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Abstract

An infinite population model is considered for diploid evolution under the influence

of crossing over and mutation. The evolution equations show how Vose’s haploid

model for Genetic Algorithms extends to the diploid case, thereby making feasible

simulations which otherwise would require excessive resources. This is illustrated

through computations confirming the convergence of finite diploid population short-

term behaviour to the behaviour predicted by the infinite diploid model. The results

show the distance between finite and infinite population evolutionary trajectories can

decrease in practice like the reciprocal of the square root of population size.

Under necessary and sufficient conditions (NS) concerning mutation and crossover,

infinite populations show oscillating behavior. We explore whether finite populations

can also exhibit oscillation or approximate oscillation. Simulation results confirm

that approximate finite population oscillation is possible when NS are satisfied.

We also investigate the robustness of finite population oscillation. We show

that when the part of NS concerning mutation is violated, the Markov chain which

models finite population evolution is regular, and perfect oscillation should not occur.

However, our simulation results show finite population approximate oscillation can

occur even though the Markov chain is regular. Finite populations can also exhibit

approximate oscillating behavior when the part of NS concerning crossover is violated.
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Chapter 1

Introduction

This thesis begins with notation that is used throughout this document.

1.1 Notation

Mathematical notations, some standard as well as some non-standard, are introduced

here (we borrow from and summarize – with permission – Vose (1999)).

A tuple, which is dennoted by angle brackets 〈· · · 〉, is to be regarded as a column

vector. 1 denotes the column vector of all 1s. Superscript T indicates transpose. The

standard vector norm is ‖x‖ =
√
xTx. Modulus (or absolute value) is denoted by

| · |. When S is a set, |S| denotes the cardinality of S.

The notation O(f) denotes a function g such that pointwise g ≤ cf for some

constant c. The notation θ(f) is a function g such that pointwise c0f ≤ g ≤ c1f

for some constants c0 , c1. Curly brackets {· · · } are used as grouping symbols and

to specify both sets and multisets. Square brackets [· · · ] are used to specify a closed

interval of real numbers as well as to denote Iverson bracket. Iverson bracket is an

indicator function: if expr is an expression, then [expr ] denotes 1 if expr is true, and

0 otherwise.

sup indicates the supremum which is the least upper bound. inf indicates the

infimum, that is, the greatest lower bound.

1



The set of length ℓ binary strings is denoted by R. It is a commutative ring under

component-wise addition and multiplication modulo 2. If x ∈ R, then it may be

regarded as the vector x = 〈x0, x1, · · · , xℓ−1〉. The additive identity of R is 0 and the

multiplicative identity is 1. Let g abbreviate 1+ g. Except when explicitly indicated

otherwise, operations acting on elements of R are as defined in this paragraph. In

particular, gg = 0 = g + g, g2 = g, g + g = 1 for all g ∈ R.

1.2 Background

1.2.1 Genetic Algorithm

The genetic algorithm (GA) is inspired by nature, and seeks to evolve useful

constructs. It is typically population based, and proceeds over a number of

generations to evolve solutions to problems not yielding to other known methods.

Several people working in the 1950s and the 1960s – like Box (1957), Friedman

(1959), Bledsoe (1961), Bremermann (1962), and Reed, Toombs and Baricelli (1967)

– developed evolution-inspired algorithms, but little attention or theoretical analysis

was given to them (see Mitchell (1999)). Genetic algorithms were popularized

by Holland and his colleagues in the 1960s and the 1970s. Holland introduced a

population-based algorithm with crossover and mutation, and promoted his schema

theorem (see Holland (1992)). Basic elements of a simple style GA are: selection

according to fitness, crossover, and random mutation (see Mitchell (1999)). In

the simplest case, population members are fixed-length binary strings. The fitness

function assigns a value (fitness) to the elements (chromosomes) of the current

population.

Selection: select population members in the current population for reproduction;

those with higher fitness are more likely to be selected to reproduce.

2



Crossover : with some probability (the crossover rate), choose a random point

in two parents (population members selected for reproduction) and exchange

subsequences after that point to create two offspring.

Mutation: flip bits of an individual with some small probability, the mutation

rate.

Figure 1.1 shows the procedural flow of a basic finite population genetic algorithm.

Next generation 

complete?

No

Yes

p

(p)

Figure 1.1: Finite GA (Haploid)

A simple Holland style genetic algorithm:
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1. Start with some population P containing r binary strings of length ℓ
2. Choose parents u and v from the current population P (using any selection
scheme with replacement)

a. Crossover u and v to produce children u′ and v′

b. Mutate u′ and v′ with some probability to produce u′′ and v′′

c. Keep, with uniform probability, one of u′′ and v′′ for the next generation
3. Repeat step 2 until r offspring are created
4. Replace P by the new generation formed and go to step 2

Each iteration of this process produces a generation. The process described above

is repeated until the system stops to improve or some threshold is met.

Figure 1.2 illustrates algorithm for finite diploid population genetic algorithm. In

case of diploid population GA each parent (u and v) has two haploid components

(〈u0, u1〉 and 〈v0, v1〉 respectively). Instead of crossing over two parent diploids,

haploids in each diploid 〈u0, u1〉, and 〈v0, v1〉, crossover and mutate to produce

gametes g0 and g1. And gametes g0 and g1 are fused to form offspring diploid 〈g0, g1〉.

1.2.2 Infinite Population Model

Haldane, in the classic book ‘The Causes Of Evolution’, presents a summary of the

basic models of population genetics by Wright, Fisher, and Haldane (see Haldane

(1932)). Holland introduced a population-based algorithm with crossover and

mutation, and promoted his schema theorem as a theoretical means by which to

analyze genetic algorithm dynamics (see Holland (1992)). Holland’s Schema theorem

provides a lower bound for schema survival in next generation.∗ The schema theorem

is an inequality however, and can not predict which strings are expected in the

next generation. Bethke (see Bethke (1980)) gave equations computing the expected

number of any string in the next generation. Goldberg (see Goldberg (1987)) used

such equations to model the evolutionary trajectory of a two bit GA under crossover

∗A schema is a template that identifies a set of strings in the population with similarities at
certain string positions; it is made up of 1s, 0s, and ∗s where ∗ is the ’don’t care’ symbol that
matches either 0 or 1.
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Next generation 

complete?

No

Yes

p

τ(p)

Figure 1.2: Finite GA (Diploid)

and proportional selection. Vose and Liepins (see Vose and Liepins (1991)) simplified

and extended these equations by integrating mutation into the recombination of

arbitrarily long binary strings. Although their model computes infinite population

trajectories, given a finite population represented by vector p (component pi is the

proportion of string i in the finite population), the infinite population model computes

the expected proportion G(p)i of string i in the next generation. This is perhaps the

most direct connection between the infinite population model and a finite population

GA. In the model, G comprises of fitness matrix F and recombination operator M
that includes application of crossover and mutation.
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The infinite population GA models a population as a vector p where component

pj can be interpreted as the proportion of string j in the population. If G is the

function mapping infinite population p to the next generation, G(p) is a vector such

that

G(p)j = proportion of j in the next generation.

The evolution of infinite population p is the sequence

p→ G(p)→ G(G(p))→ · · ·

1.2.3 Finite Population Model

The infinite population model simplifies analysis of GA. However, finite populations

can behave differently than infinite populations due to stochasticity involved with

selection, crossover and mutaiton. Nix and Vose (see Nix and Vose (1992)) explored

issues regarding the relationship between the finite population GA and the infinite

population model. In particular, for a mutation rate µ between 0 and 0.5, a finite

population GA will form an ergodic Markov chain, visiting every state infinitely often

in the long run. Moreover, the short term trajectory followed by a finite population is

related to the evolutionary path determined by the infinite population model, and for

large populations, the short term trajectory follows closely and with large probability,

that path predicted by the infinite population model.

Vose later generalized both infinite and finite population models as special case of a

general abstract search framework called Random Heuristic Search (RHS) (described

more in section 1.3).
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1.2.4 Walsh Transform

Vose compiled and extended previous work regarding the infinite population model

in the book Simple Genetic Algorithm: Foundations and Theory (see Vose (1999)).

In particular, he discussed how the Walsh transform can be applied to increase

computational efficiency in calculations related to the infinite population model.

There have been previous applications of the Walsh transform to GAs. Bethke first

introduced the idea of using Walsh transforms to analyze GA fitness functions in

terms of schemata (see Bethke (1980)). The idea was further developed in papers

by Goldberg (see Goldberg (1989a), Goldberg (1989b)). However, such usage did

not apply Walsh transforms to crossover, to mutation, or to any of their associated

mathematical objects. In contrast, Vose and Liepins applied the Walsh transform

directly to mutation and recombination, and proved that the twist M∗ of the mixing

matrix M is triangularized by the Walsh transform, and related eigenvalues of M∗

to the stability of fixed points of G (see Vose and Liepins (1991)).‡ In a related

paper, Koehler (see Koehler (1994)) gives a congruence transformation defined by a

lower triangular matrix that diagonalizes the mixing matrix (for 1-point crossover and

mutation given by a rate) and proved a conjecture of Vose and Liepins concerning

eigenvalues of M∗. Koehler, Bhattacharyya and Vose (see Koehler et al. (1997))

applied the Fourier transform in generalizing results established for binary GAs to

strings over an alphabet of cardinality c (in the binary case, the Fourier transform

is the Walsh transform). From a computational perspective, a major contribution of

Vose and Wright (see Vose and Wright (1998)) was demonstrating that the mixing

matrix is sparse in the Walsh basis, and the computational efficiency of computing

G(p) can thereby be improved from O(8ℓ) to O(3ℓ) where ℓ is the chromosome length.

The cost of moving from standard coordinates to the Walsh basis need not be a

bottleneck; the fast Walsh transform (see Shanks (1969)) does that in O(ℓ 2ℓ) time.

‡The mixing matrix M has rows and columns indexed by chromosomes; entry Mi,j is the
probability that mixing parents i and j (mixing is the combined effect of crossover and mutation)
will produce a child having all bits zero. The twist (M∗) of the mixing matrix M is defined by
(M∗)i,j = Mi+j,i.
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1.3 Random Heuristic Search

This section borrows from and summarizes – with permission – Vose (1999). The work

presented in this thesis is based on Random Heuristic Search (RHS), a general search

method, defined upon the central concept of state and transition between states (see

Vose (1999)). The simple genetic algorithm is a particular type of RHS. An instance of

RHS is an initial collection of elements P (referred to as the initial population) chosen

from some search space Ω, together with a stochastic transition rule τ , which from P

will produce another collection P ′; iterating τ produces a sequence of generations.

Let n be the cardinality of Ω, let 1 denote the column vector of all 1s. The set of

population descriptors is the simplex :

Λ = {x = 〈x0, ..., xn−1〉 : 1Tx = 1, xj ≥ 0}

Element p ∈ Λ corresponds to a population; pj = the proportion in the population

of the jth element of Ω. The cardinality of each population, called population size,

is a constant r. Given r, a population descriptor p unambiguously determines a

population.

Given current population vector p, the next population vector τ(p) cannot be

predicted with certainty because τ is stochastic; it results from r independent,

identically distributed random choices. Let G : Λ → Λ be a function that maps

current population vector p to a vector whose ith component is the probability that

the ith element of Ω is chosen. Thus, G(p) specifies the distribution from which

the aggregate of r choices forms the subsequent generation. The probability that

population q is the next population vector given current population (vector) p is (see
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Vose (1999))

Qp,q = r!
∏ (G(p)j)rqj

(rqj)!

= exp{−r
∑

qj log
qj

G(p)j
−
∑

(log
√
2πrqj +

1

12rqj + θ(rqj)
)

+ O(log r)}

(1.1)

where summation is restricted to indices for which qj > 0 and θ is a function such

that 0 < θ < 1. Each random vector in the sequence p, τ(p), τ 2(p), ... depends

only on the value of the preceding one, which is a special situation. The sequence

forms a Markov chain with transition matrix Q. The conceptualization of RHS can

be replaced by a Markov chain model which makes no reference to sampling Ω; from

current population p, produce q with probability Qp,q. The expected next generation

E(τ(p)) is G(p) (see Vose (1999)). The expression

∑
qj log

qj

G(p)j!

in (1.1) is the discrepancy of q with respect to G(p). It is a measure of how far q is

from the expected next population G(p). Discrepancy is nonnegative and is zero only

when q is G(p). Hence the first factor

exp{−r
∑

qj log
qj

G(p)j
}

in (1.1) indicates the probability that q is the next generation decays exponentially,

with constant r, as the discrepancy between q and G(p) increases. The expression

∑
(log

√
2πrqj +

1

12rqj + θ(rqj)
)
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measures the dispersion of the population vector q and the second factor in (1.1)

exp{−
∑

(log
√
2πrqj +

1

12rqj + θ(rqj)
)}

indicates the probability that q is the next generation decays exponentially with

increasing dispersion. As Vose stated in his book (see Vose (1999)):

The combined effect of the two influences of discrepancy and dispersion

is that random heuristic search favors a less disperse population near the

expected next generation. In particular, if the current population is near

the expected next generation, then the first factor does not contribute

a strong bias for change. When G(p) is nearly the initial population p,

the influence of discrepancy favors p as the next generation since the

alternatives, being lattice points, are constrained to be some distance

away from the expected next generation. This phenomenon is expressed

quantitivelty by theorem 3.4. Moreover, the second factor may exert

a stabilizing effect provided the current population has low dispersion

compared to the alternatives.

Figure 1.3 illustrates population points in a simplex for ℓ = 2, r = 4. Finite

Figure 1.3: Population points

populations are represented by dots, where smaller dots have lower dispersion and

are more likely points whereas larger dots have higher dispersion and are less likely
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points. The diagram also illuminates that finite populations are constrained to occupy

lattice points within Λ. As population size r → ∞, the lattice points become dense

in Λ, which corresponds to the fact that an infinite population can be (represented

by) any point of Λ.

The variance of the next generation (with respect to the expected population)

(see Vose (1999)) is

E(‖τ(p)− G(p)‖2) = 1− ‖G(p)‖2
r

(1.2)

1.4 Research Problems

• Following Chebyshev’s inequality (see Wikipedia (2016a)) equation 1.2 becomes

P (‖τ(p)− G(p)‖ ≥ ǫ) ≤ 1− ‖G(p)‖2
rǫ2

(1.3)

where P above denotes probability and ǫ > 0 is arbitrary.

