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ABSTRACT 

 
A pulse-width locked loop (PWLL) circuit is reported that compensates for process, voltage, and 

temperature (PVT) variations of a linear ramp generator within a 12-bit multi-channel Wilkinson 

(single-slope integrating) Analog-to-Digital (ADC). This PWLL was designed and fabricated in 

a 0.5-[µ]m Silicon Germanium (SiGe) BiCMOS process.  The PWLL architecture that is 

comprised of a phase detector, a charge-pump, and a pulse width modulator (PWM), is discussed 

along with the design details of the primary blocks. Simulation and silicon measurement data are 

shown that demonstrate a large improvement in the accuracy of the PVT-compensated ADC over 

the uncompensated ADC. 
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CHAPTER I 

INTRODUCTION AND MOTIVATION 

1.1 INTRODUCTION 

An analog-to-digital converter (ADC) is a key interface between measurement systems and the 

physical world. For space and avionic applications, circuits are required to operate over a wide 

temperature range. For the application targeted in this work, the ambient temperature on the 

lunar surface can range from −180°C to 125°C. Besides temperature variations, supply-voltage 

variations as well as process and device mismatch can also impact the accuracy of an ADC. A 

12-bit Wilkinson ADC [1] with an input signal range of 0 to 1.2 V requires 300 µV of least-

significant-bit (LSB) accuracy. The PWLL circuit developed in this work helps optimize the 

accuracy of this ADC over temperature. 

 

1.2 BASIC OPERATION OF WILKINSON ADC 

The basic operation of a 12-bit Wilkinson ADC requires a ramp voltage and a 12-bit counter. 

The ramp time is determined by the counter with a total of 4,096 clock cycles. This is illustrated 

in Figure 1.  The peak of the ramp voltage is determined by the total amount of charging current 

to a capacitor within 4,096 clock cycles. A comparator in the ADC core compares the analog 

input signal to the ramp voltage. Once the ramp voltage is above analog input signal, the 

comparator “trips” and latches the bit count of the counter. Therefore the stability of the ramp is 

critical for the ADC’s accuracy. In this context, ramp stability refers to the consistency in ramp 

slope, time duration, and peak value across many conversion cycles. Fortunately for crystal 

derived clocked systems (as in this work), time duration is accurate and robust. However, ramp 

slope and peak value must be addressed. 
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Figure 1. Ramp voltage relations with clock cycles 

 

1.3 SOURCES OF INSTABILITY OF WILKINSON ADC 

To provide the ability to maintain 12-bit accuracy over wider temperature range is a challenging 

task. The inaccuracy of the Wilkinson ADC is mainly due to the nature of the single slope 

measurement system that actually behaves as a ramp-time converter. The ramp can be generated 

through a circuit, as demonstrated in Figure 2, which is described by Equation (1), where dv is 

the ramp voltage range and dt is the ramp time duration. 
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Figure 2. Simple ramp generator circuit 

 

C

I

dt

dv
               (1) 

 

The ramp slope (dv/dt) depends on the amount of current I, generated from a current source 

circuit charging the capacitor, C. PVT variations are one of the primary sources of slope 

instability.  It should be obvious that in order to stabilize the slope, one must not stabilize I or C 

alone, but instead the ratio of I to C. 

 

The architecture of the multi-channel Wilkinson ADC [2] is shown in Figure 3. The ADC 

consists of a ramp generator, a Gray code counter, and auto-zeroing comparators (one per 

channel). The accuracy of this integrating-type ADC is dependant on the linearity of the ramp 

voltage and the resolution of the comparator. The slope of the ramp voltage is determined by the 

current source and the size of the integrating capacitor. Both the ramp generator and the 

comparator have been designed to provide at least 12-bit accuracy across temperature. However, 
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temperature variations affect the slope of the ramp voltage and thus the peak ramp voltage varies 

across temperature. The ADC’s analog input range is set by the peak ramp voltage. 

