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Abstract

Multicore processors are replacing most of the single core processors nowadays.

Current trends show that there will be increasing numbers of cores on a single

chip in the coming future. However, programming multicore processors remains

bug prone and less productive. Thus, making use of a runtime to schedule tasks

on multicore processor hides most of the complexities of parallel programming to

improve productivity. QUARK is one of the runtimes available for the multicore

processors. This work looks at identifying and solving performance bottlenecks for

QUARK on the shared memory architecture. The problem of finding bottlenecks

is divided into two parts, low level details and high level details. Low level details

deal with issues like length of the critical section and locking mechanisms. High

level details involve use of a suitable scheduling algorithm and better load balancing.

We discuss the possible solutions of the bottlenecks and its impact on the overall

performance.
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Chapter 1

Introduction And Motivation

1.1 Motivation

Implementing parallel or multi-threaded programs from scratch using basic threading

APIs such as Pthreads can be time consuming and error prone. Issues like load

balancing and synchronization are critical from performance point of view. These

issues are often a distraction for the programmer, compared to spending time on the

main algorithm. Thus it is better to make use of a layer of abstraction. The motivation

for a task scheduler is that it provides programmers with a layer of abstraction

over these details and allows them to concentrate on structuring programs to expose

parallelism and exploit locality. It is the scheduler’s responsibility to execute programs

in an efficient way on the given architecture. Hence, it is critical to ensure that the

scheduler has the lowest overhead and maximum performance possible. QUARK [1]is

one such scheduler developed at Innovative Computing Lab, University of Tennessee,

Knoxville. QUARK is a dynamic runtime optimized for linear algebra libraries which

have high performance requirements. In this work we look at exploring different

optimization opportunities in order for QUARK to have minimum overhead and

maximum performance possible. Removing bottlenecks and improving performance

further will make QUARK even more attractive option for application developers.
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1.2 Introduction

Multicore architectures require parallel programs in order to exploit maximum

performance. There are different programming abstraction options available for

different kinds of parallel constructs like for the fork-join parallel construct we have

OpenMP, for recursive parallelism Cilk[2] is more suitable. Other options are Intel’s

Thread Building Blocks[3], Microsoft’s Parallel Pattern Library etc. QUARK is more

suitable for data driven task execution. In the background section we describe more

about how QUARK works.

As part of this work, we explore optimization options for QUARK scheduler. The

goal of the QUARK is to schedule tasks on the multicore CPU with shared memory

architecture in the most efficient way. We use the dense linear algebra workload ‘tiled

QR algorithm’ for performance analysis[4]. We also compare QUARK performance

to other similar schedulers. We approach the task of optimization in two parts; first

is the low level details and second is high level details. Low level details involve

optimizations related to use of data structures, locking mechanisms, length of the

critical section etc. The important outcome of this work is improving performance

of the QUARK more than 87% for certain cases. This work involves making use of

a lightweight tracing library EZTrace [5] for QUARK to make the profiling process

fast and productive. In the following sections we explain how lightweight tracing has

helped us to zero on the performance bottleneck part of the QUARK implementation.

The second part involves optimizations related to algorithmic decisions made while

scheduling tasks. Scheduling involves making decisions about which task should be

executed at a certain time in order to have the minimum finish time and maximum

performance.
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Chapter 2

Background

We started this work with the goal of overall improvement in the performance of

QUARK. QUARK is a dynamic task scheduler that extracts dependencies amongst

tasks and makes the scheduling decisions about which task should run on which

core, at runtime. In contrast, some linear algebra libraries such as PLASMA[6]

make manual scheduling decisions known as static scheduling. However these manual

schedules for various algorithms are difficult to generate, and can limit the ability of

PLASMA to implement new and innovative algorithms. As our first step to improve

performance, we compare the performance of QUARK with statically scheduled

PLASMA routines as well as with some similar schedulers developed by other research

groups. The motivation behind this comparison is to get an idea about which

scheduler is better and the reasons behind the same. Through this understading

we improve QUARK implementation to get more performance. Such scheduler

comparison work has been done before by Kurzak et. all using static routines,

Cilk runtime, and SMPSs scheduler[7]. This work concludes that for linear algebra

routines, SMPSs performs better than Cilk scheduler. However, SMPSs does not

performs better than static routines. Thus, for our comparison work we select

PLASMA static routines, SMPSs scheduler and StarPU scheduler. We describe the

SMPSS and StarPU schedulers in more detail in Section 2.1, but before we explain

3
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Figure 2.1: Scheduler comparison for different tile sizes using Tiled QR factorization
for a fixed problem of size N=8000, double precision on a 2.4 GHz 12-socket quad-core
(48 cores total) AMD Opteron(tm) processor. A tile size corresponds to the length
of the average task. Hence this figure shows effect of the scheduling overhead on the
overall performance compared to the average task length.

how these schedulers work, we discuss the concept of the overhead associated with

these schedulers and its effect on the performance.