Let f(r) be a function which grows arbitrarily slowly, such that

lim
r→∞

f(r) =∞

and

lim
r→∞

f(r)/
√
r = 0.

If

ǫ = f(r)/
√
r (1.4)

then (1.3) becomes

lim
r→∞

P (‖τ(p)− G(p)‖ ≥ ǫ) ≤ lim
r→∞

1− ‖G(p‖2
f(r)2

= 0

Therefore, τ(p) converges in probability to G(p) as the population size increases,

and τ corresponds to G in the infinite population case. Moreover, 1.4 suggests
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that the expected distance between finite and infinite population in the next

generation might decrease as 1/
√
r.

In figure 1.3, finite population points can be only at certain points, but infinite

population points can be anywhere in the simplex. Theorem 3.1 in ‘The Simple

Genetic Algorithm: Foundations and Theory’ states (see Vose (1999)):

If p, q ∈ Λ are arbitrary population vectors for population size r,

and ξ denotes an arbitrary element of Λ, then

inf
p 6=q
‖p− q‖ =

√
2/r (1.5)

sup
ξ

inf
p
‖ξ − p‖ = O(1/

√
r) (1.6)

where the constant (in the “big oh”) is independent of the dimension

n of Λ.

From 1.6, the distance between an infinite population ξ and finite population

p is O(1/
√
r). This suggests that the distance between τ(p) and G(p) might

decrease as 1/
√
r.

Let η be the random variable ‖τ(p)−G(p)‖, and let φ(x) = x2. It follows from

Jensen’s Inequality (see Wikipedia (2016b)) that since φ is a convex function,

φ(E(η))) ≤ E(φ(η))

Therefore,

E(‖τ(p)− G(p)‖) = E(η) ≤
√
E(η2) =

√
1− ‖G(p)‖2√

r
(1.7)

This suggests that the distance between τ(p) and G(p) might decrease as 1/
√
r.

Equations 1.4, 1.6, and 1.7 all suggest that the distance between τ(p) and G(p)
might decrease as 1/

√
r. All three of them are inequalities. The distance may
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decrease much faster than as 1/
√
r in reality. The first research question to

consider is whether that rate of decrease can be exhibited in practice. We

investigate the rate of decrease with experiments in Chapter 2.

• An instance of RHS is focused if G is continuously differentiable, and for every

p ∈ Λ the sequence

p,G(p),G2(p), ...

converges. In this case, G is also called focused, and the path determined by

following at each generation what τ is expected to produce will lead to some

fixed point ω

G(ω) = lim
n→∞

Gn(p) = ω.

When specialized to a simple GA (the details are explained in Chapter 2), it

turns out that G is focused under certain conditions, but under other conditions

the sequence p,G(p),G2(p), ... converges to a periodic orbit which oscillates

between fixed points of G2 (see Vose (1999)). If a finite population GA follows

the infinite population GA closely, and if infinite populations oscillate under

certain conditions, then finite populations might also show oscillating behavior.

Akin analytically proves the existence of cycling for a continuous-time diploid

two loci, two allele model (see Akin (1982)). In contrast, we consider a discrete-

time model with more than two loci. Hastings used a numerical approach to

study the behavior of cycling populations with the infinite diploid population

model (see Hastings (1981)). His model includes crossover but not mutation.

Moreover, the study was limited to two loci and two alleles. In contrast, we

consider more than two loci, and include mutation. Wright and Bidwell provided

examples when cycles in an infinite population model occur with mutation and

crossover for 3 and 4 bit populations (see Wright and Bidwell (1997)). Different

behavior cases were observed. For a 3 bit example, both approximate period

2 cycling and long period cycling were observed. For a 4 bit example, long
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period cycling was observed. The examples provided were for specific parameter

values. Their examples are based on computing a specific fitness function and

a specific initial population from randomly generated mutation and crossover

distributions in an attemp to find cyclic behavior anywhere within the parameter

space of fitness, crossover and mutation. In contrast, we investigate cyclic

behavior within a slice of the parameter space corresponding to fixed fitness, and

consider randomly generated initial populations, as well as randomly generated

crossover and mutation distributions.

fitness

mutation

crossover

slice of fixed fitness

Figure 1.4: Parameter space of crossover, mutation and fitness

Similar in some respects to our approach, Wright and Agapie describe cycling

behavior in one slice of the parameter space of fitness, crossover and mutation

(see Wright and Agapie (2001)). They fix the fitness function to be one plus

the integer value (of the population member). They showed results for 1-bit

to 4-bit infinite population evolutions, and observed cyclic behavior of periods

2, 3, 4, 8 and 10. They also present data for finite populations exhibiting

cyclic behavior. A significant difference between their investigation and ours

is that their mutation is dynamic; the manner in which a population member

mutates is dependent upon where the population is located in the state space

Λ. In contrast, we consider static mutation which mutates population members

uniformly irrespective of where the population is located in Λ. Moreover, works
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of Wright and Bidwell, and Wright and Agapie focus only on haploid population

evolution whereas we consider both haploid and diploid population evolution.

Our research also studies cyclic behavior for a different slice of fitness than

Wright and Agapie used in their work. We consider uniform fitness where every

population member has the same fitness. We find cycles in both finite and

infinite population evolution, and provide visualization of oscillation related

to infinite population fixed points. In Chapter 3, we investigate the second

research question: Do finite populations exhibit oscillation in practice when

infinite population oscillates?

• The third research question concerns the robustness of finite population

oscillation. Consider the lattice points in the simplex Λ which represent finite

populations (for some fixed population size r) and let Pj denote the jth

population represented by the jth lattice point. Let πk be the probability

vector having as jth component the probability that Pj is the kth generation.

If π0 is the initial population distribution, the steady state distribution π is

given by (see Häggström (2002))

π = lim
k→∞

πk = lim
k→∞

π0Qk (1.8)

assuming the limit exists. The jth component πj can be interpreted as the

proporiton of time that a GA spends in population Pj. If transition matrix Q

is irreducible§ and aperiodic¶, then the Markov chain is regular (see Iosifescu

(1980)), the steady state distribution π exists, and it has positive components

(see Minc (1988)). The solution to equation 1.8 satisfies

π = πQ (1.9)

§A Markov chain is said to be irreducible if it is possible to get to any state from any state.
¶A Markov chain is aperiodic if it can return to state i at irregular times.

15



where π is normalized so that its components sum to one. If GA were to

perfectly oscillate between two populations Pi and Pj, then πk
i = 1 (other

components are 0) when k is odd, and πk
j = 1 (other components are 0)

when k is even. Therefore, perfect oscillation should not occur. In Chapter

4, we investigate oscillation behavior of finite populations when the Markov

chain is regular. The third research question concerns whether finite population

approximate oscillation can be exhibited in practice when the Markov chain is

regular and infinite population trajectories have no periodic orbit.

• In their work on cyclic behavior of populations, Wright and Agapie point

out that the presence or absence of crossover did not affect cyclic behavior

(see Wright and Agapie (2001)). But in our work, the condition for infinite

population evolution to converge to periodic orbits depends upon crossover and

if the crossover distribution condition is violated, infinite populations will not

have periodic orbits (see Vose (1999)). We investigate the robustness of finite

population oscillation. The fourth research question is: Can finite population

approximate oscillation be exhibited in practice when infinite population

trajectories have no periodic orbit due to the crossover distribution violating

the condition required for infinite population oscillation?
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Chapter 2

Extending A Genetic Algorithm

Model To The Diploid Case

This chapter describes a simple Markov model for evolution under the influence of

crossing over and mutation; it is a non-overlapping, generational, infinite population

model under the assumption of complete panmixia (random mating) and no selective

pressure. This chapter shows how diploid evolution equations can be represented by

haploid equations and can be specialized to Vose’s infinite population model, which

is a haploid model.

A basic syntactic model for haploid and diploid genomes is first considered. Then

the mechanics of how the next generation is obtained from the current generation

are defined abstractly in procedural terms, which serves to motivate the equations

governing evolution. Next evolution equations are developed corresponding to

the procedural description defining evolution for a population of diploid genomes.

Observations concerning the form and symmetry of those equations directly lead to

decoupling from the diploid case a haploid model sufficient to determine evolutionary

trajectories for the diploid case. Mask based mutation and crossover operators are

used to specialize haploid equations to Vose’s infinite haploid population model.

Analytical and computational simplification resulting from specialization to Vose’s
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infinite population model are explained and used in experimental simulations to study

the convergence of finite population short-term behavior to behavior predicted by

the infinite population model. The results confirm that the distance between the

short-term evolutionary trajectory of finite diploid populations and the evolutionary

trajectory of infinite diploid populations can in practice decrease like the inverse of

the square root of population size. Our first research question is thereby answered

affirmatively.

2.1 Model

A haploid genome g is defined syntactically as a length ℓ binary string. A collection

of h chromosomes may be modeled by partitioning g into h segments (of arbitrary

lengths ℓ1, . . . , ℓh; thus ℓ = ℓ1 + · · ·+ ℓh).

A diploid genome α = 〈α0, α1〉 is likewise defined syntactically as a pair of length

ℓ binary strings. Although simple, that syntax is flexible and possesses significant

modeling power by means of tailoring partitioning to application. We concentrate

on the abstract level, considering the evolution of a non-overlapping, generational,

infinite population model assuming panmixia and no selective pressure. We are not

concerned with whether and how partitioning is defined as it is irrelevant to the

development.

Following Hardy (see Hardy (1908)), the model qn at generation n is a vector

having for component qnα the prevalence of diploid α (the probability of selecting

α at generation n, assuming unbiased selection).‡ Ordered diploid γ = 〈γ0, γ1〉 is
produced for generation n+ 1 according to following procedural description.

Assuming independent selection events:

• From parent α — selected with probability qnα — obtain gamete γ0

• From parent β — selected with probability qnβ — obtain gamete γ1

‡The representation here is the conceptual equivalent of Hardy’s model.
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Following Geiringer (see Geiringer (1944)), let the transmission function tα(g) be the

probability that gamete g is produced from parental genome α. It follows from the

above that the equation determining the next generation qn+1 is

qn+1

γ =
∑

α

qnα tα(γ0)
∑

β

qnβ tβ(γ1) (2.1)

It should be appreciated that the Mendelian (see Mendel (1865)) laws of

segregation§ and independent assortment¶ need not be respected by the transmission

function.

The right hand side of (2.1) is invariant under interchange of the summation

variables α and β, which is equivalent to interchanging γ0 and γ1. This symmetry

reflects the fact that which haploid of γ is designated as γ0 is arbitrary,

qn+1

〈γ0,γ1〉
= qn+1

〈γ1,γ0〉

The model corresponding to (2.1) is low-level in the sense that it regards 〈γ0, γ1〉
and 〈γ1, γ0〉 as distinct when γ1 6= γ0. A higher-level model based on sets is easily

obtained,

q{γ0,γ1} =





2q〈γ0,γ1〉 if γ0 6= γ1

q〈γ0,γ1〉 otherwise

which is in agreement with Hardy (see Hardy (1908)).

2.2 Reduction

Evolution equation (2.1) may be reduced to the haploid case. Its right hand side is

the product of two summations; denote the first by pn+1
γ0

and the second by pn+1
γ1

so

that

qn+1

〈γ0,γ1〉
= pn+1

γ0
pn+1

γ1
(2.2)

§Alleles of a given locus segregate into separate gametes.
¶Alleles of one gene sort into gametes independently of the alleles of another gene.
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where for any haploid γ0,

pn+1

γ0
=

∑

α

qnα tα(γ0) (2.3)

It suffices to determine the evolution of the distributions pn. Uncoupling p from q

using (2.3), and equation (2.2) with superscript n — instantiate the n in (2.2) with

n− 1 — yields the evolution equation

pn+1

γ0
=

∑

α0, α1

qn〈α0, α1〉
t〈α0, α1〉(γ0)

=
∑

α0, α1

pnα0
pnα1

t〈α0, α1〉(γ0) (2.4)

The pn are in fact distributions; summing equation (2.2) with superscript n yields

1 =
∑

α

qnα =
∑

α0, α1

pnα0
pnα1

=
(∑

α0

pnα0

)2

The weighted count of haploid g in generation n is

∑

α0, α1

qn〈α0,α1〉
([g = α0] + [g = α1]) (2.5)

=
∑

α0, α1

pnα0
pnα1

[g = α0] +
∑

α0, α1

pnα0
pnα1

[g = α1] (2.6)

= 2png (2.7)

Hence the (normalized) prevalence of haploid g in generation n is the gth

component of the distribution pn. Moreover, (2.2) and (2.5) show (for n > 0)

invertibility of the map

ψ : qn 7−→ pn

Evolution equation (2.4) in matrix form is

p′g = pTMg p (2.8)
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where current state p (generation n) and next state p′ (generation n+ 1) are column

vectors, and the g th transmission matrix is

(
Mg

)
u,v

= t〈u,v〉(g) (2.9)

(vectors and matrices are indexed by haploids — length ℓ binary strings).

2.3 Specialization

This section borrows from and summarizes (with permission) the development in

Vose (1999). It specializes the haploid evolution equations in the previous section to

a context where mask-based crossing over and mutation operators are used, leading to

Vose’s infinite population model for Genetic Algorithms. Whereas in previous sections

component referred to a component of a distribution vector qn or pn, in this section

a component is either a probability (when speaking of a component of a distribution

vector), or a bit (when speaking of a component of a haploid).

