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ABSTRACT 

The purpose of this research was to develop a fault detection and diagnostic method that would 

be able to detect and isolate seeded faults in data that was generated from a simulated integrated drive 

generator.  The approach to the solution for this problem is summarized below. 

A novel approach for the detection and diagnoses of an anomaly due the occurrence of a fault 

within a system has been developed.  This innovative technique uses specific characteristics of the 

frequency spectrum of a univariate signal to monitor system health for abnormal behavior due to 

previously characterized component failure. 

A fault detection and diagnostic scheme was developed that used dual heteroassociative kernel 

regression models.  The first of these empirical models estimates selected features from the analytical 

redundant spectrum characteristic profile of the exciter current using power demand, a stressor, placed 

on the system as input query.  The predicted spectrum features were compared to the actual 

characteristic features, which resulted in the generation of a residual signal.  This signal was then 

analyzed in order to determine if they were the result of normal system disturbances or a predefined 

fault.  If a fault was detected, the residual signal was passed to the second model, which isolated, and 

given enough information, identified the specific component of components causing the anomaly. 

Two case studies are presented to illustrate the capability to detect, isolate, and identify a system 

anomaly. As demonstrated, the monitoring of the frequency spectrum of a single variable can provide 

adequate indication of equipment health.  With the availability of the appropriate data, as in the first 

case, it is possible for the development of three-layer detection and diagnostic systems that provides 

fault detection, isolation, and identification.  A three-layer detection and diagnostic system is essential 

in the development of more advance health monitoring and prognostic systems. Despite some 

shortcomings in the simulated data made available for this work, this method is believed to be 

applicable to data that more realistically captures real-world relationships, including sensor noise and 

faults that grow with time.  
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1 INTRODUCTION 

Technology continues to grow exponentially, allowing for new advances in every aspect of human 

activity.  With these advances, the complexification of equipment and processes, herein referred to as 

systems, has given rise to issues of cost efficiency, availability, reliability, and safety.  These issues are 

obviously important in the operations of nuclear, chemical, and other industrial facilities where major 

failures or catastrophes often results in substantial damage and lost.  Similar importance has been 

gained in the operation of high-performance ships, submarines, airplanes, space vehicles, transit 

systems, communication networks, and other structures where safety, mission criticality, and material 

value are at stake.  There is no question that a failure in such advance systems, especially safety-critical 

systems, can lead to extremely serious consequences in terms of human mortality, environmental 

impact, and economic loss.  Therefore, ever more vigilant maintenance activities are required in order to 

assure the reliability and continued operation of these crucial systems.  

The maintenance activities around these advance systems have historically been preventive in 

nature, usually utilizing a scheduled-based maintenance (SBM) philosophy.  The implementation of this 

philosophy, however, comes at the expense of availability and cost efficiency.  As the costs of these 

practices continue to increase and the availability of these systems become critical, many organizations 

are turning to condition-based maintenance (CBM) philosophies has an effective alternative.  These 

philosophies advocate the use of both real-time and historical data to determine the necessity of action 

allowing for the prioritization of maintenance resources and the optimization of system uptime. 

As an example, nuclear power utilities have been exploring monitoring technologies for the 

purposes of determining equipment condition, specifically sensor operation.  Under original licensing 

requirements, nuclear power plants are required to recalibrate all safety critical instruments at each 

refueling outage.   This calibration requirement gives rise to a couple of concerns that are typical of the 

SBM philosophy.  The first of these concerns is that faulty equipment (sensors in this case) goes 

undetected between scheduled maintenance raising issues of reliability. The second concern deals with 

the ineluctable fact that every sensor is not in need of maintenance, and therefore unnecessary costs 

are incurred by the operator. However, monitoring real-time or near real-time data allows for the 

detection of faulty equipment.  Not only does this potentially improve plant safety and reliability with 

early detection of faulty equipment before the scheduled outages, it also has brings about direct and 
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indirect cost savings by reducing the amount of unneeded maintenance and the overall length of an 

outage [1]. 

With advantages of improved system operation and safety while reducing overall operation cost, 

the concept of CBM is gaining wider acceptance spurring increase research in its implementation.  The 

increased interest in CBM research has also led to the development of intelligent condition-based 

maintenance systems (CBMplus).   The CBMplus concept approaches turnkey maintenance beginning 

with the detection and diagnoses of system fault, the determination of system reliability, the requisition 

of required components, and the scheduling of craft personnel.  The detection and diagnostic 

functionality of such systems is usually, at least conceptually, accomplished by an integrated diagnostics 

system.  With the addition of prognostic functionality, predictions of a system's future health become 

feasible. This combination of detection, diagnostic, and prognostic functionalities form the basis of what 

is often referred to as a Prognostic and Health Management (PHM) system.  A refined PHM system is the 

cornerstone of a fully developed CBMplus system. 

The importance of PHM development and its role in CBMplus systems can be inferred by the 

following illustration. The Department of Defense has made PHM and CBMplus implementation a 

required consideration for any new system via its 5000.2 policy on defense acquisition [2].  The policy 

states that "program managers shall optimize operational readiness through affordable, integrated, 

embedded, diagnostics and prognostics, and embedded training and testing, serialized item 

management, automatic identification technology (AIT), and iterative technology refreshment" [3].  The 

development of the United States military's Joint Strike Fighter (JSF) is an exemplification of this 

particular policy. 

As PHM systems are the cornerstone of CBMplus systems, fault detection and diagnostics are 

critical in the development of effective PHM systems.  With this in mind, the work presented here does 

not focus on prognostics, but rather the detection and diagnosis of system faults.  Readers interested in 

current prognostic research and development are referred to Mishra et al [4] for life consumption 

monitoring, Liao et al [5] for proportional hazards modeling, Lu and Meeker [6] for general degradation 

path modeling, and Coble [7] for prognostic parameter identification.  The component of a PHM system 

in which this paper gives attention includes: the detection of a system fault, the subsequent isolation of 

that fault, and to some degree, the identification of said fault. 
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1.1 Objectives 

As previously discussed, substantial improvements in maintenance, safety, cost, and overall 

availability can be made with the incorporation of monitoring, detection, diagnostic and prognostic 

technologies into health management systems of equipment, processes, and vehicles.  As shown in 

Figure 1, a PHM system is commonly built on several modules which use captured system data to 

monitor for changes, determine if those changes are due to a fault, diagnose the fault, and then predict 

the remaining useful life (RUL), time of failure (ToF), or probability of failure (PoF).   

As mentioned, this work focuses on the fault detection and diagnosis components of the 

conceptual PHM system illustrated in Figure 1.  Figure 2 summarizes the basic construction of a fault 

detection and diagnosis system.  The first task, which forms the base of the Figure 2 pyramid, is the 

differentiation of perturbations from disturbances and faults. Once a fault has been detected, it is then 

isolated by determining the kind, the location, and the time of detection.  The capstone of the fault 

system pyramid is fault identification; whereas, the size and time of onset is determined.   However, the 

importance of this task varies depending on the researcher and his/her interests.   Many researchers 

consider the first two tasks the most important; therefore, defining fault diagnosis as fault detection and 

isolation (FDI) [8].  Even so, others like Simani et al [9] argues that fault identification is the most 

important of all fault diagnosis tasks and call for more research to be done in this area.  Nevertheless, 

both considerations are given attention in this paper with the application of the fault diagnosis method 

presented herein. 

The following paper introduces a novel approach for monitoring the frequency spectrum of a 

single variable for the purposes of symptomatic residual generation, fault detection, and fault 

diagnostics (i.e., isolation and identification).    As a demonstration, this approached is applied to OEM 

provided, simulated integrated drive generator (IDG) data to illustrate its capability to:  

 Extract pre-specified features from a spectral analysis of a single measured variable and 

via a comparison of the expected and actual features, generate symptomatic residuals.  

 Subject these symptomatic residuals to a probabilistic reasoning method to differentiate 

between system disturbances and actual faults. 

 Finally, isolate and identify the specific defect if the hypothesis that the residuals are 

indeed a symptom of a system fault is true.  
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Figure 1:  Conceptual Prognostic and Health Management System 

 

 

 

 

Figure 2: Conceptual Fault Diagnosis System 

 



 

 5 

 

1.2 Document Structure 

Hereafter, the following report is organized into six sections.  Section 2 presents a two prong 

literature review. The first subsection discusses the general components of fault detection and 

diagnostic system and the various methods of implementing the functionality of those components.  The 

second subsection briefly surveys how fault detection and diagnostics has been applied to different 

systems of a modern aircraft. 

Section 3 presents an in-depth review of the modeling method used as the foundation of the 

technique described in this report.  Kernel regression, the non-parametric modeling approach, is first 

explained. Following this, the initialization of a model, including architecture types and variable 

selection, is discussed.  With a working model initialized, the next topic considered is that of 

optimization via the selection of the kernel bandwidth, the method of vector section, and the 

appropriate number of memory vectors. Finally, several commonly used performance metrics are 

presented for completeness. 

Section 4 describes the simulation data that has been used to demonstrate the proposed concept 

presented in this report. This section also includes a description of the aircraft component, the 

integrated drive generator, that the data has been simulated. 

Section 5 introduces the new concept of building a fault detection and diagnosis system when only 

a single signal is available.  Unlike the approach of the more common traditional empirical models that 

normally utilities correlated input and output variables, the method presented in this section uses the 

frequency domain of a single variable alone with selected stress conditions to monitored system health.  

The development of the models used in the detection and diagnosis is discussed here.  Some model 

development considerations that are more specific to the data has been included here instead of the 

more general items discussed in Section 3.  Models were developed for fault detection and diagnosis 

systems for each of the two simulated data sets discussed in Section 4.  Although several performance 

metrics are discussed in Section 3, the majority of these metrics were not applicable due to the specific 

architecture used.  The only exception was the accuracy metric.  As a result, the performance for not 

only the models but that of the detection and diagnosis systems are presented graphically.  

Section 6 summarizes the work presented in the previous section and presents the drawn 

conclusions.  The final section, Section 7, takes an opportunity to presents some areas of research that 

should be consider as this method is expanded in future work. 
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2 LITERATURE SURVEY 

Obviously an exhaustive survey of the literature on fault diagnosis systems and their applications 

is beyond the scope of this work.  Nevertheless, a review of current literature concerning the two 

immediate subjects of interest is presented in the following two subsections.  First, the subject of what 

defines a fault diagnostic system, as reference by the literature, is explored by discussing the general 

implementation of fault detection, isolation, and to some degree, identification. Then a perspectival 

survey of various applications of fault detection and diagnosis systems to aircraft systems is provided. 

2.1 Literature of Fault Diagnosis Systems  

A fault diagnosis system can be defined as a system that is used to “detect faults and diagnose 

their location and significance” [10].  A fault diagnosis system consists of the tasks illustrated in Figure 2: 

 Fault Detection:  Make a determination that either everything is operating within 

the specified normal range or that something has gone wrong. 

 Fault Isolation: Determine the kind and location of the fault, e.g., which component 

has degraded. 

 Fault Identification:  Estimate the size, nature, and onset of the fault. 

As discussed, the importance of either one of these tasks relative to the other is subjective. The 

consensus seems to be that fault detection and isolation are almost equally important for any practical 

diagnostic system.  Fault identification, on the other hand, may not be consider as important unless 

some prognostic determination is required or some reconfiguration action is involved.  However, the 

argument of which tasks are most important is beyond the scope of this paper as are the specific details 

of implementing either one of them.   