Figure 2.1 shows the performance of each tested scheduler on the ‘tiled QR

factorization’ [4] workload using different tile sizes. A given tile size is directly

proportional to how long a unit task will run on an average. Thus the Figure 2.1

shows effect of change in unit task length on scheduler performance. It can be seen

that for smaller tile sizes, SMPSs is performing better than both StarPU and QUARK.

This behaviour can be explained in following terms. A dynamic task scheduler does

multiple things in order to execute a task at runtime. It needs to extract and maintain

information about different task dependencies for logical correctness. This extra work

4
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Figure 2.2: Scheduler comparison for tile size 200 using Tiled QR factorization,
double precision on a 2.4 GHz 12-socket quad-core (48 cores total) AMD Opteron(tm)
processor. A tile size corresponds to the length of the average task. Hence this figure
shows that for tile size around 200 all scheduler are having similar performance.

is the overhead involved in scheduling tasks. This overhead can be ignored if task

length is long relative to the time required for the overhead processing. As we decrease

the tile size that is average task length, effect of overhead becomes significant. In

Figure 2.1, for tile size below 200 performance for all three schedulers is dropping. As

shown in Figure 2.2 it can be seen that QUARK performance is better than SMPSs

and StarPU for tile size 200. But at smaller tile size, the performance of QUARK

decreases very fast, so we focus our attention on what is happening at tile size 80.

Figure 2.3 shows QUARK performance is lower than both SMPSs and StarPU. Thus,

as part of this work we try to find what are the performance bottlenecks for QUARK

causing drop in the performance for lower tile size like tile size 80. We discuss how

these dynamic task schedulers work in general and give a brief description for each

5
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Figure 2.3: Scheduler comparison for tile size 80 using Tiled QR factorization,
double precision on a 2.4 GHz 12-socket quad-core (48 cores total) AMD Opteron(tm)
processor. A tile size corresponds to the length of the average task. Hence this
figure shows that for tile size around 80 all scheduler are having different performance
indicating scope for performance improvement for QUARK.
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scheduler. After that we discuss in further detail about QUARK and in subsequent

sections we discuss about performance improvements.

2.1 Dynamic Task Schedulers

A dynamic task scheduler makes scheduling decisions at the runtime. Compared to

static scheduling, dynamic task schedulers have advantage that they can do better

load balancing based on the runtime conditions. Any dynamic task scheduler requires

user to provide certain information for each task such as arguments for each task, the

size of the memory used by the arguments and the direction of the data movement like

read or write for the given memory region. Some schedulers have an additional source

to source compiler phase to make it easy for users to specify task details using some

compact notations such as ‘# pragma’ in C programming language. Some schedulers

ask user to provide all task details in verbose fashion to avoid extra compilation

phase. A library is provided which collects the information for all tasks and makes

scheduling decisions at runtime. In following subsections we give a brief description

for each scheduler being used in this work.

2.1.1 SMPSs

SMP Superscalar(SMPSs)[8] is a dynamic scheduler developed at the Barcelona

Supercomputer Center (Centro Nacional de Supercomputacion). SMPSs supports

CPU only scheduling and does not provide support for any accelerator or GPUs.

Hence it provides a good comparison option for QUARK, as QUARK also supports

CPU only scheduling. As described above for SMPSs, programmers need to specify

size of the memory being used by each argument of the task and also direction of the

data movement (input, output, inout). SMPSs provides compiler support to collect

these details so programmer can use simple pragma annotations to provide these

details making code changes less verbose.
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2.1.2 StarPU

StarPU[9] dynamic scheduler is being developed at INRIA Bordeaux, LaBRI,

Universit de Bordeaux, France. StarPU is developed for hybrid environment i.e. CPU

plus accelerators such as GPU. However in this study we are only looking at CPU

scheduling. StarPU, similar to SMPSs, requires user to provide certain information for

each task such as all the arguments, the size of the memory used by the arguments and

the direction of the data movement for the given memory region. However there is no

compiler support for StarPU so this information becomes verbose from programmer

point of view.