2.3.1 Mutation

Mutation simulates errors in chromosome duplication. Mutation provides a mecha-

nism to inject new strings into the next generation. The symbol µ denotes mutation

distribution describing the probability µi with which i ∈ Ω is selected to be a mutation

mask. The result of mutating g is g+i with probability µi. Mutating g using mutation

mask i alters the bits of g in those positions the mutation mask i is 1. If g should

mutate to g′ with probability ρ, let

µg+g′ = ρ

Given distribution µ, mutation is the stochastic operator sending g to g′ with

probability µg+g′ . Abusing notation, µ ∈ [0, 0.5) is regarded as a mutation rate

which implicitly specifies distribution µ according to the rule (see Vose and Wright
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(1998))

µi = (µ)1
T i(1− µ)ℓ−1

T i

2.3.2 Crossover

Crossover refers to crossing over (also termed recombination) between two chromo-

somes (strings in our case). Crossover like mutation also provides a mechanism for

injection of new strings into the next generation population. Geiringer (see Geiringer

(1944)) used crossover masks to implement recombination. Let χm be the probability

distribution with which m is selected to be a crossover mask. Following Geiringer (see

Geiringer (1944)), if crossing over u and v should produce u′ and v′ with probability

ρ, let

χm = ρ

where m is 1 at components which u′ inherits from u, and 0 at components inherited

from v. It follows that

u′ = mu+mv

v′ = mv +mu

Given distribution χ, crossover is the stochastic operator which sends u and v to u′

and v′ with probability χm/2.

Abusing notation, χ can be considered as a crossover rate that specifies the

distribution χ given by the rule (see Vose and Wright (1998))

χi =




χci if i > 0

1− χ+ χc0 if i = 0
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where c ∈ Λ is referred to as crossover type. Classical crossover types include 1-point

crossover and uniform crossover. For 1-point crossover,

ci =




1/(ℓ− 1) if ∃k ∈ (0, ℓ).i = 2k − 1

0 otherwise.

and for uniform crossover, ci = 2−ℓ.

2.3.3 Mixing Matrix

The combined action of mutation and crossover is referred to as mixing. The mixing

matrix M is the transmission matrix corresponding to the additive identity of R

M = M0

Crossover and mutation are defined in a manner respecting arbitrary partioning and

arbitrary linkage to preserve the ability to endow abstract syntax with specialized

semantics. Groups of loci can mutate and crossover with arbitrarily specified

probabilities as disscussed in above sections. For mutation distribution µ and

crossover distribution χ, the transmission function can be expressed as (see Vose

and Wright (1998))

t〈u,v〉(g) =
∑

i∈R

∑

j∈R

∑

k∈R

µiµj
χk + χk

2
[k(u+ i) + k(v + j) = g ] (2.10)

Here a child gamete g is produced via mutation and then crossover (which are

operators that commute).

The mixing matrix M is a fundamental object, because (2.10) implies that

evolution equation (2.8) can be expressed in the form

p′g = (σgp)
TM (σgp) (2.11)
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where the permutation matrix σg is defined by component equations

(σg)u,v = [u+ v = g ]

2.4 Walsh Transorm

If n, t ∈ R, and N is the cardinality of R, the Walsh matrix is defined by

Wn,t = N−1/2(−1)nT t (2.12)

where N−1/2 can be thought of as a normalization factor. The matrix is symmetric,

i.e.,

Wn,t = Wn,t

and it has entries satisfying

Wn,t+k = N1/2Wn,tWn,k ; k ∈ R.

The practical importance of this symmetry is that the transform and inverse are the

same mathematical operation; Walsh matrix is its own inverse,

W = W−1.

Given vector w and matrix A, let ŵ and Â denote the Walsh transform of w and A

respectively. Then ŵ = Ww and Â = WAW (see Beauchamp (1975)).

2.4.1 Fast Walsh Transform

Computation of the Walsh transform given by equation (2.12) might take n2

operations if implemented naively. An algorithm using O(n log2 n) operations is the

Fast Walsh transform (FWT). Shanks (see Shanks (1969)) described FWT algorithm
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which is analogous to Cooley-Tukey algorithm (see Cooley and Tukey (1965)) for fast

Fourier transformation. The FWT algorithm can be translated into pseudocode as:

1: procedure FWT

2: n = 2d ← size of array X where d is positive integer
3: for i = 1 to d do
4: m = 2i

5: z = m/2
6: for k = 0 to z − 1 do
7: for j = 0 to n− 1 step m do
8: t1 = j + k
9: t2 = t1 + z

10: a = X[t1]
11: b = X[t2]
12: X[t1] = a+ b
13: X[t2] = a− b
14: end for
15: end for
16: end for
17: return X
18: end procedure

Algorithm 1: FWT pseudocode

2.4.2 Walsh Transform Adaptation

We adapt Walsh transform methods which have already been established for Vose’s

haploid model (see Vose and Wright (1998)) for computing evolutionary trajectories,

making feasible computation-based comparisons between finite and infinite diploid

population short-term evolutionary behavior. Evolution equation (2.11), specialized

to Vose’s infinite population model without selection, is simplified by changing basis

to diagonalize the σg. Columns of the Walsh matrix W form the orthonormal basis

— the Walsh basis — which simultaneously diagonalizes the σg. Expressed in the

Walsh basis (see Vose and Wright (1998)), the mixing matrix takes the form

M̂u,v = 2 ℓ−1 [uv = 0] µ̂uµ̂v

∑

k∈u+vR

χk+u + χk+v (2.13)

25



and equation (2.11) takes the form

p̂ ′
g = 2 ℓ/2

∑

i∈gR

p̂i p̂i+g M̂i,i+g (2.14)

where gR = {gi | i ∈ R} (for any g ∈ R).
The mapping from generation n to generation n + 1, determined in natural

coordinates by equation (2.8) in terms of the transmission function (2.9), and given

in Walsh coordinates by equation (2.14) in terms of the mixing matrix (2.13), is

Markovian; the next state p′ depends only upon the current state p. LetM represent

the mixing transformation,

p′ = M(p) (2.15)

and letMn(p) denote the n-fold composition ofM with itself; thus generation n+1

is described by

pn+1 = Mn(p1)

where p1 = ψ(q1). We have little to say about the matrix of the Markov chain

corresponding to the mixing transformationM, because it is uncountable; each state

is a distribution vector p describing a population. However, that is not an obstacle

to computing evolutionary trajectories; (2.15) can be computed in Walsh coordinates

relatively efficiently via (2.13) and (2.14).

2.5 Distance

Let vector f represent a finite diploid population; component fα is the prevalence of

diploid α. Let the support Sf of f be the set of diploids occurring in the population

represented by f ,

Sf = {α |fα > 0}
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Let q similarly represent an infinite diploid population (see section 2.1). As points in

R2ℓ×2ℓ , the Euclidean distance between f and q is

‖f − q‖ =
∑

α

1

2

(fα − qα)
2

Whereas a naive computation of this distance involves 2ℓ · 2ℓ terms, leveraging

equation (2.2) can significantly reduce the number of terms involved. Note that

‖f − q‖2 =
∑

α/∈Sf

(fα − qα)
2 +

∑

α∈Sf

(fα − qα)
2 (2.16)

Using equation (2.2) — qα = pα0
pα1

(suppressing superscripts to streamline notation)

— together with the fact that fα = 0 in every term of the first sum above, the first

sum reduces to

∑

〈α0,α1〉 /∈Sf

(pα0
pα1

)2 =
∑

〈α0,α1〉

(pα0
)2(pα1

)2 −
∑

〈α0,α1〉∈Sf

(
pα0

pα1

)2

=
∑

g

2

(pg)
2 −

∑

α∈Sf

(qα)
2 (2.17)

It follows from (2.16) and (2.17) that

‖f − q‖2 =
∑

g

2

(pg)
2 +

∑

α∈Sf

(fα − qα)
2 −

∑

α∈Sf

(qα)
2

=
∑

g

2

(pg)
2 +

∑

α∈Sf

fα(fα − 2qα) (2.18)

which involves 2ℓ+|Sf | terms, assuming that Sf is known as a byproduct of computing

f . Therefore, (2.18) computes distance between finite and infinite population

efficiently.
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2.6 Simplification

Computations in the haploid case are simplified by equations (2.13) and (2.14) which

follow from specializing to Vose’s infinite population model and computing in the

Walsh basis. Time switching between the standard basis and the Walsh basis is

negligible; the fast Walsh transform (in dimension n) has complexity n log n (see

Shanks (1969)).

Only one mixing matrix as opposed to 2ℓ matrices is needed to compute the next

generation; evolution equation (2.14) references the same matrix for every g, whereas

evolution equation (2.8) depends upon a different matrixMg for each choice of g. The

matrix is computed by a single sum as opposed to a triple sum; compare equation

(2.13) with equation (2.10). Also, the relevant quadratic form is computed with a

single sum as opposed to a double sum; computing via (2.14) is linear time in the

size of gR (for each g) as opposed to the quadratic time computation (for each g)

represented by equation (2.8).

From a computational standpoint, the best-case scenario is where recomputation

of the matrices mentioned in the previous paragraph is obviated by sufficient memory.

The reduction from 2ℓ matrices to one matrix helps significantly in that regard. To

demonstrate this advantage in concrete terms, consider genomes of length ℓ = 14.

Using 214 matrices each of which contains 214 × 214 entries of type double requires

32 terabytes, whereas the mixing matrix at 2 gigabytes fits easily within the memory

of a laptop. Moreover, for a population size of N ≤ 220, the distance computation

described in the previous section reduces the number of terms involved by a factor of

228/(214 + 2N) > 252.

2.7 Convergence

This section presents a cursory numerical investigation of the convergence of finite

diploid population short-term behavior to that of the infinite diploid population model
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as described in section 2 (the underlying haploid model for the infinite population

case is described in section 2.1).

Equations (2.2), (2.13), (2.14), (2.18) were employed to efficiently compute the

distance

d = ‖fn − qn‖

where fn and qn represent finite and infinite diploid populations (respectively) at

generation n ∈ {1, 2, 4, 8, 16, 32, 64, 128}, beginning from a random initial population

(f 0 = q0). Genome lengths ℓ ∈ {4, 6, 8, 10, 12, 14} and population sizes N = 2i

for integer 0 ≤ i ≤ 20 were considered. The crossover distribution χ corresponds

to independent assortment of bits, and the mutation distribution µ corresponds to

independent bit mutation probability 0.001,

χm = 2−ℓ, µg = (0.001)1
Tg(0.999)ℓ−1

Tg

(subscripts above on the left hand side of an equality are interpreted on the right hand

side of the equality as column vectors in Rℓ). The finite population case is computed

using the itemized procedural definition given in section 2.1; the transmission function

(2.10) corresponds to µ and χ above (bits mutate independently and are freely

assorted).

The data, presented in six surface graphs in figure 2.1 and organized by genome

length, shows a near linear dependence of log d on logN . As expected, the graphs

show smoothing with increasing genome length (the computation of d involves

averaging over ℓ components), and also with increased population size (as explained

in Vose (1999), the initial transient of a finite haploid population trajectory converges

as N →∞ to the corresponding infinite population model trajectory).

Of particular interest is the linear trend exhibited above. The slope m and

intercept b of the regression line

log d = m logN + b (2.19)
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(b) ℓ = 6.
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(c) ℓ = 8.
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(e) ℓ = 12.
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(f) ℓ = 14.

Figure 2.1: Convergence of finite population behavior: d is distance between
finite population fn and infinite population qn at generation n, population size N ,
for genome length ℓ (bits).
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was computed using the data above; each was plotted against genome length ℓ and

organized by generation n. The resulting graphs are displayed below.
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(a) Slope m, genome length ℓ.
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(b) Intercept b, genome length ℓ.

Figure 2.2: Regression parameters: Multi-plot of Slope m and Intercept b for
Generation n ∈ {1, 2, 4, 8, 16, 32, 64, 128}

Taking the exponential of the regression line (2.19) yields the estimate d ≈ Nmeb.

Slopes of the regression lines shown in figure 2.2 are approximately −0.5, indicating

d ≈ k/
√
N. (2.20)

Equation 2.20 agrees with (1.3), (1.7) and theorem 3.1 from ’The Simple Genetic

Algorithm: Foundations and Theory’ (see Vose (1999)) which gives the bound for the

expected rate of convergence for the single-step haploid case; the distance is inversely

proportional to square root of population size. The consistent convergence rate across

multiple generations shown in figure (2.1) is somewhat surprising, simulation results

above indicate it may persist to generation n = 128.

The intercept graphs in figure 2.2b show the constant of proportionality k =

eb decreases monotonically with genome length ℓ, and increases monotonically with

generation n. The increase in k for larger n seems to be a manifestation of the

growing nonlinearity uniformly exhibited by the plots in figure 2.1 as n increases.

It seems likely that the nonlinearity results partly from genetic drift experienced by
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finite populations (see Crow and Kimura (1970)), and partly because as generations

increase, differences between actual finite and infinite populations may accumulate

which can be understood from figure 2.3.

p

τ2(p)

G2(p)

τ(p)

G(p)

G(τ(p))

τ(G(p))

Gn(p)

τn(p)

G(τ2(p))

τ(G2(p))

Figure 2.3: Non linearity in distance as generation increases: Red nodes
represent finite populations, blue node represents infinite populations. Edges connect
one generation to the next (red for finite population, blue for infinite population)

In figure 2.3, distance between the two immediate children of any node is

aproximately 1/
√
N . But the distance between descendents k generations later may

accumulate to be like k/
√
N .

2.8 Summary

We began with a description of a simple diploid Markov model under mutation and

crossover with no selective pressure. The model was reduced to the haploid case

and specialized using mask-based recombination operators to extend Vose’s infinite

population model to the diploid case. Using computational benefits of this reduction,

we showed via experiment and regression of the resulting data that distance between

finite diploid population and infinite diploid population can indeed decrease like
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1/
√
N in practice. That rate of decrease is consistent with the single-step convergence

bounds predicted by Vose’s infinite population model for the haploid case.
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Chapter 3

Oscillation

This chapter investigates the qualitative similarity between finite population short-

term behavior and infinite population evolutionary limits predicted by Vose. It uses

computation to verify predicted infinite population limits and presents necessary

and sufficient conditions for convergence to periodic orbits. We compute mutation

distribution µ and crossover distribution χ to satisfy those conditions. Through

experiments, we explore our second research question: can finite populations exhibit

oscillation behavior in practice?

3.1 Limits

Vose states that under mild assumptions on mutation and crossover (explained later),

infinite populations converge under repeated application of M in the absense of

selective pressure. Vose mentions that periodic orbits are possible, but populations

converge under repeated application ofM2 and the limits p∗ = limn→∞M2n(p) and

q∗ = limn→∞M2n+1(q) exist (see Vose (1999)).

