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ABSTRACT 

This s tudy involve s a s tructural analys i s  o f  a portion 

of the Great Smoky thrust shee t  in the Great Smoky Mountains 

o f  Tenne s see . Four group s o f  folds and rel a ted s tructure s 

have b een identi fied in th i s  area . The earl i e s t  fo lds 

include second-order me soscopic Fl fo lds with a s l a ty 

cleavage axial pl ane foliation ( S l ) . The s e  fo lds occur on 

the l imbs of f irst-order macro s copic Fl fo lds which are 

discordant to the Great Smoky faul t .  In s everal pl aces , the 

Fl folds a �e overprinted by me soscopic F2 folds which are 

character i zed by crenul ation cleavage axi al pl ane fol iation 

( S 2 ) . F2 fo lds include t ight to isocl inal folds with 

boudinage on fold l imb s oriented subpara l l e l  to S 2  and 

smal l ,  angul ar z i g z ag fo lds . Evidence indicates that some 

degree o f  transpo s it ion o f  fo l iations was invo lved in the 

formation of S 2 . Macroscopic F3 fol ds involve the fol ding 

o f  the s l aty c leavage ( S l )  and are prob ab ly re lated to the 

de fo rmation of the Great Smoky fault surface , which resul ted 

in its present undulatory nature . Meso s copic F 4  s truc tures 

con s i s t  o f  k ink bands and related thrus t faul t s . 

At least two ma jor epi sode s o f  deformation can be 

recogni z ed in the T aconic fo ld belt o f  the B l ue Ridge 

province . The first epi sode involved the for ma tion o f  

" s imilar -type " folds w ith a s l aty cleavage axial plane 

i i i  



fo l iation , regional me tamorph i sm ,  and thrusting on the 

Greenbrier faul t .  The se s tructural features are bel ieved 

iv 

to be repre sentative o f  the Taconic orogeny ( 4 3 0 - 4 7 0  m . y .  

ago ) . A second period o f  de format ion involved the formation 

of folds with a c renul at ion or s l ip cle avage axial plane 

fol iation , emplacement o f  the Great Smoky and B l ue Ridge 

thrus t sheets and the creation of the Gatl inburg fault 

system . These events have been dated a s  Late P aleozoic 

( Mi s s i s s ippi an or Pennsylvanian) . 

S tructural e l ements in the area of thi s  report can be 

d i f ferentiated into two maj or episodes o f  deformation . 

They c an be integrated into the reg ional deformational 

history o f  the Blue Ridge in the fol low ing way . Fl folds 

with a s laty cleavage axial plane fol iation ( S l )  are 

corre lated with the early period o f  deformation and regional 

me tamorphi sm o f  Taconic age . F 2  folds probably be long to 

the second period of de formation and are re iated to the 

Late Paleozoic thrust faulting . F 3  and F 4  pos t date the 

Great Smoky fault . 
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CHAPTER I 

INTRODUCTION 

The area o f  inves tigation in th is s tudy lies  on the 

we s te rn edge o f  the B l ue Ridge province o f  the Great Smoky 

Mountains ( page 4 ) . A geologi c map o f  the field area is 

shown on page 1 3 . B lue Ri�ge C ambr i an and Precambr i an rocks 

have been thrust over Val l ey and Ridge province rocks by 

the Great Smoky faul t .  This thrust fault outcrops a long 

the northwe st face of Chilhowee Mountain . Here i t  dips 

gently to the southeast . The Grea t  Smoky fault rises  

farther to the southeast and reappears a t  numerous windows 

within the Great Smoky Mountains such as Calderwood window 

( see page 1 3 ) , Cades C ove , Wear Cove , and Tuckaleechee Cove . 

This undulatory nature o f  the Great Smoky fault thrust sheet 

sugge s t s  that de formation of the faul t s ur face occurred at 

a late r date. In a�other (1964) 
sugge s ts that the present shape o f  the thrus t sheet resul ted 

from the con figuration of the initial fracture in the 

Paleozoic s trata , and not from later de formation of the 

fault sur face . 

Ove rriding rocks of the Cambrian Chi lhowee Group and 

P recambrian Ocoee S eries have been separated into s l ice s 

by other ma j o r  thrus t faults . Some of the s e  faults , s uch 

as the Mi ller Cove faul t , are bel ieved to be splays from 

1 



the Great Smoky fault ( Neuman and Ne l s on, 19 6 5 ) . Other 

faults , including the Rabbi t  Creek f aul t and the Greenbriar 

faul t ,  are be lieved to predate the Great S moky faulting 

and may or may not involve renewed thru s ting at the time 

of the Great Smoky fault emplacement . 

2 

The Ordovi c i an rocks exposed northwe s t  of the Great 

Smoky fault trace on Chi lhowee Mountain and in the windows 

show no evidence of the regi onal metamorphism wh ich a ffected 

much of the Ocoe e  Series . Structures in the h ighly deformed 

Ocoee Series are al so not reflected in the s e  Ordovic ian 

rock s . S uch evidence sugge s ts that tran sport on the Great 

Smoky f au l t  occurred after the regional metamorph ism of the 

Ocoee Series . In the central Great Smoky Mountains , the 

Greenbrier fault has been folded and faulted and doe s not 

offset the metamorphic facies boundarie s  wh ich trans ect the 

f ault ( King , 19 6 4 ,  Carpenter , 19 7 0 ) . Evidently the main 

de formation of the Greenbrier fault occurred before the 

regional me tamorph ism , believed to be Taconic ( Late 

Ordovician )  ( King , 19 6 4 ) . 

Rocks within the field area show a compl ex relat ionship 

of structures formed by polyphase thrus ting and folding . 

Superpos i t i on of s tructural element s  c an be seen on scales 

from me s os copic to macroscopic . Di stinct groups of fold s  

and related s tructures can be determined and overpr inting 

relationsh ips between some of the groups can be ob served . 
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A k inematic sequence of folding has been formulated for 

folds within this field area on the basis  of th is overprinting 

evidence . By compar ing this sequence of s truc tura l  events 

with known tectonic events and the regi onal depositional 

h is to.ry of the southern Appalachians , an attempt w i l l  be 

made to formul ate a rel at ive chronology for the s truc tural 

evolution of this area of the Great Smoky Mountains . 

A .  Location 

In this s tudy , mapping was undertaken in the.upper 

plate of the Great Smoky fault in the vicinity of the Little 

Tenne s see River in Tennes see . The field area , F igure 1,  

include s the Tall assee quadrangle and parts of C alderwood , 

B lockhouse , and Tapoco quadrangles . S tructural mapping was 

concentrated on the re lative ly continuous exposure s along 

Route 1 2 9 , on the Foothi l l s  Parkway b e tween the L i ttle 

Tenne ssee River and Look Rock , and on the Happy Val ley Road 

over Ch i lhowee Mountain . The rocks in the field area are 

h ighly folded and are a f fected by well-deve loped sl aty 

cleavage and numerous thrust faul ts . 

B .  Previous Work 

The general geology of the wes tern portion of the 

Gre at Smoky Mountains was examined by Neuman ( 1 9 5 1 )  and 

comprehen s ively by Neuman and Ne lson ( 1 9 6 5 )  as a result 
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of the ir mapping for the u.s. Geological Survey from 1 9 4 6  

through 1 9 5 4 . S tructural geology and s tratigraphy for the 

remaining areas of the Great Smoky Mountains are pre sented 

in King et al . ( 1 9 5 8 ) , Hadley and Goldsmi th ( 19 6 3 ) , and 

King ( 1 9 6 4 ) . The area around Look Rock was mapped and 

described by Ne uman and Wil son ( 19 6 0 ) . De tailed mapping , 

me as urement of s tratigraphic sections , and petrologic 

e xamination of carbonate rocks of the W i lh i te Formation was 

undertaken near Chi lhowee Lake by Hanse lman et al . ( 1 9 7 4 ) . 

5 



CHAPTER I I  

STRATI GRAPHY 

A .  Ocoee Series--Precambrian 

C ade s S ands tone (Neuman and Ne l son , 19 6 5 )  

The Cades S ands tone ( F igure 2 )  con s i s t s  of dark-grey 

sands tone interbedded with dark-grey argi l l ite and s i lt s tone . 

S ands tone s are generally in the medium to �se grain- s i z e  

range . Graded beds from one to four feet th ick are common , 

with granule conglomerate a t  the base grading upward to 

coars e and medium s ands tone to s il t s tone . The sand frac tion 

is mainly quart z with some fe ldspar . Minor constituents are 

fragments of pegmatite , perth ite , quartz ite , argi l l i te , and 

s i l ts tone . The micaceous matrix consi s t s  o f  seric i te , 

chlori te , and some b iotite . 

Wilh i te Formation ( Neuman and Nel son , 1 9 6 5 )  

Located in the Walden Creek Group , the Wilh i te Formation 

is one of the mos t  hete rogeneous uni ts in the Ocoee Serie s . 

The main body o f  the formation is c alc areous s i l t s tone , 

which may be as much as 1 0 , 0 0 0  feet thick in places . Beds 

of coarse s ands tone , pebb le conglomerate , and carbonate rock s 

are found locally . 

Quart z pebble conglome rates and quart zose s ands tone 

may be interbedded with the s i ltstone , or may occur in l arge, 

6 
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Figure 2 .  S tratigraphic col umn o f  rocks in the vi cin i ty o f  
the field area ( Neuman and Nel son , 1 9 6 5 ) . 
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separate mas s e s  l ike that next to Chi lhowee Darn . Pebb l e s  

i n  the conglomerate are l argely rounded quartz , quar t z ite , 

and fe ldspar with angular fragments o f  dark s i l tstone . 

The se s i l t s tone blocks range in s i z e from small chips to as 

much as two feet acros s ,  and sometimes show fo l iation 
� 

re semb l ing slaty cleavage . Fragments o f  coarse sandstone , 

dolomi te , and lime s tone are also found . 

Fine-grained rocks include dark-grey , f i nely l aminated 

8 

s l aty s i ltstone and argi l l i te with th in beds o f  fine-grained 

s andstone . Chlorite and seric ite occur in equal amounts in 

the arg i l l ite and s late . Mos t  o f  the s i l t s tone and argi l l i te 

in the field area show a pervas ive fol i a tion re sembl ing 

s laty cleavage . 

S andsuck Formation (Neuman and Ne l son , 1 9 6 5 )  

This formation inc ludes grey thin-bedded to f i s s il e  

s i l t s tone interbedded with feldspathic s ands tone and 

conglomerate . The Sandsuck Formation c on formab ly underlies 

the Cambrian Cochran Formation in the area o f  study . 