 

 

 

 

Figure 4 shows the measured variation of the peak ramp voltage versus temperature in the 12-bit 

Wilkinson ADC that was fabricated on a 0.5-µm SiGe process. The peak ramp voltage shows an 

error of 1.09 LSB per ºC, which is unacceptable for extreme environment applications. The 

counter is assumed to be stable across process-voltage-temperature (PVT). The ramp voltage 

peak variations are caused partly by the current charging the capacitor and device mismatch 

within the ADC ramp generator which varies across PVT. The relation between LSB error and 

ramp variation is given by 

 

Figure 3. Functional block diagram of the Wilkinson ADC showing the PWLL 
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2

122

vref

vA
LSB


                                      (2)  

 

where vref = 0.5(Vramp1 + Vramp2), Δv = Vramp1  Vramp2,  A = analog input voltage, ΔLSB = LSB 

error due to Vramp shift, Vramp1 and Vramp2 are the peak voltages at two different temperatures. 

 

 

 

Figure 4. Measured peak ramp voltage across temperature 
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1.4 LITERATURE STUDY 

An extensive literature search has been performed for papers dealing with PVT compensation 

techniques for single-slope based measurement systems especially for wide temperature 

operational range. To date there is only one paper reported for a cryogenic ADC which is a 8-bit 

Flash ADC operated from 4.2K to 300K [3]. However the paper does not shows resolution 

stability across wide temperature range. For the topology used in the work reported here, 

innovation has been made for single-slope based measurement systems to achieve wide 

temperature range operation. This work describes the first reported design approach to utilize a 

PWLL technique to perform PVT compensation for an ADC.  

 

This thesis presents the design and implementation of a SiGe BiCMOS pulse-width-locked loop 

(PWLL) based PVT compensation for a 12-bit multi-channel Wilkinson ADC. Specifically, it 

addresses the ADC gain error induced by PVT variation in extreme environments. Chapter II 

provides PVT instability sources within the ADC and PWLL general architecture. Chapter III 

describes the PWLL mathematical model and its theoretical simulation result. In Chapter IV the 

operation and timing of the PWLL based PVT compensation technique are illustrated. Chapter V 

describes the PWLL building blocks and its operation. Chapter VI describes the test setup of the 

ADC testing. Chapter VII provides simulation and silicon measurement results. These include 

Monte Carlo simulations, results of the ramp peak voltage variation over PVT, and ADC max 

code variation measurement over PVT. A conclusion is provided in Chapter VII including 

suggestions for improving the design.  
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CHAPTER II 

PVT INSTABILITY OF ADC 

2.1 SOURCES OF RAMP VOLTAGE VARIATIONS 

 

Figure 5. Schematic of a Ramp Generator Circuit [2] 

Two key causes of variation of the ramp voltage are the Metal-Insulator-Metal (MIM) capacitor 

variation and the device mismatch within the current mirror. Equation (3) describes the ramp 

variation as a function of current mirror mismatch and capacitor variation [4, 5].   
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                             (3) 

 

where K is the device transconductance parameter, VTH is the device threshold voltage, and W 

and L are the MIM capacitor width and length.  
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 The second main factor of ramp voltage variation is due to wide temperature range operation. 

The MIM capacitor variation over temperature is highly dependent on the process. For example, 

two variants of 0.5-µm SiGe BiCMOS from the same manufacturer provide MIM capacitor 

temperature variation of 57 ppm/ºC and 17 ppm/ ºC, respectively [4]. ADC ramp generator VTH 

temperature variation is critical due to body effect at device Mp1 in Figure 5. Therefore, to 

achieve 300 µV of LSB accuracy for different processes, a mechanism to compensate MIM 

capacitor is critical. Providing a constant current source derived from a bandgap reference circuit 

to the ADC ramp generator does not eliminate the errors due to device mismatch and 

temperature variation in the current mirror. Equation (2) shows that instead of compensating bias 

current, a fixed dv/dt will achieve better overall immunity to device mismatch and temperature 

variation for the ramp voltage. Therefore the idea of the PWLL is to generate a temperature and 

process independent dt while dv is guaranteed by the bandgap reference voltage.  

