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ABSTRACT 
 

The phosphorus poisoning of diesel oxidation catalysts (DOCs) by the lube-oil 

additive zinc dialkyldithiophosphate (ZDDP) is investigated in the present study.  A 517 

cc single-cylinder, naturally aspirated direct-injection diesel engine is used to accelerate 

the phosphorus poisoning of DOCs by artificially increasing the ZDDP consumption to 

approximately 700 times of that found during normal engine operation.  Three methods 

of accelerating the ZDDP consumption rate are investigated, which have been shown in 

previous literature to cause phosphorus poisoning.  These include the injection of high 

concentration ZDDP-doped lube-oil blended with diesel fuel though the fuel injector as 

well as injecting ZDDP-doped lube-oil directly into the intake manifold and exhaust 

manifold, respectively.  Each method is shown to produce a different phosphorus 

poisoning behavior on automotive catalysts by creating unique poisoning exhaust 

environments causing different deactivation mechanisms; ZDDP passing through the 

combustion chamber results in phosphoric acid, ZDDP injected into the exhaust results in 

whole ZDDP molecules and their molecular fragments.   

The deactivation resulting from each poisoning method is characterized using 

both total hydrocarbon (THC) and carbon monoxide (CO) light-off degradation as well as 

phosphorus adsorption and phosphorus chemistry identified within the DOC.  Washcoat 

surfaces evaluated for lube-oil derived contamination using scanning electron microscopy 

with energy dispersive spectrometers (SEM-EDS) shows that topography depends on the 

method of ZDDP introduction. Exhaust manifold injection produces a zinc-phosphate 

glaze, which masks active sites and inhibits gaseous diffusion to the washcoat surface.  

Fuel and intake manifold injection methods produce chemically absorbed phosphorus, 

which poison active sites.  THC and CO light-off performance degradation is also found 

to depend on the method of ZDDP introduction, with an increase in light-off temperature 

between 40 to 100oC.  Total phosphorus, zinc, and sulfur accumulation within the DOCs 

is measured using X-ray fluorescence spectroscopy (XRF) and found to vary with both 

the ZDDP introduction method and the exhaust temperature during poisoning.  Elemental 

(X-ray) maps and line-scans performed using electron probe microanalysis (EPMA) show 
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a decreasing phosphorus concentration profile along the DOC length with phosphorus 

being confined to the uppermost layer of the washcoat.  

Three high-mileage, two brick, field-deactivated DOCs were obtained from a bus 

fleet, which were removed from service due to a catastrophic event, to make comparisons 

in THC and CO light-off behavior as well as phosphorus poisoning with those 

undergoing accelerated ZDDP introduction methods.  The field-deactivated DOCs are of 

similar formulation as those used during laboratory tests.  It is shown that field-

deactivated DOC THC and CO light-off behavior as well as phosphorus accumulation 

and surface contamination is reproduced using accelerated ZDDP introduction methods.  

Based on the surface characterization observations and light-off performance, the intake 

manifold injection method offers the best correlations between accelerated poisoning 

methods and field-deactivated passenger bus DOCs. 

In order to accurately quantify the poisoning of DOCs by phosphorus, a bench-

flow reactor system (BFR) is utilized to provide supplementary THC and CO light-off 

evaluations for more precise control of both DOC temperature and exhaust gases 

composition.  It is found that light-off temperature measurements using the BFR are 

highly repeatable and show a correlation in the poisoning mechanisms between 

accelerated ZDDP introduction methods and field-deactivated DOCs.  As a byproduct of 

the BFR evaluations, it is shown that DOC regeneration occurs in both the accelerated 

ZDDP injection methods and the field-deactivated DOCs by the high temperature 

oxidation and removal of soot and lube-oil contamination on washcoat surfaces.  THC 

and CO light-off temperatures after regeneration are identical to those obtained for a 

fresh DOC.  Subsequent EPMA and XRF analyses of regenerated DOCs reveal the 

presence of the phosphorus, sulfur and zinc within the washcoat, indicating that lube-oil 

derived poisons do not highly influence the THC and CO light-off behavior of DOCs, but 

rather, DOC performance is more susceptible to the presence of soot and lube-oil 

contamination on the washcoat surface.     
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CHAPTER 1 

 

INTRODUCTION 

 

 

 This section is provided to supply the reader with background to motivate the 

study of diesel oxidation catalysts.  An overview of the benefits and problems associated 

with the use of diesel engines for both transportation and utilities application are 

presented in Section 1.1.  Current and future trends in US emission regulation as well as 

what techniques industry is using to meet the increasingly stringent requirements is 

provided in Section 1.2.  Finally, a discussion of the deactivation mechanisms of 

encountered within the oxidation catalyst as well as a detailed discussion of the current 

investigation is presented in Section 1.3 and 1.4, respectively.     

 

1.1 Overview 

Diesel engines encompass a large percentage of power producing devices 

throughout the world; the majority of which are dedicated solely for transportation 

purposes.  A study performed by Mori [1]* in 1995 estimated that vehicle ownership was 

approximately 640 million worldwide, of which 67 million are powered by diesel 

engines.  Diesel engines are classified into a number of different categories depending on 

the duty-cycle and total power requirements.  Figure 1.1 shows the total number of diesel 

powered vehicles in 1995 used worldwide and the percentage of each diesel engine type 

to the overall number of diesel engines produced.  Although diesel powered vehicles are 

still only a small portion of the total vehicle population, spark ignition (SI) being the vast 

majority, diesel engines have received much more interest in recent years because of their 

inherently high fuel efficiency and long-term durability.  A typical SI engine is designed 

for a 100,000-mile lifetime, while the diesel is typically designed to surpass 500,000  

 1* Numbers in [] indicate reference list number 



 
Figure 1.1: Number of diesel engine powered vehicles worldwide in 1995 by type. [1]

 
miles, and heavy-duty diesel engines are targeted to achieve over 1 million miles [2,3].  

The diesel engine is also more fuel-efficient than the SI engine lending it to more heavy-

duty applications.  The SI engine is designed to operate using a throttle and at a 

stoichiometric air/fuel ratio that leads to a significant portion of un-reacted hydrocarbons.  

In contrast, diesel engines are unthrottled and high significantly higher compression 

ratios with a lean air/fuel ratio resulting in a higher percentage of fuel consumed during 

each power stroke. Therefore, the diesel engine produces more energy per gallon of fuel.  

Together, the benefits of the diesel engine have secured its place in the world 

infrastructure by almost exclusively powering buses, trains, and heavy construction 

machinery.    

       Recently diesel engines, along with hybrid technology and other alternative power 

supplies, have become an important strategy for the easement of the US dependence on 

foreign oils.  Current figures by the EIA indicate that the US imports over 10 million 

barrels of crude oil daily [4].  As seen in Figure 1.2, approximately one third of that oil is 

imported from countries which the US deems “hostile”.   Reducing the amount of 

imported oil from these regions is thought to be a necessary step in securing America’s 

future energy supplies.   
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Figure 1.2: US oil imports by country of origin (thousands of barrels per day).  Data taken 

from February 2006 EIA estimates. [4]

 
Another current issue prompting the use of more diesel engines is global warming 

from the production of green-house gases.  The EIA estimates that in 2003 the world CO2  

production from the consumption of petroleum, natural gas, coal, and the flaring of 

natural gas from oil wells was approximately 25.2 billion metric tons, an increase of 4.1 

billion tons from 1993 [5].  The use of petroleum products such as gasoline, diesel fuel, 

etc., accounts for a full 42 percent of the total.  Other recent studies have found the 

United States alone is responsible for approximately one quarter of the world CO2 

production [6].  As a result of the increased CO2 levels in the atmosphere, the EPA 

estimates an increase of approximately 1oF in average global temperature over the past 

100 years.  Figure 1.3 shows a dramatic increase in the departure from the global long-

term average temperatures during only the past 25 years in which CO2 production rates 

have been the highest [7].   At the current rate of CO2 production around the world, the 

EPA estimates that by 2100 the average global temperature will rise by as much as 5oF 

and will have a significant, though unknown, effect on the global weather.  
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Figure 1.3: Global temperature departure from long-term mean between the years 1880 

and 2000. [7]

 

In an effort to reduce the current rate of CO2 production in the US and around the 

world, limits have been placed on the amount of CO2 that can be released as a result of 

fossil fuel burning.  Since diesel engines are more fuel-efficient than SI engines, they are  

becoming more common place as passenger transport alternatives throughout the world 

to help ease the CO2 burden.  The fuel-saving benefits are regrettably counteracted by an 

increase in particulate matter (PM) and NOx levels which have been attributed to smog 

formation, green house effects and acid rain.   

 

1.2 Legislation and Regulation 

Beginning in 1970’s, the United States began to regulate the production of CO, 

NOx, sulfides and other aerosol PM.  The ever-increasing world demand for fossil fuels 

and its subsequent burning have lead to recent and more stringent regulations to limit the 

production of these harmful emissions.  The most current legislation in the US took place 

in 1990 - the Clean Air Act (CAA) - which places hard compliance deadlines for the 

easement of air-born pollution from all point sources including passenger cars and heavy-

duty equipment.  Since the creation of the CAA, numerous amendments have been put 
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forth to continually decrease the allowable amount of pollutants released by any 

production vehicle made after the law was passed, with the ultimate goal of reaching a 

zero emission vehicle (ZEV).  In this effort, the EPA created a federal testing protocol 

(FTP) in which a rolling dynamometer is used to simulate actual driving conditions.  

Emission samples are taken and analyzed for PM, THC, CO and NOx.   

Legislation passed in 1994 on the allowable limits of THC and CO produced by 

passenger vehicles and heavy-duty equipment has always been easily achieved with the 

diesel technology of the time; only PM and NOx species presented problems and have to 

be corrected.  Often this has been accomplished with the use of flow-though diesel 

oxidation catalysts (DOCs), and seldom with lean-NOx traps (LNTs).  At the same time, 

more sophisticated diesel combustion technologies were being developed for low NOx 

emissions, thus negating the need for the LNTs in many applications.  Figure 1.4 is a plot 

of the targeted combustion regime which is found to be optimized for the minimal 

production of both PM and NOx [1].  As a result, the vast majority of diesel aftertreatment 

devices at the time were engineered for the sole purpose of reducing SOF and other 

particulate matter.  SOF typically represents an appreciable amount of soot and can be 

easily oxidized in lean exhaust, typically of diesel engines.  Therefore, simply targeting 

the SOF components of diesel exhaust PM allows car manufactures to be beneath the PM 

limits of the time.  

The recent passing of more stringent regulations has required the development of 

sophisticated techniques to remain below allowable limits of exhaust gas pollutants.  

Figure 1.5 shows current diesel technologies being used to meet EPA regulations [8].   

An added feature to current regulations is durability requirements of aftertreatment 

devices in which exhaust systems must be compliant over a lifetime of 100,000 miles or 

more.  A tier system has also been implemented to rate the performance of vehicles made 

after the year 2000.  Tables I and II provide current and future regulations mandated by 

EPA effective for all vehicles made after model years 2004 and 2009, respectively.  In 

the new regulations, each car manufacturer chooses in which tier to place a vehicle as 

long as the total fleet is below a set average emission standard.  Temporary tiers, 9 and 

10, are intermediate steps for the 2009 model year compliance deadline.         
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Figure 1.4: Schematic of targeted combustion regimes for clean burn diesel engines. [1]

  

 

 

 
Figure 1.5: List of current techniques available to reduce diesel exhaust emissions. [8]
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Table I: EPA standards for US passenger vehicles produced after model year 2004. 

50,000 miles/5 years 100,000 miles/10 years1Category 
THC NMHC CO NOx 

CI 
NOx 

SI 
PM THC NMHC CO NOx 

CI 
NOx 

SI 
PM 

Passenger 
Cars 

0.41 0.25 3.4 1.0 0.4 0.08 - 0.31 4.2 1.25 0.6 0.10 

LLDT, 
LVW 

<3,750 lbs 

- 0.25 3.4 1.0 0.4 0.08 0.80 0.31 4.2 1.25 0.6 0.10 

LLDT, 
LVW 

>3,750 lbs 

- 0.32 4.4 - 0.7 0.08 0.80 0.40 5.5 0.97 0.97 0.10 

HLDT, 
ALVW 

<5,750 lbs 

0.32 - 4.4 - 0.7 - 0.80 0.46 6.4 0.98 0.98 0.10 

HLDT, 
ALVW 

>5,750 lbs 

0.39 - 5.0 - 1.1 - 0.80 0.56 7.3 1.53 1.53 0.12 

All units are in g/mile 
All standards apply to FTP 75 
 
1 – Useful life 120,000 miles/11 years for all HLDT standards and for THC standards for LDT 
 
Abbreviations:   
LVW – loaded vehicle weight (curb weight + 300 lbs) 
ALVW – adjusted LVW (the numerical average if the curb weight and the GVWR) 
LLDT – light light-duty truck (below 6,000 lbs) 
HLDT – heavy light-duty truck (above 6,000 lbs) 
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Table II: EPA standards for US passenger vehicles produced after model year 2009. 

Bin # 50,000 miles 120,000 miles 
 NMOG CO NOx PM HCHO NMOG CO NOx

* PM HCHO 
Temporary Bins 

MDPVc      0.28 7.3 0.9 0.12 0.032 
10a,b,d,f 0.125 

(0.160) 
3.4 

(4.4) 
0.4 - 0.015 

(0.018) 
0.156 

(0.230) 
4.2 

(6.4) 
0.6 0.08 0.018 

(0.027) 
9a,b,e 0.075 

(0.140) 
3.4 0.2 - 0.015 0.090 

(0.180) 
4.2 0.3 0.06 0.018 

Permanent Bins 
8b 0.100 

(0.125) 
3.4 0.14 - 0.015 0.125 

(0.156) 
4.2 0.20 0.02 0.018 

7 0.075 3.4 0.11 - 0.015 0.090 4.2 0.15 0.02 0.018 
6 0.075 3.4 0.08 - 0.015 0.090 4.2 0.10 0.01 0.018 
5 0.075 3.4 0.05 - 0.015 0.090 4.2 0.07 0.01 0.018 
4 - - - - - 0.070 2.1 0.04 0.01 0.011 
3 - - - - - 0.055 2.1 0.03 0.01 0.011 
2 - - - - - 0.010 2.1 0.02 0.01 0.004 
1 - - - - - 0.000 0.0 0.00 0.00 0.000 

All units are g/mile 
All standards apply to FTP 75 
 
* - average manufacturer fleet NOx standard is 0.07 g/mi 
 
a - Bin deleted at end of 2006 model year (2008 for HLDTs) 
b - The higher temporary NMOG, CO and HCHO values apply only to HLDTs and expire after 2008 
c - An additional temporary bin restricted to MDPVs, expires after model year 2008 
d - Optional temporary NMOG standard of 0.195 g/mi (50,000) and 0.280 g/mi (120,000) applies for qualifying LDT4s and MDPVs 
only 
e - Optional temporary NMOG standard of 0.100 g/mi (50,000) and 0.130 g/mi (120,000) applies for qualifying LDT2s only 
f - 50,000 mile standard optional for diesels certified to bin 10 
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1.3 Long-Term Catalyst Durability 

The current EPA standards place a large emphasis on the durability of 

aftertreatment devices by requiring an operational lifetime of over 120,000 miles.  As a 

result, aftertreatment design engineers have to factor in catalyst deactivation parameters 

to meet the regulation.  Catalyst deactivation can occur as a result of a number of 

mechanisms, the majority of which occurs at molecular level.  Figure 1.6 is an illustration 

of the most common deactivation mechanisms encountered during normal field-service 

operation-- poisoning, fouling and sintering [9].   

 Poisoning is the process in which unwanted feedstream components become 

chemically bound to the catalyst active sites.  As shown in Figure 1.6, this mechanism 

has three different methods that affect catalyst durability. Selective poisoning is when the 

un-wanted compound is bound only to specific catalyst active sites.  A typical example is 

the poisoning of platinum active sites by hydrogen sulfide as described by the following 

chemical reaction: 

Pt(s) + H2S(g)  →  PtS(s) + H2(g)          

 

This reaction results in strongly chemically absorbed sulfur to the platinum site, 

which inhibits further reactions from occurring at that site.  On the other hand, non-

selective poisoning results when contaminants are not preferentially absorbed on the 

catalyst sites.  Leaching is the process of catalyst material removal by the formation of 

stable compounds that desorbs from the catalyst surface, usually at high temperatures.    

 
Figure 1.6: Common chemical catalyst deactivation mechanisms encountered during 

operation. [9]
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Fouling, also known as masking or coking, is the large-scale effect of material 

accumulation on the catalyst surface, which covers active sites.  This deactivation 

mechanism in exhaust aftertreatment is commonly the result of soot and other feedstream 

insolubles, such as ash, that accumulate on the oxidation catalyst.  These contaminants 

agglomerate on either the catalyst surface or deposit within the porous structure of the 

washcoat, blocking diffusion of gaseous species to reaction sites.  Diesel oxidation 

catalysts are engineered for such an environment under normal engine operating 

conditions, but improper combustion control often results in an increase of soot formation 

that can overwhelm the DOC and cause severe blockage.  This event occurs if the rate of 

soot accumulation is significantly larger than the rate of soot oxidation.   

Sintering, the last deactivation mechanism that commonly arises within 

aftertreatment devices, is the agglomeration of catalyst particles resulting from long 

durations at high temperatures within the exhaust environment.  Platinum group elements 

(PGEs) such as platinum and palladium, two typical catalyst materials, are 

thermodynamically stable as metallic agglomerates but have a significantly lower 

reaction surface area.  To maintain a high surface area, catalyst particles are well 

dispersed throughout a support material such as γ-Al2O3.  In high temperature 

environments, however, catalysts particles have a very high migrate rate within the 

washcoat caused by a number of simultaneous mechanisms and coalesce into larger 

particles.   For example, Ostwald-ripening is the random migration of individual atoms or 

molecules within or on a solid, which then coalesce to form larger particle agglomerates 

under the right circumstances [10].  During normal operation, in which exhaust 

temperatures are within catalyst design criteria, the sintering processes proceed slowly, 

but have a significant effect over the lifetime of the device. 

The deactivation mechanisms have an effect on the overall reaction kinetics and 

need to be taken into account in the engineering of the aftertreatment devices.  Figure 1.7 

shows how the many deactivation mechanisms encountered during operation affect the 

reaction rate constant during oxidation reactions [9].  Reaction rates typically follow the 

general rate law described by equation 1.1: 
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Figure 1.7: Effects of deactivation mechanisms on catalyst performance. [9]

 

   

                                       n
jabs

j Ck
dt

dC
=−                            (Eq. 1.1) 

 

where is the jjC th chemical species, n is the global order of reaction for that species and 

kabs is the global rate constant for the disappearance of the jth chemical species.  The order 

of reaction, n, and the rate constant, kabs, are obtained experimentally for each reacting 

component as a function of temperature under defined feed stream conditions.   

The least understood of the deactivation mechanisms is the poisoning process 

because of its highly complex nature.  In automotive catalysts, exhaust gases can contain 

as many as 100 species, of which many exhibit poisoning behavior.  Phosphorus and 

sulfur are the two most well known catalyst poisons and are derived from engine lube-

oils and fuels.  To minimize the poisoning effects of sulfur and the formation of sulfates, 

a contributor to PM, low- and ultra-low sulfur diesel fuels can be used.  On the other 

hand, sulfur and phosphorus containing lube-oil additives such as zinc 

dialkyldithiophosphate (ZDDP) are needed for proper engine performance and durability.  

Studies performed by Chamberlin and Zalar [11], among others, have been aimed at 
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reducing the amount of ZDDP present in lube-oils, but there appears to be a minimum 

amount needed for proper antiwear and antioxidant performance.  In an attempt to reduce 

toxic emissions, the EPA has proposed legislation to limit the presence of ZDDP to 

0.01% by weight in lube-oil, with the knowledge that a minimum amount is needed until 

new, more environmentally friendly alternatives are found.  Many studies, some dating 

back to the 1970’s, have been performed as a result to understand the complex 

mechanisms involved with phosphorus poisoning.  Although much is known about the 

poisoning behavior of phosphorus, many open questions remain on how to limit its 

impact on catalyst deactivation.   

Field-service investigations of three-way catalysts (TWCs) and diesel oxidation 

catalysts (DOCs) have shown that phosphorus, zinc and sulfur-derived from ZDDP can 

become incorporated in the catalysts in a variety of forms depending on the deactivation 

mechanism.  Studies of field-deactivated TWCs following lube-oil slip into the exhaust 

system at low exhaust temperatures have shown the formation of a zinc pyrophosphate, 

Zn2P2O7, directly on the washcoat surface.  The compound forms an amorphous glaze 

that acts as a diffusion barrier to catalyst active sites and micro pores; culminating in a 

reduction of light-off performance [12,13].   

Other investigations of TWC poisoning resulting from high-mileage field-service 

with ZDDP present in the lube-oil have identified the formation of cerium 

orthophosphate, CePO4, within the catalyst washcoat [14-18].  The formation of cerium 

orthophosphate has been linked to the high temperature decomposition of AlPO4, which 

is a poisoning precursor resulting from the adsorption of phosphoric acid in the feed 

stream exhaust gases.  This poisoning mechanism is shown to be detrimental to the 

oxygen storage component, CeO2, during lean/rich conditions in SI operation and is 

thought to limit oxidation reactions within DOCs by reducing available redox sites [15-

17]. 

Scanning electron microscopy and electron probe microanalysis studies of 

deactivated field-service catalysts have shown a preferential adsorption of phosphorus at 

the inlet portion of catalysts with a decreasing concentration profile along its length 

[14,18].   In addition, phosphorus is restricted to the top layers of the washcoat with 
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washcoat diffusion limited to a depth of typically 40 µm.  Phosphorus, therefore, is 

shown to have a high affinity for washcoat materials and becomes strongly chemically 

absorbed.   

To reproduce field-poisoning behavior, Ball et al. [19] used a combination of 

rapid ZDDP-doped lube-oil introduction and high-temperature aging with supplemental 

CO injection.  They found that phosphorus profiles and FTP emissions in high-mileage 

TWCs could be accurately reproduced.  Bunting et al. [20] performed DOC poisoning by 

accelerating the consumption rate of ZDDP lube-oils via three pathways that simulate 

field-service conditions: exhaust manifold, intake manifold and lube-oil-doped fuel 

injections.   

As a precursor to catalyst poisoning, they performed exhaust phosphorus 

chemical studies using electrospray mass spectrometry each method of ZDDP 

introduction.  They found that ZDDP-derived phosphorus in the exhaust gases is present 

in the form of H3PO4 for ZDDP passing through the combustion chamber and molecular 

fragments of ZDDP when injected directly into the exhaust manifold.  The resulting 

phosphorus compounds on the DOC varied depending on the exhaust phosphorus 

chemistry present with phosphoric acid producing phosphates and fragmented ZDDP 

molecules yielding a zinc-phosphate glaze.  THC and CO light-off performance 

degradation caused by the presence of phosphorus in the washcoat is consistent with 

previous studies of DOCs with similar deactivation mechanisms [8,12,14,18,19,21]. 

 

1.4 Scope of Investigation 

The objective of the current investigation is to extend knowledge obtained from 

past investigations of phosphorus poisoning by analyzing new DOC formulations under 

accelerated poisoning conditions using a single-cylinder bench-mounted diesel engine.  

Deactivated field-service and rapid engine-poisoned DOCs of similar formulation will be 

compared on the basis of phosphorus content, phosphorus compounds formed and THC 

and CO light-off behavior.  Correlations between engine bench-poisoned deactivation 

and in-service passenger bus DOCs will be obtained in order to replicate field-
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deactivation mechanisms using a laboratory-scaled engine for the rapid development of 

new catalyst formulations and evaluate new lube-oil and fuel additives for catalyst 

poisoning behavior. 

The engine utilized in this study is a 517 cc, naturally aspirated direct-injection 

(NA/DI) single-cylinder diesel engine and is used to accelerate DOC phosphorus 

poisoning by artificially increasing the consumption rate of ZDDP using three different 

methods: ZDDP-doped fuel injection, and exhaust and intake manifold injection.  In each 

method, ZDDP is mixed with lube-oil to a concentration of approximately 10 times that 

of commercial lube-oil blends and injected at a rate of approximately 70 times that of 

normal engine consumption, resulting in a net increase of 700 times the rate of ZDDP 

consumed in normal operation.  The rate of phosphorus consumption is therefore 0.5 g/hr, 

which corresponds to a doped-oil consumption rate of 50 cc/hr.  A total of approximately 

6.0 g of phosphorus is introduced into the exhaust system in each method. 

Two fresh THC and CO light-off evaluations will be conducted at the beginning 

of each accelerated poisoning experiment after the DOC is de-greened for 4 hours at 

variable load cycles to ensure repeatability.  THC and CO light-off performance is 

evaluated incrementally throughout the poisoning process to quantify the rate of 

poisoning experienced in each method.  Finally, two evaluations are performed at the end 

of the poisoning tests to check the repeatability of the resulting light-off degradation.  

Three field-deactivated DOCs, each experiencing different deactivation modes and 

mileage history are evaluated for comparison to accelerated poisoning DOCs.   

