examine the top-five predictor importance values in an 

attempt to understand or interpret the BRT model for IB.  For IB, the predictors with the 

top five importance values were related to particleboard “thickness of pressing.”  The 

predictor importance values for these predictor variables ranged from 0.967 to one. 

Remarks 

Overall, for the parameter settings considered for this BRT analysis, BRT models 

predicted the MOR measurement more accurately than IB (i.e., the smaller RMSEP% 

values are associated with BRT models for MOR).  For both MOR and IB, the predictive  
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Figure 10: Scatterplot of the observed values versus the predicted values of the validation data set for 
the regression tree model that predicts IB.
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performance of the BRT models was for most parameter settings better than the 

predictive performance of the standard CART regression tree models.  A key finding of 

this study was the low RMSEP% value obtained on the validation data set when 

modeling all 118 product types across 16 months of production data (n = 4,307).  The 

research provided within this chapter on the relationships between the BRT parameter 

settings and model predictive performance will be expanded upon in Chapter V by 

studying higher values for the nat parameter and fewer values for lr, but the same 

values for the mnn parameter in the context of comparing non-imputed and imputed 

data sets.
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CHAPTER V. A COMPARISON OF SEVERAL IMPUTATION METHODS 
USING BOOSTED REGRESSION TREES TO PREDICT STRENGTH 

PROPERTIES OF WOOD COMPOSITES 
 

 In this chapter, a comparison of several different imputation methods will be done 

using BRT models for predicting MOR and IB.  First, the four different data sets used in 

this study will be discussed.  The four different data sets were similar (i.e., provided by 

the same U.S. particleboard manufacturer, very similar predictor variables, and same 

March 2009 to June 2010 time frame) to the data set used in Chapter IV, but there were 

differences (e.g., number of observations and predictor variables) because of the 

imputation methods used on the data sets.  Each of the data sets was provided by Zeng 

(2011) after the imputation methods were performed to replace missing values.  

Second, a comparison of the imputation methods using BRT models for predicting MOR 

and IB was conducted.  Third, some general remarks on the analyses are presented. 

Data Sets 

 First, in the “median” imputed data set, missing values in a predictor variable 

were replaced with the median value of that variable.  The data set contained a total of 

4,411 observations and a total of 222 continuous predictor variables. 

 Second, in the “last observation carried forward” imputed (LOCF) data set, 

missing values in a predictor variable were replaced with the last known value of that 

variable.  One predictor variable was removed entirely because more than 2.5% of the 

variable’s values were missing from the beginning of the data set.  Since no value could 

be “carried forward” to impute these missing values, they could not be replaced using 

this method.  So, instead of removing all of these observations from the entire data set, 
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the predictor variable itself was removed.  A separate predictor variable had six values 

that were missing and could not be imputed using this method because no value could 

be “carried forward” to replace the missing values.  But, instead of removing this 

variable as well, these few observations were deleted from the entire data set.  Taking 

all of this into account, the LOCF data set contained a total of 4,405 observations and a 

total of 221 continuous predictor variables. 

 Third, in the “expectation-maximization” imputed (EM) data set, missing values in 

a predictor variable were replaced using an expectation and maximum likelihood 

estimation procedure.  Initially, the missing values were estimated using the other 

values of the predictor variable (Zeng 2011).  Next, the missing values were processed 

using maximum-likelihood estimation as though they were complete data (Zeng 2011).  

This process continued until the change in the estimates for each consecutive iteration 

did not exceed a convergence criterion developed by Zeng (2011). The EM data set 

contained a total of 4,411 observations and a total of 222 continuous predictor 

variables.    

 Finally, in the “non-imputed” data set, missing values in a predictor variable were 

not replaced with another value.  Again, a total of 25 predictor variables were removed 

because more than 2.5% of the variable’s values were missing.  Even after the deletion 

of these variables, a total of 278 values were still missing in numerous different 

predictor variables.  These 278 observations were carefully removed from the entire 

data set. The reason for the deletion of these observations will be discussed after the 

analysis for MOR and IB is done.  After these changes to the data set were completed, 
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the non-imputed data set contained 4,133 observations and 197 continuous predictor 

variables.  

 Lastly, the model comparison techniques used in this chapter were different than 

the model comparison techniques used in Chapter IV.  In this chapter, a repeated 

random sub-sampling validation technique was used to compare BRT models across 

imputation methods.  In other words, for each imputation method and each set of 

parameters, three different BRT models for predicting MOR and IB were developed 

using different randomly selected validation data sets (and training data sets), and a 

RMSEP and RMSEP% value was calculated for each validation data set.  Each BRT 

model was developed using 80% of the observations for the training data set and 20% 

of the observations for the validation data set.  Since the imputed and non-imputed data 

sets vary in size, not every validation data set will be the same in size.  The random 

sub-sampling technique should help assure a better comparison between imputation 

methods using BRT models for MOR and IB.    