B .  Ch i lhowee Group--Cambrian 

Cochran Formation ( Neuman and Wi l s on , 1 9 6 0 )  

The Cochran Formation con s i s ts o f  quart z i te and 

feldspathic sands tone . Light-grey , we l l - sorted medium to 

coarse-grained vitreous q uartzi te make s up the uppermo s t  

1 0 0  fee t .  The lower part o f  the format ion is mainly 
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th ick-bedded ctinglomeratic sandstone , with the proportion 

o f  pebb l e s  increas ing downward . 

� N i cho l s  Shale ( Neuman and Wi lson , 1 9 6 0 ) 
!"' 

The Nichols Shale is made up o f  grey , f i s s ile , 

argill aceous s i ltstone , s hale , and fine-grained s andstone . 

Large detri tal mic a  f l ake s c an be found on many bedding 

s ur faces . 

Nebo Quart z ite ( Neuman and Wi lson , 19 6 0 )  

The bas al section o f  the Nebo Quart z i te i s  l ight o l ive 

green fine-grained sands tone . Above this unit i s  l i ght-grey 

medium to coarse-grained quartz ite . Scolithus tubes are 

common ly seen on exposed bedding s urfaces . 

y Murray S hale (Neuman and Wi l son , 1 9 6 0 )  

The Murray Shale i s  dominantly mi caceous , s i lty shale 

and argi l l aceous s i ltstone . Th in-bedded glauconitic 

feldspa thic fine-grained s andstone occ urs in the upper 

part of the formation . 

Hesse Quar t z ite ( Neuman and Wil son , 19 6 0 )  

. . . h / d' Th i s  format�on con s � s ts of l � g  t-grey me � urn to 

coars e-grained quartz ite with we ll- sorted , well-rounded 

grains and s i l iceous cement . Cros s-bedding i s  common and 

Scolithus tub e s  are found in some l ayers . 



He lenmode Formation ( Neuman and Wi lson , 1 9 6 0 )  

This f ormation i s  exposed north o f  the s tudy area . 

I t  con s i sts of g rey , micaceous s i ltst one and greeni sh

grey , fine-grained s ands tone with abundant g l auconitic 

grains . T he argi llaceous rocks are interbedded wi th thin 

quar t z i te l ayer s  in the lower part of the formati on . 

C .  Rocks Exposed in Calderwood Window 

Jones boro Limes tone ( Ne uman and Nelson , 1 9 6 5 )  

The Jonesboro Limes tone i s  in the Lower Ordovician 

part of the Knox Group . In Calderwood Window , i t  i s  

probably equivalent t o  the Mascot Formation and King spor t  

Formati on . The Jonesboro Limes tone i s  made up mainly of 

light to medi um-grey fine -grained to aphani tic lime stone . 

Les s  than 1 0  percent o f  the format ion i s  dolomite . 

D .  Other Ordovic i an Rock s 

B lockhous e  Shale ( Neuman and Wilson, 1 9 6 0 )  

Thi s  formation i s  mainly dark-grey , finely l aminated 

c alcareous shale wi th thin beds of dark-grey , very 

·f ine-grained limes tone in the upper half . 

Tellico Formati on (Neuman and Wi l son , 1 9 6 0 )  
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The T e l li co Formation inc ludes g rey calcareous shal e  

with interbedded grey , fine--to medium--grained , f eldspath i c  

calcareous s andstone . 



B ays Formation (Neuman and Wi l s on , 1 9 6 0 )  

This formation inc ludes red , calcareou s mudrock 

and s i lts tone wi th sma ll amount s  of grey , f e ldspathic 

sand stone . 

E .  Mi s s i s sippian Rocks 

Grainger Formation (Neuman and Wi l s on, 1 9 6 0 )  

The lower two-thirds o f  the formation consists  of 

grey and blue-grey noncalcareous s i lts tone . The upper 
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third inc ludes grey , medium-- to coarse--grained , crossbedded 

calcareous s ands tone wi th layers of pebble cong lomerate . 

Greasy C ove Formation (Neuman and Wi l s on , 1 9 6 0 )  

This uni t  consists  o f  interbedded , grey , arg i l laceous 

limes tone , red s hale and f ine-grained sandstone , grey shale 

and s i ltstone , and grey f ine-grained sand s tone . 



Introduction 

C HAPTER I I I  

STRUCTURAL GEOLOGY 

A .  Structural Framework 

The area o f  the Great Smoky thrust sheet studied in 

this report is located in the B lue Ridge province o f  the 

southern Appalachi ans , within the Taconi c fold be lt . 

Rocks here show some evidence o f  the Ordovi cian regional 

metamorphi sm and some o f  the folds obs erved here are 

probab ly T aconi c in origin . Thi s area o f  the B lue Ridge 

has also been affected by late P a leozoic thrust f au lting 

above the basement at depth , and related fold ing . 

Faults 

Major faults in t he f i e ld area inc lude t he Guess Creek 

f aul t , the Great Smoky f ault , the Mil ler Cove f au l t , t he 

Capshaw Branch fault , and the Rabbi t Creek fault. Thes e  

features are shown on the geologic map i n  F igure 3 .  

Gue s s  Creek fault . Northwest of Chi lhowee Mountain , 

the Gue ss C reek f ault forms the contac t  between the highly 

de formed , und i fferentiated rocks o f  t he Midd le Ordovician 

Te ll ico Formation and Blockhouse Shale above and Mi s s i s 

sippian rocks be low . The Mi s s i s s ippi an rocks are in the 
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F i gure 3 .  

0 

, 

.. 

Geologi c map of f ield area ( Neuman and 
Nel son , 1 9 6 5 ) . 
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hanging wal l  o f  an unnamed rever se fault which attenuates 

one limb o f  a large sync line to the northwest . In the 

Kinz e l  Spring s  quadrang le , the Gue s s  C reek fault dips 

1 4  

about 6 0  degrees t o  the southeast i n  an exposure . E lsewhere 

the dips are believed to be between 4 5  to 6 0  degrees ( Neuman 

and Nelson , 1 9 6 5 ) . 

Neuman and Ne lson ( 1 9 6 5 )  propo se two i nterpretations 

about the relationship between the Gues s  Creek and Great 

Smoky fau lts . Their preferred hypothes i s  i s  that the 

Guess Creek fault i s  not parallel to t he Great Smoky fault 

down dip . They bas e  thi s  interpretation on the f ac t  that 

to the northeas t , near the Fair Garden anti cline , the 

trace s  of the two faults diverge widely . According to 

thi s view , the Gue ss Creek fault is a r ever s e  fau l t  whi ch 

crosses the P aleo zoi c s equence to unknown depth , wi th a 

disp lacement o f  about 2 0 0 0  feet . The Great Smoky fault 

fol lowed Middle Ordovi cian Shale over the Tuckaleechee 

Cove up l i f t  and then cros s ed the upturned l imbs on the 

s outheastern b lock of the sync line . I t  remained in the 

b lock uplif ted by the Guess Creek faul t . 

A s econd i nterpretation ( Neuman and Nelson , 1 9 6 5 )  

i s  that the Guess C reek fault i s  a sub s id i ary and nearly 

par a l le l  branch of the Great Smoky f au l t , formed between 

s trata of contras ting competence within the footwa l l . 



The unnamed r ever s e  fault within the Mi s s i s s ippian rocks 

marks the base of the d is turbed zone. Thi s interpretation 

is preferred becaus e o f  its s impl i ci ty and because the 

Great Smoky f ault doe s not cro s s - cut the Gue s s  C reek fault 

at any location , despite their close proximity , as  might 

be expe cted i f  the Gues s  Creek f ault preceded the Great 

Smoky thrus ting . 
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Great Smoky f ault . The Great Smoky f ault outcrops on 

the northwe st side of Chi lhowee Mountain and at Ca lderwood 

window , in the southern part of the field area . Along the 

Chi lhowee Mountain trace , the Precambr ian Ocoee S er i e s  and 

Cambrian Chi lhowee Group override Midd le Ordovi cian shale s .  

In a few place s , thin s lices o f  Jonesboro L ime stone less 

than half a mile long are found in the footwall. H angi ng 

wall r ocks are highly fo lded and cut i nto i rregular s l ices 

by smaller thrus t  f au lt s . They have been mi ld ly metamor

phosed , to t he lower part of the chlorite grade ( Rodger s , 

1 97 0 )  . 

Minimum displacement on the Great Smoky f ault i s  

be l ieved to be 1 5  ki lometers ( Rodger s ,  1 97 0 ) . Metamorphi c 

and s tr uctur a l  d i s continui ti es across t he fault ind i cate 

that the s l aty cleavage , metamorphi c minera l s , and many of 

the fold s  and faults o f  the Great Smoky thru s t  s heet were 

formed before the thrusting (Neuman and Ne l s on , 1 9 6 5 ) . 



King ( 1 9 6 4 )  and Neuman and Ne l s on ( 1 9 6 5 ) believe the 

Great Smoky fau lt to be post-Mi s s i s s i ppian, and poss ibly 

Late Pennsylvani an or P ermian in age . 
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I n  the s tudy area, the great Smoky fault surface i s  

beli eved t o  f orm a synform s outheast of Chi lhowee Mountain, 

while in the vi cinity of the Calderwood wi ndow it makes 

an ant i f orm . A s tructur e map of the f au l t  surface based 

on known outcrops of the fault and constr ucted structure 

s ection s  was made by Neuman and Nel son ( 1 9 6 5 ) . Thi s 

configuration i s  shown on the cros s -s ect ion in P late 1 .  

According to thi s  construct ion, the Gre at Smoky fault has 

been thrown only into very broad warps . No other deformations 

of the fault sur face appears in thi s i nterpretation . King 

( 19 6 4 )  s tated that this warped nature of the fault i s  due 

to the shape of the initial fracture in the P aleoz oic rocks . 

The fau lt f ol l owed the incompetent layers in the sequence 

for long dis tances, and ascended abruptly through s urrounding 

more competent s trata along incl ined p lanes of shear . King 

sugge sts that the Great Smoky fault followed the B lockhouse 

shale in its l ong gent le s lope northwe st of the coves and 

b egan i t s  ascent into higher f ormat ions in its  s teeper s lope 

northwes t  of Chi lhowee Mountain . Ac cording to thi s 

interpretation, the undu lations in the fault surface are 

the r e sult of irregulari ties in this initial frac ture due 

to the contras ting competency and correspond ing variable 

angl� of shear of the i nvolved P a le ozoic f orma tion s . 



The Great Smoky f ault was formed a f ter the regional 

metamorphi sm o f  the Blue Ridge province and is di scordant 

with Fl f o lds and assoc iated axia l-plane s laty c leavage . 