Following Vose (see Vose (1999)), let Sg = gR \ {0, g}, and let |g| be the number

of non zero bits in g. If p̂ represents the current population in Walsh coordinates,
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then the next generation p̂′
g (expressed in Walsh coordinates) is

p̂′
g =




2ℓ/2 if g = 0

xgp̂g + yg(p̂g) otherwise

where

xg = 2M̂g,0, yg(z) = 2ℓ/2
∑

i∈Sg

zizi+gM̂i,i+g.

Moreover,

|g| = 1 =⇒ yg = 0

|g| > 0 =⇒ |xg| ≤ 1

|xg| = 1 =⇒ yg = 0

With above notations, the limits can be expressed in the Walsh basis by recursive

equations (see Vose (1999))

p̂∗
g =




(xgyg(p̂∗) + yg(q̂∗))/(1− x2g) if |xg| < 1

p̂g otherwise

(3.1)

q̂∗
g =




(xgyg(q̂∗) + yg(p̂∗))/(1− x2g) if |xg| < 1

M̂(p)g otherwise

(3.2)

If xg 6= −1 for all g, then p∗ = q∗ = limn→∞M(p) is the limit of mixing. In other

cases, mixing converges to a periodic orbit oscillating between p∗ and q∗ =M(p∗).

Limits p̂∗
g and q̂∗

g can be computed considering gth components in order of

increasing |g|. The necessary and sufficient condition for the sequence

p,M(p),M2(p), · · ·
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to converge to a periodic orbit is that for some g, g 6= 0

− 1 =
∑

j

(−1)gT jµj = −
∑

k∈ḡR

χk+g + χk (3.3)

3.2 Mutation and Crossover Distributions

The following describes the generation of mutation and crossover distributions that

satisfy equation 3.3 for evolution to converge to a periodic orbit. Let µ and χ

represent mutation and crossover distributions (respectively), and let U01() return a

random number between 0 and 1. For some g ∈ R, g 6= 0, and for all j ∈ R,

µj =




U01() if gT j is odd

0 otherwise

(3.4)

Normalization yields µ (the mutation distribution),

µj := µj/
∑

j∈R

µj .

Moreover, µ satisfies condition 3.3.

Condition k ∈ ḡR in equation 3.3 is

k = ḡi for some i ∈ R

Multiplying through by ḡ yields

ḡk = ḡḡi = ḡi = k
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The crossover distribution can therefore be generated as follows. For all k ∈ R,

χk = U01() if ḡk = k

χk+g = U01() if ḡk = k

χk = 0 otherwise.

(3.5)

Normalization yields χ (the crossover distribution),

χk := χk/
∑

k∈R

χk.

Moreover, χk satisfies condition 3.3.

3.3 Initial Population

To investigate oscillation in infinite population and finite population behavior, it is

desirable to have the same or corresponding initial populations.

For string length ℓ, the number of possible haploids is x = 2ℓ. Let array t represent

a population of size N as follows: tj is the jth population member (some element of

{0, .., x− 1} where elements are base 2 length ℓ binary strings). Array t is generated

from a random vector u of size x as follows.

ui = U01(); i = 0, .., x− 1

tj = randp(u); j = 0, .., N − 1

where randp(u) returns random index i into array u with probability ui.

Let ci be the count of haploid member i in population t,

ci =
N−1∑

j=0

[tj = i]; i = 0, .., x− 1
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The infinite population vector p has ith component

pi =
ci

N
.

This randomly generated infinite haploid population vector p is used to obtain a

diploid infinite population vector q, and finite population vectors s and f as follows.

Infinite diploid population q is calculated corresponding to initial haploid

population p as

qi,j = pipj ; (0 ≤ i, j < x)

The finite haploid population members are the elements of array t, the corre-

sponding finite haploid population vector s is identical to p. Let v be a finite diploid

population member array of dimension two and of size N2 whose diploid member

v[i][j] at index [i][j] is

v[i][j] = 〈ti, tj〉 0 ≤ i, j < N

The finite diploid population (proportion) vector f corresponding to finite diploid

population member array v is identical to q.

Thus, initial infinite haploid population vector p corresponds to initial infinite

diploid population vector q, and to initial finite haploid population vector s with

population size N and population member array t, and to initial finite diploid

population vector f with population size N2 and population member array v.

3.4 Oscillation

Crossover distributions χ and mutation distributions µ satisfying condition (3.3) are

considered to investigate oscillating behavior in terms of predicted infinite population

evolutionary limits.

38



Infinite haploid population evolutionary limits p∗
h and q∗

h were computed using

equations (3.1) and (3.2). Infinite diploid population evolutionary limits p∗
d and q∗

d

are obtained as follows

(p∗
d)〈γ0,γ1〉 = (p∗

h)γ0(p
∗
h)γ1

(q∗
d)〈γ0,γ1〉 = (q∗

h)γ0(q
∗
h)γ1

where γ = 〈γ0, γ1〉 is a diploid genome.

For every genome length ℓ, the same initial population (calculated as described in

(3.3)) was used for the infinite population and all sizes of finite populations conisdered.

Genome lengths ℓ ∈ {8, 10, 12, 14} were used. Base population size of N0 = 64 was

used for the finite haploid case to compute initial population vector. The population

sizes considered for plotting graphs were N ∈ {N2
0 , 10N

2
0 , 20N

2
0}. To study oscillation

in finite populations, the distances of pn and sn to haploid evolutionary limits p∗
h and

q∗
h were plotted and the distances of qn and fn to diploid evolutionary limits p∗

d and

q∗
d were plotted.

According to the results and conclusions from chapter 2, the expected distance d

between finite population of size N and infinite population is

d ≈ 1/
√
N

Table 3.1: Expected single step distance d for population size N

N 4096 40960 81920

d 0.0156 0.0049 0.0035

The distance between finite population and infinite population, for both haploid

and diploid cases, were also plotted.
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3.4.1 Haploid Population

Figures 3.1, 3.2, 3.3 and 3.4 show oscillations in finite haploid populations, and

distances between finite and infinite haploid populations arranged by genome length

ℓ. In each figure, sub-figures are arranged by population size N . The first three rows

of sub-figures in the left column show distance d′ of finite population to limits, the

sub-figure in fourth row of the left column shows distance d′ of infinite population to

limits. These sub-figures depict oscillating behavior of both infinite and finite haploid

populations when condition 3.3 is met. As population size increases, oscillation

approaches the behavior exhibited by infinite population.

In each figure (3.1, 3.2, 3.3, and 3.4), the first three graphs in the right column

show distance variation (difference of distance d and average distance davg) where d is

distance between haploid finite and infinite populations and davg is average value of

d. The graph in the fourth row shows distance between finite and infinite populations

decreases as population size increases, consistent with results from section 2.1. The

graphs of d− davg decrease in amplitude as population size increases. As ℓ increases,

the distance graphs become smoother, and amplitude of oscillations decrease.

Distance data obtained from simulations for haploid populations are summarized

in table 3.2, which tabulates average distance between finite and infinite populations.

Table 3.2: Distance measured for haploid population: N is population size, ℓ
is genome length, average distance between finite and infinite population is tabulated
in the last three columns, and last row is expected single step distance.

ℓ N = 4096 N = 40960 N = 81920

8 0.0158 0.0051 0.0035
10 0.0157 0.0050 0.0035
12 0.0156 0.0049 0.0035
14 0.0156 0.0049 0.0035

1/
√
N 0.0156 0.0049 0.0035

Results from table 3.2 show average distance between finite and infinite population

closely follows the expected single step distance. The distance decreases as 1/
√
N .
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Figure 3.1: Infinite and finite haploid population behavior for genome
length ℓ = 8: In left column, d′ is distance of finite population of size n or infinite
population to limits for g generations. Green line is distance to p∗ and red line is
distance to q∗. In right column, d is distance of finite population to infinite population
for g generations and davg is average distance.

41



 0.014

 0.016

 0.018

 0.02

 0.022

 0.024

 0.026

 0.028

 0.03

 0  5  10  15  20  25  30  35  40  45  50

d’

g

finite haploid l:10, g:50, n:4096

-0.0015

-0.001

-0.0005

 0

 0.0005

 0.001

 0.0015

 0  5  10  15  20  25  30  35  40  45  50

d-
d av

g

g

d-davg haploid l:10, g:50, n:4096

 0.004
 0.006
 0.008
 0.01

 0.012
 0.014
 0.016
 0.018
 0.02

 0.022
 0.024

 0  5  10  15  20  25  30  35  40  45  50

d’

g

finite haploid l:10, g:50, n:40960

-0.0004

-0.0003

-0.0002

-0.0001

 0

 0.0001

 0.0002

 0.0003

 0.0004

 0  5  10  15  20  25  30  35  40  45  50
d-

d av
g

g

d-davg haploid l:10, g:50, n:40960

 0.002
 0.004
 0.006
 0.008
 0.01

 0.012
 0.014
 0.016
 0.018
 0.02

 0.022
 0.024

 0  5  10  15  20  25  30  35  40  45  50

d’

g

finite haploid l:10, g:50, n:81920

-0.0002

-0.00015

-0.0001

-5e-05

 0

 5e-05

 0.0001

 0.00015

 0.0002

 0.00025

 0  5  10  15  20  25  30  35  40  45  50

d-
d av

g

g

d-davg haploid l:10, g:50, n:81920

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0  5  10  15  20  25  30  35  40  45  50

d’

g

infinite haploid l:10, g:50

 0.002

 0.004

 0.006

 0.008

 0.01

 0.012

 0.014

 0.016

 0.018

 0  5  10 15 20 25 30 35 40 45 50

d

g

distance haploid l:10, g:50

n:04096
n:40960
n:81920

Figure 3.2: Infinite and finite haploid population oscillation behavior for
genome length ℓ = 10 : In left column, d′ is distance of finite population of size n
or infinite population to limits for g generations. Green line is distance to p∗ and red
line is distance to q∗. In right column, d is distance of finite population to infinite
population for g generations and davg is average distance.
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Figure 3.3: Infinite and finite haploid population oscillation behavior for
genome length ℓ = 12 : In left column, d′ is distance of finite population of size n
or infinite population to limits for g generations. Green line is distance to p∗ and red
line is distance to q∗. In right column, d is distance of finite population to infinite
population for g generations and davg is average distance.

43



 0.0154
 0.0155
 0.0156
 0.0157
 0.0158
 0.0159
 0.016

 0.0161
 0.0162
 0.0163
 0.0164
 0.0165

 0  5  10  15  20  25  30  35  40  45  50

d’

g

finite haploid l:14, g:50, n:4096

-0.0002

-0.00015

-0.0001

-5e-05

 0

 5e-05

 0.0001

 0.00015

 0.0002

 0  5  10  15  20  25  30  35  40  45  50

d-
d av

g

g

d-davg haploid l:14, g:50, n:4096

 0.0045

 0.005

 0.0055

 0.006

 0.0065

 0.007

 0.0075

 0  5  10  15  20  25  30  35  40  45  50

d’

g

finite haploid l:14, g:50, n:40960

-6e-05
-4e-05
-2e-05

 0
 2e-05
 4e-05
 6e-05
 8e-05

 0.0001
 0.00012
 0.00014

 0  5  10  15  20  25  30  35  40  45  50
d-

d av
g

g

d-davg haploid l:14, g:50, n:40960

 0.003

 0.0035

 0.004

 0.0045

 0.005

 0.0055

 0.006

 0.0065

 0  5  10  15  20  25  30  35  40  45  50

d’

g

finite haploid l:14, g:50, n:81920

-5e-05
-4e-05
-3e-05
-2e-05
-1e-05

 0
 1e-05
 2e-05
 3e-05
 4e-05
 5e-05

 0  5  10  15  20  25  30  35  40  45  50

d-
d av

g

g

d-davg haploid l:14, g:50, n:81920

 0
 0.0005

 0.001
 0.0015

 0.002
 0.0025

 0.003
 0.0035

 0.004
 0.0045

 0.005

 0  5  10  15  20  25  30  35  40  45  50

d’

g

infinite haploid l:14, g:50

 0.002

 0.004

 0.006

 0.008

 0.01

 0.012

 0.014

 0.016

 0  5  10 15 20 25 30 35 40 45 50

d

g

distance haploid l:14, g:50

n:04096
n:40960
n:81920

Figure 3.4: Infinite and finite haploid population oscillation behavior for
genome length ℓ = 14 : In left column, d′ is distance of finite population of size n
or infinite population to limits for g generations. Green line is distance to p∗ and red
line is distance to q∗. In right column, d is distance of finite population to infinite
population for g generations and davg is average distance.
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3.4.2 Diploid Population

Figures 3.5, 3.6, 3.7 and 3.8 show oscillations in finite diploid populations, and

distances between finite diploid populations and infinite diploid populations arranged

by genome length ℓ in ascending order. In each figure for unique genome length ℓ,

sub-figures are arranged by population size N . In each figure, the first three rows

of sub-figures in the left column show distance d′ of finite population to limits, the

sub-figure in fourth row of the left column shows distance d′ of infinite population to

limits. These sub-figures depict oscillating behavior of both infinite and finite diploid

populations when condition 3.3 is met. Like in haploid population case, as population

size increases, oscillation approaches the behavior exhibited by infinite population.

In each figure (3.5, 3.6, 3.7, and 3.8), the first three graphs in the right column

show distance variation (difference of distance d and average distance davg) where d

is distance between diploid finite and infinite populations and davg is average value of

d. The graph in the fourth row of the right column combines distance plots between

finite and infinite populations for sizes (N = N2
0 , 10N

2
0 , 20N

2
0 ). The graphs show

distance decreases as population size increases, consistent with results from section

2.1. The graphs of d − davg decrease in amplitude as population size increases. For

fixed finite population size, as ℓ increases, the distance graphs become smoother, and

amplitude of oscillations decrease.

Distance data obtained from simulations for diploid populations are summarized

in table 3.3, which tabulates average distance between finite and infinite populations.