2.1.1 Common Terminology Used in Fault Diagnosis 

Before continuing with the discussion of fault diagnosis implementation, a review of some 

commonly used terminology is prudent. Recognizing the difficulty of understanding contributors' goals 

and hindering the comparison of various approaches due to the inconsistent use of diagnostic 

terminology, the International Federation of Automatic Control (IFAC) technical committee 

SAFEPROCESS (Fault Detection, Supervision, and Safety for Technical Process) started an initiative to 

standardize the definitions for terms used in fault diagnosis.   SAFEPROCESS was first created in 1991 as 

a steering committee within the IFAC due to increasing interest in the field of fault detection and 
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diagnosis, and then became a technical committee in 1993.  As a result of the committee's efforts, these 

terms and their respective definitions are prevalent in the current literature.  As such, the following list 

of terms in Table 1, adopted for use in this paper, is largely consistent with SAFEPROCESS terminology as 

present in Isermann and Ballé [11].  

2.1.2 Fault Detection  

According to Isermann [12], the methods for fault detection can be classified on the basis of the 

following four quantities: 

1. Measurable Signals 

2. Nonmeasurable State Variables 

3. Nonmeasurable Process Parameters 

4. Nonmeasurable Characteristic Quantities 

Over the last several decades, there has been substantial amount of work in the area of process 

supervision and fault detection for class one; whereas, only a limited amount as been done for the 

remaining categories.  With that in mind, the following section presents brief discussions of those 

detection methods used for measurable signals. 

2.1.2.1 Single Signal Limit and Trend Checking 

The simplest and most frequently used detection methods  are often found in those operations 

that  utilized statistical process control and are referred to as limit and trend checking or  geometrical 

analysis [9].  Such methods are restricted to directly checking a single measureable variable for changes 

in magnitude or trends, and then alarming when a threshold is reached.    

Limit checking is applied to an absolute value in which maximum and minimum threshold limits 

are established for a single measurement signal     .  Here, the normal state is defined as: 

                (2.1) 

Trend checking is similar in form to that of limit checking with the exception being  that the method is 

applied to the trend of a measured signal       such that: 

                   (2.2) 

Monitoring a measured signal for faults by tracking its change may be advantageous because detection 

of an anomaly can occur earlier than that of absolute value checking.  This advantage is due to the fact 

that trends permit a certain level of prediction for the measurement's progression.  Nonetheless, both 

limit and trend checking, whilst simple to implement, has serious drawbacks including [10, 12, 13] : 
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Table 1:  Common Fault Diagnosis Terminology 

TERM DEFINITION 

Disturbance An unknown (and uncontrolled) input acting on a system 

Fault 
A unpermitted deviation of at least one characteristic property or parameter of the system from 

the acceptable, usual, or standard condition, i.e., a  malfunction of a system component 

Error 
A deviation between a measured or computed value and the true, specified or theoretically 

correct value 

Residual A fault indicator which is based on a deviation between the measured and model-based values 

Symptom 
 A change in an observable quantity from that which is considered normal behavior, i.e., an 

observable effect of a fault 

Fault 

 Detection 
Indication of the faults present in a system 

Fault  

Isolation 
Determination of the kind, location, and time of detection of a fault—follows fault detection 

Fault 

Identification 
Determination of the size and time of onset of a fault—follows fault isolation 

Fault 

Diagnosis 

The indication of a fault and the determination of the kind, location, and time of detection—

follows fault detection and includes fault isolation (fault identification, depending on the 

researcher, may also be included in this definition) 

Monitoring 
A continuous real-time task of determining the conditions of a physical system, by recording 

information, recognizing and indication anomalies in the behavior 

Isolable Fault A fault that is distinguishable from other faults using one residual set 

Quantitative 

Model 

Use of static and dynamic relations among system variables and parameters in order to describe 

a system's behavior in quantitative mathematical terms 

Qualitative 

Model 

 Use of static and dynamic relations among system variables and parameters in order to describe 

a system's behavior in qualitative terms such as causalities or if-then rules 

Diagnostic 

Model 

A set of static or dynamic relations which link specific input variables to specific output 

variables, i.e., symptoms to their respective faults the faults 
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 Necessity to have an a priori knowledge of the characteristics of the measurement 

signals 

 Dependency of measurement characteristics on the operating states of the system 

which, are not known a priori and are subject to change beforehand 

 False alarms due to a measurement's sensitive to noise, random input variations, 

and changes in operating points 

 False alarms in other system measurements' due to spillover effects from  another 

single measurement 

 Detection of faults  usually after the output values have been considerably affected   

However, it should be pointed out that prediction modeling of deterministic or stochastic 

measurements       beyond that of trend analysis can also be employed.  This not only reduces or even 

avoids the fore mention drawbacks, it also allows for the estimation of the time that the threshold may 

be exceeded.   This particular capability provides an operator the opportunity to determine courses of 

action that could prevent more costly consequences.  This philosophy of determining the future state of 

a system for the purpose of early intervention has led to the introduction of model-based fault 

detection. 

However, it should be pointed out that prediction modeling of deterministic or stochastic 

measurements       beyond that of trend analysis can also be employed.  This not only reduces or even 

avoids the fore mention drawbacks, it also allows for the estimation of the time that the threshold may 

be exceeded.   This particular capability provides an operator the opportunity to determine courses of 

action that could prevent more costly consequences.  This philosophy of determining the future state of 

a system for the purpose of early intervention has led to the introduction of model-based fault 

detection. 

2.1.2.2 Multiple Signals and Consistency Checking 

The use of consistency checking of a system's measured values is an established approach of 

system monitoring that greatly enhances the process of not only fault detection but fault diagnosis as 

well.  The development of such fault detection systems is primarily based on two methods of generating 

fault indicating symptoms: physical redundancies or functional redundancies. 

Hardware (physical) redundancy, consider the traditional approach to fault diagnosis design, uses 

three or more components for the same function.  A deviation in the consistency check of signals from 
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redundant devices initializes a voting logic and switching mechanism to isolate and identify the fault.  

This type of redundancy is widely used in safety critical systems throughout industry. 

Hardware redundancy is effective and very reliable (if identical equipment is used); however, such 

systems do present some drawbacks.  For example, subtle degradations in system behaviors are difficult 

to detect with hardware redundancies.   More significantly, the design of such systems require extra 

equipment, a larger foot print to accommodate the equipment, and additional maintenance costs which 

are counterintuitive to modern fault detection-diagnosis research and CBM philosophies [11, 14].  

As a result of the decreasing cost of digital hardware and software alone with ever increasing 

computational power, considerable attention has been and continues to be given to the area of using 

functional relationships between variables to ‟cross check” each other.  Such schemes may roughly 

divide into two categories, knowledge-base approaches, associated with qualitative, heuristic reasoning 

models and analytical redundancy approaches that exploits quantifiable, analytical rich information for 

the development of mathematical and data driven models.  

 Knowledge-based approaches make use of limited-knowledge to derive heuristic descriptions of a 

system in the form of qualitative models or rule-based representations.  With heuristic models, accuracy 

is not necessarily governed by the precision in the description or the complexity of the model.  In fact, a 

knowledge-based model developed with a high level of abstraction with less complexity can still produce 

accurate results. Another advantage with the knowledge-based approach concerns that of 

measurement precision. The preciseness of measurements is of critical importance for model 

performance if they are precise in their description. However, increase measurement imprecision can be 

tolerated by those models developed with a high level of abstraction.  Nevertheless, this advantage does 

have the drawback of being less sensitive in the presence of smaller faults.   

Unlike those systems where a knowledge-based approach is appropriate, systems that have 

substantial amounts of sensor information are well suited for an analytical redundancy approach.  

Information rich systems can be described by either mathematical or empirical models.  The resulting 

models form the foundation of fault detection and diagnosis schemes based on analytical redundancy.  

These model-based schemes take advantage of using dissimilar measured values to cross-compare each 

other, rather than replicating each piece of hardware. The comparison between a measured signal and 

its estimation, which is generated by a mathematical model of the monitored system or component, is 
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often referred to as consistency checking.  The resulting difference is a residual signal     , and is 

generated in such a way to satisfy the following condition: 

                (2.3) 

The residual signal of a non-faulted system should be zero valued when the fault signal      is zero. This 

is the basis for fault detection [15].  However, due to the presence of noise, modeling error, and other 

disturbances, the resulting residuals are generally not zero for actual fault free systems.  As a result, a 

fault detection schemes must include the capability to evaluate the generated residual signal in order to 

differentiate those non-zero values that are due to disturbances and actual faults.   Therefore, model-

based fault detection can be thought of as a two-stage process:  residual generation and decision-

making (including residual evaluation) [10, 16, 17].  Figures 3a and 3b illustrate the basic concept of a 

two stage fault detection scheme via analytical redundancy.   

2.1.2.3 General Structure of Residual Generation  

Because residual generation is central to model-based fault diagnosis systems, a variety of 

methods have been purposed throughout the literature.  The key to residual generation for the 

purposes of fault detection is the creation of residuals that are sensitive to faults and insensitive to 

disturbances that may produce false alarms. Referring back to the residual generation blocks of Figure 

3A and 3B, the redundant signal        is the result of the function    , and alone with the actual output 

measurement signal        a set of residuals       is computed by the difference function    .  

The residual generator block depicted in Figure 3A is referred to as an output estimator. Here, F1 is 

a function of both input and output that results in an estimation of a linear function of the output     .   

In the case of an open-loop system, F1 is an input-output description for an actual measurement.  F1   of 

Figure 3B is referred to as a system simulator in which the actual signal      is not required unlike that 

of an output estimator.  However, the type, be it simulator or estimator, of method used, a residual 

generator is a linear processor whose input consist of both input and output of the system being 

monitored.  

Figure 4 shows the general structure of a residual generator as depicted by Patton and Chen [10].  

The structure is expressed mathematically as: 

                          (2.4) 

The transfer matrices,       and         are achievable using linear systems, and according to the 

definition via equation 2.3, the residual is designed to be zero for fault-free systems and nonzero in the 
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presence of faults.  In order to satisfy this condition, these matrices must satisfy the following 

constraint: 

                    (2.5) 

Equation 2.4 is a generalized representation of all residual generators [10].   The design of the residual 

generator is simply based upon the selection of the transfer matrices,       and      , which satisfy 

Equation 2.5.  Therefore, different parameterizations of       and       results in the various methods 

of residual generation. 

As alluded to previously, the generation of residuals is cardinal in analytical based fault diagnosis, 

and has resulted in a variety of methods found throughout literature. The majority of those methods fall 

within three classification: 

 Parameter estimation [11, 12, 15] 

 Parity vector (relation) methods [16] 

 Observer based approaches [18-20]    

However, the discussion of implementation of these various methods and their appearances in 

literature is beyond the scope of this paper, and is left for the interested reader to survey.  

 

 

Figure 3A:  Model-Base Fault Detection via Output Estimator 
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Figure 3B:  Model-Base Fault Detection via System Simulator 

 

 

Figure 4: The General Structure of a Residual Generator 
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2.1.2.4 Decision Making via Change Detection  

With the generalization of a residual generator defined, the realizable creation of quantifiable 

symptoms is possible as demonstrated from the variety of literature references.  Now, the question of 

the second task of fault detection comes to bear.  How are the residual signals evaluated in order to 

detected subtle changes in system parameters that are indicative of faults?  As discussed with limit and 

trend checking, a decision process could be as simple as a threshold test on the instantaneous values of 

the moving averages of the parameters, especially in the case of deterministic systems.   However, the 

posed question becomes particularly significant in the presence of noise, disturbances, and other 

unknown influences.  The following discussion focuses on the detection of faults from the resulting 

symptomatic changes within residual signals of a stochastic system utilizing statistical methods.   

Mean and Variance Limit Checking 

Simani et al [9] describes one class of detection methods as an extension of the limit checking of 

instantaneous values.  Instead of monitoring the moving averages as in deterministic systems, the 

changes in the residuals, as referenced to the normal behavioral mean and variance values, are 

monitored.  

Consider a set of residual measurement signals               
 

 — where   is the     dimension of 

a q-dimensional space. The mean and variance are given by the following equations respectively:  

                               
    (2.6) 

The analytic symptomatic changes are obtained via the following: 

                 (2.7) 

Most often, the time instant t represents the unknown time of the fault occurrence, i.e.     .  A 

detection limit is utilized for the separation of normal operation from operational behavior that is the 

result of some fault.  This limit is usually a fixed threshold       which, is defined as: 

                     (2.8) 

Note that the choice of epsilon   is a compromise between the detection of the small faults and false 

alarms. 