Mi ller Cove f ault . The Mi l l er Cove fault is the 

eas tern boundary of the Chilhowee Mountain s tructur a l  

b lock , w i t h  the Great Smoky f ault forming t h e  northwes tern 

boundary . Rocks in the s tructur a l  block inc lude the 

S and suck Formation and the Chi lhowee Group . Northeast o f  

the Look Roc k ,  the structure o f  the Chi lhowee Mountain 

block is synclinal , whi le southwe s t  of Look Rock it is 
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roughly that of a southea st-dipping homocline . Thi s  change 

in s tructure sugge s ts that the Mi ller Cove f au l t  cuts across 

the trough o f  a previous ly f ormed sync l ine . Another 

interpre tation by King (1 9 6 4 )  is  that the syncl inal structure 

o f  the Chi lhowee Mountain block r e sults from warping o f  the 

overr iding s tr at a  of the Great Smoky f au l t . Due to its 

rise out o f  the B lockhouse S ha le into more competent s tr ata , 

the f ault surface bend s abruptly and causes the Chi lhowee 

Mountain syncline . 

In the study are a , the Mi l l er Cove fault thrus t s  

the Precambr i an Wi lhite Formation over the C ambri an 

C hi lhowee Group . Neuman and Nel son ( 1 9 6 5 )  and Rodger s 

( 19 7 0 ) believe the Mi l ler Cove f au l t  to be an imbr i cation 

of the Great Smoky fault . The Chi lhowee Mountain block 



was part of the Great Smoky thrust sheet , picked up 

late.in the f ault's development and carr i ed ahead of the 

main par t  of t he overthrus t  sheet . 

F old s 

Four groups of macroscopic and me so scopic folds and 

related structur e s  have been determined in the s tudy are a . 

The earl i e s t  folds ( F l )  cons i s t  of second-order mesoscopic 

fold s  with pene trative s laty c leavage a s  an axial plane 

foliation (S l ) . These occur on the l imb s  of f i r st-order 

macroscopic Fl folds whi ch are d i s cordant to the Great 
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Smoky fault . Many o f  the mesoscopi c F l  fold s  are a symmetri c ,  

overturned folds with some degree o f  hinge thi ckening and 

correspond ing thinning of fold limbs . F lexural s l ip and 

f lexural f low are probable mechani sms involved in the F l  

fold formation . The geometry of the F l  macroscopic folds 

is r e f le c ted by the as soci ated mesoscopi c Fl fold s tyles . 

Fl fold axes trend general ly northeast- southwe s t  with 

gentle plunges to the northeas t  and southwe s t . Mes oscopic 

F l  axial p lane s northwe s t  of Location 1 5  dip to the 

southea s t . Southeast of Loca tion 1 5 , the me soscopi c F l  

ax ial planes show a nor thwest-dipping ori entation . 

In s everal places a crenu lation c leavage (S 2 )  overprints 

the Sl s l aty c le avage . S 2  i s  character i z ed by cl eavage 

planes showing preferred miner a l  orientations s eparated 



by thin s lices of rock containing a crenulated cro s s 

lamination . S 2  i s  not penetrative; it forms d i s cr ete 

planar discontinui ties which'cause loc a l i z ed s tructura l  

weaknesses within the rock . 

In some places , both bedding and S l  are folded into 

sma l l  folds by the crenu lation c l eavag e . These me soscopic 

F2 folds generally have an angu lar zig-zag profi l e  and 

show attenuation of fold limbs in zones of wel l-deve loped 

fol iation . Thi n sand s ton� layers and quar t z  veins form 

tight to isoclinal folds . Small- scale boudinage af fects 

s ome of the fold l imb s oriented subpara l l ed to the S 2  

axi al plane foliation . 

Macroscopi c F 3  folds involve the f o lding of s la ty 

c leavage (S l } . An antiformal F 3  s tructur e  is in the 

vi cinity of C a lderwood with an adj acent F 3  synform north 

o f  the window near Loca tion 1 5 .  Sma l l er F 3  folds were 

found near Loca tion 11 and Location 14 . The F 3  folds 

are bel ieved to be related to the deformation of the 

Great Smoky fault whi ch resu l ted in its  pres ent undu latory 

nature . 

Me soscop i c  F 4  fold s at Location 9 cons i s t  of kink 

bands with rever se fault sense of movement and northwe s t

d ippi ng axi a l  p lane s . They are associ ated with southeast

dipping me soscopic thrust fau l ts . 
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Detai led descrip tions of the observed f o ld s  in the 

Great Smoky thru s t  sheet are presented in the following 

sect ions . Table 1 i s  a summary of the structur a l  element s 

described for the area of inves tigation . Locations of the 

fold s  are shown in Figure 3 .  The f abr i c  e l ement s  used 

in this s tructural analys i s , terminology adopted in the 

di scu s s ion of fold style , and the conventions used to 

pre s ent the fold or ientat ion data are exp lained in 

Appendix A .  In the fol lowi ng s ections , macroscopic Fl 

folds will be designated F l (M) . Mesoscop i c  F l  folds will 

be de s ignated as F l .  

B .  Me soscopic F l  Fold s and Related S tructur e s  

Introduct ion 

The ear l i e st recogni z ed mesoscopi c s tructures in the 

s tudy area are de s i gnated Fl folds . Mos t  other me so scop i c  

fabric can be found t o  overpr int the F l  fo lds , and are 

t herefore l ater in origin . The grouping include s  both 

parallel and congruent fold types with inter limb ang le s 

ranging from tight to gent le . Mos t  F l  fold s , however , 

have an a ssoci ated axi a l  plane foliat ion whi ch consi s t s  

·of slaty cleavage . Fold symmetry i s  usual ly monoclinic . 

Many of the F l  folds are apparently s econd-order folds on 

the l imbs of larger structures . F abric d a ta collected 

from selec ted locations (shown in Figure 3 , page 1 3 )  ar e 
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· TABLE 1 

STRUCTURAL ELEMENTS IN THE GREAT SMOKY THRUST SHEET , 
ADJACENT TO THE LITTLE TENNESSEE RI VE R ,  TENNESSEE 

Folds P l anar Structures 

MACROSCOP I C  

Fl (M) : Firs t-order over- SS : Sed imentary bedding . 
turned fo lds discordant wi th 
the Great Smoky fault . 

F 3 : Invo lve fo lding o f  S l . 
An anti formal F 3  s tructure 
occurs at Calderwood window . 

MESOSCOP IC 

Fl : Second-order mesoscopic 
folds occurring on the l imbs 
of F l (M)  folds . S l  sub 
parallel to F l  axial planes . 
Fl fold axes trend northeast
southwest .  

F 2 : Include angul ar zig- z ag 
folds and tight to isocl inal 
folds with boundinage on fold 
l imbs paral lel to 52 axial 
pl ane fo li ation . 

F4 : Kink-bands with r everse 
faul t sense o f  movement .  
Related to southeas t-dipping 
meso scopic thrust faults . 

S l : Perva s ive axial plane 
fol iation con s i s ting o f  s laty 
cleavage . S ubparallel to Fl 
axial planes . 

5 2 :  S l ip and crenul ation 
cleavage . Lo cally transposes 
S l . Subparal lel to F 2  axial 
pl anes . 
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d i s cus sed be low . All structures occur within the Wilhite 

Formation . 

Location 3 

S tyle of fold s . Rocks at Location 3 r ange from 

medium-bedded ( 3 0- 1 2 0 em) conglomeratic sand stone , 

i nterbedded with shale , to laminated a nd thin-bedded 

( 6- 3 0  em) si ltstone . Maj or s tructures found here are 

a large ( 2 0 0  meter s )  doub ly-plunging anti c l ine and an 

adj acent syncl ine . 

The anticl ine i s  a paral lel- type fold with a gentle 

inter l imb ang le and an as soc iated steeply-dipping 

axial p lane s la ty cleavage . Quart z -f i lled fr actures 

perpendicu la r  to bedding surfaces are common . Mineral i zed 

and s l ickens ided f ault sur f ace s parallel  to bedding are 

found . The s e  faults , and the abundance of s l icken s ides 

on bedd ing s ur f ac e s , sugges t  f lexural - s l ip fold ing as a 

mechani sm of de formation . Sma l l  second-order folds oc cur 

on the fold l imb s . These have fold axes subpara l l el to 

that of t he maj or fold . 

Or ientation data ( F igur e  4 )  . S tructura l  fabr i c  data 

for Loca tion 3 is shown on an equal area d iagram in 

F igure 4 .  Poles to bedding sur faces ( SS )  form a di stinct 

girdle , from whi ch an ac-plane of deformation has been 

constructed . T he anticl ine fold-axis ( B l )  dips gently 



Fi gure 4 .  
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Schmidt net : mesos cop i c  Fl fold , 
Location 3 .  Contou r s  at 2 ,  4 ,  8 ,  
and 1 1  percent . Eighty poles to 
beddi ng contoured . 
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to the southwe s t . C le avage-bedding i ntersect ions are 

concentrated around the fold axi s . C le avage-po le s 

cluster on the AC-plane , indicated by the bedd ing-pole 

distribution . The c lose proximity be tween the B l  fold 

axi s and the cleavage-bedd ing intersection s ,  together 

with the location of the cleavage-pol e c lus ter on the 

fold AC-plane suggest that the cleavage i s  an axi al plane 

foliation and was formed within the s ame phase of 

deformat ion a s  the fold . 

S l ip l inears in F igure 4 are perpend i cular to the 

f old axi s and are parallel with the ac-p lane of folding . 

The rel ative movement of the bedding-parallel f au l ts on 

the anti cl ine is apparently that of r ever se f au lt s . 

Thi s i s  compatable with f l exura l-s l ip f o ld ing . 

Di scuss ion . Evidence of s l ip along bedding layer s ,  

paral le l  fold shape , and the brittle nature of the rock s ,  

sugge sted by the fractur e s  perpendicu lar to bedding , 

indicate that deformat ion was probably by a f l exural- s l ip 

mechani sm under cond ition s  of low con fining pre ssure and 

temperature ( Donath and P arker , 1 9 74) . 

