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ABSTRACT 

Prior to launching an inertially navigated weapon from the wing of 

an aircraft, the Inertial Measurement Unit (!MU) of the weapon must be 

in agreement with the master IMU of the aircraft. In order to correct 

the !MU of the weapon, it is required that the angles of alignment error 

between the two units be known. A model for the alignment error can be 

developed. A Kalman filter can then be used to estimate the angles of 

alignment error. The modeling of alignment error is complicated by the 

flexible nature of the aircraft. Since the environment of the aircraft 

can change dramatically during the alignment process, the model becomes 

time varying. This further compounds the complexity of the overall 

model of alignment error. 

A possible solution to the alignment problem for weapons attached 

to the wings of an aircraft with a flexible body is proposed. This 

solution centers around the use of an adaptive Kalman filter. The adap

tive Kalman filter can concurrently identify the time varying dynamics 

of flexing and estimate the angles of alignment error. This capability 

might substantially simplify the alignment problem. 

Three adaptive Kalman filtering algorithms were investigated. 

These algorithms differ only in the method by which they identify the 

parameters of the system. The relative performance of these algorithms 

was determined by a simulation. The simulation was based on a simpli

fied dynamic system. 
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The simulation demonstrated that only one of the adaptive Kalman 

filters provided sufficient perfo�ance to be considered for use in the 

alignment problem. This adaptive Kalman filter identifies the param

eters through a stochastic Newton algorithm. The use of this adaptive 

Kalman filter, along with an appropriately developed model, appear to 

provide a viable solution to the alignment of inertially guided missiles 

attached to the wings of an aircraft with a flexible body. 
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CHAPTER 1 

INTRODUCTION 

Transfer alignment is the process of determining the angles of 

alignment error between the coordinate frames of two Inertial Measure

ment Units (IMUs) located on the same body. This is a fundamental 

problem in the area of fire control. An example of an application deals 

with the alignment of inertially guided missiles attached to the wings 

of an aircraft with a flexible body. In order for the missile to reach 

a preselected target with a high degree of accuracy, the IMU in the 

missile must be in agreement with the IMU in the aircraft when the mis

sile is launched. The IMU in the aircraft is referred to as the master 

IMU. It is very precise and generally located in the cockpit. An IMU 

in a missile is referred to as a slave IMU. Because of the expendable 

nature of the slave IMUs, they are lower in cost and precision than the 

master !MU. The process of correcting the slave IMU to that of the 

master IMU is known as transfer alignment. The application to be con

sidered in this study is the airborne transfer alignment of inertially 

guided weapons. 

Two types of angular alignment error need to be considered. First, 

the master and slave !MU can be assumed to have a static alignment 

error. Static alignment error is caused by the relatively large toler

ance allowed in physically mounting the missile to the wing of the air

craft. It is unlikely that the slave and master IMU will ever have an 

identical orientation in space, even when the aircraft is stationary. 
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The other type of alignment error is dynamic. Dynamic alignment error 

is caused by the flexing of the aircraft. The flexing of the aircraft 

is due to the elasticity of the airframe, and is aggravated by the 

changing payload, flight maneuvers, and weather turbulence. The angles 

of static and dynamic alignment error must be identified. They can then 

be used to correct the slave IMU during the completion of the transfer 

alignment process. 

A strategy to compute the alignment error is needed. Because of 

the static alignment error, it is not possible to merely reference the 

slave !MU to th'e body of the aircraft [ 13, p. 72]. Optical alignment is 

not practical because of the large distance between the master and slave 

IMUs [ 13, p. 72]. Another approach starts with developing a state space 

model for the static and dynamic alignment error. Assuming this model 

is properly formulated, a Kalman filter can be used to determine the 

minimum variance estimate of the alignment error between the IMUs. The 

transfer alignment is completed by correcting the slave IMU. This 

process of computing the transfer alignment is well known. 

The Kalman filter approach to transfer alignment is not without 

difficulties. The use of a Kalman filter requires the model of the 

system dynamics and the noise statistics to be known. Unfortunately, 

accurate modeling of the flexure dynamics of an aircraft is difficult. 

Even if an accurate model of the flexure dynamics can be determined, 

some of the parameters of the model might not be time invariant. Time 

varying parameters in this model can be introduced by many factors. 

These factors include the changing payload of the aircraft and varying 
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turbulence conditions. Another factor is the variability of prelaunch 

maneuvers, ranging from level flight to evasion. Time varying param

eters are not considered in the derivation of the standard Kalman fil

ter. The problem to be considered in this study is how to perform the 

transfer alignment when the flexure dynamics of the aircraft is time 

varying, and has a relatively high degree of uncertainty to begin with. 

This study will explore a solution to the above problem. Recently 

the literature has discussed various adaptive or self-tuning Kalman 

filter algorithms. These algorithms are capable of recursively identi

fying the system dynamics and the noise statistics associated with the 

model. Generally, these algorithms assume the system dynamics is time 

invariant. An adaptive Kalman filter can be made to track slow time 

varying parameters with minor modifications. The goal of this study is 

to demonstrate that an adaptive Kalman filter, capable of identifying 

time varying parameters, presents an attractive solution to the transfer 

alignment problem associated with inertially guided missiles attached to 

the wings of an aircraft with a flexible body. 

This study will begin by developing a state space model for the 

alignment error. Next, three variations of an adaptive Kalman filter 

capable of tracking time varying parameters will be presented. These 

variations differ only in the complexity of the parameter identification 

process. The first variation is the easiest to implement. Some modi

fications were made to this algorithm to improve its performance. The 

last algorithm uses a more sophisticated parameter identification 
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algorithm than the first two. The performance of these algorithms will 

be compared by a simulation based on a simplified model. Potential 

problems with adaptive Kalman filters will also be considered. 
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CHAPTER 2 

MODELING OF ALIGNMENT ERROR 

This chapter deals with developing a state space model for the 

static and dynamic alignment error between the master and slave !MU. 

This model will be formulated in such a way that the alignment error can 

be estimated with either a standard or an adaptive Kalman filter. To 

apply a Kalman filter requires a state transition and a measurement 

equation to be identified. The noise covariances associated with these 

equations must be known. The static and dynamic alignment error will be 

discussed independently, and then combined to give the alignment error 

model for an aircraft with a flexible body. Problems with this model 

will be discussed to provide a rationale for the use of an adaptive 

·Kalman filter. 

Static Alignment Error 

It would be unlikely for the master and slave !MU to have identical 

orientations in space, even if the aircraft is perfectly rigid. The 

result is static alignment error. The angles of static alignment error, 

�x' 'y
' and �z' are assumed not to be time varying. 

The master and slave !MU are capable of resolving the angular 

velocity about each axis of a cartesian coordinate reference frame. 

These angular velocities are illustrated in Figure 1. The angular 

velocity about the x, y, and z coordinates, as sensed by the master IMU, 

are Q, Q, and Q. The corresponding angular velocities sensed by the 
X y Z 
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Case of G. 

Figure 1. Coordinate Reference Frame. 
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Due to alignment error between the IMUs, the 

slave !MU in the missile will not sense the same angular velocities as 

the master !MU in the aircraft. This is illustrated in figure 2. With 

a properly developed model, the alignment error with respect to the x, y 

and z axis is linearly related to the difference in the angular veloci

ties sensed by the two IMUs. 

The relationship between the alignment error around a coordinate 

axis, and the difference in angular velocity sensed by the master and 

slave IMU is illustrated in Figure 3. In this illustration, only the 

angle of alignment error around the z-axis, $ ,  is shown. This angle z 
can be represented by a vector directed along the z-axis with a magni-

tude equal to the angle of alignment error around the z-axis. The dif

ference in the angular velocity sensed by each !MU around its respective 
� 

y-axis is 6Q . y If the actual alignment error around the z-axis is 

small, a simple expression relating this angle to the difference in 

sensed angular velocity can be found: 

.....::0.. --

6Q = n - w � � y y y z X Q 
X 

(2-1) 

Equation ( 2-1)  can be generalized to consider the static angles of 

alignment error around each axis: 

� � � � � 6n = n - w � � x n .  · (2-2) 

Equation (2-2) can be represented by a determinant for the cross

product. The unit vectors in the x, y, and z directions are represented 

by i, 3, and k. 



'� 

00 
')( 

Master IHU 
Coordinate Reference Frame 

Slave INU 
Coordinate Reference Frame 

Figure 2. Angular Velocities as Sensed by the Master and Slave IMUs. 
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Zs 
(Xm, Yin, Zrn) - Coordinate Reference frame of the 

Naster IMU 

(X5, Ys , Z
5
) - Coordinate Reference frame of the 

SI ave urn 
Ym 

if I �I is small, then 

n,, / rm>'1 rv 1¢; II fi,c l Sin 90° 

Xm / --
' '1.fly � f; X fl.x l�I// X• 

� -
Figure 3. Cross-Product Relationship Between $ and 60. 
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Kn ff - i j k - w 
X X X 

Kn .... - - (2-3) = M2 = n - w = 
cpx cpy cpz y y y 

En .... -n - w n n n z z z X y z 

Expanding equation (2-3) by components results in the following rela

tionship between the sensed angular velocities and the alignment errors: 

(0 - w )i = (cp n -cpn)i 
X X y z z y 

(0 - w )3 = (cp n - ct, n )3 (2-4) y y Z X X Z 

(n - w )k = ( <t> n -cp n )k z z X y y X 

The vector notation is dropped and the symbol k is used to designate the 

discrete time interval. Equation (2-4) becomes: 

n - w 0 n -n cf>x X X z y 

l\Q = n - w = -n 0 n cf>y (2-5) y y z X 

n - w n -n 0 cf>z z z k y X k k 

The angles of alignment error are unknown. The angular velocities 

around each axis are measured quantities obtained from the master and 

slave IMU. In the process of acquiring these measurements some noise 

will be encountered. Measurement noise is modeled by adding a noise 

vector to equation (2-5): 
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0 Q -n 
q>X 

V 
z y X 

tin = -n 0 Q <Py 
+ V (2-6) 

z X y 

Q -n 0 <Pz V 
y X 

k k 
z 

k 

Equation (2-6) is the measurement equation suitable for use with a 

Kalman filter in which only static alignment error is present. 

The state transition equation for the static alignment error is an 

identity matrix. This is because the static alignment error does not 

change from one time interval to the next. However, this state transi

tion matrix would cause a Kalman filter to become insensitive to new 

measurements after only a few iterations. To prevent this, a small 

amount of fictitious process noise will be added to the state transition 

equation. This state tran·sition equation is: 

1 0 0 

= 0 1 0 

0 0 1 

q>X 
w X 

+ w 
y 

w z 

(2-7) 

Two noise processes have been identified. Measurement noise has 

been included in equation ( 2-6), and process noise in equation ( 2-7). 

The statistics of this noise must be known. The process noise and 

measurement noise are both assumed to be gaussian with a zero mean. The 

covariance matrix of the process noise is assumed to be an identity 

matrix multiplied by a small constant, a. A larger constant will cause 

the filter to place more emphasis on recently acquired measurements. 
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The covariance of the process noise is, where 6tk is the time interval 

between measurements and I is an identity matrix: 

(2-8) 

The covariance of the measurement noise associated with equation (2-6) 

depends on the variance of the measurement error at the output of each 

IMU. The measurement error covariance for each axis will be the sum of 

the variances of the error associated with the master and slave IMU. 

Assuming the master and slave IMU have the same output error variance 

for each axis, o 2, the measurement error covariance is: 
V 

(2-9) 

Equations (2-6, 7, 8, 9) represent a model of the static alignment 

error suitable for use with a Kalman filter. This model will be com

bined with a model for the dynamic alignment error. 

Dynamic Alignment Error 

Dynamic alignment error implies that a bending or flexing of the 

airframe is taking place during the period in which the alignment 

process is carried out. There are many contributing factors to this 

flexing. A few include the weight distribution on the wings of the air

craft, weather turbulence, and the type of maneuvering taking place 

during the alignment process. In order to identify the dynamic 
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alignment error, a suitable model must be generated for the flexure 

dynamics of the aircraft. 

There are many ways to approach the development of a model for the 

flexure dynamics. One approach starts with a rigorous analysis of the 

structure of the specific aircraft for which the model is intended. 