Hypothesis Testing via SPRT 

Another class of decision methods exploits standard hypothesis testing routines that employ 

likelihood ratios.  Garvey [21] describes two methods that have been historically used for fault 
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detection, cumulative sum (CUSUM) and the sequential probability ratio test (SPRT).    For the purpose 

of change detection,  the general implementation of SPRT is discussed in detail. 

The sequential probability ratio test is a statistical technique developed by Wald for deciding 

between two hypotheses    and    [22].  For the purposes of this discussion the hypotheses under 

consideration are: 

   :  The system is most likely to be in a fault-free state 

   :  The system is most likely to be in a faulted state 

Let    denoted   successive observations of the residual signal  .  Assume that            is the 

probability of observing      given    is true           Then Wald's sequential test of    against the 

alternative    consists of the following general procedure (in logarithmic form) [23]. 

1. Calculate the logarithmic likelihood ratio. 

     
          

          
  (2.9) 

2. Compare the ratio to a lower (A) and upper (B) bound that are defined by the 

following equations, respectively. 

    
 

   
 (2.8)                    

   

 
 (2.10) 

Alpha     and beta      determines the strength of the test, where 

   is the false alarm probability, i.e., the probability of rejecting   when 

   is true 

   is the missed alarm probability, i.e., the probability of accepting    

when    is true 

When    is less than A, then the null hypothesis is accepted. On the other hand, if    is greater 

than B, then the null hypothesis is rejected, and a fault is indicated.   However, when     greater 

than A but less than B, then the state is indeterminate. 

2.1.3 Fault Isolation 

With the successful detection of a fault comes the task of isolating its occurrence.  From the 

definition in Table 1, fault isolation is the determination of the type, the location, and the time of 

detection.  This next section presents two fault isolation procedures, described by Patton and Chen [10, 

15], that begin by the passing of the symptomatic signal to residual-based module designed to 

distinguish specific faults.  
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2.1.3.1 Structured Residual Set 

The first approach is based on the use of structured sets of residuals.  Each residual is designed to 

be sensitive to a particular fault or subset of faults while remaining insensitive to the remaining faults.  

There are two schemes employed in designing a structured residual set, dedicated and generalized.  The 

structural scheme is defined by the sensitivity and insensitivity relationship between the residuals and 

faults.  Figures 5 and 6 [10] illustrates dedicated and generalized structured residual diagrams, 

respectively, for the isolation of three different faults. 

The dedicated scheme is the simplest isolable residual structure that allows all faults to be 

detected simultaneously. However this structure is difficult to implement in practice, and there is 

normally no design freedom to achieve other desirable performances such as robustness against 

modeling errors.  Whereas the more commonly used scheme is the generalized structured residual set 

that makes each residual sensitive to all faults but one.  In order to make the appropriate fault decision, 

simple threshold logic may be utilized in either of the two methods. 

 

Figure 5:  Dedicated Structure Residual Set 

 

Figure 6:  Generalized Structure Residual Set 
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2.1.3.2 Fixed Direction Residual Vector 

An alternative method of achieving the isolability of faults is through the design of directional 

residual vectors.  As seen in Figure 7, the directional vector   , corresponding to a particular fault, lies in a 

fixed fault specific subspace of the residual space.  The basis for the isolation of a fault is the fault 

signature subspace    .  The fault signature subspace is determined by defining the effects associated with 

each unique fault.  A fault is isolated by determining which fault signature creates the smallest angle 

with the fault specified subspace. In Figure 7, for example, the directional vector    corresponds best 

with fault signature subspace         because they obviously create the smallest angle. 

2.1.4 Fault Identification 

Recall that the importance of fault identification is subjective in the field of fault diagnosis.  As the 

preceding discussions have explained, fault detection and isolation can be achieved relatively easily.  

However, there has not been much research in the area of fault identification conducted; therefore, 

literature information is extremely limited. 

The previous section presented an introductory discussion for the development of fault detection 

and diagnosis for measured signals.  Traditional fault detection methods via single output signals include 

limit and trend checking and single measurement analysis.  However, most of the attention has been 

focused on fault diagnosis of multiple signals using residuals, resulting from system redundancy, for 

detection and isolation functions. 

 

Figure 7:  Directional Residual Vector for Fault Isolation 
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2.2 Fault Detection and Diagnosis in Aerospace Literature 

The introduction touched on the how the PHM system for the planned JSF is the key component 

of the CBMplus support system for this weapon platform.  The expected benefit of an integrated PHM 

system on this aircraft and it ability to initiate the autonomic functions as compared to legacy aircraft 

includes: 

 Higher reliability of the aircraft, improving overall readiness 

 Near real time assessment of aircraft 

 Monitoring of life usage data for components parts 

 Reduction in the cost of aircraft maintainability 

The JSF program is a unique opportunity for taking advantage of available PHM and CBM technologies. 

Designers and researchers are mindful that this program involves more than the development of a 

multi-branch aircraft.  It is the development of a new concept that centers on the platform of an 

intelligent aircraft that encompasses a comprehensive PHM capability that enhances flight safety and 

deployment readiness by engaging its own automated logistics, which Hess and Fila [24] of the Naval Air 

Systems Command (NAVAIR) referred to as an Autonomic Logistics (AL) system.  The AL system is a 

CBMplus supportability concept that will enable the health management system (HMS) of the JSF to 

initialize its own maintenance procedures; therefore, allowing for better utilization and more efficient 

operation of the aircraft while maintained at lower cost.  Since the JSF is currently under development, 

designers have a unique opportunity to take full advantage of the on-going research and resulting 

technologies to not only build an intelligent aircraft but to do so with aging aircraft in mind.  Even 

though the engineers of the JSF have the benefit of incorporating a PHM system early on, one of the 

major goals is to design a system that can be adapted to legacy aircraft.  Therefore, the addition of 

instrumentation or sensors for the purpose of performance evaluation beyond that is currently available 

is to be avoided. 

 Various health monitoring, detection, and diagnosis technologies have been developed for 

aerospace applications.  The following section describes some to the ongoing health management 

research that is currently being conducted in the area of aircraft and aerospace systems. 

2.2.1  Propulsion, Structural, and Avionic Health Management 

There is and will continue to be substantial research in the health management of aerospace 

systems.  Tolani et al [25] introduces a new algorithm to identify slow time scale anomalies for aircraft 
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gas turbine engines using symbolic dynamics and information theory.  Furthermore, they compare this 

new tool with traditional pattern recognition tools of principal component analysis and artificial neural 

network.  Brotherton et al [26] discusses several of the approaches to the development of monitoring , 

diagnosis,  and prognosis of  component failures in turbine engines.  The authors present techniques 

that couple neural nets and automated rule extractors.  The resulting integrated approach is then 

compared to traditional PHM systems.   

Munns and Kent [27] talks about the three principal structural degradation modes of commercial 

and large military aircraft:  accidental damage, environmental damage, and fatigue.  They present their 

discussions with specific examples of these degradation mechanisms and their possible causes.  A brief 

explanation of how air carriers are currently developing and implementing structural maintenance 

programs is included.  Finally, the authors present sensor and data management strategies that might 

be incorporated in a health management system.  However, these strategies involve the development of 

and implementation new sensor technologies on new aircraft that offers little benefit to legacy aircraft. 

  Vichare and Pecht [2] presents the state-of-practice and the current state-of-research in 

electronics health management. Their review presents discussion of four current approaches including 

built-in-test (BIT), use of fuses and canary devices, monitoring and reasoning of failure precursors, and 

modeling accumulated damage based on measured life-cycle loads.   The authors provide good 

descriptions of each approach alone with their drawbacks.  For example, they noted that despite the 

apparent sophistication of BIT, the approach tends to have either a significant number of false alarms, or 

missed alarms.    

Orsagh et al [28, 29] reports on their work in developing prognostics for avionic systems.  They 

selected two avionics applications, a switch-mode power and a global positioning system (GPS) receiver, 

to demonstrate the validity of applying prognostics techniques to electrical systems that had been   

developed for mechanical systems.  Both applications were accelerated to failure by exposing them to 

specific environmental conditions. The GPS was placed into an environmental chamber exposing it to 

thermal cycling while a principle feature value (PFV) was monitored.  From a series of thermal cycling of 

two different units, the authors were able to develop an equation that predicted the PFV at a given 

number of cycles.  The power supply devices were accelerated to failure by exposing them to extreme 

electrical and thermal stresses.  With this device, the authors reported that diode failure was the 
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resulting failure mechanism, which is indicated by a notable feature in the shape of the power loss curve 

resembling that of electro-migration. 

2.2.2 Electrical Generator Health Management 

As previously discussed, aircraft require a substantial amount of electrical power for take-off 

flight, and landing operations.  This power is provided both externally and internally with the integrated 

drive generators (IDG) being the main on-board power source.   The fast and accurate detection and 

isolation of faults are necessary for the safe and reliable operation of the IDG and the aircraft. Several 

approaches for fault detection and diagnosis of synchronous generators are described in literature.   

Megahed and Malik [30] use an artificial neural network (ANN) to emulate the dynamic behavior 

of the synchronous generator.  The scheme that they present consist of two feed forward neural 

networks (FNN).   Its function is to differentiate between three generator states:   normal, external fault, 

and internal fault.   The neural network is trained using various data sets. The first ANN model consists 

of seven currents with each current having five samples totaling 35 inputs, which are mapped to the 

three generator states.  It is a three-layer FNN with 18 and 10 tan-sigmoid neurons in the first and 

second hidden layers respectively, and the output layer contains 3 log-sigmoid neurons.  A trip-logic 

module is utilized to alarm when it confirms that the output of the fault detector is either an internal 

fault or a prolonged external fault.  If an internal fault is indicated, then the second ANN model is 

activated.  This logic module is also composed of two parts.  The first part is a three-layer ANN that 

classifies the phases as either faulty or healthy.  The first and second layers consisting of fourteen and 

seven tan-sigmoid neurons respectively and the output layer has three log-sigmoid neurons.   The 

second part of the module is a fault classifier that averages the FNN output.   

However, Tantawy et al [31] points out that the use of neural networks requires large, 

comprehensive data sets to capture different modes of operation, and  unless sufficient data is available 

to cover the range of faults and conditions, then the classifier will be inadequate.   Therefore, they 

present a physical based fault detection approach that focuses on the electrical subsystems.    This type 

of model usually calculates the excitation current mathematically and compares it to the measured 

exciting current.  Tantawy et al expands on the approach by creating a hybrid model that captures the 

machine transients.  Their model successfully simulated both normal and fault conditions and showed 

that faults were apparent in some signals, like damper winding currents.   
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A fault in the generator, inter-turn or ground, produces additional flux harmonics in the air gap 

which can be related to the cause of the fault.  The flux is not pure sinusoidal even during normal 

operation due to the magneto-motive force (mmf) distribution.  However under faulty conditions, the 

flux harmonics in the  air gap are detectable due to the increase magnitude in different windings [31]. 

 Several techniques have been proposed that uses these harmonics.  Harmonics caused by a fault 

condition in the field and armature windings are used to classify field and armature inter-turn faults, 

short-circuited diodes, phase to ground faults, and external faults [32].  Field and armature shorts can be 

diagnose by using the harmonic generated in the rotor winding [33].   However, the detection of faults 

due to changes in the harmonic flux of the air gap requires additional sensors, which would be expensive 

if implemented in legacy aircraft. 