Results from table 3.3 show average distance between finite and infinite population

closely follows the expected single step distance. The distance decreases as 1/
√
N .
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Figure 3.5: Infinite and finite diploid population oscillation behavior for
genome length ℓ = 8: In left column, d′ is distance of finite population of size n or
infinite population to limits for g generations. Green line is distance to p∗ and red
line is distance to q∗. In right column, d is distance of finite population to infinite
population for g generations and davg is average distance.
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Figure 3.6: Infinite and finite diploid population oscillation behavior for
genome length ℓ = 10: In left column, d′ is distance of finite population of size n
or infinite population to limits for g generations. Green line is distance to p∗ and red
line is distance to q∗. In right column, d is distance of finite population to infinite
population for g generations and davg is average distance.
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Figure 3.7: Infinite and finite diploid population oscillation behavior for
genome length ℓ = 12: In left column, d′ is distance of finite population of size n or
infinite population to limits for g generations. In right column, d is distance of finite
population to infinite population for g generations and davg is averag Green line is
distance to p∗ and red line is distance to q∗.e distance.
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Figure 3.8: Infinite and finite diploid population oscillation behavior for
genome length ℓ = 14: In left column, d′ is distance of finite population of size n
or infinite population to limits for g generations. Green line is distance to p∗ and red
line is distance to q∗. In right column, d is distance of finite population to infinite
population for g generations and davg is average distance.
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Table 3.3: Distance measured for diploid population: N is population size, ℓ
is genome length, average distance between finite and infinite population is tabulated
in the last three columns, and last row is expected single step distance.

ℓ N = 4096 N = 40960 N = 81920

8 0.0156 0.0049 0.0035
10 0.0156 0.0049 0.0035
12 0.0156 0.0049 0.0035
14 0.0156 0.0049 0.0035

1/
√
N 0.0156 0.0049 0.0035

3.5 Discussion

For same genome length ℓ and same size finite populations, graph showing distance

between finite diploid population and infinite population is smoother than graph

showing distance between finite haploid population and infinite population. Average

oscillation amplitude is plotted for both haploid and diploid populations as surface

graphs in figures 3.9a and 3.9b.
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Figure 3.9: Average oscillation amplitude: A is average amplitude of oscillation,
L is genome length ℓ, and N is population size

Oscillation amplitude increases with increase in population size for both haploid

and diploid populations, and better oscillations are observed with larger population
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size for a given ℓ. Also amplitude of oscillation decreases with increase in ℓ value for

same population size, and since total genome length of diploid population is twice

that of haploid population, amplitude of oscillation of diploid population is smaller

than haploid population of same population size and same value of ℓ. So for longer

genome length ℓ, larger population size is needed to observe clear oscillations.
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Figure 3.10: Finite diploid population oscillation for ℓ = 12 & 14 and N =
4096

For the diploid case, when genome length ℓ is longer (ℓ = 12 and 14 in our

simulation), and population size is small (like N = 4096 in our simulation), finite

population has tendency to oscillate between different levels. Figures 3.10a and 3.10b

show such tendency for ℓ = 12 and ℓ = 14. Very good oscillations with small amplitude

were observed in temporarily stable states in these cases. Figure 3.11 shows magnified

scale oscillations for ℓ = 14 when high peak is omitted from the plot of 3.10b. As

string length increases, the number of fixed points for other crossover and mutation

distributions around the vicinity of finite population path also increases, and finite

populations may get attracted to those near by fixed points(see Vose (1999)). With

many fixed points available, there are several regions for finite populations to prefer.

But when population size is large, finite populations intend to follow the infinite

population, and infinite population tends to converge to a single fixed point or oscillate
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between two fixed points, hence larger populations have lower tendency to jump

between different levels.
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Figure 3.11: Finite diploid population oscillation for ℓ = 14 and N = 4096
from 10 to 50 generations

3.6 Summary

In this chapter, we described infinite population limits predicted by Vose, and

conditions for convergence to a periodic orbit. Mutation and crossover distributions

were computed to satisfy the conditions for infinite populations to converge to

a periodic orbit. Through experiment, we showed finite populations can also

exhibit approximate oscillation. We found amplitude of oscillation is affected

by string length and population size. As string length increases, oscillation

amplitude decreases. Oscillation degrades as string length increases. As population

size increases, oscillation amplitude increases, and also randomness in oscillation

decreases. Simulations show finite populations with smaller population size and

higher string length may oscillate between different pairs of points, which in our

simulations occurred only in diploid populations. Moreover, the distance between

finite populations and infinite populations can in practice decrease as 1/
√
N as the

populations size increases, which agrees with previous results from chapter 2.

52



Chapter 4

Violation in Mutation Distribution

The results from chapter 3 show that oscillation occurs when the crossover distribution

χ and the mutation distribution µ satisfy condition 3.3. This chapter explores the

robustness of finite population oscillation when condition 3.3 is violated for µ. The

violation of the condition 3.3 prevents infinite population convergence to a periodic

orbit. Violation of the condition 3.3 for µ, mutation-violation as we call it, is expressed

as:

For all g , g 6= 0, −1 6=
∑

j

(−1)gT jµj (4.1)

Mutation-violation also makes the Markov chain representing finite population

evolution regular (sometimes called ergodic). If the Markov chain is regular, then

positive steady state distribution exists for the Markov chain, no finite population

periodic orbit exists, and perfect finite population oscillation can not occur. The

question explored in this chapter is: Can finite populations exhibit approximate

oscillation when the Markov chain is regular and infinite population trajectories have

no periodic orbit?

Error ǫ is introduced into the mutation distribution µ so as to violate condition

3.3; this guarantees that infinite population trajectories have no periodic orbit.

Consequently, p∗ = q∗ = z∗. Going forward, we use ‘limit z∗’ to denote
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evolutionary limit when mutation distribution µ violates condition 3.3, and ‘non-

violation limits p∗ and q∗’ to denote limits without violation (i.e., ǫ = 0).

4.1 Violation

The mutation distribution µ is modified as follows

µi := (1− ǫ)µi ; i = {0, 1, 2, .., 2ℓ − 1}

Thus summing components of µ distribution yields,

1− ǫ =
2ℓ−1∑

i=0

µi

Then set

µ0 = ǫ

The modified mutation distribution µ is normalized such that
∑

µi = 1. The new µ

satisfies condition 4.1. Moreover, the no mutation event (using mask 0) has positive

probability (µ0 = ǫ > 0).

The modification described above makes it possible for any population member

to mutate to any other population member. Let us exlore for two cases of g in 3.3:

1. When g is all 1s:

Any mask with a 1 at position k (0 ≤ k < ℓ) and 0 at all other positions can mutate

the kth bit, and since the all 0s mask has positive probability, strings have an option

to not mutate. This makes possibile for any string to mutate to any other string. Let

us take an example with ℓ = 8. Let g = 11111111. Then, mask i = 00000100 will

have positive probability according to condition 3.3. Mask i can be used to mutate

the sixth bit of a population member. More generally, any bit has the option of

mutating or not, so any string can mutate to any other.
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2. When g has at least one 0:

Any mask with a 1 at position k and 0 at all other positions will have positive

probability if g also is 1 at position k. Thus, any bit where g is 1 has the option of

mutating or not. Any mask with 1 in just one of the positions where g has 1s and

also 1 in just one of the positions where g has 0s can be used to mutate a bit where

g is 0. Let us take an example with ℓ = 8. Let g = 11001111. Then, mask

i = 00000100 will have positive probability according to condition 3.3. Also mask

j = 00010100 will have positive probability. Mask i can be used to mutate the

sixth bit, and mutation with mask i followed by mutation with mask j will result in

mutating the fourth bit. More generally, any bit has the option of mutating or not,

so any string can mutate to any other. Since any population can therefore mutate

to any other population (this may involve many generations because there are many

population members which may need to be mutated), the Markov chain is irreducible.

The Markov chain is also aperiodic. We prove this by simple induction. Let S(n)

be the assertion that population P can be returned to in n generations. Our base case

is n = 1. The GA can stay in its original state P if no mutation or crossover events

occur. Population P has option to not mutate to any other population, since all 0s

mutation mask has positive probability. So S(n) is true. Now assume S(k) is true,

population P can be returned to in n = k generations. In the k + 1th generation,

population P has the option to stay in state P . So S(k + 1) is also trueand that

completes the inductive proof. Since any population state can be returned to in any

period of time, the Markov chain is aperiodic.

Because the Markov chain formed by GA after violation in µ is irreducible and

aperiodic, the Markov chain is regular (see Iosifescu (1980)), and a steady state

distribution with positive components exists for the GA (see Minc (1988)).

Simulations were repeated with mutation-violation described above. The initial

population is computed using same procedure as described in section 3.3. To explore

the effects of the degree of violation, different values of ǫ ∈ {0.01, 0.1, 0.5} are used

in experiments. String lengths ℓ ∈ {8, 10, 12, 14} are considered for simulation.
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The distances of both infinite and finite populations to limit z∗ were plotted. The

distances of both infinite and finite populations to non-violation limits p∗ and q∗ (i.e.

ǫ = 0) were also plotted.

4.1.1 Haploid Population ∼ ǫ : 0.01

The right column in figures 4.1 through 4.4 shows distance of finite and infinite

haploid populations to non-violation limits p∗ and q∗ with ǫ = 0.01. Those graphs

indicate oscillating behavior of finite haploid populations given violation. Infinite

populations initially oscillate given violation but the oscillation dies out. Since the

value of ǫ is small, damping of ripples is slow. The all zeros mask created in mutation

distribution with ǫ = 0.01 is unlikely to be used during mutation, and when it is not

used, behavior should be consistent with the behavior without violation. Moreover,

ǫ is small enough so that infinite population oscillation does not die out completely

in 50 generations, even though oscillation will eventually die out completely. That

is not the case for finite populations; if oscillation were to die out, it must reappear

infinitely often because the Markov chain is regular.

The left column of figures 4.1 through 4.4 shows distance of finite and infinite

haploid populations to limit z∗ (limit with violation in mutation distribution µ)

when ǫ = 0.01. The distance between finite population and limit z∗ decreases as

finite population size N increases, and finite population shows behavior similar to

infinite population as population size increases. Average distance data of haploid

population for µ violation with ǫ = 0.01 are tabulated in table 4.1.
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Figure 4.1: Infinite and finite haploid populations behavior for µ violation
and ℓ = 8 and ǫ = 0.01: In left column, d′ is distance of finite or infinite population
to limit z∗ for g generations. In right column, d is distance of finite or infinite
population to limits p∗ and q∗. Green line is distance to p∗ and red line is distance
to q∗.
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Figure 4.2: Infinite and finite haploid population behavior for µ violation,
genome length ℓ = 10 and ǫ = 0.01: In left column, d′ is distance of finite or
infinite population to limit z∗ for g generations. In right column, d is distance of
finite or infinite population to limits p∗ and q∗. Green line is distance to p∗ and red
line is distance to q∗.
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Figure 4.3: Infinite and finite haploid population behavior for µ violation,
genome length ℓ = 12 and ǫ = 0.01: In left column, d′ is distance of finite or
infinite population to limit z∗ for g generations. In right column, d is distance of
finite or infinite population to limits p∗ and q∗. Green line is distance to p∗ and red
line is distance to q∗.
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Figure 4.4: Infinite and finite haploid population behavior for µ violation,
genome length ℓ = 14 and ǫ = 0.01: In left column, d′ is distance of finite or
infinite population to limit z∗ for g generations. In right column, d is distance of
finite or infinite population to limits p∗ and q∗. Green line is distance to p∗ and red
line is distance to q∗.
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Table 4.1: Distance measured for violation in µ with ǫ = 0.01 for haploids:
ℓ is genome length, average distance between finite and infinite population is tabulated
in the last three columns, and last row is expected single step distance.

ℓ N = 4096 N = 40960 N = 81920

8 0.0176 0.0094 0.0093
10 0.0168 0.0088 0.0077
12 0.0161 0.0064 0.0053
14 0.0157 0.0051 0.0038

1/
√
N 0.0156 0.0049 0.0035

Table 4.1 shows the average distance between finite and infinite population

decreases with increasing string length, approaching the expected single step distance

1/
√
N .

4.1.2 Haploid Population ∼ ǫ : 0.1

The right column in figures 4.5 through 4.8 shows distance of finite and infinite haploid

populations with ǫ = 0.1 to non-violation limits p∗ and q∗. Those graphs indicate

oscillating behavior of finite haploid population given violation. Infinite populations

initially oscillate given violation, and oscillation amplitude decreases with generation.

Rate of damping of ripples with ǫ = 0.1 is larger than with ǫ = 0.01. For ǫ = 0.1,

oscillations in infinite populations die out quickly, but oscillations in finite populations

do not die out completely (even though it appears to be dying out) because the Markov

chain is regular. Since the Markov chain is regular, finite population must visit every

population state infinitely often. So, if finite population oscillation were to die out,

it must reappear infinitely often.

The left column of figures 4.5 through 4.8 shows distance of finite and infinite

haploid populations to limit z∗ (limit with violation in µ) when ǫ = 0.1. The

distance decreases as finite population size increases, and finite population shows

behavior similar to infinite population behavior as population size grows.
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Figure 4.5: Infinite and finite haploid population behavior for µ violation
and ℓ = 8 and ǫ = 0.1: In left column, d′ is distance of finite or infinite population to
limit z∗ for g generations. In right column, d is distance of finite or infinite population
to limits p∗ and q∗. Green line is distance to p∗ and red line is distance to q∗.
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Figure 4.6: Infinite and finite haploid population behavior for µ violation,
genome length ℓ = 10 and ǫ = 0.1: In left column, d′ is distance of finite or infinite
population to limit z∗ for g generations. In right column, d is distance of finite or
infinite population to limits p∗ and q∗. Green line is distance to p∗ and red line is
distance to q∗.
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Figure 4.7: Infinite and finite haploid population behavior for µ violation,
genome length ℓ = 12 and ǫ = 0.1: In left column, d′ is distance of finite or infinite
population to limit z∗ for g generations. In right column, d is distance of finite or
infinite population to limits p∗ and q∗. Green line is distance to p∗ and red line is
distance to q∗.
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Figure 4.8: Infinite and finite haploid population behavior for µ violation,
genome length ℓ = 14 and ǫ = 0.1: In left column, d′ is distance of finite or infinite
population to limit z∗ for g generations. In right column, d is distance of finite or
infinite population to limits p∗ and q∗. Green line is distance to p∗ and red line is
distance to q∗.
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Average distance data for haploid population in case of violation in µ distribution

with ǫ = 0.1 for different finite population size N is tabulated in table 4.2.