This approach requires detailed information about that particular air

craft and is very complicated. A more general approach begins with 

recognizing that the flexure dynamics of the aircraft may be modeled as 

a random variable excited by a random forcing function. The latter 

approach will be taken in this study. The conclusions drawn in this 

study will apply even if a more sophisticated model of the flexure 

dynamics is used. This is because similar problems will be encountered 

when using either model of the flexure dynamics. These problems will be 

discussed later. Therefore, the latter model can be used without a loss 

of generality. 

A random process used in the model of the flexure dynamics must be 

selected. A Markov process excited by white noise is an example of a 

suitable random process. Each axis of the body of the aircraft con

necting the master and slave IMU can be approximately modeled as a 

damped mass-spring system. Such a system can be described by three 

second order differential equations, one equation for each axis of flex

ing. Since the Markov process can be associated with a differential 

equation excited by white noise, second order Markov processes are a 

logical choice for modeling the flexure dynamics. Better results might 
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be obtained by using higher order Markov processes. Second order Markov 

processes should provide reasonable results. 

The continuous time model of the flexure dynamics for the aircraft 

using a second order Markov process will now be developed. This model 

will then be linearized to give a discrete time equivalent of the con-

t inuous model. Lastly, the effects of static and dynamic alignment 

error will be combined to give the final model. The differential equa

tion associated with a second order Markov process is: 

d
2a d8 2 - + 2a<t) - + a (t)a = q .  

dt2 dt (2-10) 

In this equation q is the random forcing function, and 8 is the dynamic 

alignment error for one axis. If q is gaussian, then equation (2-10) is 

called a Gauss-Markov process. Each axis of flexing will be represented 

by an independent equation like that in (2-10). Equation (2-10) may be 

written as two first order differential equations. Letting 8 represent 

the time derivative of 8, equation (2-10) can be written as: 

a = e 

(2-11) 

The dynamic flexing around each axis will be represented by an indepen

dent Markov process. This leads to the following set of state equations 

for the angles of dynamic alignment error: 
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8 0 0 0 1 0 0 8 0 
X X 

8 0 0 0 0 1 0 8 0 y y 

8 0 0 0 0 0 1 8 0 z z 
+ (2 -12) 

8, -a
2 0 0 -2a o 0 8 qx X X X X 

8, 0 -a
2 0 0 -2a o 8 qy y y y y 

8, 0 0 -a
2 0 0 -2a 8 qz z z z z 

The statistics of the noise for a continuous system may be 

described by its mean and spectral characteristics. The noise exciting 

each Markov process in equation (2 -12 ) has a zero mean. The spectrai 

density matrix associated with the noise in equation (2-12) has only 

three none zero terms. This is because the noise processes in equa

tion (2-12) are mutually independent. Assuming the statistics are time 

stationary, the three none zero elements of the spectral density matrix 

can be written as: 

E [qx(tl)qx(t
2
)] = Qx(tl)o(tl - t

2
) = 

E [q
Y

(t1)q
Y

(t
2

)J = Q
Y

(t1)o(t1 - t
2

) = 

Q (1:)0(1:) 
X 

Q (1:)0(1:) y 

Q (1:)0(1:) z 

(2 -13) 

For convenience, let the three none zero elements of the spectral 

density matrix be selected as follows: 
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Q (1:)0(1:) = 4133,/0(1:) 
X X X 

Q (1:)0(1:) = 4133a20(1:) (2-14) y y y 

Q (,:)<5(,:) = 4133 c,2 o( 1:) z z z 

With this selection, the power spectral density function, the autocorre

lation function, and the correlation time of the flexing of the aircraft 

around each axis can be found from Table 1.  Because the flexing around 

each axis has a zero mean, the variances are given by the autocorrela

tion functions when the time lag, ,:, is zero. With the none zero ele

ments of the spectral density matrix chosen as in equation (2-14), the 

2 2 variances of the bending are given by a , a , 
X y 

2 and a . z It is obvious 

that the variances in equation (2-14) are the actual variances of the 

flexing of the aircraft around each axis. 

The correlation time is defined as the amount of time lag required 

for the autocorrelation function of the random variable to decrease by a 

value of 1/e. Figure 4 illustrates the autocorrelation functions of 

several Markov processes. . For· the second order Markov process the 

correlation time is given by: 

t x, y, z 
'\, 

2. 146 
f3 x, y, z 

(2-15) 

Identifying the process noise spectral density matrix requires 

knowledge of the variance and the correlation time of flexing around 

each axis of the aircraft. Similarly, the state transition matrix can 
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2 
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n 
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Table 1. Characteristics of Stationary Gauss-Markov Processes. 

Power Spectral 
Density, 

-, (w) 
xx 

2 2110 6(w) 

Autocorrelation Function, 
(p ('t) 

xx 

2 -a3 1'tl n-1 r(n)(2J30 l'tl)
n-k-

l 
0 e 

k:o (2n - 2)1klr(n - k) 

'· 
2 a 

Correlation 
Time 

1 

a1 

2.146 -a-

2.903 

Solved 
arithmetically 

for each n 

A. Gelb, Applied Optimal Estimation, The M.I.T. Press, Cambridge, Mass., 1974, p. 45. 
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1.0 

-;: 
� o.a 
z· ALL AUTO CORRELATION 
0 FUNCTIONS NORMALIZED 
� ef, 10) = 1 u CORRELATION TIME = 1 z 0.6 
:::, � 
z 
0 � < o., ..I w a: a: 
0 u 
0 

0.2 .,_ 
:::, < 

0 
0 0.5 1.0 1.5 2.0 2.5 J.O 3.5 

TIME SHIFT, T' 

Figure 4. Autocorrelation Functions of Gauss-Markov Processes. 

A. Gelb, Applied Optimal Estimation, The M. I. T. Press, 
Cambridge, Mass. , 1974, p. 44. 
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be deduced from just the knowledge of the correlation time. It should 

be possible to identify these parameters based on the structural charac

teristics of the aircraft and the conditions in which the aircraft · is 

being operated in. These considerations will be discussed later. 

Next, the discrete time equivalent of the state transition equa

tion ( 2-12), and the none zero terms in the process noise spectral 

density matrix ( 2-14) will be found. A first order discrete time 

approximation of the state transition matrix can be found by using [5, 

P• 77]: 

( 2-16) 

Using this approximation, the discrete time state transition equation 

may be written as: 

8 l 0 0 6tk 0 0 8 0 
X X 

8 0 1 0 0 6tk 0 8 0 y y 

8 0 0 1 0 0 6tk 8 0 z z 
= + . ( 2-17) 

8 -f3
26t 0 0 1-2f3x

6tk 0 0 8 qx X X k X 

8 0 -f3
26t 0 0 1-2 �3y

6tk 0 8 qy y y k y 

8 0 0 -f3
26t 0 0 1-2'3/itk 8 qz z k+l 
z k z k k 

The discrete equivalent of the spectral density matrix is the 

covariance matrix [5, p. 75]. The none zero terms of the covariance 

matrix corresponding to equation ( 2-14) are: 
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The measurement equation (2-6) was derived from equation (2-2). 

These equations must be modified to include the effects of dynamic 

alignment error. Two considerations must be made. First, the ·net 

alignment error is the sum of the static and dynamic alignment error. 

Second, a correction for the relative motion of the slave IMU with 

respect to the master IMU must be made. While the aircraft is flexing, 

the slave IMU will be moving relative to the master IMU. At any one 

instant in time there may be no dynamic error even if the slave IMU 

senses a different angular velocity than the master IMU. This suggests 

that the differences in angular velocities sensed by the master and 

slave IMUs be corrected by the instantaneous dynamic angular velocity of 

the slave IMU. Combining these two effects, and letting a' represent 

the time derivative of e, equation (2-2) becomes: 

-- _. _. 
(-;t' + _.8) X � - .i.8 , l\O = 0 - w "' 'f' �, (2-20) 

The measurement equation (2-6) modified to include the effects discussed 

above is: 

n - w 0 n -n cpx + e 8 V 
X X z y X X X 

611k 
= n - w = -n 0 n cpy + 6 e + V . (2-21) y y z X y y y 

n - w n -n 0 cf> + 6 e V z z k y X k z z k z k z k 

This equation can be written in a more standard form as: 
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q,x 

q,y 

cpz 

0 - w 0 0 -o 0 n -n -1 0 0 a V 
X X z y z y X X 

0 - w = -n 0 0 -n 0 0 0 -1 0 0 + V (2-22) y y z X Z . X y y 

n - w n -a 0 a. -o 0 0 0 -1 e V z z k y X y X k z z k 

q,; 
"; 

<I>� k 

Equation (2-22) is the measurement equation for the model of static and 

dynamic alignment error. The measurement noise reflects the inaccuracy 

in obtaining angular velocity information from the inaster and slave !MU. 

The covariance of the measurement error was given in equation (2-9). 

Combining the ef fee ts of the process noise' associated with the 

static alignment error (2-8) and the dynamic alignment error (2-14) 

results in the following process noise covariance matrix: 



Q = 

0 0 0 0 

0 0 0 0 

0 0 0 0 

0 0 0 0 

0 0 0 0 

0 0 0 0 

0 

0 

0 

0 

0 

0 

0 

0 

0 
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0 0 0 0 

0 0 0 0 

0 0 0 0 

0 0 0 0 

0 0 0 0 . (2-23) 

0 0 0 0 

0 0 0 

0 0 0 

0 0 0 

At this point, the matrices of the model needed to design a Kalman 

filter to estimate the angles of static and dynamic alignment error have 

been determined. The state and measurement equations are defined in 

(2-19) and (2-22). The process and measurement noise covariance matri

ces are defined in equations ( 2-19) and ( 2-22). The process and mea

surement noise covariance matrices are defined in equations (2-23) and 

(2-9). 

Uncertain Parameters in the Alignment Error Model 
and the Adaptive Kalman Filter 

An accurate model of the static and dynamic alignment error must be 

known for the Kalman filter to provide good estimates of the actual 

alignment error. The model just developed relies on a priori knowledge 

of the variance of dynamic bending about each axis and the correlation 
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time for each Markov process. These parameters depend on many factors. 

Some of these factors include the internal structural characteristics of 

the aircraft , such as the elasticity of the airframe and its weight 

distribution. External factors include weather turbulence and the type 

of maneuvering the aircraft is engaged in. The latter could range from 

level flight to evasive maneuvers. The large variability of conditions 

make the task of identifying these parameters, based on assumed condi

tions, very difficult . At best, the parameters can be identified for 

only a small subset of the possible conditions that the aircraft might 

encounter . 

An algorithm capable of concurrently ident.ifying .the time varying 

parameters of the alignment error model and estimating the angles of 

alignment error would be very desirable. The adaptive Kalman filter may 

provide this solution to the transfer alignment problem. 

The computational burden associated with the use of an adaptive 

Kalman · filter n·�eds ·to be c·onsidered. Because an a'daptive Kalman filter 

must also identify the parameters of ' the model, more calculations · are 

involved � To perform the transfer �lignment in a certain period of time 

might require a more pe>werful compute�. Any information about the value 

or the: range of the parameters will ·enhance the ability to do an accu

rate alignment in a shorter period of time. The estimated parameters 

will converge to their tr1.ie ' values· faster when the range over which the 

parameters can vary is narrow. The best policy is to use as much infor

mation as is available a0:d let · the adaptive
. 
Kalman filter refine the 

parameter estimates to achieve the most accurate alignment possible. If 
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the adaptive Kalman filter . is used in this context , the transfer 

alignment process can be carried out with greater precision , despite the 

added computational burden . 

The next chapter . of this paper will· examine the details of three 

adaptive Kalman filters. The system models used in these discussions 

will be general. · The algoritluns may be made specific to the transfer 

alignment problem by substituting the alignment error model discussed in 

· this chapter . · 
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CHAPTER 3 

THE ADAPTIVE KALMAN FILTER 

This chapter will present three related variations of an adaptive 

Kalman filter. These variations differ only in the complexity of how 

they identify the parameters of the system. The model of the system and 

the statistics of the noise used in the following discussion is general 

in nature. The specific model used to solve the transfer alignment 

problem was presented in the previous chapter. The following discussion 

can be applied to this model without a loss of generality. 

A simulation of the three adaptive Kalman filters, yet to be 

presented, was done to assess their performance. The details of this 

simulation will be presented in the following chapter. However, refer- -

ences to the outcome of the simulation · will be made in this chapter. 