Location 8 

S tyle o f  folds { F igure 5 )  . Lithologies here are 

b rown i sh-grey s i l tstone , s andstone , and l ime s tone 

conglome rate . Fo r  about 2 0 0  meters eastward from thi s 
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B. 
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Figure 5 .  S econd-order me soscopi c  F l  fo lds from Location 8 
(from photographs ) .  



loca tion , the southeast-d ipp ing beds are overturned . The 

bedding sur f aces show s l ickensides which ind i cate normal 

f ault d i s placement . Bedd ing d ips from forty to f i f ty 

degrees southeas t ,  whi le a poor ly developed c leavage dips 

about f ifteen to twenty degrees southeast . The se beds are 

apparen tly the northern l imb of an overturned F l (M)  

anti c l ine with a northea st- southwest trend . 
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Far ther east , c leavage i s  bet ter deve loped and bedding 

i s  d i f f i cult to di stingui sh . Rocks in thi s area h ave a 

pervasive s laty cleavag e . Me soscopic folds here ( Figur e 5 )  

are congruent folds wi th a c lose inter l imb ang le and 

axia l  plane s laty cleavage . Fold symmetry is monoc line , 

with long southeast-dipping l imbs and short northwest-dipping 

l imb s . The s e  folds are apparently second-order folds on 

the north limb of the overturned anticl ine . 

Orientat ion data ( F igur e  6 )  . T h e  S chmidt n e t  in 

F igur e  6 s hows a c lus ter of c leavage poles in the nor thwes t  

quadrant . Da shed lines near the net center are ac -planes 

for s econd-order fold s . Mo st of the cleavage poles fal l 

on thi s p lane . Measured axial p lanes of s econd- order pole s 

coincide with the cleavage cluster . S econd-order fold axes 

plot on the constructed cleavage ( S l )  pl ane . S lip linears 

are para llel to the ac-plane of the second-order fold 

and s how norma l f ault d i sp lacement . 



Figure 6 .  
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Discuss ion . The f act that the sma l l  folds are second� 

order folds on the north limb of an overturned anti c line 

is suggested by the parallelism of the ir axi a l  planes wi th 

the s laty c le avage in the area and also the occurance o f  

the i r  fold axes wi thin the plane of the 9leavage . Normal 

f ault di splacement for bedding s lip i s  compatible wi th 

that expected for the overturned limb of an anticline . 

Location 1 0  

S tyle of fold s  (F igures 7 and 8 ) .  Rocks in thi s area 

are .thin-bedded ( 2  to 3 0  em) medium-grey s i ltstone and 

fine sands tone . From about 2 5 0 meters east o f  Location 

10 to Abrams Creek , there is a large , gentle syncline . A 

large overturned fold , shown in F igure 8 ,  i s  found 2 0 0  

mete r s  east o f  Location 1 0 . A smal ler fold wi th s imi lar 

s tyle appears in F igure 8A . Both fold s  are congruent , 

overturned folds with a c lose interlimb angle and rounded 

hinge s . S laty cleavage i s  s ubparallel to the fold axi a l  

plane s·. Another congruent fold wi th a x i a l  plane s l aty 

c leavage i s  in Figure 8 B . 

Orientation data (Figure 9) . A sterogram ana lys i s  of 

s tructura l fabri c in Location 10 appears in Figure 9 .  

The bedding po le distributi on has been contoured and s hows 

a fairly dis tinct gi rd l e  pattern . Cleavage (S l )  poles 
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Figure 8 .  Fl folds , Location 1 0  ( from photographs ) . 



Figure 9 .  
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Schmidt net : me soscopic Fl folds , 
Location 1 0 . S i xty poles to bedding 
contoured .  Contours at 2 ,  4 ,  11 and 
18 percen t .  
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form a cluster wi thin thi s  girdle . An approximate S l  

plane has been constr ucted . The con s tructed fold axes 

fall very near the cleavage great-cir c le . Two measured 

axial p lane poles are wi thin the c leavage concentr at ion . 

D i s cuss ion . The c lus ter of cleavage on the ar ea 

ac-pl ane and the location of fold axe s on the Sl great 

circ le support the obs ervation that the s laty cleavage 

3 2  

i s  a n  axi a l  p lane foli ation for mea sured folds . Thickening 

of the fold hinges and thinning of fold limbs probably· 

indicates that f lexural-f low mechani sm of folding was 

at least partly i nvolved in the de formation . Faint s l i cken

s ides on some bedding sur f aces suggests that f lexural- s l ip 

folding was also involved . Thi s i s  po s s ible i f  the folds 

initia lly developed as para llel folds and wer e then mod i f ied 

by superimposed homogeneous strain (Ramsay , 1 9 6 7 ,  P age 4 1 1 ) . 

Such additional strain would cause thi nning o f  fold limbs and 

modi f i cation of the fold prof i l e . 

Loc ation 1 1  

Style of folds (F igures . lO and 1 1 ) . The lithology in 

this area range s from medium-grey s i l ts tone to f ine-grained 

s and stone . One large Fl fold in this area is shown in 

F igure 1 0 .  Thi s is a congruent overturned fold wi th a 

t ight inte r l imb angle , rounded hinge s , and straight limb s . 
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F igure 1 1 .  Me soscopic F l  fold s , Location 1 1  
(from photographs ) . 
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The hinge area i s  very sma l l  compared to the fold limb 

length . Pronounced thickening of the hinges can be 

observed . There i s  a pervasive axial plane s laty c leavage.  

Figure llA shows another type of  F l  fold in this  area . 

It i s  a l so a congruent fold-type , but has a close inter

limb angle.  Some open fold s can be found , as  in Fi gure 

l lB . Thes e approach more c losely a paral lel fold pro f i le .  

Fold s here show a gradation between the paral lel and 

congruent fold profi les . Gener a l ly , t he smaller the inter

limb ang le, the more the fold r es emb les the congruent fold 

s ty l e .  All Fl f o lds at thi s location show axi a l  p lane 

s laty c l eavage.  

Mo s t  of the fold s in this outc.rop r egion appear to 

have near-vertical fo ld envelopes . I n"the southern part 

of thi s  area , near Location 1 4 , the fold interl imb angle 

increases and the folds more near ly approach a concentr i c  

fold prof i l e .  

Or ientation data ( Figures 1 2A and 1 2 B ) . The bedding 

( S S )  pole dis tribution i s  s hown by contours in Figure 1 2A .  

I t  s hows a cros sed gird l e ,  which sugges t s  two d i f f erent 

great-circle patterns . Ac-planes have been constructed 

for three fold s .  The fold axes s how a great var i ation 

in strike ,  but generally dip g ent ly to the northea s t . 

F igure 1 2 B  s hows the contour ed d i s tr i but ion of 

c leavage po les . Measured axi a l  p lanes for the F l  fo ld s 
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Figure 1 2 . Schmidt net : me so scopic F l  fo lds , Location 1 1 . 
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coincide with the c le avage { Sl )  concentrat ion . A great 

circle has been drawn which coincide s with the average 

Sl orientation . Mos t  o f  the fold axe s  f a l l  very c lo s e  

to this great circle . 

3 8  

D is cu s s ion . The bedding-pole cro s s ed-gird le of 

Figure 1 2A and the spread of the fold axe s suggests  that 

subsequent deformation o f  the Fl folds ha s occurred . I n  

Figure 1 2B , the cleavage pole d i s tr i bution s hows a greater 

s pread than in previous ly d i s cussed locations . 

I n  outcrop , the s l aty cleavage looks par a l l e l  to the 

fold axia l  p l ane s . The coincidence o f  the axia l  plane 

pol e s  to the c le avag e  poles i n  F igure 12B and the fact 

that a l l  fold axe s lie w i thin the plane of the c l eavage 

i s  fur ther evidence tha t  the s l aty c le avage is an axi a l  

plane foliation with r e spect to the s e  F l  fold s . 

Many o f  the bedding sur f ac e s  s how faint s li ckenside s . 

Although the d irections are var i able , they appear to be 

roughly perpend icu lar to t he fold hinge l ine s . This 

s uggests that f lexur a l - s l ip has t aken p lace in the fold 

forma tion . 

Location 1 2  

Style o f  folds { Fi gures 13 and 14) . Rocks in thi s  

location range from thin-bedded { 5- 3 1  em) interbedded s i l t

stone and coarse-graded sandstone to conglomeratic sandstone . 
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Thi s vari ability of rock type i s  responsible for the 

different Fl fold styles found in thi s outcrop . 

F igur e s  1 3  and 1 4  are diagrams made from a photo

mosaic of the entire exposure at Locat ion 1 2 . In the 

r ight half of Figure 13 is a large parallel fold wi th a 

c lose inte r l imb angle and rounded hinge s .  A bedding

parallel thrust f ault r i s e s  out o f  the core of the fold 

and displaces the upper limb . 

4 1  

Figure 1 4  shows a number o f  folds with monoclinic 

symmetry . B edding i s  genera l ly overturned , with a northwes t  

direction of younging . Folds found here are probably 

s econd-order folds on the northern limb of an overturned 

anticline . The asymmetry of the fold s  i s  compati ble with 

such an interpretation . 

Fold s tyle depend s on the rock type of the deformed 

layer s . S ands tone beds form parallel folds with r ounded 

hinges and a close interl imb angle . S i lt s tone inter

bedded with the sandstones form congruent fo ld s , in some 

case s approaching the shape of chevron fold s . They have 

thickened , angular hinges and planar l imbs which show 

rela tive thinning . S la ty cleavage occurs as an axial plane 

foliation . Faint slicken s ide s , perpend i cu lar to the fold 

hinge line s , were seen on some bedding sur f ac e s . 

O rientation data (Fi gure 1 5 ) . Bedding pole s for 

Location 12 (F igure 1 5 )  form a d i s tinct g irdle , indicat ing 
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a northea st sipping B-axi s .  Thi s axi s lies within the 

concentrat ion of fold axe s . Poles to c le avage are s l ightly 

off the ac-plane . Concentr ation s  of c leavage poles and 

fold axi al plane poles are very c lose . The northea st

dipping fold axe s are wi thin about 1 0  degr ees from the 

northeast-d ipping c leavage great c ircle . 

Di scus sion . Although there i s  some divergence from 

the expected pattern , the sterogram analy s i s  suggests 

that the c leavage i s  an axial p lane fo liat ion . The paral l e l  

prof i le of some folds and s l i ckensides o n  bedd ing sur face s 

are evidence that f lexural - s lip was a mechan i sm of folding . 

The occur anc e of chevron folds in regular ly-bedded 

sequences of uni t s  with d i f ferent compet ence is common . 

Hinge d i l ation o f ten accompanies the format ion o f  chevron 

fold s , and may r e sult in the f low o f  l e s s  competent strata 

into the hinge zone ( Ramsey , 1 9 7 4 ) . Thi ckening of the 

hinge zones i s  a characteristic of the chevron folds in 

Figure 1 4 , and is evidence that th� fold s underwent 

f lexural- f low in the late stages of folding . 

Location 1 3  

Style of folds (Figur e 1 6 ) . The l i tho logy her e i s  

s imi lar to that of Location 1 2 . Graded bedding ind i cates 

the beds are overturned , with s tratigraphi c up- sect ion 
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F igure 1 6 . Mesoscop ic F l folds , Location 1 3 

{ from photogr aphs )  . 



to the north . Mos t  folds show a monoclinic symmetry and 
. . 

are s imi l ar in s tyle to those of Location 1 2  ( F igure 1 6 )  . 