  Imputation Method Results Using BRT Models for MOR 

For each of the four different imputation methods used, Table 5 provides RMSEP 

(and RMSEP%) values obtained on the validation data sets for 144 BRT models 

predicting MOR.  Each of these 144 aforementioned BRT models were obtained using a 

mnn parameter value equal to three, but the values for the lr and nat parameters were 

not held constant.  The 144 BRT models represented in Table 5 were the product of 

testing four different levels of lr values (0.01, 0.05, 0.1, and 0.15), a mnn value equal to 

three, three different levels of nat values (1,000, 1,500, and 2,000), and three different  
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Table 5: RMSEP (and RMSEP%) values obtained on the validation data sets for each of the four different 
imputation methods are shown.  Each cell contains three RMSEP (and RMSEP%) values obtained on 
three different validation data sets for BRT models predicting MOR and for the given BRT parameter 
settings.  A value of three for the parameter mnn was used.* 

lr nat Median LOCF EM Non-imputed 

0.01 1,000 1.408 (11.2%),  
1.267 (10%),  

1.333 (10.6%) 

1.443 (11.6%),  
1.23 (9.9%),  

1.361 (10.9%) 

1.405 (11.2%),  
1.262 (10%),  

1.319 (10.5%) 

1.336 (10.6%),  
1.197 (9.5%),  
1.286 (10.2%) 

0.01 1,500 1.364 (10.9%),  
1.234 (9.7%),  
1.299 (10.3%) 

1.394 (11.2%),  
1.19 (9.6%),  

1.316 (10.5%) 

1.364 (10.4%),  
1.232 (9.7%),  
1.288 (10.2%) 

1.3 (10.4%),  
1.172 (9.3%),  
1.235 (9.8%) 

0.01 2,000 1.326 (10.6%),  
1.21 (9.5%),  

1.273 (10.1%) 

1.361 (10.9%),  
1.16 (9.3%),  
1.28 (10.2%) 

1.328 (10.2%),  
1.21 (9.5%),  
1.264 (10%) 

1.276 (10.2%),  
1.16 (9.2%),  
1.197 (9.5%) 

0.05 1,000 1.204 (9.6%),  
1.147 (9.1%),  
1.187 (9.4%) 

1.239 (9.9%),  
1.072 (8.6%),  
1.17 (9.4%) 

1.207 (9.5%),  
1.141 (9%),  
1.193 (9.5%) 

1.196 (9.5%),  
1.122 (8.9%),  
1.084 (8.6%) 

0.05 1,500 1.161 (9.3%),  
1.12 (8.8%),  
1.168 (9.3%) 

1.192 (9.5%),  
1.041 (8.4%),  
1.132 (9.1%) 

1.167 (9.3%),  
1.114 (8.8%),  
1.173 (9.3%) 

1.16 (9.3%),  
1.104 (8.7%),  
1.035 (8.2%) 

0.05 2,000 1.137 (9.1%),  
1.099 (8.7%),  
1.157 (9.2%) 

1.166 (9.3%),  
1.023 (8.2%),  
1.111 (8.9%) 

1.143 (9.1%),  
1.098 (8.7%),  
1.16 (9.2%) 

1.135 (9%),  
1.088 (8.6%),  
1.009 (8%) 

0.1 1,000 1.149 (9.2%),  
1.108 (8.7%),  
1.155 (9.2%) 

1.177 (9.4%),  
1.024 (8.2%),  
1.113 (8.9%) 

1.16 (9%),  
1.112 (8.8%),  
1.172 (9.3%) 

1.128 (9%),  
1.101 (8.7%),  
1.031 (8.2%) 

0.1 1,500 1.13 (9%),  
1.091 (8.6%),  
1.152 (9.1%) 

1.152 (9.2%),  
1.005 (8.1%),  
1.091 (8.7%) 

1.143 (8.9%),  
1.091 (8.6%),  
1.159 (9.2%) 

1.111 (8.9%),  
1.087 (8.6%),  
1.003 (8%) 

0.1 2,000 1.121 (8.9%),  
1.085 (8.6%),  
1.149 (9.1%) 

1.141 (9.1%),  
1.001 (8%),  
1.079 (8.6%) 

1.134 (8.7%),  
1.083 (8.5%),  
1.153 (9.2%) 

1.096 (8.7%),  
1.076 (8.5%),  
0.997 (7.9%) 

0.15 1,000 1.135 (9.1%),  
1.113 (8.8%),  
1.148 (9.1%) 

1.149 (9.2%),  
1.019 (8.2%),  
1.113 (8.9%) 

1.143 (8.9%),  
1.122 (8.9%),  
1.165 (9.2%) 

1.116 (8.9%),  
1.081 (8.5%),  
1.006 (8%) 

0.15 1,500 1.119 (8.9%),  
1.107 (8.7%),  
1.147 (9.1%) 

1.136 (9.1%),  
1.013 (8.1%),  
1.095 (8.8%) 

1.139 (8.9%),  
1.111 (8.8%),  
1.153 (9.1%) 

1.111 (8.9%),  
1.077 (8.5%),  
0.998 (7.9%) 

0.15 2,000 1.117 (8.9%),  
1.104 (8.7%),  
1.147 (9.1%) 

1.132 (9.1%),  
1.013 (8.1%),  
1.086 (8.7%) 

1.139 (8.8%),  
1.108 (8.7%),  
1.151 (9.1%) 

1.106 (8.8%),  
1.077 (8.5%),  
0.998 (7.9%) 

*A total of four different values for the parameter lr and three different values for the parameter nat are 
shown here.  The RMSEP (and RMSEP%) values provided in Table 5 from top to bottom of each cell are 
from: (1) the validation data set obtained with the random number generator seed set to one, (2) the 
validation data set obtained with the random number generator seed set to three, and (3) the validation 
data set obtained with the random number generator seed set to five. 
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random number generator seeds (one, three, and five).  For MOR and a parameter 

value of three for mnn, the lowest RMSEP value obtained on a validation data set was 

0.997 MPa, while the other parameter settings were 0.1 for lr and 2,000 for nat (refer to 

Table 5).  The RMSEP% value obtained on the validation data set for this model was 

7.9% (refer to Table 5).  The BRT model with these aforementioned model comparison 

statistics was developed from the non-imputed data.   