Table 4.2: Distance measured for violation in µ with ǫ = 0.1 for haploids: ℓ
is genome length, average distance between finite and infinite population is tabulated
in the last three columns, and last row is expected single step distance.

ℓ N = 4096 N = 40960 N = 81920

8 0.0158 0.0054 0.0041
10 0.0158 0.0053 0.0039
12 0.0157 0.0051 0.0036
14 0.0156 0.0050 0.0035

1/
√
N 0.0156 0.0049 0.0035

Table 4.2 show average distance between finite population and infinite population

decreases with increasing string length, approaching the expected single step distance

1/
√
N .

4.1.3 Haploid Population ∼ ǫ : 0.5

The right column in figures 4.9 through 4.12 shows distance of finite and infinite

haploid populations with ǫ = 0.5 to non-violation limits p∗ and q∗. Neither finite

nor infinite populations show noticable oscillation given violation. The all zeros mask

created in mutation distribution with ǫ = 0.5 has a large probability of being used

during mutation, so oscillation decreased signficantly.

The left column of figures 4.9 through 4.12 shows distance of finite and infinite

haploid populations to limit z∗ (limit with violation in mutation distribution µ)

when ǫ = 0.5. The distance decreases as finite population size increases, and finite

population shows behavior similar to infinite population behavior as finite population

size grows. Average distance data for haploid population in case of violation in µ

distribution with ǫ = 0.5 for different finite population size N are tabulated in table

4.3.
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Figure 4.9: Infinite and finite haploid population behavior for µ violation
and ℓ = 8 and ǫ = 0.5: In left column, d′ is distance of finite or infinite population to
limit z∗ for g generations. In right column, d is distance of finite or infinite population
to limits p∗ and q∗. Green line is distance to p∗ and red line is distance to q∗.
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Figure 4.10: Infinite and finite haploid population behavior µ for violation,
genome length ℓ = 10 and ǫ = 0.5: In left column, d′ is distance of finite or infinite
population to limit z∗ for g generations. In right column, d is distance of finite or
infinite population to limits p∗ and q∗. Green line is distance to p∗ and red line is
distance to q∗.
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Figure 4.11: Infinite and finite haploid population behavior µ for violation,
genome length ℓ = 12 and ǫ = 0.5: In left column, d′ is distance of finite or infinite
population to limit z∗ for g generations. In right column, d is distance of finite or
infinite population to limits p∗ and q∗. Green line is distance to p∗ and red line is
distance to q∗.
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Figure 4.12: Infinite and finite haploid population behavior µ for violation,
genome length ℓ = 14 and ǫ = 0.5: In left column, d′ is distance of finite or infinite
population to limit z∗ for g generations. In right column, d is distance of finite or
infinite population to limits p∗ and q∗. Green line is distance to p∗ and red line is
distance to q∗.
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Table 4.3: Distance measured for violation in µ with ǫ = 0.5 for haploids: ℓ
is genome length, average distance between finite and infinite population is tabulated
in the last three columns, and last row is expected single step distance.

ℓ N = 4096 N = 40960 N = 81920

8 0.0161 0.0056 0.0042
10 0.0161 0.0055 0.0040
12 0.0157 0.0051 0.0036
14 0.0157 0.0051 0.0036

1/
√
N 0.0156 0.0049 0.0035

Table 4.3 shows that the average distance between finite population and infinite

population decreases with increasing string length, approaching the expected single

step distance 1/
√
N .

4.1.4 Diploid Population ∼ ǫ : 0.01

The right column in figures 4.13 through 4.16 shows distance of finite and infinite

diploid populations with ǫ = 0.01 to non-violation limits p∗ and q∗. Those graphs

indicate oscillating behavior of finite diploid population given violation. Infinite

populations initially oscillate given violation but the oscillation dies out. Since the

value of ǫ is very small, damping of ripples is slow. Infinite population oscillation does

not die out in 50 generations but will eventually die out. Even though oscillation in

finite population is tapering down, it will not die out completely; because the Markov

chain is regular, finite population oscillation will reappear infinitely often.

The left column of figures 4.13 through 4.16 shows distance of finite and infinite

diploid populations to limit z∗ (limit with violation in mutation distribution µ) when

ǫ = 0.01. The distance decreases as finite population size increases, and finite

population shows behavior similar to infinite population as population size grows.

Average distance data for diploid population for µ violation with ǫ = 0.01 are

tabulated in table 4.4.
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Figure 4.13: Infinite and finite diploid population behavior for µ violation,
ℓ = 8 and ǫ = 0.01: In left column, d′ is distance of finite or infinite population to
limit z∗ for g generations. In right column, d is distance of finite or infinite population
to limits p∗ and q∗. Green line is distance to p∗ and red line is distance to q∗.
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Figure 4.14: Infinite and finite diploid population behavior for µ violation,
genome length ℓ = 10 and ǫ = 0.01: In left column, d′ is distance of finite or infinite
population to limit z∗ for g generations. In right column, d is distance of finite or
infinite population to limits p∗ and q∗. Green line is distance to p∗ and red line is
distance to q∗.
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Figure 4.15: Infinite and finite diploid population behavior for µ violation,
genome length ℓ = 12 and ǫ = 0.01: In left column, d′ is distance of finite or infinite
population to limit z∗ for g generations. In right column, d is distance of finite or
infinite population to limits p∗ and q∗. Green line is distance to p∗ and red line is
distance to q∗.
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Figure 4.16: Infinite and finite diploid population behavior for µ violation,
genome length ℓ = 14 and ǫ = 0.01: In left column, d′ is distance of finite or infinite
population to limit z∗ for g generations. In right column, d is distance of finite or
infinite population to limits p∗ and q∗. Green line is distance to p∗ and red line is
distance to q∗.
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Table 4.4: Distance measured for violation in µ with ǫ = 0.01 for diploids:
ℓ is genome length, average distance between finite and infinite population is tabulated
in the last three columns, and last row is expected single step distance.

ℓ N = 4096 N = 40960 N = 81920

8 0.0156 0.0050 0.0035
10 0.0156 0.0049 0.0035
12 0.0156 0.0049 0.0035
14 0.0156 0.0049 0.0035

1/
√
N 0.0156 0.0049 0.0035

Table 4.4 shows that the average distance between finite population and infinite

population decreases with increasing string length, approaching the expected single

step distance 1/
√
N .

4.1.5 Diploid Population ∼ ǫ : 0.1

The right column in figures 4.17 through 4.20 shows distance of finite and infinite

diploid populations with ǫ = 0.1 to non-violation limits p∗ and q∗. Those

graphs indicate the oscillating behavior of finite diploid populations given violation;

oscillation amplitudes decrease with time. Like in the haploid case, (for ǫ = 0.1)

oscillations in infinite populations die out quickly, but finite population oscillation

does not (and will reappear infinitely often). Rate of damping of ripples with ǫ = 0.1

is larger than with ǫ = 0.01. The all zeros mask created in mutation distribution

with ǫ = 0.1 has a larger probability of being used during mutation as compared

with the ǫ = 0.01 case. More random wiggling of finite population is noticed than in

case of ǫ = 0.01, and as value of ℓ increases, random wiggling is more prevalent.

The left column of figures 4.17 through 4.20 shows distance of finite and infinite

diploid populations to limit z∗ (limit with violation in mutation distribution µ) when

ǫ = 0.1. The distance decreases as finite population size increases, and finite

population shows behavior similar to infinite population behavior as population size

grows.
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Figure 4.17: Infinite and finite diploid population behavior for µ violation,
ℓ = 8 and ǫ = 0.1: In left column, d′ is distance of finite or infinite population to
limit z∗ for g generations. In right column, d is distance of finite or infinite population
to limits p∗ and q∗. Green line is distance to p∗ and red line is distance to q∗.
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Figure 4.18: Infinite and finite diploid population behavior for µ violation,
genome length ℓ = 10 and ǫ = 0.1: In left column, d′ is distance of finite or infinite
population to limit z∗ for g generations. In right column, d is distance of finite or
infinite population to limits p∗ and q∗. Green line is distance to p∗ and red line is
distance to q∗.

78



0.01562

0.01562

0.01563

0.01563

0.01563

0.01563

0.01563

0.01564

 0  5  10  15  20  25  30  35  40  45  50

d’

g

finite diploid l:12, g:50, n:4096, eps:0.10

0.01562

0.01562

0.01563

0.01563

0.01563

0.01563

0.01563

0.01564

 0  5  10  15  20  25  30  35  40  45  50

d

g

finite diploid l:12, g:50, n:4096, eps:0.10

0.004939
0.004939
0.004940
0.004940
0.004941
0.004941
0.004942
0.004942
0.004943
0.004943
0.004944

 0  5  10  15  20  25  30  35  40  45  50

d’

g

finite diploid l:12, g:50, n:40960, eps:0.10

0.004940

0.004941

0.004942

0.004943

0.004944

0.004945

0.004946

0.004947

 0  5  10  15  20  25  30  35  40  45  50
d

g

finite diploid l:12, g:50, n:40960, eps:0.10

0.003493

0.003494

0.003494

0.003495

0.003495

0.003496

0.003496

0.003497

0.003497

 0  5  10  15  20  25  30  35  40  45  50

d’

g

finite diploid l:12, g:50, n:81920, eps:0.10

0.00349
0.00349
0.00350
0.00350
0.00350
0.00350
0.00350
0.00350
0.00350
0.00350
0.00350

 0  5  10  15  20  25  30  35  40  45  50

d

g

finite diploid l:12, g:50, n:81920, eps:0.10

 0

 2e-05

 4e-05

 6e-05

 8e-05

 0.0001

 0.00012

 0  5  10  15  20  25  30  35  40  45  50

d’

g

infinite diploid l:12, g:50, eps:0.10

 4e-05
 6e-05
 8e-05

 0.0001
 0.00012
 0.00014
 0.00016
 0.00018

 0.0002
 0.00022
 0.00024

 0  5  10  15  20  25  30  35  40  45  50

d

g

infinite diploid l:12, g:50, eps:0.10

Figure 4.19: Infinite and finite diploid population behavior for µ violation,
genome length ℓ = 12 and ǫ = 0.1: In left column, d′ is distance of finite or infinite
population to limit z∗ for g generations. In right column, d is distance of finite or
infinite population to limits p∗ and q∗. Green line is distance to p∗ and red line is
distance to q∗.
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Figure 4.20: Infinite and finite diploid population behavior for µ violation,
genome length ℓ = 14 and ǫ = 0.1: In left column, d′ is distance of finite or infinite
population to limit z∗ for g generations. In right column, d is distance of finite or
infinite population to limits p∗ and q∗. Green line is distance to p∗ and red line is
distance to q∗.
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Average distance data for diploid population in case of violation in µ distribution

with ǫ = 0.1 are tabulated in table 4.5.

Table 4.5: Distance measured for violation in µ with ǫ = 0.1 for diploids: ℓ
is genome length, average distance between finite and infinite population is tabulated
in the last three columns, and last row is expected single step distance.

ℓ N = 4096 N = 40960 N = 81920

8 0.0156 0.0049 0.0035
10 0.0156 0.0049 0.0035
12 0.0156 0.0049 0.0035
14 0.0156 0.0049 0.0035

1/
√
N 0.0156 0.0049 0.0035

Table 4.5 shows the average distance between finite population and infinite

population agrees with the expected single step distance 1/
√
N .

4.1.6 Diploid Population ∼ ǫ : 0.5

The right column in figures 4.21 through 4.24 shows distance of finite and infinite

diploid populations with ǫ = 0.5 to non-violation limits p∗ and q∗. Neither finite

nor infinite populations show noticeable oscillation given violation. The all zeros

mask created in mutation distribution with ǫ = 0.5 has a large probability of being

used during mutation, so finite population oscillation decreased significantly.

The left column of figures 4.21 through 4.24 shows distance of finite and infinite

diploid populations to limit z∗ (limit with violation in mutation distribution µ) when

ǫ = 0.5. The distance decreases as finite population size increases, and finite

population shows behavior similar to infinite population as population size grows.

Average distance data for diploid population in case of violation in µ distribution

with ǫ = 0.5 are tabulated in table 4.6.
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Figure 4.21: Infinite and finite diploid population behavior for µ violation,
ℓ = 8 and ǫ = 0.5: In left column, d′ is distance of finite or infinite population to
limit z∗ for g generations. In right column, d is distance of finite or infinite population
to limits p∗ and q∗. Green line is distance to p∗ and red line is distance to q∗.
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Figure 4.22: Infinite and finite diploid population behavior for µ violation,
genome length ℓ = 10 and ǫ = 0.5: In left column, d′ is distance of finite or infinite
population to limit z∗ for g generations. In right column, d is distance of finite or
infinite population to limits p∗ and q∗. Green line is distance to p∗ and red line is
distance to q∗.
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Figure 4.23: Infinite and finite diploid population behavior for µ violation,
genome length ℓ = 12 and ǫ = 0.5: In left column, d′ is distance of finite or infinite
population to limit z∗ for g generations. In right column, d is distance of finite or
infinite population to limits p∗ and q∗. Green line is distance to p∗ and red line is
distance to q∗.
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Figure 4.24: Infinite and finite diploid population behavior for µ violation,
genome length ℓ = 14 and ǫ = 0.5: In left column, d′ is distance of finite or infinite
population to limit z∗ for g generations. In right column, d is distance of finite or
infinite population to limits p∗ and q∗. Green line is distance to p∗ and red line is
distance to q∗.
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Table 4.6: Distance measured for violation in µ with ǫ = 0.5 for diploids: ℓ
is genome length, average distance between finite and infinite population is tabulated
in the last three columns, and last row is expected single step distance.

ℓ N = 4096 N = 40960 N = 81920

8 0.0156 0.0049 0.0035
10 0.0156 0.0049 0.0035
12 0.0156 0.0049 0.0035
14 0.0156 0.0049 0.0035

1/
√
N 0.0156 0.0049 0.0035

Table 4.6 shows that the average distance between finite population and infinite

population agrees with the expected single step distance 1/
√
N .