They are probably al so second-order fold s  on the north 

l imb of an over turned anticline . 

Or ientation data ( Figur e  1 7 ) . A scatter diagram o f  

bedd ing po les ( F igure 1 7 )  shows a great cir c le girdle 

with a B-axi s near a cluster of measured east-d ipping 

4 5  

fold axe s . Fold axes plot within the plane of the c leavage . 

S l  dips gently to the northeast . Pole s to the cleavage 

fall near the ac-plane for the fold s . S l ip l inears for 

faults are shown . They do not appear re lated to the F l  

fold s . 

Di scussion . F igure 1 6A shows a chevron fold with 

competent uni t s  of different thickness . The chevron 

fold s tyle is s table when the thi ckne s s  of the competent 

units is fairly cons tant . A s ingle anoma lously thick 

competent layer may be accomodated through the deve lopment 

of bu lbous hinges ( Ramsay , 1 9 7 4 ) .  The chevron fold of 

F igur e 1 6A i l lustr ates hinge collapse and the formation 

of a bulb
.
ous hinge by f lexur al-f low . 

The f abr ic analy s i s  in F igur e 1 7  i s  cons i s tent with 

that expected for folds with axi al plane cleavage . Fau l t s  

in thi s  outcrop pr obably pos tdate the F l  s tructure s . 
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Locat ion 1 4  

S tyle of folds ( F igur es 1 8 , 1 9 ,  and 2 0 ) . Rocks between 

Locat ions 14  and 15 are mainly l aminated to very thin-bedded 

( up to 5 em ) s i lt s tone with oc cas ional thin bed s of f ine

gra ined sands tone . The large fold in F i gure 1 8A is f ound 

j ust nor th o f  Loc ation 1 5 . I t  cons ists  of overturned , 

congruen t  folds with sma l l , rounded hinges and long li�bs 

which enc lose c lose inter l imb angle s .  S laty c leavage i s  

subpar allel to the f o l d  axi a l  planes . The se folds show 

monoc linic symmetry . 

For about 1 5 0  meter s south of Location 1 4 , the bedding 

i s  apparently subparallel to a well-deve loped s l aty cleavage . 

S ome o f  the thi n s and s tone layer s have been folded into 

small , very tight to i soc l ina l , folds with nearly hor i zontal 

fold axe s . O ther F l  folds between Locat ion s 14  and 15  

( F igures 19  and 2 0 )  are genera lly congruent f olds with c lo s e  

t o  open inter l imb ang les and rounded hinge s .  All F l  folds 

in the area have a we l l-developed axial plane s laty cl eavage . 

O r ientat ion data ( F igure s  2 1A and 2 1B )  . A scatter 

diagram of bedding poles ( Figure 2 1A )  s hows a concentr ation 

of southea s t-d ipping beds and a diffuse great-circle girdle . 

Two �-circles (AC plane s )  from individual folds have been 

constructed. Cleavage po les for c leavage in the vicinity of 

these folds are a l so shown . The s e  poles l ie on the 
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Figure 1 9 . Mesoscopic F l  folds with S l  axial P l ane 
s l aty c leavage , Location 1 4  ( from photograph s ) . 
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F i gure 2 0 . Me soscopic F l  fold s , Loc ation 1 4  
( from photographs ) .  
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constructed TI - c i rc le s . Fo ld axe s and cleavage-bedding 

inter sections make up a loo se c lus ter in the northea s t  

quadrant of the S chmidt net . 

The c leavage-pole distribution i s  shown contoured 

5 3  

i n  Figure 2 1B . There appears to b e  a larg e  spread in 

c leavage ori entations for this outcrop . Axia l  plane po les 

genera l ly fall wi thin the c leavage dis tribution . 

D i s cus sion . The large spread of c leavage po les in 

Figure 2 1B ,  and the mapped pattern of cleavage in thi s  

area , indicate s  that the s laty cleavage has been folded 

by post-F l deformation . Thi s w i l l  be examined in more 

deta i l  in the s ection on F3 folds . From ob servation in 

the f i e l d ,  and f rom the s t ereonet analysis in Figures 2 1A 

and 2 1B ,  cleavage appears to be subparallel  to the fold 

axia l  plane s . 

Locations 6 3 ,  6 5 ,  6 5A 

S tyle of folds ( Figure 2 2 )  . The se locat ion s are on 

the Foothi l l s  Parkway , about 1 . 5  ki lometer s north o f  the 

Little Tenne s s ee River . Folds d i scus s ed in this s ec tion 

are mainly in med ium-grey , laminated to thin-bedded ( up 

to 3 0  em . thick) calcereous s i lt s tone . F l  fo lds in thes e  

locations are genera lly modif ied para llel fo lds with a 

c lose interl imb angle . They have small , angular hinges 
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and long , planar l imbs , which in some places ( F igure s 

2 2A and 2 2B )  approache s a chevron fold style . At Locat ions 

63 and 6 5 ,  the s laty cleavage was observed to be subparallel  

to  the f o ld axial plane s . 

Orientation data ( Figures 2 3 , 2 4 ,  and 2 5 ) . The 

s tereonet analyse s for Locat ions 6 3 ,  6 5 ,  G SA ( Figures 2 3 , 2 4  

and 2 5 )  shows bedding poles for small folds in these areas . 

Ac-plane s ( n -C ircles ) for each have been cons tructed . The 

fold axe s trend northeast- southwest . C leavage-bedding 

intersections at Locat ion 6 3  ( Figure 2 3 )  c lus ter around the 

constructed fold axi s  ( B l )  . C leavage-poles for Location s  

6 3  and 6 5  ( F igure s  2 3  and 2 4 )  f a l l  very near the ac-planes . 

Discus s ion . The s e  folds are believed to be F l  fo lds 

becau se o f  the subparallel orientation of the s laty cleavage 

to the fold axi a l  planes and the ab sence o f  any overprint ing 

relationships between succes s ive c leavage s .  These folds 

have been d i f f er enti ated from F 2  folds because of the l ack 

of any crenulation c leavage ( S 2 ) , although the orientations 

of both F l  and F2 fo lds in thi s area are s imi lar . 

c .  S tyle and Or ientat ion of Me soscop i c  F 2  Folds 

Introduct ion 

In s everal locations , a coarse crenulat ion cleavage 

( S 2 )  c an be ob served to overpr int the s laty c le avage ( S l )  • 
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Folds in these areas , for which 8 2  is  an axial plane 

foliation , postdate the Fl folds with their associated 

S l  axial plane foliation . F 2  folds are variable in style . 

Both bedding and S l  have been deformed into chevron folds 

up to lD centimeters in amplitude . Quartz veins and thin 

sandstone layers form smal l tight to. isoclinal folds with 

axial planes subparallel to a well-developed foliation . 

At Location 9 ,  bedding has been deformed into larger , 

mesoscopic folds which are believed to be F 2  folds . 

Location 9 

Style of folds (Figures 26  to 3 4 ) . Examples of  8 2  
( 

overprinting S l  are shown in Figures 2 6  and 2 7 . In Figure 

5 9  

2 6 ,  A and B ,  both bedding and an  earlier cleavage (S l )  have 

been folded into small folds by a crenulation cleavage . 

The crenulation cleavage is  not penetrative . It  occurs 

in discrete zones ,  separated by areas where no crenulations 

can be seen . The discrete zones are characteri zed by a 

subparallel orientation of micaceous minerals and by smal l-

scale folding of bedding and slaty cleavage layers . Where 

8 2  overprints S l ,  82 is found to dip more steeply io the 

southeast . Both foliations have approximately the same 

strike . Faint s lickensides appeared on some of the S 2  

surfaces in  Figure 2 7 . Relative movement on 8 2 ,  as shown 

by the asymmetric folds of the bedding layer s ,  is consistent 

throughout the crenulated area (F igures 2 7  and 2 8B )  . 



Figure 2 6 . Mesoscopic F2  folds , where S 2  crenulation 
cleavage overprints Sl slaty cleavage , 
Location 9 ( from photographs ) .  
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Figure 27 . Mesoscopic F2 folds with 82 crenulation cleavage 
overprinting Sl s laty cleavage , Location 9 ( from 
photograph ) . 
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B. 

Figure 2 8 . 



Figure 2 9 . Me soscopic F 2  z ig- z ag folds with S 2  axial 
plane c renul a tion cleavage , Location 9 ( from photogr�phs ) .  
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F igure 3 2 . Mesoscopic F 2  folds , Location 9 ,  
with portion shown enlarged ( from 
photographs ) .  
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A 

B 

Figure 3 3 . Mesoscopi c  F 2  folds with axial planes sub 
paral le l t o  5 2 , Location 9 ( from photographs ) .  
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F igure 3 4 . Mesoscopic F 2  folds with S 2  axial plane 
c leavage , Location 9 ( from photograph s ) . 
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Throughout most of the exposure at Location 9 ,  the 

earlier S l  foliation cannot be differentiated from the 

S 2  foliation because of the lack of overprinting evidence . 

A penetrative foliation defined by a preferred parallel 

orientation of micaceous minerals is present which is  

subparallel  to the axial planes of  mesoscopic folds . In  

Figures 2 8A and 2 8B ,  layers which are apparently bedding 

are crenulated in narrow zones defined by subparallel 

layer silicates . No earlier cleavage can be observed . 

6 9  

This foliation , which is  believed to b e  the S 2  crenulation 

cleavage , grades into a parallel penetrative foliation where 

no crenulation can be observed . 

Minor folds associated with an axial plane foliation 

are shown in F igures 2 9 , 3 0 ,  and 3 1 . These folds generally 

have an angular zig- zag profile and show attenuation of 

fold limbs in zones of well-developed foliation . In some 

folds ( Figures 3 0A and 3 0B ) , the hinges are drawn out in 

elongated bands parallel to the fol iation . Small-scale 

boudinage occurs on some of the fold limbs , with the 

segmented layers oriented subparallel to the axial plane 

foliation . 

Thin sandstone layers (Figure 3 0 D )  and quartz veins 

( Figures 3 1A and 3 1B )  have been folded into tight to 

isoclinal folds with an associated axial plane foliation . 

Some of the layers parallel to the foliation show small- scale 

boudinage . 



Larger mesoscopic folds are i l lustrated in Figures 

3 2 ,  3 3  and 3 4 . They are generally congruent folds with 

an as sociated axial plane foliation . It cannot be 

established from outcrop observation whether the foliation 

i s  S l  or S 2 . 