StarPU provides many scheduling strategies i.e. the different criteria using which

a core should select a task for execution. A scheduling strategy named ‘prio’ uses

a central task queue, but sorts tasks by priority. The ws (work stealing) strategy

schedules tasks on the local worker by default. When a worker becomes idle, it steals

a task from the most loaded worker. Most of the scheduling strategies provided are

useful in hybrid (CPU + GPU) architecture environment. In this work we have used a

scheduling strategy called ‘eager’ which uses a central task queue, from which workers

draw tasks to work on. This strategy provides good load balancing.

2.1.3 QUARK

QUARK is a dynamic runtime being developed by Innovative computing lab at

University of Tennessee, Knoxville. QUARK is similar to both SMPSs and StarPU

as it also extracts and build dependency information at runtime. It also makes

scheduling decisions at runtime so it involves certain overhead to schedule tasks.

QUARK is a CPU only scheduler and there is no extra compiler support to specify

task argument details. In the next section we specify how QUARK extracts and build

dependency information for tasks.

8



2.2 Task Graph

Figure 2.4 shows a serial toy program which performes some simple mathematical

operations. In Figure 2.5, each line of the program in Figure 2.4 is expressed using

the QUARK API so that QUARK will understand input and output arguements

of each task to be executed. The function QUARK Insert Task adds a task to be

executed to a given QUARK runtime instance. Let us look at one example line

‘ADD(D2, D3, D4)’ from the toy program, where D2, D3, D4 are the data memory

location used by function ADD. Following function,

ADD(D2, D3, D4)

is converted to

QUARK_Insert_Task(quark, QUARK_ADD,

address_of(D3), size_of(D3), INPUT,

address_of(D2), size_of(D2), INPUT,

address_of(D4), size_of(D4), OUTPUT).

The first argument to QUARK Insert Task is the QUARK instance to which tasks

are to be added. The second argument is the function to be called in order to execute

a given task. For each data item in original ADD function QUARK needs address of

the memory, size of the memory that would be accessed from the specified address

location, and direction of the data i.e. OUTPUT, INPUT, and INOUT. For all the

lines in our toy program the corresponding QUARK code will looks similar to that

shown in Figure 2.5.

QUARK works similar to a superscalar processor trying for the maxium in-

struction level parallelism. Each memory location being handled by the QUARK

could be related to a given register in a superscalar processor. QUARK will try

to maintain logical correctness similar to superscalar processor but try to change

the execution sequence to get maximum performance. QUARK gets details about

9



D1 D2 D3 D4

SQRT(D1) Read D1 D1 =
√
D1

MULT(D1, D2) Read D1, D2 D2 = D1 * D2
MULT(D1, D3) Read D1, D3 D3 = D1 * D3
ADD(D2, D3, D4) Read D2, D3 D4 = D2 + D3

Figure 2.4: A serial toy program

Task 1(T1) QUARK Insert Task (quark, QUARK SQRT,
address of(D1), size of(D1), INOUT)

Task 2(T2) QUARK Insert Task (quark, QUARK MULT,
address of(D1), size of(D1), INPUT,
address of(D2), size of(D2), INOUT)

Taks 3(T3) QUARK Insert Task (quark, QUARK MULT,
address of(D1), size of(D1), INPUT,
address of(D3), size of(D3), INOUT)

Task 4(T4) QUARK Insert Task (quark, QUARK ADD,
address of(D3), size of(D3), INPUT,
address of(D2), size of(D2), INPUT,
address of(D4), size of(D4), OUT)

Figure 2.5: A serial toy program to QUARK tasks
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the memory addresses and their size and the direction of the data movement for

the memory addresses as well as the sequence of tasks insertion. Using these details

QUARK builds a Directed Acyclic Graph (DAG) which helps to maintain and update

information regarding different data hazards such as Read After Write(RAW), Write

After Read (WAR). The following description illustrates how the DAG is built for

the toy program. First task T1 is reading and writing to memory location D1. There

are no other tasks inserted before T1 hence T1 becomes the first node of the DAG

as shown in Figure 2.6. Task T2 reads data from memory location D1, however D1

would be written by T1 hence T2 has to wait till T1 is over. Therefore, there is

an edge from T1 to T2 and T2 becomes child of T1. Similarly Task T3 reads data

from memory location D1, thus there is an edge from T1 to T3. However QUARK

finds that T2 and T3 are not writing to any common memory location, hence T2

and T3 can run in parallel. Task T4 reads memory location D2 and D3 written by

task T2 and T3 respectively. Hence there are two edges into task T4, one from T2

and other from T3. In the next section we explain how QUARK represents the DAG

information using different data structures.