 

2.2 PWLL GENERAL ARCHITECTURE 

The architecture of the Wilkinson ADC shown in [2] is modified as shown in Figure 3 by adding 

a PWLL design block to generate a PVT independent ramp voltage. Figure 6 shows the PWLL 

architecture which consists of a phase detector (PD), a charge pump (CP), and a pulse-width-

modulation (PWM). The phase detector has a clock reference running at 10 KHz. The charge-

pump converts the pulse-width difference generated by the phase detector to a control voltage. 

The PWM converts this control voltage to current through a 300 KΩ resistor, which is then 

mirrored to a ramp generator internal to the PWLL. The PWM essentially transforms the current 

to a time domain signal that is a pulse whose width is proportional to the current. This pulse 

signal is then fed back to the phase detector.  
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The PWLL design is a “type-I” control system with one pole contributed from the charge pump. 

The system bandwidth of the PWLL is designed to be approximately (1/100th) of the PWM 

frequency for better steady-state resolution. Therefore, a 1.2 nF capacitor is required in the 

charge pump that is realized off-chip to save die area and more flexibility to adjust the system 

bandwidth during testing.  

 

 

 

Figure 6. PWLL architecture 
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CHAPTER III 

PWLL MODELING 

3.1 PWLL LINEAR MODEL 

 

Figure 7. Linear model of PWLL 

 

Figure 7 shows the linear model of the designed PWLL. To evaluate the system response, the 

transfer functions for CP and PD are shown where T is the period each time the charge pump is 

evaluated and ΔT = T2 – T1. Equation (4) is the charge pump transfer function.  

sTC

I
s

T

Vcont

p

p


)(                 (4) 

The PWM regulates the duty cycle dt instead of changing frequency with respect to the Vcont 

node.  
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Figure 8. Definition of ideal PWM 

From figure 6, Ibias set by the OTA regulated Vcont node and biasR . Then Ibias is mirrored and 

supply ramp current to PWM capacitor ( rampC ).  

bias
bias R

Vcont
I                       (5)  

ramp

biasref

C

I

T

V


2

            (6) 

         
Vcont

VCR
T reframpbias2                                (7) 

 2
2

Vcont

VCR
K

dVcont

dT reframpbias
             (8) 

 

Equation (8) shows the K or PWM transfer function. Note that the relationship between T2 and 

Vcont is non-linear because K varies inversely with the square of Vcont. 
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To get open loop gain H(s) with T2 as output signal and ΔT as input signal, Equation (4) is 

multiplied with Equation (8).  

  sVcontC

IVCR
sHT

T

p

preframpbias
loopopen 2

2 |)(


    (9) 

Since feedback gain in the linear system is 1, then the close loop transfer function can be written 

as 

loopopen

loopopen
loopclose sH

sH
sH




 


)(1

)(
|)(          (10) 

and therefore 

 
1

1
|)(

2















s
IVCR

VcontTC
sH

preframpbias

p

loopclose          (11) 

Thus a close-loop gain response is derived and a first-order control system is obtained in Equation 

(11). Using a unit step input to the close-loop system, the output H(s) can be expressed as:  

 
1

11
)(

2















s
IVCR

VcontTCs
sH

preframpbias

p

          (12) 

By taking the inverse Laplace transform of Equation (12), the time-domain equivalent h(t) is 

provided.  

 











































preframpbias

p

IVCR

VcontTC

t
th 2exp1)(            (13) 
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preframpbias

p

p

preframpbias IVCR

VcontC

sVcontC

IVCR

2

2

1



                                              (14) 

From Equation (13), time constant Г is derived in Equation (14).  