As discussed, much work as been performed in the areas of monitoring aerospace system for 

faults and identifying their cause.  Several approaches have been proposed for accomplishing these 

tasks including neural networks, physics-based models, and protective components like fuses or canary 

devices.  This paper, however, introduces a novel approach for an aircraft generator using an empirical 

(data-based) model, specifically memory-based kernel regression, and extracted features from the 

frequency domain of a single measured signal. 
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3 EMPIRICAL MODELING APPROACH 

Modeling is a fundamental tool used by scientist and engineers from virtually every field to 

describe relations between observable events or situations.  The first models developed, like Newton's 

Laws, were based on general observations made from the interactions of the environment and are 

referred to as first-principles models.  It is these mathematical models and the physical equations 

resulting from them that modern science and engineering is based.  However, first-principle models are 

rarely able to incorporate all of the effects an environment may have on a system.  Even if highly 

accurate first-principles models are developed for a system, the models will become obsolete as the 

system degrades or changes from its original design basis. 

However, first-principles models are not the only category of modeling available to modern 

science and engineering, especially with the aid of computers.  Empirical models developed from 

historical data consisting of parameter measurements collected over the operating range of a system 

seek to learn the relationships between these recorded measurements to foster better process 

understanding.  With improved understanding of the relationship between operating parameters, the 

monitoring of a system for the detection and diagnoses of an abnormal event becomes possible.  In 

short, a data-based empirical model's ability to "learn" parametric relationships allows for the 

development of supervised systems,  defined by Isermann [12] as a system that is able to detect, 

evaluate, and diagnose, the occurrence of faults.  

The previous section examined a method that utilizes predictive models to estimate operational 

parameters, system states, or measured signals.  These predictions are compared to nominal values to 

generate residuals, which are used for system health evaluation.  If a fault is detected, the symptomatic 

residuals are processed to identify patterns that are indicative of prior anomalies.   This work seeks to 

extend the use of data-based models as nominal signal estimators for the purpose of cross checking 

actual corresponding signals.  This cross checking function serves as a way to generate symptomatic 

residuals that are very similar to traditional residual-based fault detection and diagnosis routines. 

The next sections discuss the development of a non-parametric modeling approach using kernel 

regression, which has been successfully deployed in on-line monitoring applications. First, a general 

overview of kernel regression is introduced.  Following this discussion, various model architectures 
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utilizing this approach are presented.  Thirdly, model performance metrics relative to system or process 

health monitoring are identified.  Finally, a brief discussion of model optimization is presented. 

3.1 Kernel Regression 

Kernel Regression (KR) is a non-parametric regression technique that estimates an expected value 

of a real random variable with respect to a conditional probability distribution.  This particular definition 

seems to be broad and non-specific.  Therefore, for the purpose of the work described herein, kernel 

regression is specifically defined as an empirical modeling technique that utilizes a probability density 

function alone with historical memory observations to estimated response variables based on a 

weighted average.  This section provides an overview of the KR algorithm as detailed by Garvey [21] 

beginning with a top-level description of the methodology.  Following this, his method of quantifying 

similarity via distance measures and kernel functions are discussed.  

 Atkeson et al [34] defines kernel regression as a statistical approach of fitting constants using 

locally weighted averages of historical, exemplar observations.  Garvey [21] details kernel regression via 

the following example.  Consider the case where n observations of an input, X, and an output, Y, has 

been collected.  In order to estimate the output for a given observation of input, the following equation, 

referred to as the Nardarya-Watson estimator, can be utilized. 

      
                 

 
   

              
   

  (3.0) 

where:  n is the number of exemplar observations in the KR model 
   and Yi are the     observation of the input and output exemplars respectively 

    is a query input 

             is a similarity function 

In order to facilitate the understanding of the mechanics of the Nardarya-Watson estimator, Garvey 

discusses the steps implemented in KR and relates each step to terms of the estimator.  As such, the KR 

methodology is broken into three steps for a given query of inputs: 

1. Calculate the distance of the query from each input exemplars. 

2. Convert the distances to weight, similarities, via a kernel function. 

3. Determine the output prediction by calculating a weighted average of the output 

exemplars. 

Before discussing each of these steps, it is necessary to clarify the inputs X and outputs Y, which the KR 

model seeks to imitate.   These input and output are observations vectors, which form the memory of 
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the KR model and are often referred to as exemplars.  For purposes of discussion, let the input 

observations consist of p input variables and the output observations consist of m output variables.  

Therefore, the X input and Y output exemplars make up the memory matrices with dimensions of     

and    , respectively.  

3.1.1 Step 1 – Distance Calculation 

A distance calculation quantifies the proximity of the query to each input exemplar.  Although 

several distance functions may be used, the Euclidean distance, which is also referred to as the L2-norm, 

is the most common.  For a single query input, the Euclidean distance for the          exemplar is 

given by: 

                          (3.1) 

When the query is an     input vector, the Euclidean distance for the     exemplar becomes: 

                    
           

              (3.2) 

where:     is the     exemplar observation vector of p process variables 

  is the query observation of the p process variable or measures. 

The resulting column vector d contains the distance of the query to all of the input exemplar 

observations.  As mentioned, there are several alternative distance functions that may be used.   One 

such alternative is the Adaptive Euclidean distance.  This function not only calculates the query distance 

but it also excludes those queries that lie outside the minimum and maximum input exemplar 

observations.  However, a detail discussion of the Adaptive Euclidean distance function is beyond the 

scope of this paper, and the interested reader is referred to Garvey and Hines [35]. 

3.1.2 Step 2 – Similarity Quantification 

The     vector of distances is then transformed in to a     vector of weights via a kernel 

function in order to quantify the similarity of the query vector to the input exemplar.  Although several 

kernel functions, such as the inverse distance, exponential, absolute exponential, uniform weighting, 

triangular, biquadratic, and tricube kernel [34] are available, the most commonly used and generally an 

adequate selection is the Gaussian kernel function.  The following equation defines the     weight 

corresponding to the     distance of the     distance vector: 
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     (3.3) 

The result of Equation 3.3 is a column vector of n weights that represent the similarity of the     

query vector x to each observation vector of the input exemplar.   Note that the h term in equation 3.3 

refers to the kernel's bandwidth, which can be thought of as a regularization parameter.  A more 

detailed discussion of this parameter is presented in subsection 3.3.1. 

3.1.3 Step 3 – Output Prediction 

With the final step, the prediction is the sum of the product of the transposed weight vector and 

the output exemplar   divided by the sum of the weight vector.   The following equation generalizes this 

step: 

      
       

 
   

   
 
   

 
   

   
 
   

  (3.4) 

With each of the KR step described, the similarity function is now mapped to a real number, a 

weighting coefficient, based on a Gaussian probability density function and the relative distance 

between queries and historical observations.   Substitution of terms has transformed the expression on 

the right side of equation 3.0 to the generalized weighted-average expression of equation 3.4.  The next 

task is the implementation of equation 3.4 as the core of several data-driven prediction models. 

3.2 Model Initialization 

With the general method of mapping a query to weights presented, attention is now turned to the 

initialization or format of a specific model.  In order to determine the format of a model, it is necessary 

to determine the architecture type and required variables as illustrated by Figure 8.  The following 

discussion focuses on three architectures, which are utilized by this specific kernel regression 

methodology, and the optimum selection of predictor and response variables. 

3.2.1 Architecture Types 

The architectures (inferential, heteroassociative, and autoassociative) are characterized by the 

number and type of model inputs and outputs.  An inferential model (a) uses a query with p input 

parameters to predict single output parameter.  A heteroassociative model (b) illustrates the use of a 

query with p input parameters to infer m output parameters.  Note, however, m may or may not be 

equal to p, but must be great than one.  Finally, an autoassociative model (c) uses a query with p input 
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parameters to predict corrected values of the same query as output values.  Garvey [21] describes each 

of these architectures using the three step kernel regression process discussed in the previous section.  

Those descriptions are summarized in the following paragraphs.  

Furthermore, the same conventions and simplifications utilized by Garvey are also used here, and 

are as follows: 

 The query observation is assumed to be within the training range which allows the 

application of Euclidean distances as represented by Equations 3.1 and 3.2. 

 Noting that the weighted sum of the outputs is normalized by the sum of the 

weights, Garvey defines the sum of the weights as a scalar via the following: 

     
 
      (3.5) 

 Using the preceding equation and the definition of weights, Equation 3.5, the 

Nardarya-Watson estimator can be written as: 

      
        

 
    

 
 

   

 
 (3.6) 

At this point, the three steps of the KR modeling process are applied relative to each of the three 

architectures.  The first two steps, the distance calculation and the similarity quantification are the same 

for each of the architectures; therefore, are presented in reference to all three.  The third step however, 

is different for each of the architectures and presented individually for each. 

 

Figure 8: Modeling Architectures 
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Recall that the first step is the calculation of the distance of query x from each of n exemplar 

within the memory matrix.  The direct application of Equation 3.2 results in the following column vector 

of n distances. 

   

       

       
 

       

   (3.7) 

With the distance vector determined, the next step is its transformation into a column vector of n 

weights via a kernel function as illustrated by Equation 3.3.  As stated, the Gaussian kernel function most 

commonly used, but several alternatives are available.  The following is the column vector of n weights 

is the resulting similarity quantification. 

   

  

  

 
  

   (3.8) 

Now that the first two steps of the kernel regression methodology are complete, the third and 

final step of the process, the output estimation, is presented.  It is important to understand that 

although the type and number of expected output parameters is dependent upon the particular 

architecture, the form of the Nardarya-Watson estimator is valid for all three architectures.  In 

consideration of this, the outputs of each architecture type, respective to its application of Equation 3.6, 

are briefly discussed. 

3.2.1.1 Inferential Architecture 

The inferential architecture uses a     query, where p represents one or more process variables, 

to predict a single output value   .  Although inferential KR models most commonly use independent 

input query values to infer a related, dependent output value, they can be used to estimate a specific 

input parameter.  Nevertheless, this particular architecture produces a single output via the following 

application of Equation 3.6: 

      
   

 
 

 

 
        

 
     

 

 
                       (3.9) 
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3.2.1.2 Heteroassociative Architecture 

It follows that if an inferential KR model infers a single output, then it can be adapted to infer 

multiple outputs.  As already discussed this type of model is referred to as a heteroassociative model, 

and is characterized by its use of a query with p inputs to predict m outputs.  Like inferential KR, the 

outputs of a heteroassociative model may or may not be that of the inputs, but again it is mostly used to 

predict related dependent values of the input values.  Obviously, only the results of this third step differ 

in the modeling process.  That is, given a column vector of n weights, the m output predictions for a 

heteroassociative KR model are calculated according to the following application of Equation 3.6: 

      
   

 
 

 

 
                       

 
                 

   
 
      (3.10) 

The       term of in the above equation is the     exemplar observation of the of the       exemplar 

parameter. 

3.2.1.3 Autoassociative Architecture  

Finally, an autoassociative KR model is like the heteroassociative model in that it uses a query of 

multiple input parameters to estimate multiple outputs parameters.  However, unlike the 

heteroassociative model, this particular KR model does not make predictions of related, dependent 

variables.  An autoassociative model is a correction model.  This type of model takes a query of p 

parameters in which one or more of these parameters may be faulted and predicts the expected value 

of the parameters.  In order to achieve this functionality, Equation 3.6 must be modified by replacing the 

output exemplars Y with the input exemplars X.  Therefore, the input exemplars perform the same 

function as that of output exemplars.   These corrected output parameter values are determined by the 

following version of Equation 3.6: 

      
   

 
 

 

 
                       

 
                 

   
 
      (3.11) 

The       term is the      exemplar observation of the      exemplar variable. 

3.2.2  Variable Selection 

There are a number of proposed techniques that have been used for the optimal selection of 

input variables for an inferential model.  Examples of such methods include Ordinary Least Square 

Regression and Least Absolute Shrinkage and Selection Operator Regression (LASSO).  However, due to 

the fact that the problem of variable selection is improperly posed, the success of these and other 
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proposed techniques is limited.   Practitioners often find that the various techniques can produce 

different selection results due to either minor changes within the data or different assumptions that 

were used to derive a specific methodology.  Therefore, practitioners often use  very simple correlation 

methods to determined those variables that are statistically related [36]. 

