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ABSTRACT 

 

The vitamin D system plays a role in metabolism regulation. It has been reported that 

1,25(OH)2D3 [1,25-dihydroxyvitamin D] suppresses 3T3-L1 adipocyte differentiation. Vitamin 

D receptor (VDR) knockout mice showed increased energy expenditure whereas mice with 

adipose-specific VDR over expression showed decreased energy expenditure. Brown adipose 

tissue (BAT), which functions in non-shivering thermogenesis by uncoupling ATP synthesis 

from oxidation, plays important roles in energy expenditure. However, the effects of 

1,25(OH)2D3 on brown adipocyte differentiation and mitochondrial respiration have not been 

studied. Reported here is the mRNA expression of VDR, UCP1, and CYP27B1 (1α[alpha]- 

hydroxylase) in two mice models of obesity; and the down regulation of mRNA of VDR, 

CYP24A1 (24-hyrdoxylase), and CYP27B1 during brown adipocyte differentiation in vitro. 

1,25(OH)2D3 dose-dependently suppressed brown adipocyte differentiation, as revealed by oil 

red O (ORO) stained cell morphology, ORO absorbance, and brown adipocyte marker gene 

expression. Moreover, cellular bioenergetics measurements showed that 1,25(OH)2D3 suppressed 

isoproterenol-stimulated oxygen consumption rates (OCR), maximal OCR and OCR from proton 

leak, but had no effects on ATP-generating OCR and spare respiration capacity in brown 

adipocytes. Consistently, over-expression of VDR also suppressed brown adipocyte 

differentiation. Furthermore, both 1,25(OH)2D3 and VDR over expression suppressed PPARγ 

[gamma] transactivation in brown preadipocytes. Taken together, the results demonstrate the 

suppressive effects of 1,25(OH)2D3/VDR signaling on brown adipocyte differentiation and 

mitochondrial respiration and suggest a role of 1,25(OH)2D3/VDR signaling in regulating BAT 

function for obesity treatment and prevention. 
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CHAPTER I  
INTRODUCTION 

 

Obesity, physiologically, is a result of hyperplasia and/or hypertrophy of lipid storing 

adipose tissue [1].  It is defined clinically as having a body mass index ≥30kg/m2 and is currently 

a major health concern in the United States.  In 2010, obesity surpassed smoking as the leading 

contributor to disease; which is not surprising considering the co-morbidities linked to excessive 

fat mass including:  metabolic syndrome, Type 2 diabetes, heart disease, stroke, and cancer [2, 

3].  Paralleling that statistic, the medical costs associated with obesity and its co-morbidities 

accumulated to an astonishing $147 billion dollars in 2008 [2]. With such a strong impact on the 

nation’s health and economy, the exigency to resolve this problem is evident. 

Humans possess two types of fat tissues: white adipose tissue and brown adipose tissue. 

White adipose tissue (WAT) is known for its lipid storing capacity and well-identified 

relationship with nutritional and appetite markers and adipokines such as glucose, leptin, ghrelin, 

and insulin. Moreover, white adipose tissue participates systemic inflammation through the 

secretion of chemokines and cytokines.  

Brown adipose tissue (BAT) functions to produce heat through non-shivering 

thermogenesis. The presence of brown adipose tissue in small eutherian mammals, such as mice, 

provides adequate thermoregulation in a cold environment without compensatory shivering [4]. 

BAT’s thermogenic capacity is conferred by the actions BAT specific uncoupling protein 1 

(UCP1). UCP1, located in the inner mitochondrial membrane of brown adipocytes, uncouples 

ATP synthesis from respiration, resulting in dissipation of heat [5, 6]. Until recently, human 

BAT was thought to exist exclusively in neonates and that maturation, resulting in fat deposition 

and skeletal muscle development, lead to BAT regression. However, positron emission 
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tomography/computed tomography scanning of adult humans has revealed the presence of fat 

depots in the cervical, supraclavicular and paravertebral regions with the characteristics of BAT 

[7-11]. Furthermore, recent gene expression profiling of adult humans has confirmed many 

classical BAT features in the fat depots of the supraclavicular regions [12, 13]. Due to its energy 

expending activity, BAT has become the novel target tissue for combating obesity [14-19]. It has 

been discovered that BAT is negatively associated with BMI, visceral fat, visceral/total fat, waist 

circumference, and diabetes [20, 21]. 

Accumulating evidence suggests that vitamin D has pleiotropic actions that can affect 

multiple organs and metabolic processes, in addition to maintaining calcium homeostasis and 

skeletal health. Recent studies have suggested that WAT is a direct target of vitamin D, and that 

the hormone modulates adipose tissue formation and function [22]. The vitamin D system has 

been implicated in white adipose tissue in terms of inflammation, glucose regulation, 

adipogenesis, and energy metabolism [23-26]. Likewise, the expression of VDR has been 

reported in murine 3T3-L1 preadipocytes [27, 28] and human preadipocytes [29].  

It has also been reported that 1, 25(OH)2D3 inhibits 3T3-L1 adipocyte differentiation [27, 

28], but promotes adipocyte differentiation from human subcutaneous preadipocytes [29]. 

Further, studies of VDR knockout mice and transgenic mice with adipose-specific VDR over-

expression revealed that energy expenditure was markedly higher in VDR knockout mice, but 

reduced in the VDR transgenic mice, compared to their respective controls, suggesting a role of 

the vitamin D system in energy metabolism [30, 31].  

BAT plays a critical role in energy expenditure; however, whether vitamin D system 

modulates brown adipose tissue formation and function has not been studied. The objective of 

the thesis research is to fill in the knowledge gap regarding the effects of vitamin D, specifically 
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vitamin D3, and the vitamin D receptor on brown adipocyte differentiation. By employing a 

brown preadipocyte cell line, the effects of 1,25(OH)2D3 and VDR expression on brown 

adipocyte differentiation were studied. The results presented in this thesis add to our 

understanding of the nutritional regulation of brown adipocyte development and function.  
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CHAPTER II  
LITERATURE REVIEW 

 

2.1 Overview of Vitamin D 

2.1.1 Vitamin D Structure and Function  

Despite being defined as a vitamin, vitamin D is truly a secosteroid hormone. As a 

hormone, vitamin D has a number of calceamic and noncalceamic biological roles. Its classical 

role is associated with bone metabolism as it is required for adequate enterocyte absorption of 

calcium by increasing the expression of calcium channels for uptake in the intestine. Likewise, it 

acts within the kidney to promote calcium reabsorption in the distal tubule via activation of 

parathyroid hormone [32]. Moreover, it also aids in the absorption of phosphorus, an essential 

mineral in bone maintenance [33, 34]. Recently, vitamin D has been recognized in the scientific 

community as an immunological, anti-inflammatory, and transcription-modulating molecule. In 

either mice or human trials, vitamin D has been linked to diminishing the effects or reducing the 

risk of various inflammatory states such as non-obese type 1 diabetes, multiple sclerosis, lupus, 

and inflammatory bowel disease [35-38].  Because of its diversity in human health, it is no 

surprise that serum vitamin D deficiency has been associated with early mortality, myocardial 

infarction, diabetes, various cancers, and obesity [39-42].  

  The binding of vitamin D3 to the vitamin D (VDR) receptor is necessary to produce the 

aforementioned biological effects. The VDR has a high affinity and specificity for the bioactive 

1,25(OH)2D3 ligand. The binding of the ligand and the receptor is required for action mediation 

in a variety of human tissues including osteoblasts, macrophages, pancreatic beta cells, smooth 

muscle, adipocytes, and epithelial cells [22]. Vitamin D3, also identified as 1,25(OH)2D3, is 
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understood to modulate gene expression via two mechanisms: the first being interaction of 

transcriptional promoter genes and the retinoid X receptor/VDR heterodimer and the second 

being posttranslational modifications from calcium flux induction. The former mechanism 

begins with the introduction of free 1,25(OH)2D3 to the cell. Free 1,25(OH)2D3 binds to the 

VDRs, which then become phosphorylated, resulting in a significant conformational change that 

closes the receptor, thereby activating it. Phosphorylated vitamin D receptors bind to retinoid X 

receptors and create a heterodimer complex that is able to activate or repress transcription at 

promoter genes after stabilization on DNA vitamin D response elements [43]. VDR mRNA 

expression has been identified in most human tissues, including osteoblasts, keratinocytes, 

smooth muscle, epithelial cells and white adipocytes, supporting the diverse effects of 

1,25(OH)2D3  signaling. 

One example of a non-classical role of vitamin D is in the immune system. It is 

understood that numerous adaptive and innate immunity cells express the vitamin’s receptor. 

Moreover, both macrophages and dendritic cells of the immune system posses the 1α-

hydroxylase enzyme, resulting in hydroxylation of 25(OH)D3 to yield bioactive 1,25(OH)2D3. 

When pattern recognition cells sense a pathogen, they signal for increased expression of both the 

vitamin D activating enzyme and VDR. Ligand binding elicits an immune response via 

transcriptional activation and/or repression of the target genes of the downstream signaling 

pathways [32]. 