 

Note that the time constant is proportional to (Vcont)2. During system start-up, the Vcont node is 

initialized to 0 V which gives Г an infinitely small value that is not feasible. The PWLL is 

designed to prohibit T2 from exceeding the period T. Therefore a well defined start-up condition 

is required. Thus Vcont transient response during the initialization phase is not governed by the 

first-order equation derived in Equation (11).  

 

In the initialization phase, Ibias is not large enough to drive Cramp to Vref within T. The ΔT during 

the initialization phase is the full pulse width of T1 since T2 is equal to T. To get the initialization 

phase transient response, substituting equation (4) into (5). During the initialization phase, 

equation (15) and (16) are obtained.   

T

CRV
tVcont rampbiasref)(            (15) 

 

TI

CCRV
t

p

prampbiasref
dinitialize 
   (16) 

Vcont(t) and tinitialized indicate boundary conditions to initialize the first order-system. Equation 

(16) defines the time required for the PWLL to follow the first-order system model in Equation 

(11). 
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3.2 SIMULATIONS OF PWLL MATHEMATICAL MODEL 

Figure 9 shows the comparison between first-order control system with initialization phase 

adjusted and simulation of the PWLL Vcont node voltage.  The difference between the two 

curves is due to an approximation made by averaging Vcont.  The close agreement between the 

two verifies the derived model. 
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Figure 9. Plot of Vcont using theoretical derivation and PWLL simulation 
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CHAPTER IV 

PWLL DESIGN BLOCK 

4.1 PWLL DESIGN BLOCK 

A. PHASE DETECTOR 

The detector consists of two D-flip-flops and one NAND gate to control the reset of the D-flip-

flops. Inputs to both the D-flip-flops are tied to the supply voltage (VDD). The D-flip-flops are 

clocked separately by REFCLK and FB signals. The FB signal is the output of the comparator 

that is being fed back to the phase detector. The REFCLK signal is an external signal which also 

controls the charging and discharging of the ramp generator circuit. The function of the phase 

detector is to sense the time difference between the rising edges of FB signal and the REFCLK 

signal. If the rising edge of the FB signal is leading the rising edge of REFCLK, QB is pulled up 

until the rising edge of REFCLK. On the rising edge of REFCLK, QA is pulled high. As a result, 

the reset signal to the D-flip-flops is activated.  If the FB signal lags the REFCLK signal, QA is 

pulled high first, followed by QB, which then resets the D-flip-flops. 

 

B. CHARGE PUMP  

The overall PWLL is a type-I control system. The pole is contributed by the charge pump in the 

PWLL. From equation (3) the system bandwidth is computed. In this design a 5 µA current 

source and current sink are used to charge and discharge a 1.2 nF off-chip compensation 

capacitor.   
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MP1 acts as a pass gate to charge the compensation capacitor and increase the voltage at the 

Vcont node. MN1 acts as a pass gate to discharge the compensation capacitor and decrease the 

voltage at the Vcont node. Larger device width is chosen for the pass gate devices which reduces 

the on resistance and, in turn, reduces the voltage drops across these transistors. 

 

C. PWM 

A negative feedback network consisting of an operational transconductance amplifier (OTA) and 

a NMOS transistor allows the BIAS node to follow the Vcont node voltage level. The OTA is a 

two-stage amplifier and the NMOS transistor is in a common drain configuration. The current 

output of the PWM is determined as in equation 4. Hence, the generated current bias that 

compensates the ramp generator depends on the voltage at node Vcont and the Rbias resistance 

which is a poly resistor with a value of 300 KΩ. 

 

The adjusted current that is mirrored by MP2 and MP3 charges Cramp. Cramp is matched with the 

186 pF capacitor in the ramp generator. A comparator is used to convert a saw-tooth waveform 

generated across the MIM capacitor to a pulse waveform with a width equal to dt that is the ramp 

time. The comparator output, FB, is fed back to the phase detector to be compared with dt of 

REFCLK. 