The outcome of the simulation provided incentive to find algorithms with 

improved performance. 

To begin, background information helpful in developing the adaptive 

Kalman filters will be presented. These concepts will include a brief 

discussion of convergence analysis applied to the extended Kalman fil

ter. Parameter identification using a stochastic approximation will be 

discussed next. Following this, three versions of an adaptive Kalman 

filter will be developed. These algorithms will be modified to enable 

them to adapt to systems with slow time varying parameters. Finally, 

potential problems which might be encountered with an adaptive Kalman 

filter will be considered. 
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Convergence Analysis 

The Kalman filter can provide the minimum variance estimate of the 

state of a system when the noise associated with the system is gaussian. 

When the gaussian assumption is removed, the Kalman filter gives the 

linear minimum variance estimate of the state. This estimate has the 

smallest unconditional error covariance among all linear estimates. In 

general, this estimate will be biased [6, p. 248]. A biased estimate 

has an expected value different than that of the quantity being esti

mated [5, p. 102] 

When one or more of the system parameters is unknown they can be 

treated as additional states of the system. The original problem is no 

longer linear because of the occurrence of products between states and 

parameters. · A solution to this problem is to linearize the equations 

about a nominal trajectory which is continually updated. Once this is 

done, the Kalman filter may be used to estimate the states and the 

parameters of the system . The resulting algorithm is known as the 

extended Kalman filter [6, p. 362 ] 

The extended Kalman filter is one solution to the problem of 

adaptive filtering. A recent paper discusses the convergence properties 

of the extended Kalman filter ( 10]. This paper concludes that the con

vergence properties of the extended Kalman filter are not good because 

of a lack of coupling between the Kalman gain used in estimating the 

state of the system and the parameter identification process . Based on 

this, an improvement to the extended Kalman filter is proposed. The 
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lesson to be learned is that an adaptive Kalman filter that has coupling 

between the parameter identification process and the Kalman gain will . 

have better convergence properties than if this coupling was absent. 

The adaptive Kalman filters to be considered in this paper will 

have coupling between the parameter identification process and the Kal

man gain through the sensitivity of the Kalman gain. Thus, the con- · 

vergence properties of these algorithms should be better than a standard 

eitended Kalman filter. In fact, later, it will be pointed out that one 

of the adaptive Kalman filters to be presented is virtually identical to 

the extended Kalman filter which is modified to consider the sensitivity 

of the Kalman gain. This adaptive Kalman filter is . .  developed from a 

different viewpoint than the extended Kalman filter. It will be seen 

that this _adaptive Kalman f ilter provides excellent performance. 

Stochastic Approximation 

Stochastic approximation will be �entral· to the parameter identifi-
. . 

cation process in the adaptive Kalman filters considered · in this study. 

Stochastic approximation may be defined . as ·a technique for successive 

approximation of a quaritity when the obser'vations involve random errors 

due to ·the stochastic  nature of the problem [ 1s, p. 68] . Stochastic 

approximation is easy to · implement because a · priori knowledge of the 

noise ,_ st·atistics is not 'needed. It can be applied 'to any problem in 

whi�h repeated · observations are made ' [ 1 5, p. 68] 

A typical problem which may be solved . by stochastic · approximation . 

is as follows. Consider a funct ion · Q ( fJ ,  e
k

). This is a function of an 
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unknown parameter 8, and ek, where ek is a sequence of zero-mean random 

variables of the same unknown distribution. Observations of Q(8, ek) are 

available for any chosen 8. It is desired to solve the following equa

tion for 8, where E denotes expectation: 

E [ Q{ e, ek) ] = o .  (3-1) 

When applied to the parameter identification process of an adaptive 

Kalman filter, Q(e)  will be identified as a scalar cost function based 

on the innovation sequence and involving one or more unknown parameters. 

The innovation sequence will be defined in the next section . The adap

tive Kalman filter will be required to identify the unknown parameters. 

The error associated with the measurements used in obtaining the innova

tion sequence will be represented by ek. 

A stochastic approximation [ 15, p. 69 ] may be used to estimate the 

parameter, 8, that satisfies equation (3-1): 

(3 -2) 

The symbol yk denotes a gain sequence which must have the following 

three properties in order for the estimate of 8 to converge to its true 

value [ 15, p. 69 ] :  

yk � 0 

00 

(3-3) k�l yk 
= 00 

00 2 
k�l yk < 00 
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Any gain sequence that satisfies equation (3-3) may be used. The first 

condition given in equation (3-3) is required for consistency with equa

tion (3-2). The second condition implies that any target parameter to 

be identified can be reached. The final condition assumes the gain 

converges to zero. This asymptotically eliminates the effects of noisy 

measurements [ 9, p. 59] . An example of a simple gain sequence which 

satisfies these conditions is: 

k = 1 , 2 , 3 , . . . . (3-4) 

If the parameter to be identified is time varying, the gain 

sequence must be modified. The time varying parameter can be tracked by 

letting the gain sequence converge to a small positive constant instead 

of zero. This will require relaxing the third condition given in equa

tion (3-3). The size of this constant will be determined by how fast 

the quantity is varying with time . An alternative technique is to reset 

the gain sequence to an intermediate value between some upper bound and 

zero, and let it converge again. The frequency at which this must be 

done will depend on how fast the parameter being identified is changing 

with time. In either case, there will be a trade-off between tracking 

ability and noise insensitivity [9, p .  59]. Reference to this discus

sion will be made later when the adaptive Kalman filter is modified to 

track slow time varying parameters. 
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Preliminary Equations 

This section will present some preliminary equations useful in 

developing the adaptive Kalman filters. These will include the model of 

the system and a set of equations for a standard Kalman filter. Initial 

conditions for the Kalman filter will also be discussed. 

A general system model is used for convenience in the following 

presentation of the adaptive Kalman filter. The discuss ion in the 

remainder of this study applies equally to the transfer alignment model 

presented in Chapter 1.  Using a general model allows all features of 

the adaptive Kalman filter to be presented, and not just those used in 

the transfer alignment problem. 

In the following discrete time model, the time interval is desig

nated by k. In general, the matrices of the model are functions of an 

unknown parameter, 8. The dimensions of vectors and matrices will be 

given in parentheses where useful. The model is: 

( 3 - 5 )  
k = 0 ,  1 ,  2 ,  

where 

A( 8 )  = state transition matrix (n x n), 

B( 8 )  = input matrix (n x c), 

c (e) = output matrix (r x n), 

� 
= current state vector (n  X 1 ) , 

Uk 
= current input vector (c X 1 ) , 
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yk 
= current output vector (r x 1), 

wk = process noise vector (n x 1) , and 

vk 
= measurement noise vector (r x 1). 

The noise sequences are assumed to be uncorrelated, zero mean 

gaussian random vectors. They have the following covariance matrices 

which may also contain unknown parameters: 

(n x n)  
(3-6) 

(r x r )  

Next, the equations for a standard Kalman filter will be presented 

for the system given in equation (3-5) using the noise statistics in 

equation (3-6). In this set of equations the unknown parameters are 

replaced by there most current estimate. How these estimates are gener

ated will be discussed in subsequent sections. The Kalman filter equa-

tions are: 

(a) State estimate propagation: 

\+l/k = A(0)\/k + B(0)Uk . 

(b) Error covariance propagation: (n x n) 

T 
Pk+l/k = A(8)Pk/kA{ 0) + Q(S) 

(c) Innovation sequence: (r x 1) 

Ek+l = yk+l - C(S) Xk+l/k . 

(3 - 7) 

(3 - 8) 

(3 - 9) 



(d) Kalman gain: (n x r) 
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T T - 1  
ISc+l = Pk+l/kc (e) [ c (e)Pk+l/kc (e)  + R(e)] 

(e) State estimate update: 

(f) Error covariance update: 

(3-10) 

( 3-11)  

T T 
pk+l/k+l = [I - Kk+lc (e)]Pk+l/k [ I  - �+lc (e)] + 1Sc+1R{ S)K k+1 · 

(3-12) 

To initialize the Kalman filter, an initial state estimate and an 

error covariance associated with this estimate must be determined . 

These two quantities are given by: 

E [XO] = X.0/0 

E [ {xo - xo/ o ) <xo - Xa; o ) J = Po/o 
(3-13) 

The adaptive Kalman filter used in conjunction with the alignment 

error model is only required to identify parameters in the state transi

tion and process noise covariance matrices . The adaptive Kalman filter 

is capable of identifying parameters in the other system matrices as 

well . However, some researchers have found that attempting to identify 

parameters in both noise covariance matrices simultaneously is not well 

behaved ( 1 1 ,  p .  122 ] .  This is not an obstacle to the transfer alignment 

problem . The measurement noise covariance can be determined directly 
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from the variance of the measurements from the IMUs. This variance is 

known and not expected to be time varying. 

The Adaptive Kalman Filter Based on the 
Stochastic Gradient Algorithm 

The first adaptive Kalman filter to be presented in this study 

estimates the system parameters using a stochastic gradient algorithm. 

This version of the adaptive Kalman filter is proposed in reference [ 3 ] .  

It is potentially attractive because it is relatively easy to implement. 

This derivation will begin with developing the parameter identification 

algorithm. The supporting equations will then be derived. The complete 

algorithm will be sununarized on a flow chart. 

The innovation sequence of the Kalman filter can be viewed as the 

error in predicting the output of the system. This variation of the 

adaptive Kalman filter will recursively adjust the parameter estimates 

to minimize the mean square prediction error. Thus, the mean square 

prediction error can be identified as a scalar cost function to be 

minimized: 

J( S) ( 3-14) 

Let the unknown parameters be arranged in a vector, denoted by �- This 

vector will have a dimension of (p  x 1) where p represents the number of 

parameters to be identified. A particular parameter in this vector will 

be represented by 8 . . The mean square prediction error is minimized by 
J 

setting its gradient to zero: 
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a 
a e . J( e ) (3 -15) 

Equation (3 -15) is similar to (3-1) . Stochastic approximation 

can be applied to equation (3 -15) to estimate the jth parameter. The 

result is: 

(3-16) 

It is worthwhile to consider a geometric interpretation of equation 

(3 -16) . The cost function in equation (3-14) is a scalar field. The 

gradient of a scalar field is a vector that points in the direction of 

maximum increase. Adjusting the parameter estimates in the negative 

gradient direction will minimize the cost function. Therefore , this 

method to identify the parameters will be referred to as the stochastic 

gradient algorithm. 

The supporting equations will be found next. They will be found by 

evaluating partial derivatives of equation (3 - 7) _ through (3 -12) with 

respect to each of the unknown parameters. From this point on , refer

ences to partial derivatives are with respect to a specific parameter to 

be identified. To begin, the partial derivative of the innovation 

sequence is needed in equation (3 -16) . It is found by differentiating 

equation (3-9):  

-c ( e ) ( a� .  \+1/k) - < a: . c ( e ) )\+1/k (3 -17) 
J J 
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The partial derivative of C(8) will be a known quantity. The par

tial derivative of �+l/k can be found by first differentiating equation 

( 3 - 7) : 

a -
a e . xk+l/k = 

J 

(3-18) 

Equation (3-18) involves partial derivatives of X at different time 

intervals. A more convenient expression for equation ( 3-18) can be 

found by first determining the partial derivative of �/k · To do this, 

the time interval associated with equation (3-11) is first reduced by 

one unit: 

(3-19) 

Changing the time interval of any of the equations does not affect their 

form. The partial derivative of equation (3-19) is taken next: 

(3-20) 

Equation (3-20) involves the gradient of the innovation. This term may 

be eliminated by reducing the time interval of equation (3-1 7) by one 

and substituting the result into equation (3-20):  

a -
a e . ¾:Jk 

J 

(3-21) 



37 

Finally , equations ( 3-19) and ( 3-21) are substituted into equation 

( 3-18). After performing some algebra the result is: 

a A 

a s . �+1/k = 
J 

a + <a s . B( S))Uk . ( 3-22) 

The partial derivatives of the A( S) , B( S) , and C( S) matrices are known 

from the nature of the problem. The partial derivative , or gradient, of 

the Kalman gain matrix is also needed. This is sometimes referred to as 

the sensitivity of the Kalman gain [ 10, p. 43]. This sensitivity 

appears to be a key factor in enhancing the convergence properties of an 

adaptive Kalman filter. 