 Table 6 is similar to Table 5.  The only difference is that the RMSEP (and 

RMSEP%) values provided in Table 6 were obtained using a mnn parameter value 

equal to five.  For MOR and a parameter value of five for mnn, the lowest RMSEP value 

obtained on a validation data set was 0.99 MPa, while the other parameter settings 

were 0.05 for lr and 2,000 for nat (refer to Table 6).  The RMSEP% value obtained on 

the validation data set for this model was 7.9% (refer to Table 6).  Again, the BRT model 

with these aforementioned model comparison statistics was developed from the non-

imputed data.  

For each of the four imputation methods, Table 7 provides descriptive statistics 

on the RMSEP (and RMSEP%) values obtained on the validation data sets for the 288 

BRT models (i.e., 144 BRT models when the mnn parameter value was equal to three 

and 144 BRT models when the mnn parameter values was equal to five) predicting 

MOR.  Finally, for each of the four imputation methods, a scatterplot of the observed 

MOR values and the predicted MOR values of the validation data set for the one BRT 

model that best predicts MOR is given in Figure 11.  The BRT model for each 

imputation method that best predicts MOR can be determined by referring to Table 5  
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Table 6: RMSEP (and RMSEP%) values obtained on the validation data sets for each of the four different 
imputation methods are shown.  Each cell contains three RMSEP (and RMSEP%) values obtained on 
three different validation data sets for BRT models predicting MOR and for the given BRT parameter 
settings.  A value of five for the parameter mnn was used.*   

lr nat Median LOCF EM Non-imputed 

0.01 1,000 1.292 (10.3%),  
1.188 (9.4%),  
1.253 (9.9%) 

1.334 (10.7%),  
1.146 (9.2%),  
1.232 (9.9%) 

1.293 (10%),  
1.181 (9.3%),  
1.255 (10%) 

1.253 (10%),  
1.145 (9.1%),  
1.172 (9.3%) 

0.01 1,500 1.24 (9.9%),  
1.158 (9.1%),  
1.215 (9.6%) 

1.278 (10.2%),  
1.108 (8.9%),  
1.18 (9.4%) 

1.242 (9.6%),  
1.15 (9.1%),  
1.217 (9.7%) 

1.206 (9.6%),  
1.123 (8.9%),  
1.114 (8.9%) 

0.01 2,000 1.205 (9.6%),  
1.132 (8.9%),  
1.188 (9.4%) 

1.238 (9.9%),  
1.079 (8.7%),  
1.146 (9.2%) 

1.21 (9.4%),  
1.127 (8.9%),  
1.19 (9.4%) 

1.176 (9.4%),  
1.103 (8.7%),  
1.077 (8.6%) 

0.05 1,000 1.134 (9%),  
1.079 (8.5%),  

1.13 (9%) 

1.153 (9.2%),  
1.02 (8.2%),  
1.076 (8.6%) 

1.136 (8.8%),  
1.073 (8.5%),  
1.146 (9.1%) 

1.099 (8.8%),  
1.066 (8.4%),  

1.01 (8%) 
0.05 1,500 1.122 (9%),  

1.066 (8.4%),  
1.119 (8.9%) 

1.129 (9%),  
1.008 (8.1%),  
1.062 (8.5%) 

1.123 (8.6%),  
1.063 (8.4%),  
1.136 (9%) 

1.083 (8.6%),  
1.049 (8.3%),  

1 (8%) 
0.05 2,000 1.115 (8.9%),  

1.059 (8.4%),  
1.117 (8.9%) 

1.11 (8.9%),  
1.007 (8.1%),  
1.056 (8.4%) 

1.113 (8.5%),  
1.058 (8.3%),  

1.13 (9%) 

1.069 (8.5%),  
1.044 (8.2%),  
0.99 (7.9%) 

0.1 1,000 1.114 (8.9%),  
1.055 (8.3%),  
1.107 (8.8%) 

1.14 (9.1%),  
1.008 (8.1%),  
1.053 (8.4%) 

1.121 (8.6%),  
1.063 (8.4%),  
1.119 (8.9%) 

1.079 (8.6%),  
1.046 (8.3%),  
0.999 (8%) 

0.1 1,500 1.114 (8.9%),  
1.054 (8.3%),  
1.103 (8.8%) 

1.123 (9%),  
1.008 (8.1%),  
1.052 (8.4%) 

1.116 (8.6%),  
1.059 (8.4%),  
1.113 (8.8%) 

1.075 (8.6%),  
1.045 (8.3%),  
0.999 (8%) 

0.1 2,000 1.114 (8.9%),  
1.054 (8.3%),  
1.099 (8.7%) 

1.117 (8.9%),  
1.008 (8.1%),  
1.051 (8.4%) 

1.114 (8.6%),  
1.059 (8.4%),  
1.109 (8.8%) 

1.074 (8.6%),  
1.038 (8.2%),  
0.999 (8%) 

0.15 1,000 1.102 (8.8%),  
1.082 (8.5%),  
1.124 (8.9%) 

1.13 (9%),  
1.018 (8.2%),  
1.076 (8.6%) 

1.137 (8.8%),  
1.077 (8.5%),  
1.15 (9.1%) 