In order to identify the presence of phosphorus compounds in the exhaust gases 

during poisoning, electrospray mass spectrometry will be used.  It has been shown by 

Bunting et al. [20] that phosphorus species in the exhaust gases vary depending on the 

method of ZDDP introduction; however, it is not known how engine load conditions may 

alter the resulting phosphorus compounds.  Therefore, three accelerated poisoning DOC 

poisoning tests will be performed, each at a different engine load, form 0 to 100 % load, 

to determine if combustion temperatures have an effect on phosphorus chemistry within 

the exhaust gases.   
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Materials characterization of both field-service and accelerated poisoning DOCs 

will be performed using a multitude of analytic techniques.  Scanning electron 

microscopy will be utilized to examine DOC surface topography, which has been shown 

in previous studies to vary depending upon the oil-derived contaminant present.  Electron 

probe microanalysis will measure oil-derived contaminant concentration profiles along 

the length of the DOC as well as their penetration depth into the washcoat.  X-ray 

Fluorescence spectroscopy will provide an overall bulk elemental concentration 

measurement of oil-derived contaminants within the DOC.  Finally, wide-angle X-ray 

diffraction and X-ray photoelectron spectroscopy will be used to identify oil-derived 

compounds formed within the DOC as a result of poisoning.  

Since engine-bench light-off evaluations are inherently noisy due to variability in 

both exhaust gas temperature and composition, a bench-flow reactor system will be 

utilized to increase the accuracy of light-off degradation measurements.  The bench-flow 

reactor, however, cannot reproduce diesel emissions and requires the use of simulated 

diesel exhaust gases.  In BFR testing, exhaust gas concentrations similar to the emissions 

measured from the laboratory diesel engine will be used.  The exception is the 

hydrocarbon species, which will be replaced with 300 ppm ethylene, a fast hydrocarbon 

that is often used in literature as a diesel hydrocarbon surrogate.   

It is expected that this work will provide a valuable engineering tool for the rapid 

development of new catalyst formulation and provide additional insight into the 

deactivation mechanisms associated with phosphorus poisoning.  The additional 

knowledge of phosphorus poisoning behavior gained should contribute to the 

improvement of current technology by increasing the useful lifetime of diesel oxidation 

catalysts.     
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CHAPTER 2 

 

LITERATURE REVIEW 

  

 

This chapter presents an overview of the necessary technical background for the 

study of diesel oxidation catalysts.  The DOC has been in service as a vehicle exhaust 

aftertreatment device for over 30 years.  In that time, much work has been done to 

optimize the catalyst formulation for both performance and long-term durability.  The 

complex nature of the chemical reactions occurring within the DOC during operation 

makes engineering based on fundamental physics difficult and forces the engineer to rely 

heavily on observation.  Therefore, the majority of work cited in this section is the result 

of experimental investigations designed to measure the impact of different factors on 

DOC performance.  Section 2.1 describes the diesel oxidation catalyst operation 

including its structure and catalyst materials.  In Section 2.2, DOC deactivation by 

poisoning is presented in which factors and mechanisms leading to performance 

degradation in field-service catalysts are described.  Finally, Section 2.3 provides 

information on rapid poisoning techniques in which high-mileage field-service DOC 

deactivation is simulated within a laboratory. 

  

2.1 Diesel Oxidation Catalyst Operation 

 There are many intrinsic and extrinsic factors influencing the performance of 

oxidation catalysts.  Figure 2.1 is a diagram showing the many different factors that must 

be taken into account for proper DOC performance [22].  Many of these factors are 

uncontrollable, such as lube-oil additives and fuel used by the owner.  On the other hand, 

there are other factors that can be controlled such as precious metal loading, washcoat 

formulation, substrate material, cell density and design.  The other parameters such as 
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Figure 2.1: List of parameters affecting the performance of diesel oxidation catalysts. [22]

 
catalyst position, exhaust temperature, space velocity, flow resistance and diffuser design 

usually follow a design-loop engineering process in which a compromise is made 

between catalyst functionality and manufacturability.  In the following sections, literature 

will be presented to show the effects of the control parameters on oxidation catalyst 

performance and what must be done in order to optimize performance.  

 

2.1.1 The Platinum Group Elements  

 Catalyst material choice and loading are the most significant parameters affecting 

diesel oxidation performance.  Since the principle objective of the oxidation catalyst is to 

remove the SOF components of soot, studies have been conducted to determine the best 

catalyst material choice for that application.  Tashiro et al. [23] investigated three of the 

best-known catalyst materials – Pt, Pd and Rh – which are part of the platinum group 

elements (PGEs), for their ability to oxidize both the SOF components of soot and the 

gaseous THC using an engine-bench with traditional, high-sulfur diesel fuels.  The 

loading of PGE within each catalyst was equivalent with similar washcoat and substrate 

formulations.  Figure 2.2 shows the oxidation behavior of Pt/Al2O3, Pd/Al2O3, Rh-

Pt/Al2O3 and catalysts as a function of temperature [23].  Pt has significantly more 

activity at low operating temperatures for both PM removal THC oxidation; however  
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Figure 2.2: Comparison of Pt, Pd and Pt/Rh-loaded DOCs on the oxidation of THC and 

removal of PM as a function of temperature.  Sulfate formation is plotted as dark lines. [23]

 

high temperatures culminate in higher rates of sulfate production that contributes to a net 

increase in PM emissions.  The Pt/Rh catalyst performs slightly better than Pt in PM 

reduction but does not exhibit low-temperature THC oxidation activity.  On the other 

hand, Pd does not participate in the formation of sulfates making it ideal for PM 

conversion.  The THC conversion of Pd, however, requires high operating temperatures 

which can reduce the lifetime of the device.   

 Investigations by Daniels et al. [24] and Hosoya et al. [25] show that the use of 

low and ultra-low sulfur diesel fuels result in negligible sulfate production.  Figure 2.3 

shows the effect of Pt and Pd on the oxidation of PM, THC and CO using the Japan’s 

diesel 13-mode cycle.  Pt-loaded catalysts perform much better than Pd-loaded catalysts 

for both CO and THC conversions as well as smaller PM reduction.  Figure 2.4 shows the 

PM distribution by type resulting from the test conditions in Figure 2.3.  No sulfate 

production is observed from any of the tests using the ultra-low sulfur fuel.   
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Figure 2.3: Pollutant reduction comparison of (A) Pd (2.0 g/l) and (B) Pt (2 g/l) loaded 

catalysts undergoing Japan diesel 13-mode cycle using ultra-low sulfur diesel fuel. [25]

 

 

 

 
Figure 2.4: Particulate matter emission comparison of baseline, Pd (2.0 g/l) and Pt (2.0 g/l) 

loaded catalysts undergoing Japan diesel 13-mode cycle with ultra-low sulfur diesel fuel. [25]
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 Fredholm et al. [26] and Stein [27] investigated the optimal Pt-loading required to 

reduce THC and CO emissions below EPA standards of the time.  Fredholm et al. used a 

6.0 L diesel engine to age diesel oxidation catalysts with different Pt-loading for 1,000-

hrs at normal operating conditions.  A bench-flow reactor system using simulated diesel 

exhaust gases was used to evaluate the resulting THC and CO oxidation performance.  

Figures 2.5 and 2.6 are the results obtained by Fredholm et al. for THC and CO 

performance, respectively.  It was found that higher Pt-loading results in both higher 

maximum THC and CO conversion and an increase in cold-start performance.  Stein 

obtained similar results by comparing catalysts loaded with 0.35 and 0.07 g Pt/l.  

Measurements using a bench-mounted diesel engine demonstrate a significantly higher 

light-off temperature for both CO and THC and maximum conversions than those 

measured on the bench-flow reactor by Fredholm et al.  Light-off temperatures between 

the 0.35 and 0.07 g Pt/l loaded catalysts differed by less than 40oC.  Stein, therefore, 

concluded that a high Pt-loading does not significantly improve light-off performance, 

but rather there is a minimum amount of Pt-loading needed to initiate oxidation.   

Farrauto et al. [3] confirms the finding of Stein using three different DOCs loaded 

with 0.0, 0.02 and 0.07 g Pt/l, respectively.  They used a 5.9 L diesel engine rated at a 

maximum power 230 hp to measure the light-off performance of each DOC and found 

that the DOC loaded with 0.02 g Pt/l had much better THC and CO light-off performance 

than the DOC with no Pt-loading and is within 50oC of the DOC with 0.07 g Pt/l.   

 

2.1.2 Rare Earth Metals – Cerium Oxide 

Another important class of materials used in diesel oxidation catalysts is the rare 

earth metals.  Investigations by Aneggi et al. [28] and Oran et al. [29] reveals that the 

addition of ceria (CeO2) promotes catalyst activity by supplying additional reaction 

pathways for the oxidation of THC, CO and soot.  The additional reaction pathways are a 

direct result of the redox behavior of CeO2.  In oxygen rich environments, cerium readily 

oxidizes to form CeO2.  This oxygenated state of cerium is passive because CeO2 is 
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Figure 2.5: Bench-flow reactor THC light-off evaluations of four catalysts of different  

Pt-loadings. [26]

 

 

 
Figure 2.6: Bench-flow reactor CO light-off evaluations of four catalysts of different 

Pt-loadings. [26]
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easily reduced to form cerium oxide (Ce2O3).  This redox property of CeO2 is used in to 

promote the oxidation of THC and CO in three-way catalysts by storing oxygen during 

fuel-lean phases and releasing the stored oxygen during the fuel-rich phases of operation.  

The oxidation of diesel emissions, which are always in the lean phase, benefit from the 

addition of CeO2 by increasing the rate of oxidation through additional heterogeneous 

reaction pathways.  Figure 2.7 shows how the redox property of cerium provides two 

additional pathways for the oxidation of soot [28].  Similar reaction pathways exist for 

the oxidation of THC and CO in oxygen rich environments.   

Oran et al. studied the effects of three different CeO2-loaded three-way catalysts 

on the light-off performance of CO, each containing 1% Pt by weight dispersed in an 

Al2O3 support, using a bench-flow reactor with simulated exhaust gases.  They found the 

addition of CeO2, regardless of the loading, dramatically improved the light-off 

performance of CO, as seen in Figure 2.8 [29]. 

Investigations by other researchers support the findings of Oran and Aneggi using 

both laboratory engine and bench-flow reactor experiments [3,8,22].  CeO2 is also 

observed to have a beneficial effect on the oxidation performance of CH4 and THC.   

 

 
Figure 2.7: Redox route (top) and carbonate route (bottom) mechanism in the CeO2-

catalyzed combustion of soot. [28]
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Figure 2.8: Bench-flow reactor CO light-off curves for three Pt/Al2O3 catalysts with 

different CeO2 loadings. [29]

 
In these investigations, the incorporation of CeO2 in the washcoat results in a 

significant increase of light-off performance compared to non-CeO2 containing catalysts 

indicating that the redox property of CeO2 also contributes to the oxidation of absorbed 

hydrocarbon species on the catalyst.  

 

2.1.3 Structural Considerations 

 In addition to catalyst materials, structural considerations are also important in the 

design of diesel oxidation catalysts.  Zelenka et al. [22] studied several different catalyst 

properties including substrate material, cell density and the catalyst-to-engine volume 

ratio on federal testing protocol (FTP) 75 emissions.  In their investigation of substrate 

materials, they found that metal substrates provide lower pressure drops across the 

catalyst, but slower thermal response than ceramic substrates because metal substrates 

can be made into very thin sheets increasing the cross-sectional flow area.  Ceramic 

substrates, on the other hand, have a highly porous structure, which is a poor conductor of 

heat and maintains the heat produced during reactions within the washcoat during low-
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temperature operation.  They concluded that turbocharged engines should employ metal 

substrates because of the high cross-sectional flow area, while ceramic substrates should 

be used in all other cases to provide both good thermal response and lightweight. 

 It is known from previous literature [30] that high cell density ceramic-substrate 

DOCs have a tendency to become clogged during cold starts.  In order to determine the 

optimal cell density, Zelenka et al. used two different cell density ceramic substrates of 

200 and 400 cpsi, respectively, with identical washcoat formulations.  Figure 2.9 shows 

the resulting CO, HC and SO2 conversion data obtained at a DOC temperature of 250oC 

and an engine speed of 2500 RPM [22].  They found that more SO2 is converted to form 

unwanted SO3 products in the 200 cpsi catalyst.  Therefore, a high cell density is desired 

provided that soot clogging during cold-starts can be avoided with advanced engine 

control techniques.             

The effect of increasing the catalyst-to-engine volume ratio is equivalent to 

decreasing the space velocity of the exhaust gases in the DOC, since space velocity 

related to the volumetric flow rate of exhaust gases from the engine.  The volumetric flow 

rate of exhaust gases, however, depends on the engine load and RPM; therefore, 

increasing the catalyst-to-engine volume ratio has the net effect of increasing the 

residence time of the exhaust gases over the entire engine output spectrum. FTP emission 

data gathered by Zelenka et al. shows that there is an optimum catalyst-to-engine volume 

ratio of approximately 1.5-2.0 for THC and CO conversion as shown in Figure 2.10.  Due 

to cost restrictions, typical commercial vehicles have a catalyst-to-engine volume ration 

of 1.5.  

 

2.1.4 Optimal Operating Conditions 

The final class of variables affecting catalyst performance is the operating 

conditions experienced during operation.  These factors include space velocity, 

temperature and pressure.  During DOC operation, however, a low backpressure is 

required by most diesel engines for proper combustion control.  Therefore, pressure 

experienced by the DOC is typically assumed to be atmospheric and constant.  Space  

 24



 

 

 
Figure 2.9: Effect of cell density on catalytic oxidation of CO, HC and SO2. [22]

  

 

 

 
Figure 2.10: Effect of catalyst-to-engine volume ratio on CO and THC conversion. [22]
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velocity is determined by the catalyst-to-engine volume ratio, engine capacity, engine 

load and RPM, as discussed in the previous section, and is therefore a fixed design 

parameter. 

The only controllable parameter that can be optimized is the temperature of the 

exhaust gases encountered by the DOC during operation, which are determined by 

varying the location of the DOC in the exhaust system; the closer the catalyst to the 

engine exhaust manifold, the higher the exhaust gases temperature.  The optimal 

operating temperature range, and hence location is determined by two factors: the light-

off temperatures of unwanted exhaust species and the temperature at which SO2 

conversion is minimal.  Figure 2.11 are the results obtained from Zelenka et al. [22] who 

investigated different engine load cycles to determine the optimal temperature range for 

the removal of particulate matter.  SOF components during low-temperature operation are 

found to not completely reduced, while sulfate production became dominant during high 

temperature operation.  Therefore, the optimal operating temperature range in their study, 

specific to their proprietary catalyst formulation and engine used, is between 170o and 

350oC.  This temperature range is similar to other diesel oxidation catalyst studies found 

in literature for other DOC formulations [1,23,26,27]. 

 

 
Figure 2.11: Effect of exhaust temperature on particulate matter reduction and formation 

within a commercial oxidation catalyst. [22]
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2.2 Poisoning of Oxidation Catalysts – Field Observations 

 The deactivation of oxidation catalysts, as stated in Chapter 1, is a serious 

problem given that the EPA guideline for catalyst durability is 120,000 miles.  Of all of 

the deactivation mechanisms that affect the oxidation catalyst’s THC and CO light-off 

performance, poisoning is the most detrimental and the least understood.  In automotive 

catalysts, sulfur and phosphorus are well-known poisons derived from diesel fuel and 

lube-oil additives.  Since sulfur poisoning is, to a large extent, more controllable than 

phosphorus poisoning, much work has been performed over the past 30 years to 

understand the complex chemical mechanisms associated with phosphorus poisoning.     

 Post mortem catalyst analysis of field-deactivated automotive catalysts has 

revealed the presence oil-derived contaminants, including phosphorus, within the 

washcoat.  Analytic techniques, such as X-ray Fluorescence Spectroscopy (XRF), 

Scanning Electron Microscopy (SEM), Electron Probe Microanalysis (EPMA), X-ray 

Diffraction (XRD), among others, have been used to characterize the chemical 

compounds, materials changes and phosphorus distribution within the washcoat as a 

result of the chemical adsorption of phosphorus.  Researchers have also measured the loss 

in oxidation performance for field-poisoned catalysts by using either direct engine data or 

with the use of a bench-flow reactor using simulated diesel exhaust gases.  Although, 

bench-flow reactor evaluations do differ from actual engine data in THC species, soot 

content and other feedstream impurities unique to diesel exhaust, it does provide the 

comparison and approximate performance measurements of automotive catalysts. 

 Much of the work of phosphorus poisoning on field-service deactivation is done 

on three-way catalysts, which typically contain a Pt or Pd/Rh/CeO2/Al2O3 washcoat.  

This is because past EPA legislation on pollutant emissions required SI engines to use 

more controlled aftertreatment techniques, unlike the diesel engine that easily passed 

THC and CO emission standards with minimal aftertreatment.  Although the formulations 

of three-way catalysts are different from those of diesel engines, the poisoning effects and 

resulting phosphorus chemistries are similar.   

   The amount of phosphorus present within the catalyst washcoat is directly 

related to the amount of lube-oil phosphorus used and the length of time in service.  
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Johnson et al. [33] investigated the effects of different lube-oil blends on the 

accumulation of contaminants on three-way catalysts and light-off degradation of THC 

and CO.  A total of 20 identical vehicles, each using 1 of 5 different lube-oil blends was 

run in a taxi service until 100,000 miles were accumulated.  The vehicles underwent FTP 

75 emission testing and their catalysts were disassembled and analyzed for oil-derived 

contamination.  The oil blends used during testing and concentrations of known oil-

derived catalyst poisoning are listed in Table III.    

Figure 2.12 shows the resulting FTP emission data for the median vehicle of each 

oil-blend group after 100,000 miles of service [33].   Vehicles with high phosphorus 

concentration lube-oils yield much higher THC emissions than those with low 

phosphorus concentrations.  The use of oil 33, which has a phosphorus-containing 

additive, resulted in the worse THC emissions due mostly to the absence of any oil 

detergents.  Oil blends 34 and 35, which contain no phosphorus, yield the best THC 

emissions.  On the other hand, other contaminants such as Zn and Ca show no trend on 

THC emissions. 

 Elemental analysis of the disassembled catalysts shown in Table IV reveals that 

FTP emissions are highly dependent on the amount of phosphorus present within the 

washcoat as well as the presence of any oil detergents [33].  Oil 33, which produced the 

largest THC emission, also has the highest concentration of phosphorus.  Other 

phosphorus containing oil blends result in phosphorus accumulation within the catalysts, 

but to a lesser degree.  They attribute the phosphorus accumulation differences to the 
 

Table III: Composition of test oils used by Johnson et al. in three-way catalyst 

deactivation testing. [33]

Oil Code 32 33 34 35 36 
Detergent Ca/Mg None Ca/Mg Ca/Mg All Ca 

Analytical Data 
P, ppm 931 911 0 0 928 

Ca, ppm 978 2 996 976 2144 
Mg, ppm 657 3 649 693 12 
Na, ppm 183 189 195 202 207 
Zn, ppm 1054 1061 2 1088* 1056 

* - Antiwear additive containing Zn but not P 
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Figure 2.12: THC emissions for four vehicles aged 100,000 miles with different lube-oil 

additives.  Phosphorus in the form of ZDDP is present in the three vehicles that yield the 

highest THC emissions. [33]

 
 

 

 

 

Table IV: Phosphorus, zinc, and calcium concentrations within 100,000 mile  

aged three-way catalysts and resulting THC and CO FTP emissions. [33]

Catalyst Contaminant Level 
wt.% 

FTP Emission 
g/mi 

 
Oil Used 

Phosphorus Zinc Calcium THC CO 
32 1.59 0.23 0.11 ~0.3 ~4.0 
33 2.60 0.38 0.06 ~0.6 ~6.0 
34 0.06 0.05 0.15 ~0.15 ~1.0 
35 0.03 0.24 0.12 ~0.15 ~1.0 
36 1.56 0.16 0.18 ~0.3 ~3.5 
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presence of oil detergents, which restricts the release of phosphorus from the engine and 

increase catalyst’s lifetime.  

Granados et al. [34] confirmed the presence of phosphorus in high-mileage three-

way catalysts.  In their study, a fresh and two field-deactivated three-way catalysts with 

44,000 and 66,000 km, respectively, were analyzed for phosphorus, zinc and lead content 

using XRF.  Their results, shown in Figure 2.13, reveal that phosphorus accumulation in 

three-way catalysts is higher with increasing operational history.  A difference of 

approximately 1.2 P to Si mass atomic ratio (M/Si) is measured in catalysts with an 

increase of 22,000 km.   

 As in the study by Johnson et al., Granados et al. measured the decrease in THC 

and CO conversions resulting from the presence of phosphorus.  A bench-flow reactor 

system flowing simulated diesel exhaust gases containing 900 ppm C3H6, 10 % CO2, 10 

% H2O, 900 ppm NO, and Ar balance along with cycled CO, H2 and O2 concentrations is 

used.  The concentrations of CO are varied between 0.4-1.6 %, while H2 and O2 

concentrations are varied between 0.13-0.53 % and 0.77-1.37 %, respectively.  In the 

high mileage catalyst, they measured a THC light–off temperature increase of 

approximately 50oC and a CO light-off temperature increase of approximately 40oC over 

the fresh catalyst.  

 XRD spectra obtained from these catalysts show the formation of cerium 

phosphate (CePO4) and possibly zinc pyrophosphate (Zn2P2O7), which have been 

identified in other studies.  The authors concluded that the formations of these 

compounds are the major contributing factors increasing THC and CO light-off 

temperatures.   The presence of CePO4 reduces the overall redox behavior of CeO2 

[13,14,15], while Zn2P2O7 is shown to act as a diffusion barrier on the catalyst surface 

[12].  

 Investigation by Williamson et al. [12], Angove et al. [35] and Angelidis et al. 

[18] showed that phosphorus preferentially absorbs within the first few centimeters of the 

catalyst inlet and deposited on the top layers of the washcoat.  Phosphorus was observed 

to migrate into the washcoat to a depth dependent upon the average temperature of the 

exhaust gases, the time in operation and the surface phosphorus concentration on the 
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Figure 2.13: Comparison of phosphorus, zinc and lead to silicon atomic-mass ratio  

for 0, 44,000 and 66,000 km field-aged catalysts. [34]

    

washcoat.  In the work of Rokosz et al. [14], two catalysts labeled T1 and T2 were 

obtained from the field that have accumulated 120,000 and 102,000 miles and were 

subsequently analyzed for phosphorus chemistry and phosphorus distribution with the 

washcoat.  Table V shows XRF and BET results obtained at the front, middle and rear 

portions of the catalysts, which clearly demonstrates that phosphorus, zinc and calcium 

are all preferentially absorbed at the inlet portion of catalysts and act to reduce the 

available surface area within the washcoat.  Figure 2.14 are SEM images of the front 3 

cm of a field-deactivated catalyst, revealing a high surface concentration and a decreasing 

axial distribution of contaminants on the washcoat [14].  Materials covering the washcoat 

are determined to be oil-derived contaminants with a maximum thickness of 20 µm.  

XRD spectra obtained from washcoat scrapped from the inlet portion of T1 and 

T2 indicates the formation of (Mg, Ca)Zn2(PO4)2 and (Mg, Ca, Zn)3(PO4)2 compounds 

resulting from the deposition of oil-derived contaminants.  These complex molecules do 

not appear to diffuse into the washcoat but rather act as pore blocking agents.   
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Table V: Surface area and phosphorus, zinc and calcium concentrations for two 

field-deactivated catalysts at inlet, middle and rear locations. [34]

Contaminant Levels 
(wt. %) 

 
Catalyst 

 
Location 

Phosphorus Zinc Calcium 

 
BET SA 

(m2/gcatalyst) 
 

T1 Inlet 5.3 3.1 0.5 2.9 

 Middle 2.5 0.5 0.0 7.6 

 Outlet 1.2 0.3 0.0 7.7 

T2 Inlet 3.3 1.6 0.4 5.0 

 Middle 1.4 0.3 0.0 10.7 

 Outlet 0.5 0.1 0.0 8.7 

 

 
Figure 2.14: SEM images taken at (a) 0 cm, (b) 1 cm, (c) 2 cm and (d) 3 cm from the inlet of 

catalyst labeled T1.  Each frame has a width of 23 microns. [14]
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Phosphorus, on the other hand, is observed deep within the washcoat as seen in the 

EPMA images shown in Figure 2.15.  Rokosz et al. identified the phosphorus compounds 

formed within the washcoat as AlPO4, Ce(PO3)3 and CePO4 with the use of XRD and 31P 

and 27Al nuclear magnetic resonance (NMR).  Since only Ce and Al are found solely 

within the washcoat, they concluded that the diffusion of phosphorus into the washcoat is 

due to high temperatures that decomposed the meta-phosphates into ortho-phosphates.  

Larese et al. [16] also confirmed the presence of CePO4 and AlPO4 within the catalyst 

washcoat as a result of field-poisoning, but found that their presence is not dependent 

upon abnormally high temperature excursions.     

 To quantify the effect of phosphorus on THC light-off performance, Rokosz et al. 

used a bench-flow reactor system with simulated diesel exhaust gases consisting of 1500 

ppm C3H6, 1 % CO, 2.29 % O2, 10 % H2O, 12 % CO2 and N2 balance.  C3H6 light-off 

curves are plotted in Figure 2.16 for fresh, dyno-aged, and front, middle and rear sections 

of a field-deactivated catalyst [14].  C3H6 conversion is dependent on the amount of 

phosphorus accumulated in each sample.  The fresh sample produces the best light-off 

performance while the inlet section of the field-poisoned catalyst, which has the greatest 

amount of phosphorus, produces the worst.  The dyno-aged catalyst sample was plotted 

to show the effect of thermal degradation of catalyst performance.  The dyno-aged 

sample experienced high temperature exhaust conditions for 120-hrs, which the authors 

claim simulates approximately 100,000 miles.   