There is also evidence to support the activity of the vitamin D/VDR complex in the 

vascular system. Similar to the immune system, both VDR and 1α-hyrdoxylase have been 

identified in cardiac myocytes, fibroblasts, and smooth muscles cells. Vitamin D deficiency in 

humans has been associated with congestive heart failure, peripheral vascular disease, and 
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coronary artery disease. Similarly, in mice, vitamin D deficiency and VDR deletion is associated 

with elevated blood pressure and hyperreninemic hypertension with cardiac hypertrophy, 

respectively [32]. In a rodent study, rats were infused with 800 ng/kg/min of angiotensin II for a 

14-day period. This resulted in elevated blood pressure, elevated cardiac interstitial fibrosis, 

myocyte hypertrophy, and increased expression of the hypertrophy-sensitive fetal gene program. 

Interestingly, concurrent treatment with 1,25(OH)2D3  analog, paricalcitol, ameliorated these 

cardiac effects [44].  

 These are just a few examples of the expansive involvement of both the vitamin D ligand 

and VDR in mediating human biology. The involvement of the vitamin D complex in adipose 

tissue will be further elucidated later.  

 

2.1.2 Dietary and Non-dietary Sources of Vitamin D  

Vitamin D can be found in a variety of animal products including liver, eggs, milk, 

cheese, mushrooms, and some saltwater fish. The American food supply is also fortified with 

vitamin D. Fortified products include: orange juice, yogurt, and some cereals. Additionally, 

vitamin D is created endogenously. Cholecalciferol can be synthesized in the skin and 

transformed to bioactive calcitriol through a series of biological processes [33].  

 

2.1.3 Vitamin D Metabolism and Transportation  

Out of the two forms of vitamin D, vitamin D2 (ergocalciferol) and vitamin D3 

(cholecalciferol), vitamin D3 is the only form that is found naturally in humans and animals due 

to the synthesis of vitamin D3 from 7-dehydrocholesterol in the skin upon ultraviolet B 

irradiation. When 7-dehydrocholesterol in skin is exposed to UVB it is transformed into 
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previtamin D3. Further structural transformations produce vitamin D3 (cholecalciferol), allowing 

for translocation from the skin to the blood stream. Upon admission into the blood stream, 

vitamin D3 is bound to α1-globulin, a vitamin D binding protein. Once cholecalciferol reaches 

the liver, it is hydroxylated by 25 hydroxylase (encoded by CYP27A1) to release 25-

hydroxycholecalciferol (25(OH)D3) into circulation. In the kidney, 25(OH)D3 undergoes further 

hydroxylation by 1α hydroxylase (encoded by CYP271B) to complete the conversion of 

cholecalciferol to bioactive calcitriol (1,25(OH)2D3) [33]. A variety of cytochrome P450 

enzymes, including 24-hydoxylase (encoded by CYP24A1), initiate the inactivation and 

degradation of vitamin D3  and its metabolites by forming calcitrioic acid [33, 45]. A visual 

schematic has been provided to illustrate the metabolism of vitamin D (Fig. 1).  

The genomic action of 1,25(OH)2D3 is mediated through the vitamin D receptor (VDR), 

which upon binding to 1,25(OH)2D3 forms heterodimer with retinoid X receptor (RXR) and 

binds with vitamin D3 response elements in the promoters of target genes to regulate the target 

genes transcription.  

 

2.1.4 Vitamin D and Energy Metabolism 

The effects of vitamin D on energy metabolism have been studied to some extent. The 

most pertinent research regarding the current hypothesis assesses the impact of vitamin D and the 

VDR complex on white adipocyte differentiation, function, and total cellular metabolism. 

There is evidentiary support for inhibition of 3T3-L1 cell differentiation by 1,25(OH)2D3 

[22, 46]. When treated with calcitriol, mRNA and protein expression of adipocyte marker gene 

PPARγ, C/EBPβ, and SREBP1 are dose-dependently down-regulated. Likewise, 1,25(OH)2D3 

has been reported to impair lipogenesis in preadipocyte cells by promoting expression of  insulin 
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induced gene 2 (Insig2), a gene encoded to block fatty acid synthesis by modulating the 

proteolytic activation of sterol regulatory element-binding proteins [47]. Moreover, up regulation 

of the VDR in the absence of calcitriol has been reported to inhibit adipocyte differentiation [22]. 

While these results paint a convincing picture of the suppressive effects 1,25(OH)2D3 on 

adipocyte differentiation of murine derived 3T3-L1 [27, 28], it has been reported that a similar 

dose of 1,25(OH)2D3 (i.e., 10-8 mM or 10 nM) actually promoted differentiation of human 

subcutaneous preadipocytes [29].  

In characterizing the molecular mechanisms by which vitamin D3/VDR suppresses 3T3-

L1 adipocyte differentiation, it was found that VDR mRNA expression reached a maximum 6 

hours after induction of white adipocyte differentiation [46]. Moreover, VDR nuclear proteins 

imperative for VDR function, showed exponential accumulation at 4 hours and reached 

maximum expression at 12 hours post induction [46]. These results suggest that the vitamin D 

system is active at the early stages of adipocyte differentiation [46, 48].   

The difference between liganded and unliganded VDR in hindrance of normal 

adipogenesis has also been noted [46]. The VDR siRNA transfected cells without calcitriol did 

not significantly reduce PPARγ [46] . However, in the presence of calcitriol, expression of 

PPARγ and C/EBPα, an essential transcription factor that works in concert with PPARγ in 

adipogenesis, were reduced in 3T3-L1 cells over expressing VDR, likely due to the blocking of 

the C/EBPβ pathway [46, 49]. Thus, liganded VDR seems to be the most potent inhibitor of 

white adipocyte differentiation by limiting lipid accumulation and diminishing the production of 

PPARγ and C/EBPα [22, 46, 49].  



 

 9 

Additionally, the effects of vitamin D on thermogenesis of white adipocytes were 

reported [50]. With as low as 1 nM vitamin D, both basal and pharmacologically induced 

expression of uncoupling protein 2 (UCP2) were diminished whereas a specific agonist for the 

membrane vitamin D receptor (mVDR), 1α,25 dihydroxylumisterol 3 was unable to show the 

same effects. Nuclear VDR knockdown blocked the inhibition by 1,25(OH)2D3  whereas a 

specific mVDR antagonist, 1α,25-dihydroxyvitaminD3, was unable to prevent the 1,25(OH)2D3 

inhibition of UCP2 expression [51]. These results suggest that thermogenesis of WAT is 

negatively impacted by the vitamin D/VDR complex through its genomic action [51].  

To further study the role of the VDR as it relates to adipogenesis and metabolism in vivo, 

an aP2-hVDR transgenic mouse model was created to specifically over express hVDR in 

adipocytes [52]. It was found that mice over expressing hVDR had a greater body fat percentage 

than their wild type counterparts on the standard chow diet [52]. Likewise, transgenic mice on 

the high fat diet had a more significant weight gain than wild type mice on the high fat diet. 

Interestingly, transgenic mice exhibited elevated cholesterol compared to the controls but they 

did not have statistically significant non-esterified fatty acids or triglycerides [52]. Metabolism 

was also altered in the transgenic mice. Expression of carnitine palmitoyl transferase 1 and 2, 

hexokinase, pyruvate kinase, hormone sensitive lipase, adipose triglyceride lipase, and 

uncoupling protein were reduced in adipose tissue of transgenic mice, leading to impaired β-

oxidation, glucose metabolism, and lipolysis [52]. 

To further illuminate the effects of VDR in vivo, literary evidence suggesting that VDR 

null mice maintain a leaner phenotype is described [26]. Ablation of the VDR in vivo was 

associated with a lower body fat in male and female mice on a high fat diet. Interestingly, BAT 

in VDR null mice was less abundant than in wild type regardless of the diet.  However, null mice 
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were able to maintain better BAT cell morphology i.e., shape and appearance, with fewer lipid 

droplets than the wild type counterparts. On the high fat diet, leptin levels were decreased in 

VDR null mice. Moreover, oxygen consumption rates, CO2 production, and total energy 

expenditure were significantly higher in VDR(-/-) mice without significant changes in dietary 

intake or physical activity [26]. Together, these results suggest that VDR is a negative regulator 

of adipose energy expenditure. 

Yet another study demonstrated that VDR knockdown can modulate energy metabolism 

in vivo [53]. This particular research supports the idea that the VDR/vitamin D ligand is a key 

regulator in adipogenesis and glucose metabolism. These researchers compared body weight, 

abdominal WAT, leptin, and food intake in young VDR knockout mice and wild type mice on a 

C57BL6 background fed with a rescue diet. It was found that VDRKO mice weighed 

significantly less at 2, 4, and 6 months of age compared to their age matched wild type 

counterparts. They also found almost 50% more abdominal white fat in the wild type mice at the 

6th month. Not surprisingly at the 4 and 6 month check points, adipokine leptin was significantly 

reduced in mice lacking VDR. The food intake, measured in grams per day, was notably 

indifferent at the 2 and 4 month time points. Unexpectedly, VDRKO were actually consuming 

more food (g/day) at 6 months. To examine the effects of VDR ablation on interscapular BAT 

(iBAT), interscapular brown fat was isolated and weighed and no significant difference in iBAT 

mass was found.  