1.103 (8.8%),  
1.051 (8.3%),  
0.996 (7.9%) 

0.15 1,500 1.102 (8.8%),  
1.079 (8.5%),  
1.12 (8.9%) 

1.13 (9%),  
1.018 (8.2%),  
1.076 (8.6%) 

1.137 (8.8%),  
1.077 (8.5%),  
1.144 (9.1%) 

1.103 (8.8%),  
1.051 (8.3%),  
0.996 (7.9%) 

0.15 2,000 1.102 (8.8%),  
1.079 (8.5%),  
1.115 (8.8%) 

1.13 (9%),  
1.018 (8.2%),  
1.076 (8.6%) 

1.137 (8.8%),  
1.077 (8.5%),  
1.141 (9.1%) 

1.103 (8.8%),  
1.049 (8.3%),  
0.996 (7.9%) 

*A total of four different values for the parameter lr and three different values for the parameter nat are 
shown here.  The RMSEP (and RMSEP%) values provided in Table 6 from top to bottom of each cell are 
from: (1) the validation data set obtained with the random number generator seed set to one, (2) the 
validation data set obtained with the random number generator seed set to three, and (3) the validation 
data set obtained with the random number generator seed set to five. 
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Table 7: Descriptive statistics on the RMSEP (and RMSEP%) values obtained on the validation data sets 
for the 288 BRT models (i.e., 144 BRT models when the mnn parameter was equal to three and 144 BRT 
models when the mnn parameter was equal to five) predicting MOR. 

Statistic Median LOCF EM Non-imputed 

Minimum 1.054 (8.3%) 1.001 (8%) 1.058 (8.3%) 0.99 (7.9%) 
Maximum 1.408 (11.2%) 1.443 (11.6%) 1.405 (11.2%) 1.336 (10.6%) 
Median 1.127 (9%) 1.113 (8.9%) 1.141 (9%) 1.083 (8.6%) 
Mean 1.151 (9.1%) 1.125 (9%) 1.157 (9.1%) 1.095 (8.7%) 

Standard 
Deviation 

0.075 (0.61%) 0.102 (0.81%) 0.072 (0.57%) 0.081 (0.65%) 
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Figure 11: For each imputation method, a scatterplot of the observed MOR values and the predicted 
MOR values of the validation data set for the BRT model that best predicts MOR. 
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and/or Table 6.  The Pearson correlation coefficient values between the observed MOR 

values and the predicted MOR values for the four imputation methods Median, LOCF, 

EM, and Non-imputed, are 0.88, 0.91, 0.88, and 0.92, respectively. 

Imputation Method Results Using BRT Models for IB 

For each of the four different imputation methods used, Table 8 provides RMSEP 

(and RMSEP%) values obtained on the validation data sets for 144 BRT models 

predicting IB.  Each of these 144 aforementioned BRT models were obtained using a 

mnn parameter value equal to three, but the values for the lr and nat parameters were 

not held constant.  The 144 BRT models represented in Table 8 were the product of 

testing four different levels of lr values (0.01, 0.05, 0.1, and 0.15), a mnn value equal to 

three, three different levels of nat values (1,000, 1,500, and 2,000), and three different 

random number generator seeds (one, three, and five).  For IB and a parameter value 

of three for mnn, the lowest RMSEP value obtained on a validation data set was 0.081 

MPa, while the other parameter settings were 0.15 for lr and 2,000 for nat (refer to 

Table 8).  The RMSEP% value obtained on the validation data set for this model was 

13.7% (refer to Table 8).  The BRT model with these aforementioned model comparison 

statistics was developed from the non-imputed data.  Importantly, when the mnn 

parameter value was equal to three, several BRT models obtained this low RMSEP 

value of 0.081, but the aforementioned model obtained the lowest RMSEP% value on a 

validation data set. 

As was the case for MOR, Table 9 is similar to Table 8.  The only difference is 

that the RMSEP (and RMSEP%) values provided in Table 9 were obtained using a mnn  
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Table 8: RMSEP (and RMSEP%) values obtained on the validation data sets for each of the four different 
imputation methods are shown.  Each cell contains three RMSEP (and RMSEP%) values obtained on 
three different validation data sets for BRT models predicting IB and for the given BRT parameter 
settings.  A value of three for the parameter mnn was used.*   

lr nat Median LOCF EM Non-imputed 

0.01 1,000 0.098 (16.6%),  
0.092 (15.5%),  
0.099 (16.9%) 

0.1 (17.1%),  
0.095 (16.4%),  
0.092 (15.9%) 

0.098 (16.6%),  
0.092 (15.5%),  
0.098 (16.8%) 

0.096 (16.6%),  
0.091 (15.6%),  
0.099 (17%) 

0.01 1,500 0.096 (16.3%),  
0.09 (15.2%),  
0.097 (16.3%) 

0.097 (16.6%),  
0.093 (16%),  
0.09 (15.5%) 

0.096 (16.3%),  
0.09 (15.1%),  
0.096 (16.4%) 

0.094 (16.2%),  
0.089 (15.2%),  
0.097 (16.6%) 

0.01 2,000 0.094 (16%),  
0.089 (15%),  

0.095 (16.1%) 

0.095 (16.3%),  
0.092 (15.8%),  
0.088 (15.3%) 

0.094 (16%),  
0.088 (14.9%),  
0.095 (16.1%) 

0.093 (16%),  
0.088 (15%),  

0.095 (16.3%) 
0.05 1,000 0.09 (15.2%),  

0.085 (14.4%),  
0.091 (15.3%) 