2.3 Data Structures

Figure 2.7 shows a snapshot of the QUARK data structures after three tasks have

been inserted into system. Each task inserted into QUARK will be executed later as

a function call. In Figure 2.7, we have three function calls. For each function call

we have a list of parameters. If a function parameter is a memory location passed

by pointer, QUARK will identify that as a dependency. Hence for function call

Task 1(geqrt, A00, T00) two dependencies named as t 1 A00RW and t 1 T00W are

created. Note that QUARK requires users to provide INOUT(RW), OUTPUT(W),

and INPUT(R) data movement direction for each memory argument. QUARK also

allocates a task data structure, Task 1, to refer to this list of dependencies. Each

dependency refers to a memory location and a task. In this example, dependency

11
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Figure 2.6: DAG for the toy program
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Task 1(geqrt, A00, T00)
Task 2(unmqr, A00, T00, A01)
Task 3(unmqr, A00, T00, A02)

Dependency list Task 1 t 1 A00RW t 1 T00W

Task 2 t 2 A00R t 2 T00R t 2 A01RW

Task 3 t 3 A00R t 3 T00R t 2 A02RW

Task set hash
Task 1
Task 2
Task 3

address set hash Dependency waiting
A00 t 1 A00RW t 2 A00R t 3 A00R

T00 t 1 T00W t 2 T00R t 3 T00R

A01 t 2 A01RW

A02 t 3 A02RW

Figure 2.7: QUARK Bookkeeping showing Task 1 ready to go and Task 2 and
Task 3 are blocked waiting for access to various data items.

t 1 A00RW refers Task 1 and memory location A00. QUARK maintains a list of

dependencies for each memory location. QUARK keeps track of which all tasks

are waiting for a given memory location in address set hash data structure. In this

case, memory location A00 has three tasks waiting i.e. Task 1 (t 1 A00RW ), Task 2

(t 2 A00R), Task 3 (t 3 A00R). For a memory location, the first dependency is always

marked as ready. This indicates there are no other tasks using the memory location

apart from the first dependency task. Thus we see, dependency t 1 A00RW is marked

as ready (highlighed with green color). Any given task is ready to run if all its

dependencies are ready. Task 1 has all the dependencies ready (highlighted with green

color) hence QUARK will execute Task 1 using one of the worker threads. Once a

task is executed, we remove the dependencies for that task from the bookkeeping data

structures. This results in unlocking the next tasks which can be executed. Figure 2.8

shows the snapshot of data structures after Task 1 dependencies are removed. Note

13



Task 2(unmqr, A00, T00, A01)
Task 3(unmqr, A00, T00, A02)

Dependency list Task 2 t 2 A00R t 2 T00R t 2 A01RW

Task 3 t 3 A00R t 3 T00R t 2 A02RW

Task set hash
Task 2
Task 3

address set hash Dependency waiting
A00 t 2 A00R t 3 A00R

T00 t 2 T00R t 3 T00R

A01 t 2 A01RW

A02 t 3 A02RW

Process finish tasks Task 2 Task 3

Figure 2.8: QUARK Bookkeeping showing Task 2 and Task 3 are over but not yet
processed as finished tasks and waiting in ‘process finished task’ queue.
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that Task 2 and Task 3 are marked ready to run (highlighted with green color). When

Task 2 and Task 3 execution is completed they would be put into a ‘process finished

tasks queue’ for the DAG update step (refer figure 2.8). A single thread would acquire

a lock on this queue and unlock next tasks. We call this implementation a serial DAG

update. In the next chapter we discuss we show how serial DAG updates can cause

performance issue.

15



Chapter 3

Low Level Optimizations

In the background chapter we explained performance problem for QUARK for lower

tile sizes as shown by performance plot in Figure 2.3. Following sections explain

different optimizations helping to improve performance of QUARK.