This catalyst was ensured to be devoid of any oil-derived contamination to isolate 

thermal effects only.  Degradation due to poisoning alone is, therefore, distinguishable by 

the differences in the light-off curves.  The most striking result of these plots is the 

distribution of light-off temperatures that directly correlate to the amount of phosphorus 

present in each catalyst sample.      
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Figure 2.15: EPMA micrographs displaying elemental concentration profiles at a cross-

section of the inlet of catalyst labeled T2. [14]

 

 
Figure 2.16: Bench-flow reactor light-off curves for propylene of a fresh, dyno-aged and 

field-poisoned three-way catalyst at three axial locations. [14]
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2.3 Poisoning of Oxidation Catalysts - Rapid Aging 

 Since the poisoning of automotive catalysts occurs slowly over many years, many 

attempts have been made to artificially increase the poisoning rate of ZDDP-derived 

phosphorus using accelerated field trials, small and large-scale engine-benches and 

bench-flow reactors.   

 Large-scale engine catalyst poisoning experiments performed by Voss et al. [36] 

and Farrauto et al. [3] artificially aged diesel oxidation catalysts using a 400 hp, 14 L 

DI/TC diesel engine at elevated exhaust temperatures while using diesel fuel containing 

0.3 wt. % sulfur.  The catalysts were first de-greened for 24-hours using a 190 hp DI/TC 

engine using ultra-low sulfur diesel fuel.  FTP measurements were performed to ensure 

catalysts were of comparable performance.  The samples were then loaded three at a time 

into the exhaust system of the 400 hp diesel engine via a fixture allowing the parallel 

examination of each catalyst by providing the same volumetric flow rate of exhaust gases 

through each catalyst.  Aging was performed using a 15-minute aging cycles consisting 

of the following time percentages. 

 

• 14 % 330-400oC 

• 22 % 400-500oC 

• 50 % 500-550oC 

• 14 % 550-565oC 

 

The aging cycles were continued until a total of 1000 hours have been 

accumulated.  Phosphorus was used in the crankcase lube-oil in the form of ZDDP and 

consumed via normal engine consumption.  After aging for 100, 500 and 1000 hours, 

European transient tests (MVEG or Cycle A) were used to determine the degree of 

catalyst deactivation during accelerated poisoning.   

Farrauto et al. used the aging cycle to evaluate a number of different catalyst 

formulations for long-term durability.  Figure 2.17 is a plot of the resulting TPM, THC 

and CO conversions obtained for a CeO2/γ-Al2O3 catalyst with 0.5 g Pt/ft3 as a function  
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Figure 2.17: THC, CO and TPM conversions as a function of aging time  

for a Pt/CeO2/γ-Al2O3 diesel oxidation catalyst. [3]

 

of aging time [3].  The particulate matter conversions are stable over time but CO and 

THC conversions steadily decrease with CO being the most affected. 

Line-scans obtained using EPMA for the above-mentioned catalyst confirmed the 

accumulation of P, Zn, S and Ca within the washcoat.  Figure 2.18 shows the 

concentration profiles of P, S, Ca and Zn in the washcoat at a cross-section at the inlet 

portion of a 1000-hour aged diesel oxidation catalyst [3].  Phosphorus, zinc and calcium 

all remain on the catalyst surface with little bulk washcoat diffusion.  Sulfur, on the other 

hand, diffuses deeply into the washcoat and is uniformly dispersed throughout.  This 

result closely resembles that of field-poisoned catalyst undergoing normal operating 

conditions.  The exception is the presence of a high zinc surface concentration on the 

washcoat.  Field studies by Angrove et al. [37] confirmed the presence of zinc on the 

washcoat, but concentrations did not exceed 2.0 wt. %, which is four times less than that 

measured by Farrauto et al. in the rapid-poisoning experiments.  Angrove et al. also 

measured phosphorus concentrations of approximately 8 wt. % in contrast to the 12 wt. % 

measured by Farrauto et al. 

Identical aging tests to those of Farrauto et al. conducted by Voss et al. [36] 

confirmed the presence of oil-derived contaminants on the diesel oxidation catalyst as 

well as high surface concentrations of P, Zn, S, and Ca on the washcoat after 1000 hour  
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Figure 2.18: Phosphorus, sulfur, zinc and calcium concentration profiles at a cross-section 

of the inlet of a 1000-hour engine-aged diesel oxidation catalyst. [3]
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of aging cycles.  They also performed XRF analysis at the front, center and rear portions 

of the catalysts at aging times of 50 and 500 hours to determine the rate of phosphorus 

accumulation and the catalyst location at which phosphorus absorption takes place.  

Table VI shows the accumulation of P and Zn for each section of the DOC as a function 

of time.  They observed that after 50 hours no appreciable phosphorus or zinc 

accumulation is observed.  At 500 hours, however, a significant amount is observed on 

the front portion of the diesel oxidation catalyst.  These observations were also seen in 

accelerated engine tests conducted by Ball et al. [19] who measured a strong axial 

phosphorus profile along the catalyst length. 

In an attempt to reduce the amount of time necessary to produce catalyst 

poisoning by phosphorus, Fredholm et al. [26] performed accelerated phosphorus 

poisoning using two different bench-mounted diesel engines, to produce different GHSV, 

which consume phosphorus in the form of a ZDDP/diesel fuel blend by direct injection 

into the combustion chamber.  Each engine consumed the same sulfur and ZDDP 

concentrations of 0.05 % and 0.1 %, respectively to determine which GHSV will produce 

the fastest phosphorus poisoning catalyst deactivation.  Aging cycles similar to those of 

Farrauto et al. were used but with a one-hour cycle aging time.  Once the catalysts were 

age for a fixed number of hours, a bench-flow reactor system with simulated exhaust 

gases consisting of 200 ppm CO, 90 ppm C3H6, 80 ppm SO2, 1200 ppm NO, 10 % O2, 

7.5 % CO2, 6.4 % H2O and N2 balance at a gas hourly space velocity of 65,000 hr-1 was 

used to plot CO and THC light-off evaluations.     
 

 
Table VI: Phosphorus and zinc accumulated on a diesel oxidation catalyst 

undergoing 50 and 500 hours of engine-aging. [36]

Aging hrs. Position % P2O5 ppm Zn 
0 - 0.04 16 

50 Front 0.06 21 
 Center 0.04 18 
 Back 0.04 17 

500 Front 0.51 83 
 Center 0.19 54 
 Back 0.10 45 
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Since catalyst deactivation by phosphorus poisoning did not produce significant 

CO and THC light-off degradation after a 200-hour aging cycle, the accumulated cycle 

aging time was increased to 500 and 1000 hours.  Figure 2.19 shows the THC and CO 

light-off curves at 0, 200, 500, and 1000-hour aging times.  CO is shown to be largely 

unaffected by the aging cycles with a light-off temperature increase of approximately 

20oC and a maximum conversion of CO of nearly 100 % except for the 1000-hour aging 

cycle test.  THC conversion is affected to a larger extent with an increase in light-off 

temperature of approximately 90oC.  The THC conversion measured by Fredholm et al. 

is, like CO, better than that observed in field-service catalysts.  This result is not 

explained by post mortem analysis of the catalyst after the 1000-hour aging cycles.  Table 

VII shows the phosphorus accumulated at the front and rear of the phosphorus-poisoned 

catalyst as well as available surface area.  Although significant phosphorus accumulated 

on the catalysts, four times more than measured by Voss et al., however, loss of 

performance was not as severe.  This is attributed to the difference in catalyst 

formulations; Fredholm et al. used catalysts with significantly more platinum. 

The use of small engines for the rapid poisoning and evaluation of diesel 

oxidation catalysts have proven to be a valuable tool for the study of phosphorus 

poisoning behavior due to their ease of use and low cost of operation compared to full-

scale engine methods.  In addition, the use of small engines can produce phosphorus 

poisoning behavior more rapidly due to the decrease in catalyst volume, accelerating the 

testing time from hundreds of hours to a few days. 

Bunting et al. [20] used a bench-mounted single-cylinder diesel engine to 

accelerate phosphorus poisoning of DOCs using three different methods that simulate 

  

 Table VII: Phosphorus accumulation and available surface area of a fresh and 1000-hour 

engine-aged diesel oxidation catalysts. [26]

Sample P2O5
(%) 

BET Area 
(m2/gcatalyst) 

Reference <0.01 30 
Inlet 2.0 20 

Outlet 0.4 27 
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Figure 2.19: THC and CO light-off curves at various engine-aging cycle intervals. [26]
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field-service poisoning pathways.  Phosphorus in the form of ZDDP is injected at a rate 

of 700 times that of normal engine oil consumption into either the intake or exhaust 

manifolds or mixed with fuel and injected directly into the combustion chamber.  A total 

of 3 g of phosphorus is injected for each poisoning method with THC and CO light-off 

evaluations performed every 0.5 g of phosphorus to measure the progression of DOC 

deactivation.  As a precursor to DOC poisoning, they used electrospray mass 

spectrometry to analyzed exhaust phosphorus chemistry, from which correlations could 

be made between phosphorus exhaust chemistry and DOC deactivation.      

 They found that ZDDP passing through the combustion chamber, i.e., by intake 

manifold injection or fuel injection poisoning, decomposed to form phosphoric acid 

(H3PO4), while ZDDP injected directly into the exhaust manifold was present in the 

exhaust as intact ZDDP molecules and their molecular fragments.  The resulting 

phosphorus poisoning behavior is highly dependent on the method of phosphorus 

introduction.  As seen in Figure 2.20, exhaust manifold injection produced an amorphous 

zinc-phosphate glaze on the catalyst surface.  The zinc-phosphate glaze is similar to the 

zinc pyrophosphate glaze found by Williams et al. [12] using a pulsed-flame combustor 

system in which isooctane doped with ZDDP was injected directly into the reactor.  

Phosphorus accumulated within the DOC was found to be restricted to the top few 

microns of the DOC with a strong axial gradient along the length of the DOC with more 

phosphorus accumulation at the inlet.   

On the other hand, when Bunting et al. passed ZDDP through the combustion 

chamber, phosphorus is found to diffuse much deeper in the washcoat and no zinc 

accumulation was measured.  They speculate that ZDDP decomposed in the combustion 

chamber during injections, converting zinc into zinc oxides or zinc phosphates.  These 

compounds are very stable and transit through the DOC without reaction.  Phosphorus 

accumulation resulting from ZDDP passing through the combustion chamber is 

significantly greater than that found during exhaust manifold injections showing higher 

surface concentrations and deeper washcoat penetration depths.  As observed in exhaust 

manifold injection poisoning, a strong negative axial concentration profile is present 

indicating that phosphorus has a high affinity for the washcoat regardless of its chemical  
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Figure 2.20: EPMA micrographs and line-scans of phosphorus, zinc and sulfur of diesel 

oxidation catalysts poisoned by exhaust manifold and ZDDP-doped 

fuel injection methods. [20]
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make-up.  Field-service contaminant adsorption behavior is more consistent with intake 

manifold and ZDDP-doped fuel injection poisoning mechanisms indicating that 

phosphorus poisoning during normal engine operating is due to the presence of 

phosphoric acid.    

XRF analysis of the poisoned catalysts reveals that the amount of phosphorus and 

zinc collected on the catalysts is within range of that measured in field-service catalysts 

by Johnson et al.  Collection efficiencies, however, depended greatly on the method of 

poisoning used.  Table VIII shows the amount of phosphorus, zinc and sulfur in the 

catalysts undergoing the three different poisoning methods and the collection efficiency 

observed for each oil-derived contaminant.  Exhaust manifold injection has the highest 

collection efficiencies for both zinc and phosphorus, while fuel injection poisoning 

collects the most sulfur.   

 THC and CO light-off performance degradation resulting from the three 

poisoning methods are plotted as a function of phosphorus injected in Figure 2.21.  Light-

off performance degradation in the case of ZDDP that passes through the combustion 

chamber is less severe.  On the other hand, exhaust manifold injection poisoning exhibits 

more sever deactivation, which is in agreement with the XRF results – phosphorus is 

collected more efficiently in exhaust manifold injection poisoning. 
  

 
Table VIII: Phosphorus, sulfur and zinc accumulation and collection efficiencies for three 

accelerated DOC poisoning protocols. [20]

Catalyst/ 
Lube-oil 

S, 
wt.% 

Efficiency 
S, % 

P 
wt.% 

Efficiency 
P, % 

Zn  
wt.% 

Efficiency 
Zn, % 

ZDDP 
Doped Oil 

2.40 - 1.12 - 1.15 - 

New 0.00 - 0.01 - 0.00 - 
Intake 

Manifold 
Injection 

0.79 11.26 0.34 10.40 0.00 0.08 

Exhaust 
Manifold 
Injection 

0.78 16.47 0.64 28.93 0.22 9.76 

Dissolved 
in Fuel 

1.22 20.41 0.33 12.04 0.00 0.16 
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Figure 2.21: THC and CO light-off degradation as a function of phosphorus introduction 

for three accelerated DOC poisoning protocols. [20] 
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 In the current study the phosphorus poisoning behavior of diesel oxidation 

catalysts will be performed using a small bench-mounted diesel engine, since they have 

been shown to considerably decrease the time needed to produce DOC deactivation.  

Rapid ZDDP introduction methods, similar to those used by Bunting et al., will be 

examined for both THC and CO light-off deactivation behavior as well as materials 

changes due to the adsorption of oil-derived contaminants.  In order to determine the 

applicability of accelerated phosphorus poisoning to actual poisoning found in the field, 

three field-deactivated DOCs will be evaluated using the small bench-mounted engine.  

Comparisons of the deactivation behavior of DOCs from rapid ZDDP introduction 

methods and those found in the field will result in the creation of rapid poisoning 

protocols for the rapid development of new catalyst formulations as well as screen oil and 

fuel additives for DOC poisoning behavior.       
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The engine bench rapid poisoning system (RPEB) system utilized for this 

investigation is located at the Oak Ridge National Laboratory within the Fuels, Engine 

and Emissions Research Center.  The experimental apparatus is nearly identical to that 

described by Bunting et al. [20] and was developed by at the Center prior to the 

investigation.  A schematic of the RPEB is shown in Figure 3.1.  The RPEB comprises of 

four major components; a bench-mounted single-cylinder diesel engine, an electric drive 

motor, a DOC-mounted assembly and an emissions analyzer bench.  The Hatz diesel 

engine is connected to a Baldor electric drive motor via a flexible shaft couple and they 

are both bolted to a metal bench. The bench is enclosed in an acoustically-isolated test 

chamber outfitted with a vented exhaust duct and forced circulating fresh air.  The engine 

is a 517 cc diesel and was chosen in order to minimize the expenses and mechanical 

problems associated with full-scale testing.  In addition it is capable of providing diesel 

 

3.1.1 Overall Description of Rapid Poisoning Engine Bench System 

3.1 Engine Bench for Rapid Poisoning 

      

This chapter describes the experimental apparatus used, the catalyst formulation 

and geometry specifications, and the testing procedures employed for the evaluation of 

catalyst performance.  A description of surface characterization techniques is also 

provided.  Section 3.1 offers an overview of the engine bench for rapid poisoning.  

Section 3.2 describes the bench-flow rector system and its associated components.  

Section 3.3 discusses the catalysts used during the study.  Finally, Section 3.4 provides a 

detailed overview of the variety of surface characterization techniques used throughout 

this study. 

 

 
EXPERIMENTAL APPARATUS AND PROCEDURES 

 

CHAPTER 3 

46
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Figure 3.1: Schematic of the RPEB system 

 



exhaust that is similar to full-scale heavy-duty diesel engines.  The DOCs used in this 

study are also smaller than the traditional heavy-duty DOCs.  A typical heavy-duty 

engine DOC consists of two inline catalysts, each 20.32 cm in diameter and 20.32 cm in 

length.  The experimental catalysts consist of a single catalyst 5.08 cm in diameter and 

7.62 and 15.24 cm in length.  The reasoning behind this approach is to rapidly screen the 

catalysts for poisoning effects; any tests that are deemed to be interesting can be 

reproduced at a later time in full-scale.  Throughout the present investigation, #2 ultra-

low sulfur fuels ranging from 3 and 15 ppm sulfur are used in order to reduce sulfur 

contamination of the test catalysts.  Sulfur has been widely documented as a catalyst 

poison; therefore reducing its effects on catalyst performance will enhance the ability to 

measure poisoning effects due solely to ZDDP-derived contaminants.   The engine load 

controller consists of a servo-motor that is linked to the engines’ fuel regulator and 

controlled by an analog feedback control system; a potentiometer located in the control 

room adjusts the position of the servo-motor.  This allows the engine to operate at desired 

exhaust gas temperatures during poisoning or light-off evaluations.  A photograph of the 

RPEB and ancillary equipment is shown in Figure 3.2.   

Exhaust temperatures are measured at three different locations along the exhaust 

pipe using type K thermocouples. The first thermocouple is positioned approximately 0.3 

m from the engine exhaust manifold and measures the engine exhaust temperature.  The 

second and third thermocouples are located approximately 15 cm from the inlet and exit 

of the DOC, respectively, and are used to determine the average catalyst temperature.  

Two pressure transducers located near the exhaust manifold are used to measure the 

engine backpressure and the pressure drop across the DOC – one measures gauge 

pressure and another for absolute pressure.  It is assumed that the pressure at the exit of 

the DOC is atmospheric; therefore, the pressure drop in the DOC can be approximated by 

measuring pressure at one location.  The diesel oxidation catalyst is positioned 

approximately 2.0 m from the engine exhaust manifold and mounted into a 5.08 cm-

diameter pipe.  Vermiculite-coated ceramic fiber matt is placed between the DOC and the 

pipe walls to act as insulation and protection during thermal expansion while preventing 

 48



 
Figure 3.2: Photograph of the RPEB system bench components. 

 

gas slip.  The exhaust pipe is wrapped in insulation to maintain an exhaust gas 

temperature at the catalyst inlet representative to that of normal driving conditions.   

A manually activated high-temperature three-way switching valve is used to 

sample the exhaust gases at the inlet and outlet locations of the DOC.  The step motor 

driven three-way valve allows the selection of exhaust gases entering or leaving the 

catalyst to be sent to the analyzer bench.  Heated cartridge filters located directly 

downstream of the three-way valve and directly in front of the analyzer bench remove 

any carbonaceous material present in the exhaust gases that cause analyzer fouling.  The 

exhaust gases are carried, via a temperature controlled heated sample line, to the analyzer 

bench, shown in Figure 3.3, for the volumetric concentration measurement of O2, CO, 

CO2, NOx and THC.  The flame ionization detector (FID) and the chemiluminescence 

analyzer each have an internal heated sample pump while the infrared analyzer utilizes an 

external vacuum pump located within the analyzer bench.  Water is removed from the 

system before the infrared analyzer, but after the FID and chemiluminescence analyzer, 

because condensation may occur within the infrared analyzer.  The condensed water 
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Figure 3.3: Photograph of the analyzer bench.  
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 is collected in a water trap and pumped from the system using a peristaltic pump. A 

second vacuum pump located on the analyzer bench is connected to an impinger that 

collects exhaust gas samples to be analyzed with electrospray mass spectrometry.  

Particulate matter present in the exhaust gases is trapped in the impinger water reservoir 

while exhaust gases are siphoned away using the vacuum pump after passing through a 

series of cartridge filters to remove any bypass particulate matter.  Exhaust gases are 

collected prior to entering the DOC at a flow rate regulated using a flow-metering valve.    

Catalyst poisoning is achieved by introducing ZDDP into the system via three 

different methods.  In the first method, ZDDP is mixed with lube-oil and dissolved into 

the fuel in known quantities and injected into the combustion chamber via the engine fuel 

injector, consumed and the by-products are carried with the diesel exhaust gases through 

the DOC.  This method of introduction simulates rapid burning of lube-oil due to piston 

ring leaks.  The consumption rate of ZDDP-doped lube-oil is maintained at 50 cc/hr using 

the engine load controller.   

Lube-oil containing a high ZDDP concentration is also mixed with engine lube-

oil and injected into either the intake of exhaust manifolds to simulate a blown turbo seal 

or compressor and valve seal leaks, respectively.  In this method, the ZDDP-doped lube-

oil is injected using a syringe pump at a rate of 50 cc/hr.  The oil is entrained using 

compressed air to atomize the oil and sweep it through the injection nozzle.  If the 

atomized oil is introduced through the exhaust pipe, lube-oil will be swept to the DOC 

directly with the exhaust gases.  On the other hand, if the atomized lube-oil is introduced 

into the engine intake manifold, lube-oil is carried through the air intake and into the 

combustion chamber.  After combustion, the consumed oil follows the path of the 

exhaust gases and encounters the DOC. 
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3.1.2 Mechanical Components  

3.1.2.1 Diesel Engine 

A naturally aspirated, direct-injection (NA/DI) Hatz diesel engine, Type 1D50Z, 

is used in this study.  The engine, shown in Figure 3.4, is a 517 cc single-cylinder engine 

that produces 7.0 kW at 2700 RPM.  An electric induction drive motor, discussed in 

Section 3.3.2, is used to start and maintain the engine at a constant speed of 1500 RPM 

during operation such that a nearly constant gas hourly space velocity (GHSV) through 

the DOC is achieved.  The diesel fuel is of #2 ultra-low sulfur type to reduce the 

contribution of fuel-derived sulfur DOC poisoning.   

 

3.1.2.2 Drive Motor 

A three-phase electric induction Baldor drive motor is used to motor and start the 

Hatz diesel engine.  The motor is capable of delivering/absorbing 15 hp at 1765 RPM 

with a maximum RPM of 4000. The Baldor electric motor is controlled by a Baldor 

Vector drive variable frequency conversion unit that is programmable to maintain either 

constant RPM or constant torque when motoring the engine.  During testing, the drive 

motor is set to maintain the engine at a constant 1500 RPM while enabling the engine to 

operate at various loads to alter exhaust gas temperatures for catalyst poisoning and light-

off evaluations.  A photograph of the drive motor is shown in Figure 3.5.   

 

3.1.2.3 Engine Load Controller 

To regulate the amount of fuel injected into the combustion chamber an external 

controller is used.  The controller consists of a Jordan Controls Inc., model TA-1200-6-N 

DO40 servo-motor rated at 17 VDC and 2.5 A, connected to an analog feedback control 

system located in the control room.  A potentiometer mounted on the front panel of the  
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Figure 3.4: Photograph of the Hatz diesel engine used for DOC poisoning. 

 

 

 
Figure 3.5: Photograph of the Baldor drive motor used to control the Hatz engine. 
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analyzer bench adjusts the position of the motor, which is linked to the fuel regulator.  

The servo-motor is mounted onto the engine bench with mechanical fasteners.  A picture 

of the motor and linkage is shown in Figure 3.6.    

 

3.1.2.4 Impinger 

A 500 cc Greenburg-Smith impinger is used to collect PM present in the exhaust 

gases to be analyzed using electrospray mass spectroscopy.  The impinger consists of a 

glass expansion nozzle immersed in 200 cc of de-ionized water with an impinger plate at 

the end.  Exhaust gases pass through the expansion nozzle and strike the impinger plate 

located at a small distance from the nozzle.  PM in the exhaust gases is collected in the 

de-ionized water.  A vacuum pump is used to circulate exhaust gases from the engine 

through the impinger.  The PM is then extracted from the distilled water chemically or 

mechanically for analysis. 

 

 

 
Figure 3.6: Photograph of the engine load controller assembly. 
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3.1.2.5 High Temperature Three-Way Valve 

Exhaust gases are sampled at the DOC inlet and exit locations using a Whitey 

model MS-141ACX high-temperature three-way valve.  The valve has an electronic 

actuator that produces 25 in-lbs torque with a switching time of 2.5 s for every 90o.  The 

actuator is powered by 60 Hz at 120 VAC with a maximum of 1.1 A.  A three-way 

positioning switch located on the front panel of the analyzer bench allows for the 

selection of sample exhaust gases at the DOC inlet and exit as well as system leak check.    

A photograph of the three-way valve with actuator is shown in Figure 3.7.   

 

3.1.2.6 Syringe Pump 

In order to inject ZDDP-doped lube oil into the RPEB system, a Kd Scientific 

Model 100 syringe pump is utilized.  The syringe pump, rated at 115 VAC at 60 Hz and a 

maximum current of 10 A, is a power-screw type design that produces a programmable 

constant volumetric injection rate using syringes of specified inside diameter.  A 

photograph of the syringe pump is shown in Figure 3.8.   

Oil displaced by the syringe is atomized and entrained by fast moving air to be 

carried to either the intake or exhaust manifolds to cause accelerated DOC poisoning.   

 

3.1.3 Instrumentation and Displays 

Three pressure transducers are used in the RPEB system.  An Omega Model 

PX61 pressure transducer mounted on the engine block, measures engine lube-oil 

pressure.  The remaining two pressure transducers, Omega models PX61 and PX177, 

located approximately 0.3 m from the exhaust manifold, are used to measure absolute and 

gage exhaust pressures, respectively.  The pressure transducers are used to detect 

potential problems such as soot build up within the DOC by monitoring backpressure and 

pressure drop across the DOC.   