0.089 (15.2%),  
0.087 (14.9%),  
0.084 (14.6%) 

0.089 (15.2%),  
0.084 (14.2%),  
0.09 (15.3%) 

0.088 (15.1%),  
0.084 (14.3%),  
0.091 (15.5%) 

0.05 1,500 0.088 (15%),  
0.084 (14.2%),  
0.089 (15%) 

0.087 (14.8%),  
0.085 (14.6%),  
0.082 (14.2%) 

0.088 (15%),  
0.083 (14%),  

0.088 (15.1%) 

0.086 (14.8%),  
0.082 (14%),  

0.088 (15.2%) 
0.05 2,000 0.088 (14.9%),  

0.083 (14%),  
0.088 (14.8%) 

0.085 (14.6%),  
0.084 (14.5%),  
0.081 (14.1%) 

0.088 (14.9%),  
0.083 (13.9%),  
0.088 (14.9%) 

0.085 (14.7%),  
0.081 (13.8%),  
0.087 (15%) 

0.1 1,000 0.088 (14.9%),  
0.084 (14.2%),  
0.088 (14.8%) 

0.085 (14.6%),  
0.085 (14.7%),  
0.082 (14.2%) 

0.088 (14.9%),  
0.083 (14%),  
0.088 (15%) 

0.086 (14.8%),  
0.082 (13.9%),  
0.089 (15.2%) 

0.1 1,500 0.088 (14.9%),  
0.083 (14%),  

0.088 (14.7%) 

0.084 (14.3%),  
0.085 (14.6%),  
0.081 (14%) 

0.088 (14.9%),  
0.083 (13.9%),  
0.088 (14.9%) 

0.085 (14.6%),  
0.081 (13.9%),  
0.087 (14.9%) 

0.1 2,000 0.087 (14.8%),  
0.083 (14%),  

0.087 (14.7%) 

0.084 (14.3%),  
0.084 (14.5%),  
0.081 (14%) 

0.087 (14.9%),  
0.083 (13.9%),  
0.087 (14.9%) 

0.085 (14.6%),  
0.081 (13.8%),  
0.087 (14.9%) 

0.15 1,000 0.087 (14.8%),  
0.084 (14.1%),  
0.088 (14.8%) 

0.084 (14.3%),  
0.084 (14.5%),  
0.081 (14.1%) 

0.088 (14.9%),  
0.082 (13.8%),  
0.087 (14.8%) 

0.087 (15.1%),  
0.081 (13.8%),  
0.087 (14.9%) 

0.15 1,500 0.087 (14.8%),  
0.084 (14.1%),  
0.088 (14.8%) 

0.084 (14.3%),  
0.084 (14.5%),  
0.081 (14.1%) 

0.088 (14.9%),  
0.082 (13.8%),  
0.087 (14.8%) 

0.087 (15.1%),  
0.081 (13.8%),  
0.086 (14.8%) 

0.15 2,000 0.087 (14.8%),  
0.084 (14.1%),  
0.088 (14.8%) 

0.084 (14.3%),  
0.084 (14.5%),  
0.081 (14.1%) 

0.088 (14.9%),  
0.082 (13.8%),  
0.087 (14.8%) 

0.087 (15.1%),  
0.081 (13.7%),  
0.086 (14.8%) 

*A total of four different values for the parameter lr and three different values for the parameter nat are 
shown here.  The RMSEP (and RMSEP%) values provided in Table 8 from top to bottom of each cell are 
from: (1) the validation data set obtained with the random number generator seed set to one, (2) the 
validation data set obtained with the random number generator seed set to three, and (3) the validation 
data set obtained with the random number generator seed set to five. 
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Table 9: RMSEP (and RMSEP%) values obtained on the validation data sets for each of the four different 
imputation methods are shown.  Each cell contains three RMSEP (and RMSEP%) values obtained on 
three different validation data sets for BRT models predicting IB and for the given BRT parameter 
settings.  A value of five for the parameter mnn was used.*   

lr nat Median LOCF EM Non-imputed 

0.01 1,000 0.094 (15.9%),  
0.088 (14.9%),  
0.095 (16.1%) 

0.096 (16.3%),  
0.092 (15.8%),  
0.09 (15.6%) 

0.094 (15.9%),  
0.088 (14.9%),  
0.095 (16.2%) 

0.094 (16.2%),  
0.089 (15.1%),  
0.094 (16.1%) 

0.01 1,500 0.091 (15.5%),  
0.086 (14.5%),  
0.093 (15.7%) 

0.093 (15.8%),  
0.089 (15.3%),  
0.087 (15%) 

0.091 (15.5%),  
0.086 (14.5%),  
0.093 (15.8%) 

0.091 (15.7%),  
0.087 (14.8%),  
0.091 (15.7%) 

0.01 2,000 0.09 (15.3%),  
0.085 (14.2%),  
0.091 (15.4%) 

0.091 (15.4%),  
0.087 (14.9%),  
0.084 (14.6%) 

0.089 (15.2%),  
0.084 (14.2%),  
0.091 (15.5%) 

0.089 (15.4%),  
0.085 (14.5%),  
0.09 (15.4%) 

0.05 1,000 0.086 (14.7%),  
0.083 (13.9%),  
0.087 (14.7%) 

0.085 (14.5%),  
0.081 (14%),  

0.081 (14.1%) 

0.087 (14.8%),  
0.081 (13.7%),  
0.087 (14.8%) 