The gradient of the Kalman gain is found by differentiating equa

tion ( 3-10), after reducing the time interval by one unit. The result 

is: 

a . T T -1 
= <a s . pk/k-l)C( S) [C( 8)Pk/k-1C( 8) + R( 8)] 

J 

a T T - 1  + pk/k-1 <a s . C( S)) [C( S)Pk/k-lC( S) + R( S)] 
J 

T T -1 a T - pk/k-lC( S) [C( S)Pk/k-lC( S) + R( S)] [C( S)( a s . pk/k-l)C( S) 
J 
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a T a T a 
+ < a a . C( 8 ) )Pk/k-1C( 8 )  + C( 8 )Pk/k-1< a a . C( 8 ) )  + < a s . R( 8 ) ) ] • 

J J J 

a T - 1  
[ C( 8 ) ( a a . pk/k- l )C ( 8 )  + R( 8 ) ]  . 

J 
( 3-23) 

To evaluate the gradient of the Kalman gain requires the gradient 

of P k/k- l. This is found by reducing the time interval of equation 

( 3-8 ) by one unit and differentiating the result : 

a 
a a . Pk/k-1 

J 

a T a T 
= < a a . A( a ) )Pk-1/k- lA( a ) + A( a ) < a a . Pk-1/k- l )A( a ) 

J J 

+ A( S )Pk-1/k-1 < a: . A( 8 ) )
T 

+ < a: . Q( 8 ) ) 
J J 

( 3-24 ) 

Finally , the gradient of Pk- l /k- l is needed in equation ( 3-24 ). It 

is found by adj usting the time interval of equation ( 3-12) appropriately 

and then differentiating the result : 

a a T - [ I - ¾C( 8 ) ] Pk/k-1 [ < a a . ISt) C( 8 )  + Kk < a a . C( 8 ) ) ]  
J J 

a T 
+ [ I - �C( 8 ) ] ( a a . pk/k- l ) [ I - IStC( 8 ) ]  

J 

( 3-25) 

Equations (3-17) , ( 3-22) , ( 3-24 ) and ( 3-25) support equation ( 3-16) 

in estimating the parameters. Special consideration needs to be made 
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the first time the algorithm is executed to find the gradient of x1 1 0 
and P1 10 . During the initialization of the algorithm, an approximation 

for the gradient of x1 1 0 is found from equation C 3-18) by neglecting the 

derivative of \/k · The result is : 

C a: . AC S))XO/O + C a: .  BC 9))U0 C 3-26) 
J J 

Similarly, an initial expression for the gradient of Pl/O is found by 

neglecting the derivative of Pk-l/k-l in equation C 3-24): 

a T a T a 
= C a e . A C 9))PO/OAC 9) + AC 9) PO/O C a e . A C S)) + C a e . Q C 9) ) 

J J J 

C 3-27) 

The complete set of equations to realize this variation of an adap

tive Kalman filter has now been derived. · The parameter identification 

process is carried out by equation C 3-16). A projection facility must 

be implemented to ensure the parameter estimates remain within a stable 

range. A simple projection facility is: 

ik 
£ [ � ,�] 

b .  if C ak)
j 

� b .  
J J 

c ak)
j 

= (e k) 
j 

if a .  < c ak)
j 

< b . C 3-28) 
J J 

a .  if c ak)
j 

� a .  
J J 
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Once the parameters are es t imated they are substituted into the appro-

pr iate matr ices and the Kalman f i lter given in equations ( 3 - 7 )  through 

( 3 - 1 2 )  i s  executed . A · n i ce feature of this algorithm i s  that it i s  

relat ively easy to implement. It is sununarized in the form of a f low

chart shown in Figure 5 .  

This algoritlun was s imulated to determine how well it performs . 

The det a i ls of this s imulat ion are g iven in the following chapter . 

However , the results indicate that this algor ithm performs poorly under 

the test condit ions used . The parameter est imates appear to converge at 

a very slow rate . An improvement to this algor ithm which would not 

result in an excess ive amount of add it ional computat ion was sought 

after . This improvement is the topic of the next sect ion of this 

chapter . . · 

The Adapt ive Kalman F i lter Based on the Modif ied 
Stochastic Grad ient Algorithm 

In thi s  sect ion a modif icat ion to the P.revious algor ithm wi l l  be 

proposed . . It does not result in a large amount . of ,  additional computa

t ion . The � imulation results of  t.his �lgorithm . will a.lso be br iefly 

discussed . 

The stochast ic gradient a lgor i�hm wi ll . be modi f ied by introduc ing a 

we ighting _factor , into the cost funct ion g iven in equat ion ( 3 - 1 4 ) . This 

weight ing : factor , · sk/ k'"". l ' w i l l · be the predict ion . error covar iance 

matrix . 'rhe modif ied algor ithm wiil . min imize .the. following weighted 

mean square prediction error : 
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Figure 5 .  Flowchart for the Adaptive Kalman Filter Based 
on the Stochastic Gradient Algorithm. 
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Figure 5 ( continued) 
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( 3-29) 

To formulate a parameter identification algorithm based on minimizing 

equation ( 3-29) requires an estimate of the prediction error covariance 

matrix. The inverse of this matrix is already required in computing the 

Kalman gain, given in equation ( 3-10): 

- 1  5k/k- 1  = 
T - 1  

[ C ( 9 )Pk/k- lc( e )  + R( 9 ) ] ( 3-30) 

The gradient of the cost function is found by differentiating equation 

( 3-29),  with respect to each of the unknown parameters to be identified. 

The result is: 

a 
a e . J( e ) ( 3- 3 1 )  

As before, the parameter estimates can be adjusted in the negative 

gradient direction by using a stochastic approximation. This results in 

the following parameter identification algorithm: 

( 3-32) 

The gradient of the innovation sequence is found as described in 

the last section . The gradient of the estimated prediction error 

covariance is determined by differentiating equation ( 3-30) with respect 

to the jth parameter: 



a -1 
< aa . 8k/k-1 ) 

J 
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-1 a T a T 
= -sk/k-1 [ < a e .  c(a ) )Pk/k-lc(a ) + c(a ) < a a . Pk/k-l )c (a ) 

J J 

a a - 1 
+ C(S )Pk/k-1 < a a . C(S ) )  + < a a . R(S ) ) ] Sk/k-1 

J J 
(3-33) 

This modification does not present a large amount of added computa

tional burden. Furthermore, equation (3-33) can be used in the equation 

to compute the gradient of the Kalman gain . The additional progranuning 

effort is minimal . The adaptive Kalman filter using the modified sto

chastic gradient parameter identification algorithm is summarized in the 

form of a flow chart shown in Figure 6 .  

The modified algorithm was simulated to determine how well it 

performed when compared to the original algorithm. The simulation indi� 

cated that there was an improvement . However, the results were not as 

good as had been hoped for. The simulation will be further discussed in 

the next chapter . 

A more significant improvement in performance is needed for the 

adaptive Kalman filter to be a viable option for the transfer alignment 

problem. A more sophisticated parameter identification algorithm was 

found and implemented . This is the subject of the next section of this 

chapter . 

The Adaptive Kalman Filter Based on the 
Stochastic Newton Algorithm 

The adaptive Kalman filters discussed up to this point relied on a 

stochastic gradient algorithm to identify the unknown parameters . 



Bo 
)(. c,/� 

Po," 

P,it. 
.) 

� 8· X,10 
J 

J -
P, ,o 

�ej 
I\ 

)( t\/ 1\ -l 

E. r. 
. .J 
J c,/:·� 

s K/ .. - 1  

t 
::; 

.: 

= 

·-

·.:a 

� s -, -d (), t<h:.-1 
J 

45 . 

i n i t i al i z e  al gor ith1 

( ", b'] 
E' [ XG 1  

[ (  " · r ·· "' ·1 E )<c:. ·• Xo1-:.). Xe. - "'/.. tio ) 
A (o) Pote. A (e) "r ,.. Q (0} 
( )�Ii · A {e)) Xe;/,; t { /f7, 8[e)) U"' ., :J . 

(�. A{rJ)j �/<} A(ti) t A ($)  Pct, (Jd. A(t3)? t (;&, &((j)) 
c:;,j - :) J 

I ' 
propagate state esti 1at e and 
co1put t gradient of innovat ion sequence ·-----------, 

A 
A (o )  .x. K-1/ �- ,  + 8{8) U K . ,  

. ,.. 
y.._ - c.w) x �, "- ,  

- c{e}( :f3J x K/K - 1 ) - ( /eJ c C«1)) � �1"- '  

co1pute prtdic t i on error covar i ance  and 
gradient of inverse predi c t ion trror covar ianc e 

C (O) p�/,:.· I  C($)T 1- R.(0) 

-S -�r.-, [(50.c(e)) Pr;./t(. - I  C(e)
r
+ C(0) ( �. P�i�-1) cref· + 

j . J 

C(6) Pkh-\ ( Ye C(tJ))"' -t ( ::i�
e 

R(S))] 5 ec.i� - ,  

update para1et er est i 1ate 

recoaput e pred i c t i on error covari ance and 
gradi ent of i nver �e �itdic t i on· error covaij an�e 

( (e) P\<. i � �t cce)"c:, + R (0) 

- 5ie:;� . ."({ f0 .t(6)) H�1,.� ,  crBf � c: r0>( f0.P.;;.:,J;_1) c ta)' ·  t · · 
.) . . J 

(.(8) Pt<:./�·t( �/Ce)? °'" ( fe R(&)) J  5 r-/� -1 ------___.:__r 
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Unfortunately, the performance of these algorithms was less than sat

isfactory for the application considered in this study. An improved 

algorithm will be presented in this section. The performance of this 

adaptive Kalman filter will then be compared to the first two algo

rithms. 

The derivation of this improved algorithm starts with a second 

order deterministic parameter identification scheme. The stochastic 

counterpart of this algorithm is then found. Finally , an approximation 

will be introduced that allows the algorithm to be executed in a 

reasonable amount of time. Such an algorithm is discussed in reference 

[ 9 ] . 

This parameter identification algorithm will again attempt to 

minimize the weighted mean square prediction error given in equation 

(3-29). It is repeated here for convenience: 

J(8) (3-34) 

As before , the mean square prediction error will be minimized when the 

gradient of the cost function is set to zero. This time a Taylor series 

expansion of the cost function about a nominal set of parameter esti-

mates will be considered. A deterministic parameter identification 

scheme will now be derived [15 , pp. 348-50]. 

The Taylor series expansion of the cost function in equation (3-34) 

about a nominal set of parameters , e0 , is: 
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J( 9 )  

(3-35) 

Equation (3-35) is truncated to two terms and differentiated: 

a as J( e ) (3-36) 

Equation (3-36) is set to zero and then solved for (� - �). The result 

is an expression for how much the parameters deviate from their nominal 

values: 

(� - � )  
2 

= - [-½: J( e ) J - l [�
e J( e ) J  

a e  
(3-37) 

A new parameter vector estimate can be found by adding this deviation to 

the old estimate: 

�k = �k-1 + (� - �) (3-38) 

The resulting deterministic identification scheme is known as the 

Newton-Raphson method: 

(3-39) 

The second derivative matrix in equation (3-39) is referred to as 

the Hessian matrix. The Hessian matrix modifies the search direction 
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from that given by the negative gradient of the cost function. The 

result is improved convergence of the parameter estimates. When the 

function is close to being minimized the scheme in equation (3-39) · is 

known to be very efficient. However, far from the minimum, it may be 

inefficient or even diverge. The divergence problem may be eliminated 

by ensuring the Hessian matrix is positive definite. This guarantees 

that the search direction is always "downhill" [ 9, p. 46 ] .  

A natural variant of the stochastic gradient algorithm applied to 

equation (3-39) results in a stochastic Newton approach to identifying 

the parameters [ 9, p. 47 ] .  The stochastic counterpart of equation 

(3-39) is analagous to equation (3-16).  Again, yk is a converging gain 

sequence having the properties discussed in equation (3-3). The sto

chastic Newton approach to identifying the parameters is: 

(3-40) 

This parameter identification scheme should give vastly improved 

results when compared to the first two algorithms. Unfortunately, 

computing the Hessian matrix would be computationally prohibitive. 