Correlation analysis is the most simple and straightforward method used for the selection of 

predictor variables.  In the simplest terms, this analysis identifies those variables having the highest 

correlation with corresponding response variables.   This analysis usually assigns a value indicating the 

strength of the correlation between two variables in the form of a coefficient.  These coefficients range 

between -1 and 1 which is a measure of how one variable varies with another.  The sign of the 

coefficient indicates the direction in which the variables are correlated with the other. 

With correlation analysis, there exists the possibility of selecting a large number of predictors in 

the presence of many highly correlated variables.   Depending on the functionality of a specific model, 

this tendency of selecting too many predictors can be an advantage or disadvantage.  For example, the 

function of an autoassociative model is to generate responses that are corrected versions of the 

predictors.  In this case, the selection of several highly correlated predictors is advantageous.  On the 

other hand, the selection of several highly correlated predictors for and Inferential or heteroassociative 

model can be a disadvantage due to the complexity added to the model.  Nevertheless, in either case 

the practitioner can control variable selection by using limiting criterion to defining levels of correlation. 

However, one of the more notable disadvantages of using correlation analysis is the methods 

sensitivity to the presence of outliers and spikes due to random noise within data sets.  For example, an 

analysis of a data set with two independent random noise variables with similarly timed large noise 

spikes could indicate that these two variables could have a correlation coefficient of over 0.9.  

Therefore, it is important that the data be inspected and if necessary clean by not only removing outliers 

and random noise but also by correcting other common problems such as missing data, drifting data, 

stuck data, collinearity, and sampling rates. 

3.3 Model Optimization 

Previously sections described a three step methodology, which a query in the form of an 

observation vector with p variables is inputted into a memory-based kernel regression model in order to 

predict the occurrence of an event within a monitored process.  Three architectures types along with 

the most common and simplest technique for the selection of input variables for which this 
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methodology can be initialized were also presented.  With the exception of architecture, the parameters 

that most significantly impact a model's performance have only been mentioned in passing and 

therefore require more detailed discussion.  The parameters that best optimize a memory-based kernel 

regression model include the kernel bandwidth and memory vector selection (including selection 

method and the number of vectors selected. 

3.3.1 Kernel Bandwidth 

Recall that the kernel function of Equation 3.3 contains an h term that defines the kernel's 

bandwidth.  This term is considered as a modeling regularization parameter because it has a significant 

effect on the amount of bias and variance associated with the model.  One challenge of data model 

development is to achieve accurate results with minimum bias and variance.  Due to inverse affect that 

bandwidth size has on the bias and variance generated by a model, the practitioner must seek a balance 

between them while maintaining acceptable accuracy.  Therefore, the selection of an appropriate 

bandwidth is a key part of non-parametric regression fitting. 

In the case of kernel regression, the regularization parameter affects the bias and variance 

relationship by controlling which effective distances are deemed similar [21].  An explanation of how 

this control is exerted  either increasing or decreasing the size of the kernel bandwidth, illustrated by 

Figure 9, is best presented by Hines [1, 37]. 

Consider a Gaussian kernel function with a small bandwidth, Plot A of Figure 9.  This kernel 

function generates large weights for those input exemplars that are very near to the query observation.  

As a result, only a small number of these exemplars significantly influence the model's prediction.  

Therefore, information contained within the model's memory matrix with greater distances from the 

query is not utilized in its output estimation.  This under utilization decreases the model's capabilities to 

produce accurate, consistent estimates for those parameters that lie between training states and results 

in an overall rough input-output relationship. 

Next, consider a Gaussian kernel function with a large bandwidth, Plot B of Figure 9.  In this case, the 

larger bandwidth is less specific and assigns significant weights to a larger range of distance values.  

Therefore, a relatively large number of exemplars would influence the resulting estimation and act to 

smooth the input-output relationship.  Although a smooth input-output relationship is desirable, the use 

of a kernel bandwidth that is too large would cause the model's predictions to approach the mean value 

of the exemplar.  As a result, the weights become evenly distributed across all the observation instead of 
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being concentrated on a single or handful of data.  In this situation, the model’s fit is over smoothed, 

thus, biasing the solution. 

The selection of a kernel bandwidth is a tradeoff between the perceived roughness and 

smoothness parameters that balances the variance and bias, Plot C of Figure 8.  This concept of bias-

variance tradeoff leads naturally to the minimization of a prediction error that combines both of these 

model characteristics.  A common measure of prediction error is the mean squared error (MSE). The 

MSE for a single variable is defined by the following equation [37]: 

     
 

 
          

     (3.12) 

where:    is the number of test observations 
     is the model prediction of the ith test observation, and 
    is the actual  value of the ith  test observation 

MSE is also defined has the sum of a model's variance and bias squared as formulated in the following: 

                      (3.13) 

As a result of Equation 3.13, MSE is a useful criterion for the determination of optimal bandwidth, and 

thus applied to the work presented herein.  MSE, as discussed later, is the most cited performance 

metric indicating a model’s accuracy. However, unlike the determination of a model's accuracy, the MSE 

in this case is determined by data sampled from the same set as that used for model training. 

 

Figure 9:  Effects of Bandwidth Size[38] 
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It should be noted that technically, equation 3.12 includes a weighting term in the summation.  

However, Härdle [39] concluded that the weight function does not significantly influence the selection 

of the proper regularization parameter.  Therefore the weighting term is often assumed to have a value 

of one. 

3.3.2 Vector Selection 

Vector selection is critical in the development of an empirical non-parametric model.  As 

discussed, step 1 of the kernel regression methodology compares a query with historical observations 

called exemplars or memory vectors by quantifying a distance measure between them.  Since a query is 

compared to each observation within a memory matrix, the computational load for models containing 

large training data sets can become a hindrance, especially when dealing with near-real-time health 

management systems.  In order to lessen the computational burden of large, complex, memory based 

models, a subset of observation vectors is chosen from the training set.   The following section focuses 

on the three methods of selecting sets of exemplars and the considerations that affect the number of 

vectors chosen.  

3.3.2.1 Selection Methods 

There are five traditional vector selection methods (min-max, vector ordering, min-max/vector 

ordering combination, fuzzy c-means clustering, and Adeli-Hung clustering) described by Hines and 

Garvey [40].  The latter two, fuzzy c-means and Adeli-Hung clustering methods, are relatively new and 

have not been integrated into commercial monitoring systems [37].  Given this consideration and for the 

reason that the min-max, vector ordering, and min-max/vector ordering combination is computationally 

less intensive, only these three methods are discussed for the sake of brevity.  

The first of these methods is min-max in which the exemplars are selected via the following 

procedure.  The data matrix is first broken into a series of bands.  Second, two vectors, one containing 

the local minimum and the other containing the maximum, are selected from each band.   

The number of bands    is determined via the ratio of the number of exemplar specified nm and 

divided by twice the number of p variables.  The ratio is expressed by the following notation: 

   
  

  
  (3.14) 

The above definition can be rationalized by considering the general case of selecting n vectors 

form a training data matrix with p variables.  The number of bands that the data set must be broken into 



 

 33 

 

is a function of the number of exemplars that are to be selected from each band.  As the name of this 

selection method implies, the minimum and maximum values of each variable are selected from each 

band.  As a result, 2p vectors, one containing the minimum value and one containing the maximum 

value, are selected from each band.  Therefore, the number of bands needed to select n vectors is equal 

to the ratio previously defined.  It should be noted that the min-max vector selection technique 

guarantees that the vectors are bound by the training's data's operating range.  However, the selected 

vectors may not sufficiently cover the intermediate values between the local minimum and maximums.  

The next selection method is referred to as vector ordering.  This method orders the vectors 

according to some criteria and then periodically samples them until the specified number, nm, of 

memory vectors is obtained.  The criteria for ordering the vectors in this discussion is based on the 

Euclidean norm N, which is the square root of the sum squares the ith observations of the p variables. 

       
      

      
        

  (3.15) 

 The vectors are then ordered from smallest to largest of the calculated Euclidean norm.   The number of 

sequential sampling steps ns is determined by dividing the total number of vectors n by the number of 

vectors to be selected nm.  The memory vectors are selected by sampling every ns sorted vector.  It 

should be noted that the Euclidean norm is a distance measure of the ith observation from the origin.  As 

a result, a vector ordering based on the Euclidean norm is related to the location of the origin and 

therefore the data should be mean-centered and scaled to unit-variance before this selection method is 

applied. 

The third selection method is a combination of the min-max and vector ordering methods.  The 

previously discussed selection methods are combined in an effort to select vectors that bound the data 

operating range (min-max method) and sufficiently span the intermediate values (vector ordering).   The 

two methods are combined via an algorithm consisting of the following two steps.  First, vectors are 

selected according to the min-max vector selection and removed from the data matrix.  Then, the 

remaining vectors are selected using vector ordering.  To summarize, 2p vectors are selected via min-

max selection with the remaining vectors         selected by using the vector ordering method.   

3.3.2.2 Number of Memory Vectors 

The number of exemplars selected to be used in an empirical model controls the number of 

operating points that represents the monitored system.   Similarity based modeling techniques utilize a 
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query's similarity to historical observations to infer the model's response.  It can be seen that the 

comparison of a query vector to large data set becomes not only cumbersome, but computational 

expensive.  As vector selection is an important consideration for model development, the identification 

of the appropriate number of memory vectors should also be carefully considered.  Too few memory 

vectors will give a fast run time, but poor overall model performance.  On the other hand, too many 

memory vectors results in improve model performance, but at slower computational speeds.  Just as 

modeling is the result of compromises between model performance and model complexity, the number 

of memory vector is a compromise between performance and run time.  This balance is based on the 

specific needs of the modeling system. 

As with other characteristic optimization, the goal of optimizing the number of exemplars is to 

minimize model accuracy or uncertainty while an acceptable operational coverage.   Both of these 

objectives are balanced with minimizing model run time. 

3.4 Model Performance Evaluation 

Recall that a supervised system must be able to detect, evaluate, and diagnose the occurrence of 

faults.  At the center of a supervised system, is a predictive model that emulates a monitored system's 

operation during normal conditions.   Therefore, the performance of a predictive model used for 

purposes of system monitoring must be evaluated and quantified within the context of the following 

three questions: 

1. How well does the model predict sensor or process parameter values? 

2. How does the model respond to faulted inputs values? 

3. How much degradation within a sensed signal or monitored system must occur 

before the model is able to detect it? 

The following section presents five performance metrics that answers the above questions by 

quantifying the accuracy, sensitive, and detectability for a given model.  It should be noted that these 

particular metrics are traditionally used to evaluate the performance of an autoassociative model.   

Hence the models presented herein is based on heteroassociative architecture, the discussed metrics, 

with the exception of accuracy, are not directly applicable.  Nevertheless, a brief review of each metric 

has been included for completeness. 
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3.4.1 Accuracy 

The first of these metrics quantifies the agreement between the model's estimates and the actual 

sensor or parameter values given unfaulted input values.  As alluded to earlier, the most commonly 

cited accuracy metric is simply the mean square error.  However, for the purpose of quantifying a 

model's ability to produce predictions both correctly and accurately, this metric should be generated 

from data that was either sampled before the training and testing data was sampled, or form a different 

data set all together[41].  Although accuracy is a significant indicator of a model's performance, its 

ability to monitoring a system for the purpose of fault detection must also be quantified. 

3.4.2 Sensitivity  

The accuracy of a model quantifies its response to unfaulted input data, but for fault detection 

systems, a determination of how a model's response to faulted input must also be made. These metrics 

are generally referred to as sensitivity measures; that is, how sensitive is the model to input data from 

operations under abnormal conditions.   Model sensitivity is simply the change in an output prediction 

    produced by a change in the input   : 

   
    

   
  (3.16) 

The following discussion presents two sensitivity metrics used to quantify the effect of input data from a 

faulty system. 