3.1 Unlocking New Tasks

The Figure 2.3 showed QUARK performance is below StarPU and SMPSs for smaller

tile size. We have described how QUARK maintains a ‘process finished tasks queue’

to keep track of finished tasks. Whenever a task is finished it is added to this global

queue. One thread periodically goes through all the latest finished tasks and decides

which all new tasks are ready to run. Instead of a single thread checking finished

tasks, we made each thread to check this queue after finishing the task. This change

ensured all the DAG updates are processed as soon as possible and new tasks are

unlocked without any delay. As shown in Figure 3.1, after this change we observed

that QUARK is giving more performance than both SMPSs and StarPU for lower

tile size and lower matrix size. However this performance was dropping for bigger

matrix sizes. One possible explanation for this issue was many threads trying to

acquire lock on the ‘process finished tasks queue’. Consider the scenario in which 5

tasks have finished executing a task around the same time. All of them will compete

16
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Figure 3.1: Performance comparison for original QUARK (quark before) and
improved QUARK (quark after). Improved QUARK result shows that default
QUARK performance could be improved if DAG is processed more frequently. Tiled
QR factorization, Tile size NB = 80, inner block size IB = 32, double precision on a
2.4 GHz 12-socket quad-core (48 cores total) AMD Opteron(tm) processor.

against each other to acquire lock on the ‘process finished task queue’. This problem

of threads competing with each other for acquiring a common resource is called as

lock contention. However, there is no such global queue present in case of SMPSs

which reduces the lock contentions. The next section discusses efforts involved in

removing this global queue and observing its impact on the overall performance.

3.2 Parallel DAG Update And Spinlocks

We have explained how QUARK would put each finished task in the queue for further

processing as in figure 2.8. Even if we processed items in this queue as soon as they

17



were inserted, it was still an avoidable bottleneck. Instead of putting tasks in a queue,

we modified the logic of the QUARK runtime implementation to process the finished

task as soon as its execution was over. Doing this means that we do not have to

acquire lock on common big data structure to update the task status and unlock

new tasks. This can be seen as in a big DAG, two different regions can be updated

in parallel. This was not the case with original QUARK. We call this improved

implementation ‘parallel DAG’. However, we still had other common locks for which

there were contentions. For example, we had a lock to keep track of total number

of tasks in the system. We were using mutex lock and we did not get significant

performance improvement just after using parallel DAG. The problem with mutex

lock is if there is a lock contention, threads can be put into sleep state. Moving

a thread into sleep state and waking it up is a heavy operation. This overhead is

worthwhile when the length of the critical section is long enough to ignore this state

change overhead. After using parallel DAG improvement, the critical section of the

code was reduced to very small operations such as incrementing a common counter

of total number of tasks in the system. In this case, using spinlocks would be a

better choice. Spinlocks are different from the mutex locks from the implementation

point of view. Spinlock keeps checking if a lock can be acquired in a busy loop. For

a mutex locks if it can not acquire a lock, language specific scheduler puts it into

the sleep state. Whenever lock becomes available, language specific scheduler wakes

up the sleeping thread and it can acquire the lock. As spinlocks are never put to

sleep state and they keep spinning and take less time to acquire the lock relative

to mutex locks. Thus, if critical section of the code is small, spinlocks are faster

compared to mutex locks. Hence after implementing the code changes for spinlocks,

we got the performance improvement as shown in Figure 3.2. If we compare QUARK

performance in Figure 3.2 to Figure 3.1, we see that performance improves till matrix

size 9000. So use of parallel DAG and spinlock as per expectation helped to improve

the performance. However, performance starts to drop after matrix size 9000. We

discuss the analysis of this problem in the next section.
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Figure 3.2: Performance improvement for ‘Parallel DAG’ with spinlock for tiled QR
factorization, tile size NB = 80, inner block size IB = 32, double precision on a 2.4
GHz 12-socket quad-core (48 cores total) AMD Opteron(tm) processor.
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3.3 EZTrace Tracing