This same group of researchers chose to further research the effects of VDR elimination 

in a different strain of mice genetically prone to obesity and impaired glucose metabolism: CD1 

mice [53]. When comparing the CD1 WT to the CD1 VDRKO, CD1 VDRKO mice weighed less 

and had significantly less abdominal and subcutaneous fat mass. This held true even when the 
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dietary fat was increased from 5% to 15%. Interestingly, unlike in the C57BL6 model, CD1 mice 

did show differences in iBAT mass. On both 5% and 15% dietary fat diets CD1 WT mice had 

larger amounts of iBAT than the CD1 VDRKO mice despite CD1 VDRKO mice consuming 

significantly more calories than their WT counter parts [53].  

When comparing the metabolic parameters including serum glucose, insulin, and 

triglycerides, not surprisingly, the CD1 mice fed a 5% fat diet showed higher glucose, insulin 

and triglycerides than the C57BL6 mice. However, in both CD1 and C57BL6 VDRKO models, 

glucose, insulin, and triglycerides were normal. This suggests that even in cases of genetic 

obesity, VDRKO can protect against metabolic abnormalities [53]. 

The next question raised is whether or not CYP27B1 ablation, the enzyme required for 

1,25(OH)2D3 synthesis, produces any remarkable changes. On both the 5% and 15% fat rescue 

diets, CYP27B1 KO mice were lighter than the wild types with smaller abdominal adipose tissue 

stores. Like the VDRKO mice, CYP27B1KO mice were hypoleptinemic, hyperphagic, and had 

exhibited no differences in iBAT [53].  

 To elucidate the mechanism by VDR modulates the lean phenotype, researchers 

measured mRNA expression of PPARγ and fatty acid synthase (FAS) and found that neither 

PPARγ nor FAS were significantly different between knockout and wild type mice. In contrast, 

they noted that UCP1 mRNA was 25 fold higher in the WAT of VDRKO than in that of wild 

type mice. These results suggest that VDR may negatively modulate energy expenditure through 

suppression of UCP1 in WAT, leading to a lean phenotype in VDR null mice [53].  

 Taken together, these studies suggest the significant impact of vitamin D and/or VDR on 

the development of BAT and WAT and whole body energy metabolism. 



 

 12 

2.2 Brown Adipose Tissue: Significance and Nutritional Regulation  

2.2.1 Brown Adipose Tissue Function 

Brown adipose tissue (BAT) has been identified as a highly vascularized thermogenic 

tissue responsible for non-shivering, adaptive thermogenesis during cold exposure [54, 55]. It is 

a multilocular tissue because its cells are composed of many small lipid droplets dispersed in the 

cytosol surrounding a central nucleus. It also contains a high number of mitochondria, the 

organelle responsible for the generation of heat that occurs in these cells. In contrast, WAT is 

unilocular with a singular lipid droplet, few mitochondria, and peripheral nucleus. White adipose 

tissue is much less metabolically active than BAT because its major function is triglyceride 

storage [56].  

Brown adipose tissue’s thermogenic capacity is conferred by its expression of UCP1, 

which is confined to the inner mitochondrial membrane. Under activation of the sympathetic 

nervous system UCP1 enhances energy expenditure by uncoupling oxidative phosphorylation 

from ATP synthesis [55]. Normally, the process of the electron transport chain’s (ETC) oxidative 

phosphorylation produces free energy that drives adenosine triphosphate (ATP) synthesis. The 

proton gradient produced by the oxidation-reduction reactions of the ETC is utilized by ATP 

synthase converting adenosine diphosphate (ADP) to ATP. Therefore, the respiratory capacity of 

a cell is limited by the efficiency of mitochondrial phosphorylation of ADP to ATP. In brown 

adipocytes, the transmembrane protein UCP1 creates a proton leak, uncoupling these processes 

and consequently, generates heat. This process allows for continuation of fatty acid oxidation 

with a low rate of ATP synthesis [57, 58]. It has also been suggested that glucose is more highly 
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metabolized via anaerobic glycolysis in BAT to compensate for the impaired ATP synthesis of 

the ETC [58]. 

Previously, BAT was believed to be present in infants only.  Because infants have 

minimal skeletal muscle for shivering, BAT was presumed to be the mechanism by which infants 

maintained temperature homeostasis. Approximately 2-4% of the birth weight can be attributed 

to BAT. However, at about one month after birth, brown adipose tissue is significantly reduced 

[59].  BAT degeneration is a result of apoptosis induced by tumor necrosis factor alpha [60]. 

With the use of Positron Emission Tomography associated with Computed Tomography (PET-

CT), researchers have located depots of BAT in adults [7-11, 61].  Radioactive glucose analogue 

18F-flurodeoxyglucose (FDG) is traditionally used to identify tissues with glycolytic activity in 

PET scans. Intravenous administration of the analogue unintentionally discovered depots of BAT 

in adult humans due to its unsuspected uptake of FDG [62]. Currently, FDG uptake is the gold 

standard in measuring BAT [55]. The largest depots of this metabolically active tissue can be 

found in the: supraclavicular, suprarenal, paravertebral (interscapular), and neck regions [21, 61, 

63]. Statistical analyses have indicated that, in humans, BAT is negatively correlated with 

outdoor temperature and age. Furthermore, women have greater BAT mass and glucose uptake 

than men; though, this disparity between the two genders seems to diminish as age increases 

[21].  

 

2.2.2 Brown Adipose Development 

In white adipogenesis, cellular differentiation begins with rapid expression of 

transcription factors CCAAT/enhancer-binding protein β (C/EBPβ) followed by C/EBPα, 

PPARγ, and sterol regulatory element-binding protein 1 (SREBP1). The upregulation of these 
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proteins results in the development of an adipocyte phenotype, as evidence by adipogenic 

enzyme markers such as lipoprotein lipase and fatty acid synthase [22]. It has been reported that 

in normal 3T3-L1 differentiation, VDR is also expressed in the early stages of differentiation and 

is maintained in the presence of 1,25(OH)2D3 [22].  

Classical brown adipocytes are derived from Myf5-positive myoblastic cells [58, 60]. 

The development of brown adipocytes is controlled largely by transcription factor PPARγ and 

transcriptional coactivator, PPARγ coactivator 1α (PGC1α).  

PGC1α is responsible for the promotion of UCP1 expression by interacting with PPARγ 

and RXR heterodimer, allowing for transcription of genes involved in mitochondrial oxidative 

phosphorylation and UCP1 expression.  Likewise, mitochondrial biogenesis relies on PGC1α for 

nuclear respiratory factor induction (Nrf-1). Nrf-1 is responsible for inducing the expression of 

the genes of the electron-transport chain. Not surprisingly, PGC1α is expressed at higher levels 

in BAT than in WAT and is up regulated following cold exposure and β adrenergic stimulation 

via the p38 MAPK pathway [64].  

When ectopic expression of PGC1α is permitted in WAT, they adopt a phenotype similar 

to brown adipocytes, expressing UCP1 [19, 65]. Moreover, fatty acid metabolism enzymes in 

WAT increase with PGC1α expression, suggesting the potential for advanced fatty acid 

metabolism in browning white adipocytes [65]. Some research suggests the necessary 

involvement of zinc finger containing protein PR domain containing 16 (PRDM16) in 

conjunction with PGC1α, PPARγ, and C/EBPβ in the browning of white preadipocytes via 

promotion of thermogenic and brown adipogenic gene expression [16, 17, 66]. 
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PRDM16 is involved in both BAT and WAT development by simultaneously inhibiting 

the expression of WAT genes via transcriptional corepressors and promoting the expression of 

BAT genes through interaction with PGC1α [67, 68]. BAT gene expression is enhanced by 

PPARγ stabilization of PRDM16 on the promoter regions of BAT specific genes [17, 67, 69].  

A number of cell types have been identified as having potential to adopt a brown 

phenotype, contributing to uncoupling and thermogenesis. There is some evidence to suggest that 

human subcutaneous tissue contains a distinctly different beige adipocyte precursor cells that are 

identified by expression of genes CITED1 and CD137 [70]. While these cells express typical 

WAT genes, they have a unique capacity to also express UCP1. These cells, when appropriately 

stimulated with PPARγ agonists, can differentiate into functional beige or brown adipocytes. 

Interestingly, subcutaneous adipose tissue samples from obese individuals had impaired UCP1 

gene and protein expression when compared to the lean individuals. These data suggest 

incapacity of BAT in obese individuals to function maximally [70]. 

Human multipotent adipose-derived stem cells (hMADs), with prolonged exposure to 

PPARγ, are able to differentiate into functional brown adipocytes, characterized by their 

expression of UCP1 and Cidea [71].  Thyroid hormone triiodothyronine may also have the 

capacity to promote the browning of hMADS. In one study, the introduction of triiodothyronine 

to hMADS resulted in elevated expression of the following thermogenic genes: UCP1, PGC1α, 

NRF1, TFAM, Cidea, and Elovl [72]. Subsequently, oxygen consumption rates were 

significantly increased in triiodothyronine treated groups, suggesting enhanced mitochondrial 

biogenesis [72]. 