Five Watlow type-K thermocouples are used to measure temperatures of 

atmospheric air, oil sump, exhaust gases and catalyst. Three thermocouples are used to 
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Figure 3.7: Photograph of the high-temperature three-way valve and associated exhaust 

sampling equipment. 
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Figure 3.8: Photograph specifying the operation of the lube-oil injection apparatus. 

 

measure exhaust gas temperatures; one at approximately 0.3 m from the engine exhaust 

manifold to measures the exhaust gases temperatures at the exhaust manifold and the 

other two are placed at the DOC inlet and exit to measure the average DOC temperature.   

Three Athena Model M400 temperature controllers are used to control the 

temperature of the heated sampling line and the heat tapes covering the cartridge filters.  

The temperature controllers have an accuracy of ±0.25 % full-scale and have a maximum 

operational range of 300oC.  Each temperature controller used in the RPEB system is 

maintained at 190oC.     

 

3.1.4 Gas Analyzers 

 A California Analytical Instruments Model 300 IR-300-D analyzer is used to 

measure CO, CO2 and O2 concentrations in the exhaust gases.   Non-Dispersive Infrared 

(NDIR) is the method of detection used to determine the concentration of CO2, CO, while 

the paramagnetic principle is used to measure O2.  The analyzer used has an accuracy of 

±1.0 % full-scale and a low operational threshold of 200 ppm.   
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To determine the concentration of THC in the exhaust gas, a California Analytical 

Instruments Model 300M-HFID analyzer is used.  The analyzer is capable of continuous 

sampling with an internal heated gas pump and variable burner temperature of 60 to 

200oC.  To measure the hydrocarbon concentration the analyzer uses flame ionization 

detection (FID).  The analyzer has a sensitivity of 0.1 ppm and is accurate to 1.0 % full-

scale.        

A California Analytical Instruments Model 400-HCLDCE gas analyzer is used to 

measure NOx concentrations in the exhaust gases.  The analyzer utilizes the principle of 

chemiluminescence for analyzing the NO  concentration and has a sensitivity of 5 ppm 

NO/NO  and an accuracy better than 1.0 % at full-scale.
x

2

 

3.1.5 Data Acquisition System 

The purpose of the data acquisition system (DAQ) is to monitor and store 

information during RPEB system operation.  The DAQ is capable of acquiring voltage 

and current signals from the equipment listed in Table IX.  The main components of the 

DAQ include a PC, data acquisition boards, LabVIEW software, terminal blocks, patch 

panels and adaptor.  A patch panel located in the test cell supplies electrical power to the 

pressure transducers and receives voltage signals from the thermocouples and pressure  

 

Table IX: List of available signals and components handled by the DAQ. 

Component Source Type Component Source Type 

Hydrocarbon Analyzer Voltage Catalyst Out Temp. TC Voltage 

NOx Analyzer Voltage Oil Sump Temp. TC Voltage 

CO2/CO/O2 Analyzer Voltage Ambient Air Temp. TC Voltage 

Exhaust Temp. TC Voltage Oil Sump Pressure PT Voltage 

Catalyst In Temp. TC Voltage Exhaust Pressure PT (gage) Voltage 

Exhaust Pressure PT (abs.) Voltage Shaft Encoder Voltage 

Drive Motor Torque Current   
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Once the desired channels are selected, the user is also able to calibrate each 

channel through the “Calibrate Channels” subprogram shown in Figure 3.11.  This 

subprogram is used to calibrate the gas analyzer outputs before every poisoning and light-

off evaluation test.  Once the program is opened, the channel to be calibrated is chosen 

from the pull-down menu and high and low linear calibrating points are set by the user by 

placing the corresponding calibration values in the “Set High Value” and “Set Low 

Value” dialog boxes.  When calibrating the gas analyzers, the calibration values are 

determined by sending span gases, which produces low or high valued signals from the

tab is selected.  This program allows the user to specify which channels will be allocated 

to the “Hatz Diesel Engine” program.   

The computer used to run the DAQ is an industrial type manufactured by Arcom 

with 12 PCI slots and a dual output video card.  The main LabVIEW program containing 

the RPEB system data acquisition is called “3 engine daq HR2” and is divided into three 

user interfaces.  The “Hatz Diesel Engine” tab located at the top of the program screen 

must be pressed to display the main engine bench data acquisition program as shown in 

Figure 3.10.  Channels allocated for monitoring equipment, such as thermocouples and 

pressure transducers, are displayed on this screen in real-time.  To change the channels 

that are present or to add additional channels, the “DAQ and File Saving Configuration”  

transducers, which are sent to the analyzer bench in the control room.  A National 

Instruments Model TC-2095 terminal block gathers thermocouple leads, while the 

voltage signals are transferred to National Instruments terminal block SCXI-1102 where 

the signals are amplified and filtered by a 2 Hz low-pass filter at a sampling rate of 333 

kS/s.  The pressure transducer signals are gathered using a National Instruments Model 

SCXI-1328 terminal block along with signals from the gas analyzers and routed along 

with the filtered thermocouple signals to through a National Instruments Model SCXI-

1349 adapter board which carries the signals to the National Instruments Model PCI-

3036E PCI card in the PC.  LabVIEW version 7.0 software produces data displays and 

stores data onto the hard drive.  The drive motor data signals are read directly into the 

National Instruments SCXI-1328 terminal block and stored by LabVIEW.  A wiring 

diagram of the DAQ is shown in Figure 3.9.  
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Figure 3.9: Wiring diagram of the DAQ and ancillary equipment 

 
 

 



 

 
Figure 3.10: Screen capture of the "Hatz Diesel Engine" DAQ program user interface. 

 

 
Figure 3.11: Screen Capture of the “DAQ and File Saving Configuration” DAQ program 

user interface. 
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analyzer to the DAQ.  Values sampled from the gas analyzer are time averaged for 10 s to 

reduce signal noise.  After calibrating all analyzer channels the “Hatz Diesel Engine” 

program is again opened and the DAS is ready to save data.  On the “Hatz Diesel Engine” 

program display is the option to save data in three different ways: single point, time 

averaged or continuous.  For all data saved during RPEB testing, the time-averaged 

option is chosen which averages all signals that were allocated to the program for 10 s  

and saved to a file of choice.  This function only occurs if the “Enable Data Saving” 

button has been pressed prior to data saving.      

 

3.1.6 Bench Engine Rapid Poisoning System Operation  

3.1.6.1 Engine Start-up Procedure 

To begin the RPEB system start-up procedure, a visual safety inspection is 

preformed to ensure all electrical and mechanical equipment is properly connected.  Once 

the safety inspection is complete, the analyzer bench is turned on to provide power to the 

PC, gas analyzers, temperature controllers and mechanical hardware.  The cartridge 

filters and sample line temperature controllers are set to 190oC and approximately 15 

minutes are required for the heaters to reach operating temperatures.  During this time the 

engine oil level is checked and diesel fuel is added to the fuel tank.  The engine bench is 

visually checked to ensure thermocouples and pressure transducers are connected 

properly and the old cartridge filters are replaced with fresh filters.  Once the engine is 

inspected, the overhead exhaust fan that ventilates the test cell is turned on as well as the 

circulator fan that pumps in fresh air.  In the control room, the data acquisition program 

LabView file “3 engine daq HR2” is opened on the PC and begins monitoring all 

measurement devices.  A visual inspection of the operating program interface confirms 

that instrumentation in the test cell is working properly by displaying correct sensor 

information.   
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Pressing the power relay switch, the green button on the power supply console  

shown in Figure 3.12, initializes the drive motor controller.  Once power is turned on, the 

drive motor’s control computer boots up and requires approximately 5 s to perform a self-

check and indicates “READY” when it is safe to turn on the drive motor.  On the drive 

motor control console, the controller switch is turned to “VELOCITY”; thereby the 

computer controls the drive motor at constant velocity mode instead of constant torque.  

The velocity control knob below the control switch is then set to 542, which corresponds 

to 1500 RPM.  The drive motor is started by setting the control ON/OFF switch at the top 

of the console to “ON”.   

 

3.1.6.2 Catalyst Light-off Measurement Procedure 

Light-off behavior of THC and CO is used to quantify deactivation during rapid 

engine poisoning tests as well as be a basis for the comparison of field-service DOCs.  

The light-off evaluation consists of measuring the oxidation performance of the DOC at 8 

engine load steps from idle to full load at a constant speed of 1500 RPM that corresponds 

to a gas hourly space velocity of 80,000 hr-1 at STP.  Table X lists typical CO and THC 

concentrations and exhaust gas temperatures at the DOC inlet for each load step.  To 

begin a light-off test, it is necessary to first warm up both the catalyst and the engine. 

This is achieved by running the engine at 33, 67 and 100 % load for twenty-minute 

durations at each load.  During engine warm-up the gas analyzers are calibrated and all 

temperature controllers are checked for proper temperatures.    

Once the engine and catalyst are thermally stable, the engine load is reduced to 

full electric motoring by turning the engine fuel regulator actuator to fully-closed.  This is 

done to ensure that no hysteresis is present in the measurements and thus a higher factor 

of repeatability in the test.  The engine fuel consumption is then slowly increased so the 

engine is back to idle conditions and the light-off evaluation is initiated.  At each step, the 

engine is allowed to equilibrate for approximately 10-minutes before engine emissions 

are measured.  An additional 5-minutes is allowed for the DOC to reach thermal 

equilibrium before sampling exit gas concentrations.   
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Figure 3.12: Photograph of the drive motor power and control units. 

 
 
 

 

Table X: Typical CO and THC concentrations and exhaust temperatures obtained by the 

Hatz engine at various loads and 1500 RPM. 

Engine 
Load 
(%) 

DOC Inlet 
Temperature 

(C) 

Average 
THC 
(ppm) 

Average 
CO 

(ppm) 
Idle 165 95 160 
15 200 95 150 
30 240 105 100 
50 290 115 100 
60 320 120 95 
75 365 135 230 
90 400 115 650 

100 420 100 650 
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Since this particular DOC formulation was first introduced approximately 10 

years ago to optimize only soluble particulate reduction with minimum sulfate production 

from conventional sulfur fuels, THC and CO conversion are relatively low.  Therefore, 

light-off temperatures for THC and CO are defined as the DOC inlet temperature 

corresponding to 20 % and 25 % conversion, respectively.  These light-off temperatures 

are about half of maximum conversion measured under fresh DOC conditions.  

 

3.1.7 Experimental Tests 

3.1.7.1 Accelerated DOC Poisoning 

Three methods of artificially increasing the consumption rate of ZDDP, as seen in 

Table XI, are used to simulate field- service pathways causing DOC poisoning.  In each 

method, ZDDP is mixed with lube-oil to a concentration of approximately 10 times that 

of commercial blends and introduced at a rate of approximately 70 times that of normal 

engine consumption.   This results in a net increase of 700 times more than normal 

consumption.  During each accelerated poisoning method, the engine is maintained at a 

constant RPM of 1500, which corresponds to a nearly constant gas hourly space velocity 

of 80,000 hr-1 at STP.  The rate of phosphorus through the engine is 0.5 g/hr, which 

corresponds to a doped-oil consumption rate of 50 cc/hr.  A total of approximately 6.0 g 

of phosphorus is introduced into the exhaust system during each poisoning method.  The 

resulting total DOC time under poisoning conditions is approximately 12 hours.  

Prior to engine-bench poisoning, a fresh commercial DOC is de-greened by 

cycling between 5, 50 and 100 % load in twenty-minute increments for four hours.  This 

is done to “break-in” the catalyst surface by allowing the catalyst and support material to 

reach thermodynamic equilibrium.  Two light-off evaluations are then performed to 

ensure repeatability of results; if the DOC exhibits significant variability then the DOC is 

de-greened for an additional 2 hours.   
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Table XI: List of accelerated ZDDP introduction methods with corresponding 

field-service pathways.[20]

Form of 
Phosphorus 

Location of 
Introduction 

Field Pathway 

 
None 

 
None 

 
Fresh DOC 

 
ZDDP + 
Lube-Oil 

Intake 
Manifold 
Injection 

Compressor or 
Valve Seal Leaks, 
Closed Crankcase 

Ventilation 
 

ZDDP + 
Lube-Oil 

Exhaust 
Manifold 
Injection 

 
Blown Turbo Seal 

 
ZDDP + 
Lube-Oil 

 
ZDDP-Doped 
Fuel Injection 

Burning of Used 
Lube-Oil, Ring 

Leaks 
 

In fuel injection poisoning, once the fresh DOC has shown repeatable light-off 

performance, the fuel is drained and replaced with a blend of 600 cc of ZDDP-doped 

lube-oil and BP-15 diesel fuel totaling 8,400 cc.  The engine is allowed to consume the 

entire fuel blend at 75 % load corresponding to a DOC inlet temperature of 365oC.  At 

this engine condition, the fuel consumption rate is approximately 700 cc/hr resulting in a 

phosphorus consumption rate of 0.5 g/hr.  Finally, BP-15 diesel fuel free of ZDDP is 

added to the engine fuel tank and two final light-off evaluations are performed to measure 

the resulting catalyst deactivation.  The DOC is then dismounted from the exhaust 

system, weighed and sectioned into equal volume wedges for chemical analysis. 

In intake and exhaust manifold injection methods, a syringe pump is used to inject 

ZDDP-doped lube-oil, blended to a phosphorus loading of 10 g/L, at the desired rate of 

50 cc/hr in increments of 50 cc per injection.  For intake manifold injection poisoning, 

lube-oil is injected directly above the intake valve.   Air atomization is used to entrain the 

lube-oil and carry it through the injection nozzle to either the intake or exhaust manifolds.  

The engine is run at a fixed load cycle at 5.0, 50, and 100 % load in 20-minute intervals 

during the injection process to vary the engine and catalyst operating.  After each 50 cc 

injection increment, a light-off evaluation is performed to measure DOC deactivation.  

Once twelve 50 cc syringe pump lube-oil injections are completed, a total of 6.0 g of 
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phosphorus, two final light-off evaluations are performed.  The DOC is then 

disassembled, weighed and sectioned for chemical analysis.    

For exhaust manifold injection poisoning, a nozzle located directly behind the 

exhaust manifold allows the injected lube-oil to spray directly in the exhaust pipe.  Air 

atomization entrains lube-oil and carries it to the exhaust manifold where it is evaporated 

and carried with the diesel exhaust gases to the DOC.  The engine is run at a 50 % fixed 

load during each injection to ensure that the lube-oil is evaporated, yet the exhaust gases 

are not so severe as to decompose the ZDDP.  After two 50 cc injections, a light-off 

evaluation is performed to measure DOC deactivation.  Once a total of 6.0 g of 

phosphorus is injected, two final light-off evaluations are performed.  The DOC is then 

disassembled, weighed and sectioned for chemical analysis.  The intake and exhaust 

manifold injection poisoning procedure is summarized as follows: 

 

• De-green catalyst 4-6 hours with variable load cycle 

• Two light-off evaluations 

• Inject phosphorus at 0.5 g/hr  

• Light-off evaluation 

• Repeat poisoning and light-off evaluations until 6.0 g phosphorus 

is consumed 

 

The final experimental investigation performed using the RPEB is a ZDDP 

decomposition study in which a ZDDP and lube-oil blend, identical to that used in DOC 

poisoning, is passed through the engine via intake manifold injection poisoning at 0, 50 

and 100 % engine load.  The engine is maintained at a constant RPM of 1500 

corresponding to a nearly constant gas hourly space velocity of 80,000 hr-1 at STP.  A 

total of 6.0 g of phosphorus is injected into the engine intake at a rate of 50 cc/hr, 

identical to that of earlier experiments.  An impinger sample is obtained during DOC 

poisoning from the exhaust gases and analyzed using electrospray mass spectrometry 

described in Section 3.4.4.   
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For the purposes of the ZDDP decomposition study, no intermediate light-off 

evaluations are obtained during poisoning.  However, once the injection of 6.0 g of 

phosphorus is complete, two light-off evaluations are performed to compare fresh DOC 

performance to that of poisoned for each method.  Once poisoning is complete the DOCs 

are disassembled, weighed and sectioned for chemical analysis.  Table XII provides a 

summary of the engine loadings and their associated DOC inlet temperatures used for 

both accelerated DOC poisoning and ZDDP combustion tests.   

 

3.2 Bench-Flow Reactor 

3.2.1 Overall Description of the Bench-Flow Reactor System  

A photograph and schematic of the bench-flow reactor (BFR) system are shown 

in Figures 3.13 and 3.14, respectively.  The BFR, which is located at the University of 

Tennessee, is comprised of 5 main components: a steam generator, a DOC reactor, a 

simulated diesel exhaust gas introduction system, an analyzer bench and a DAQ.  

Simulated diesel exhaust gases used during BFR testing consist of 5 % CO2, 500 ppm 

CO, 300 ppm C2H4, 10 % O2, 1000 ppm NOx, 10 % H2O and balance N2 at a gas hourly 

space velocity of 80,000 hr-1.  The volumetric flow rate of each gas component is 

controlled with the use of mass flow controllers (MFCs).  Steam is introduced into the 

system via a steam generator fed by a peristaltic pump with de-ionized water.  

The main bank supplies CO2 and N2 as carrier gases for sweeping water vapor 

from the steam generator into the BFR system.  The remaining main bank gases 

consisting of CO, C2H4, NOx, air and O2 are introduced into the BFR at the steam 

generator exit.  Once mixed, the gases pass through either the oxidation reactor or the 

reactor bypass line.  The bypass line allows the measurement of the simulated diesel 

exhaust gases at the DOC inlet conditions.  A three-way solenoid valve is used to switch 

between inlet and outlet gases of the oxidation reactor.  Backpressure and pressure-drop 

across the oxidation reactor are monitored with two pressure transducers located at the 

DOC inlet and outlet.  
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Table XII: Engine load and associated exhaust gas temperatures used during each 

accelerated DOC poisoning methods. 

Poisoning 
Method 

Engine Load 
(%) 

Catalyst Inlet 
Temperature 

(C) 
Intake Manifold 

Injection 
 

100 
 

420 
Intake Manifold 

Injection 
 

50 
 

290 
Intake Manifold 

Injection 
 

0 
 

165 
Intake Manifold 

Injection 
 

15-100 
 

200-420 
Exhaust 

Manifold 
Injection 

 
50 

 
290 

Fuel Injection 75 365 
 

 

 

 

Reactor Outlet Steam Generator 

Oxidation Reactor 

Instrumentation 
Cart 

Figure 3.13: Photograph of the bench-flow reactor system.  

 

 69



 
Figure 3.14: Schematic of the bench-flow reactor system.  

 

The DOC monolith samples, which are 7.60 cm long by 2.0 cm diameter, are core 

drilled from either field-service or rapid engine-poisoned DOCs using the RPEB system 

as described in Section 3.3.4.  The samples are mounted in a quartz reactor and placed 

inside an electric furnace to control temperature.  Heated sample lines are used 

throughout the system to both preheat the simulated diesel exhaust gases and ensure no 

water condensation occurs within the flow passages.  The inlet portion of the reactor is 

filled with 5 mm diameter PyrexTM beads for effective preheating of simulated diesel 

exhaust gases before entering the DOC.   

Six Omega type-K thermocouples are used to measure the gas inlet and exit 

temperatures as well as the internal DOC temperatures as shown in Figure 3.15.  Two 

thermocouples located approximately 5 mm from the inlet and exit of the DOC are used 

to measure the inlet and exit simulated diesel exhaust gases temperature.  The remaining 

four thermocouples positioned at 5, 19, 38 and 57 mm from the DOC inlet are used to 

measure the DOCs’ axial temperature distribution.  

A Horiba analyzer bench is used to measure the concentrations of CO, C2H4, NOx, 

and CO2 in the simulated diesel exhaust gases.  The gases are drawn through the bench  
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Figure 3.15: Schematic of the six thermocouple locations with respect to the DOC during  

bench-flow reactor evaluations. 

 

flow system with the use of a vacuum pump and enter the Horiba analyzer bench, 

described in Section 3.2.2.6, from either the reactor by-pass or reactor sample lines.  A 

condenser unit is used to remove water vapor from the system prior to entering the gas 

analyzers.  A series of cartridge filters are also used to remove particulate matter present 

in the simulated diesel exhaust gases and prevent fouling of the gas analyzers.   

 Pressure, temperature and analyzer signals from the BFR are acquired, displayed 

and stored using a LabVIEW based DAQ system.  A virtual control panel is used as a 

user interface to both monitor and control the BFR during operation.  The control panel 

allows for the control of the MFCs and displays real-time data.  The user can save data at 

any point during BFR operation and write to files created by LabVIEW on the hard drive. 

 

3.2.2 Mechanical Components 

3.2.2.1 Mass Flow Controllers 

 Mass flow controllers (MFCs) are used to regulate the volumetric flow rate of 

simulated diesel exhaust gases entering the BFR.  MFCs are located within the 

instrumentation panel described in Section 3.2.3.1, and are controlled using the 

LabVIEW control panel discussed in Section 3.2.6.2.  The volumetric flow rate of each 
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individual gas component is controlled using a MFC dedicated solely to that particular 

gas species.  All of the Omega manufactured MFCs, Model FMA 5400/5500, are 

calibrated for the flow of N2 gas.  Gases other than N2 are controlled with the use of 

correction factors, called K factors, which correct for the difference in atomic weight 

between the gases.  LabVIEW software controls each MFC by varying the input voltage 

within the range of 0-5 V to correspond to the desired user input volumetric flow rate.  

Each MFC has a different linear response to the supplied voltage. Therefore, an internal 

feedback system is utilized by the manufacturer to ensure correct volumetric flow rates.  

The operational ranges and K factors of each mass flow controller are listed in Table 

XIII.  Concentrations of both CO and C2H4 are small and balanced with N2 so that K 

factors for these species are very close to that of pure N2.   

 

3.2.2.2 Peristaltic Pump 

 A MasterflexTM peristaltic pump is used to inject de-ionized water into the steam 

generator described in Section 3.2.2.3.  The peristaltic pump allows for continuous water 

injection which produces a uniform water vapor concentration exiting the steam 

generator.  The peristaltic pump, shown in Figure 3.16, can achieve steam flow rates  

 

 

Table XIII: List of mass flow controller volumetric flow rate ranges and associated 

correction factors. 

Species Volumetric Flow Rate (LPM) K Factor 

N2 0 – 10 1.000 

CO2 0 – 10 0.737 

CO 0 – 1 ~ 1.000 

Air 0 – 20 1.006 

C2H4 0 – 5 ~ 1.000 

NOx 0 – 5  0.976 
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Figure 3.16: Photograph of the peristaltic pump used to inject de-ionized water into the 

steam generator. 

 

between 0.1 and 580 cc/min.  The peristaltic pump siphons de-ionized water from a 

reservoir and injects it through a water injection nozzle in the steam generator where it 

mixes with carrier gases.  The water then passes into the steam generator where it is 

vaporized and passed into the BFR system. 

 

3.2.2.3 Steam Generator 

 The steam generator consists of a Lindberg heavy-duty tube furnace, shown in 

Figure 3.17, with a 2.54 cm diameter stainless steel tube through which water is 

converted into steam.  The steam generator is maintained at 200oC to ensure water is 

completely vaporized before exiting.  The stainless steel evaporator tube is 70 cm long 

with stainless steel flanges that house copper gaskets that are pressure tested to 1.70 bar 

(20 psig) before each use to ensure no leaks are present.  Inside the evaporator tube is a 

water injection nozzle located approximately 35 cm from the steam generator inlet.  The 

nozzle allows for preheating of the water and carrier gases before being directed onto a 
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Figure 3.17: Photograph of the steam generator used in the bench-flow reactor system. 

 

SiltempTM fabric strip that absorbs any remaining liquid present.  The fabric acts to 

absorb and disperse the water and aid in the production of steam.  The vaporized water 

finally exits the steam generator with the aid of the carrier gases consisting of CO2 and 

N2. 

 

3.2.2.4 DOC Reactor 

The DOC reactor consists of a 44.45 cm long quartz tube with 2.22 cm ID and 

2.54 cm OD, reactor end fittings, PyrexTM beads and the DOC.  The PyrexTM beads are 5 

mm diameter and occupy the front half of the reactor to enhance mixing and preheat the 

simulated diesel exhaust gases.  The reactor end fittings, shown in Figure 3.18, consist of 

a 2.54 cm Swagelock end cap and tube fitting.  The cap nut is modified to accommodate 

three Swagelock weld fittings that allow for the insertion of thermocouples and pressure 

transducers.  Graphite ferrules are used to form a compression seal between the quartz 

tube and the end fitting because graphite can withstand the high temperatures 

encountered during operation.  Before the DOC is placed within the quartz tube it is first  

 74



 

 
Figure 3.18: Photograph of the reactor end-fitting used to pass simulated diesel exhaust 

gases through the diesel oxidation catalyst and allow temperature and pressure 

measurements. 

 

wrapped in FiberFraxTM glass wool to prevent gas slip.  Thermocouples are positioned 

within the DOC in accordance with Figure 3.15 shown in Section 3.2.1.   A Lindberg 

Model TF55035A-1 electric furnace is used to maintain the DOC reactor at isothermal 

condition and has a maximum operating temperature of 1100oC.  The furnace is equipped 

with a feedback system to ensure that mid-furnace temperatures are maintained to within 

+/- 1oC of the target temperature.  Figures 3.19 and 3.20 are photographs of the DOC 

reactor positioning within the Lindberg/Blue M furnace and temperature controller, 

respectively.  