After using spinlock and parallel DAG optimizations there was no obvious optimiza-

tion option for performance improvement. QUARK has one master thread to insert

the user tasks and many worker threads to execute the tasks inserted by master

thread. To keep logical correctness at different parts of the code, synchromization

mechanisms are used. Thus whenever multiple worker threads are waiting for the

same resource, generally known as lock contentation, they don’t do any useful work

and remain idle. Idle worker threads cause performance drop as system is not used

completely. Thus lock contention could be one generic answer for performance drop

after matrix size 9000 in Figure 3.2. Problem with optimization to reduce lock

contention is some locks take very short time and some don’t. We decided we would

profile the program to get more details. However, there were many tools to profile the

code. Some were emulator based such as valgrind profiler. However many of these

tools profile entire code thus they have a big overhead and end up giving distorted

picture of performance impact of the part of code. QUARK is a parallel program

and highly performance sensitive. Thus we needed a lightweight tracing tool which

should have little or no impact on overall performance. Hence, we used EZTrace [5]

profiler so that we can trace any specific part of the code as shown in Figure 3.3. This

manual approach of profiling has two advantages. First, it helps to reduce the noise

in terms of the profiler output. Second, it does not impact overall performance as it

is really light weight compared to other profilers.

We started with tracing QUARK functions to see where it was spending all the

time. (Refer to Figure 3.4.) Black spaces means we do not know the details about

what thread is doing at that time or the thread is doing nothing. We try to fill that

black space by adding more trace information with corresponding part of the code to

know where threads are spending their time when they are not doing any useful work.

This helps to zoom down to the exact part of the code which is causing performance
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EZTRACE_EVENT0(FUT_QUARK(LOCK_ADDRESS_MUTEX));

/* Lock the address_set_node and manipulate it */

if ( pthread_mutex_lock_wrap( &address_set_node->asn_mutex ) == 0 )

{

EZTRACE_EVENT0(FUT_QUARK(STOP));

...

}

Figure 3.3: EZTrace for manually tracing QUARK

bottlenecks. In our next section we explain how tracing helps to find out performance

bottlenecks.

3.4 Master Lock Contentions

As explained in the previous section, we profiled QUARK routines and started

focusing on part of the traces affecting overall performance. In Figure 3.4 we see

the master thread (at top of the Figure 3.4 cpu trace line with yellow color tiles) is

inserting tasks. Each small yellow tile represents time required to insert the task.

Each green tile in the following rows show time required to execute a unit task by

the worker. If we count the number tasks inserted into the system while a unit task

is running i.e. for the length of a green tile how many yellow tiles are present, the

count is approximately 26. In the given Figure 3.4 there are 47 worker threads.

Thus while inserting 26 tasks, first worker is not idle. However, consider the scenario

when 27 th task is being inserted by master thread. For the 27th task, first worker

thread has completed executing first task and we still have not assigned any tasks

to worker number 27 to 47 i.e. 21 worker threads plus first worker thread i.e. 22

worker threads are waiting for a task to execute and only one task is available. This

shows master is not pumping enough tasks into the system. Thus worker threads
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Figure 3.4: CPU trace generated by EZTrace for a dummy program for which each
task is not dependent on any other task on a 2.4 GHz 12-socket quad-core (48 cores
total) AMD Opteron(tm) processor. The motivation to use dummy program is check
for a perfectly parallel program what are the implementation bottleneck.
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are idle. We want to keep worker threads as busy as possible. Thus we decided

to get a more detailed profile of inserting task into the QUARK. In Figure 3.5, we

see that sometimes master thread is taking very long time to acquire lock on the

address set node data structure of QUARK. The time to acquire the lock is shown by

relatively long white colored tile in the first row of the trace. Note that around the

same time many worker threads show orange color tile. Orange color tile corresponds

to part of the QUARK code where worker thread finishes the task and unlocks the

next task in the DAG as explained in previous sections. This behaviour can be

explained graphically in Figure 3.6. The master thread wants to append dependency

(colored in red) to the address set node A. However, thread 1, 2, and 3 are already

waiting for address set node lock to update the status of previous tasks. Thus master

thread will keep on trying to acquire lock. If master thread, instead of competing

with other threads, can append this task to the specific address set node (in this case

address set node A) and move on to add other tasks to be inserted, we can get a better

rate of task insertion. Whereas in this case master thread is blocked and it cannot

push enough tasks into the QUARK resulting in sharp drop in the performance.