Orientation data (Figures 3 5  to 3 7 ) . Fold axes for 

F2 folds , where S 2  overprints S l , and S 2  c leavage poles 

are shown in Figure 3 5 . The fold axes and axial planes 

for the other minor folds described are also shown . 

All fold axes plot in the same general area (dipping 

northeast )  and lie on or near a great-circle corresponding 

to the average S 2  orientation . The southeast-dipping 

S 2  cleavage poles and fold axial planes also roughly 

coincide . 

Figure 3 6  shows the contoured distribution of poles 

to the southeast-dipping axial plane foli ation . . Thi s 

7 0  

diagram involves cleavage where no overprinting information 

is avai lable . 

The orientations of fold axes , cleavage-bedding 

intersections , axial ·planes , and associated axial plane 

foliations for the larger mesoscopic folds are diagramed 
fJ•-1 , ; .. fl in Figure 3 7 . Northeast-� fold axes lie near a 

great circle which depicts the average axial  plane foliation 

orientation . Both the cleavage pole concentration and 

axial plane pole concentration coincide . 
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Figure 3 7 . 
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Di s cu s s i on . The angular zig- z ag folds ( minor fold s ) 

and the larger me sos copi c folds are be li eved to be F 2  

folds wi th a n  as sociated 8 2  axi a l  plane fo liation . In 

7 4  

Figure 3 5 ,  the fold axes o f  the z i g- z ag fold s  are subpar a l l e l  

t o  those o f  proven F 2  fo lds and their axi a l  p lanes are 

subparallel  to proven 82 c renulat ion cleavage . The lack o f  

a n  ear lier , overprinted 8 1  fol iation could b e  exp lained by 

transpos i t ion o f  8 1  into 8 2 . Attenuation of minor fold 

limbs , tight to i soclinal folds , and boudinage o f  laye rs 

wi th the s egmented layers paralle l to the axi a l  plane 

foliation are evidence that some degree of transposi tion 

has taken p lace (Wei s s , 1 9 7 2 ,  page 9 ) . F igure 3 8  s hows a 

sequence of events whi ch could lead to the deve lopment o f  

t ranspos ed layering ( 8 2 )  and boudinage o f  bedding (modi f i ed 

from Hobbs , Mean s ,  and Wi lliams , 1 9 7 6 , page 2 6 2 ) . 

The fold axe s and axi a l  p lanes for the larger me s os copi c 

f olds (Figure 3 7 )  are subpara llel to those o f  proven· F 2  fold s . 

The penetrative axial plane foli ation o f  the s e  fo ld s can be 

seen in some areas to grade into a crenu lation cle avage 

( 8 2 ) . Rickard ( 1 9 6 1 )  believe s crenulation c leavage to be 

an intermed iate s tage in the transposi tion of a s chi s to s i ty 

into a new d irection . Wi th increasing degree o f  metamorphi sm , 

recrystalli z at ion i s  a dominant factor and mica concentra te s  

i n  the c renu lat ion axi al plane s , wi th quart z  migrating t o  the 

micro-fold cre s t s . Cosgrove ( 1 9 7 6 )  and Wi l l iams ( 1 9 7 2 )  
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believe that the process o f  development o f  crenulation 

cleavage involve s pre s sure so lution and migration of 

quart z from the limbs of crenulations to the hinge s and 

the external rotation o f  layer s i licate s , re sulting in a 

high degree o f  pre ferred orientation . The s ame proce s s e s  

( se lective remova l  o f  quart z  and rotation ) a r e  involved 

7 G  

in the deve lopment o f  other fo l i ations , such a s  s laty cleavage . 

These foli ations can grade into one another . The axial 

plane fol iations of the me soscopic folds are , therefore , 

be lieved to be the r e sult o f  tran spo si tion o f  an S l  foliation 

into an S2 fol iat ion and are r e lated to the S2 crenulation 

cleavage . 

Location 6 4  

Fold style ( Figure 3 9 ) . Overprinti ng o f  foli ation s 

was recogni z ed in a fold in Loc ation 6 4  ( Figure 3 9 ) . S laty 

cleavage , whi ch i s  parallel to the bedding on one limb of 

the fold , can be seen re fracted acro ss s andstone layer s 

interbedded with s i l t stone . This ear ly foli ation i s  

overprinted by a n  S 2  foliation , which i s  p arallel t o  the 

fold axial plane . On the other fold limb , the bedding 

shows smal l  c renulations . 

Orientation data ( Figure 4 0 ) . Figur e  4 0  s hows the 

bedd ing pole d i s tribution and c onstructed fold axi s ( B- axi s )  
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F igure 3 9 . Me soscopi c F 2  fo ld with S 2  axial pl ane crenula
tion cleavage , Location 64 ( from outcrop 
ske tches ) . 
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for the F 2  fold . Pole s  to 5 2  l ie on the ac-plane cons tructed 

for the fold . Cle avage ( 5 2 )  dips to the southeast and strike s  

northea st-southwe s t .  

D .  Macroscopic F 3  Folds 

S tyle of Folds (F igure 4 1 )  

A form sur face map o f  s laty c leavage ( S l )  in the 

southern ha lf of the f i e ld area ( F igure 4 )  indicates that 

S l  wa s de formed into large fold s  ( F 3 ) . The c l eavage , whi ch 

dips predominantly southeast north of Location 1 5 , dips 

gener a l ly northeast from Loc at ion 17 to the Calderwood 

window . S outh of the window , S l  resume s i t s  southeast

d ipping or ientation . The F3 fo lds consist o f  a synform north 

of Calderwood window and an anti form in the vi cinity o f  

the window . 

Or ientation Data (Figures 4 2A and 4 2B )  

The or ientations o f  cleavage from Location 14  to 

Location 12 were p lotted in F igure 4 2A .  There i s  a wide 

spread of c leavage poles with two maximums . The d i s tri

bution suggests a great- circ le girdle . A great-circle 

through the two maxima ind icates a northeast-dipping 

n-axi s of fo ld ing . 

C leavage orientations from Location 1 8  to Locat ion 3 5  

are s hown in F igure 4 2B . A great-c irc le gird le through the 
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F ig ure 4 1 .  Form s urface map o f  S l  s l aty cleavage , 
showing F 3  macro scopic fo lds . 
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dis tribution wou ld indi cate a more norther ly-dipping 

n-axi s . 

Di scu s s i on 

The F 3  f o lding o f  the regional foli ation i s  beli eved 

to be re lated to the folding of the Great Smoky f ault 

surface . Undulations of the fault surface , with its  

appearance in windows such as C a lderwood wi ndow , C ades 

Cove , Wear Cove , and Tuckaleechee Cove , suggest that 

folding o f  the fault surface has taken place . DeWindt 

( 1 9 7 5 )  s tates that a high- angl e  fault be longi ng to the 

Gatlinburg fault sys tem off sets the trace of the Great 

Smoky f ault . The F 3  folds are be li eved to be part of thi s 

post-Great Smoky fault deformat ion . Thi s  r e l ationship 

between F 3  fold ing and the Great Smoky fault f o lding i s  

sugges ted by the rotation o f  the S l  regional f o liation 

into an ant iformal s tructure in the vi cinity of the 

Calderwood window . The S l  r egiona l fol iat ion i s  not 

present in Ordivi cian rocks of the Calderwood window or 

in the rocks nor thwes t  of the Great Smoky f ault trace on 

Chi lhowee Mountain . S l  i s  be li eved to be o lder than the 

Great Smoky f ault . Other F 3  folds sugges t  further undu la

tions in the thrust fault . 

I f  the r egi onal f o liation preceded the Great S moky 

f ault , then it i s  pos s ible that in this f i e ld ar ea , the 

8 3  



f ault surface or ientation and the cleavage orientation may 

have been re lated by a fair ly con s i sten t  angle ( Neuman and 

Nelson , 1 9 6 5 )  . The change in cleavage ori entation may 

then r e f lect a corre sponding subsur face change in the 

conf iguration of the Great Smoky f ault surface . Such an 

interpretation has been used in the construction o f  the 

Great Smoky f ault geometry shown in P l ate 1 .  

E .  Me soscopic F 4  Folds and Related S tructure s  

q� Location ( F igur e s  4 3  and 4 4 )  

F 4  folds consists  of kinks in the cleavage surface s .  

All f o ld s  obs erved ( Figures 4 3  and 4 4 ) show r ight- lateral 

movement . Ori entation data for the F 4  folds are s hown in 

·Figur e 4 5 .  Axi a l  planes d ip 3 0- 4 0  degrees northwes t .  

Poles to the cleavage sur faces form a par t i a l  gird le , 

which indi cates a northeast-dipping B - axis . Measured 

fold axes lie near the n -axi s for the folds . 

Southeast-dipping thrus t  faults can be observed in 

this location . Both bedd ing and c leavage are disrupted 

in the fault zones wi th drag of the c leavage surfaces 

indi cating relative movement on the faults ( Figure 4 6A ) . 

The thrust f aults and F 4  kink bands are believed to be 

re lated , as shown in Figure 4 6B .  They appear to form a 

conj ugate pair , with ant i thetic movement on the kink bands 

and synthetic movement on the thrust faults . 
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F igure 4 3 .  Me soscopic F 4  folds , Location 9 .  K ink-bands 
showing right- lateral movement , with NW-dipping 
axial plane s . 
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F igure 4 4 . Me soscopic F 4  kink-bands , Location 9 .  
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a . Southeast-dipping thrust faults , Location 9 .  
Scale equals 1 meter . 

b .  Re lationship o f  me soscopic F 4  kink-b ands and 
thrust faults , Location 9 .  
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Figure 4 6 . Me soscopic F 4  folds and thrust faul ts , Location 9 .  



F 4  folds are beli eved to post-date F 2  folds because 

they were formed by deformation of the 82 axi a l  p l ane 

foli ation in Location 9 .  The relative age between the 

F 3  and F 4  folds cannot be de termined from direct evidence 

at Location 9 .  
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CHAPTER IV 

STRUCTURAL CHRONOLOGY OF THE S OUTHERN BLUE RIDGE 

. The Paleo zoic me tamorph ic and tectonic events are dated 

presently by us ing the isotopic age dates o f  metamorph ic 

minerals and examining the s tratigraphic record in the rocks 

northwe s t  o f  the B lue Ridge { Bryant and Reed , 19 7 0 )  • · Close 

corre lation b e tween P al eo z o ic K/Ar and Rb/S r  age s in Blue 

Ridge and P iedmont crystall ine rocks and the th ickne s s  o f  

. clastic depo s i ts i n  the Appalachian basin were found by 

H adley { 1 9 6 4 ) . The earl iest frequency peak o f  rad iome tric 

ages was about 4 3 0  m.  y .  { Early S ilurian )  . The s e  age s are 

bel ieved to reflect the l a s t  time the rocks coo led below 

Ar- f ixing temperature , rather than the date o f  metamorphi sm .  