0.085 (14.6%),  
0.081 (13.8%),  
0.086 (14.7%) 

0.05 1,500 0.086 (14.5%),  
0.082 (13.8%),  
0.087 (14.6%) 

0.083 (14.2%),  
0.08 (13.8%),  
0.08 (13.9%) 

0.087 (14.7%),  
0.08 (13.5%),  
0.086 (14.7%) 

0.083 (14.3%),  
0.08 (13.6%),  
0.085 (14.5%) 

0.05 2,000 0.085 (14.5%),  
0.081 (13.7%),  
0.086 (14.5%) 

0.083 (14.1%),  
0.079 (13.7%),  
0.08 (13.9%) 

0.086 (14.6%),  
0.08 (13.5%),  
0.086 (14.7%) 

0.082 (14.2%),  
0.08 (13.6%),  
0.085 (14.5%) 

0.1 1,000 0.087 (14.8%),  
0.082 (13.8%),  
0.087 (14.6%) 

0.084 (14.3%),  
0.081 (13.9%),  
0.08 (13.9%) 

0.086 (14.7%),  
0.081 (13.7%),  
0.087 (14.8%) 

0.082 (14%),  
0.081 (13.8%),  
0.085 (14.6%) 

0.1 1,500 0.087 (14.7%),  
0.082 (13.8%),  
0.086 (14.5%) 

0.083 (14.2%),  
0.08 (13.8%),  
0.08 (13.9%) 

0.086 (14.7%),  
0.081 (13.7%),  
0.087 (14.8%) 

0.081 (14%),  
0.081 (13.7%),  
0.085 (14.5%) 

0.1 2,000 0.087 (14.7%),  
0.082 (13.8%),  
0.086 (14.5%) 

0.083 (14.2%),  
0.08 (13.8%),  
0.08 (13.9%) 

0.086 (14.7%),  
0.081 (13.7%),  
0.087 (14.8%) 

0.081 (14%),  
0.081 (13.7%),  
0.085 (14.5%) 

0.15 1,000 0.087 (14.8%),  
0.083 (14%),  

0.087 (14.7%) 

0.084 (14.3%),  
0.08 (13.8%),  
0.081 (14%) 

0.086 (14.6%),  
0.084 (14.2%),  
0.087 (14.9%) 

0.085 (14.6%),  
0.081 (13.8%),  
0.084 (14.4%) 

0.15 1,500 0.087 (14.8%),  
0.083 (14%),  

0.087 (14.7%) 

0.083 (14.2%),  
0.08 (13.7%),  
0.081 (14%) 

0.086 (14.6%),  
0.084 (14.2%),  
0.087 (14.9%) 

0.085 (14.6%),  
0.081 (13.8%),  
0.084 (14.4%) 

0.15 2,000 0.087 (14.8%),  
0.083 (14%),  

0.087 (14.7%) 

0.083 (14.2%),  
0.08 (13.7%),  
0.081 (14%) 

0.086 (14.6%),  
0.084 (14.2%),  
0.087 (14.9%) 

0.085 (14.6%),  
0.081 (13.8%),  
0.084 (14.4%) 

*A total of four different values for the parameter lr and three different values for the parameter nat are 
shown here.  The RMSEP (and RMSEP%) values provided in Table 9 from top to bottom of each cell are 
from: (1) the validation data set obtained with the random number generator seed set to one, (2) the 
validation data set obtained with the random number generator seed set to three, and (3) the validation 
data set obtained with the random number generator seed set to five. 
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parameter value equal to five.  For IB and a parameter value of five for mnn, the lowest 

RMSEP value obtained on a validation data set was 0.079 MPa, while the other 

parameter settings were 0.05 for lr and 2,000 for nat (refer to Table 9).  The RMSEP% 

value obtained on the validation data set for this model was 13.7% (refer to Table 9).  

Again, the BRT model with these aforementioned model comparison statistics was 

developed from the LOCF data.  

For each of the four imputation methods, Table 10 provides descriptive statistics 

on the RMSEP (and RMSEP%) values obtained on the validation data sets for the 288 

BRT models (i.e., 144 BRT models when the mnn parameter value was equal to three 

and 144 BRT models when the mnn parameter values was equal to five) predicting IB.  

Finally, for each of the four imputation methods, a scatterplot of the observed IB values 

and the predicted IB values of the validation data set for the one BRT model that best 

predicts IB can be seen in Figure 12. The BRT model for each imputation method that 

best predicts IB can be determined by referring to Table 8 and/or Table 9.  The Pearson 

correlation coefficient values between the observed IB values and the predicted IB 

values for the four imputation methods Median, LOCF, EM, and Non-imputed, are 0.8, 

0.83, 0.81, and 0.81, respectively. 

Remarks 
 

Not surprisingly, across the different imputation methods (“median,” “expectation-

maximization,” “last observation carried forward,” and “non-imputation”), BRT models 

predicted the MOR measurement more accurately than IB.  Again, the smaller 

RMSEP% values were associated with BRT models for MOR.  Given the information  
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Table 10: Descriptive statistics on the RMSEP (and RMSEP%) values obtained on the validation data 
sets for the 288 BRT models (i.e., 144 BRT models when the mnn parameter was equal to three and 144 
BRT models when the mnn parameter was equal to five) predicting IB. 