Muscle derived CD34+ cells are another potential progenitor cell with the ability to 
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express a brown adipocyte phenotype [73]. One study utilized tissues extrapolated from humans 

(adult and fetal) as well as mice for examination.  A variety of skeletal muscle cells were 

identified during the course of this study; interestingly, the CD34+ cells of expanded fetal 

muscles showed gene expression similar to that of brown adipocytes.  Upon further investigation 

with RT-PCR, it was found that differentiated skeletal muscles expressing the CD34+ protein on 

the cell surface demonstrated UCP1, PPARγ, PGC1α, β3-adrenoreceptor, and Cidea mRNA 

expression.  A second finding of this study was that CD34+ cells’ UCP1 expression could be up 

regulated by exposure to pharmacological treatment.  UCP1 mRNA was increased approximately 

seven to eightfold by cAMP derivatives in both primary culture and expanded cells. 

Interestingly, PPARγ agonist rosiglitzone proved to create an eightfold increase in expanded 

cells but yielded no statistically significant change in primary culture cells. The reason for this 

incongruity is unknown. These findings suggest that CD34+ cells in fetal muscle tissues have the 

capacity to express UCP1 and develop into functional brown adipocytes provided proper 

stimulation [73]. 

Lastly, adipocyte-like skin dermal cells from individuals with Hereditary Vitamin D 

Resistant Rickets (HVDRR) have been examined for their capacity to brown [74]. In this 

particular study, UCP1 expression was increased in the skin dermal cells from HVDRR 

individuals when compared to the controls [75]. The study also revealed that the suppression of 

UCP1 mRNA by VDR appeared to be mediated by a negative response element found in the 

proximal region of the human UCP1 promoter [75]. It is apparent from this study that the 

vitamin D/VDR complex suppresses the browning process, at least in this specific tissue.  

The ability to convert white adipocytes or to manipulate stem cells to result in 

hyperplasia of brown adipocytes is crucial to the concept of stem cell treatment of obesity and 
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metabolic syndrome. Transplantamtion of BAT has shown to markedly improve glucose 

metabolism and insulin resistance in mice [15, 76]. If these findings can be repeated in humans, 

there is opportunity to ameliorate obesity related disease with therapeutic BAT tissue. 

 

2.2.3 Brown Adipose Tissue Activation 

 BAT is richly innervated by sympathetic nervous system efferent fibers. The release of 

noradrenaline from these fibers enhance both the thermogenic activity, via UCP1 activity, and 

heat production, which involves BAT cell proliferation, mitochondriogenesis, and UCP1 

expression [77]. The role of β3 adrenergic receptors has been particularly well characterized in 

BAT.  These receptors are found on the cell surface of mature brown fat cells and are stimulated 

by norepinephrine as part of a sympathetic nervous system reaction.  The stimulation results in 

the induction of an intracellular pathway activating cyclic adenosine monophosphate (cAMP), 

protein kinase A, hormone sensitive lipase, lipid oxidation, and downstream kinases and 

transcriptional factors that mediate UCP1 thermogenic activity [16, 78, 79].  Activation of 

lipolysis in this process results in degradation of fatty acids mobilized from intracellular 

triacylglycerol stores and the systemic circulation conferring the lipid regulatory effect of BAT 

[14, 80]. The Rothwell and Stock calculation estimated that an average human male expending 

approximately 2500 kcal/day could yield an increase in energy expenditure (EE) by 10-20% 

provided proper stimulation of 40-50 g of BAT. Some researchers support the Rothwell and 

Stock calculation by reporting EE increases of 11-34% but other researchers hypothesize and/or 

report a much more conservative number of 2-5% of total EE [70]. 

It is well understood that brown adipose tissue is activated by cold exposure. A number 

of studies report enhanced BAT activity with as little as two hours of cold exposure in both 
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human and mouse models. One theory suggests that cold stimuli produces vascular endothelial 

growth factor expression of which yields angiogenesis. This angiogenesis in BAT is associated 

with BAT hyperplasia [58]. Another theory suggests that transient receptor potential channels 

(TRP) are responsible for receiving the cold stimuli and inducing thermogenesis via the 

aforementioned β3 adrenergic mechanism. It has been established that these TRPs receive 

stimuli from chemical compounds as well. 

 

2.2.4 Regulation of Brown Adipose Mass by Nutritional and Non-nutritional Factors 

A variety of nutritional and non-nutritional regulators have been identified in the 

development and activation of brown adipose mass. These factors encourage the activation of 

brown adipose tissue, promote the browning of white adipose tissue, or work to achieve both 

activation and development.  

For example, BAT can be activated by various capsinoid analogues like capsaicin found 

in chili peppers. These compounds increase thermogenesis via the TRPs and β3 adrenergic 

mechanisms [58]. Moreover, ephedrine [81], caffeine[82], catechin polyphenols[83], and 

medium-chain triglycerides [84] have also demonstrated β3 adrenergic stimulating or UCP1 

stimulating activity [81-85]. Utilization of these dietary compounds has been effective in 

increasing energy expenditure ranging from 4 to 8% of the total 24-hour energy expenditure 

[55]. However, is important to note that these particular compounds have alternative properties 

that may contribute to body composition changes aside from UCP1 stimulation like appetite 

suppression, fat absorption inhibition, and promotion of physical activity [55]. 

Other dietary factors known to activate brown adipose tissue include dietary methionine 

and leucine restriction, fucoxanthin, conjugated linoleic acid, and omega 3 fatty acids [86]. Some 
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of these aforementioned dietary factors are also capable of stimulating the browning of white 

adipose tissue.  

Both methionine and leucine restriction diets result in the activation of brown adipose 

tissue. Mice deprived of these essential amino acids experience increased UCP1 induction and 

β3-adrenergic signaling. The data strongly supports the relationship between methionine and 

leucine deprivation and weight regulation. It is hypothesized that methionine deprivation 

increases energy expenditure by accelerating β-adrenergic receptor signaling. Leucine 

deprivation is thought to reduce fat deposition and support fat loss via activation of BAT and the 

subsequent catabolism of fatty acids [87-89]. Conversely, there is evidence to suggest that 

leucine supplementation, rather than deprivation, is beneficial in vivo. Supplementation with 

leucine increased mitochondrial mass and oxygen consumption rates which yielded weight loss 

or diet-induced obesity resistance [90].  

Fucoxanthin, a carotenoid found in brown algae and seaweed extract, has been identified 

as a nutritional agent of increasing UCP1 and lipid catabolism proteins at both the mRNA and 

protein expression levels in white adipocytes but not brown adipocytes. Moreover, fucoxanthin 

metabolites appear to enhance WAT β3-adrenergic receptor production, increasing sensitivity to 

sympathetic nerve signaling. There is also evidence to suggest that activation of AMPK, fatty 

acid β-oxidation, and lipogenesis results from the presence of fucoxanthin. The specific 

mechanisms for the metabolite effects on WAT browning have yet to be elucidated [91-95].  

Like fucoxanthin, 2-hydroxyoleic acid, a synthetic olive oil analog, was able to induce 

UCP1 expression in white adipose tissue selectively. Likewise, this analog has been shown to 

enhance the cAMP/PKA pathway, resulting in the browning of white adipose tissue. Oral 
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supplementation with natural olive oil reportedly increases expression of all uncoupling proteins 

and promotes escalated total body oxygen consumption [96-100]. 

The trans-10, cis-12 isomer of conjugated linoleic acid (CLA) has shown marked adipose 

reduction in variety of species by increasing WAT apoptosis, decreasing differentiation and 

lipogenesis of adipocytes, and increasing fatty acid oxidation. Research has also described the 

ability of CLA to increase brown phenotypic genes including UCP1, PGC1α, and Cidea in WAT 

specifically [101-103].  

Lastly, omega 3 fatty acids have shown the capacity to mediate adipose function and 

growth by both up-regulation of UCP1 and WAT oxidation [104, 105]. Alternately, another 

study found that just marginal amounts of EPA and DHA in the daily diet, comprising just 15% 

of daily dietary fats, can increase β-oxidation in conjunction with the up-regulation of other 

PGC1α, CPT1, and Nrf1 but not UCP1 genes in WAT [106].  

 Various non-nutritional regulators are also key in promoting the development and 

activation of brown adipose tissue [58]. For example, exercise acts as a non-nutritional regulator 

resulting in the browning of white adipose tissue. It is said to increase the expression of Irisin, a 

PGC1α dependent myokine that induces the browning of white adipose tissue [58]. This 

phenomenon may contribute to the overall effect of regular exercise on increasing basal 

metabolic rate. 

Other identified non-nutritional regulators of browning include: cyclooxygenase-2, 

receptor interacting protein 140, liver X receptor α, bone morphogenetic protein 7, fibroblast 

growth factor 21, and retinoblastoma protein among others [86].  
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2.3 The Research Gap 

In summary, the existing research exploring the role of vitamin D3 in total energy 

metabolism is contradictory and inconclusive. In vitro white adipocyte study results would 

suggest that vitamin D3 impairs growth by inhibiting the production of its major regulators 

PPARγ and C/EBPα. Conversely, the in vivo data would suggest that vitamin D3 promotes WAT 

differentiation and growth because VDR ablation decreased body fat [26] while VDR over 

expression increased body fat [52].  