We used a simple solution to overcome this problem. (As shown in Figure 3.7),

in this solution we keep one additional auxilary list to main dependency list for each

address set node. Whenever the master thread cannot acquire a lock on the main

dependency list, it will append the task to an auxillary pointer and keep pumping

task into the QUARK. Solving this bottleneck helped us to get more performance

improvement without reaching a sharp drop in the performance at matrix size 9000

as shown by the performance plot in Figure 3.8.
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Figure 3.5: EZTrace showing lock contention problem for master while inserting
task into the system. Trace for tiled QR factorization, tile size NB = 80, inner block
size IB = 32, double precision on a 2.4 GHz 12-socket quad-core (48 cores total) AMD
Opteron(tm) processor.
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Figure 3.6: Graphical illustration of how master is blocked while appending a task to
a single dependency. Here master is competing with other worker threads to acquire
the lock. In this processes master end up not inserting enough tasks into the system.
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Figure 3.7: Graphical illustration of a how masater need not block while inserting
a task to an address set node. This would improve rate of task insertion.
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Figure 3.8: Experment result for task insertion improvements for tiled QR
factorization, tile size NB = 80, inner block size IB = 32, double precision on a
2.4 GHz 12-socket quad-core (48 cores total) AMD Opteron(tm) processor.
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Chapter 4

Scheduling Optimizations

This section explains optimization possibilities with QUARK at the logical level that

is which scheduling algorithm can be used. We present variations of scheduling that

can improve CPU utilization.

4.1 Scheduling Algorithms

Scheduling tasks specified by a DAG on multiple cores is an extensively studied

problem(see [10] for a review). It has been shown that scheduling a set of tasks

specified by a DAG on a finite number of cores is a NP complete problem[11].

Thus different heuristics are being used for all practical applications and there are

many different heuristics described in the literature[10]. We focus our attention on

list scheduling algorithms[12][13][14]. List scheduling algorithms assign each task a

priority and create a list of such tasks with decreasing order of priority. Each task is

executed with descending order of priority i.e. most important task is executed first.

One list scheduling algorithm is ‘Highest Level First with Estimated Times (HLFET)’

which gives a near optimal scheduling solution in most cases[12]. We will illustrate

how HLFET works for a simple DAG shown in Figure 4.1.

For the purpose of illustration we will assume all tasks take the same amount

of time. We calculate the bottom level for each node in the DAG. Bottom level is
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Figure 4.1: A simple DAG to illustrate HLFET
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defined as the longest path between a node in the DAG and the end node. Thus for

the DAG in Figure 4.1, the end node is ‘task14’. For ‘task10’ there are two paths

to reach the end node (‘task14’), the first path is through node ‘task12’ and the

second path is through node ‘task11’. Out of these two paths, the longest path for

‘task10’ is though node ‘task11’ which is of length 3. For each task we assign priority

equal to the bottom level. In the Figure 4.1, for each node we show what is the

corresponding priority. After we assign the priority for each task, we create a list of

tasks in descending order of priority.

list = (task number, priority)

list = (1,7)->(2,6)->(3,5)->(6,5)->(4,4)->(7,4)->(5,3)->(8,3)

->(10,3)->(9,2)->(11,2)->(12,1)->(13,1)->(14,0)

Initially, the first task in the list will be executed and after that whichever tasks

become ready for execution are executed as per the priority provided by the list. While

calculating bottom level HLFET also takes duration for each task into consideration.

Thus HLFET gives a good scheduling order. However, the problem with HLFET

heuristic is that it requires the entire DAG before assigning priority. However, the

common workloads for QUARK are linear algebra algorithms with big matrix sizes,

where unrolling the entire DAG will result in poor performance because of the size

of the problem. In order to handle large linear algebra problems QUARK maintains

a moving window of the tasks where new tasks are added into system only when old

tasks are executed. This way, the total number of tasks handled at a given time in

QUARK remains constant. This kind of approach requires variation of the HLFET

algorithm. In the following section we present a heuristic for which one does not

require the entire DAG in order to make scheduling decisions, making it a suitable

option for QUARK.