4.2 Discussion

The previous graphs indicate that as value of ℓ increases, amplitude of oscillation

decreases, and randomness in oscillation increases. Populations with larger population

size show better oscillations. Since a diploid population has an effective string length

twice the string length of a hapliod, diploid populations need larger population size to

exhibit good oscillation. For diploid populations, increasing string length ℓ degrades

convergence (as population size increases) to infinite population behavior. That

is noticeable in figures 4.13 through 4.20 for violation in µ. Such behavior is less

noticeable in haploid populations.

With increasing ǫ, oscillation diminishes. As observed in chapter 3, diploid

populations hop to various levels (in figures 4.15, 4.16, 4.19, 4.20, 4.23 and 4.24),

and such behavior is absent for large population sizes.

Figure 4.25 summarizes the distance data from tables 4.1 through 4.6. Distance

data (between finite and infinite populations) are plotted for different ℓ. Plots for

different violation levels ǫ are arranged in columns. Plots for haploid and diploid

populations are arranged in two rows. With increase in ℓ, distance moves closer to
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Figure 4.25: Distance between finite and infinite population in case of
violation in µ: d is distance; N is finite population size; ǫ is level of violation; red
line represents distance for ℓ = 8, green line for ℓ = 10, blue line for ℓ = 12, pink line
for ℓ = 14 and black dotted line for expected single step distance.

the single step distance. Since diploid effective string length is twice haploid string

length, distance in diploid case moves closer to the single step distance than in haploid

case. It is also noticeable that in the haploid case, the distance moves closer to the

single step distance as ǫ increases.

4.3 Summary

In this chapter, we violated the condition 3.3 for mutation, making the Markov chain

representing finite population evolution regular, and ensuring that infinite population

trajectories have no periodic orbit. Our experiments show that finite population

evolution continues to approximately oscillate for small values of ǫ. For such values
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of ǫ, finite population evolution might sometimes be unaware of violation in condition

3.3 because the probability of using the new mask (all 0s mask) is low, and if the

new mask is not used, finite population behavior matches the behavior exhibited

without the violation. As population size increases, better oscillations are observed.

As string length increases, oscillation degrades and larger population sizes are required

to observe good oscillation.
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Chapter 5

Violation in Crossover Distribution

The results from chapter 4 show robustness of finite population oscillation demon-

strating approximate oscillation can take place in finite populations when the

mutation distribution µ violates condition 3.3 . This chapter explores the robustness

of finite population oscillation when condition 3.3 for the crossover distribution χ is

violated. Violation of the condition, crossover-violation, as we call it, is expressed as:

For all g , g 6= 0, 1 6=
∑

k∈ḡR

χk+g + χk (5.1)

The question explored in this chapter is: Can finite populations exhibit approximate

oscillation when there is violation in χ and infinite population trajectories have no

periodic orbit?

Error ǫ is introduced into the crossover distribution χ so as to violate condition

3.3; this guarantees that infinite population trajectories have no periodic orbit.

Consequently, p∗ = q∗ = z∗. Going forward, we use ‘limit z∗’ to denote

evolutionary limit when crossover distribution χ violates condition 3.3, and ‘non-

violation limits p∗ and q∗’ to denote limits without violations (i.e., ǫ = 0).
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5.1 Violation

The crossover distribution χ was modified as

χi = (1− ǫ)χi so that
∑

χi + χi+g = 1− ǫ

Then a single j is chosen where j 6∈ ḡR and set χj = ǫ.

Violation in crossover distribution χ is different from violation in mutation

distribution µ. The Markov chain formed by transition matrix Q is regular under

violation in µ but that need not be the case under violation in χ. The initial

population is computed using the same procedure as described in section 3.3. To

explore the effects of the degree of violation of condition 3.3 in χ, different values

of ǫ ∈ {0.01, 0.1, 0.5} are used in experiments. String length ℓ ∈ {8, 10, 12, 14} is

considered for simulation. The distances of both infinite and finite populations to

limit z∗ are plotted. The distances of both infinite and finite populations to non-

violation limits p∗ and q∗ (i.e. ǫ = 0) are also plotted.

5.1.1 Haploid Population ∼ ǫ : 0.01

The right column in figures 5.1 through 5.4 shows distance of finite and infinite haploid

populations with ǫ = 0.01 to non-violation limits p∗ and q∗. Since the value of

ǫ is small, damping of ripples is slow. A new mask with probability ǫ = 0.01

has small probability of being used during crossover and when not used, behavior

matches behavior without violation. Moreover, ǫ = 0.01 is small enough that

infinite population oscillation persists over 50 generations even though it will die out

eventually.

The left column of figures 5.1 through 5.4 shows distance of finite and infinite

haploid populations with ǫ = 0.01 to limit z∗. The distance decreases as population

size increases, and finite population shows behavior similar to infinite population as

population size grows.
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Figure 5.1: Infinite and finite haploid population behavior for χ violation,
ℓ = 8 and ǫ = 0.01: In left column, d′ is distance of finite population or infinite
population to limit z∗ for g generations. In right column, d is distance of finite
population or infinite population to limits p∗ and q∗. Green line is distance to p∗ and
red line is distance to q∗.
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Figure 5.2: Infinite and finite haploid population behavior for χ violation,
genome length ℓ = 10 and ǫ = 0.01: In left column, d′ is distance of finite or
infinite population to limit z∗ for g generations. In right column, d is distance of
finite population or infinite population to limits p∗ and q∗. Green line is distance to
p∗ and red line is distance to q∗.
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Figure 5.3: Infinite and finite haploid population behavior for χ violation,
genome length ℓ = 12 and ǫ = 0.01: In left column, d′ is distance of finite or
infinite population to limit z∗ for g generations. In right column, d is distance of
finite population or infinite population to limits p∗ and q∗. Green line is distance to
p∗ and red line is distance to q∗.
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Figure 5.4: Infinite and finite haploid population behavior for χ violation,
genome length ℓ = 14 and ǫ = 0.01: In left column, d′ is distance of finite or
infinite population to limit z∗ for g generations. In right column, d is distance of
finite population or infinite population to limits p∗ and q∗. Green line is distance to
p∗ and red line is distance to q∗.
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Average distance data for haploid population in case of violation in χ distribution

with ǫ = 0.01 are tabulated in table 5.1.

Table 5.1: Distance measured for violation in χ with ǫ = 0.01 for haploids:
ℓ is genome length, average distance between finite and infinite population is tabulated
in the last three columns, and last row is expected single step distance.

ℓ N = 4096 N = 40960 N = 81920

8 0.0186 0.0150 0.0115
10 0.0158 0.0062 0.0051
12 0.0158 0.0056 0.0045
14 0.0156 0.0050 0.0036

1/
√
N 0.0156 0.0049 0.0035

Table 5.1 shows that the average distance between finite and infinite population

decreases with increasing string length, approaching the expected single step distance

1/
√
N .

5.1.2 Haploid Population ∼ ǫ : 0.1

The right column in figures 5.5 through 5.8 shows distance of finite and infinite haploid

populations with ǫ = 0.1 to non-violation limits p∗ and q∗. Those graphs indicate

oscillating behavior which decreases with time. For ǫ = 0.1, infinite population

oscillation dies out quickly, but oscillation in finite population does not. Rate of

damping of ripples with ǫ = 0.1 is larger than with ǫ = 0.01. The new mask has

probability ǫ = 0.1 of being used during crossover which is too small to significantly

disrupt oscillation in those finite populations considered here.

The left column of figures 5.5 through 5.8 shows distance of finite and infinite

haploid populations with ǫ = 0.1 to limit z∗. The distance decreases as population

size increases, and finite population behavior is similar to infinite population as

population size grows. Average distance data for haploid population in case of

violation in χ distribution with ǫ = 0.1 are tabulated in table 5.2.
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Figure 5.5: Infinite and finite haploid population behavior for χ violation,
ℓ = 8 and ǫ = 0.1: In left column, d′ is distance of finite or infinite population to
limit z∗ for g generations. In right column, d is distance of finite or infinite population
to limits p∗ and q∗. Green line is distance to p∗ and red line is distance to q∗.
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Figure 5.6: Infinite and finite haploid population behavior for χ violation,
genome length ℓ = 10 and ǫ = 0.1: In left column, d′ is distance of finite or infinite
population to limit z∗ for g generations. In right column, d is distance of finite or
infinite population to limits p∗ and q∗. Green line is distance to p∗ and red line is
distance to q∗.
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Figure 5.7: Infinite and finite haploid population behavior for χ violation,
genome length ℓ = 12 and ǫ = 0.1: In left column, d′ is distance of finite or infinite
population to limit z∗ for g generations. In right column, d is distance of finite or
infinite population to limits p∗ and q∗. Green line is distance to p∗ and red line is
distance to q∗.
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Figure 5.8: Infinite and finite haploid population behavior for χ violation,
ℓ = 14 and ǫ = 0.1: In left column, d′ is distance of finite or infinite population to
limit z∗ for g generations. In right column, d is distance of finite or infinite population
to limits p∗ and q∗. Green line is distance to p∗ and red line is distance to q∗.
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Table 5.2: Distance measured for violation in χ with ǫ = 0.1 for haploids: ℓ
is genome length, average distance between finite and infinite population is tabulated
in the last three columns, and last row is expected single step distance.

ℓ N = 4096 N = 40960 N = 81920

8 0.0163 0.0061 0.0051
10 0.0157 0.0051 0.0037
12 0.0157 0.0051 0.0037
14 0.0156 0.0049 0.0035

1/
√
N 0.0156 0.0049 0.0035

Table 5.2 shows that the average distance between finite and infinite populations

decreases with increasing string length approaching the expected single step distance

1/
√
N .

5.1.3 Haploid Population ∼ ǫ : 0.5

The right column in figures 5.9 through 5.12 shows distance of finite and infinite

haploid populations with ǫ = 0.5 to non-violation limits p∗ and q∗. Compared

to mutation with violation ǫ = 0.5, oscillation is observed for more generations.

Finite populations still show some, though not very clear, oscillations, and then show

randomness in behavior as generations progress. The oscillation in infinite population

dies out quickly. Randomness in finite population behavior increases compared to

smaller values of ǫ, especially as ℓ increases.

The left column of figures 5.9 through 5.12 shows distance of finite and infinite

haploid populations with ǫ = 0.5 to limit z∗ (limit with violation in crossover

distribution χ). The distance decreases as population size increases, and finite

population shows behavior similar to infinite population behavior as finite population

size grows. Average distance data for haploid population in case of violation in χ

distribution with ǫ = 0.5 for different finite population size N are tabulated in table

5.3.
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Figure 5.9: Infinite and finite haploid population behavior for χ violation,
ℓ = 8 and ǫ = 0.5: In left column, d′ is distance of finite or infinite population to
limit z∗ for g generations. In right column, d is distance of finite or infinite population
to limits p∗ and q∗. Green line is distance to p∗ and red line is distance to q∗.
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Figure 5.10: Infinite and finite haploid population behavior for χ violation,
genome length ℓ = 10 and ǫ = 0.5: In left column, d′ is distance of finite or infinite
population to limit z∗ for g generations. In right column, d is distance of finite or
infinite population to limits p∗ and q∗. Green line is distance to p∗ and red line is
distance to q∗.
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Figure 5.11: Infinite and finite haploid population behavior for χ violation,
genome length ℓ = 12 and ǫ = 0.5: In left column, d′ is distance of finite or infinite
population to limit z∗ for g generations. In right column, d is distance of finite or
infinite population to limits p∗ and q∗. Green line is distance to p∗ and red line is
distance to q∗.
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Figure 5.12: Infinite and finite haploid population behavior for χ violation,
genome length ℓ = 14 and ǫ = 0.5: In left column, d′ is distance of finite or infinite
population to limit z∗ for g generations. In right column, d is distance of finite or
infinite population to limits p∗ and q∗. Green line is distance to p∗ and red line is
distance to q∗.
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Table 5.3: Distance measured for violation in χ with ǫ = 0.5 for haploids: ℓ
is genome length, average distance between finite and infinite population is tabulated
in the last three columns, and last row is expected single step distance.

ℓ N = 4096 N = 40960 N = 81920

8 0.0156 0.0051 0.0036
10 0.0155 0.0049 0.0035
12 0.0157 0.0050 0.0035
14 0.0156 0.0049 0.0035

1/
√
N 0.0156 0.0049 0.0035

Table 5.3 shows that the average distance between finite and infinite populations

approaches the expected single step distance 1/
√
N .

5.1.4 Diploid Population ∼ ǫ : 0.01

The right column in figures 5.13 through 5.16 shows distance of finite and infinite

diploid populations with ǫ = 0.01 to non-violation limits p∗ and q∗. Since ǫ is

small, damping of ripples is slow. Infinite population oscillation does not die out in

50 generations even though it dies out eventually. Finite population graphs show

randomness, and oscillation improves with increased population size. That can be

noticed more clearly in figures 5.15 and 5.16.

The left column of figures 5.13 through 5.16 shows distance of finite and infinite

diploid populations with ǫ = 0.01 to limit z∗ (limit with violation in crossover

distribution χ). The distance decreases as population size increases. Average distance

data for diploid population in case of violation in χ distribution with ǫ = 0.01 for

different finite population size N are tabulated in table 5.4.

Table 5.4 shows that the average distance between finite and infinite population

approaches the expected single step distance 1/
√
N .
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Figure 5.13: Infinite and finite diploid population behavior for χ violation,
ℓ = 8 and ǫ = 0.01: In left column, d′ is distance of finite or infinite population to
limit z∗ for g generations. In right column, d is distance of finite or infinite population
to limits p∗ and q∗. Green line is distance to p∗ and red line is distance to q∗.
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Figure 5.14: Infinite and finite diploid population behavior for χ violation,
genome length ℓ = 10 and ǫ = 0.01: In left column, d′ is distance of finite or infinite
population to limit z∗ for g generations. In right column, d is distance of finite or
infinite population to limits p∗ and q∗. Green line is distance to p∗ and red line is
distance to q∗.
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Figure 5.15: Infinite and finite diploid population behavior for χ violation,
genome length ℓ = 12 and ǫ = 0.01: In left column, d′ is distance of finite or infinite
population to limit z∗ for g generations. In right column, d is distance of finite or
infinite population to limits p∗ and q∗. Green line is distance to p∗ and red line is
distance to q∗.
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Figure 5.16: Infinite and finite diploid population behavior for χ violation,
genome length ℓ = 14 and ǫ = 0.01: In left column, d′ is distance of finite or infinite
population to limit z∗ for g generations. In right column, d is distance of finite or
infinite population to limits p∗ and q∗. Green line is distance to p∗ and red line is
distance to q∗.
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Table 5.4: Distance measured for violation in χ with ǫ = 0.01 diploids: ℓ
is genome length, average distance between finite and infinite population is tabulated
in the last three columns, and last row is expected single step distance.