This would mean that the zones o f  regional met amorphism i n  

the B l ue Ridge b e l t  were e stab l i shed more than 4 30 mi l l ion 

years ago { Butle r , 1 9 7 3 ) . In a compilation o f  radiometric 

age ranges , DeWindt { 1 9 7 5 )  states that the ma j ority of 

inve s ti gators conc lude that the regional met amorph i sm o f  

the Ocoee Series occurred during Late Ordovi c ian time . A 

thick wedge { 7 0 0 0  feet )  o f  Middle Ordovician clastic rocks 

rests disconformab ly on a Cambrian and Ordovi c i an carb onate 

sequence . Thi s  indicates rapid deposi tion prior to the 

recorded thermal event . Roeder and Walker { 1 9 7 5 )  bel ieve 

that the estimated rates o f  s ub s idence and sedimentation for 
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this sequence are much greater than those o f  modern Atlantic-

type ocean bas ins . They sugge st that th i s  implies crustal 

tectonic s related to a convergent plate boundary . 

In a s tudy o f  the Spruce P ine area in North C arol ina , . 

Butler ( 1 9 7 3 )  de scribed early tight to i socl inal mesoscopic 

folds which he de s ignated Fl . The se folds had an axial 

plane fol i ation which con s i s ted of a sch i s tos ity de fined by 

a subparalle l alignment of micas and other platy mineral s .  

Butler stated that the Fl folding began b e fore or during 

the early stages o f  regional metamorphi sm .  The cl imax of 

regional metamorphism was l ater than the Fl de formation . A 

tentative conclus ion by Butler was that the F l  isoclinal 

folding and the l ater peak of regional me tamorphi sm are both 

part of the Taconic orogeny , about 4 3 0 to 4 7 0  m .  y .  ago . 

Rb/Sr and K/Ar dates on micas from pegmatites from the 

Spruce P ine area suggest that no middl e-to h igh- grade 

metamorphism occurred after about 3 5 0 - 3 2 0  mi l l ion years ago . 

Butler stated that maj o r  thrusting occurred after the main 

regional metamorphi sm and pegmatite empl acement . F 3  folds 

in the Spruce P ine are a  reflect de formation in the pegmatite 

bodies . F 3  folds in the pegmatite s  and in metasandstone and 

schist h ave a s l ip cleavage or c renulation cleavage parallel 

to axial surface s . Butler speculated that F 3  folding is 

related to emplacement o f  the B l ue Ridge thrust sheets in 

Late P aleozoic time . 



9 2  

I n  a s ummary o f  s tructural e lement s in B l ue Ridge rocks 

south of the Great Smoky Mountain s , Kish et a l . ( 1 9 7 5 )  s tate 

that the earl iest stage of folding ( F l )  in post-Grenville 

rock s con s i s t  o f  eas t-we s t  trending , s ubvertical to recumbent 

s imi lar folds with an axial plane cleavage or sch isto s i ty .  

In rocks below garne t grade , thi s  cons ists  o f  s l aty cleavage . 

The S l  fol iat ion dips to the southeas t .  F l  folds preceded 

the Greenbrier fault . S ince metamorph ic i sograds cro s s  the 

fault without o f fset , it appe ars that maj or movement on the 

Greenbrie r  f au l t  ceased be fore the peak of metamorphism 

( King , 1 9 6 4 ; DeWindt , 1 9 7 5 ) . 

Se cond generation ( F 2 )  folds are open , asymmetric folds 

with a north-northeas t  trend . An S2 axial plane fo li ation 

con s i s t s  o f  s l ip and crenulation cleavage . Mos t  me tamorphic 

porphyroblast s , including metamorph ic index mineral s ,  grew 

a fter the development o f  S l  schi stos ity but b e fore the 

deve lopment of S 2  s l ip cleavage . Two further generation s 

o f  s l ip cleavage also pos tdate the peak o f  metamorphism . 

In h i s  s tudy of the central Great Smoky Mountains , King 

( 1 9 6 4 )  de scribed a f irs t- generation foliat ion in the Ocoee 

Serie s as s laty c l eavage , produced by the recrys tal l i zation 

o f  mic aceous mineral s .  Th i s  s laty cleavage i s  an axial plane 

fo liation to fo lds in the Walden Creek Group . King bel ieved 

that the first-generation fol iat ion and related folds were 

accompanied by the regional metamorph i sm .  They would then 



9 3  

be Taconic structures . Metamorphic and structural 

discont inuit ies across the Great Smoky fault indicate that 

it po s tdate s the regional metamorph ism ( King , 1 9 6 4 ; Neuman 

and Nel son , 19 6 5 ) . Rodgers ( 1 9 7 0 )  be l ieves the Gre at Smoky 

fault , Gatl inburg and rel ated faults are l ate Carboni ferous 

or Permian . 

This review o f  s tructural events in some areas of the 

southern Appal ach ians shows that at least two maj or epi sode s 

o f  de formation can be found . The first recogni z able episode 

invo lve s the formation of e ar ly " s imi lar" - type fo lds wi th 

s l aty cleavage as an axial plane foliation , regional 

metamorph ism,  and thrus ting on the Greenbrier faul t . Th i s  

early de formation is be l ieved t o  be repre s entative of the 

Taconic orogeny ( 4 3 0 to 4 7 0  m . y .  ago ) . 

A second epi sode o f  de formation invol ved the formation 

o f  fo lds with a crenulation or s l ip cleavage axial pl ane 

fo liation , emplacement of the Gre at Smoky and B lue Ridge 

th rust shee ts , and faul ting o f  the Gatl inburg fault sys tem . 

This sequence o f  s tructural element s in the southern 

Appa l ach ians can be adapted to the area o f  thi s report 

( Tab le 2 ) . E arly Fl folds with a s laty cle avage axial plane 

foliation ( S l )  are overprinted by F2 fo lds with a crenulation 

cle avage axial pl ane foliation ( 5 2 )  . The F l  fol ds are 

bel ieved to be long to the e arly period of de formation and 

the regional metamorph ism o f  Taconic age . The F 2  folds 
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probably belong to the second episode o f  de formation and are 

rel ated to the Late P aleo z oic th rust fault ing . F 3  and F 4  

folds pos tdate the Great Smoky faul t ,  b u t  may still be long 

to thi s  second period of de forma tion . 

TABLE 2 

CHRONOLOGI CAL SEQUENCE OF STRUCTURAL ELEMENTS 

Taconic Orogeny 
( Middle to Late Ordovic ian) 

Greenbrier fault thrus ting . 
Regional metamorph ism . 
Fl fo lds with sl aty cleavage axial plane 

fol i ation . 

Allegheny Orogeny 
( Late Carbon i ferous to Permian)  

Great Smoky fau l t  thrusting with as sociated 
Mil ler Cove fault and other splay s . 

F 2  folds with crenul ation cleavage 
axial pl ane fol iation . 

Macros copic F 3  fo lds . 

Mesoscopic F 4  fo lds and related thrus t faults . 



CHAPTER V 

DISCUS S ION OF CROSS -SECTION 

Plate 1 i s  a northwe s t-southeas t cro s s - section through 

the field area . The lack o f  key beds and an accurate 

s tratigraphy of the Wi lhite Formation make s de termination o f  

'the macro s copic s tructure s d i f ficult . - Mac ro s copic Fl fold 

s tyles are bel ieved to be re flected by the me soscopic F l  

fold s tyle s , however , and th i s  inte rpretation w a s  used i n  the 

construction o f  the c ro s s - s ec tion . Many o f  the me soscopic F l  

folds are overturned folds . This me soscopic geometry and 

overturned s trata at Locations 1 2 , 1 5 , and 8 s uggests the 

exis tence of macroscopic ove rturned folds . The greater 

variab i l i ty o f  bedding orientations ove r  shorte r. _ interval s 

in the nor the rn half  o f  the cro s s - section s ugge sts folds o f  

smal ler amp l itude than tho s e  south o f  Location 1 5 . 

The o rientations o f  the macro scopic Fl folds are 

bel ieved to change going northwe s t  from the Calderwood window 

upl i f t . Nearly recumbent macro scopic Fl folds on the 

northwe s t  fl ank o f  the upl i f t  are rotated so that the i r  

axial p l anes d i p  more s teeply northwe s t  around Location 1 7 . 

F igure 4 7  i s  a stereone t o f  bedding from Locations 1 5 , 1 6  

and 1 7 .  A great c ircle through the bedding pol e  dis tribution 

indicates a northeast-dipping fold axi s . Cleavage poles from 

Location 1 7  fall on thi s great ci rcle , s ugge s ting that the 
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cleavage i s  an axial plane foliation for th i s  macroscopic 

fold ; Farther northwes t ,  the Fl fold axi al plane s dip 

southeas t .  Macros copic Fl folds are bel ieve d  to be older 

than the Great Smoky faul t and would there fore be discordant 

with the thrust fault . 

S i l ts tone s ad j acent to the conglomeratic units northwe s t  

of Location 6 3  d i p  steeply to the northwe s t . Gentle north

wes t  dips were found in sandstones in the cong lome ratic uni t s , 

sugge s ting a fold in the cong lomerate body with dips s te eply 

to the northwe s t  in the sub sur face . Folds in Location s 6 3  

and 6 5  approach a chevron fo ld s tyle and appe ar to h ave 

northwe s t- dipping fold envelopes . Fl axi al plane s here dip 

about forty degrees southeast . 

The orientation s  o f  the Sl fol iation are shown as dashed 

. l ine s in Pl ate 1 .  Sl aty cleavage forms an F 3  anti form in 

the vicinity of the Calderwood window upl i fe and a F3 synform 

north o f  this area . Other F 3  folds are located northwe s t  

and southeas t o f  Loc ation 1 4 . The s e  F 3  folds are b e l ieved 

to be re f l ections of warps in the Great Smoky faul t surface . 

A con s i s ten t angle between the s laty cleavage and fault 

surface i s  probab le and an ang le of 15 degrees was cho sen 

for the con struction . Th i s  g ave a faul t con figuration wh ich 

best fit the constraints provided by known outcrop s of the 

thrus t faul t .  The warped nature o f  the Gre at Smoky fault due 

to F 3  fo lds become s apparent in th i s  cons truction . Fo r 
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compari son , the heavy dashed l ine repre sents the Great Smoky 

faul t sur face based on data from a s truc ture map of the thrust 

s urface made by Neuman and Nel son ( 1 9 6 5 ) . 