 

3.2.2.6 Horiba Analyzer Bench 

 The Horiba analyzer bench consists of four gas analyzers, water condenser, 

vacuum pump and cartridge filters.  Simulated diesel exhaust gases enter the analyzer 

bench through a water condenser to remove all water vapor.  The dry exhaust gases then 
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Figure 3.19: Photograph of the DOC reactor placement inside the Lindberg furnace. 

 

 

 

 
Figure 3.20: Photograph of the Lindberg electric furnace used to maintain the diesel 

oxidation catalyst operating temperatures. 
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enter a series of two cartridge filters that remove any particulate matter (PM).  Once the 

simulated diesel exhaust gases are properly treated for the removal of water vapor and 

PM, they enter the gas analyzers.  The analyzer matrix switches located on the control 

panel of the analyzer bench, shown in Figure 3.21, is used to select each gas analyzers to 

be used.  The matrix switch is wired to solenoid-activated three-way valves that regulate 

the flow pathways to each analyzer.  The FID, chemiluminescence and infrared analyzers 

are selected by placing each respective switch to “sample” allowing the simulated diesel 

exhaust gases to enter the analyzers for measurement.   

A throttling valve and a pressure regulator located on the control panel determine 

the flow rate and pressure of the simulated diesel exhaust gases in the analyzer bench. 

The throttling valve and the pressure regulator are connected in parallel with a gas   

manifold containing the solenoid-activated three-way valves.  A flow rate of 

approximately 22 LPM at a pressure of 1.29 bar (4 psig) is used throughout the study to 

maintain a pressure of approximately 1.36 bar (5 psig) at the inlet of the DOC reactor. 

Gases that are not extracted for gas composition analysis are evacuated though the 

exhaust vent.  

   

 

 
Figure 3.21: Photograph of the Horiba analyzer bench control panel. 
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3.2.3 Instrumentation and Displays 

An instrumentation cabinet houses all of the control and monitoring equipment 

used in BFR operation.  Temperature and pressure indicators as well as temperature 

controllers, power switches, simulated diesel exhaust gas inlet connectors and DAQ 

terminal blocks are located on the front panels as shown in Figure 3.22.  The front panel 

is designed to provide the user with an easily accessible interface to monitor and control 

BFR operations by housing pressure and temperature indicators as well as control 

switches.  The DAQ system is positioned at the bottom of the cabinet to be easily wired 

to both the monitoring equipment and the PC.   MFCs, switching valves, sensor patch 

panels and power supplies are located within the instrumentation cabinet and are accessed 

through the rear panel as shown in Figure 3.23.  Measurement device signals are routed 

through the instrumentation cabinet to be connected to both the DAQ and the indicators 

located on the front panel.  A simulated diesel exhaust gas manifold, located directly after 

the MFCs within the instrument cabinet, is used to mix the lean and main bank gases 

before being introduced into the BFR.   

Cole-Parmer pressure transducers Model 68072 – 06 installed at the inlet and exit 

of the DOC reactor are used to monitor the pressure drop across the DOC and the 

backpressure at the gas manifold.  The pressure transducers have a linear operating range 

of 0 to 3.45 bar (50 psi) and a maximum operating temperature of 126oC.  Since pressure 

transducers are susceptible to thermal damage when exposed to the high temperatures of 

the exhaust gases, stainless steel tubing in the form of helix is used to enhance the heat 

losses and thus prevent overheating. 

Two Cole-Parmer Model 94785–00 pressure indicators are used to display 

pressure during BFR operation.  The indicators are programmable with 11 calibration set 

points for use in non-linear applications.  The indicators have a LCD display and are 

manufactured for compatibility with the process signal range specific to the pressure 

transducers described in Section 3.2.3.2.   

Seven Omega type-K thermocouples are used to monitor temperatures in the BFR 

system.  One thermocouple located immediately downstream of the steam generator is 

used as a feedback signal for the heat tape temperature controller that regulates the heated 
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Figure 3.22: Photograph of the front panel of the instrumentation cabinet. 

 
 

 
Figure 3.23: Photograph of the back panel of the instrumentation cabinet.   
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sample line leading to the DOC reactor. The other six thermocouples are allocated for 

temperature measurement within the reactor as discussed in section 3.2.1.  Two 

thermocouples of 61.0 cm long and 0.3 cm in diameter positioned at the front and rear of 

the DOC sample measure the inlet and exit gas temperature.   The four thermocouples 

located within the DOC are each 61.0 cm in length and 0.16 cm in diameter.  The small 

diameter of the thermocouple serves two functions: to fit within the channels of the DOC 

as well as offer fast response times to accurately measure temperature excursions within 

the DOC during reaction.    

 Seven Omega Model DP 18-KC1 temperature indicators are used to display the 

simulated diesel exhaust gas temperatures to the user on the instrumentation panel.  The 

temperature indicator is equipped with programmable analog input/out and has 8 

calibration points for non-linear signals.  The indicator is made specifically for use with 

type-K thermocouples and has a resolution of ± 1oC with a maximum temperature 

reading of 1250oC.     

 Two Athena Model – XT16 temperature controllers are used to adjust the preheat 

temperature of the simulated diesel exhaust gases entering the DOC reactor by adjusting 

two Omega heavily-insulated Samox heating tapes.  The heating tape has a maximum 

operating temperature of 760oC.  The temperature controllers can be programmed to 

provide a constant heating rate and accept a 120 VAC power supply.   

 

3.2.4 Gas Analyzers 

 A dual Horiba CO and CO2 analyzer Model AIA-220 is used to measure CO 

concentrations up to 1500 ppm and CO2 up to 20% concentration.  The analyzer employs 

non-dispersive infrared (NDIR) absorptiometry to measure both CO and CO2 

concentrations.  The analyzers have a maximum voltage output of 5 VDC at full scale.   

To measure total hydrocarbon (THC) species in the simulated diesel exhaust gas, a 

Horiba THC analyzer Model FIA-220 is used.  This particular analyzer does not have a 

heated sample chamber as the California Analytic THC analyzer does; therefore, water 

vapor must be removed prior to sampling.  The analyzer uses flame ionization detection 
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(FID) to measure the THC concentration.  The analyzer is capable of measuring THC a 

maximum concentration of 3000 ppm. 

A Horiba chemiluminescence analyzer Model CLA-220 is used to measure NOx 

concentrations in the simulated diesel exhaust gases.  The analyzer is equipped with an 

ozone generator to convert any NO present into NO and an internal NO  to NO 

converter.  
2 2

 

3.2.5 Data Acquisition System 

 The purpose of the data acquisition system (DAQ) is to monitor, process, display 

and save all data obtained during the BFR operation as well as control the MFCs.  The 

DAQ consists of a Dell personal computer (PC), data acquisition boards, shielded BNC 

adapter chassis, terminal blocks and LabVIEW software.  All thermocouple signals are 

gathered using a National Instruments Model TC-2095 shielded terminal block and 

routed through a National Instruments Model SCXI-1102 thermocouple signal amplifier.  

A National Instruments Model PXI-6040E multifunction DAQ card converts the signals 

from analog to digital and sends them to the PC through a National Instruments Model 

PXI-8330 PCI card.  Pressure transducer and gas analyzer signals are acquired and 

conditioned using a National Instruments Model TBX-68 terminal block and sent directly 

to the PC for LabVIEW display.  MFC signals are gathered using a National Instruments 

Model BNC-2090 connector block and routed through an additional National Instruments 

Model PXI-6040E PCI card for data sampling and display.  Finally, the signals are routed 

along with the thermocouple signals to the PXI-8330 PCI card.  

 

3.2.6 Data Acquisition System Components 

 A Dell Model PWS 350 PC is used for both LabVIEW software operation and 

data storage.  The computer utilizes a 2.8 GHz Intel Pentium 4 processor and houses the 

National Instruments data acquisition boards discussed in Section 3.2.5.  LabVIEW 
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version 6.1, graphics-based software developed by National Instruments, is used to 

monitor, display and store data as well as provide control of BFR components.  The 

LabVIEW program consists of a control panel that serves as a user interface, shown in 

Figure 3.24.  The control panel contains real-time data displays and control functions that 

can be either initiated by the user or programmed for autonomous control.  Temperatures 

and pressure as well as MFC flow rates within the BFR during operation are displayed in 

both display boxes and in real-time XYZ plots that shows the BFR history.  MFC flow 

rates are prescribed using input value boxes located at the top left of the screen.  Finally, 

data storage can be performed at any point during testing with the save data button 

prompting the computer to write all collected data to a storage file created on the PC hard 

drive.       

 

 

 

 

 
Figure 3.24: Screen capture of the LabVIEW control panel used to control and monitor the 

bench-flow reactor. 
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3.2.7 Bench-Flow Reactor Operation 

is made to verify that the exhaust fan 

and CO detector in the laboratory are working properly.  After the initial safety 

2 in 

ns.  Pure 

itroge

oC by turning on the heat tape controllers and as well as the 

reactor and steam  at a 

3.2.7.1 Start-up Procedures 

 Prior to BFR start-up, a safety inspection 

inspection, the gas analyzers and water chiller are turned on and allowed to reach steady 

state operating conditions by turning on the master power switch on the Horiba analyzer 

bench.  The water chiller must be brought to a temperature below 6oC - the saturation 

temperature of 10 % water at atmospheric pressure.   

 The FID and NOx analyzers are supplied with feed gases consisting of 40 % H

He and 100 % air, and 100 % O , respectively to reach operating conditio2

n n flowing at 2 L/min is passed through each analyzer for 2 hours to reach steady-

state operation.  Once the analyzers have reached steady-state they are calibrated using 

span and zero gases.  The instrumentation cabinet is turned on to provide power to the 

MFCs, pressure and temperature indicators and the DAQ system.  A check of the 

LabVIEW control panel ensures proper control of the MFCs before the gas cylinders are 

opened.  For proper MFC operation, gas cylinders are regulated to an exit pressure of 

1.72 bar (25 psig).   

Once all ancillary equipment is operational, the BFR is brought to an initial 

operating temperature of 200

 generator furnaces while passing pure nitrogen through the system

GHSV that is to be used during the BFR evaluation.  At the same time, the Horiba 

analyzer bench is readied to receive flow gases by selecting the analyzers to be used with 

the matrix switches.  Once selected, the exhaust fan and the vacuum pump are turned on 

to provide sample pressure to the analyzers.  De-ionized water is then injected into the 

steam generator and allowed to reach steady-state for approximately ten minutes.  The 

final step is to adjust the BFR pressure to approximately 1.36 bar (5 psig) by manually 

adjusting the throttling valve and pressure regulator located on the front of the Horiba 

analyzer bench.   
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3.2.7.2 Light-off Measurement Procedures 

t must be de-greened to allow 

the DOC to reach thermal equilibrium.  This process is only necessary for fresh DOC 

mple e 
-1 

H , 

elevated tem

 

3.3 Experimental Catalysts 

The DOCs used in the present investigation are both commercially available and 

found on many heavy-duty, commercial diesel vehicles.  The DOCs used come from two  

 Before light-off measurements begin each catalys

sa s because aged catalysts are stable.  DOC de-greening is achieved by exposing th

sample to simulated exhaust gases at 400oC and a gas hourly space velocity of 40,000 hr

with 10 % H2O, 10 % O2 and balance N2 for approximately 4 hours.  Two light-off 

evaluations are performed to ensure light-off repeatability by introducing simulated diesel 

exhaust gases comprised of 10 % H20, 10 % O2, 5 % CO2, 500 ppm CO, 300 ppm C2 4

1000 ppm NOx and balance N2 at a gas hourly space velocity of 80,000 hr-1 over a 

temperature range of 200 to 500oC in increments of 50oC.  The cost to flow these gases 

continuously through the BFR for testing is high; therefore a substitute mixture of 10 % 

H2O, 10 % O2 and N2 balance is used to reach steady-state operation within the DOC 

before flowing simulated diesel exhaust gases at each 50oC increment.   

Temperature within the DOC reactor is adjusted by varying both heat tape and 

reactor furnace settings.  Since isothermal conditions are unattainable within the DOC at 

peratures, the temperature at the DOC mid-bed location is assigned as the 

steady-state temperature to be reached before simulated diesel exhaust gases are passed 

through the DOC.  LabVIEW stores all BFR data at the initiation of simulated diesel 

exhaust gases into the BFR until approximately three minutes, the time that the DOC 

reaches thermal equilibrium.  The simulated diesel exhaust gases are then switched from

the DOC to the reactor bypass line where the analyzers measure DOC inlet gas 

composition.  A summary of heat tape and furnace settings are provided with the 

corresponding DOC mid-bed steady-state temperatures used during light-off evaluations 

in Table XIV. 
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Table XIV: Bench-flow reactor temperature settings required to maintain target  

OC mid-bed temperatures. D

Heat Tape Setting 
(C) 

Reactor Furnace Setting 
(C) 

DOC Mid-bed temperature 
(C) 

315 200 200 
375 250 250 
425 300 300 
475 352 350 
525 410 400 
575 470 450 
575 525 500 

 

sources; fresh DOCs obtained are manufactured for heavy-duty turbo diesel pickup trucks 

and deactivated DOCs from a bus fleet are obtained that were removed because of 

catastrophic deactivation occurring during field-service.  The DOCs serve two functions 

in this study.  The first is to understand how laboratory rapid poisoning tests affect DOC 

ght-off performance and material properties.  The second is to make a comparison 

s 

 

isoning tests.  The DOC is manufactured by Engelhard 

orporation and was obtained in its original housing.  The DOC is 20.3 cm in diameter 

and 20.3 cm in length with a cell density of 300 cells/in2 (cpsi).  A total of eight 5.08 cm 

 the catalyst and cut to a length of 15.2 cm.  The resulting 

catalys

eviate 

li

between laboratory poisoning DOCs and field-service deactivated DOCs in both THC 

and CO light-off performance and material properties.  The fresh commercial DOC

obtained are discussed in Section 3.2.1.  The field-service deactivated commercial DOCs 

will be described in Section 3.3.2.   Finally, Section 3.3.4 provides information pertaining

to BFR DOC samples.    

 

3.3.1 Rapid Poisoning DOCs 

A fresh commercially-available DOC for heavy-duty turbo diesel pickup trucks 

was obtained for rapid po

C

diameter cores are drilled from

t volume to engine capacity ratio is approximately 0.8 times that of a production 

device.  Therefore, poisoning effects and light-off performance degradation will d
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from those experienced during normal field service, but is sufficient for the comparison 

nature of this study. The monolithic structure is made of cordierite (2MgO-2Al2O3-5SiO2 

+ trace elements) and has a washcoat consisting of alumina (Al2O3), ceria (CeO2) and 

platinum with a loading of 0.5 gm/ft3.  The washcoat is double layered with the bottom 

layer approximately 20 µm thick and made entirely of alumina that is attached to the 

cordierite substrate.  An overlay of alumina impregnated with ceria and platinum 

comprises the second layer and has a thickness of approximately 25 µm.  The bottom 

layer acts as a bonding agent for the catalyzed top layer and acts as a filler to round the

sharp corners of the monolith.    

      

3.3.2 Field Deactivated DOCs 

Three sets of field-service, two brick, diesel oxidation catalysts were obtained 

through Fleetguard Emissions So

 

lutions that experienced high-mileage service and were 

removed due to a catastrophic event occurring while in operation in a bus fleet.  Two 

catalyst pairs, each consisting of a front and rear brick, were contaminated with engine 

aining pair has a thick soot 

deposit  

-

d 

 and are 

 

lube-oil, most likely a result of a blown turbo seal. The rem

 only at the inlets of the front and rear bricks, most likely a result of a light load

duty cycle.  Each brick of the catalyst system is used in this study to obtain an axial 

gradient of oil contaminants along the length of the catalyst as well as light-off 

performance.  Each catalyst of two brick pair is of similar size and formulation as those 

of the pick-up truck DOC used in engine-bench poisoning tests.  A summary of the field

service DOCs used during testing is provided in Table XV. 

The DOCs were unassembled from their housing and two cores were remove

from their centers.  The cores measure 5.08 cm in diameter by 15.2 cm in length

used in engine-bench light-off evaluations.  A photograph of one DOC brick and a core 

sample is shown in Figure 3.25. 
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r removal of the field-service diesel oxidation 

catalysts used n this study. 

 
Catalyst 

Designation

 
Age 

(Years) 

 
Mileage 

 
Reason For 
Removal 

Table XV: List of mileage, age and reason fo

 i

 
4363-180 

 
1.5 

 
82,562 

 
Soot Clog 

at Inlet 
  

Unknown
 

Unknown 
 

Co
29921N Oil 

ntaminated 
 

28656N 
 

2.0 
 

115,625 
 

Oil 
ntaminateCo d 

 

 
 

 
 

 
Figure 3.25: Photograph of an unassembled field-deactivated DOC with drilled core sample. 
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3.3.3 Bench-Flow Reactor DOCs 

Bench-flow reactor DOC samples consist of core samples drilled from either a 

fresh, field-deactivated, or engine-poisoned DOC.  Each core is approximately 2.22 cm in 

diameter and 7.62 cm in length.  A total of 7 catalyst samples are used during the BFR 

testing with each catalyst history shown in Table XVI.  Each catalyst used is of exact 

formulation as previously described in Sections 3.3.1 and 3.3.2.  Since phosphorus is 

known to absorb preferentially at the front portion of the first brick, only the front brick 

of each two brick pair is used to measure light-off performance with the BFR.  The two 

engine-poisoned DOCs selected for light-off performance evaluations on the BFR were 

selected because they exhibited severe light-off degradation as a result of poisoning.  

Phosphorus poisoning effects are therefore reasoned to be the most distinguishable in 

.4 Characterization Techniques 

face characterization techniques are utilized in this 

study in  

n 

 

iew 

 

these DOCs.   

 

3

 Analytical chemical and sur

 order to understand phosphorus poisoning mechanisms and for the comparison

accelerated and field poisoned DOCs.  Each surface characterization technique used in 

this study is outlined in its theory of operation, equipment and instrumentation and 

sample preparation.  Also, a brief discussion of qualitative and quantitative informatio

that can be obtained in each technique is provided.  Section 3.4.1 will discuss X-ray 

photoelectron spectroscopy.  Electron probe microanalysis and X-ray fluorescence 

spectroscopy information is presented in Sections 3.4.2 and 3.4.3, respectively. Section 

3.4.4 contains information on secondary ion electrospray mass spectrometry and Section

3.4.5 describes the powder X-ray diffraction.  Finally, Section 3.4.6 provides an overv

of scanning electron microscopy and energy dispersive X-ray spectroscopy. 
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Table XVI: List of DOC history and deactivation-method evaluated using the  
bench-flow reactor  system. 

Catalyst Type History 

Fresh Commercial Catalyst ____ 

4363-180 Field-Aged Soot Clogged 

29921N Field-Aged Oil Contamination  

28656N Field-Aged Oil Contamination 

Exhaust Injection Engine-Poisoned 6 grams phosphorus 

Fuel Injection Engine-Poisoned 6 grams phosphorus 

 

 

3.4.1 X-ray Photoelectron Spectroscopy 

 X-ray photoelectron spectroscopy (XPS), also known as electron spectroscopy for 

chemical analysis (ESCA), is used to analyze the upper surfaces of materials.  The 

principle behind XPS is the photoelectric effect

electron is dependent on the energy of th

 in which the kinetic energy of an ejected 

e impinging photon.  The relationship is 

xpressed 

 

e in equation 3.1: 

−= Φ−BEhKE ν                         (Eq. 3.1

where KE is the kinetic energy of the ejected photon, h is P

) 

 

lank’s constant, ν is the 

frequency of the i  photon, BE  relative 

to the ejected s the w ich i  because it 

is negligibly sm

XPS utilizes the photoelectric effect by ionizing atoms in a sample by bombarding 

e surface with high energy X-rays from either a Mg Kα (1253.6 eV) or Al Kα (1486.6 

).  The electrons on the surface of the sample 

absorb the X-rays energy providing enough energy to escape from the parent atoms.  An 

mpinging  is the binding energy of the parent atom

 electron and Φ  i ork function wh s normally neglected

all.   

th

eV) source in an ultra-high vacuum (UHV

electrostatic field forces the ejected photons through a sweep lens that focuses the 

photons through the aperture concentric hemispherical analyzer (CHA).  In the CHA, the 

photons encounter another electrostatic potential between two concentric hemispheres 
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bends the photon beam path an amount proportional to the applied potential.  Phot

with energy equal to the me

ons 

dian equipotential surface contact the photon detector.  

arying the voltage potential between the concentric hemispheres changes the median 

equipotential surface and thus a range of p pt.  A schematic of 

XPS operation is shown in Figure 3.26.  Photons contacting the detector are counted and 

V

hoton energies can be swe

the binding energies are calculated from Eq. (3.1) and knowing the incident X- ray 

energy, hν , and the kinetic energy of the photons, which are specified by the median 

equipotential surface.  The resulting data is presented as a plot of counts versus binding 

energy.  Since every chemical compound has a unique binding energy spectrum, 

identifi

h 

 

 

argon 

y 

 

.27. 

  

am.   

cation is made by inspection of the resulting plots [68,73,77,81,88,95].   

The XPS machine utilized in the study is manufactured by Elmore and is located 

at the University of Tennessee.  The machine uses a monochromated Al Kα source whic

produces slightly higher energy X-rays and sensitivity which translates into better 

spectrum resolution.  The DOC samples, which are required only to be flat and 

approximately 2.54 centimeters diameter with a thickness of 2.54 centimeters, are loaded 

into the UHV chamber where they are positioned under the X-ray source and left for 24

hours under high vacuum.  An Argon sputtering gun is used to clean contaminants from

the surface of the sample prior to X-ray bombardment.  The argon gun uses ionized 

gas to raster the sample surface.  When the ionized argon hits the surface, enough energ

is imparted to eject entire atoms from the surface, exposing an area approximately 3.0 µm

in diameter to a desired depth.  The argon gun penetrates the surface at a rate of 1.0 nm 

depth per minute.  Once the surface is exposed, the XPS technique can be utilized 

effectively.  A photograph of the XPS machine used in this study is shown in Figure 3

 

3.4.2 Electron Probe Microanalysis 

Electron Probe Microanalysis (EPMA) is used for DOC materials characterization

and provides both elemental and spatial information.  EPMA information is acquired by 

analyzing X-rays emitted from a sample when probed by a high-energy electron be
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Figure 3.26: Schematic of X-ray photoelectron spectroscopy operation. 

 

 
Figure 3.27: Photograph of X-ray photoelectron spectrometer hardware. 
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The X-ray detectors along with sophisticated software packages determine which 

elements the photoelectrons originated from and where on the sample surface.   

EPMA is performed in much the same way as XPS discussed in the previous 

section.  A finely focused beam of electrons from an electron gun impinges on the surface  

of the sample in an UHV.  The electron collisions impart energy to the electrons samples 

atoms inducing an energized state.  Energy is released in the form of an X-ray radiation, a 

high-energy photon, during the electron relaxation process when the electrons “jump” 

back to a lower energy state.  The X-ray energy released in the relaxation process is 

precisely the same energy required to excite the electron to the energized state.  Since 

each element has unique energy states, element identification can be made by measuring 

the produced X-rays.   

A schematic of X-ray production process used in EPMA is shown in Figure 3.28.  

The schematic demonstrates the four mechanisms that are accessible for the production of 

X-rays.  The first mechanism involves the impingement of an incident X-ray from a 

radioactive or electron gun, which collides with an electron.  Energy from the X-ray is 

transferred to the electron providing the enough energy to overcome the atoms binding 

energy.  T X-ray 

minus the potential energy barrier binding the electron.  The second mechanism is the 

release of energy from electrons that occupy vacancies in the K-orbital.  Once an electron 

is emitted from an atom it leaves a vacancy.   Thermodynamics demands that electrons 

from either the L-orbital of the M-orbital occupy these vacancies.  When this occurs, the 

electrons release energy in the form of X-rays.  The X-rays emitted from this process are 

referred to as the K-line and are unique for each element.  The third mechanism is similar 

to the second in that electrons giving up energy to vacancies in the L-orbital emit X-rays.  

In this case the permitted electron jumps are from the M-orbital and the N-orbital.  The 

X-rays emitted by this mechanism is referred to the L-line and are most utilized for the 

analysis high atomic number.   

The final process is the release of “auger” electrons.  These electrons are emitted 

when X-rays that are produced in either the L-line or the K-line collide with the electrons 

in the ou  

he energy of the emitted electron is equal to the energy of the incident 

ter most shell of the atom.  Since the ionization energy is small for these 
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Figure 3.28: Schematic of available electron emission pathways. 
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electrons, they are readily ejected from the atom.  The energy with which they leave the 

atom is equal to the potential energy of the parent-orbital binding energy minus the 

potential energy difference between the two orbitals of the shifted electrons 

[72,73,81,88].       