 

D. OTA 

A simplified two-stage OTA is shown in Figure 10. It is designed to isolate the Vcont node and 

BIAS node. The OTA first stage consists of an N-channel differential input with a regulated 

cascode N-channel current source bias. The Second stage consists of a common-source amplifier 

with large small-signal gain. To improve the bandwidth of the OTA, a diode connected load for 
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the first stage is used. However this will trade off the gain achievable in the first stage. To 

enhance the stability of the OTA, a Miller compensation scheme is used to improve OTA phase 

margin. Overall bandwidth achieved is 6.4 MHz with 45 dB small-signal gain. Phase margin is 60 

degrees.  The frequency performance is shown in Figure 11.  

 

 

Figure 10. Simplified schematic of OTA circuit 
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Figure 11. Frequency response of OTA 
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E. Comparator 

Figure 12, shows the comparator architecture designed. The comparator designed is an internal 

positive feedback in the input stage of a high-gain, open-loop comparator. When INP > INN, 

majority current is flowing through MP5 to MN3. Drain voltage of MP5 is lower than drain 

voltage of MP2 and hence turn on MP3. The positive feedback action is further driving drain 

node of MP2 to VDD and shut off MP2, MP1 and MP4. The differential stage here does not 

provide enough voltage swings and output resistance to the output node. Therefore a Class AB 

output stage MP6, MP1,  MN4 and MN1 to complete the differential to single ended conversion.  

 

Figure 13 shows the transient response of the two stages comparator. The response time of INP 

to VOUT is about 70nsec. This response time requirement is more than enough for 10KHz 

switching frequency.  
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Figure 12. Simplified schematic of comparator circuit 
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Figure 13. Transient response of the two stages comparator 
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F. Logic Block 

 

Figure 14. Simplified PWLL Logic Block Schematic 

A digital circuit is designed to perform the logic operation of the PWLL(see Figure 12). This is a 

asynchronous digital system design that functions mainly to control the signal between the 

comparator and internal ramp switch. In the previous chapter the described PWLL prohibits 

overflow of ramp time beyond a clock cycle and the logic block is handling the overflow check 

logic operation. The logic block is clocked by the 10KHz by REFCLK signal. COMP_RESET  is 

generated by FF2 to reset B at comparator output when B goes high (internal ramp exceed Vref). 

FF3 generates PH1 at the falling edge of REFCLK. PH1 will continue to stay high to turn on the 

internal ramp switch until the comparator output, B goes high.  

 

4.2 PWLL OPERATION 

A 10 KHz clock is used as a reference clock to the phase detector. The PWM in Figure 6 

converts the voltage to dt and feeds this back to the detector for dt error detection. The dt error is 

converted to a voltage Vcont using a charge pump circuit. The bias current generated by the 

PWM that is controlled by Vcont is mirrored out to bias the ADC ramp generator. PHI1 is a 

switch that controls the charge/discharge of PWM capacitor. The falling edge of the REFCLK 

signal starts charging the PWM capacitor, Cramp, which produces a linearly increasing voltage at 

node A. This is the ramp voltage internal to the PWLL. 
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When the PWLL ramp voltage reaches the bandgap reference voltage, the comparator output node 

B changes from a logic low to a logic high voltage. Logic high at node B causes Cramp to 

discharge. After Cramp discharges, node B returns to a logic low level. 

 

If ramp voltage is above the bandgap reference voltage, B is triggered earlier than the rising edge 

of REFCLK which creates a pulse at QB. A pulse at QB reduces the voltage at node Vcont which 

in turn reduces the Ibias generated by the PWM. If dv is below the reference, B is triggered later 

than the rising edge of REFCLK, creating a pulse at QA which increases the voltage at node Vcont 

and increases the Ibias current produced by the PWM.  A detailed timing diagram is shown in 

Figure 15. Ibias reference refers to the room temperature PWM Ibias generated for single-slope 

measurement system.  
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Figure 15. PWLL timing diagram 
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CHAPTER V 

TEST SETUP 

5.1 MOTHERBOARD DESIGN 

The ADC PVT Compensation technique is implemented on remote sensor interface (RSI) chip 

on a 0.5-µm BiCMOS process. The hardware test path includes  a motherboard consisting of 

voltage regulators, PCI interface and an interface to a daughter card. The daughter card consists 

of a RSI chip, LVDS transceiver and Actel FPGA.  