The effect of vitamin D3 on adipose differentiation and function has only been studied in 

WAT. The purpose of this thesis is to characterize the effect of both over expression of the VDR 

and an over abundance of vitamin D3 in brown adipose differentiation and mitochondrial 

respiration. A characterization of the effects of vitamin D3 on brown adipocytes will provide a 

better understanding of the environment in which BAT grows and functions optimally. To 

measure the effect of vitamin D3 on differentiation the following methods were used: mRNA 

expression was to quantify specific gene expression, Oil Red O stain to determine the change in 

lipid accumulation, MitoTracker to quantify mitochondrial content, and western blot to detect 

proteins. To measure the effect of vitamin D3 on mitochondrial respiration, a mitochondrial stress 

test was conducted and analyzed.  Lastly, a luciferase assay was used to determine changes in 

PPARγ transactivation under the influence of both the vitamin D3 ligand and overexpression of 

VDR.  
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CHAPTER III 
Materials and Methods 

 

3.1.1 Reagents 
 

Vitamin D3, 1,25(OH)2D3, was purchased from Enzo (Farmingdale, NY). 3-isobutyl-L-

methylxanthine, T3, dexamethasone, insulin, and indometacin were purchased from Sigma-

Aldrich (St. Louis, MO).  

 

3.1.2 Animals  

The mice studies were approved by the Institutional Animal Care and Use Committee at 

the University of Tennessee. Diet-induced obesity (DIO) mice, genetically obese ob/ob (leptin 

deficient) mice, and their respective controls have been described elsewhere[107]. Briefly, the 

mice were purchased from the Jackson Laboratory (Bar Harbor, ME). For DIO study, 6-week old 

male C57BL/6J mice (n=7 per group) were fed with either a high-fat diet (60% Kcal from fat, 

Research Diets Inc., New Brunswick, NJ) (DIO group) or chow diet (Chow group) for 20 weeks 

before sacrificed at 26 weeks of age. For ob/ob mice study, 6-week old male ob/ob (Ob/ob 

group) and their control wild type mice (Wt group) (n=6 per group) were fed with chow diet for 

8 weeks before sacrificed at 14 weeks of age. Upon sacrifice, interscapular BAT was removed 

and immediately snap frozen in liquid nitrogen and stored at -80 °C until analysis. 

 

3.1.3 Brown fat cell culture and differentiation  

Murine brown fat cell line is a gift from Dr. Johannes Klein (University of Lubeck, 

Lubeck, Germany), who has generated the cell line from interscapular brown fat of newborn 
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C57BL/6 mice[108]. Brown fat cells were maintained in Dulbecco’s modified Eagle’s medium 

(DMEM) supplemented with 20% fetal bovine serum (FBS, Atlas Biologicals, Fort Collins, CO) 

at 37°C humidified atmosphere of 5% CO2 in air, until they reached confluence (designated as 

day 0 or D0). The cells were then induced to differentiate by the induction media containing 

DMEM supplemented with 20% FBS, 1 nM T3, 20 nM insulin, 0.125 mM indometacin, 5 µM 

dexamethasone, and 0.5 mM 3-isobutyl-L-methylxanthine for 24 hr, followed by changing into 

the differentiation media containing DMEM supplemented with 20% FBS, 1 nM T3, and 20 nM 

insulin every two days until fully differentiated on day 6 (D6). For the study of 1,25(OH)2D3 on 

brown adipocyte differentiation, 1,25(OH)2D3 (1, 10, 100 nM) or the vehicle control DMSO was 

added at D0, and replaced with each change of the media during the differentiation process, or 

otherwise as indicated in the figure legends. For the study of VDR over expression, Myc-DDK 

tagged murine VDR expression plasmid (OriGene, Rockville, MD) was transfected into brown 

preadipocytes for 72 hr and the stably transfected cells were selected by antibiotics (G418) for 3 

weeks. The exogenous VDR expression was confirmed by mRNA and protein expression. 

 

3.1.4 Western Blot Analysis  
 
 Total cell lysates were prepared and protein concentrations were determined by BCA 

assay kit (Thermo Scientific, Waltham, MA). Thirty micrograms of total cell lysate was 

subjected to 10% SDS-PAGE and transferred to polyvinylidene difluoride membrane (Bio-Rad, 

Hercules, CA). The membrane was blocked with 20 mM Tris-HCl, 137 mM NaCl, and 0.1% 

Tween 20 (pH 7.4) containing 5% nonfat milk. The membrane was immunoblotted with primary 

antibodies at 4 °C for overnight followed by secondary antibody conjugated with horseradish 
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peroxidase (GE Healthcare, Pittsburgh, PA). The signal was quantified by densitometry using a 

ChemiDocXRS+ imaging system with ImageLab software (Bio-Rad). 

 

3.1.5 RNA preparation and quantitative real time PCR analysis  
 

Total RNA was prepared using TRI reagent (Molecular Research Center, Cincinnati, OH) 

according to the manufacturer’s instructions. Total RNA abundance was quantified using a 

NanoDrop ND-1000 spectrophotometer (NanoDrop Technologies, Wilmington, DE). Reverse 

transcription was carried out using Fermentas first strand synthesis kit (Thermo Scientific, 

Pittsburgh, PA) according to the manufacturer’s instructions. mRNA expression of indicated 

genes and the house keeping 36B4 were measured quantitatively using Absolute Blue QPCR 

SYBR Green ROX mix (Thermo Fisher Scientific) and gene specific primers (primer sequences 

available upon request). PCR reactions were run in a 96-well format using an ABI 7300HT 

instrument. Cycle conditions were 50 0C for 2 min, 95 0C for 15 min, then 40 cycles at 95 0C for 

15 s/60 0C for 1 min. Relative gene expression was calculated using the 2-
ΔΔ

Ct method, which 

normalizes against 36B4. 

 

3.1.6 MTT Assays   

The assays for measuring cell viability were performed according to the manufacturer's 

instructions. Briefly, the brown preadipocytes were seeded into 24-well plates. When reached 

confluency, they were induced to differentiate according to the procedures described above in the 

presence or absence of Vit D3 (1, 10, 100 nM) for 24 hr, 48 hr, and 5 days. At the end of the 

indicated times, 50 µL of MTT (5 mg/mL) was added to each well and the plate was incubated at 
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37 °C for 3 hr. Purple formazan crystal was solubilized by addition of 100 µL isopropanol. 

Absorbance was measured at a test wavelength of 570 nm and a reference wavelength of 650 nm 

using GloMax-Multi Detection System. 

 

3.1.7 Analysis of mitochondrial content by MitoTracker green staining 

Mitochondrial contents were labeled using mitochondria-specific dye MitoTracker Green 

(Life technologies, Carlsbad, CA) according to manufacturer’s protocol. Briefly, the 

differentiated brown adipocytes were washed and trypsinized from the cultured plate and 

incubated with mitoTraker green at 100 nM for 30 min at 37 0C. The fluorescence intensity was 

measured with Accuri C6 flow cytometry (BD, Franklin Lakes, NJ). Background 

autofluorescence from non-stained cells were averaged and subtracted from the mean 

fluorescence intensity values. Relative fluorescence intensity is the fold of the mean fluorescence 

intensity of the controls. 

 

3.1.8 Reporter Gene Assays  

Brown preadipocytes were transiently transfected with PPARγ transactivation reporter 

system [109], in which murine PPARγ ligand binding domain is coupled to the Gal4 DNA 

binding domain to form mPPARγ-Gal4 and a reporter construct containing an upstream 

activating sequence (UAS)–linked luciferase, 4xUAS-TK-luc (TK: thymidine kinase) and β-

galactosidase expression plasmid. PPARγ transactivation system was a gift from Dr Susanne 

Mandrup at University of Southern Denmark, Denmark. The cells were then pre-treated with 

increasing doses of 1,25(OH)2D3 (1, 10, 100 nM) or the vehicle control DMSO overnight and 



 

 26 

then co-treated with or without PPARγ ligand rosiglitazone (1 µM) for 8 hr. In the VDR over 

expression study, PPARγ transactivation system and β-galactosidase expression plasmid were 

co-transfected with murine VDR expression plasmid or the vector plasmid for 24 hr. The cells 

were then treated with or without PPARγ ligand rosiglitazone for 8 hr. The cell lysate was 

prepared and reporter luciferase and β-galactosidase activities were measured with GloMax 

Luminometer (Promega, Madison, WI). Relative luciferase activities were normalized by β-

galactosidase activities and expressed as fold of the vehicle control. 