The auto-sensitivity or robustness metric is the model's ability to make correct output predictions 

when the corresponding input is incorrect due to some fault.  That is, robustness measures how a 

faulted variable input affects predictions of itself by quantifying the effect of sensor drift[42]. The 

following expression defines the auto-sensitivity for the ith   sensed measurement [37, 41, 42]: 

   
 

  
  
  
     

     

 
  
     

    

  
   

 
  (3.17) 

Here,     
is the unfaulted prediction    

     
is the prediction with a faulted input    is the unfaulted input 

  
     

 is the drifted input and k is the index of the samples that define the operating region.  A value of 

zero is desirable which means that the model is impervious to the input fault. However, as the metric 

approaches a value of one, the more sensitive to input fault and therefore the prediction tend to follow 

the fault.  In this case, the resulting residual approaches zero leaving fault undetected.  When the metric 
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is a non-zero value, and then the sensor fault may be underestimate which may require that the fault 

tolerance be adjusted. 

On the other hand, the cross-sensitivity or spillover metric indicates the effect that faulty input 

   has on non-corresponding predictions     of the model.  It is similar to the auto-sensitivity metric with 

the exception that the predicted component, indicated by index j is the unfaulted variable whose cross-

sensitivity metric is being calculated [37, 41, 42]. 

    
 

  
  
  
     

     

 
  
     

    

  
   

 
  (3.18) 

3.4.3  Detectability Metrics 

The detectability metric quantifies the smallest fault that can be detected by an empirical model.  

Two examples of fault detectability metrics is presented herein.  They are the Error Uncertainty Limit 

Monitoring (EULM) detectability and Sequential Probability Ratio Testing (SPRT) detectability. Both 

metrics are positive values indicative of the detectability as a percentage of the mean measurement.  

Although EULM or SPRT is not used in the work presented in this paper, a brief review is to follow. 

The EULM detectability indicates the smallest sensor fault detectable by an empirical model and is 

a function of the prediction uncertainty and the robustness of the model [42].  It can be define by the 

following equation with units of percentage: 

      
 

  

             
  (3.19) 

Here,     is sensor     95% confidence interval       is it's expected or nominal value, and      is the 

corresponding auto-sensitivity. Alternatively, the units of the above equation maybe express as percent 

of span if the       term were replaced by the span of the     sensor [1, 37, 42, 43].  Note that EULM 

detectability increases as model auto-sensitivity increases resulting in the detection of only large faults. 

The SPRT detectability parameter, on the other hand, is an anomaly detection performance metric 

that determines the smallest detectable faulted process parameter.  The general procedure for 

implementing SPRT has already been provided Section 2.1.2.4 under the title Hypothesis Testing via 

SPRT and will not be repeated here. 

Using this procedure, Hines et al [1, 37, 41] applied SPRT to the generated residuals between an 

actual measurement and an empirical model's prediction.  The residuals are assumed to be normally 
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distributed with a mean of zero and a variance of   , which is the random variation of the 

measurement.  This assumption allows the probability distribution function for the normal model of the 

residuals to be defined by the following: 

       
 

     
     

  

       (3.20) 

 From Equation 3.20 and the preceding description, the two degradation modes illustrated in 

Figure 10 are readily apparent. A mean shift up (+M) is shown in the first plot; whereas the second plot 

shows a mean shift down (–M).  The random uncertainty is denoted by the spread of the Gaussian 

function.  The SPRT simply determines it the residual sequence is more probably generated from the 

normal or faulted distributions. 

The natural logarithms of the likelihood ratios for the upward and downward mean shifts are 

given in Table 2.  Most implementations of the SPRT algorithm use these ratios are compared to the 

lower and upper boundaries defined by A and B, respectively, of Equation 2.9.  For the interested 

reader, the derivation of the rations in Table 2 can be found in Humenik[44]. 

 

Figure 10:  Illustration of Degraded Modes for Normal Distribution [41] 

  



 

 38 

 

Table 2: Log Likelihood Ratio for Normal Distribution 
 Degradation Mean M and Variance σ2[41] 

 

Degradation Mode Log Likelihood Ratio 
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The size of the change in a sensor due to a fault that can be reliably detected by the SPRT is 

defined as the magnitude of M.   An optimal M value is determined numerically by applying SPRT to 

unfaulted test data and locating the value that results in a false-alarm probability that is nearest the 

theoretical false alarm probability.  By estimated the optimal M value    the following detection 

performance metric is obtained. 

      
  

    
   (3.21) 
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4 SIMULATION DATA 

The data used in this work was provided by Hamilton Sundstrand, an OEM of aerospace products 

including electric power generation systems.  Several data sets were generated from an in-house 

simulation using Simulink© that was seeded with faults emulating a feeder disconnection and/or open-

circuit diodes.  Two sets were used in this work and are described in the following subsections.  

However, since the simulation is proprietary and unavailable, a discussion of it has been omitted. 

4.1 Integrated Drive Generator 

Due to the wide use of electronic flight instrument systems, modern aircraft rely heavily on 

electrical power systems.  The function of the aircraft electrical system is to generate, regulate, and 

distribute electrical power throughout the aircraft.  There are several different power sources that an 

aircraft may utilize to provide for its electrical needs.  These sources include integrated drive generators 

(IDG), auxiliary power units (APU), ground power unit (GPU), and ram air turbines (RATs).  The IDG is 

driven by an aircraft engine and produces 115 VAC at 400 Hz which is used during normal flight.  The 

APU is similar to the IDG with the exception that it is not engine driven.  The APU most often provides 

power to the aircraft while it is on the ground during maintenance or for engine starting.  In some 

aircraft the APU can be used as a backup power source during flight operation.  A GPU is an external AC 

power source that may only be used with the aircraft on the ground.   The final power sources that can 

be found on a modern aircraft are RATs.  These units are used as an emergency power source in case of 

IDG or APU failure.  These power generation systems are vital to the operational safety and readiness of 

both commercial and military aircraft.  

As previously discussed, modern aircraft, private, commercial, and military, have large electrical 

requirements critical to aircraft take-off, flight, and landing systems.  To meet these electrical needs 

most modern aircraft utilize an IDG.  This device is an ultra-lightweight, brushless wound rotor 

synchronous electrical machine design to supply 400Hz, 3-phase power at 115V to the aircraft bus [45].   

Kennett's [45] constant speed drive, CSD, description alone with Batzel's and Swanson's [43] description 

of an IDG is summarized.  A cross-section of a typical Hamilton Sundstrand brushless, synchronous 

generator is shown in Figure 10.  The schematic of Figure 11 provides a simplified illustration of how an 

IDG operates which is described as follows.  
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Figure 11:  Typical Integrated Drive Generator Cross-Section [46] 

 

 

Figure 12:  Simplified Integrated Drive Generator  Schematic [46] 
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The IDG consist of three constituent machines (an exciter armature, a rectifier, and a main 

armature) assembled on a common shaft and housed in a common frame.  The shaft and housing are 

connected to the output of a constant speed drive (not shown), CSD, which is attached to the aircraft 

engine.  As one may discern from the name, the CSD differentiates the rotation speed of the aircraft 

engine so that a constant rotation speed is maintain at the IDG.  The first generator of the IDG is the 

pilot exciter, which is a permanent magnet generator, PMG.  The PMG generates a DC current, iexc, which 

induces a magnetic field (the exciter field).  The strength or magnitude of the exciter field is determined 

by the generate DC current, which is automatically adjusted via a generator control unit, GCU.   The 

constant speed rotation of the 3-phase exciter armature in this magnetic field induces a 3-phase voltage 

whose amplitude is proportional to the field strength.  The induced 3-phase voltage is then converted by 

the rectifier to a DC current, if, which induces a second magnetic field.  This magnetic field is induced 

within the main armature which, is a stationary 3-phase armature yielding electrical power flow to the 

main AC bus.  

4.2  Discrete IDG Data 

The first of the two data sets consist of the following four variables. 

 Time      (seconds) 

 Exciter Field Current    (amperes) 

 Main Armature Current, each of three phases (amperes) 

 Main Armature Voltage, each of three phases  (volts) 

The data is simulated at three static, balanced loads of 5, 40, and 90 kilowatts, and at each load, the 

data as a varying degree of either a single fault or combination of faults.  The faults are indicative of 

varying levels of degradation of either a connection failure of an armature feeder lead (Type A), open-

circuit within a diode (Type B), or a combination both.  The levels of degradation are as follows: 

         No Degradation of feeder leads or circuit 

         Mild Degradation of feeder leads or circuit 

           Failure of feeder leads or circuit 

There are a total of 27 discrete data sets with 4001 observations and seven trackable signals each.  

Based on the run time and the number of samples, the calculated sampling frequency is 400025 hertz. 

Figure 13 shows the resulting data from the simulations with each subplot illustrating the affect of a 

specific fault or combination of fault has on the current at a loading of 5 kilowatts.  That is, subplot 11  



 

 42 

 

 

 

 

Figure 13: Exciter Current at 5 kilowatts 
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is representative of normal system behavior; whereas, subplot 33 indicates the effect of both faults on 

the exciter current. 

Figure 13 also shows an interesting phenomenon that the effect that the severity of specific fault 

has on the pattern of the current.  When the severity of either the fault due to the feeder connection or 

open-circuit diode is significantly high, the patterns become constant.  This actually makes sense 

considering that the highest severity level of the particular fault would indicate complete failure of a one 

of the three feeder connections or one of the six diodes. Also note from the last row of subplots of 

Figure 13, the Type A fault supersedes that of the Type B fault.  Similar phenomenon can be seen from 

Figures A1 and A2, of the exciter current at 40 and 90 kilowatts respectively. 

Figures 14 and 15 demonstrate the effects that the power demand and the fault or faults has on 

the magnitude of the mean and variance of the current from the exciter field.  Note that, as expected, 

when the demand for power increases the average exciter current increases as well.  However, it 

appears that a specific fault or combination of faults has only a small affect, even when the severity of 

the fault may indicate a complete failure.  This small effect is explained by the presence of the GPU 

which regulates the current from the PMG so that the power output of the generator meets demand 

even in the presence of the seeded faults.  However, there appears to be an  effect on variance of the 

exciter current, but this effect is only significant when one or both faults indicates complete failure. 

 

Figure 14:  Average Current Relative to Power and Fault Condition 
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Figure 15: Current Variance Relative to Power and Fault Condition 

Figures 16 and 17, shows the voltage and current measurements from the main armature at 5 

kilowatts respectively.  As seen, neither of the faults or combination of faults has any affect on the 

output of these measurements.  Once again this can be attributed to the GPU which masks the affects 

that these faults might how on the IDG power output.  Therefore, the use of main armature voltage and 

current measurements are not indicated as likely trackable signals for these particular faults due to the 

corrective action of the GPU.  Similar observations are noted in plots of other data sets at the 40 and 90 

kilowatt loads, Figures A3 through A6.  

4.3  IDG Continuous Data from Simulated Flight 

Data generated from two simulations created dynamic profiles of the measurements from the IDG 
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Figure 16: Main Armature Voltage at 5 kilowatt 
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Figure 17: Main Armature Current at 5 kilowatt 
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The 100 second flights are comprised of 7 different flight segments ranging from 5 to 40 seconds 

each, and have a power loading 20 to 60 percent of the 60 kilowatt nominal loading for the entire flight.  

For each segment, approximately 75 percent of the loading is resistive (linear) with the remaining being 

rectifier (nonlinear) loading.  Furthermore, each load type is 75 percent steady loading with the balance 

being random over a range of ± 33 percent. 

Each 100 second flight consists of 100 one-second periods in which the load condition is held 

constant. These one-second periods represents 400 cycles of the main generator AC and 1000 cycles of 

the exciter generator AC.  It is assumed that the transient dynamics from the load switching occur within 

first several cycles of each generator.  Therefore, the majority of the one-second period is considered to 

be at steady state.  The data is sampled at a rate of 60 kilohertz. 