 

The motherboard is shown below in Figure 16. This board contains all the required voltage and 

current supplies. Each of the power source sections are numbered and Table 1 shows their 

respective powered functionality. 
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Figure 16. Motherboard Layout 
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Table 1. Supply requirements 

# on Figure 14 Signal Output

1 DIG_3P3V_ADC 3.3 V 

2 VCCR 5 V 

3 VCCI 3.3 V 

4 VCCA 3.3 V 

5 VDD_BUFFER 5 V 

6 VREF_BGR 2.4 V 

7 VDD_ESD 3.3 V 

8 ANA_3P3V_ADC 3.3 V 

9 DIG_3P3V_PWLL 3.3 V 

10 ISRC_700U 700 μA 
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Voltage regulator 1 is mainly used to supply power to the on-chip ADC digital operation while 

voltage regulator 2, 3, and 4 is used to power Actel FPGA. Voltage regulator 5 is used by the 

buffer IC that resides at daughter card to strengthen digital signal integrity along the cable from 

the temperature chamber to the motherboard. Voltage regulator 6 is set to 2.4V on the 

motherboard and divided down to 1.2V to be used on-chip as a bandgap voltage reference. The 

purpose of using a divider to set the bandgap voltage at 1.2V is due to the minimum output 

voltage produced by LM317 voltage regulator is 1.25V. Voltage regulator 8 is to supply ADC 

and PWLL analog circuit operation while voltage regulator 9 is to supply digital operation of the 

PWLL circuit. Voltage regulator 10 is mainly used to supply the 700µA current source to the 

LVDS chip on the daughter card.  

 

 

Figure 17. Motherboard section 

Figure 17 shows the section of the board where the motherboard and daughterboard interface. 

Section 1 shows the analog input signals to each channel. These are clearly labeled on the board 

itself. Section 2 shows one of the 25-pin interfaces that connect to the daughterboard. This 

connector contains the necessary bias voltages and currents, as well as three analog inputs. 

Section 3 contains the control signals that will go to the NI (National Instruments) connector, 6 

test signals, and the PWLL Override signal. Section 4 contains the 12 bit output from the ADC. 

These will go to the NI connector as well. Section 5 is a 7-pin header that contains 6 test signals. 
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Pin 1 is the left most pin whereas pin 7 is the right most. These signals are detailed in Table 2 

below. 

Table 2. Test pin locations 

Pin # Signal 

1 MPC_SCN_OUT_GLBL

2 FSC_ADC 

3 NOT USED 

4 RAMP_OUT_ADC 

5 COMP_5U_IOUT_ADC 

6 MPC_SCN_IN_GLBL 

7 SHFT_REG_TM_GLBL 

 

Pins 6 and 7 must physically be connected with a jumper wire to VDD or ground depending on 

the mode of operation. Section 6 contains the PWLL_Override signal. This signal can either be 

tied to VDD or ground via a jumper. If the PWLL_Override signal tied to ground, PWLL is 

activated else deactivated.  

 

 

 

 

 

 

 

 

 



 30

5.2 DAUGHTERBOARD DESIGN 

The daughterboard is shown below in Figure 18. It contains the 144-pin RSI, Actel A54SX32 

FPGA, clock inputs, the oscillator, and the LVDS transmitter. 

 

Figure 18. Daughterboard layout 

The board also contains two sets of bypass capacitors per power supply, ceramic 0.01μF and 

0.1μF. There is also a 10Ω resistor in series with the power supplies. If input power needs to be 

measured, it can be done by reading the voltage across this resistor. 