The Cameca Model SX-52 EPMA device used in the current investigation is 

own in Figure 3.29 and is located at the University of Tennessee.  The device contains 

 vertical wavelength-dispersive spectrometers, a high-resolution energy dispersive solid-

state detector and an electron optical column to produce a high electron beam.  The 

electron beam is produced by a self-biasing LaB6 cathode with double aperture beam 

regulation with a 0.5 to 300 nA beam current capable of fully automated alignment, focus 

and astigmatism correction.  The X-ray spectrometers have a range of 0.22 to 0.83 sin-

theta with a 40 degree X-ray take-off angle and 1E-5 sin-theta resolution.  The solid-state 

energy dispersive detector is an Xflash 2000 detector with a resolution of less than 159 

eV at 1000 counts/sec and less than 170 eV at 30,000 counts/sec.  This detector has the 

ability to analyze elements in the atomic range of Sodium to Uranium.  

Line-scans and elemental maps are obtained for each catalyst at the front and rear 

cross-sections.  Line-scans are a trace of elemental concentrations of Ce, S, P, Al, Si, Zn, 

and Ca which are measured from the emitted X-ray radiation at a cross-section of the 

washcoat.  The scans are used to determine the absorption of oil-derived contaminants 

  

sh

5

 
Figure 3.29: Photograph of the Cameca electron probe microanalysis hardware. 
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within the DOC.  Elemental maps are rastered areas of the DOC in which X-ray data is 

collected and discretized to produce an image showing the locations of each element

Sample preparation in EPMA is very important to ensure accuracy of

manner in which X

.   

 results.  The 

-rays are analyzed require that the sample be perfectly flat and 

smooth s 

 

re 

   

 

  

XRF analysis characterizes elements solely on the information received from the X-ray 

K- and L-lines rather than photoelectrons or auger-electrons as described in the previous 

section.  The X-rays produced from the K- and L-lines are called secondary electrons.  

Fluorescence is defined as the release of secondary X-rays from a surface occurring when 

an incident X-ray from an electron tube interacts with surface atoms.  The wavelengths of 

the secondary X-rays are dependent upon the elements in the sample and the intensity is 

dependent on the concentration.  Since X-ray energy is directly related to the wavelength 

with which it moves, measuring both the energy and the number of the X-rays emitted 

from a sample will determine both the elements present and their respective 

concentration.   

.  In reality this can never be obtained, however, much care is taken to come a

close to the limit as possible.  DOC samples are sectioned at cross-sections approximately

0.6 cm from he inlet and exit.  The samples are placed in a mold and embedded with a 

low-viscosity resin, which is specially blended to fill pore sizes smaller that 1 µm.  

Vacuum assisted infusion is used to ensure all gases are extracted from the epoxy befo

curing.  The molded sample is then further cross-sectioned to expose the surface of 

interest and polished to a 1 µm finish.  The resulting area of analysis is approximately 

2.54 cm in diameter and contains cross-sections of approximately 30 to 75 channels.          

 

3.4.3 X-ray Fluorescence Spectroscopy 

X-ray Fluorescence Spectroscopy (XRF) is used to measure elemental 

concentrations.  Samples can be either in a liquid or a solid phase, but not the gas phase.  

XRF measures the energy X-rays emitted from the surface of a sample in the same 

manner as XPS and EPMA.  The difference is in the way XRF analyzes the X-ray data.
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 In this study, all XRF analysis was performed at Southwest Research Institute.  

The analyzer has three detectors, a flow and a sealed proportional detector with a parallel 

scintilla

amber 

 

e, 

o a 

g 

rm a flat surface approximately 2.54 cm in diameter.  Boric acid is included to the 

mixture to act as a binder during high vacuum conditions and is invisible to the XRF 

 

 limited in their ability to measure high molecular weight 

molecules, which are difficult to “fly” without decomposing.  Typical mass spectrometers 

use either thermal de-sorption or electron impact to liberate molecules under high 

tion detector.  This combination reduces background noise and increases signal 

resolution.  In powder sampling, the method used for DOC analysis, the sample ch

is filled with helium or, if the sample allows, a high vacuum is used for high-resolution

analysis of solid mineral samples.  For DOC analysis high accuracy is required due to the 

relatively low concentrations of oil-derived contaminants and PMG elements.  Therefor

the HV technique is used for the analysis. 

XRF, like EPMA and XPS, requires a flat surface and a high vacuum for accurate 

the X-ray analysis.  This is achieved by creating a “pellet” by pulverizing the DOC t

fine powder using a mortar and pestle.  Approximately 5 g of the fine powder containin

both DOC substrate and washcoat is placed in a mold and compressed to 15,000 psi to 

fo

detectors.  

The samples are scanned and a computer interprets the gathered data by

comparing the spectra to a standards library of known elements and concentrations.  A 

matrixing program calculates the elemental composition and concentration of the 

unknown sample by statistical data fitting techniques using the standards library.  This 

process is limited, however, to elemental information present in both the standard; all 

other information is dropped along with information relating to light elements of which 

the detectors could not analyze.   

 

3.4.4 Electrospray Mass Spectrometry 

Electrospray mass spectrometry is used to determine compounds present in a 

solution.  Since almost every other mass spectrometry method requires compounds to be 

in the gas phase, they are
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vacuums.  However, high molecular weight molecules are often easily decomposed usin

these methods and are, therefore, unable to be identified.  Electrospray mass spectrometry 

enables the identification of these compounds by suspending them in solution and passin

them through a capillary held at a high electric potential to generate charged molecular 

ions.  The capillary produces a droplet, which is induced across the high potential toward

the mass spectrometer through a series of orifices within differential pumping zones. 

During the transition, either Coulomb explosion or evaporation is utilized to fragment the 

droplets and produce fully desolvated ions.

g 

g 

 

  Quadrapole mass spectrometers are used to 

isolate 

s 

e Oak Ridge National Laboratory, was used to identify chemical 

species OC 

essure.  

molecules by mass by varying an electric field.  A collection plate detector is then 

commonly used to measure the number of incident molecules passing through the 

quadrapole and produce a mass spectrum.  Compound identification is done by mass 

number calculation and by comparison to known standards.  A schematic of the 

electrospray mass spectroscopy technique is shown in Figure 3.30. 

Electrospray mass spectrometry, performed at the Fuels, Engines and Emission

Research Center at th

 present in the exhaust gases during poisoning using the RPEB.  During D

poisoning an exhaust impinger sample is taken as described in Section 3.3.6 with a 

sample flow rate of approximately 28 liters per minute at room temperature and pr

The samples are collected for at least one hour minimum, and in one extreme case 24 

hours to ensure enough particulate matter was collected. The samples are diluted to a 

 

 
Figure 3.30: Schematic of electrospray mass spectrometer operation.[97]
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50/50 mixture with acetonitrile and buffered to a pH of 10 with ammonium acetate. A 

settling time of 24 hours separates any particulate matter or oily residue present in the 

samples. The resulting clear phase material is used for the electrospray analysis [52,97].  

 

3.4.5 Powder X-ray Diffraction 

 X-ray diffraction utilizes the phenomenon known as Bragg reflections to 

determine chemical compounds present within a sample.  When a crystalline structure is 

bombarded with monochromatic X-ray radiation of wavelength λ, Bragg reflections 

result due to atomic lattice spacing that acts as a three-dimensional grating that diff

the incident X-rays at specific angles.  Reflections occur only when Bragg’s law (Eq. 

is satisfied: 

 

racts 

3.2) 

                                                )sin(2 θλ dn =                              (Eq. 3.2) 

 

where n is the order of the reflection,  λ is the wavelength of incident X-rays, d is the 

atomic spacing between atoms and θ is the incident angle between the surface and th

ray beam.  If Bragg’s law is not satisfied, then no predictable X-ray reflections will be 

produced.   

In typical XRD devices, an incident X-ray beam made up of monochromatic X

e X- 

-

rays of a prescribed wavelength is directed towards a sample.  A spectrum is produced by 

measuring the angle and intensity of X-rays reflected off the surface with the use of a 

rotating arm X-ray detector.  The spectrum consists of a series of peaks located at angles 

in which X-rays are reflected and has an intensity corresponding to the total number of 

reflected X-rays with the wavelength.  Since the spacing between atomic layers in each 

compounds crystalline structure is unique, the angle of diffraction determines the 

compound present in the sample.  In addition, it is known that the total amount of X-ray 

reflected at a certain wavelength is dependant on the available concentration of the 

compound in the sample and is observable in the XRD spectra by being proportional to 

the area under the obtained peaks [73,83,85,88].   
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In this study, approximately 1 g of washcoat material is scrapped from the 

monolith and ground to a fine powder.  The material is placed in a sample holder to a 

thickness of approximately 1.5 mm and held in place with the use of ethyl acetate and 

polyester resin.  Scans are taken using a Philips wide-angle XRD, located at the 

University of Tennessee, with a Cu Kα radiation source over a 2θ angle of 5-70o in a 

tained are used to determine the 

hemic

ng Electron Microscopy 

Scanning electron microscopy and energy dispersive X-ray spectroscopy are 

n to electron pro fluorescence 

ectroscopy.  A high-energy electron beam is focused onto a sample, which is situated 

d 

scan mode of 0.02o in 2 sec.  The XRD spectra ob

c al composition of oil-derived compounds formed within the DOC during 

poisoning. A photograph of the wide-angle XRD instrument used is shown in Figure 

3.31.   

 

3.4.6 Scanni

essentially identical in operatio be microanalysis and X-ray 

sp

within a UHV.  The surface area of the sample is discretized by a computer and rastere

by the electron beam.  The incident beam induces the release of high-energy electrons 

 

 
Figure 3.31: Photograph of wide-angle X-ray diffraction hardware. 
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and X-r nt 

ts 

 

ative 

 

op 

on 

 surface topography and morphology.  Backscattered electrons are produced 

when the incident beam electrons are reflected back to the detectors.  The intensity of the 

reflected electrons is directly proportional to the atomic number of the elements preset in 

owever, are reflected relatively deep within a 

sample

[73,81,88].   

In the present investigation, DOC surface topography is obtained using a Leo 

1525 field emission SEM outfitted with a Link Oxford EDS detector located at the 

University of Tennessee and shown in Figure 3.32.  DOC samples are taken at a location 

of 0.64 cm from the inlet of the DOC and are approximately 1 mm2 in observable surface 

area.  Washcoat is exposed by splitting the DOC along the length of a channel and 

removing all vertical obstructions.  The samples are then coated with a 3 nm over-layer of 

gold, coving the observable washcoat and cordierite substrate, and placed in the UHV.  

The gold coating allows for increased image resolution while retaining all available 

elemental information for EDS analysis.          

 

ay radiation.  An electron and/or X-ray detector count the number of incide

particles on the detector for each discretized area of the sample.  The computer interpre

the total number of electrons or X-rays counted and allocates the numerical value to an

image generating routine, which produces and displays an image based on the rel

electron and/or X-ray intensities. 

Two forms of electron information are produced by this method, secondary

electrons and backscattered electrons.  Secondary electrons are emitted from the t

surface atoms in the sample being analyzed.  They are the primary source of informati

yielding

the sample.  Backscattered electrons, h

 and therefore does not yield accurate surface topography.   

 Electron dispersive X-ray spectroscopy is used to determine the concentration of 

elements within the top few atomic layers of a sample.  X-rays emitted form the surface 

are characteristic to the parent element from which they came.  Detecting the energy of 

the emitted X-rays produces energy spectra from which elements can be identified 
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Fig  ure 3.32: Photograph of the scanning electron microscopy hardware with energy

dispersive spectrometry detector. 
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CHAPTER 4 

RESULTS AND DISCUSSION 
 
 

 This chapter is divided into three main sections devoted to a discussion of the 

accelerated phosphorus poisoning degradation on DOC light-off behavior and material 

changes using the RPEB system.  In addition, BFR light-off measurements and 

subsequent DOC regeneration are presented revealing that catalyst surface contamination 

by soot and lube-oil, rather than phosphorus, is the major contributor to DOC 

deactivation.  Section 4.1 presents THC and CO light-off performance degradation 

resulting from accelerated ZDDP introduction methods.  Section 4.2 describes the 

adsorption behavior of oil-derived contaminants within the DOC washcoat as well as 

compounds formed.  Finally, Section 4.3 discusses BFR light-off performance 

measurements and subsequent regeneration behavior of DOCs including material 

changes.    

 

 

.1 THC and CO Light-off Performance 

 The light-off temperature is typically defined as the temperature at which 50 % 

conversion of a particular species is achieved.  Engine-bench evaluations of phosphorus 

poisoned DOCs in this study, however, produce low THC and CO conversions: on the 

order of 50 % conversion or less.  Consequently, THC and CO light-off temperatures of 

fresh, engine-poisoned and field-deactivated DOCs are defined as the temperature 

corresponding to 50 % of the maximum conversion observed in this study.  Using this 

definition, the corresponding light-off temperatures for both CO and THC are 25 % and 

20 %, respectively, and are used in the comparison of the deactivated DOCs.  The reason 

for the poor conversion is low platinum content used in this particular DOC washcoat 

 
 

4
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formulation, which was designed 10 ize only soluble particulate 

reductions with minimal sulfate production u g traditional sulfur containing diesel 

fuels.    

Fresh DOCs undergoing accelerated RPEB poisoning have two initial light-off 

evaluations performed af  ensure the DOC is in 

roper condition before testing.  In each case, the fresh DOC produced THC and CO 

ght-off behavior with maximum conversions between 39-45 % and 51-66 %, with 

.  

dered 

different 

effect 

ad on exhaust phosphorus chemistry during ZDDP injection, and to obtain a 

orrelation between engine load and DOC light-off performance degradation and 

hosphorus poisoning behavior.  Bunting et al. [20] used electrospray mass spectrometry 

 that ZDDP injected into the intake 

anifo

 

 years ago to optim

sin

ter de-greening to check repeatability and

p

li

corresponding light-off temperatures between 282-287oC and 258-264oC, respectively

This suggests a slight difference in either the DOC formulations, as a result of the 

manufacturing process, or error in the RPEB measurements and need to be consi

when comparing the behavior of accelerated and field poisoned DOCs.       

 

4.1.1 Rapid Engine-Poisoned 

4.1.1.1 Intake Manifold Injection Poisoning 

 Four DOCs underwent intake manifold injection poisoning, each under 

engine load conditions.  The purpose of this approach is twofold: to determine the 

of engine lo

c

p

to identify phosphorus compounds.  They found

m ld was present in the form of phosphoric acid and adversely affected DOC light-

off performance by reacting with the washcoat.  Samples collected for analysis in their 

investigation were collected over a range of engine loads from 15 – 100 % producing no

phosphorus chemistry dependence on engine load.  In order to determine if phosphorus 

exhaust chemistry is altered by the combustion temperature, exhaust samples are 

collected at 0, 50 and 100 % engine loads.   

For each of the engine load conditions investigated using intake manifold 

injection poisoning, phosphoric acid is the only phosphorus containing species measured 

by electrospray mass spectrometry in the exhaust gases.  Figures 4.1 and 4.2 are mass  
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Figure 4.1: Mass spectra of the exhaust manifold injection poisoning sample at 50 % engine 

ay mass spectrometry. load obtained by electrospr

 

 
Figure 4.2: Mass spectra of exhaust gases obtained during intake manifold injection 

poisoning at 0 % load.  

 104



spectra for the exhaust manifold injection poisoning sample and the intake manifold 

exhaust sample at 0 % engine load, respectively.  Raw ZDDP molecules are present at a 

mass-to-charge ratio (m/Z) of 573.0 as indicated in Figure 4.1.  The 0 % engine load 

exhaust sample, which is representative of all three engine load tests, has no 

distinguishable peak at 573.0 m/Z, indicating no ZDDP survives the combustion process.  

The sample, however, does have observable peaks located at 97, 175, 195 and 283 m/Z, 

which correspond to zinc sulfate and phosphoric acid as well as their hydrolyzed 

multiples.   

In none of the exhaust samples was phosphorus pentoxide (P2O5) identified, 

which has been presumed in past studies as a possible exhaust species contributing to 

phosphorus poisoning [15-17].  Organic phosphorus compounds were not measured in 

this investigation due to difficulties in sample preparation technique.  It is, however, 

likely that the compounds are present within the soot in the form of carbon chain 

compound found in s identified as a 

able particulate that passes through the DOC without contributing to poisoning. 

 In order to identify compounds within the exhaust gases in the solid phase, SEM-

EDS are used to analyze soot samples collected during poisoning.  Figure 4.3 is a 

backscatter and SEM image of a region of soot analyzed using EDS.  The majority of 

soot collected is grouped into agglomerates of 6 µm or less in diameter.  Backscatter 

images confirm the presence of heavy atomic weight elements incorporated within the 

soot and are seen as light discolorations due to their ability to reflect incident electrons.  

EDS analysis performed on the region shows that phosphorus, sulfur, zinc and calcium 

are present in the solid phase.  It is not known, however, if these contaminants can 

become chemically adsorbed within the washcoat or simply passed through the DOC 

along with ash.  

 THC and CO light-off degradation resulting from intake manifold injection 

poisoning exhibits dependence on both the rate of ZDDP injection and the engine load        

terminating radicals as described by Zhang et al. [40].    In addition, the only sulfur 

the exhaust is zinc sulfate, which Bunting et al. ha

st
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Figure 4.3: SEM and backscatter image of soot and elemental concentrations obtain

intake manifold injection poisoning. 

 

during accelerated poisoning.  Figure 4.4 is a plot of THC and CO light-off perform

ed from 

ance 

 and 

ke 

 

off 

 

 with the amount of phosphorus accumulated in the DOCs.  CO 

g 

degradation for both the fresh and poisoned DOC with 6.0 g of phosphorus undergoing 

intake manifold injection poisoning at variable engine loads.  The decrease in THC

CO light-off performance is approximately mid-range of that observed in all of the inta

manifold injection poisoning methods with corresponding increase of approximately 

100oC and 30oC, respectively.   

Figure 4.5 is a plot of THC and CO light-off temperatures as a function of 

phosphorus introduced.  The scattering of the light-off temperatures seen in Figure 4.5 is

attributed to engine variability between evaluations.  Although there are large light-

temperature differences between consecutive measurements, a clear THC deactivation

trend is observed

oxidation is largely unaffected by phosphorus poisoning with temperatures remainin

within ± 25oC of the initial light-off temperature.   
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light-off performance comparison of fFigure 4.4: THC and CO resh and intake manifold 

injection poisoning at variable engine loads DOCs.  

 

 
Figure 4.5: Plot of THC and CO light-off temperatures as a function of phosphorus injected 

during intake manifold injection poisoning at variable engine loads. 
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 THC and CO light-off performance degradation of 0, 50 and 100 % engine load 

intake manifold injection poisoning tests are shown in Figures 4.6, 4.7 and 4.8, 

respectively.  In each test, CO conversion is largely unaffected by the presence of 

phosphorus in the exhaust gases, but does show a dependence on the engine load used 

during poisoning with high engine loads producing greater degradation.  The largest CO 

light-off temperature increase measured is 54oC and is observed in the 100 % engine load 

test, which is more than double that measured at 50 % load and triple that of 0 % load.  

Maximum CO conversions, on the other hand, are not affected by phosphorus 

accumulation within the DOC with maximum conversions equivalent to fresh DOCs, 

irrespective of the engine load during poisoning.   

THC light-off performance and maximum conversions are greatly affected by the 

presence of phosphorus with severe degradation observed in each engine load test.  100 

% engine load yields the worst degradation with a maximum THC conversion of 21 % 

and a light-off te

load tests produce similar increases in THC light-off temperatures of approximately 

140oC each.   

 

mperature of 430oC - an increase of 160oC.  The 0 % and 50 % engine 

 
Figure 4.6: THC and CO light-off comparison of fresh and intake manifold injection 

poisoning at 0 % engine load DOCs. 
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Figure 4.7: THC and CO light-off comparison of fresh and intake manifold injection 

poisoning at 50 % engine load DOCs. 

 

 
Figure 4.8: THC and CO light-off comparison of fresh and intake injection  

poisoning at 100 % engine load DOCs. 

 

 109



 The shapes of the THC and CO light-off curves convey information on the 

degradation process and how phosphorus affects DOCs conversion.  THC light-off curves 

are gradual which indicates a decrease in cold-start light-off performance in field-service 

DOCs.  Past investigations [3,12,14,18,20,35-39] show this result occurs by accumulating 

oil-derived contamination at the front portion of the DOC, which reduces the low-

temperature storage of gaseous hydrocarbons for oxidization at high exhaust 

temperatures.  In addition, a steep increase in both CO and THC conversions between 

250oC and 350oC is observed which signifies the beginning of the light-off region where 

the rate of reaction is dramatically increased due to an increase of available thermal 

energy to bypass the reaction activation energy threshold.  For CO and THC species, the 

light-off temperature region is shifted after poisoning indicating much higher energies are 

required to induce reactions by the loss of available surface area on the DOC washcoat.      

 

4.1.1.2 Exhaust Manifold

Exhaust manifold injection poisoning results in significant THC and CO light-off 

performance degradation as seen in Figure 4.9 for the fresh and poisoned DOC with 6.0 g 

phosphorus.  CO oxidation performance is severely degraded, more than in intake 

manifold injection poisoning tests, and is attributed to the formation of a zinc-phosphate 

washcoat glaze.  The glaze is a result of the introduction of raw ZDDP-doped lube-oil 

into the exhaust gases.  Bunting et al. [20] confirmed the formation of a zinc-phosphate 

glaze on the washcoat using similar methods and is found to act as a diffusion barrier 

limiting catalytic reactions.  Subsequently, the maximum CO conversion after poisoning 

is approximately 30 % less than that of the fresh DOC and is accompanied by a light-off 

temperature increase of approximately 80oC.  SEM and EPMA analyses confirm the 

formation of the zinc-phosphate glaze on the DOC washcoat surface with elemental 

concentrations that are consistent with zinc pyrophosphate (Zn2P2O7) as will be discussed 

in detail

THC conversion is aze causing a loss in 

aximum THC conversion of 10 % compared to the fresh DOC.  The degradation is not  

 Injection Poisoning 

 

 in Section 4.2.  

 also affected by the zinc-phosphate gl

m
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Figure 4.9: THC and CO light-off comparison of fresh and exhaust manifold injection 

poisoning DOCs. 

injection method, however.  Though not 

.  

ever, 

 

as severe as observed during the intake manifold 

confirmed, THC conversion in exhaust manifold injection appears to be higher by the 

redox behavior of CeO2, which is not altered by the presence of the zinc-phosphate glaze.  

The maximum conversion is higher, over 25 %, and is accompanied by a light-off 

temperature increase of approximately 65oC.  

Figure 4.10 is a plot of THC and CO light-off temperature degradation as a 

function of phosphorus injected during the exhaust manifold injection poisoning method

Again, THC and CO performance is increased after an initial ZDDP injection, as 

occurred during intake manifold injection poisoning.  In addition, a sharp CO light-off 

performance decrease is observed at high phosphorus loadings.  As in the case of intake 

manifold injection poisoning, light-off temperature measurements tend to have much 

variability and is attributed to the behavior of the engine.  A trend is observable, how

for high phosphorus accumulation.     
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 light-off temperatures as a function of phosphorus Figure 4.10: Plot of THC and CO

injected during exhaust manifold injection poisoning. 

oisoning method.  Figure 4.11 is a plot of 

CO and THC light-off perform

described in Section 4.2.  The high soot 

content is the result of fuel injector fouling by lube-oil-derived ash deposits.  During 

poisoning, the viscous lube-oil was not properly atomized with the fuel during injection.  

The lube-oil left on the injector nozzle was consumed during combustion leaving an ash  

 

4.1.1.3 Fuel Injection Poisoning 

 ZDDP-doped fuel injection poisoning produces the greatest amount of light-off 

degradation compared to any other accelerated p

ance for the fresh and ZDDP-doped fuel injection 

poisoned DOC after 6.0 g of phosphorus is introduced.  Both THC and CO performance 

is degraded with THC conversion remaining below the 20 % light-off threshold.  

Negligible CO oxidation is observed at low exhaust temperatures with a sharp conversion 

increase as temperatures approach 350oC.  As a result, the increases in THC and CO 

light-off temperatures are 85oC and 95oC after poisoning, respectively.   

The extreme reduction in light-off performance is the result of a thick soot over-

layer developed on the DOC during poisoning as 
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THC and CO light-off comparison of fresh and ZDDP-doped fuel injection 

poisoning DOCs. 

Figure 4.11: 

 

residue which fouls the injector nozzle tip, leading to an increase in soot formation.  

mized, incomplete combustion occurs resulting in low 

 325oC, 

e exhibits 

severe 

Since fuel is no longer properly ato

exhaust gas temperatures during the light-off evaluation.  A maximum exhaust gas 

temperature of 365oC is experienced by the DOC, 50oC less than maximum temperatures 

obtainable in normal operation.  Once exhaust gas temperatures were raised above

however, the DOC began to regenerate by burning more soot than is being accumulated 

on the surface and increasing the conversion of THC and CO.      