Assume an approximation for the Hessian matrix can be found. Let 

this approximation be represented by ¾. Also, assume the weighting 

-1 matrix, Sk/k-l' in equation (3-34) is not time varying. The gradient of 

the cost function, J(8), is found by differentiating equation (3-34). 
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Using this expression for the gradient, and the approximation of the 

Hessian matrix, equation (3-40) becomes: 

(3-41 ) 

Notice that an entire parameter vector is being estimated, unlike 

in the previous two algorithms. It is more convenient to estimate the 

parameters as a vector, rather than individually in this algorithm. The 

gradient of the innovation sequence in equation ( 3-41 ) is an ( r x p )  

matrix. The gradient of the innovation sequence with respect to the jth 

parameter is still determined by equations (3-1 7), (3-22), (3-23 ), 

(3-24) and (3-25).  These equations can only be evaluated to find the 

gradient of the innovation with respect to a specific parameter. This 

gives an (r x 1) vector. Doing so for each of the p unknown parameters, 

results in p ( r x 1 )  vectors. These vectors are brought together to 

form an ( r x p)  matrix. This is the gradient of the innovation with 

respect to all parameters, used in equation (3-41). The form of this 

matrix is illustrated below for clarity: 

a e:1 
a e:1 

a e 1 
a e2 

a e:2 
a e:2 

a 
a e 1 

a e2 

a8 8k = 

a e:1 
a e 

a e:2 
a e p 

a e;  r 
a e p 

(r X p )  (3-42) 
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The dimension of the Hessian matrix is (p x p). The prediction error 

covariance matrix has a dimension of (r x r). The result of equation 

(3-41) is a (p x 1) vector of parameter estimates. 

A suitable approximation of the Hessian matrix will be determined 

next. It can be developed by substituting a Taylor series expansion of 

the innovation sequence into the cost function. The second derivative 

of the cost function will then be evaluated. Finally, the Hessian 

matrix will be estimated by using a stochastic approximation. 

The Taylor series expansion of the innovation sequence about some 

nominal value of the parameters is: 

(3-43) 

Using the first two terms of this Taylor series, the cost function given 

in equation (3-34) can be written as: 

(3-44) 

An approximation to the Hessian matrix can be found by evaluating the 

second derivative of equation (3-44): 

2 

� J( 8) "' �  = 
a e  

(3-45) 
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Equation (3-45) is difficult to evaluate because it involves an 

expectation. However, it can be written in such a manner that an 

estimate of the Hessian matrix can be determined by another stochastic 

approximation: 

(3-46) 

Applying the principle of stochastic approximation to equation (3-46) 

results in the following equation to estimate the Hessian matrix: 

The gain sequence, yk' does not have to be the same as in equation 

(3-40), but must have the properties given in equation (3-3). If it is 

chosen as suggested by equation (3-4), then equation (3-47) recursively 

estimates the mean value of the term within the expectation of equa-

tion (3-45). 

Equation (3-41) requires inversion of the Hessian matrix. Numeri

cal problems may be encountered when this matrix is singular, or nearly 

so. A singular condition ·of the Hessian matrix is caused by parameter 

estimates which do not lead to a unique, well defined minimum of the 

cost function. This corresponds t� a "valley" along the null space of 

the Hessian · matrix [9, p. 202]. There are two conditions which may lead 

to this problem. First, the model might be overparameterized. The 

second condition is caused by input signals having insufficient spectral 

characteristics to identify the parameters [6, pp. 72-74]. 
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Several techniques are available to correct these problems. Over

parameterization may be solved by reducing the order of the model. 

Insufficient excitation may be prevented by adding a small external 

.persistently exciting input signal [ 6, pp· . 216-17 ] .  An alternative is 

to temporarily halt the parameter identification process until the input 

signal is sufficiently exciting. To further guarantee that numerical 

problems do not develop, the Hessian matrix may be regularized. One 

technique is the Levenberg-Marquardt method [ 9 ,  p. 365 ] .  This consists 

of simply adding an identity matrix multiplied by a small constant, o ,  

to equation (3-47):  

(3-48) 

A more sophisticated technique involves U-D factorization. A modifica

tion, similar to above, is made to an emerging null space of � to pre-

vent any eigenvalue from approaching zero [ 9, p. 365]. 

computational burden might be prohibitive. 

The added 

The adaptive Kalman filter discussed in this section uses equations 

(3-41) and (3-48) to identify the parameters, along with the necessary 

supporting equations. It will be called the stochastic Newton algo

rithm. It can be shown that this algorithm is essentially identical to 

an extended Kalman filter modified to couple the gradient of the Kalman 

gain with the parameter identification process [ 9, p. 1 30 ] . This coup

ling is absent in an unmodified extended Kalman filter. This absence 

has a harmful ef feet on the convergence properties of the extended 
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Kalman filter. The stochastic Newton algorithm is illustrated in the 

form of a flowchart shown in Figure 7. 

The stochastic Newton algorithm was simulated to evaluate its per

formance. The simulation indicated that the performance of this algo

rithm was significantly better than the first two. The disadvantage of 

this algorithm is that it requires inversion of the Hessian matrix with 

an order equal to the number of parameters to be identified. This might 

impose an unacceptable computational burden for some applications . The 

model used in the transfer alignment problem will have at most six param

eters to be identified . The inversion of a sixth order Hessian matrix 

is not unreasonable. 

Modifications to Account for Time 
Varying Parameters 

A model for alignment error was presented in Chapter 2. It was 

reasoned that the dynamics of the alignment error is time varying. This 

is caused by the changing conditions within the aircraft and its envi

ronment during the alignment procedure. It was proposed to estimate the 

angles of alignment error using an adaptive Kalman filter. The adaptive 

Kalman filter would determine the best model for the flexure dynamics, 

at a given time, from the available data. 

Three versions of an adaptive Kalman filter have been presented in 

this chapter . These algorithms were developed assuming the parameters 

of the model are not time varying. The adaptive Kalman filters may be 

modified to identify time varying parameters. The state estimates of 
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Figure 7. Flowchart for the Adaptive Kalman Filter Based 

on the Stochastic Newton Algorithm. 
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the adaptive Kalman filter correspond to the angles of alignment error 

between the master and slave IMU. These angles are also time varying. 

Therefore , a s imilar modification is needed for the state estimation 

process. 

To enable the adaptive Kalman . filter to identify time varying 

parameters requires a modification of the gain sequence , yk ' used in 

estimating the parameters. When the gain sequence is allowed to decay 

to zero all measurements are weighted equally . Letting the gain 

sequence decay to a small pos itive constant places more weight on 

recently acquired data. A relationship between this constant and the 

effective memory length of the parameter identification process may be 

derived [ 9 ,  p. 274 ] .  Define T0 as the memory time constant of the 

filter . Data older than T0 units of time has an effective weighting 

that is approximately less than 1 /e ,  or about 36 percent , of newly 

acquired data. An approximate expression for T0 is : 

( 3 -49) 

Equation ( 3 -49) i llustrates that as the gain sequence decays to a 

larger constant , previous data tends to be neglected after a shorter 

period of time . This shifts more weight to recently acquired data. An 

alternative is to reset the gain sequence at regular time intervals. 

The length of this interval would depend on how fast the parameters are 

changing. The value to which the gain sequence is reset would be 

between some small constant and what was used when the algorithm was 

initialized.  
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this case , the input signal is not uniformly persistently exciting [ 6 ,  

p .  72 ] .  This may not be a problem if the aircraft is maneuvering during 

the alignment process .  

A nice feature of the adaptive Kalman filter using the stochastic 

Newton algorithm to identify the parameters is that it automatically 

provides a tool to analyze the input data . This tool is the Hessian 

matrix . If the determinant of the Hessian matrix falls below a certain 

value , this is an indication that the input signal has insufficient 

spectral characteristics to identify the parameters of the system. At 

this point the parameter identification process can be temporarily 

halted. The two variations of the adaptive Kalman filter based on the 

stochastic gradient algorithm do not provide this attractive feature . 

Summary 

The use of an adaptive Kalman filter to estimate the angles of 

alignment error appears to be an attractive solution to an otherwise 

complicated problem . This chapter has presented the development of 

three variations of an adaptive Kalman -filter . The performance of these 

algorithms have been briefly discussed . The adaptive Kalman filter that 

identifies the parameters using a stochastic Newton algorithm provided 

superior results when compared to the other two algorithms. This adap

tive Kalman filter is recommended for the transfer alignment problem . 

Not only does it provide better results , it can also be used to indicate 

the spectral quality of the measurement data . 
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CHAPTER 4 

COMPUTER SIMULATION 

This chapter discusses the computer simulations of the adaptive 

Kalman filters presented in Chapter 3. As previously stated, the 

results of these tests indicate that the adaptive Kalman filter based on 

the stochastic Newton algorithm provides superior results when compared 

to the first two algorithms. Two independent simulations were· per

formed. The first simulation produced initial data regarding the rela

tive performance of the algorithms. The second simulation was conducted 

. to investigate the effect of modifying the · ass\lliled statistics of the 

noise used to excite the model. This chapter will conclude with a brief 

discussion of the computer language in which the simulation was 

written. 

Simplified Test Model · 

A general discrete time , sta�e space model around which the adaptive 

Kalman filters were developed was presented in equation ( 3 -5 ). In Chap

ter 2 ,· a modei f�r alignment error wa� . presented. : This model was devel

oped in such a manner that the angles of ali gnment error could be esti

mated by a Ka'iman 'filter. An actual simulation of this application was 

not done because of th'e complexity in . setting up the test . conditions. 

Instead, · a comparatively simple, third order � single ·output model was 

used to gen�rate . m�asurement data . ·,The re1atb,:e · perfor�ance of the 



61 

adaptive Kalman filters was assessed by determining which algorithm 

produced the most accurate state estimates from the noisy measurements 

produced by this model. Despite these simplified test conditions, the 

simulation still provided valid information about the performance of the 

adaptive Kalman filters. 

The steps in arriving at the third order, state space model used to 

generate the test data will now be presented. The form of this model is 

a simplified version of the one given in equation (3-5): 

xk+l = A(e )xk + wk 

Yk = c(e )� + vk 

The matrices used in equation (4-1 ) are defined in equation (3-5). 

(4-1) 

They 

are functions of a set of parameters, 8, and will be assigned values 

shortly. 

A deterministic input was not used in this model. This was done to 

obtain some added similarity to the alignment error model, discussed in 

Chapter 2. In the alignment error model, the dynamic error was repre

sented by a Gauss-Markov process for each axis of flexing. Each of 

these equations was independently excited by a zero mean, gaussian noise 

sequence, generated by the flexing of the aircraft. In a like manner, 

each of the state equations in the model used to generate the measure

ment data was excited by an independent, zero mean, gaussian noise 

sequence. The three noise sequences had a covariance of one unit each. 

The state transition matrix was selected by first developing a 

suitable characteristic equation directly in the z-plane [ 4, p. 109]. 
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Two imaginary poles, and one real pole were placed within the unit cir

cle . of the z-plane . This guaranteed a stable model would result. The 

imaginary poles were placed at z = ±j 0 . 8, the real pole was placed at 

z = +0. 5 . The resulting characteristic equation is : 

3 2 Z + . SZ + . 64Z + . 32 = 0 . ( 4 - 2 )  

A state transition matrix corresponding to this ch�racteristic equation 

is: 

be : 

A = 

0 

1 

0 

0 

0 

1 

-0 . 32 

-0 . 64 (4 - 3) 

-0 . 5  

The initial state vector for the model was arbitrarily defined to 

L O  '.1 . 0 f , ( 4 -:4 )  

An output matrix was selected to produce. a �calar output: 

C - I 1 . 0  1. 0 i . o  I ·� (4- 5 )  

The measurements obtalned from the model were derived by contami

nating the true output of the model with a zero mean, gaussian noise 

sequence. The covariance of the measurement noise sequence was selected 

as one unit . 



63 

S imulat ion· Procedure 

Thi s  sect ion will descr ibe the detai ls of the test procedure used 

to evaluate the performance of the adaptive Kalman f ilters . Their rela

t ive performance wi l l  be assessed by determining which algor ithm can 

estimate the state of the model with the least cumulat ive mean square 

error . In the following discussion , 0 j , w i l l  represent the j th param� 

eter to be ident if ied by the adapt ive Kalman f i lter . 