 

3.1.9 Cell respiration measurements  

5x104 brown adipocytes (D6) that have been treated with or without 1, 25(OH)2D3 (1, 10, 100 

nM) were sub-cultured in 24 well XF assay plates overnight in the differentiation medium and 

subjected to real-time measurements of oxygen consumption (OCR) and extracellular 

acidification of the medium (ECAR) using XF24 Extracellular Flux Analyzer (Seahorse 

Biosciences, North Billerica, MA). Cells were rinsed once, changed to 500 µl of XF assay buffer 

(DMEM without NaHCO3, containing 10 mM glucose, 2 mM pyruvate, 2 mM GlutaMAX, pH 

7.4), and equilibrated at non-CO2 incubator and 37 0C for 1hr. Following the basal measurements 

of OCR and ECAR, all cells were injected with isoproterenol (1 µM) and subsequent readings 

were taken over a 6 hr-period. For mitochondrial stress tests, mitochondrial complex inhibitors 

were injected to all treatments sequentially in the following order: oligomycin (1 µM), FCCP 

(0.75 µM), antimycin A/rotenone (1 µM each), and 3 readings were taken after each inhibitor. 

OCR and ECAR were automatically recorded by XF24 software v1.8 provided by the 
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manufacturer. Calculations of maximal OCR, OCR from ATP generation, and from proton leak, 

and spare respiration capacity were performed according to the manufacturer’s instructions.  

 

3.1.10 Statistical Analysis   

Statistical analysis was performed using SigmaPlot 11.0 (Systat Software, Inc.). One way 

ANOVA with repeated measures followed by multiple comparisons test (Student-Newman-

Keuls Method) were performed to determine the differences among the treatment groups (e.g., 

doses) and/or time points (e.g., D0-D6). Student’s t-tests were performed when appropriate. Data 

were Log transformed when appropriate. The level of significance was set at p< 0.05. 
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CHAPTER IV  
Results and Discussion 

4.1 Results  
 
4.1.1 VDR, CYP24A1 and CYP27B1 mRNA expression in the BAT of mice model of 

obesity and during brown adipocyte differentiation in vitro 

First, mRNA expression of VDR, vitamin D3 activating enzyme 1α-hydroxylase 

CYP27B1, and degrading enzyme 24-hydroxylase CYP24A1 in the interscapular BAT of both 

diet-induced obesity and genetically obese ob/ob (leptin deficient) mice was examined. 

Expression of UCP1 mRNA was significantly lower in the BAT of ob/ob mice when compared 

to the wild type counterpart (p<0.05) (Fig. 2A). The mRNA of both VDR and CYP27B1 in the 

BAT of ob/ob were not statistically significant. In the DIO mice model of obesity, no significant 

changes were seen in mRNA levels of VDR, CYP27B1, and UCP1. Levels of CYP24B1 mRNA 

were undetectable by q-PCR (Fig. 2B).  

 

4.1.2 Effects of 1,25(OH)2D3 on the vitamin D system during brown adipocyte 

differentiation 

To study the vitamin D3 system in brown adipocyte differentiation, an immortalized 

brown fat cell line generated from the classical interscapular BAT from C57BL/6 mice [108] was 

utilized and mRNA expression of VDR, CYP27B1, and CYP24A1 during the differentiation 

process was examined. VDR mRNA expression was induced by the induction treatment at day 1 

(D1), and gradually decreased to less than 10% of the D0 level (Fig. 3A). A similar mRNA 

profile of induction at D1 and subsequent decrease was seen in CYP24A1 (Fig. 3B). The 

induction treatment did not result in induction of CYP27B1; however, its expression was 
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diminished from the basal rate by the end of differentiation (Fig. 3C). The results suggest that 

vitamin D3 system is down-regulated in brown adipocyte differentiation. 

 

4.1.3 Effects of 1,25(OH)2D3 on brown adipocyte lipid accumulation, mRNA expression, 

and mitochondrial content 

Brown preadipocytes were differentiated under the vehicle control DMSO or under 

conditions described in materials and methods with variable doses of 1,25(OH)2D3 (1, 10, or 100 

nM) for seven days (D0-D6) (Fig. 4A top). Cell viability (MTT) assays indicated that 

1,25(OH)2D3 did not affect cell viability when treated up to 100 nM for up to 5 days (data not 

shown). The ORO stains reflect dose-depended suppression of brown adipocyte lipid 

accumulation by 1,25(OH)2D3 (Fig. 4A-C).  

Moreover, the data shows a dose dependent suppression in mRNA expression of brown 

adipocyte markers peroxisome proliferator activator receptor gamma (PPARγ), peroxisome 

proliferator-activated receptor-gamma coactivator 1 alpha (PGC-1α), uncoupling protein 1 

(UCP1), nuclear respiratory factor 1 (Nrf-1), cell-death inducing DFFA-like effector a (Cidea), 

and nucleus encoded mitochondrial gene, cytochrome c oxidase subunit IV a (Cox4a) (Fig. 4D). 

1,25(OH)2D3 degrading enzyme CYP24A1 mRNA was dose-dependently up-regulated, 

validating the presence of 1,25(OH)2D3  in the treatment due to the understanding that increased 

1,25(OH)2D3 yields an increase in its degrading enzyme to dispose of it (Fig. 4D). It should be 

noted that during the course of the differentiation, the most suppressive effects of calcitriol were 

seen at D4 and either diminished slightly or plateaued at D6. Thus, D4 will be the time point 

used in the subsequent VDR experiments. Protein expression of PPARγ, PGC-1α, and UCP1 
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confirmed 1,25(OH)2D3’s dose-dependent effects on mRNA expression during differentiation 

(Fig. 4E). 

With the understanding that 1,25(OH)2D3 treatment inhibits mRNA expression of PGC-

1α, the master regulator of mitochondrial biogenesis, and other mitochondrial genes, such as 

Nrf-1, Cox4a we chose to further explore the impact on mitochondrial biogenesis. To confirm or 

deny that reduction in gene expression resulted in impaired mitochondrial biogenesis, we 

employed mitochondrial specific fluorescence dye mitoTracker green to measure mitochondrial 

content, i.e. number of mitochondria. Consistent with the mRNA results, 1,25(OH)2D3 

significantly suppressed mitochondrial content on D4, but not on D6 (Fig. 4F).  

 

4.1.4 Brown adipocyte time sensitivity to 1,25(OH)2D3 treatment 

To better understand time sensitivity of 1,25(OH)2D3 treatment, we differentiated brown 

preadipocytes in the presence of 1,25(OH)2D3, either starting from day 0 (Day 0-6), day 3 (Day 

3-6) or from day 5 (Day 5-6). The full 7 day treatment resulted in the most significant 

suppression on differentiation, compared to those of Day 3-6 and Day 5-6 treatment (Fig. 5A). 

The next time sensitivity experiment measured differentiation of brown preadipocytes 

with1,25(OH)2D3 for an allotted time frame, being introduced and removed at different stages of 

differentiation. When 1,25(OH)2D3 was not present, cells were provided standard media. The 

Day 0-1 and Day 0-2 treatments resulted in a similar level of suppression to that of the full Day 

0-6 treatment from the previous experiment. The Day 3-4 or Day 5-6 treatments were ineffective 

in attenuating differentiation (Fig. 5B). These data suggest that first days of differentiation (Day 

0 to Day 2) are the most sensitive to 1,25(OH)2D3 treatment. 
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4.1.5 Effects of 1,25(OH)2D3 on mitochondrial respiration in brown adipocytes  

To confirm the functional consequences of the effect of vitamin D3 on brown adipocyte 

differentiation, we examined mitochondrial respiration in 1,25(OH)2D3 treated brown adipocytes 

by measuring cellular bioenergetics coupled with mitochondrial stress tests using a XF24 

Extracellular Flux Analyzer (Fig. 6A-B).  Isoproterenol-stimulated oxygen consumption rates 

(OCR) (Fig. 6C), maximal OCR (Fig. 6D), and OCR from proton leak (Fig. 6F) were 

significantly impaired by 1,25(OH)2D3 in concentrations as low as 1 nM (p<0.01). However, 

1,25(OH)2D3 treatment did not impact ATP-generating OCR (Fig. 6E) and spare respiration 

capacity (Fig. 6G) even at the highest concentration.  

 

4.1.6 Effects of over-expression of VDR on brown adipocyte differentiation   

Since our preliminary experiments showed down-regulation of VDR during 

differentiation we chose to artificially increase VDR, employing a stable transfection of murine 

VDR expression plasmid into the brown preadipocytes. Measurements were taken at day 4 of 

differentiation because this time point seemed to be the most influenced by the vitamin D system 

as evidenced by the previous mRNA study (Fig 4). Pooled VDR transfected brown 

preadipocytes, in the absence of 1,25(OH)2D3, showed a two-fold increase in mRNA expression 

of VDR, which correlated to a ~ten-fold mRNA expression of CYP24A1 when compared vector-

transfected pool cells (Fig. 7A). Conversely, VDR over-expression yielded no change of 

CYP27B1 mRNA compared with the control (Fig. 7A). VDR over-expression suppressed 

mRNA expression of the brown adipocyte markers UCP1 (Fig. 7B), PGC-1α (Fig. 7C), and 

PPARγ (Fig. 7D) at basal (D0) and D4 in the differentiation process. These results are consistent 

with the effects of 1,25(OH)2D3 treatment in the aforementioned experiments. 
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4.1.7 1,25(OH)2D3/VDR suppresses PPARγ  transactivation in brown preadipocytes   

As described previously, PPARγ transactivation is necessary for successful 

differentiation of brown preadipocytes into mature, functional adipocytes.  To fully understand 

the mechanism by which 1,25(OH)2D3/VDR suppresses differentiation, we measured PPARγ 

transactivation via reporter assays. Treatments of 1, 10, and 100 nm of 1,25(OH)2D3 dose-

dependently suppressed both basal and PPARγ ligand rosiglitazone (Rosi, 1µM)-induced PPARγ 

transactivation (both p<0.05 for the trend) (Fig. 8A). Consistently, Rosi-induced PPARγ 

transactivation in VDR transgenic mice was similarly suppressed (p<0.05) (Fig. 8B).  