 

4.1.2 Field-Deactivated DOCs 

Each of the three, two brick, DOC pairs received from field-servic

light-off degradation.  DOC 4363-180 - soot-clogged front and rear brick inlets - 

yields the worst light-off performance of all the field-deactivated DOCs.  Figure 4.12 

compares the THC and CO light-off performance of the front and rear bricks of DOC 

4363-180 and shows more activity within the front brick over the rear.  This observation 

is in contrast to observations made in the literature, which found the front brick to 
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Figure 4.12: THC and CO light-off comparison of the front and rear bricks  

-180. of DOC 4363

 

y 

lting 

reach the 20 % light-

ff threshold in either brick.       

ced raw lube-oil deposition during field-service 

operati mum 

r 

perform the worse [13,39]; however, the rear brick of DOC 4363-180 had a noticeabl

thicker soot-clog at the inlet causing greater flow obstruction and channel blockage.  The 

blockage of channels produces a decrease in the DOC flow cross-sectional area, resu

in higher GHSV; and hence a reduction in DOC performance.  As a result, a CO light-off 

temperature difference between the front and rear catalysts of approximately 140oC with 

a maximum CO conversion difference of 10 % is measured.  On the other hand, THC 

conversion is highly affected by the presence of soot and failed to 

o

 The other DOC pairs experien

on and are better than DOC 4363-180 in both light-off performance and maxi

THC and CO conversions.  Figures 4.13 and 4.14 are plots of the front and rear catalyst 

light-off performance of 28656N and 29921N, respectively.  Each DOC shows a highe

maximum conversion and lower THC and CO light-off temperatures in the rear brick 

than in the front. This is expected based upon the observation that raw lube- 
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Figure 4.13: THC and CO light-off comparison of the front and rear bricks 

of DOC 28656N. 

 

 
Figure 4.14: THC and CO light-off comparison of the front and rear bricks  

of DOC 29921N. 
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oil introduced into the DOC assembly during field-service did not penetrate to the rear 

brick.  In addition, oil-derived poisons in the gas phase, such as phosphorus, have been 

shown to deposit preferentially in the front portion of the DOC [3,12,14,18,20,35-39]].  

Therefore, poisoning on the rear brick is due solely to normal driving conditions, which 

are not as severe.  The light-off curves of each DOC pair are similar in shape, but DOC 

28656N performs better overall.  This is attributed to a noticeably smaller lube-oil deposit 

within that close-coupled pair. 

 
 

4.1.3 Comparison and Summary 

 Figures 4.15 and 4.16 are a comparison of CO and THC light-off behavior for 

fresh, engine-poisoned and field-deactivated DOCs in which the conversions are plotted 

at three different temperatures: 200, 300 and 375oC.  These temperatures are chosen 

because s 

highly affected by poisoning in both ed and the field-deactivated DOCs, 

respective of the deactivation mechanisms.  CO light-off behavior appears to be mildly 

affected by the presence of oil-derived poisons.  The exception being the DOCs 

undergoing exhaust manifold and fuel injection poisoning methods as well as the soot 

clogged field-deactivated DOC, which contain a high level of washcoat surface 

contamination.  It is concluded that CO oxidation is not significantly affected by the 

presence of phosphorus, but rather is inhibited by soot and lube-oil derived contamination 

acting as a diffusion barrier.  On the other hand, DOCs without significant washcoat 

contamination exhibit CO light-off behavior close to that measured in the fresh DOCs.   

 Based on the CO and THC light-off behavior comparisons, intake manifold 

injection poisoning provides the best correlation to field-service deactivated DOCs.  Each 

engine load test using intake manifold injection poisoning results in THC and CO light-

off behavior comparable to the average performance measured in both the front and rear 

bricks of DOCs 29921N and 28656N – lube-oil contaminated DOCs.  ZDDP-doped fuel 

and exhaust manifold injection poisonings show behavior more consistent with DOC 

4363-18 ance 

 they are representative of the overall light-off behavior.  THC conversion i

 the engine-poison

ir

0 – soot clogged.  Fuel injection poisoning results in THC light-off perform
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Figure 4.15: Comparison of CO light-off behavior of fresh, accelerated poisoning and fi

deactivated DOCs using the engine-bench. 

 

eld-

 
Figure 4.16: Comparison of THC light-off behavior of fresh, accelerated poisoning and 

field-deactivated DOCs using the engine-bench. 
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that closely matches the conversion obtained in DOC 4363-180, but yields poor CO 

oxidation – far below that of any other DOC.  Exhaust manifold injection poisoning also 

matches the CO oxidation performance of DOC 4363-180, but the THC conversion is 

significantly higher.  It is concluded that phosphorus poisoning is best simulated using 

the intake manifold injection method, which produces a similar poisoning process to that 

experienced during normal engine operation.    

 

4.2 Materials Characterization 

 XRF analysis confirms the presence of oil-derived contaminants in all DOCs 

examined in this study.  Contamination levels of phosphorus, sulfur and zinc in each 

DOC exhibits dependence on the ZDDP introduction method as well as the engine load 

during poisoning, as shown in Tables XVII and XVIII.  As expected, DOCs that 

experienced high sustained engine loads during accelerated poisoning yield an increa

proportional to the square root of the average tion, the rate of poison 

perature dependent, with higher rates typically 

occurring at high temperatures [12,14,15,17,20].  As an example, the difference in 

phosphorus and sulfur adsorption during intake manifold injection poisoning at 0 % and 

100 % loads are 0.83 g P/gcatalyst and 1.77 g S/gcatalyst, respectively, with an increase in 

DOC inlet temperature of 250oC.   

 

Table XVII: Bulk phosphorus, sulfur and zinc composition within the front and rear bricks 

of the field-deactivated DOCs. 

DOC Brick Phosphorus 

(Mass %) 

Sulfur 

(Mass %) 

Zinc 

(Mass %) 

sed 

level of oil-derived contamination within the DOC; since the rate of diffusion is 

temperature.  In addi

adsorption on catalysts is known to be tem

Front 1.96 4.56 0.15 4363-180 
Rear 1.96 3.34 0.19 
Front 1.72 4.43 0.22 28656N 
Rear 0.71 0.42 <0.01 
Front 0.18 0.35 0.15 29921N 
Rear 0.12 0.61 0.09 
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Table XVIII: Bulk phosphorus, sulfur and zinc composition of DOCs undergoing 

accelerated ZDDP introduction poisoning. 

Fresh Variable 
Load 
Intake 

100 % 
Load 
Intake 

Injection 

50 % 
Load 
Intake 

Injection 

0 % 
Load 
Intake 

Injection 

ZDDP-
Doped 
Fuel 

Injection 

Exhaus
Manifol
Injection 

t 
d 

 
 

Element  

Concentration (Mass %) 
Phosphorus <0.01 0.53 1.72 1.49 0.89 0.64 1.19 

Sulfur 0.02 0.49 2.44 1.25 0.67 1.04 0.58 
Zinc <0.01 <0.01 0.08 0.26 0.06 0.03 0.17 

 

Intake manifold injection poisoning at 100 % engine load produces the greatest 

amount of absorbed phosphorus and sulfur on the DOC, whereas variable load intake 

manifold injection produces the least.  The small accumulation during variable load 

intake poisoning is partly attributed to cylinder wall wetting that occurs during intake 

manifold lube-oil injections.  It was observed at the conclusion of the tests that a fraction 

of the ZDDP-doped lube-oil deposits within the crankcase after bypassing the piston  

rings.  It is believed that the injection rate of lube-oil during the tests is faster than the 

rate of evaporation and decomposition within the combustion chamber.  The 

accumulation of phosphorus and sulfur is, therefore, higher since the intake manifold 

injection poisoning at 100 % engine load test remained at higher cylinder wall 

temperatures.   

Cylinder wall wetting did not occur during ZDDP-doped fuel injection poisoning, 

even though ZDDP is introduced at the same rate of 50 cc/hr.  It is thought the fuel 

than the syringe pump apparat of the lube-oil.  The effect 

of increased bur ate is a ase mo hosph ncorporated 

into the exhaust system and subsequentl g o .  lists total 

phosphorus ac n within DOCs undergoing accelerated phosphorus poisoning as 

well as the per f pho s accum d for e ethod and demonstrates the 

dependence of both temperature and method on phosphorus adsorption behavior. 

 

 

injector nozzle is more efficient in atomizing the ZDDP-doped lube-oil during injections 

us, increasing the burning rate 

ning r n incre  in the total a unt of p orus i

y depositin n the DOC  Table XIX

cumulatio

centage o sphoru ulate ach m
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Table XIX: List of phosphorus accumulation and uptake percentage on DOCs a

accelerated ZDDP introduction poisoning. 

fter 

th ho
In

Phosphorus 
A lated

rcen
lect
%) 

Me od P sphorus 
jected 
(g) 

ccumu
(g) 

 
Pe

Col
(

t 
ed 

Variable Loa
Intake 

d  
6.0 0.95 

  
16 

100 %
Int

 Load 
ake 6  

 
54  

 
.0 

 
3.22

50 % Lo
ake 6  

 
46 

ad 
Int  

 
.0 

 
2.78

0 % Load    
Intake 6.0 1.6 27 

Exhaust 
Injection 

 
6.0 

 
2.25 

 
38 

ZDDP-doped 
Fuel Injection 

 
6.0 

 
1.23 

 
21 

 

Zinc is observed in two DOCs undergoing accelerated poisoning: exhaust 

manifold injection and intake manifold injection at 50 % engine load.  On the other hand, 

 

ctrometry.  

ng at 50 

 not accurate.  

 

poisoning methods.  In addition, zinc measured in each of the field-deactivated DOCs 

no zinc is found during the intake and fuel injection methods and is consistent with the

formation of zinc sulfate in the exhaust as measured by electrospray mass spe

Since zinc sulfate is a stable particulate it does not contribute to poisoning.  It is 

suspected that the zinc measured as a result of intake manifold injection poisoni

% engine load is

Overall phosphorus accumulation during accelerated poisoning methods does 

correlate with that found in the front brick of the field-service DOCs.  The intake 

manifold injection poisoning method at 100 % engine load produces identical 

concentrations to those of DOC 4363-180.  The oil-contaminated DOC 29921N shows 

insignificant phosphorus accumulation.  This particular DOC has an unknown mileage 

history with oil-contamination that is noticeably less than other oil-contaminated DOCs, 

which explains the small amount of phosphorus accumulation.  On the other hand, sulfur 

accumulation, as expected, is typically lower in accelerated poisoning DOCs than field-

service due to the use of ultra-low sulfur diesel fuel and the short durations of the
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shows c

the DOCs. 

Elemental maps and line-scans obtained 

confirming the presence of phosphorus, sulfur and zinc within the washcoat of each DOC 

analyzed.  Contam ations m ured, however, vary fr  XRF significantly.  

Sulfur is found to be well dispersed thr

in all accelerated ph oisonin ethods, w e highest concentrations 

measured in the ZDDP-doped fuel injection method.  This measur

that obtained from XRF, which indicates the largest unt of sul in the intake-

poisoning test at 100 % engine load.  The differences in XRF and EPMA analyses are 

attributed to poison adsorption channel-to-channel variability, which is found to be as 

igh as 15 % in th phoru hosphorus deposits are generally found in a 

thin sur  µm.  

rus 

.19 show elemental maps at a cross-section of 0.64 cm 

from th

nt and 

c-

.  

e DOC 

 

onsistency with high-mileage histories as well as lube-oil contamination within 

in EPMA corroborate XRF analyses by 

inant concentr eas om

oughout each layer of the double-layer washcoat 

osphorus-p g m ith th 

ement is in contrast to 

amo fur 

h e case of phos s.  P

face layer on the washcoat with diffusion typically limited to the top 10-40

The phosphorus layer exhibits a sharply decreasing concentration gradient into the 

washcoat with the highest concentration occurring on the surface.  Phosphorus also 

exhibits a preferential adsorption at the front portion of the DOC with a decreasing axial 

concentration profile towards the rear.  These results are consistent with phospho

profiles measured in literature [3,12,14,18,20,35-39]].     

Figures 4.17, 4.18 and 4

e inlet portion of exhaust manifold, intake manifold and ZDDP-doped fuel 

injection DOCs, as well as of concentration profiles within the washcoat at the fro

the rear locations, respectively.  Exhaust manifold injection produces a thin zin

phosphate glaze on the surface at both the front and rear locations as seen in Figure 4.17

Though not yet confirmed, the atomic weight ratio of phosphorus to zinc appears to be 

consistent with zinc pyrophosphate (Zn2P2O7) and is similar to that found by Williamson 

et al. [12] using a pulsed-flame reactor.  It is suspected that the glaze is formed from 

fragmented ZDDP molecules in the exhaust gases during injection.  The fragmented 

molecules are large and unstable and readily react within the top few microns of th

washcoat, where the organic constituents of ZDDP are oxidized leaving 
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Figure 4.17: Elemental maps of phosphorus, sulfur and zinc at the inlet  

and concentration profiles at the front and rear locations of the  

exhaust manifold injection DOC. 

 
 

 
Figure 4.18: Elemental maps of phosphorus, sulfur and zinc at the inlet  

and concentration profiles at the front and rear locations of the  

intake manifold injection DOC at 50 % engine load. 
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Fig let 

and concentration profiles at the front and rear locations of the 

ZDDP-doped fuel injection DOC. 

behind zinc-phosphates and sulfates on the DOC surface.  The amount of phosphorus on 

the washcoat surface at the front portion of the DOC is approximately twice that of the 

rear.  The surface concentration of zinc, however, remains constant along the DOC 

length, indicating additional zinc compounds are formed on the DOC besides zinc-

phosphates.   

As seen in Figure 4.18, intake manifold injection at 50 % engine load shows 

phosphorus at the front location of the DOC deposits within the top 20 µm of washcoat 

with a surface concentration of approximately 7 % by weight.  This result is 

representative of the intake manifold injection poisoning tests performed at 0 and 100 % 

as well as variable engine loads which are shown in the appendix.  In addition, no zinc is 

found wit isoning 

and agrees wi nd in the 

exhaust for ZDDP 

As seen in Figure 4.19, the ZDDP-doped fuel injection poisoning produces the 

ighest surface phosphorus concentration and washcoat penetration depth with a 

ure 4.19: Elemental maps of phosphorus, sulfur and zinc at the in

 

hin the washcoat at any engine load during intake manifold injection po

th the formation of zinc sulfate (ZnSO4) as the sole zinc compou

passing through the combustion process.     

h
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phosphorus surface concentration of over 16 % by weight; more than double that in any 

other accelerated phosphorus poisoning method.  In addition, phosphorus is found to 

diffuse into the washcoat to a depth of approximately 60 µm.  Again, this result is in 

contrast to the measurements of XRF in which the ZDDP-doped fuel injection poisoning 

produces only average phosphorus accumulation compared to the other accelerated 

poisoning methods.  The results obtained from EPMA are consistent with THC and CO 

light-off performance evaluations in which ZDDP-doped fuel injection poisoning exhibits 

the greatest DOC degradation.   

EPMA analyses of field-deactivated DOCs show similar phosphorus profiles to 

those obtained in accelerated poisoning methods.  Each of the field deactivated DOCs has 

higher phosphorus concentrations at the inlet portion than at the rear.  In addition, the 

inlet portion of the rear brick shows higher phosphorus concentration than the rear 

portion of sphorus 

at the inlet portion of the DOC due to channel 

er concentrations found generally in the 

pares EMPA quantitative information obtained for fresh, field- 

service and engine-poisoned DOCs.  The tabl

ound in the rear 

 the front brick.  This is explained by an increase in the diffusion of pho

entrance effects.  Similarly, sulfur is well 

dispersed throughout the washcoat with high

front brick.  The exception is DOC 4363-180, which shows higher sulfur content in the 

rear brick.  This difference is attributed to a noticeably thicker soot-layer in the rear.  

Phosphorus and zinc concentration differences between the front and rear brick inlet 

conditions of DOC 4363-180 are shown in Figure 4.20.   

Table XX com

e lists only phosphorus concentration at the 

front portion of the first bricks, which is known to cause the largest light-off performance 

degradation [3,18,20,35-39].  Zinc is found at isolated locations on field-service DOC 

contaminated with lube-oil, which is most likely due to the formation of ash during lube-

oil burning. 

Surface phosphorus concentrations and phosphorus penetration into the washcoat 

in field-deactivated DOCs also exhibit dependence on the deactivation mechanisms: 

either soot or lube-oil contamination.  The least amount of phosphorus is f

brick of DOC 29921N, indicating that the lube-oil did not penetrate past the front brick.  

EPMA analysis on the front brick of DOC 29921N is unable to be performed due 
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Figure 4.20: Elemental maps and concentration profiles of oil-derived contaminants at the front and 

rear locations of DOC 4363-180 a) Front b) Rear. 
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Table XX: Summary of phosphorus, sulfur and zinc concentrations and washcoat 

penetration depth at the inlet portion f fresh, field-service and accelerated  

ZDDP injection poisoned DOCs. 

 
DOC 

 
Brick 

Phosphorus 
Surface 

(Mass %) 

Phosphorus 
Depth 

(Microns) 

Sulfur 
Surface 

(Mass %) 

Sulfur 
Depth 

(Microns) 

Zinc 
Surface 

(Mass %) 

Zinc 
Depth 

(Microns) 

o

Fresh - - - - - - - 
Front 6.5 16 2.7 Full 0.12 10 4363-180 
Rear 4.13 12.6 7.27 Full 0.24 10 
Front 5.92 15 2.9 Full 0.6 6 28656N 
Rear 3.0 12 0.8 Full 0.16 18 
Front No Data 29921N 
Rear 0.4 9 0.68 Full - - 

100 % 
Intake 

 7.83 42 2.44 Full - - 

50 % 
Intake 

 6.82 33 1.48 Full 0.14 12 

0 % Intake  3.3 27 1.0 Full - - 

Variable 
Intake 

 6.75 24 1.3 Full 0.1 9 

Exhaust 
Manifold 

 5.08 18 1.08 Full 5.59 9 

Oil/Fuel   16.65 54 2.69 Full - - 
 

to a large amount of lube-oil present within the washcoat, which diffuses from the 

washcoat during analysis under the low-pressure environment, creating a film over the 

sample that X-rays cannot penetrate. 

Correlations between phosphorus surface concentration and phosphorus 

penetration depth into the washcoat on THC and CO light-off performance are shown in 

Figures 4.21 to 4.24 for all accelerated poisoning and field-deactivation DOCs.  

Phosphorus accumulation is found to cause significant THC light-off performance 

degradation, regardless of the surface concentration, as seen in Figure 4.22.  Similarly, 

the depth of phosphorus penetration into the washcoat produces no THC light-off 

degradation trend as seen in Figure 4.22.  The THC light-off performance of DOC 4363-

180 is not shown in Figure 4.21 because THC conversion never exceeds 10 %.  Together, 

these observations indicate 

washcoat and is highly ation such as soot 

and lube-oil as seen in SEM images presented later in this Section.   

that THC oxidation is confined within the top 10 µm of the 

 affected by the presence of surface contamin
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Figure 4.21: atures at 25 rsion as a function of 

washcoat surface phosphorus concentration for each DOC evaluated.  

 

Plot of DOC inlet temper % CO conve

 
Figure 4.22: Plot of DOC inlet temperatures at 20 % THC conversion as a function of 

surface phosphorus concentration for each DOC evaluated. 
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 4.23: Plot of DOC inlet temperatures at 25 % CO conversion as a functFigure ion of 

washcoat phosphorus penetration for each DOC evaluated. 

 

 
Figure 4.24: Plot of DOC inlet temperatures at 20 % THC conversion as a function of 

washcoat phosphorus penetration for each DOC evaluated. 
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On the other hand, CO light-off performance is strongly dependent on phosphorus 

surface concentration and phosphorus penetration into the washcoat as seen in Figures 

4.21 and 4.23, respectively.  The outlying data points are from front and rear bricks of the 

soot-clogged field-service DOC 4363-180, which exhibit extremely poor light-off 

performance due to the loss in flow cross-sectional area.  Also observed is the large 

amount of phosphorus present on the ZDDP-doped fuel injection DOC, which lies far 

outside the domain of the other DOCs examined, but continues the CO light-off 

degradation trend.  This strongly suggests that phosphorus poisoning, rather than the 

presence of soot, is the governing factor in the degradation CO light-off performance.    

SEM-EDS analyses of DOC washcoat surfaces show the presence of surface 

contamination as seen in Figure 4.25 for DOCs obtained from a field-service and 

poisoning methods.    

The presence of soot is observed on the surface of each of the DOCs analyzed.  In 

addition, the exhaust manifold injection poisoning DOC contains a zinc-phosphate glaze, 

which is clearly visible in Figure 4.25c. 

pletely masks the DOC surface.  The soot particles on each of the DOCs appear as 

agglomerates with diameters on the order of 10 µm or less.  As seen in Figure 4.25d, 

ZDDP-doped fuel injection poisoning produces the greatest amount of soot, completely 

covering the washcoat surface and is thought to cause the severe light-off degradation.  

The large soot content is a result of high levels of soot produced by the engine caused by 

the injector deposits formed from fuel containing lube-oil.  Intake manifold injection 

poisoning produces the least amount soot deposit and phosphorus accumulation on the 

DOC surface as seen in Figure 4.25b.  Consequently, degradation of light-off 

performance of is not as severe as that measured from either ZDDP-doped fuel or exhaust 

manifold injection poisoning methods.  As seen in Figure 4.25a, the intake manifold 

injection poisoning method also produces surface contamination similar to those of DOC 

28656N,  and correlates with the similar light-off performance measured for these DOCs.  

DOC 28656N has surface contamination representative of those found in DOC 4363-180, 

however, DOC 29921N was unable to be analyzed due to the release of lube-oil absorbed 

within the washcoat under the ultra-high vacu aging.     

 The glaze has an amorphous structure and 

com

um (UHV) environment during im
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Figure 4.25: SEM images comparing field-deactivated and accelerated ZDDP injection 

poisoned DOCs surface contamination characteristics.  a) Field-poisoned b) Inta

injection c) Exhaust manifold injection d) ZDDP-doped fuel injection. 

 

 

 

 

 

 

ke manifold 
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X-ray photoelectron spectroscopy (XPS) measurements of electron binding 

energies within the compounds on the DOC surface confirms the presence of zinc, 

phosphorus and sulfur as well as catalyst ma , platinum and 

aluminum.  Figure 4.26 is a plot of electron binding energy spectra of surface compounds 

in a fresh DOC and DOC 4363-180 showing growth in oil-derived poison associated 

peaks.  The scans are taken at a washcoat depth of 30 nm after being ablated using an 

argon sputtering gun to clear the surface of carbon to produce higher resolution 

measurements.   

From the spectra, broadening of the cerium 3d5-orbital peak is observed, 

indicating that additional cerium compounds may have formed as a result of poisoning.  

In addition, the location of the phosphorus 2s-orbital peak is consistent with meta- and 

ortho- phosphorus group compounds, with a maximum peak intensity located at 189.3 

eV.  The actual phosphorus compounds are not distinguishable, however, because of 

unknown phosphorus compounds present as well as the presence of an unknown spectra 

shift caused by DOC surface charging during analysis.  The cordierite substrate of the 

DOC is a very good electronic insulator and creates a surface electrostatic charge that 

alters the binding energies measured.   

Charging also inhibits the identification of the sulfur associated peaks as shown in 

the sulfur 2p3/2-orbital peak plotted using XPSPEAKS software in Figure 4.27.  This 

particular peak is shown because it clearly demonstrates the problems encountered in 

identifying DOC surface compounds.  XPSPEAKS is a statistical software package 

designed specifically for the interpretation of

normal dis olution 

occurs when more than one compound of a particular element is present during sampling, 

producing concurrent peaks very close to one another which cannot be resolved by 

equipm nt resolution 

terials such as cerium

 XPS data.  The software approximates the 

area under the peak data provided and optimizes the distribution of a number of user 

tributions to approximate and de-convolute the peak of interest.  Conv

e
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Figure 4.26: X-ray binding energy spectra of fresh and intake manifold injection poisoning 

at variable engine load DOCs. Top-fresh, Bottom-intake manifold injection poisoning.   

 

 
Figure 4.27: Screen capture of XPSPEAK peak analysis of the sulfur 2p3/2 peak for the 

intake manifold injection poisoning DOC at variable engine loads.  
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The sulfur 2p3/2-orbital peak is best approximated using three curves, however, 

the location of the fitted peaks are not identified when compared to known standards, 

indicating that the shift of peak data due to the electrostatic charging was not corrected 

properly.  Therefore, it is suggested that further XPS studies be performed using 

standards containing compounds of interest for a comparison to the spectra obtained for 

the poisoned DOCs to identify the oil-derived compounds.    

In order to identify compounds formed within the DOC, X-ray diffraction spectra 

are collected for fresh and accelerated poisoning DOCs of each method.  Figure 4.28 is 

XRD spectra of the fresh and intake manifold injection poisoning at 100 % load DOCs.  

The XRD spectra for the intake manifold injection are similar to those obtained for the 

fuel and exhaust manifold and ZDDP-doped fuel injection methods shown in Figures 

4.29 and 4.30, respectively.  The peak denoted by ▲ at 36.68o is identified as AlPO4 and 

shows an increase in intensity indicative of DOC phosphorus poisoning.  Minor peaks of 

AlPO  located at 29.83o and 42.67o are not discernable, since they are masked by alumina 

and cordierite peaks.  Th

investigators and is thought to be the initial step in the incorporation of phosphorus into 

the washcoat [14,15]. 

The major peaks of CePO4 and Zn2P2O7, located respectively at 29.35o and 

29.57o, could not be resolved in the intake or fuel injection methods, since they are 

superimposed upon larger peaks of CeO2 and cordierite, but are thought to appear within 

the DOC undergoing exhaust manifold injection poisoning.  Minor peaks associated with 

these compounds are small and cannot be detected within the spectra.  This does not 

exclude the formation of these compounds within the intake manifold or ZDDP-doped 

fuel injection methods, since they have been observed in other studies [12,15,16,17]. 