As with the previous data sets, this data includes the following measurements: 

 Time 

 Exciter Generator Field Current 

 Exciter Generator Field Voltage 

 Main Generator Armature Current (3 Phase) 

 Main Generator Armature Voltage (3 Phase) 

Figure 18 illustrate the exciter current and voltage plots of the available measurements profiles 

for non-faulted 100-second flight.  Figures 19 and 20 are plots of the main generator currents and 

voltages of same 100-second flight.  As previously stated, the second flight simulation is seeded with six 

faults.  The faulted flight data is plotted in Figures 21, 22, and 23 in the same manner as the non-faulted 

flight.  Unlike the discrete data of the former subsection, the faults are not obvious, and provides 

opportunity to demonstrate the capability of the innovated method describe in the next section. 
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Figure 18: Flight Exciter Data from the Non-Faulted Flight 

 

 

Figure 19: Main Generator Current Data from the Non-Faulted Flight 
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Figure 20: Main Generator Voltage Data from the Non-Faulted Flight 

 

Figure 21: Exciter Data from the Faulted Flight 

 

0 10 20 30 40 50 60 70 80 90 100
-500

0

500
Main Generator Armature Voltage Phase A

0 10 20 30 40 50 60 70 80 90 100
-500

0

500
Main Generator Armature Voltage Phase B

0 10 20 30 40 50 60 70 80 90 100
-200

0

200
Main Generator Armature Voltage Phase C

time

0 20 40 60 80 100
0

20

40

60
Faulted Exciter Current

A
m

ps

0 20 40 60 80 100
0

2

4

6

8
Faulted Exciter Voltage

V
ol

ts

time (sec)



 

 50 

 

 
Figure 22: Main Generator Current Data from the Faulted Flight 

 

Figure 23: Main Generator Voltage Data from the Faulted Flight 
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5 Univariate Monitoring 

Traditionally, as explained in Section 2, model-based fault diagnosis systems utilize a variety of 

input measurements including operational information and sensed variables to simulate particular 

output measurements.  These simulated outputs are compared to the actual outputs, and the 

differences are noted in the form of residuals.  An analysis of the residues discerns whether the actual 

output is either within or has deviated from normal expected behavior.  Indication of substantial 

deviation connotes the presence of an abnormality within the monitored system resulting in the 

engagement of diagnostic functions.  At this point, the residues are further evaluated in order to isolate 

the system location where the anomaly originated, which may be sufficient enough, depending on 

system resolution, for determining abnormally operating (faulty) components.  Highly developed 

diagnostic systems, however, go beyond isolation and identify the severity and time of occurrence of 

fault event, which can be used estimate the reliability of the component and the overall system health. 

As an example, Figure 24 illustrates an AAKR diagnosis scheme.  Here, the AAKR model uses 

exemplars composed of correlated variables to estimate the non-faulted instances of the tracked 

signals.  These predicted signals are then subtracted from the actual system values resulting in a 

collection of residuals.  These generated residuals are in turn evaluated by an anomaly detection 

algorithm such as the Sequential Probability Ratio Test (SPRT) in order to determine if the residuals are  

 

Figure 24:  Traditional AAKA Monitoring via Error Correction 



 

 52 

 

symptomatic of a fault.  However, this type of monitoring system, as most systems based on 

multivariate methods, cannot be applied if significant correlation does not exist between the system 

variables.  Therefore, an alternative a technique for monitoring a system’s health is required using a 

single sensed variable. Unfortunately, such techniques are scarce in the literature with much of the 

published research based largely  on the monitoring of temporal based statistics as described in Section 

2.2.1, or vibrational frequency analysis [47].  Therefore, the coming sections describe an unique 

univariate detection and diagnostic algorithm that estimates the specific “correct” frequency features of 

a  single signal using operational stressors as inputs to a exemplar-based model spanning the normal 

operating range of a  monitored system. 

5.1 SUMM:  Stressed-based Univariate Monitoring Method 

In the physical world, measurable quantities can be expressed as a signal, and their generation is 

usually associated with the response of a system to stimulus or force. Therefore, it is intuitive that the 

effect of a stimulus or force that is not normal to a system would manifest itself has an anomaly. 

However, a lack of necessary correlation between a specific measurement that has been determined to 

be the primary indicator of system health and other sensed measurements provides unique challenges 

for the detection of these unexpected stimuli or forces.  The presentation of such a system has spurred 

the development of an innovative technique for the detection and diagnosis of faults acting on the 

system. 

Within the frequency domain, the amplitudes of the sine and cosine waves of the decomposed 

time domain signal are described.  Measured signals often consist of lower frequency components with 

large magnitudes that usually determine the nominal values of the signal and higher frequency 

components  with small amplitudes that contains information on the inner state of a system [12].  As 

such, a signal model based on spectral analysis could be applied that attempts to identify frequency 

components and pinpoint anomalies resulting from deviations in the corresponding normal signal.  This 

particular method of fault detection has been applied to vibration measurements related to rotating 

machinery or electrical circuits [9, 11]. 

Unlike those methods that use vibrational spectral comparisons for the detection and diagnosis of 

faults, the stressed-based univariate monitoring method, SUMM, utilizes the differences between the 

normal and abnormal frequency spectrums of a single sensed measurement relative to a specific range 
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within the overall range of the monitored system.  An individual fault or combination of faults causes 

either an increase or decrease in the amplitude peaks.  These differences between the non-faulted and 

the faulted features of the frequency spectrum can be used to detect and isolate specific faults.  Figure 

25 proposes a basic modeling approach to accomplish this. 

The residual generation module is the first part of the basic concept used for this modeling 

approach.  The expected frequency spectrum features are the product of a heteroassociative memory-

based kernel regression module with some operational stressor condition as it input.  The actual 

features are extracted from the frequency spectrum of a single monitored signal.  The spectrum may be 

derived via a Discrete Fourier Transform (DFT) implemented by an algorithm like the Fast Fourier 

Transform available with Matlab®.  The residuals are then calculated from the expected and actual 

features and input to the second part of proposed concept, the fault detection and isolation module 

shown in Figure 26. 

 

Figure 25: Proposed SUMM Residual Generator Scheme 
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Figure 26: Proposed SUMM Fault Detection/Isolation Scheme 

This module takes the resulting system condition residuals from the generation module and 

analyzes them to determine if they are symptomatic of any faults.  If symptomatic residuals are 

detected, they then mapped to a programmed fault using a second HAKR memory-based model.  The 

output of this second model effectively isolates the fault by determining its location via a fault 

hypothesis.  Depending on the complexity of the system, the location would be a subsystem or even a 

specific component.  Furthermore, the purposed concept, given the appropriate data, can not only 

isolate specific faults but identify them as well.  Recall that one the major goals of the fault identification 

is the determination of the severity of the fault.  Although the scope of this work mostly addresses the 

detection and isolation of a fault, the applicability of the method to fault identification, i.e., fault 

severity, is also demonstrated using the discrete data set. 

5.2 Model Development 

Both the normal spectrum feature prediction and the fault detection-diagnosis models are 

initialized with heteroassociative architectures. This type of architecture results in model using multiple 

predictors to estimate a corresponding set of responses.  It differs from an autoassociative model in that 

the number of response values does not necessarily equal the number of predictors and the response 

variables are not corrected values of the predictors. 

Model development follows the same general concepts as described earlier. Recall that these 

include data conditioning, data partitioning, variable selection, vector selection, model initialization, 
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model optimization, and, finally, model characterization. Vector selection, model initialization, 

optimization, and characterization were discussed in Section 3, Empirical Modeling Approach. Data 

conditioning, data partition, and variable selection are briefly discussed here as it pertains more 

specifically to the data used in this work and the unique approach for which it is processed. 

5.2.1 Data Conditioning 

Normally, the first step in the development of a data based model is to condition the data by 

removing and/or correcting problems including, but not limited to, noise, outliers, missing data, and 

stuck data.  This task is usually referred to as data cleaning, and there are several methodologies for 

addressing common data conditioning needs.  However, the data used in this work was simulated 

without any of the above condition problems or noise; therefore, data cleaning is not necessary. 

Nevertheless, actual data will of course include some amount of random variation about the true 

value.  However, validating the insensitivity of similar methods to nominal levels of process and 

instrument noise has been successfully performed in other applications [37] which is  assumed to extend 

to the univariate method introduce in this work. 

5.2.2 Data Partitioning 

As in any data based model development, the partitioning of the data into training, testing, and 

validation subsets are necessary for model initialization, optimization, and characterization.  The training 

set should cover the entire range of the original data set including the maximum and minimum 

observation values.  The primary function of the training set is to initialize, and as the descriptive term 

indicates, train the model.  The testing set should include data points that fall within the range of the 

training set, but were not seen by the initial model.  This data set is required to accomplish optimization 

of model parameters such as optimum bandwidth and number of memory vectors.  Finally, the 

validation data is a small fraction, approximately 10 percent, of the original data that is randomly 

selected and removed before the training and testing data is partitioned.  The purpose of this set of data 

is to characterize the model's performance. Like the testing data, the validation data must fall within the 

range of the maximum and minimum of the pre-partitioned data. 

The three described subsets created from partitioning can be implemented using one of several 

methods rather easily for data drawn from the time domain.  However, methods of partitioning of data 

within the frequency domain are limited, especially when the data itself is limited.  For the models 
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developed using the provided data, the discrete and periodic properties of the signal allow it to be 

partitioned into three separate data sets of equal observations by sampling every first, second, and third 

observation  respectively.  The partitioning of the frequency data with this method decimates the data 

whereas the sample rate for each resulting data set is a third of the original rate. 

5.2.3 Variable and Input Selection 

In the case of the simulated data described in Section 6, the direct current generated by the PMG 

has been identified by the OEM as one of the most useful variables for both fault detection and 

diagnostics. Therefore, the OEM as in effect selected the principle variable of the model. As previously 

noted the GPU compensates for the affects of the simulated faults, which masks the correlation 

between the exciter current and resulting output of the IDG.   As a result , there is insufficient 

correlation between the exciter current and other raw signals; therefore,  the use of multivariate 

modeling techniques such as AAKR or multivariate regression are not possible.  However, the proposed 

method monitors selected frequency characteristics, features, of a single signal that exhibits definitive 

responses to changes in operation conditions.  As such, an empirical model with heteroassociative 

architecture can be used to predict the expected features of the nominal frequency spectrum with 

varying operating conditions. 

The signal of an identified principle health indicator, like that of the exciter current, is transformed 

from the time domain to that of the frequency domain.  Fourier transforms are the primary connection 

between the time and frequency domain, and the DFT is the primary tool for determining the frequency 

content of a signal. The DFT returns a symmetric complex vector where the first and second halves are 

mirror images of each other.  Therefore, the only meaningful information is contained in the first half. 

Features from the frequency spectrums corresponding to various stress condition are extracted in 

order to build the memory matrix.  These features may be peaks, valleys or ratios thereof, which change 

in a significant way with faulted operation.  Such features are identified by comparing the nominal 

frequency spectrum to those of faulted operation.  Useful features are those that generate sufficient 

symptomatic residuals with faulted operation. If enough such features can be identified, then the 

resulting residuals can be used to develop detection and diagnostic routines which can determine the 

presence, type, and possibly the severity programmed faults. 

Unlike the selection of input variables for the empirical models describe in Section 3, the inputs of 

the proposed method are chosen from indicators of conditions that stress the system being monitored.  
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As mentioned, features are selected from the frequency spectrum that correspond to designed stresses 

that the system is expected to perform.  For an IDG, the obvious input stresses would be the power 

demand placed on the generator by the aircraft. 

5.2.4 SUMM:  Application to Discrete IDG Data 

SUMM is first applied to the discrete data described in Section 4 in which the frequency domain of 

the exciter current is monitored for the detection and isolation of a fault or faults.  Recall that the 

simulated faults are the result of a connection failure (Type A), an open-circuit (Type B), or a 

combination of both. Also recall that each of these faults was simulated at varying degrees of 

degradation or severity.  With the availability of degradation data, the development of the three layer 

diagnostic system is possible. 