Each adapt ive Kalman f i lter wi l l  be required to ident ify the 

dynamics . of the test model . The characteri s t ic equat ion o f  the test · 

model used to generate the no isy measurements .was g iven in equation 

( 4 - 2 ) . Assume. that the exact locat ion of the poles is unknown . The 

· imag inary poles are located at z = ±j e 1 , the real pole is located at 

The character istic equat ion corresponding to these unknown 

parameters · is : 

( 4 - 6 )  

A state · transition matrix .correspond ing t o  equa;ion . C .4 - 6 ) is : 

0 1 2 -81 9 2  

A( 0 }  = 1 0 ;.. 9 2 
1 (4 - 7 )  

0 0 - e  
2 

The · adaptive Kalman f i lters _were a lso required to ident ify the 

covariance o� the. process no ise used to exc i te each . of the state 



64 

equati.ons. The process nois_e covariance matrix, in terms of unknown 

parameters is: 

Q( e )  = 

0 

''4 

0 

0 

0 

as 

(4- 8 )  

This is a diagonal matrix because the noise sequences are assumed to be 

independent. 

The output matrix was selected as a known quantity identical to 

equation . (4-5 ). This is a realistic assumption �ince the output matrix 

in the transfer alignment problem is known. It is derived from the 

sensed angular velocities from the master and slave IMUs. 

The measurement noise covariance matrix was selected as : 

R = 1 . 0  ( 4- 9 )  

Thi'; describes the actual measurement noise used to corrupt the output 

of the model. Knowledge of · the CQvariance oi: the measurement, noise is 

also a realistic assumption since it is known in the transfer alignment 

problem. The measurement . noise covariance is based on the accuracy of 

angular velocity information available . from .the master and slave IMUs. 

The adaptive Kalman filters were required to identify two param

eters . from the state transition . matrix � . �rid' three· parameters from the 

process noise covariance matrix. For convenience , these parameters will 

_be arranged in _ a vector . The true value of these parameters was : 
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8 1  0. 8 

82 0. 5 

6 3 
= 1. 0 ( 4- 10 ) 

84 1 . 0  

e ·  5 1 . 0 

To perform a fair comparison, the adaptive Kalman filters were 

initialized identically . The initial conditions were selected as fol -

lows . 

1. Initial parameter vector estimate : 

e 1 0 . 2  

92  0 . 2  

8 3  = 1. 0 

8 
4 .  1 . 0  

e s  1 . 0 

2 .  Initial state vector estimate� 

1 . 0 

3. Initial error covariance matrix :  

1 0 . 0 . 

0 

0 

0 

10 . 0  

0 

. 

1. 0 

0 

0 

10 . 0  

(4-11 ) 

( 4- 12 )  

( 4- 13) 
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4 .  Initial Hess ian matrix : 

1 . 0  0 0 0 0 

0 1. 0 0 0 0 

Ra 
= 0 0 1 . 0  0 0 ( 4 - 14 )  

0 0 d 1 . 0  0 

0 0 0 0 1 . 0  

Note : · The Hess i_an matrix i s  required only by the adaptive Kalman 

filter using the stochastic Newton algorithm to ident ify the 

parameters. 

With this information ,  the · test procedure t;.o evaluate the relative 

performance of the adaptive Kalman f ilters may be presented . The model 

used to generate the noisy measurements and the adaptive Kalman f ilters 

were initialized as just described. The model was iterated to produce 

1 , 000 noisy measurements . At every time interval the adaptive Kalman 

filters produced a ·new · estimate of the unknown parameters and the state 

of the model from the . noisy measurement. The cumulative mean square 

state estimation error was also compu�ed at every time interval . This  

error was used to assess the relative perfo�ance of the adaptive Kalman 

filters. 

The relative performance of the adaptive Kalman filters did not 

completely sat isfy questions concerning their potential . for use in the 

transf�r alignment problem .  An indication of the· absolute performance 

of the adaptive Kalman· : f ilters· was . determined by· making a· comparison ·to 

a standard Kalman 'filter where the dynamics of the model and noise 
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statistics were· known exactly . . This standard Kalman f ilter did not have 

the additional burden of identifying these quantities . Therefore , it 

should have set a lower bound on the cumulative mean square error in 

estimating the state. If the performance of an adaptive Kalman f ilter 

could not at least approach this lower bound , then it might b� concluded 

that a better solution to the transfer al ignment problem is needed. 

It was also instructive to monitor the performance of a standard 

Kalman fi lter that used the initial estimates of the model dynamics and 

the noise statistics . This Kalman · filter was incapable of adjusting · 

these parameters to improve its performance . Therefore , it should have 

. set , an upper bound on the cumulat ive mean square. error in estimating the 

state of the test model. 

To summarize , both standard Kalman filters used a state · trans ition 

and a process noise covariance matrix as given in . equations ( 4- 7 ) and 

( 4-8 ) . The standard Kalman filter with the exact model used the true 

parameter� in . these · nia:trices given in equation (4- 10 ) . . The ·standard 

Kalman filter 'with th� inexact ' model used the initial estimates of these 

parameters given in · equation ( 4- 1 .1 )  � . All ' remaining conditions were 

identical to tho.Se for the adapt ive Kalman f i lters . ' 

Prel iminary Simulation Results 

The performance . of the Kalman filters . is graphically . i.llustrate<
f 

on 

the first . set o·f plots 1�cated in Appendix A . · The p
°
lots will be divided 

into the following three ·categor ies for convenience . 
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1. Cumulative mean square error. The first three plots illustrate 

the cumulative mean square error in estimating the states of 

the model. There is one plot for each state of the model. The 

performance of all five Kalman filters is recorded on each 

plot. 

2. Estimated process noise covariance matrix. The following three 

plots illustrate the estimates of the three parameters from the 

process noise covariance matrix. There is one plot for each of 

the adaptive Kalman filters. 

3. Estimated state transition matrix. The last three plots illus

trate the estimates of the two parameters from the state tran

sition matrix. Again, there is one plot for each of the three 

adaptive Kalman filters. 

The plots of cumulative mean square error give the best indication 

of the overall performance of the Kalman filters. The most significant 

finding is that the adaptive Kalman filter using the stochastic Newton 

approach to identify the parameters provided a high degree of accuracy 

in. estimating the states of the system. The performance of this algo

rithm was almost as good as the standard Kalman filter using the exact 

model of the system dynamics and noise statistics. For this reason, 

this algorithm was recommended for the transfer alignment problem. 

The adaptive Kalman filters relying on either variation of the 

stochastic gradient algorithm to identify the parameters did not perform 

well. However, the modified stochastic gradient algorithm did show an 

improvement over the original version. In some cases the Kalman filter 

using the inexact model of the system dynamics performed better than 
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these two versions of the adaptive Kalman filter. These algorithms are 

not considered to be reliable enough to be used in the transfer align

ment problem. Some insight about the performance of the adaptive Kalman 

filters can be gained by examining the parameter estimates generated by 

these algorithms. The parameter estimates may not necessarily converge 

to their true values. This can happen when there is a local minimum 

associated with the cost function around which the algorithm was devel

oped ( 9 ,  pp. 195-96]. The parameter estimation process can then stag

nate at estimates satisfying that local minimum. 

It is difficult to make conclusions based on the plots of the 

estimated parameters from the process noise covariance matrix. A prob

lem with the adaptive Kalman filter using the stochastic gradient algo

rithm is that it severely underestimates the process noise covariance 

associated with the first state of the system. This appears to be 

improved by the adaptive Kalman filter using the modified stochastic 

gradient algorithm. The estimates of these parameters generally deviate 

from their true values. This is difficult to explain , except that the 

convergence properties of these estimates might be governed by a local 

minimum of the appropriate cost function. 

The plots of the parameters associated with the state transition 

matrix are more revealing. The parameter estimates generated by the 

adaptive Kalman filter using the stochastic gradient algorithm showed a 

great deal of erratic behavior. This algorithm has very poor conver

gence properties. The parameter estimates of the modified version of 

this algorithm are less erratic, but more biased. The parameter 
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estimates produced by the adapt ive Ka lman f i lter us ing the s tochast i c  

Newton algorithm, by contrast , are very good . These est imates converge 

roughly to their true values and display almost no erratic behavior . 

The results of this s imulat ion clearly indi cate that the adapt ive 

Kalman f i lter based on the stochastic Newton algorithm performs very 

well . This algorithm is recommended for use in · the transfer alignment 

problem .  The other algorithms perform poorly b y  comparison . 

. S imulat ion Procedure Based on Using a Modif ied 
Process Noise Covariance Matrix 

The · mot ivat ion for the second s imulat ion concerns divergence 

problems in Kalman f i l ters [ 4 , p .  27 9 ] . In pract ice , models of dynamic 

systems are never known exactly . Model ing error can be introduced by 

many sources . Computer round-off error i s  one example . Model ing error 

causes the performance of : a Kalman f i lter to be degraded from what would 

theoreti cally be .expected . This is c�l led · "apparen� divergence . "  A 

Kalman f i lter that disp l�ys an apparent di.vergenc� problem is said to be 

suboptimal . 

divergence . "  

' ' 

Another type . of divergence problem . is referred to as "true 
1 • • • , "  > I • • 

, • 

A .Ka.lman. f ilter . af fected . by a tr�e divergence problem :wi ll 

produ�e state estimates that have a · mean squa�e error . that grows indef i 

nitely . This Kalman f i lter . is s�id to be unstable . 

There are several splutions to reduce the severity of divergence 

problems in Kalman f i lters . An attract ive technique is to add f icti 

t ious process " noise to the . Kalman . fitter ' [ 4:, ' · p .  279] . · This forces the 
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Kalman gain · to converge in such a manner that · the filter places more 

emphasis 011 recently acquired measurements , than it would otherwise . 

The second set of simulations was done to investigate the effects 

of adding artificial process noise to the standard and adaptive Kalman 

filters . The initial conditions and assumptions used in this simulation 

were identical to those used in the first simulation, except as _ dis

cussed below . 

In the case of the standard Kalman filters , the process noise 

covariance �atrix was selected as : 

Q = 

10 . 0  

0 

0 

0 

10. 0 

0 

0 

0 

10 . 0  

( 4- 15) 

The difference between the Kalman filters with the exact and inexact 

model was , as in the last simuiation , only in the state 'transition 

matrix . 

Each · '  'adaptive . Kalman filter was again required to estimate the 

covariance of the process · ·  noise used , to excite each state equation . The 

form of the resulting . process rio'
i

se cov�·r'iaric�· matrix was giveri in equa

tion ( 4-8 ) .  The true value of . these parameters was unity . . If the adap

tive Ka'l.man · filters . es.tim�ted thes·e ·pa�ameters correctly � then all five 

Kalman filters should have used a numerically equivalent process noise 

covariance matrix . To accomplish this , ' .  each of the estimated process 

. noise · covariance matrix parame��rs were increased by a value of 9 .  0 . 

Assuming the adaptive Kalman fi lters correctly estimated the parameters 
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from the process noise covariance matrix ,  the actual process noise 

covariance matrix used would be identical to equation ( 4-15 ) . This 

allowed a fair comparison of the performance of ' all the Kalman filters · 

using a modified process nois.e covariance matrix to be made . 

The remaining conditions and the test procedure were identical to 

those discussed for the first simulation . The results of this simula

tion will be discussed in the following section. 

Simulation Results Based on Using a Modified 
Process Noise Covariance Matrix 

The performance of the Kalman filters in this s imulation . is graphi

cally illustrated on a second set of plots in Appendix B .  The plots are 

categoriz·ed in an identical manner as those from the first simulation . 

The overall performance of the adaptive Kalman filters is best 

illustrated by the plots of . cumulative mean square · error . Again, . the 

adaptive Kalman filter using the stochastic Newton parameter identific-
. . 

;; 

ation algorithm provided superior results . 
. , . ' . The performance of this 

. ' . ' 

version of the adaptive .. Kalman filter , and the standard Kalman filter 

with the exact model ,  were essentially unaffected by using the modified 

process noise covariance matrix . 

. The ·. performance .of the adapt�ve kalman filters based on either 

variation of the stochas tic gradient algori thm was generally improved by 

using the modified process noise covariance matrix . However , th.ey still 
' ' 

were inadequate when "Compared · . to th� adaptive �aiman filter based on the 

stochastic Newton algorithm . The adaptive . Kalman filter us ing the 
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modif ied stochastic gradient algorithm showed a more dramat ic improve

ment than the orig inal vers ion. 