Statistic Median LOCF EM Non-imputed 

Minimum 0.081 (13.7%) 0.079 (13.7%) 0.08 (13.5%) 0.08 (13.6%) 
Maximum 0.099 (16.9%) 0.1 (17.1%) 0.098 (16.8%) 0.099 (17%) 
Median 0.087 (14.8%) 0.084 (14.3%) 0.087 (14.8%) 0.085 (14.6%) 
Mean 0.088 (14.8%) 0.085 (14.6%) 0.087 (14.8%) 0.086 (14.7%) 

Standard 
Deviation 

0.004 (0.7%) 0.005 (0.79%) 0.004 (0.74%) 0.004 (0.81%) 
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Figure 12: For each imputation method, a scatterplot of the observed IB values and the predicted IB 
values of the validation data set for the BRT model that best predicts IB. 
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learned in Chapter IV, allowed for an even more in depth study in this chapter on the 

relationship between BRT parameter settings and model predictive performance.   

A key finding of this study was the minimal effect on BRT model prediction due to 

a loss of information.  This may be due to the methodology of BRT.  The BRT 

methodology will select a relatively small sample of weak learner predictor variables.  If 

the weak learner predictor variables selected in the BRT model do not have many 

missing values capable of being imputed, there would be small differences in the 

outcomes of RMSEP% values among the imputed and non-imputed methods.  Further 

research is required in this area, which is beyond the scope of this thesis.
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CHAPTER VI. CONCLUDING REMARKS AND FUTURE RESEARCH 
 

 The use of boosted decision trees for predictive modeling started just over a 

decade ago.  More wide-spread use of boosted trees for predictive modeling has 

occurred within the past decade.  Boosted regression trees (BRT) are a predictive 

modeling technique that draw on insights and techniques from both statistical and 

machine learning traditions which combine boosting algorithms with regression tree 

methods.  BRT models have the ability to select pertinent variables, fit accurate 

functions, and model interactions.  In the study conducted for this thesis, the boosting 

technique enhances the predictive performance of regression trees for predicted MOR 

and IB of particleboard by combining a series of small regression trees in a stochastic-

based gradient descent method.   

A major challenge for engineered wood products manufacturers is developing 

better knowledge of the complex nature of process variables (e.g., line speed, press 

temperature, etc.) and their relationship with engineered wood product strength 

properties (e.g., internal bond (IB), modulus of rupture (MOR), etc.).  Also, accurate 

real-time prediction of strength properties between long time periods associated with 

destructive tests would create opportunities for improved business competitiveness.  

Accurate real-time prediction of strength properties would prevent the production of 

defective or off-grade product between destructive test samples and would avert 

unwarranted high operating targets for wood and resin addition.  Improved production 

efficiency may also be possible with accurate real-time prediction of strength properties.  

The research of this thesis has shown that accurate real-time predictions of strength 
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properties of particleboard are feasible with the use of BRT.  This thesis is the first 

known published work for using BRT methods to predict the strength properties of wood 

composites.  BRT models had far superior predictive quality of wood composites 

strength properties in validation when compared to regression tree models.  This 

research advances the area of study that models real-time strength properties of wood 

composites.  A significant contribution is the development of one BRT model for all 

product types.  In this study, the data set contained 118 different product types for 

particleboard.  Previous research (see André et al. 2008; Clapp et al. 2008) developed 

separate models for nominally manufactured product types (e.g., ¾’’, 5/8’’, etc.) which 

left a gap in predictive models for a large number of other product types. 

 Specifically, this thesis documented the development of a total of 140 different 

BRT models for both MOR and IB of particleboard.  For MOR, the RMSEP values 

ranged from 1.051 to 1.443 MPa, and RMSEP% values ranged from 8.5% to 11.6%.  

For IB, RMSEP values ranged from 0.074 to 0.108 MPa, and RMSEP% values ranged 

from 12.7% to 18.6%.  For MOR, the five most important process predictor variables 

were related to “pressing temperature zones,” “thickness of pressing,” and “pressing 

pressure.”  For IB, the five most important process predictor variables were related to 

“thickness of pressing.”   

 The thesis research also examined the effect of missing values in the data set on 

BRT model predictive quality.  Missing values were a common problem with the 

industrial data set use in this study, which is not atypical for any other industrial data 

set.  Three different imputation methods (“median,” “expectation-maximization,” and 
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“last observation carried forward”) were used and the BRT model predictions for MOR 

and IB were compared with the BRT model predictions for a non-imputed data set.  For 

both MOR and IB, 72 BRT models were developed for each of the four imputation 

methods.  BRT model performance using RMSEP and RMSEP% was determined for 

three different validation data sets for each set of the BRT parameter settings lr, nat, 

and mnn.  For MOR, the best BRT model for the non-imputed data set had RSMEP and 

RMSEP% values of 0.99 MPa and 7.9%, respectively.  In comparison, the best BRT 

model for MOR for an imputed data set using “last observation carried forward” 

imputation had RMSEP and RMSEP% values of 1.001 MPa and 8%, respectively.  For 

IB, the best BRT model for the non-imputed data set had RMSEP and RMSEP% values 

of 0.08 MPa and 13.6%, respectively.  In comparison, the best BRT model for an 

imputed data set using “last observation carried forward” imputation had RMSEP and 

RMSEP% values of 0.079 MPa and 13.7%, respectively.  The approximate 270 

observations lacking in the non-imputed data set as compared to the other three 

imputed data sets did not appear to affect the predictive ability of BRT models.  This 

may be due to the methodology of BRT.  The BRT methodology will select a relatively 

small sample of weak learner predictive variables using a series of consecutive three or 

five node trees as it builds an overall model.  If the predictor variables selected in the 

BRT models do not have many missing values, there would be small differences in the 

predictive quality between imputed and non-imputed data sets.  