ℓ N = 4096 N = 40960 N = 81920

8 0.0156 0.0051 0.0036
10 0.0156 0.0049 0.0035
12 0.0156 0.0049 0.0035
14 0.0156 0.0049 0.0035

1/
√
N 0.0156 0.0049 0.0035

5.1.5 Diploid Population ∼ ǫ : 0.1

The right column in figures 5.17 through 5.20 shows distance of finite and infinite

diploid populations with ǫ = 0.1 to non-violation limits p∗ and q∗. Those graphs

indicate oscillation amplitude decreases with increasing generations. Like in the

haploid case, oscillations in infinite populations die out quickly for ǫ = 0.1. Rate of

damping with ǫ = 0.1 is higher than with ǫ = 0.01. The probability ǫ = 0.1 of

the new crossover mask being used is too small to significantly disrupt oscillation in

those finite populations considered here. The graphs exhibit more randomness than

in case of ǫ = 0.01, and as value of ℓ increases, randomness increases more for smaller

population size.

The left column of figures 5.17 through 5.20 shows distance of finite and infinite

diploid populations with ǫ = 0.1 to limit z∗. The distance decreases as population

size increases. Average distance data for diploid population in case of violation in χ

distribution with ǫ = 0.1 are tabulated in table 5.5.

Table 5.5 shows that the average distance between finite and infinite populations

approaches the expected single step distance 1/
√
N .
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Figure 5.17: Infinite and finite diploid population behavior for χ violation,
ℓ = 8 and ǫ = 0.1: In left column, d′ is distance of finite or infinite population to
limit z∗ for g generations. In right column, d is distance of finite or infinite population
to limits p∗ and q∗. Green line is distance to p∗ and red line is distance to q∗.
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Figure 5.18: Infinite and finite diploid population behavior for χ violation,
genome length ℓ = 10 and ǫ = 0.1: In left column, d′ is distance of finite or infinite
population to limit z∗ for g generations. In right column, d is distance of finite or
infinite population to limits p∗ and q∗. Green line is distance to p∗ and red line is
distance to q∗.
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Figure 5.19: Infinite and finite diploid population behavior for χ violation,
genome length ℓ = 12 and ǫ = 0.1: In left column, d′ is distance of finite or infinite
population to limit z∗ for g generations. In right column, d is distance of finite or
infinite population to limits p∗ and q∗. Green line is distance to p∗ and red line is
distance to q∗.
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Figure 5.20: Infinite and finite diploid population behavior for χ violation,
genome length ℓ = 14 and ǫ = 0.1: In left column, d′ is distance of finite or infinite
population to limit z∗ for g generations. In right column, d is distance of finite or
infinite population to limits p∗ and q∗. Green line is distance to p∗ and red line is
distance to q∗.
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Table 5.5: Distance measured for violation in χ with ǫ = 0.1 for diploids: ℓ
is genome length, average distance between finite and infinite population is tabulated
in the last three columns, and last row is expected single step distance.

ℓ N = 4096 N = 40960 N = 81920

8 0.0156 0.0050 0.0035
10 0.0156 0.0049 0.0035
12 0.0156 0.0049 0.0035
14 0.0156 0.0049 0.0035

1/
√
N 0.0156 0.0049 0.0035

5.1.6 Diploid Population ∼ ǫ : 0.5

The right column in figures 5.21 through 5.24 shows distance of finite and infinite

diploid populations with ǫ = 0.5 to non-violation limits p∗ and q∗. Infinite

population oscillation quickly dies out. Finite populations show some oscillations

when ℓ = 8 for higher population size for some generations before randomness

appears, as in figure 5.21, but for larger ℓ, finite populations show only randomness.

The left column of figures 5.21 through 5.24 shows distance of finite and infinite

diploid populations with ǫ = 0.5 to limit z∗ (limit with violation in crossover

distribution χ). The distance decreases as population size increases. Average distance

data for diploid population in case of violation in χ distribution with ǫ = 0.5 are

tabulated in table 5.6.

Table 5.6 shows that the average distance between finite and infinite populations

approaches expected single step distance 1/
√
N .
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Figure 5.21: Infinite and finite diploid population behavior for χ violation,
ℓ = 8 and ǫ = 0.5: In left column, d′ is distance of finite or infinite population to
limit z∗ for g generations. In right column, d is distance of finite or infinite population
to limits p∗ and q∗. Green line is distance to p∗ and red line is distance to q∗.

116



0.01560
0.01561
0.01561
0.01562
0.01562
0.01562
0.01563
0.01564
0.01564
0.01565
0.01565
0.01566

 0  5  10  15  20  25  30  35  40  45  50

d’

g

finite diploid l:10, g:50, n:4096, eps:0.50

0.01560

0.01561

0.01562

0.01563

0.01564

0.01565

0.01566

 0  5  10  15  20  25  30  35  40  45  50

d

g

finite diploid l:10, g:50, n:4096, eps:0.50

0.00493
0.00493
0.00494
0.00494
0.00494
0.00494
0.00494
0.00495
0.00495
0.00495
0.00495

 0  5  10  15  20  25  30  35  40  45  50

d’

g

finite diploid l:10, g:50, n:40960, eps:0.50

0.00494
0.00494
0.00494
0.00494
0.00494
0.00495
0.00495
0.00495
0.00495
0.00495
0.00496
0.00496

 0  5  10  15  20  25  30  35  40  45  50
d

g

finite diploid l:10, g:50, n:40960, eps:0.50

0.00349

0.00349

0.00349

0.00349

0.00349

0.00350

0.00350

0.00350

 0  5  10  15  20  25  30  35  40  45  50

d’

g

finite diploid l:10, g:50, n:81920, eps:0.50

0.00349

0.00350

0.00350

0.00350

0.00350

0.00350

0.00351

0.00351

0.00351

 0  5  10  15  20  25  30  35  40  45  50

d

g

finite diploid l:10, g:50, n:81920, eps:0.50

 0

 2e-05

 4e-05

 6e-05

 8e-05

 0.0001

 0.00012

 0.00014

 0  5  10  15  20  25  30  35  40  45  50

d’

g

infinite diploid l:10, g:50, eps:0.50

 0.0001

 0.00015

 0.0002

 0.00025

 0.0003

 0.00035

 0  5  10  15  20  25  30  35  40  45  50

d

g

infinite diploid l:10, g:50, eps:0.50

Figure 5.22: Infinite and finite diploid population behavior for χ violation,
genome length ℓ = 10 and ǫ = 0.5: In left column, d′ is distance of finite or infinite
population to limit z∗ for g generations. In right column, d is distance of finite or
infinite population to limits p∗ and q∗. Green line is distance to p∗ and red line is
distance to q∗.
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Figure 5.23: Infinite and finite diploid population behavior for χ violation,
genome length ℓ = 12 and ǫ = 0.5: In left column, d′ is distance of finite or infinite
population to limit z∗ for g generations. In right column, d is distance of finite or
infinite population to limits p∗ and q∗. Green line is distance to p∗ and red line is
distance to q∗.
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Figure 5.24: Infinite and finite diploid population behavior for χ violation,
genome length ℓ = 14 and ǫ = 0.5: In left column, d′ is distance of finite or infinite
population to limit z∗ for g generations. In right column, d is distance of finite or
infinite population to limits p∗ and q∗. Green line is distance to p∗ and red line is
distance to q∗.
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Table 5.6: Distance measured for violation in χ with ǫ = 0.5 for diploids: ℓ
is genome length, average distance between finite and infinite population is tabulated
in the last three columns, and last row is expected single step distance.

ℓ N = 4096 N = 40960 N = 81920

8 0.0156 0.0049 0.0035
10 0.0156 0.0049 0.0035
12 0.0156 0.0049 0.0035
14 0.0156 0.0049 0.0035

1/
√
N 0.0156 0.0049 0.0035

5.2 Discussion

In the presence of violation in µ, the amplitude of oscillation decreases as string length

ℓ increases. Larger population sizes show better oscillation. Since diploid populations

have effective string length twice the size of haploid populations, diploid populations

need larger population size than haploid population to exhibit good oscillation. As in

the case of violation in µ, increasing string length ℓ degrades convergence (as finite

population size increases) to infinite population behavior for diploid populations.

That behavior is noticeable in figures 5.13 through 5.24 for violation in χ. That

behavior is less noticeable in haploid populations.

With increase in the value of ǫ, oscillation in population diminishes and dampening

of oscillation increases. Randomness increases with increasing ǫ. Comparing

oscillation with violation in µ and χ, rate of dampening of oscillation with violation

in χ seems to be slower than with violation in µ. Diploid populations jumping to

other levels were observed for string lengths 12 and 14 and population size 4096 (

figures 5.15, 5.16, 5.19, 5.20, 5.23 and 5.24), but unlike the case of violation in µ, the

behavior is noticeable when the population size is larger (figure 5.19).

Figure 5.25 summarizes the distance data from tables 5.1 through 5.6. Distance

between infinite and finite populations for population sizes 4096, 40960, 81920 are
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Figure 5.25: Distance between finite and infinite population in case of
violation in χ: d is distance; N is finite population size; ǫ is level of violation; red
line represents distance for ℓ = 8, green line for ℓ = 10, blue line for ℓ = 12, pink line
for ℓ = 14 and black dotted line for expected single step distance.

plotted for different ℓ. Plots for different violation levels ǫ are arranged in columns.

Plots for haploid and diploid populations are arranged in two rows. With increase

in ℓ, distance between finite and infinite population moves closer to the single step

distance. So, since diploid effective population string length is twice that of haploid

population, distance in diploid case moves closer to the single step distance for the

same value of ℓ than in haploid case. Like in the case of µ violation, it is more

noticeable in haploid population case that as ǫ increases, the distance moves closer

to the single step distance.
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5.3 Summary

In this chapter, we violated condition 3.3 for the crossover distribution, so that

infinite population trajectories have no periodic orbit. We explored infinite and

finite population oscillation behavior with the violation through experiments. We

did not prove that the Markov chain is not regular in this case, but we suspect

it is not. Like in case of µ violation, infinite population oscillation dies out when

condition 3.3 for convergence to periodic orbits is violated, but finite populations

approximately oscillate for small values of ǫ because the probability of using the new

mask is low, and when not used, finite population evolution behavior follows behavior

of infinite population without violation in the condition for convergence to periodic

orbits. However, rate of dampening of oscillation with violation in χ is observed to

be slower than with violation in µ. Also more randomness in oscillations are observed

in this case than in violation in mutation, especially for diploid population.
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Chapter 6

Conclusion And Future Work

6.1 Conclusion

This research shows how Vose’s haploid model for Genetic Algorithms extends to

the diploid case, facilitating the computation of infinite population evolutionary

trajectories by significantly reducing the time and space used. Efficiency is achieved

through reducing diploid evolution to the evolution of haploid populations and

employing Walsh transform methods to compute the effects of mask-based crossover

and mutation.

Simulations are thereby made feasible which otherwise would require excessive

resources, as illustrated through computations exploring the convergence rate of

finite population short-term behavior to infinite population evolutionary trajectories.

Results confirm that distance can be inversely proportional to the square root of

population size.

Simulations showed that when the necessary and sufficient condition for oscillation

in infinite populations is met, finite populations also exhibit approximate oscillation.

Amplitude of oscillation increases with increase in population size, and larger

population exhibit better oscillation. Moreover, amplitude of oscillation decreases

with increase in genome length.
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When the condition for inifinite population oscillation is violated for the mutation

distribution, the Markov chain representing finite population evolution is regular,

and hence, perfect oscillation can not occur. However, simulation results show finite

populations continue to approximately oscillate if the violation is small, and when

the violation is larger, oscillation dies out and randomness in behavior increases.

When the condition is violated for the crossover distribution, we did not prove

that the Markov chain formed is regular or not, but results show finite populations

continue to approximately oscillate when the violation is small, and randomness in

behavior increases when the violation is larger. As genome length increases oscillation

in population degrades. Moreover, larger population shows better oscillation as in the

case of oscillation with violation.

6.2 Future Work

In figures 4.19, 4.20, 5.19 and 5.20, infinite population oscillation dies out symmet-

rically to give graph of single straight line. But infinite population is converging to

limit z∗. This suggests z∗ may be somewhere equidistant from p∗ and q∗. We devised

a test to check whether z∗ lies between hyperplanes H1 and H2, both perpendicular

to the line joining p∗ and q∗, H1 containing p∗ and H2 containing q∗. Let n be unit

vector parallel to the line joining p∗ and q∗ as shown in figure 6.1

n =
p∗ − q∗

‖p∗ − q∗‖

Then a point x is between H1 and H2 if

nT (x− p∗) < 0 and nT (x− q∗) > 0.

Note that nT (x− p∗) is dot-product of n and (x− p∗); its value is

‖x− p∗‖ cosφ
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where φ is angle between vectors n and (x−p∗). Likewise, nT (x−q∗) is dot-product

of n and (x− q∗); its value is

‖x− q∗‖ cos θ

where θ is angle between vectors n and (x− q∗).

p*

q*

x

-n

n

x-p*

x-q*

Figure 6.1: Geometry of GA: p∗, q∗ and z∗

Our tests show z∗ is between H1 and H2 and also equidistant from p∗ and q∗

in both the haploid and diploid case. We also ran tests for population points. In

haploid case, both infinite and haploid populations were between H1 and H2. In

diploid case, infinite populations were between H1 and H2 but finite populations were

not. These geometric properties of GA were uncovered by our simulations. Whether

these observations persist to simulations we have not checked, or whether they only

are true for those we considered is at this point unknown. Perhaps there are more
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geometric properties and details that can be discovered through further simulations

of evolutionary system. That is a topic for future investigation.
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