 

4.2 Discussion 
 

Accumulating evidence suggests the critical involvement of the vitamin D3 system in 

energy metabolism. The majority of existing studies evaluate the effects of vitamin D3 on 

adipogenesis and lipid metabolism in white adipose tissue, and/or white adipocytes [110]. In the 

ob/ob mouse model, UCP1 was significantly decreased (Fig. 2A). However, neither VDR and 

CYP27B1 were altered (Fig. 2A). Similarly, in the diet induced obesity mouse model, mRNA of 

UCP1, CYP27B1, CYP24A1 expression were not significantly different from that of the chow-

fed mice (Fig. 2B). The current research indicates mixed effects of diet-induced obesity on UCP1 

expression. Excessive caloric intake resulting in obesity has been associated with increases, 

decreases, and no effect on UCP-1 expression [111]. The impaired UCP1 mRNA expression in 

the BAT of ob/ob mice of the current study lead to inquisition about the potential correlation 

between obesity and an impaired energy metabolism due to reduced BAT efficiency. The 
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vitamin D/VDR complex was explored for its potential to either ameliorate or exacerbate BAT 

differentiation and function because of its previously identified relationship with WAT.  

 Potential mechanisms underlying altered energy metabolism in VDR knockout mice [26] 

and transgenic mice with adipose-specific over-expression of VDR have been elucidated [52]. 

To recap, such mechanisms include altered UCP1 expression and modified metabolic markers 

such as adiponectin and insulin. The results demonstrate the effects of 1,25(OH)2D3 to dose-

dependently suppress brown adipocyte differentiation, as evidenced by impaired lipid 

accumulation and brown marker gene expression, including the expression of PPARγ, PGC-1α, 

and UCP1. The mechanisms of such suppression have been explored. As described previously, 

both white and brown adipocyte differentiation rely on PPARγ for proper differentiation [112-

114]. Moreover, PPARγ transcriptional co-activator PGC-1α is crucial in brown adipocyte 

differentiation and mitochondrial gene control in response to cold exposure [115]. As early as 

day 2 (D2) in the differentiation process, 1,25(OH)2D3 dose-dependently suppressed both mRNA 

and protein expression of PPARγ and PGC-1α (Fig. 4D-E). These data indicate that down 

regulation of these key factors elicit suppressive effects on brown adipocyte maturity. 

Consistently, VDR over expression also inhibited basal (D0) mRNA of PPARγ and PGC-1α 

(Fig. 7B). When using PPARγ transactivation reporter assays, it was found that both 

1,25(OH)2D3 and VDR over expression suppressed basal and/or ligand-induced PPARγ 

transactivation (Fig. 8A-B), consistent with the effects of 1,25(OH)2D3 on 3T3-L1 adipocyte 

differentiation [28]. It is believed that an abundance of 1,25(OH)2D3 or VDR competes with 

PPARγ for its dimerization partner retinoid X receptor, thereby suppressing PPARγ 
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transactivation [28]. Presumably, this competition for RXR is the mechanism responsible for the 

1,25(OH)2D3/VDR signal suppression of brown adipocyte differentiation. 

 When comparing the suppressive effects of 1,25(OH)2D3 on brown adipocyte marker 

gene expression and mitochondrial contents (Fig. 4D-F) during the 6 day span of  differentiation, 

there is a notable trend of maximum suppression at D4 and recovery on D6. PGC-1α expression 

was maximally suppressed at D4 but the suppression was diminished by D6 (Fig. 4D-E). This 

expression pattern was consistent with the changes of mitochondrial content by 1,25(OH)2D3 

(Fig. 4F). As mature adipocytes at D6, only protein expression of PPARγ, but not PGC-1α, was 

suppressed. Suppressed PPARγ may explain the suppression of UCP1 since PPARγ is required 

for normal BAT differentiation which includes the expression of its hallmark protein, UCP1. 

Cellular bioenergetics results revealed that maximal OCR and OCR from proton leak (i.e., 

uncoupled respiration) (Fig. 6D, F), but not ATP-generating OCR and spare respiration capacity 

(Fig. 6E, G), were affected by 1,25(OH)2D3. These data are consistent with 1,25(OH)2D3-

diminished UCP1 expression, not of mitochondrial content, at D6. The gene expression results of 

1,25(OH)2D3 on UCP1 expression agree with previous  findings of increased UCP1 mRNA in the 

BAT of VDR knockout mice and decreased UCP1 mRNA in the BAT of transgenic mice of 

adipose-specific VDR over-expression. Despite the published results and the current findings, 

the impact of 1,25(OH)2D3/VDR on mitochondrial content and PGC-1α expression in the BAT 

of these mice models is unclear. Whether 1,25(OH)2D3/VDR modulates UCP1 expression and 

brown adipose tissue development through direct effects or through modulation of mitochondrial 

biogenesis (via PGC-1α) in brown adipose tissue in vivo remain to be determined. In addition, 
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differential effects of 1,25(OH)2D3 on PPARγ as opposed to PGC-1α also need to be measured 

in the future. 

 Apart from classical brown adipocytes present in BAT, “browning” of WAT indicated by 

adoption of a brown phenotype (i.e. UCP1 expression) in response to specific stimuli such as 

chronic cold exposure and β-adrenergic stimulation, has been reported in animal models. Due to 

the potential for energy modulation, mechanisms underlying the browning process have been a 

the target of investigation [116]. Thus, discovering that UCP1 mRNA and protein were 

significantly elevated in WAT of VDR knockout mice [117] suggests that VDR may be a 

negative regulator for WAT browning. It would be beneficial to examine the impact of the 

1,25(OH)2D3/VDR system in cultured BAT progenitor cells and in animal models.  

 The existing data describing the suppressive effects of the vitamin D/VDR complex in 

3T3-L1 cell differentiation [27, 28] in combination with the current findings revealing similar 

suppression in brown adipocytes seems to contradict the results of in vivo studies. In my studies, 

the vitamin D/VDR complex impaired both development and UCP1 expression. When compared 

to wild type mice, VDR knockout mice presented with decreased white and brown adipose 

masses but presented with increased UCP1 in the BAT [30, 117]. Alternatively, VDR over-

expression in transgenic mice [31] had increased brown and white adipose tissue masses but 

recorded decreased UCP1. Whether or not the exchange of enlarged BAT mass for enhanced 

UCP1 expression, and vice versa, yields the same power of thermogenesis and energy 

expenditure is unknown. Moreover, the reasons and molecular basis for the inconsistency 

between in vitro and in vivo results are unclear. It appears that both the global inactivation of 

VDR and global over expression of VDR starting from embryonic stages of BAT development 

does not in produce the exact opposite of 1,25(OH)2D3/VDR on brown adipocyte differentiation 
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in cultured cells. The generation and characterization of mice with brown adipose-specific and/or 

temporally inducible VDR knockout mice will be informative in understanding the role of 

1,25(OH)2D3/VDR on BAT development and function in vivo. 

 Our research provides advanced understanding of the suppressive effects of the 

1,25(OH)2D3 /VDR complex on the differentiation brown adipocytes and the functionality of 

mice-derived brown adipocyte cell line. Moreover, our results suggest critical role of both the 

vitamin D3 ligand and VDR in modulation of BAT development and function in models of 

obesity. 

 

4.3 Future Directions 

Both clinical and epidemiological human studies correlate serum 25(OH)D3 with obesity 

as determined by BMI, fat mass, and waist circumference [110]. Low serum 1,25(OH)2D3 levels 

are associated with higher BMI in healthy and obese individuals [118]. However, because of the 

fat solubility of vitamin D2 and vitamin D3, it is unclear whether the low serum levels of 

25(OH)D3  and 1,25(OH)2D3 reflect the total levels of vitamin D3, or are unfair representations 

due sequestration of various forms of vitamin D3 in the fat tissue. For this reason, further 

investigation must be initiated to understand the true availability of vitamin D and its analogs. 

With true understanding of vitamin D availability in adipose tissue, one can better understand the 

relationship between vitamin D status and the development and function of WAT and BAT.   

Moreover, a review of the literature strongly suggests that moderate doses (i.e., 10-8 mM 

or 10 nM) of 1,25(OH)2D3 suppresses 3T3-L1 adipocyte differentiation [27, 28]. However, it has 

been reported that a similar doses of 1,25(OH)2D3 actually promote the differentiation of human 

subcutaneous preadipocytes [29]. Clearly, more research is required to definitively describe the 



 

 37 

role of 1,25(OH)2D3/VDR in human brown adipocyte differentiation and in the modulation of 

both WAT and BAT in the development of obesity in humans. 