The Chi lhowee Mountain s tructural block syncl ine i s  

believed to be discordant with the Great Smoky fault , with 

the thrus t fault cutting acro s s  the axi s o f  the fold . The 

Miller Cove fault is depicted as a splay of the Great Smoky 

faul t . 



CHAPTER VI 

SUMMARY AND CONCLUS IONS 

Four groups of fo lds and re lated s tructures have been 

determined in the study are a .  F l  fo lds with S l  s laty c leavage 

as an axial pl ane foli ation are ove rprinted by F2 folds with 

a S 2  crenulation cleavage axial plane fol iation . Both S l  

and S 2  have been deformed b y  the F 4  k ink folds and related 

thru s t  faul ts . Macro scopic F 3  fo lds have deformed the s laty 

c leavage , and are younger than the Fl folds . The re is no 

direct evidence to prove the relative age o f  the F 3  folds 

with respect to the F2 and F 4  fol ds . 

The F l  folds are bel i eved to be the same as the first

generation folds described by King ( 1 9 6 4 )  in the central 

Great Smoky Mountains . Both groups o f  fo lds have slaty 

cleavage as an axial plane foliation ( the first-generation 

fo l iation o f  King ) • Fl fo lds in th is report area are also 

tentative ly correlated wi th the Fl fo lds found in the Spruce 

P ine area ( Butle r ,  19 7 3 )  and the F l  fo lds described by K i sh 

e t  al . ( 1 9 7 5 ) . They are b e l i eved to be Taconic s tructures 

and were formed in the Late Ordovic ian during the t ime o f  

regional metamorphism . These F l  folds , there fore , are o lder 

than the Great Smoky faul t .  

F 2  folds in the study area have a crenulation cleavage 

axial pl ane fo liation l ike those de scribed by Butler ( 19 7 3 )  
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as F 3  fo lds , wh ich were formed in Late P al eo zoic time . F 2  

folds de scribed by Kish e t  al . ( 1 9 7 5 )  a l so have a crenulation 

c leavage axial p l ane fo l i ation . These folds pos tdate the 

time of regional metamorph ism.  The F 2  folds in the study 

bele ived to have been formed after the Late Ordovician 

regiona l metamorph i sm ,  prob ab ly during the time of thru s ting 

on the Great Smoky fault in Late Carboni ferous or Permian . 

The deformation o f  s l aty cleavage into F 3  folds near the 

Calderwood window is believed to po stdate the Great Smoky 

faulting . Warp ing of the thrus t faul t caused the c leavage 

to be rotated over the Calderwood window upl i ft and formed 

the F 3  folds . F4 folds are b e l ieved to be l ate s tructure s 

formed e i ther during or a fter the broad warping whi ch 

de formed the Great Smoky f aul t . 
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METHODS AND CONVENT IONS 

A .  Fabric Elemen ts Used--Planar S tructure s 

Bedding.  Bedding in the field area i s  usually 

recogni z able , al though in some places it has been nearly 

ob literated by well-deve loped cleavage . Primary structures 

such as load cas t s  and graded bedding have been used for 

determining the youngi ng direct ion of units . Sedimentary 

bedding i s  used as an internal marker who se geome tric 

conf iguration indicates the nature and magni tude of de forma

tion ( Turner and Wei ss , 1 9 6 3 ) . 

Axial pl ane s  of folds . The orientation o f  axial plane s 

o f  rne soscopic fol ds was recorded wherever po s s ib le . A fold 

axial surface i s  the surface connecting the h inge l ine s in 

adj acent fold s ur face s .  

Cleavage . A gene ral de finition o f  cleavage , given by 

B i l lings ( 1 9 7 2 )  , i s  the prope rty of rocks to break along 

paral l e l  surfaces of secondary origin . C l as s i f ication of 

cleavage s is dif ficult , because there s eems to pe a 

continuous morphological gradation between cleavage types . 

Four end members which h ave been de fined include s l aty 

cleavage , fracture cleavage , pres sure sol ution cleavage , 

and crenula tion cleavage ( Co sgrove , 1 9 7 6 ) . S la ty cleavage 

and crenulation cleavage occur as axial pl ane fol iations in 
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the field are a .  Axi al plane foliations are tho se inc l ined 

to the folded sur face wh ich are approximately parallel to 

the axial surface of the fold in the h inge area . 

S laty cleavage in thi s  report is des ignated S l . Hand 

lens examination of rocks with s l aty cleavage shows they are 

charac teri zed by a h igh ly developed planar preferred 

orientation of l ayer s i l icates . The fabric is uni formly 

deve loped ( penetrative ) , on the vi s ib l e  scale , throughout 

the rock mater ial . S l aty cleavage is believed to be oriented 

perpendicular to the direction o f  maximum finite shortening 

( Ramsay , 1 9 6 7 ;  Dieterich , 1 9 6 9 ) . 
Crenulation cleavage , des ignated S 2 , invo lves a 

paral lel min�ral orientation resulting from the re folding 

of a preexisting secondary foliation ( Kni l l , 1 9 6 0 ) . I t  

con s i s ts o f  cleavage planes , whether micaceous l ayers or 

sharp · bre aks , which are separated by thin s l ices o f  rock 

containing a crenulated cros s-laminat ion ( Rickard , 1 9 6 1 ) . 
P re ferred mineral orientation deve lops along the cleavage 

planes . Crenulation cleavage is no t penetrative ; i t  forms 

discrete planar di scontinuities which cause local i zed 

s tructural weakne s ses within the rock . A rock show ing 

crenulation cleavage wi l l  break only along d i s crete plane s , 

wh ile a rock with a s laty cleavage wi ll break along any 

s urface parallel to the c leavage . 



B .  Fabric Elements Used--Line ar S tructures 
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Fold axe s . The fold hinge l ine is the locus of points 

of minimum radius of curvature o f  the folded surface . In 

cy lindr ical folds , the folded sur face can b e  out lined by 

moving a s traight l ine paral lel to itse l f . Thi s l ine i s  

cal led the fo ld axis . S i nce folds i n  the f i e l d  area are 

bel ieved to be approximate ly cylindrical , fold axi s and 

hinge l ine will be interchangeable . The fold axe s of minor 

folds were measured where po s s ib le . In some cases , the 

fold axes were defined statistically as the po le to the 

great circle that best fits the distribution of poles to 

the folded surface ( TI - pol e s )  on an equal - area net ( S chmidt 

net) . 

Cleavage-bedding intersections . The l ineation defined 

by the intersec tion o f  bedd ing and cleavage surfaces was 

me asured in several areas . For folds with an as sociated 

axial pl ane fo l i ation , the cleavage-bedding intersec tions 

should be stat i s tically subparallel to the fo ld axes . 

C .  Other S tructural E lements 

Fault sur faces and s l ickens ide striae are no t cons idered 

fabric because they are usua l ly not penetrative . S urfaces 

showing the relative movement o f  beds or s l ickens ided mineral

coatings were meas ured . In some cases , relative movement 



was estimated by the direction o f  mineral growth- fiber 

thicken ing on the sl ickens ided sur face s .  

D .  Fold S tyle 
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Fold s tyle incl udes all the morphological feature s  o f  a 

fo lded surface . I t  involve s  the shape o f  the fold in pro f i le , 

the presence o f  an axial plane fo l iat ion , the type of axial 

plane fol iation , and whether the fold is cyl indr ical or not . 

Al though there are many trans itional forms between ideal fold 

type s , end members adopted in th i s  report inc l ude paral l e l , 

concentr ic , and congruent folds . For parallel and concentric 

fo lds , the thicknesses o f  beds measured normal to bedding 

surfaces are co nsis tent throughout the folds . Cylindr ical 

folds are those with near-circular layers . In congruent , or 

" s imi lar- type " folds , the th ickne s s  o f  beds measured at right 

angles to bedding is var i able , whi le the thickne s s e s  me asured 

in directions parallel to the axial plane · are cons i s tent . 

Folds in the field are a  were clas s i fied according to wh ich 

ideal fold type they more closely resemb led . 

The area of a fold wi th a small radi us o f  curvature i s  

cal led the fold c losure or hinge . Th is ar e a  may be rounded 

or angular . Adj acent to the fo ld hinge ar e two areas o f  

larger radius o f  curvature called the fold limbs . The 

interl imb angle of a fold is def ined as the minimum angle 

between the l imb s , as measured in the profi le plane . Terms 
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used i n  th i s  report t o  describe the inte r l imb angle , adopted 

from · Fleuty ( 1 9 6 4 ) , are shown in Table 3 .  

TABLE 3 

TERMS USED TO DESCRIBE TIGHTNESS OF A FOLD 

De scription o f  Fold 

I soc l inal 
T ight 
C lose 
Open 
Gentle 

Interlimb Angle-Degrees 

0 
Le s s  than 3 0  
3 0 - 7 0  
7 0 - 1 2 0  
1 2 0 - 1 8 0  

A surface that i s  tangential to the h inges o f  folds in 

a given surface is called the enve loping surface . I f  the 

axial planes of a group o f  folds are perpendicular to their 

enve loping s urface , they are cons idered symmetric ( orthorhom-

bic symme try ) . I f  the axial planes are not pe rpendicular , 

the folds are cons idered asymmetric (monoclinic symmetry ) , 

with uneven l imb length and dip . Folds in which one limb i s  

s trat igraph ica l ly inver ted are called overturned folds . 

E .  Orientation Data 

The s tructural elements in a g iven are a are analyzed by 

plotting their orientations on a lowe r hemisphere equal-are a 

pro j ection c a l led a Schmidt net ( s te reonet or s tereogram) . 

Symbo l s  used for the var ious elements are l i s ted in Tab l e  4 .  



1 1 1  

P atterns o f  pre ferred orientation o f  s tructure s  on an equal-

area · net are of three general types ( Turner and We i s s , 19 6 3 ) . 

A maximum i s  a s ingle area o f  high concentration . A great-

c ircle girdle is an arcuate maximum wh ich co incides with a 

great circle o f  the net . The pole o f  the great circle i s  

cal led the B- axis . A smal l - c ircle girdle , o r  c l e f t  girdle , 

is an annular maximum which occupies a smal l circle o f  the 

net . Where large numb e r  o f  bedding or cleavage orientations 

were measured , the dis tribution was contoured us ing dens i ty 

contours . 

TABLE 4 
SYMBOLS USED ON SCHMI DT NETS 

e Pole to bedding ( S S )  

6 Pole to cleavage ( S l )  
A Pole to cleavage ( S 2 )  

0 Me asured fold axis 

$ Cal culated fo ld axi s  ( B- axi s )  

�ole to axial plane 

D Cleavage-bedding intersec tions �Pole to fault surface with s l ip l inear 
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