 

A. Board Stackup 

Due to the fact that we are using a pin grid array package, the board required two layers for 

digital signals. This meant that instead of the originally planned 6 layers, we had to increase that 

to 8 layers. The stackup for the board can be seen in Figure 19 below with the first layer of 

digital signals on the top and the analog signals layer on the bottom. 
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Figure 19. Daughterboard stackup 
 
 
 
B. Clock Setup 

There are two methods to input a clock to the system: using high-speed cables to provide the 

clock and clockbar signals or using the on-board 80 MHz oscillator. To use the high-speed cables, 

the oscillator has to be disabled. This is done by setting the jumper on the board to position 2-3. 

To use the oscillator, the high-speed cables are not connected and jumper is set to position 1-2. 

 

Both the clock and clockbar signals are terminated with 50Ω resistors. The clock signals as well 

as the oscillator output are both input to the LVDS transmitter. The transmitter then outputs the 

clock signals through 50Ω transmission lines into the differential-mode  

100Ω termination resistor. 
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C. RAMP_OUT_ADC Signal 

The ramp output signal is one of the test signals that go to the motherboard. This signal however 

should not be connected at all times because the ramp is generated by the charging and 

discharging of capacitors. If the ramp signal is physically connected to an output, it would add a 

capacitive load, thus changing the amount of capacitance used by the signal. The true 

RAMP_OUT_ADC signal cannot be measured, but if an approximate test signal is needed, one 

must physically connect the pin to certain via on the board with a jumper wire. This connection 

is shown in orange in Figure 20 below. It is also written on the board to indicate which pins to 

connect for clarity. 

 

Figure 20. Jumper wire needed for Ramp_OUT_ADC testing 
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5.3 Equipment Setup 

Test equipment setup is shown in Figure 21 and Figure 22. For ADC characterization, labview is 

used as the characterization interface. A Lecroy Clock Generator is setup to 50MHz to provide 

the system clock to the daughter card and mother card. A low-noise signal generator is used to 

provide an analog sine wave input signal to the ADC. The daughter card is placed in the chamber 

to sweep from −180 ºC to 125 ºC during the experiment. Liquid Nitrogen is used for cooling 

purposes.  

 

Figure 21. Test Equipment Setup during ADC characterization I 
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Figure 22. Test Equipment Setup during ADC characterization II
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CHAPTER VI 

TEST RESULTS 

6.1 PWLL TEST CHIP 

A PWLL compensation scheme for a 12-bit multi-channel Wilkinson ADC is designed and 

fabricated in a 0.5-µm SiGe BiCMOS process. The layout is as shown in Figure 23. The PWLL 

occupies 1500x500 μm2 of layout area. In order to reduce the noise coupling from the digital 

section to the analog section, separate power supplies are used for the analog and the digital 

circuitry. The VCONT node is sensitive and is hence shielded using an NWELL layer on chip to 

help block substrate noise from being injected into the VCONT node. Because of layout 

constraints, the current mirror and the Cramp of the PWLL does not match with ramp generator 

current mirror and MIM capacitor. This mismatch is expected to degrade the performance of the 

PWLL.  

 

 

Figure 23.  Die photo of PLL along with the Wilkinson ADC 
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6.2 12-BIT WILKINSON ADC CHARACTERIZATIONS 

The 12-bit Wilkinson ADC is characterized in both PWLL and constant current mode. Figures 

24–27 shows the respective characterization results from −180 °C to 125 °C. All the 

characterization shows DNL result of between −0.5 to 0.5. This is showing good ADC data 

collection through out the experiment. DNL refers to the difference between ideal and nonideal 

values [7]. It is defined as 

nDNL Actual increment height of transition n – Ideal increment height 

Where n is the number corresponding to the digital input transition.  