 

4

e presence of AlPO4 in the washcoat is also confirmed by other 
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Figure 4.28: XRD spectra of fresh and intake manifold injection poisoning 

DOC at 100 % engine load. 

 

 
Figure 4.29: XRD spectra of fresh and exhaust manifold injection poisoning DOCs. 

 134



 

 
Figure 4.30: XRD spectra o  injection poisoning DOCs. 

 

 
4.3 Bench-Flow Reactor Evaluations 

 Due to the complex poisoning behavior phosphorus exhibits on DOC 

performance, a bench-flow reactor (BFR) system with better temperature and 

composition control is used to evaluate CO and THC light-off performance.  The increase 

in control of the DOC operation offers less light-off performance variability during 

evaluations, which produces a more accurate comparison between the poisoning methods 

as well as field-deactivated DOCs.  Only fresh, exhaust manifold injection, ZDDP-doped 

fuel injection and the front bricks of the three field-deactivated DOCs are compared using 

the BFR for evaluations.  Light-off performance measurements of the intake manifold 

injection poisoning DOCs are not obtained because the samples were completely 

consumed for chemical analyses before the utilization of the bench-flow reactor system 

was deemed necessary.   

 

f fresh and ZDDP-doped fuel
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4.3.1 Light-off Performance – Regeneration

 All light-off evaluations are carried out using simulated diesel exhaust gases 

consisting of 300 ppm C2H4, 500 ppm CO, 5 % CO2, 1000 ppm NOx, 10 % O2, 10 % H2O 

and balance N2 with a gas hourly space velocity of 80,000 hr-1 over a temperature range 

of 200-500oC in 50oC increments.  C2H4 is used to represent the THC species present in 

the diesel engine exhaust gases.  Measurements are taken by sweeping both the 

increasing and decreasing temperature directions to check repeatability of data as well as 

hysteresis.  The use of the bench-flow reactor system is primarily designed to control the 

DOC temperature.  Figure 4.31 is a plot of typical axial temperature distribution profiles 

across the DOC for each evaluation temperature used in light-off measurements.  Each 

temperature sweep appears to provide consistent DOC temperature conditions, however 

isothermal conditions are not maintained at high operating temperatures.  The DOC is at 

isothermal conditions during low-temperature operation, which is ideal for light-off 

performance measurements.  At high temperature operating conditions, however, the 

DO  

insufficient preheating of the simulated diesel exhaust gases with a maximum difference 

etween the DOC inlet gas temperature and the target temperature of 30oC.  In addition, 

e DOC contribute to deviations from isothermal 

emperature 

 

, 

es.  

cause of the decrease in flow rate.  The initial temperature 

crease then diminishes due to a lack of chemical reactions.  This is important because it  

 

C experiences a large axial temperature gradient resulting from the high GHSV and

b

exothermic oxidation reactions within th

conditions as seen in the 500oC evaluation shown in Figure 4.32.  The initial t

deviation between the DOC front and rear locations is approximately 40oC before 

reaction, due solely to improper preheating of the simulated exhaust gases and then the 

additional 60oC exotherm during reaction results in a highly non-isothermal reactor. 

Also observed in the Figure 4.32 is the reaction location distribution and the DOC 

wall temperature increase due to the exothermic reaction.  A slight temperature increase 

is measured at the front section of the DOC the instant simulated diesel exhaust gases are 

introduced into the system.  This is because of a significant time lag, approximately 5 s

which occurs during switching from inert gases to the simulated diesel exhaust gas

Within that short time period, the gases are heated well above that obtained during 

steady-state conditions be

in
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Figure 4.31: Typical DOC axial temperature distributions at steady-state light-off

evaluation conditions. 

 

 

 
Figure 4.32: Typical exotherms produced at four axial DOC locations during CO and C2H4 

oxidation at 500oC. 
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proves that the presence of contamination, which is known to be higher at the front 

portion of the DOC, adversely affects the catalyst activity and shifts the reaction zone 

away from the DOC inlet.  Large temperature exotherms are observed in the middle 

portion of the DOC where the majority of oxidation takes place.  Since the DOC is not 

maintained at isothermal conditions, the light-off performance measurements at each 

temperature step during evaluations are referenced to the DOC inlet temperature, which 

are constant for each DOC analyzed. 

Figures 4.33 and 4.34 are plots of the four CO and C2H4 light-off curves for the 

exhaust manifold injection poisoning DOC, respectively.  Each light-off curve represents 

a temperature sweep either in the increasing or decreasing direction.  C2H4 and CO 

conversions are significantly better than those obtained using the engine-bench due to the 

absence of soot, which competes for catalyst active sites, and the use of C2H4 which is a 

fast h re 

nearly 100 % are reached for CO t-off temperature at 50 % of 

aximum conversion is approximately 350oC, which is identical to that measured using 

the engine-bench.  This indicated that the DOC activity is not significantly altered by the 

use of simulated diesel exhaust gases.   

Also evident in the plots is an increase in CO and C2H4 light-off performance 

after the first temperature sweep.  In the first temperature sweep, at low-temperatures, 

soot and lube-oil contamination in the form of a zinc-phosphate glaze are present on the 

DOC inhibiting oxidation reactions.  At elevated temperatures during the evaluation, 

approximately 400oC and higher, significant soot and lube-oil oxidation is observed as 

reflected in the increase CO2 emissions from the DOC.  The removal of soot and lube-oil 

regenerates the DOC by cleansing the surface of contamination.  Figure 4.35 is a plot of 

CO2 emissions from the DOC as a function of temperature for the first up and down 

temperature sweep.  The CO2 concentrations entering the DOC are shown as a black line 

with calculated values of CO2 production resulting from CO and C2H4 oxidation in red.  

The difference in CO2 emissions from those calculated from the CO and C2H4 are the 

emissions from soot oxidation. 

 

ydrocarbon species, faster than the THC produced by the engine.  Conversions a

and C2H4.  The CO ligh

m
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Figure 4.33: CO light-off curves for four temperature sweeps from 200-500oC for the

exhaust manifold injection poisoning DOC. 

 

 
Figure 4.34: C2H4 light-off curves for four temperature sweeps from 200-500oC for the

exhaust 

 

manifold injection poisoning DOC. 
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Figure 4.35: Typical CO2 formation as a function of temperature during the first and 

 

CO2 emissions higher than those of the baseline at low operating temperatures are 

thought to be the result of the oxidation of SOF components within the soot.  As the 

temperature is increased, CO2 production decreases because less SOF is present in the 

soot.  At temperatures above 400oC, however, CO2 production again increases when soot 

oxidation becomes significant.  The total amount of soot removal is not calculated from 

these plots, however, because of the procedure used during evaluations.  10 % O2, 10 % 

H2O and balance N2 is used to preheat the DOC to steady-state conditions prior to the 

introduction of the simulated diesel exhaust gases.  Therefore, a large amount of soot and 

lube-oil is oxidized during the preheating without being recorded.  The decrease in 

CO2emissions in the second temperature sweep is due to the disappearance of the soot 

layer on the DOC washcoat.  As expected, THC and CO light-off performance is better in 

subsequent temperature sweeps.   

A DOC mass decrease of 0.25 g is measur

irect result of the removal of soot and lube-oil contamination.  Figure 4.36 is a 

hotograph of a typical DOC before and after BFR evaluations demonstrating the  

second bench-flow reactor light-off evaluations plotted with bypass and CO and C2H4 

contributions. 

ed after BFR evaluations, which is a 

d

p
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Fi ff 

  
oticeable effect of soot and lube-oil removal from the DOC surface.  Originally, the 

DOC o

 to 

 

 

 higher than those obtained in subsequent sweeps.  In 

additio

t these  

gure 4.36: Photograph of typical DOC washcoat contamination before and after light-o

evaluations using the bench-flow reactor. 

n

btained after poisoning contains large quantities of soot and lube-oil which appear 

black.  After BFR evaluations, the DOC appears completely white which corresponds

the clean washcoat material.  A thin region near the inlet of the DOC remains dark, 

however, even after BFR evaluations due to the increase contamination level and lower 

temperatures experienced during evaluations.    

BFR evaluations of the ZDDP-doped fuel injection poisoning DOC are similar to

those found in exhaust manifold injection poisoning in both C2H4 and CO light-off     

performance and regeneration behavior.  As previously mentioned, the ZDDP-doped fuel 

injection poisoning method produced severe soot coverage on the DOC surface, as a

result, the CO and C2H4 light-off performance in the first temperature sweep is highly 

degraded as shown in Figures 4.37 and 4.38, respectively.  The light-off temperature in 

the first temperature sweep is 30oC

n, an increase in DOC light-off performance at temperatures above 450oC is 

observed.  The increase in activity is attributed to the high rate of soot removal a
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Figure 4.37: CO light m 200-500oC for the 

ZDDP-doped fuel injection poisoning DOC. 

-off curves for four temperature sweeps fro

 

 
Figure 4.38: C2H4 light-off curves for four temperature sweeps from 200-500oC for the 

ZDDP-doped fuel injection poisoning DOC. 
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temperatures resulting in higher CO and C2H4 conversions.  In subsequent temperature 

sweeps, C2H4 and CO conversion reaches 96 % and 100 %, respectively. 

The ZDDP-doped fuel injection poisoning DOC produces a mass difference after BFR 

evaluations of 0.3 g, which is 0.05 g more than that measured in the exhaust manifold 

injection case and is consistent with the thick soot contamination observed in the SEM 

images in Figure 4.25.  However, it is not known if the mass difference of accumulated 

contamination is statistically significant.  The increase in the amount of soot removal in 

the ZDDP-doped fuel injection case is also consistent with the poor light-off performance 

obtained in the first temperature sweep, even though this DOC exhibits better overall 

conversion than measured for the exhaust manifold injection DOC.  The presence of soot 

on the DOC is, therefore, determined to be the largest contributor to DOC deactivation.    

For comparison, BFR light-off evaluations of field-deactivated DOCs are 

performed on the front portion of the first brick in the close-coupled pairs.  Results show 

sig

bench evaluations.  In a nerated during light-

off evaluations with CO and C2H4 light-off temperatures as well as maximum 

conversions approaching or exceeding those found in regenerated accelerated poisoning 

and fresh DOCs.      

Figures 4.39 and 4.40 are plots of CO and C2H4 light-off evaluations of DOC 

28656N – catastrophic oil contamination - using the BFR.  This field-deactivated DOC is 

representative of the other field-deactivated DOCs evaluated, which are shown in the 

appendix.  This particular DOC, however, exhibits a slower rate of regeneration than the 

other field-deactivated DOCs.  It is suspected that this DOC contains a higher amount of 

lube-oil embedded within the washcoat, as was observed in EPMA analysis, which 

oxidized more slowly than soot.  This phenomenon can be seen in the CO and C2H4 light-

off curves in which 100 % regeneration is not achieved until the third temperature sweep 

is performed.  Once regenerated, CO and C2H4 conversions are identical to those 

measured in the fresh DOC and regenerated accelerated poisoning DOCs.   

regeneration, however,  DOCs.  Though not  

nificantly higher CO and hydrocarbon conversions than those obtained from engine-

ddition, each field-deactivated DOC is rege

The resulting increase in light-off performance of DOC 28656N after 

 is not as high as those obtained for all other
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Figure 4.39: CO light-off curves for four temperature sweeps from 200-500oC for field-

deactivated DOC 28656N. 

 
Figure 4.40: oC2H4 light-off curves for four temperature sweeps from 200-500 C for field-

deactivated DOC 28656N.  
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confirmed, this is most likely the result of inconsistencies in the washcoat formulations, 

since none of the field-service DOCs are obtained from the same batch.  In addition, this 

DOC has an unknown mileage history which could be a factor contributing to the lower 

light-off performance. 

Figures 4.41 and 4.42 are comparisons of CO and C2H4 light-off temperatures 

before and after regeneration for all DOC light-off evaluations.  Since the light-off 

temperatures in the first temperature sweeps are reached before any significant soot or 

lube-oil oxidation is observed, the light-off temperatures obtained are considered to be 

equivalent to what would be measured if no soot oxidation occurs.  The CO and C2H4 

light-off temperatures obtained during the first evaluation are approximately 350oC, 

whereas appreciable soot oxidation is not observed until 400oC – 500oC. 

The ZDDP-doped fuel injection poisoning method is shown to accurately 

reproduce light-off degradation measured in the soot-clogged DOC 4363-180, and each 

DOC with high soot accum

exhaust manifold injection poiso e CO and C2H4 light-off 

performances obtained for catastrophic lube-oil contaminated field-deactivated DOCs.  

CO and C2H4 light-off temperatures obtained in exhaust manifold injection poisoning are 

approximately mid-range of those obtained from DOCs 29921N and 28656N.   

CO and C2H4 light-off temperatures obtained after regeneration for each DOC 

examined, however, approach or exceed those obtained in the fresh DOC.  In general, the 

field-deactivated DOCs produce a greater increase in light-off performance than the 

accelerated poisoned DOCs after regeneration.  The exception is DOC 29921N, which is 

shown to contain deeply embedded lube-oil within the washcoat, which subsequently 

regenerated more slowly.  The important fact to note is that regardless of the deactivation 

mechanism occurring during poisoning, the DOC is able to be regenerated and perform as 

well as a fresh DOC.   

 

ulation exhibits higher light-off temperatures.  Likewise, 

ning is shown to reproduc
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Figure 4.41: Comparison of the first temperature sweep CO and C2H4 light-off 

temperatures obtained for fresh, accelerated ZDDP introduction poisoning and field

deactivated DOCs using the bench-flow reactor. 

 

-

 
Figure 4.42: Comparison of the final temperature sweep CO and C2H4 light-off 

temperatures obtained for fresh, accelerated ZDDP introduction poisoning and field-

deactivated DOCs using the bench-flow reactor.  
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4.3.2 Materials Characterization 

 XRF measurements of oil-derived contaminants after regeneration reveals that 

overall concentrations of phosphorus, sulfur and zinc are maintained within the washcoat.  

Table XXI shows phosphorus, sulfur and zinc concentrations in the fresh, exhaust 

manifold and ZDDP-doped fuel injection poisoned DOCs as well as field-deactivated 

DOCs after regeneration.  The presence of poisoning species within the DOC indicates 

that neither thermal-desorption nor oxidization of the compounds occurs during the high 

temperature light-off evaluations.  This result implies that the presence of oil-derived 

contaminants within the DOC do not significantly degrade the light-off performance, 

indicating that soot and lube-oil fouling is the dominant factor contributing to DOC 

deactivation.  It is also noteworthy that DOC 29921N is found to have the least amount of 

phosphorus, sulfur and zinc within the DOC, yet yielded the worse light-off performance.       

 , 

sul

measured before DOC re aps of phosphorus, 

sulfur and zinc at the front portion of DOC 29921N as well as line-scans at the front and 

rear sections.  A layer of ash is observed on the surface of the washcoat, which is derived 

from the oxidation of soot and embedded lube-oil on the surface of the DOC.  It appears 

that the presence of ash is the reason DOC 29921N did not completely regenerate.  In 

addition, the DOC is shown to retain a surface layer of phosphorus accompanied by a 

small amount of calcium and zinc.  Since calcium and zinc within this DOC was not 

observed before regeneration, their appearance is attributed to the oxidation of embedded 

lube-oil present within the washcoat. 

  

Table XXI: Bulk phosphorus, sulfur and zinc concentrations within DOCs after bench-flow 

reactor evaluations. 

Concentration 
(Mass %) 

Fresh Exhaust 
Manifold 
Injection 

ZDDP-
Doped Fuel 

Injection 

4363-180 29921N 28656N 

EPMA analysis of regenerated DOCs also shows the presence of phosphorus

fur and zinc within the washcoat with similar concentrations and profiles as those 

generation.  Figure 4.43 provides elemental m

Pho  sphorus <0.01 1.23 1.05 0.97 0.15 1.16
Sulfur 0.02 0.58 1.04 1.97 0.39 1.79 
Zinc <0. 04 0.05 01 0.21 0.01 0.02 0.

 147



 
Figure 4.43: 

on on

El al m sph ur an

c  pro f oil-d  contam s at th t and r ations C 

299 er be ow reac aluatio Front b) Rear.  

ement aps of pho orus, sulf d zinc at the front location and 

centrati files o erived inant e fron ear loc of DO

21N aft nch-fl tor ev ns. a) 
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Figure 4.44 is a backscatter image of an ash particle observed in DOC 29921N 

and shows the presence of high atomic weight elements, which appear as bright spots.  

EDS analysis preformed on each of the light and dark spots shows the presence of heavy 

metals, most likely the result of the disassembly process in which steel fragments can 

become incorporated within the DOC.  The darker ash material, however, is comprised of 

approximately 50 % calcium, along with measurable amounts of sulfur, phosphorus, and 

zinc.  This result implies that phosphorus is contained within the soot and remains on the 

DOC surface after soot oxidation.  This observation may provide an addition poisoning 

mechanism though which phosphorus can become chemically adsorbed within the 

washcoat aside from the adsorption of phosphoric acid.   

 EPMA analysis of the exhaust manifold injection DOC after regeneration also 

shows the presence of phosphorus, sulfur and zinc within the washcoat and shows the 

preservation of the zinc-phosphate layer on the DOC surface as seen in Figure 4.45.  The 

exhaust manifold injection analyses are representative of those obtained in ZDDP-doped 

fuel injection poisoning which is shown in the appendix.  The exhaust manifold 

 
 

 
Figure 4.44: Backscatter image and composition of a single ash particle observed in DOC 

29921N after bench-flow reactor evaluations. 
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Figure 4.45: Elemental maps of phosphorus, sulfur and zinc at the front location and 

exhaust manifold injection poisoning ions. a) Front b) 

Rear.  

concentration profiles of oil-derived contaminants at the front and rear locations of the 

DOC after bench-flow reactor evaluat
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injection poisoning DOC is nearly completely regenerated, which implies that the 

presence of the zinc-phosphate glaze does not significantly alter the light-off 

performance.  This is possibly because not enough glaze is present on the DOC surface or 

the glaze is not as impervious as thought in previous studies [12,16,20].   

 An ash layer is also observed on the surface of the accelerated poisoning DOCs 

and is the result of soot and lube-oil oxidation.  The ash layers observed on these DOCs 

are much less than those observed from DOC 29921N, but more than the layers observed 

from DOC 28656N and 4363-180.  This is attributed to the accelerated poisoning DOCs 

experiencing a much heavier surface contamination and is consistent with SEM images 

shown in Figure 4.25.   
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CHAPTER 5 
 
 

CONCLUSION 

 

 
 Poisoning of diesel oxidation catalysts by ZDDP-derived phosphorus using a 

laboratory-scale diesel engine is shown to cause degradation of a DOC’s THC and CO 

ght-off performance.  Each poisoning method used in this investigation results in a 

different overall DOC deactivation mechanism which is a direct result of the different 

poisoning environments produced.  Intake manifold and ZDDP-doped fuel injection 

poisoning protocols, in which ZDDP passes through the combustion chamber, 

electrospray mass spectrometry identified the only phosphorus compound in the exhaust 

as phosphoric acid.  In addition, zinc was found as zinc sulfate, a stable particulate which 

does not react with the washcoat.  In contrast, exhaust manifold injection poisoning 

resulted in entire ZDDP molecules and fragments which can incorporate both phosphorus 

and zinc in the DOC as shown in the resulting materials characterization.   

 In all poisoning methods, phosphorus is found to deposit preferentially at the inlet 

portion of the DOC with a decreasing concentration profile along the axial length.  

Phosphorus deposited within the DOC is observed to be restricted to the surface of the 

washcoat, penetrating to a maximum depth of approximately 65 microns in the case of 

fuel injection poisoning.  Sulfur, also a constituent in ZDDP is observed to become well-

dispersed within the DOC washcoat in low concentrations.     

Poisoning via ZDDP-doped fuel injection produces the most severe light-off 

degradation through the accumulation of a thick soot over-layer on the surface of the 

washcoat.  In addition, this method also results in the greatest phosphorus accumulation 

within the washcoat, as seen in both the surface concentration as well as phosphorus 

washcoat penetration depth.  Aluminum phosphate (AlPO4) is observed within the DOC 

li
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washcoat and is thought to be the ini  the incorporation of phosphorus 

into the washcoat.  The significant soot layer present on the DOC is not indicative of 

normal engine operation, however, and is therefore not recommended as a rapid 

poisoning protocol for the accelera sphorus poisoning behavior.  The 

accumulation of soot within the DOC has been observed in long-term idle operation from 

bus fleets, as seen in the case of DOC 4363-180, which is thought to be simulated using 

this method at low exhaust temperatures. 

Exhaust manifold injection poisoning is observed to form a zinc-phosphate glaze, 

m 

wn 

,34, 

-mileage 

ss than that 

s 

roduce phosphorus 

poisoni o be 

s 

tial step leading to

tion of long-term pho

consistent with the formation of zinc pyrophosphate (Zn2P2O7) as measured by 

Williamson et al. [12].  The glaze is found on the washcoat surface creating a diffusion 

barrier limiting surface catalytic reactions.  In addition to aluminum phosphates, ceriu

phosphate (CePO4) also appears to be formed within the washcoat, which has been sho

to affect the overall redox behavior of ceria reducing light-off performance [13-17,28

35,37].  Although the formation of zinc-phosphates is not characteristic of high

DOCs undergoing normal engine operation, however, although their formation has been 

observed in the field as a result of improper engine performance.   

The intake manifold injection poisoning method produces light-off behavior, 

surface chemistry and material properties that are most similar to field-deactivated DOCs.  

Soot accumulation on the DOC during intake manifold poisoning is much le

of exhaust manifold and ZDDP-doped fuel injection poisoning and is more consistent 

with deactivation found during normal engine operation.  Different engine load 

conditions effect the accumulation of phosphorus within the DOC with more phosphoru

accumulation observed for higher engine loads.  In addition, the higher engine loads 

produce more severe light-off degradation, but remain within range of those found in 

field-deactivated DOCs.  This method is therefore, shown to p

ng that is most consistent with normal engine operation and is recommended t

used as a rapid phosphorus poisoning protocol.    

In contrast to the RPEB evaluations, bench-flow reactor experiments of exhaust 

manifold and ZDDP-doped fuel injection poisoning as well as field-deactivated DOC

show that surface contamination by soot and lube-oil, rather than phosphorus poisoning, 
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is the major contributor to DOC deactivation.  In each DOC evaluation, THC and CO 

light-off performance is regenerated to that of a fresh DOC by oxidizing all soot and 

lube-oil surface contamination.  After regeneration, phosphorus concentrations w

DOC remain consistent with those measured before regeneration.  This observation 

indicates that phosphorus adsorption is not a major factor contributing to the deactivation 

of DOC light-off performance.   

Regeneration of DOCs by the removal of soot while preserving the adsorbed 

ithin the 

phosph

ions to oxidize THC 

and CO

, 

s crucial 

OC 

h 

d 

idation performance of diesel 

oxidati

orus is in stark contrast to phosphorus poisoning observations in three-way 

oxidation catalysts in which phosphorus accumulation is found to be a severe 

deactivation mechanism [13-17].  Though not yet confirmed, it is reasoned that 

differences in catalyst formulation and operation is the explanation for these 

observations.  Three-way catalysts have a high platinum loading, typically 75 – 100 g 

Pt/ft3, while DOCs typically have a low platinum loading, 0.5 g Pt/ft3.  Since platinum 

sites are the dominant reaction nodes, at which the majority of oxidation reactions take 

place, the lower loading of the DOCs is more affected by the presence of soot.  In 

addition, three-way catalysts rely heavily on the cerium redox react

 in lean/rich cycle exhaust environment.  It is shown in this study, as well as 

others in the literature, that cerium phosphate is formed within the oxidation catalyst as a 

result of phosphorus poisoning.  The loss of available cerium reaction sites dramatically 

reduces the effectiveness of the three-way catalyst during operation.  On the other hand

DOCs are less affected by the loss of cerium reaction sites because they are a les

component of the overall catalyst formulation.     

Despite these findings, accelerated ZDDP introduction methods do recreate D

THC and CO light-off performance degradation, as found during engine testing, throug

a variety of mechanisms.  Therefore, they are recommended to be utilized as a rapi

screening tool for the development of new catalyst formulations and oil additives with the 

knowledge that soot has a significant role in the ox

on catalysts.   
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Figure A-1: Elemental maps of phosphorus, sulfur and zinc at the inlet 

and concentration profiles at the front and rear locations of the 

intake manifold injection OC at 0 % engine load. D
 

 
Figure A-2: Elemental maps of phosphorus, sulfur and zinc at the inlet 

and concentration profiles at the front and rear locations of the 

intake manifold injection DOC at 100 % engine load. 
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Figure A-3: C

Figure r field-

oC for field-2H4 light-off curves for four temperature sweeps from 200-500

deactivated DOC 29921N. 
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A-4: CO light-off curves for four temperature sweeps from 200-500oC fo

deactivated DOC 29921N. 
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Figure A-5: CO light-off curves for four temperature sweeps from 200-500oC for field-

deactivated DOC 4363-180. 
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Figure A-7: Elemental maps and c ed contaminants at the front and 

rear locations for the ZDDP-doped fuel injection poisoning DOC after BFR evaluations.   

a) Front ) Rear. 

oncentration profiles of oil-deriv
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