 An advantage of using BRT models is that the technique may abstain from 

selecting predictor variables with large numbers of missing values, which would make 
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the technique robust and applicable for industrial applications.  Another advantage of 

the BRT models when compared to regression tree models is the improved predictive 

performance in validation. 

A possible disadvantage of using BRT for predictive models is difficult 

interpretation of the BRT model itself and the significant predictor variables.  Specifically 

indentifying the significant predictor variables of a process and the magnitude of 

influence of such variables on strength properties may limit the usefulness of the BRT 

technique for root cause analysis in continuous improvement efforts.  Another 

disadvantage of using BRT for predictive modeling is that building a BRT model can be 

computationally time consuming depending on the power of the computer being used to 

build the BRT models.  In this thesis study the average CPU time for one BRT model 

using a HP dual-processor Power Edge was approximately seven minutes.  As time 

progresses and the power of computers (even personal computers) grow, this may 

reduce this disadvantage in the use of BRT models.   

 Suggestions for future research on the use of BRT models for predicting the 

strength properties of wood composites are as follows.  First, the relationship between 

BRT parameter settings and model predictive performance should be studied in an 

effort to hopefully determine parameter settings that will yield an optimal model, or close 

to it, for MOR and IB.  Second, the effect of information loss on the predictive 

performance of BRT models requires further investigation.  Thesis results suggest BRT 

models may be robust to information loss given the specifics of the methodology in 
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selecting weak learner predictor variables.  Third, BRT predictive modeling of MOR, IB, 

and other strength properties, should be tested at a mill site in a real-time setting. 
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Creating Boosted Regression Tree Models in STATISTICA 10 
 

Step 1: Open the data file and select the “Boosted Trees” option under the Data Mining 
Tab. 

 
 
Step 2: In the window that pops up, select the “Regression Analysis” option to perform 
Boosted Regression Tree modeling and click OK. 
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Step 3: In the window that pops up, select the “Variables” option. 

 
 

Step 4: Select the “Dependent” variable and the “Predictor” variables from the variables 
list.  Click OK. 
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Step 5: Then click on the “Advanced” tab in the window shown in Step 4 and choose 
parameter settings used to fit a desired Boosted Regression Tree model.  For example, 
set the learning rate (lr) to be 0.1, number of additive terms (nat) to be 500, subsample 
proportion (sp) to be 0.5, random test data proportion to be 0.2, and maximum number 
of nodes (mnn) to be 3.*  Click OK.  STATISTICA 10 will start building the Boosted 
Regression Tree model (refer to the top of the next page).  (The values provided in the 
figure below represent the default values used by STATISTICA for this data set.) 

 
* The “Learning rate,” or the shrinkage parameter, (lr) specified the specific weight with 
which consecutive simple regression trees are added into the prediction equation.  For 
example, a BRT model with 500 trees fitted and lr equal to 0.01 will produce predictions 
that are the sum of predictions from each of the 500 trees multiplied by 0.01.  Second, 
the “Number of additive terms” (nat) specified the number of simple regression trees 
(i.e., additive terms) to be computed in successive boosting steps.  The “Maximum 
number of nodes” (mnn) specified the maximum number of nodes allowed for each 
individual tree in the boosting sequence.  Setting mnn equal to three (i.e., single split 
regression trees or stumps) produced BRT models with only main effects.  Setting mnn 
equal to five produced BRT models with main effects and two-variable interactions, and 
so on.  The “Subsample proportion” (sp) was used for selecting the random learning 
sample for consecutive boosting steps.  The “Random test data proportion” parameter 
setting determines the percent of randomly selected observations to be used in the 
testing (i.e., validation) sample. 
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Step 6: After STATISTICA 10 has built the Boosted Regression Tree model, a “Boosted 
Regression Tree Results” window will open (refer to the top of the next page). 
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Step 7: Under the “Quick” tab in the “Boosted Regression Tree Results” window select 
the “Summary” option.  This will show the optimal Boosted Regression Tree model for 
the number of additive terms designated in terms of average squared error on the 
validation data set (refer to the top of the next page). 
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Step 8: Under the “Quick” tab in the “Boosted Regression Tree Results” window select 
the “Risk Estimates” option.  This provides the MSE values obtained on the training and 
testing (i.e., validation) data sets. 

 
 

Step 9: Under the “Quick” tab in the “Boosted Regression Tree Results” window select 
the “Predictor Importance” option.  This provides “Predictor Importance” values and 
rankings for predictor variables (refer to the top of the next page). 
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Step 10:  Select the “Prediction” tab in the “Boosted Regression Tree Results” window 
to obtain graphs, plots, and values, for the training and validation data sets (refer to the 
top of the next page). 
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Step 11: Under the “Prediction” tab in the “Boosted Regression Tree Results” window 
select the Sample to be “Test set.”  (One can also do this soon to be mentioned 
analysis on the training data set by selecting the Sample to be “Analysis” or “All 
Samples.”)  Then select the Observed vs. Predicted option.  This provides a scatterplot 
of the observed vs. predicted values in the validation data set (refer to the top of the 
next page). 
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Step 12: If desired, one can obtain the observed and predicted values for the different 
data sets by selecting the “Predicted Values” option under the “Prediction” tab in the 
“Boosted Regression Tree Results” window (refer to the top of the next page). 
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