In light of my results, the next logical step would be to test my hypothesis and confirm 

my findings in an in vivo mouse model. It will be informative to determine if a diet enriched with 

vitamin D would modulate the mass and function of BAT as well as WAT. The experimental 

mice will be fed with the current daily allowance recommendation of 600 IU or 15mcg [119, 

120], modified to be appropriate for the body mass of a mouse. The total mass of BAT and WAT 

will be determined together with whole body energy expenditure and other markers indicative of 

metabolic health (e.g. fasting glucose level, lipid panels, glucose tolerance and insulin sensitivity 

among others). It would be useful if these studies were conducted in models of both diet-induced 

obesity and genetic obesity to examine the in vivo role of the vitamin D system in BAT of obese 

animals.  

Another route of exploration would be to knockdown VDR in vivo. Ideally, an agent that 

with BAT specificity would be created to antagonize the vitamin D3 ligand or to knockdown the 

expression of VDR in this tissue so to promote the beneficial effects on BAT but avoid the side 

effects of vitamin D3 deficiency in other various tissues. Thus, promoting the beneficial effects in 

BAT while preserving the activity and function in the remaining tissues and organs of the body.  

Upon knockdown, measurements of the subsequent changes in BAT function and metabolic 

health of the mouse would be recorded.  

With success of this study, the hypothesis would then require a human study. 

Measurements of adipose tissue (as opposed to serum) vitamin D status, body weight, energy 

expenditure, brown adipose mass and activation, and browning of WAT after VDR knockdown 

would be required to draw any conclusions regarding the capacity for vitamin D to manipulate 
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BAT development and function. If the results yield a positive effect in human metabolic health, 

targeted therapy options could then be developed.  
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Fig. 1 Endogenous metabolism of Vitamin D3 
When exposed to ultraviolet light, precursor 7-dehydrocholesterol in the skin is structurally changed. The change 
allows for transportation in the blood to the liver for hydroxylation at the 25th carbon, yielding 25(OH)D3, the major 
circulating form of vitamin D. 25(OH)D3 is then hydroxylated at the 1st or 24th carbon, resulting in either 
1,25(OH2)D3 or 24,25(OH)2D3 respectively, determining the fate of the vitamin.  
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Fig. 2 mRNA expression of VDR and CYP27B1 in mice models of obesity  mRNA expression of VDR and 
CYP27B1 of the BAT from the male ob/ob or wild type control mice (n=6) (A) and from the male DIO or 
chow-fed control mice (n=7) (B) were analyzed. Relative mRNA expression was normalized to 36B4 and 
expressed as fold of the controls (set as 1). Data are mean±SE (n=6 or 7). *, significantly different from the 
controls with p<0.05.!
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Fig. 3 mRNA expression of VDR, CYP24A1 and CYP27B1 during brown adipocyte differentiation  Brown preadipocytes were 
differentiated into adipocytes in culture within 6 days. mRNA expression of VDR (A), CYP24A1 (B), and CYP27B1 (C) at day 0 
(D0), 2 (D2), 4 (D4) and 6 (D6) were analyzed. Relative mRNA expression was normalized to 36B4 and expressed as fold of D0 
value (set as 1). Data are mean±SE (n=3). Different letters indicate significant difference (p < 0.05). 
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Fig. 4 1,25(OH)2D3 dose-dependently suppresses brown adipocyte differentiation   
Brown preadipocytes were differentiated in the presence of increasing doses of 1,25(OH)2D3 (1, 10, 100 nM) 
or the vehicle control DMSO as shown in the top panel of (A). Oil red O (ORO) stained lipid accumulation is 
shown in the low panel of (A). ORO stained cell morphology is shown in (B). ORO absorbance was measured 
and plotted in (C). Different letters indicate significant difference (p < 0.05) in (C). mRNA expression of 
brown adipocyte markers PPARγ, PGC-1α, PPARγ, UCP-1, Nrf-1, Cidea, Cox4a, and Vit D3 target gene 
CYP24A1 were analyzed (D). Relative mRNA expression was normalized to 36B4 and expressed as fold of 
D0 value (set as 1). (E) Protein expression of PPARγ, PGC-1, and UCP-1 was analyzed by western blot. (F) 
Mitochondrial content was analyzed by mitochondrial specific fluorescence dye mitoTracker green at D4 and 
D6. Relative fluorescence intensity was calculated from the mean fluorescence intensity values of the samples 
and expressed as fold of the controls. 
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Fig. 4 1,25(OH)2D3 dose-dependently suppresses brown adipocyte differentiation   
Brown preadipocytes were differentiated in the presence of increasing doses of 1,25(OH)2D3 (1, 10, 100 nM) or the vehicle 
control DMSO as shown in the top panel of (A). Oil red O (ORO) stained lipid accumulation is shown in the low panel of 
(A). ORO stained cell morphology is shown in (B). ORO absorbance was measured and plotted in (C). Different letters 
indicate significant difference (p < 0.05) in (C). mRNA expression of brown adipocyte markers PPARγ, PGC-1α, PPARγ, 
UCP-1, Nrf-1, Cidea, Cox4a, and Vit D3 target gene CYP24A1 were analyzed (D). Relative mRNA expression was 
normalized to 36B4 and expressed as fold of D0 value (set as 1). (E) Protein expression of PPARγ, PGC-1, and UCP-1 was 
analyzed by western blot. (F) Mitochondrial content was analyzed by mitochondrial specific fluorescence dye mitoTracker 
green at D4 and D6. Relative fluorescence intensity was calculated from the mean fluorescence intensity values of the 
samples and expressed as fold of the controls. 
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Fig. 5 Effects of 1,25(OH)2D3 treatment timing on brown adipocyte differentiation  (A, B) 
Brown preadipocytes were differentiated in the presence of 1,25(OH)2D3 (100 nM) or the vehicle 
control DMSO according to the diagrams. At the end of differentiation, ORO absorbance was 
measured and plotted. Data are mean±SE (n=3). Different letters indicate significant difference (p 
< 0.05) among 1,25(OH)2D3-treated white bars. *, **, significantly different from the controls 
with p<0.05 and p<0.01, respectively. 
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Fig. 6 Effects of 1,25(OH)2D3 on mitochondrial respiration in brown adipocytes   
Brown preadipocytes were differentiated in the presence or absence of increasing doses of 
1,25(OH)2D3 until day 6. The cells were then sub-cultured in 24-well XF assay plates overnight and 
were subjected to real-time measurements of oxygen consumption rate (OCR) and extracellular 
acidification rate (ECAR). Following isoproterenol (ISO, 1µM) injection, the mitochondrial 
complex inhibitors were injected sequentially in the following order: oligomycin (1 µM), FCCP 
(0.75 µM), antimycin A/rotenone (1 µM each), and the readings were taken after each inhibitor. The 
OCR (A) and ECAR (B) readings were plotted over time. ISO-stimulated OCR was shown in (C). 
Calculated maximal OCR (D), ATP-generating OCR (E), OCR from proton leak (F), Spare 
respiration capacity (G) were shown.  Data are mean±SE (n=6-9). *, **, significantly different from 
the controls with p<0.05 and p<0.01, respectively. 
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Fig. 7 Over-expression of VDR suppresses brown adipocyte differentiation   
Brown preadipocytes were stably transfected with murine VDR expression plasmid, or a vector 
plasmid. Pools of stably transfected cells were subjected to brown adipocyte differentiation. (A) Basal 
mRNA expression of VDR, CYP24A1, and CYP 27B1 were shown in the left panel. The relative 
mRNA expression was normalized to 36B4 and expressed as fold of the vector value (set as 1). 
Protein expression of the Flag-tagged exogenous VDR was shown in the right panel. (B) mRNA 
expression of brown adipocyte marker UCP-1, PGC-1α, and PPARγ at basal (D0) and D4 in the 
differentiation were shown. The relative mRNA expression was normalized to 36B4 and expressed as 
fold of D0 value (set as 1). Data are mean±SE (n=3). *, **, significantly different from the controls 
with p<0.05 and p<0.01, respectively. 
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Fig. 8 1,25(OH)2D3/VDR suppress PPARγ  transactivation in brown preadipocytes  (A) 
Brown preadipocytes were transiently transfected with PPARγ transactivation reporters and β-
galactosidase expression plasmid for 24 hr, the cells were then pre-treated with increasing doses 
of 1,25(OH)2D3 (1, 10, and 100 nM) overnight, followed by co-treatment with rosiglitazone (Rosi, 
1 µM) for 8 hr. (B) Brown preadipocytes were transiently transfected with PPARγ transactivation 
reporters, β-galactosidase, and murine VDR expression plasmid or a vector control plasmid for 24 
hr. The cells were then treated with rosiglitazone (Rosi, 1 µM) for 8 hr. Cell lysate was prepared 
and luciferase and β-galactosidase activities were measured. PPARγ transactivation is presented 
as fold of relative luciferase activities to that of the controls (set as 1). Data are mean±SE (n=3). 
The bars indicate dose-dependent response in (A). *, p<0.05. 
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