4.1.1 Greedy Heuristic

Figure 4.2 shows the partial DAG for Cholesky factorization[7], a linear algebra
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Figure 4.2: DAG for Cholesky factorization
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routine, showing the first 6 levels of the DAG. In this DAG for each task we assign

the priority equal to the lowest top level of its immediate children. The top level for a

node is defined as the longest path from the start node. In Figure 4.2 at level 2 there

are two syrk task nodes, first syrk 1 (highlighed with green color) and second syrk 2

(highlighted with yellow color). It can be seen that output of syrk 1 is immediately

required at level 3 by task potrf, however, the syrk 2 task’s output is not required

until level 5 task is not pushed into the system. So the heuristic should make syrk 1

more important than syrk 2. Thus we make priority of the task equal to the level of

the task wherever the output of the task is first required. Thus syrk 1 tasks would get

priority as 3 and syrk 2 would get priority as 5 thus making syrk 1 more important

than syrk 2. The advantage of this heuristic is that one need not process the entire

DAG as only immediate children are needed to make the priority decisions. This

makes the particular scheduling logic a greedy heuristic. In the next subsection we

show experimental analysis for this heuristic.

4.1.2 Experimental Results

We implement the heuristic mentioned in the previous subsection for the linear algebra

Cholesky factorization routine. The DAG for the Cholesky factorization routine is

shown in Figure 4.3. For each node, the figure shows the priority of the task calculated

by the greedy heuristic. Also, each node in the DAG is labeled as name of the routine

followed by a ‘ ’ and the task number. Hence, the first task in the DAG is named

as ‘potrf 1’. In this Figure at level two, there are three tasks, syrk 4, gemm 5, and

syrk 6; which can run in parallel. If we consider the problem of scheduling these tasks

on two cores, then there are three ways in which these three tasks can be scheduled on

two cores. We run this problem using two cores with the default QUARK scheduling

logic. Corresponding CPU trace for the problem are shown in the Figure 4.4. In this

figure, the width of each tile represents the proportion of time required by a given

task in the DAG. Each tile is also labeled with the corresponding task number in
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Figure 4.3: DAG for cholesky factorization
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Figure 4.4: CPU trace for default QUARK scheduling
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Figure 4.5: CPU trace for greedy heuristic scheduling

the DAG. It can be seen that after executing task number 7 (potrf 7), the first core

remains idle till the time task 8 is over. After that, the first core executes task number

9 i.e. ‘syrk 9’. This CPU trace shows that there is scope for improvement using the

default QUARK scheduling.

After that we run the same problem using the same two cores with the greedy

heuristic specified in the previous subsection. The trace of this execution is in the

Figure 4.5. Similar to the previous CPU trace, in this Figure, each tile represents

proportionate time required by a given task in the DAG. Each tile is also labeled

with the corresponding task number in the DAG. It can be seen that there is no

idle first core as it was with the default QUARK scheduling. Thus showing QUARK

performance could be improved using the greedy heuristic to assign task priorities.

We run this problem for the larger matrix size and observe that the performance

improvement is not as big as that of the low level optimizations. Figure 4.6 shows the
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Figure 4.6: Performance improvement for greedy heuristic for tiled Cholesky
factorization, tile size NB = 700, double precision on a 2.4 GHz 12-socket quad-core
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for bigger matrix size and bigger tile size as well, the greedy heuristic shows marginal

improvements over default QUARK.
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Chapter 5

Conclusion and Future Work

5.1 Conclusion

Task schedulers or runtime systems enable programmers to use multicore machines

in a productive way. Thus runtime should ensure the best possible performance on

the given architecture. In this work, we looked at the QUARK runtime scheduler,

and showed that the performance could be increased with careful selection of locking

mechanisms and data structures. It is difficult to find the synchonization locks causing

performance bottlenecks just by qualitative analysis. We show how a lightweight

tracing library can be used to analyze the performance issues of a scheduler. For

the improvements achieved as part of this work, we observe that it is critical to

ensure that the task insertion process is given maximum priority when compared to

other threads. Any delay while inserting the tasks into the system has a significant

impact on the overall performance. We also observed scheduling algorithms does not

make big impact on the performance for the selected workloads. Bottom level based

scheduling algorithms give near optimal scheduling solutions, but they require the

entire DAG to calculate priorities of the task. To have a fast scheduling algorithm

we suggest a simple greedy heuristic based on the earliest time at which the results

of a task are needed. However, through our experiments we did not observe a great
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performance improvement using this heuristic. This underlines the fact that low level

details involving overheads is the domain that one should focus first while making

performance improvement to runtime systems like QUARK.

5.2 Future Work

As part of the future work one can get more tracing information for the schedulers and

try to eliminate as much lock contentions as possible. The other possible approach

to improve scheduler could be trying to minimize data transfers amongst different

threads.
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