The use of the modif ied process no ise covariance matr ix had the · 

most s ignificant effect on the accuracy of the parameters describing the 

covar iance of the . process no ise used to exc ite the model � Thi s  was true 

for all vers ions of the . adapt iv� Kalman f ilter . The coefficients in 

these matrices remained closer to their true initial est imates than in 

the previous s imulation . 

The use of the modif ied process noise covar iance matrix also 

improved the qual ity of the est imated parameters in the state trans ition 

matrix . Again , thi s  was noted for all three adapt ive Kalman f i lters . 

. The parameter est imates of the state trans ition matr ix produced by the 

stochastic gradient algorithm were as errat ic as in the f irst s imula

tion . The modi f ied stochastic . gradient algor ithm did not display this 

errati c  behavior . The stochastic Newton algorithm produced very accu

rate estimates of the.se · p'arameters . 

Several observations . were made about the effect of adding art i f i 

c ial process noise t o  the . adaptive Kalman. f i lter algor ithms . . The accu-

racy of the parameter est imates impro,;ed noticeably • . 
. . 

As a · result ; the 

qual ity of the · sta'te est imates for th� adap.t ive Kalm�n f i lters based on. 

either the original or modi f ied · sto�hastic gradient al�or.ithm were · typ i -

cally improved • . 
. . 

However , there· was essentially no improvement in the 

state estimates of ' the · adapt ive Kalman f i lter based on the stochastic 

Newton algorithm . 
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It is interesting to conside� under what conditions the �ccuracy of 

the parameter estimates improve, without an improvement in the accuracy 

of the state estimates. Increasing the process noise covariance matrix 

generally improves the quality of the parameter estimates . It also 

causes the state estimates to be influenced· more by recent measurements. 

This is desirable if unmodeled sys tem dynamics are expected . This would 

also be · desirable if the adaptive Kalman filter is slow . or erratic in 

identifying the parameters . If the unmodeled dynamics are not signifi

cant, or the adaptive Kalman filter is  efficient in identifying the 

parameters, there will be a trade-off in adding artificial process 

noise. On one hand , the parameter estimates . t�md to be improved . On 

the other , the filter becomes more sensitive to the adverse effects of 

measurement noise ." These combined effects influence the quality of the 

state estimates. This explains why the state estimates of the adaptive 

Kalman filters based on either variation of the stochastic gradient 

algorithm benefited from adding artif ici�l pro�ess noise, while the 

adaptive ·Kalman filter based on the stochastic Newton . algorithm did not. 

Simulation Software 

The software for the simulations· used in this study was written in 

Forth . Forth is an unusual computer language, when compared ·with more 

traditional languages such as Fortran. Forth has generally been: favored 

by hardware vendors and process control · e�perts [ 16 ,  p . · 303 ) . . Forth is 

widely us.ea·· in · many industrial appli�ations ,/ [ 1, p. 3).  One example is 

in the · field of robotics . 
. . . 

Using Forth ·for a computer s imulation tends 
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to break with well  established traditions . Generally , such simulations 

are written in more customary languages such as Fortran . The intent of 

this section is to supply a j ustification for using Forth for the simu-

lation. 

Forth is a threaded interpretive language [ 1 6 , . p. 303 J. A Forth 

system consists of a nucleus of _ basic definitions. As an example, some 

of _ these definitions · cause aritlunetic operations to take place between · 

two numbers on a stack. The user can define a new set of definitions in 

terms of the basic definitions from the nucleus. The programmer now has 

an enlarged set of definitions available for use. This process can be 

repeated as often as necessary to develop a big� level language custom

ized for a particular application. This characteristic of allowing the 

programmer to add new features to the existing language is called exten

sibility [ 1 ,  p. 28 ] .  Forth is sometimes called a meta-application lan

guage because it can be used to create other problem oriented languages 

[ l , p .  4 ] . 

· Forth has n6t gairied wide acc��iance outsid� the few applications 

pr�viousli discussed. · Part of the �eason is that Forih has been im�le

mented. as a fixed point system. This is obviously satisfactory for the 

limite_d applications !
°
or which it was intended. Fixed point systems 

generally . provide a speed advantage over floating point systems. Re-
. . . 

cently t . several vendors . have developed . floating point packages for 

Forth. Thes� floating poi nt options are either written . in . software . or 

written so . as bi acconunodate a floating point math coprocessor. The 
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hardware floating point system offers a substantial . speed advantage over 

the soft�are floating point vers ion. 

The dec is ion to use Forth to develop the software for the s imula

tion in this study was bas_ed on two factors . First was the availabi lity 

of hardware floating point support for Forth . Second , the extensible 

nature . of Forth allowed a customized language ,  convenient for wr iting a 

s imulation program, to be developed . The simulation prograin is provided 

in Appendix C .  

A high level set of definitions was created through which the simu

lation program was conveniently written . These definit:i.ons include a 

complete set of basic matrix operations . · Scree�s 7 6  through 96 in the 

program contain names of definitions which can operate on sets of data . 

in a matrix or vector form . They were written so that they could be 

easily used . For example , assume two matrices have already been 

defined. It is des ired· to multiply these two matrices and place the 

result in a third matrix . This is  accomplished by listing , in order , 

the name ' of the first �atrix , the second matrix , the destination matrix , 

and then the · definition · for matrix multiplication .  · The progranuner · does 

not need to wor'ry about ' the dimens ions of the matrices ' as long as they ' 

�onform : ' The dest ination matrix · �i ll be ·properly · dim�nsioned ba'sed oil 

the · two ·source ·matrices . · The other .. matr'ix· operatf�ns · are . just as easy 

to use . Being . able to create a convenient high level set of definitions 

simplified 'the overall programming effort . 

The remainder of the program is devoted to implement'ing the Kalman 

filter algorithms : . The equations illus trated on the flowcharts in 
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Chapter 3 were written using the high level set of matrix definitions. 

With Forth , the complexity of developing the programs for these algo

rithms was considerably simpler than what it might have been with other 

high level languages. Writing definitions to implement long equations 

became no more complicated than to simply write the equations down. It 

was for this reason that Forth was selected as the language in which to 

write the simulation program. Forth should be given more attention for 

applications requiring floating point arithmetic , such as simulations. 

The overall convenience of Forth was very impressive. 
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CHAPTER 5 

CONCLUSION 

This study has discussed the alignment of inertially guided weapons 

attached to the wings of an aircraft with a flexible body. The slave 

IMU of the weapon must be aligned with the master IMU of the aircraft, 

prior to launching the weapon. One approach to estimating the alignment 

error between the slave and master IMU starts with developing an accu

rate model for the flexure dynamics of the aircraft. The angles of 

alignment error can then be estimated using a standard Kalman. Unfortu

nately, developing such a model is a complicated task. These complica

tions arise from the large number of time varying factors which can 

affect the flexure dynamics of the aircraft. For example, the changing 

payload conditions within the- aircraft, and the varying turbulence 

conditions in the aircrafts environment, are just two factors that would 

have to be considered. 

This study has proposed an alternative solution to the transfer 

alignment problem. This solution starts with using a more general model 

for the flexure dynamics of the aircraft. An adaptive Kalman filter can 

then be used to concurrently identify the dynamics of this model and the 

angles of alignment error. This appears to be a practical solution to 

the transfer alignment problem. Three adaptive Kalman filters were 

presented as candidates for use in this problem. They were simulated to 

determine their relative performance. The simulation was based on a 

relatively simple dynamic system. The adaptive Kalman filters were 
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required to identify the dynamics of the model and the statistics of the 

noise used to excite the model. The first adaptive Kalman filter used 

a stochastic gradient algorithm to identify the unknown parameters. The 

performance of this adaptive Kalman filter was very poor. It was modi

fied in an attempt to improve its performance. The modified algorithm 

did show an improvement, but its performance was still inadequate. The 

third adaptive Kalman filter used a stochastic Newton parameter identi

fication algorithm . This version of the adaptive Kalman filter per

formed very well in the simulation. In fact, it performed almost as 

well as a standard Kalman filter with an exact model of the system 

dynamics and the noise statistics. 

The results of this study indicate that the adaptive Kalman filter 

based on the stochastic Newton parameter identification algorithm should 

receive serious consideration for the transfer alignment problem. The 

use of this algorithm, together with a model such as the one presented 

in this study, provide a relatively simple and effective approach to 

computing the transfer alignment for weapons attached to the wings of an 

aircraft with a flexible body. 
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PLOTS OF PRELIMINARY SIMULATION RESULTS 
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Filter Based on the Modified Stochastic Gradient Algorithm ; Preliminary Simulation Results. 
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APPENDIX B 

PLOTS OF SIMULATION RESULTS BASED ON USING A 

MODIFIED PROCESS NOISE COVARIANCE MATRIX 
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APPENDIX C 

FORTH SIMULATION PROGRAM 



Screen # 76 < ii*iiiiiiiiiiiiiii KATRI X OPERATI ONS iiiiiiittiiiitiiii ) -- > 

( A: 1 st oper and , B :  2nd oper and , R :  dest i nat i on 

( i n vers ion o f  a mat r i x :  A ,  I NVERT 
( mul t i p l i cat i on o f  mat r i ces :  A ,  B ,  R ,  HPY 
( addi t i on /sub t rac t i on of 1at r i ces: A, B ,  R ,  ADD/SUB 
( t r anspose a mat r i x  A ,  R ,  TRSP 
( mu l t i p l y  a 1at r i x  by a const : const , A ,  CHPY 
C move a matr i x :  A ,  R ,  MOVE 
( c r eate an ID 1at r i x :  A ,  I D  
( c l ear a mat r i x :  A ,  NULL 
( di mension a mat r i x :  rows , co l s ,  A ,  D I H  
( d i sp l ay d i 1ensi on o f  a 1at r i x :  A ,  D IH? 
( return mat r i x t race  on the stac k :  A ,  TRACE 
( t r ans fer a vector to a mat r i x :  A ,  R ,  col VHAT 

Screen # 78 
, ( set p r i n t  o f fset by assign ing t he f i r st c ol umn t o  SKIP • • • •  

VARI ABLE SKIP O SKIP  ! 

( D I H  & D I N? are  used for d i mensi on ing o f  ar rays • • • • • • • • • • • •  
: D I H  DUP ROT SWAP 4 +  ! ! ; 

) 

) 

) 

) 

) 

) 

) 

) 

) 

) 

) 

) 

: D I H? DUP CR . •  rows : • @ .  10 SPACES . •  co lms :  • 4+ @ .  ; 
--> 

<
S
fihitlilitftiftit MATR I X  OPERAT I ONS iiiiiiiiiiiiii*iii > --> 

( squar e el emen ts  of a matr i x :  A ,  
( di sp l ay c ont ent s of a 1at r i x :  A ,  
( c or r e l a te  vec tor s :  A ,  B ,  R ,  
( desi gnate  mat r i x  to  be l oaded : A ,  
( l oad a nu1b er i n t o  mat r i x :  number , r ow ,  co l  
( r eturn addr ess of 1at r i x  l ocat i on :  row ,  co l , A 
( above for i ndi rect l y  na1ed mat r i x :  row, co l , A 

SQM 
READ > 
CORRELATE > 
LD > 
L > 
DSEEK > 
SEEK > 

( 1i scel l aneous oper at i ons • I I  1 1  . . . . . . . . . . . . . . . . . .  I I  • • • • • • • • •  

< f i l l  NO I SE 1  and NO ISE2 w i t h  gaussi an noise :  RANDOH > 
< d i sp l ay st at i st i c s  of noi se: N 0 I SE 1 /NO ISE2 STAT > 
( set noi se poi n ters t o  top o f  noise vec tor s :  INPO INT ) 
( f i l l  WK and VK wi t h  new noi se fro1 noise vec tors :  NWNSE ) 

Screen # 79 
( var i ab l es used in mat r i x  oper a t i ons • • • • • • • • • • • • • • • • • • • • • • •  

( iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii*iiiiiiiiiiiiiiiiiiiiiiii ) 
FVARI ABLE SCRATCH 200 ALLOT 
C NOTE : al ways a l l ot SCRATCH for the l ar g est mat r i x  whi c h · > 
( wi l l  be i nver t ed ) 
( *********************************************************** ) 

VAR IABLE ORDER 
VAR IABLE TEMP 
VAR IABLE NATX 

VAR I ABLE STRT 
VAR IABLE ARRAY 
VAR IABLE HATY 

FVAR I ABLE HULT 
VAR IABLE Q 
VAR IABLE MATR 

--> 

.... 
0 � 



Screen # BO 
( 1atri x i nversi on usi ng par t ial p ivot i ng • • • • • • • • • • • • • • • • • • •  
: SRCH 1 - SWAP 1- ORDER @ * + 8 t 8 + ;  
( shadow creates an ident i ty mat r i x  i n  which the inverse for1s) 
: SHADOW SCRATCH 8 + ORDER @ DUP ; 8 t ERASE ORDER @ 1+ 1 

DO 1 . 0  E O I DUP SRCH SCRATCH + F !  LOOP ; 

( p i vot searches for the  larg est pivot element • • • • • • • • • • • • • •  
: P I VOT ORDER @ I =  

I F  I TENP ! 
ELSE 0 . 0 E O ORDER @ 1+ Q @  
DO I Q @ SRCH ARRAY @ + F@ FABS FOVER FOVER F< = 
IF FSWAP FDROP I TEHP ! 
ELSE FDROP 

THEN 
LOOP 

THEN FDROP ; 

Screen # 82 

--> 

( nor1ali ze  the row such that p ivot becomes uni t y  • • • • • • • • • • •  ) 
: NORHAL Q @  DUP SRCH ARRAY @ + F@ ORDER @ 1+ Q @  

DO fDUP Q @  I SRCH ARRAY @ +  DUP TEHP ! 
F@ FSWAP F/ TEMP @ F !  