 

Figure 24.  125 °C ADC DNL characterization in PWLL mode 
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Figure 25.  −180 °C ADC DNL characterization in PWLL mode 
 

 

Figure 26.  125 °C ADC DNL characterization in Constant Current mode 
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Figure 27.  −180 °C ADC DNL characterization in Constasnt Current mode 

 

Besides the DNL characterization, a digitized waveform is shown to observe the range of the 

digitized signal generated. Max code data is recorded to justify the implication of PVT variation 

to ADC data collection. From Figures 28 and 29, max code shifted from 3850 to 3774 across the 

305 degree temperature sweep in PWLL mode. 
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Figure 28.  125 °C ADC digitized output waveform in PWLL mode 
 

 

Figure 29.  −180 °C ADC digitized output waveform in PWLL mode 
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Figure 30 and 31 shows the max code shifted from 3831 to 3550 across wide temperature range 

in constant current mode. Obviously the ADC operated in PWLL mode has better max code 

stability across wide temperature range compared to constant current mode.  

 

Figure 30.  125 °C ADC digitized output waveform in Constant Current mode 
 

 
 

Figure 31.  −180 °C ADC digitized output waveform in Constant Current mode 
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6.3 PWLL PERFORMANCE CHARACTERIZATION 

For the PWLL performance characterization, three separate post-layout simulations were 

performed to investigate the variation of dv of the ADC due to PVT variation. Figure 32 shows 

the impact of process and device mismatch on dv using Monte Carlo simulations. The ramp 

voltage internal to the PWLL shows less than 30 mV (100 LSB) variation due to process and 

device mismatch. The ADC’s ramp voltage with PWLL compensation shows 140 mV (466 LSB) 

variation which is much lower compared to the ramp voltage without PWLL compensation 

showing a variation of 450 mV (1500 LSB). The difference in the LSB error between the PWLL 

internal ramp voltage and the PWLL compensated ramp voltage (output of the ramp generator) is 

due to layout mismatch of the current mirror and the ramp capacitor of these two blocks.  

 

The impact of supply voltage variation on the ramp voltage for the ramp generator with the 

PWLL compensation scheme is negligible compared to the ramp generator without the PWLL 

compensation scheme for the ADC which has 20 mV (67 LSB) variations.  
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Figure 33 shows ADC Max Code variation over a wide temperature range (150°C to 125ºC). 

The PWLL biased ADC shows 180 max code variation compared to the constant current source 

biased ADC showing a variation in max code of 325. The data was collected from the actual 

silicon ADC measurement. The PWLL biased ADC shows overall better max code stability 

across wide temperature variation compared to the constant current biased ADC. Notice however 

that at temperature from 75°C to 100 °C, there is a slightly faster degradation rate on the PWLL 

biased ADC compared to the constant current biased ADC. The reason for this region can be due 

to temperature effect between threshold voltage and device mobility. At higher VGS, the mobility 

dominates and the drain current is inversely proportional to temperature. Since the constant 

current source has negative temperature coefficient at high temperature, a reduction of drain 

current can be expected. As the drain current reduces, VGS will reduce as well to an extend that the 

threshold voltage temperature effect will cancel the mobility temperature effect within the circuit 

[7].    
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Figure 32. Post-layout Monte Carlo simulation dv variation due to process and device mismatch 
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Figure 33. Silicon ADC Max Code variation over temperature 
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CHAPTER VII 

CONCLUSION 

A PWLL-based PVT compensation scheme for a 12-bit Wilkinson ADC was designed and 

fabricated in a commercial 0.5-um SiGe BiCMOS process. Measurement results show that the 

PWLL compensation scheme provides a 44.6% reduction in the ADC’s maximum output 

variation across a wide temperature range. Future work on the PWLL compensation scheme 

includes improving the ADC accuracy, which is related to the mismatch between a ramp 

capacitor in the PWLL and the ADC’s ramp generator. The accuracy can be improved by 

directly supplying the ramp voltage generated within the PWLL to the ADC. The accuracy can 

be below 50 code difference across 305 degree temperature range  if the internal ramp voltage is 

used by the ADC.  
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