However, before applying SUMM to this data set, let's verify that there does indeed lack sufficient 

correlation between the exciter current and other available measurements.  A simple correlation 

analysis verifies this assessment.  Table 3 summarizes the results of this analysis for each of the variables 

relative to the exciter current.  As indicated, the linear dependence between the exciter field current 

and the other available variables is nonexistent.  Now, let's analyze the data for its appropriateness for 

the application of SUMM. 

Table 3:  Correlation Coefficients for Faulted Data Relative to the Exciter Current 
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Figures 27 through 29 shows that the frequency domain provides an expanded insight to the 

effects of a fault or faults on the current generated by the exciter generator.  Specifically, these figures 

illustrate the dependence between the amplitude and varying severity of specific fault conditions using 

the discrete data.  Figure 27 illustrates the amplitude changes at varying degrees of a fault resulting 

from an open-circuit diode at a power loading of 5000 watts.  Figure 28 shows changes in amplitudes 

that result from the severity of a lead disconnect on the third leg between the exciter and the rotating 

rectifier.  As a final example of the dependence of amplitude on the type and severity of the fault, Figure 

29 demonstrates the effects when both faults occur simultaneously.  The first plot, as in the previous 

two figures, shows the frequency spectrum of the non-faulted current.  The second and third plot shows 

the effect when both an armature lead disconnection and a diode open-circuit faults occur. 

As noted earlier, the simulation did not include any noise or other data problems; therefore, data 

conditioning is not necessary.  The data is partition as described earlier with Figures 30 through 32 

presenting examples of the training, testing, and validation sets. 

 

Figure 27: Amplitude - Fault Dependence of Open-Circuit Diode 
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Figure 28: Amplitude - Fault Dependence of Exciter Disconnect 

 

 

Figure 29: Fault Dependence of Exciter Disconnect and Open-Circuit Diode 
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Figure 30: Normal Operation Frequency Spectrum Overlay 

 

 

Figure 31: Open-Circuited Diode Operation Frequency Spectrum Overlay 
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Figure 32: Rectifier Disconnection Operation Frequency Spectrum Overlay 

Construction of the required memory matrix for this problem is based on the selection of the 
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was used to select the residual exemplars that were included in model developed for this paper.  The 

function is applied to the transpose of the residual matrix to select a subset of the 50 spectrum peaks.  
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corresponding frequencies of the 15 selected peaks.  Figure 33 graphically illustrate the selected 

features on the non-faulted spectrum profile of the exciter current at 5 kilowatts. Features of similar 
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The obvious input stressors for this model fall within the design power output range of the IDG.  

Recall that IDG output data has been simulated at three distinct power demands (5, 40 and 90 
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Figure 33:  Identified Peaks 
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Figure 34: Selected Model Features for Open-Circuit Diode 

 

 

Figure 35: Selected Model Features for Exciter Armature Disconnect 
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Figure 36: Selected Model Features for Fault Combination 
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Figure 37: Optimum Bandwidth for Normal Spectrum Feature Model 

 

 

Figure 38: Optimum Bandwidth for Fault Detection and Identification Model 
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Figure 39: Normal Spectrum Feature Model Results 

 

 

Figure 40: Fault Detection and Identification Model Results 

 

0 5 10 15
10

-5

10
0

10
5

Predicted / Actual Features Comparison

Normal Feature at 5000 Watts

Am
ps

0 5 10 15
10

-5

10
0

10
5

Normal Feature at 40000 Watts

Am
ps

0 5 10 15
10

-5

10
0

10
5

Normal Feature at 90000 Watts

Am
ps

Observations

 

 

Predicted Features

Actual Feactures

0 5 10 15 20 25
0

1

2

3

4

Actual(+) vs Prediction(O)

Fault 1: Exciter Armature Phase C Feeder Connection Failure

Load at 5000 Watts Load at 40000 Watts Load at 90000 Watts

Fa
ult

 In
de

x

0 5 10 15 20 25
0

1

2

3

4
Fault 2: Rectifier Diode Phase C Feeder (One Leg) Open-Circuit

Load at 5000 Watts Load at 40000 Watts Load at 90000 Watts

Fa
ult

 In
de

x

Observation



 

 67 

 

observations.  Figure 41 shows the frequency spectra for normal and faulted operating conditions.  The 

top plot shows the spectrum of the normal operating condition, the second plot shows the spectrum of 

the Type A fault, and the bottom plot shows the spectrum of the Type B fault.  Comparison of these 

plots, unlike that of the discrete simulation data, shows that additional peaks appear in the frequency 

spectrum due to the introduction of faults.  Similar results are seen at each of the load conditions 

simulated. 

As indicated on the plots, six peaks are chosen to detect and identify faulted conditions.  

Because the location of the peaks of interest can shift slightly due to changes in sampling frequency and 

amount of available data available; frequency ranges are identified about peaks of interest as indicated 

on the plots.  The peaks with the greatest magnitude within each range are the ones extracted for 

system health monitoring.  This differs from the work done on the discrete data and makes the method 

more robust to real world data collection. Another difference from the work completed on the discrete 

data is that the Identification of useful frequency peaks and appropriate ranges about those peaks is 

accomplished by visual inspection. 

 

Figure 41:  Frequency Spectra of Exciter Current for Normal and Faulted Operation 
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The chosen peaks of the frequency spectrum are used to generate residual patterns between the 

expected normal operation and the actual operation.  Figure 42 shows the results for each type of 

operation: normal, Type A fault, and Type B fault.  The main plot shows the exciter current 

measurement for a 14-second interval during the total flight.  The secondary plots summarize the 

monitoring system execution in three subplots: the exciter current reading during a small portion of the 

one second interval in the top subplot, the frequency spectrum during that interval in the second 

subplot, and finally the residuals between the calculated frequency spectrum peaks and the expected 

peaks based on the load.  The leftmost plot gives the results for Type A fault, the middle plot for normal 

operation, and the rightmost plot for Type B fault.  It is clear from the residual patterns of the two fault 

types that they should be easily distinguishable. 

After residuals between the normal and actual operating spectra are obtained from the six peaks 

of interest, they are run through fault detection routine to determine if the system is operating in a 

normal or faulted mode.  In this data simulation, faults are simulated to occur for one second and then 

are corrected.  Because of this simulation method, a simple signal threshold may be used to identify 

faulted operation.  For the peak ranges of interest, normal operation spectra residuals are below 10 

amps while faulted residuals are above 60 – 100 amps, depending on the peak. 

 

Figure 42:  Monitoring Model Results for Nominal and Faulted Operation 
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However, in real-world applications, the faults would more than likely begin at some small severity 

level and progress to greater severity eventually resulting in a failure.  In addition, the noise which 

would be present in real-world data may muddle the ability to apply a simple signal thresholding 

technique.  For data of this more realistic type, an SPRT fault detection routine will likely be more useful 

to detect incipient faults before they become large enough to cross the threshold values.  In the current 

study, six one-second intervals in the 100-second simulation are correctly identified as operating in a 

faulted condition, while the remaining 94 seconds are correctly identified as normal operation. 

The six observations of frequency features which have been identified as faulted operation are 

input to a fault identification module to determine if the system is experiencing Type A or B fault.  The 

fault identification module uses an inferential kernel regression function which compares the residual 

values of the six feature peaks to those seen in the past and determines if the current observation is 

more likely fault A or fault B. As noted above, the residual patterns for the two fault types are clearly 

distinguishable.  Because only six faulty observations are available (three of Type A and three Type B), a 

leave-one-out validation method is used to test the diagnostic model.  That is, an inferential model is 

built using five faulted observations and tested on the remaining one; this is repeated for each of the 

faulted observations.  The diagnostic model gives 100% accuracy in differentiating between Type A and 

Type B faults for the six available observations. 
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6 CONCLUSIONS 

This report presents an innovated method that extends the use of frequency characteristics to the 

detection, diagnosis, and identification of system anomalies due to faulty operation of specific system 

components.   A novel method for detecting and diagnosing of system faults by monitoring a single 

variable using extracted features from the frequency domain has been introduced as SUMM, Stressor 

Univariate Monitoring Method.  In an effort to demonstrate the capability of this method, two case 

studies have been presented whereas the technique has been applied to simulated, noise free data 

indicative of an integrated drive generator used by modern aircraft.   

The first case study utilized a set of discrete data in which three modes of operation, ranging from 

normal to failure, were simulated.  Using this data, a three-layer detection and diagnostic system that 

model selected frequency characteristics of normal operation.  These predicted features provided the 

basis for a residual generator which was implemented by a heteroassociative kernel regression model.  

The resulting symptomatic residuals are analyzed for indications of abnormal behavior due to the 

presence of component damage or failure.  The application of SUMM to this data produced promising 

results with 26 of 27 faults were detected and diagnosed. 

The second case study utilized data from the OEM simulation of actual flight.  Once again the 

frequency characteristics of the exciter current are used for the development of a fault detection and 

diagnosis system using SUMM.  Although the data is limited, this technique successfully detected and 

isolated all six of the buried faults in the faulted simulated flight.  It should be noted that the OEM did 

not initially reveal when or where the faults here simulated. 

In conclusion, using discrete simulated data, the development of an AAKR model using the available 

raw measurements proved to be inappropriate due to the lack of correlation. The proposed method has 

been shown to accurately detect abnormal operating conditions due to faulty components with a 

system.  As demonstrated, the monitoring of the frequency spectrum of a single variable can provide 

adequate indication of equipment health.  With the availability of the appropriate data, as that of the 

discrete data set, it is possible for the development of three-layer detection and diagnostic systems that 

provides fault detection, isolation, and identification.  A three-layer detection and diagnostic system is 

essential in the development of more advance health monitoring and prognostic systems. With this in 

mind, a monitoring technique such as SUMM allows for the possible adaption.  Despite some 
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shortcomings in the simulated data available for analysis, this method is believed to be applicable to 

data that more realistically captures real-world relationships, including sensor noise, faults that grow 

with time, and unbalanced loads on the main armature.  Several areas of proposed future research are 

outlined in the following section. 
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7 FUTURE WORK 

The preceding report introduced a novel technique for monitoring a system using the frequency 

domain of a single variable in conjunction with process stressor. Although the results demonstrated 

potential for this method, the reader is reminded that the concept is well within the earlier stage of 

development and there is significant opportunity for future work.  The following suggestions are a few 

areas of interest that will be beneficial not only further defining the limits of this technique, but 

expandingits limits as well. 

One area in need of more development is the selection of those frequency spectrum 

characteristics that indicates deviation from normality.  Although specific peaks were selected for the 

work presented in the report, other characteristics or combination of characteristics may be utilized.  

This work may also include the development of a general algorithm that analyze the frequency spectrum 

of a single signal and selects the appropriate number of peaks or other characteristic.  

The case studies that this report is based uses simulated data.  Obviously, the effectiveness of 

SUMM would be better understood if applied to real data.  With this in mind, the model should be 

expanded to include a wider area of operating conditions such as load imbalances, power fluctuations, 

and additional fault possibilities. 

A last suggestion would bring SUMM full circle by incorporating it into a PHM system as described 

early in the report.  The incorporation of a Prognostic module, as illustrated in Figure 43, would allow for 

the determination of remaining useful life of equipment and overall system health. 
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Figure 43: Prognostic Concept Module 
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Referenced Figures 
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Figure A1: Exciter Current at 40 kilowatts 
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Figure A2: Exciter Current at 90 kilowatts 
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Figure A3: Main Armature Voltage at 40 kilowatts 
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Figure A4: Main Armature Current at 40 kilowatts 
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Figure A5:  Main Armature Voltage at 90 kilowatts 
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Figure A6:  Main Armature Current at 90 kilowatts 
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