LOOP ORDER @ 1 +  1 
DO FDUP Q @  I SRCH SCRATCH + DUP TEMP ! 

f@ FSWAP F/ TEHP @ F !  
LOOP FDROP ; 

( transfer inverted 1atri x froi scratch l ocat i on t o  matri x R 
: TRANS ORDER @ 1+ 1 

DO ORDER @ 1+ 1 
DO I J SRCH SCRATCH + F@ 

I J SRCH ARRAY @ +  F !  
LOOP 

LOOP ; --) 

Screen # 81  
( exchange the row con tai n i ng the p i vot w i t h  current row • • • •  
: EXCHG TEMP @ Q @  = 

I F  
ELSE ORDER @ 1 +  1 
DO TEMP @ I SRCH ARRAY @ + F@ 

Q @ I SRCH ARRAY @ + F@ 
TEMP @ I SRCH ARRAY @ + F !  
Q @ I SRCH ARRAY @ +  F !  
TENP @ I SRCH SCRATCH + F@ 
Q @ I SRCH SCRATCH + F@ 
TENP @ I SRCH SCRATCH + F !  
Q @ I SRCH SCRATCH + F !  

LOOP 
THEN ; 

Screen # 83 

--> 

: GAUSS ORDER @ 1+ 1 ( • • • • • • • •  invert 1atri x . . . . . . . . .  ) 

DO I Q !  P IVOT EXCHG NORHAL ORDER @ 1 +  1 
DO J I =  
I F  ELSE 
I J SRCH ARRAY @ +  F@ MULT F !  
ORDER @ 1 +  STRT @ 1 +  
DO J I  SRCH ARRAY @ + F@ 

Q @  I SRCH ARRAY @ + F@ MULT F@ F* 
F- J I  SRCH ARRAY @ + F !  

LOOP ORDER @ 1 +  1 
DO J I  SRCH SCRATCH + F@ 

F
LOOP 

THEN 

Q @  I SRCH SCRATCH + F@ NULT F@ Ft 
J I  SRCH SCRATCH + F !  

LOOP STRT @ 1 +  STRT � LOOP TRANS ; --> 

1,,-,0 
0 
VI 



Screen # 84 
: INVERT DUP ARRAY ! DUP DUP @ SWAP 4+ @ = NOT 

ABORT' 1ust be a square mat r i x • 
@ ORDER ! SHADOW O STRT ! GAUSS ; 

. ( -------------- end of matr i x  i nversion -------------------- ) 

( return addr ess o f  el ement from an ind i r ect l y  n amed mat r i x . ) 
: DSEEK DUP 4+ @ 3 ROLL 1- i ROT 1- + 8 * 8 + + ;  
( r �turn address o f  el ement f ro1 a d i r ec t l y  named mat r i x • • •  , ) 
: SEEK @ DSEEK ; 
( r eturn t h e  t r ac e  of a 1at r i x • • • • •  , . . . . . . . .  , , • • • , • • . .  , ,  • • • • >. 
: TRACE DUP HATR ! DUP @ SWAP 4+ @ = 

I f  0. 0 E O NATR @ @  1 +  1 
DO I I HATR SEEK F@ F+ 
LOOP 

ELSE ABORT· must be a square mat r i x • 
THEN ; 

Screen # 86 
--)  

( mat r i x  a dd i t i on and subtr ac t i on • . • • • • • • • • • • • • • • • • • • • • • • • • •  ) 
: A+/- MATR ! OVER OVER MATY ! MATX ! OVER OVER @ SWAP @ =  

ROT ROT 4+ @ SWAP 4 + @ = AND 
IF HATX @ DUP @ SWAP 4+ @ HATR @ DUP 4+ ROT SWAP 

! ! NATR @ @  1+ 1 
DO HATR @ 4+ @ 1 +  1 
DO J I  HATX SEEK F@ 

J I  MATY SEEK F@ Q @  IF  F+ ELSE F
THEN J I  NATR SEEK f !  

LOOP 
LOOP 

ELSE ABORT' mat r i x d i mensi ons do not c on form 0 

. THEN ; 
: ADD . · 1 Q ! A+/- ; 
: SUB O Q ! A+/- ; 

--> 

Screen # BS 
( mat r i x 1ul t i p l i c at i on • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •  
: HPY MATR ! OVER OVER NATY ! MATX ! @ SWAP 4+ @ = 

IF HATX @ @  HATR @ ! MATY @ 4+ @ HATR @ 4+ ! 
HATR @ @  1 +  1 
DO I Q !  MATR @ 4+ @ 1 +  1 
DO 0 . 0  E O HATY @ @ 1+ 1 
DO Q @  I HATX SEEK f@ 

I J NATY SEEK F@ Ft F+ 
LOOP J I  HATR SEEK F !  

Looe 
LOOP 

ELSE ABORT 0 mat r i x d i men si ons do not confor m  0 

THEN ; 

Screen # 87 

--> 

( t ranspose a mat r i x  • . • • • • • • • • • • • • • • • • • • . • • • • • • • . • . • • • • • • • • •  ) 
: TRSP OVER OVER HATR ! HATX ! SWAP DUP 4+ @ SWAP @ ROT DUP 

ROT SWAP 4+ ! ! MATX @ @  1 +  1 
DO HATX @ 4+ @ 1 +  1 
DO J I  HATX SEEK F@ I J NATR SEEK F !  
LOOP 

LOOP ; 
( c l ear i ng a mat r i x  • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •  
: NULL DUP DUP @ SWAP 4+ @ * 8 * SWAP 8 + SWAP ERASE ; 
( set t i ng a mat r i x to the i dent i t y  m at r i x • • • • • • • • • • • • • • • • • • •  
: I D  DUP DUP @ SWAP 4+ @ = 

IF DUP TEHP ! DUP NULL @ 1 +  1 
DO 1 . 0  E O I DUP TEMP SEEK F !  
LOOP 

ELSE ABORT· i dent i ty 1at r i x  must be squar e n DROP 
THEN ; . -.-> 

� 0 



Screen # 88 
( multi ply a matri x  by a constant • • • • • • • • • • • • • • • • • • • • • • • • • • •  > ·  
: CHPY DUP HATR ! @ 1+ 1 

DO NATR @ 4+ @ 1 +  1 
DO FDUP J I  MATR SEEK F@ Fi J I  HATR SEEK F !  
LOOP 

LOOP FDROP ; 

C movi ng a 1at r i x from one locati on to another • • • • • • • • • • • • • •  
: MOVE OVER OVER MATR ! HATX ! SWAP DUP @ SWAP 4+ @ 

ROT DUP 4+ ROT SWAP ! ! NATR @ @  1 +  1 
DO MATR @ 4+ @ 1 +  1 
DO J I  HATX SEEK F@ J I  HATR SEEK F !  
LOOP 

LOOP ; 

Screen # 90 
( correlate two vectors • • • • •  � • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •  
FVAR IABLE XAVG FVARIABLE YAVG VAR IABLE YPNT 
: HEAN Q ! 0 . 0  E O Q @ @  1 +  1 DO I 1 Q SEEK F@ F+ 

LOOP Q @ @  S>F F/ ; 
: CORRELATE MATR ! OVER OVER MATV ! HATX ! 

HEAN YAVG F !  MEAN XAVG F !  HATY @ @  HATR @ @  < =  
I F  MATY @ @  DUP NATR @ ! 1 HATR @ 4+ ! 1 +  1 
D O  I YPNT ! 0 . 0  E O MATX @ @ 1 +  1 

--> 

DO I 1 MATX SEEK F@ XAVS F@ F- YPNT @ NATY @ @ > 
f f  1 YPNT ! 
THEN YPNT @ 1 HATY SEEK F@ YAVG F@ F- F* F +  
YPNT @ 1 +  YPNT ! 

LOOP MATX @ @  S}F F/ I 1 NATR SEEK F !  
LOOP 

ELSE . •  insu f f i c i ent spac e al loted in result vector • 
THEN ; --> 

Screen # 89 
( d i splay the contents of a 1at r i x • • • • • • • • • • . • • • . • • • • . • • • • • .  
: SP SKIP @ SPACES ; 
: READ DUP HATR ! @ 1 +  1 

DO CR SP MATR @ 4+ @ 1 +  1 
DO I 4 NOD O = 
. Ir CR SP 
THEN J • • • - ·  I • • I = ·  
J I  HATR SEEK F@ 8 F . R  • • 

LOOP 
LOOP ; 

( prepare a mat r i x for load i ng • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •  ) 
: L TENP SEEK F !  ; 
: LD TEMP ! ; 

Scree» # 91 

--} 

( square eac h element of a mat r i x • • • • • • • • • • • • • • • • • • • • • • • • • • • 
: SQM DUP NATR ! @ 1 +  1 

DO MATR @ 4+ @ 1 +  1 
DO J I  NATR SEEK F@ FDUP F* J I  NATR SEEK F !  
LOOP 

LOOP ; 

C l oad vectors i nto a matr i x  by column • • • • • • • • • • • • • • • • • • • • • •  ) 
: VNAT Q ! NATR ! HATX ! 

HATX @ @  DUP MATR @ @  = Q @  MATR @ 4+ @ <= * O= 
IF ABORT 0 i aproper d esti nati on d i mension• 
ELSE 1 +  1 D O  I 1 MATX SEEK F@ 

I Q @  NATR SEEK F !  
LOOP 

THEN ; 
.. _> 

..... 
0 
-...J 



Screen # 92 
( random noise generat or • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •  ) 
( *********************************************************** ) 
( na1e allotment rows col. na1e ) 
( --------------------------------------� ------------------- ) 
FVARIABLE NO I SE !  24000 ALLOT 3000 · 1  NO I SE !  DIH 
FVAR IABLE NO ISE2 24000 ALLOT 3000 1 NO ISE2 D IH 
FVARI ABLE W 24 ALLOT 3 1 W D I M  
FVAR IABLE V 8 ALLOT 1 1 V D IH 
( *********************************************************** ) 

VARI ABLE SEED 
VAR I ABLE NSE1 
VARI ABLE NSE2 
VARI ABLE WPOI NT 

Screen # 9 4  

FVARI ABLE SUM I 
FVAR IABLE SUM2 
VARI ABLE RANGE 
VARI ABLE VPO INT 

FVAR IABLE VA 
FVARI ABLE VB 
FVAR IABLE FQ 

--) 

( random · noise generator • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •  
: RDN BEG I N  RND 2 . 0  E O Fi 1 . 0  E O F- FDUP VA F !  FDUP Fi 

RND 2 . 0 E O Fi 1 . 0  E O F- FDUP VB F !  FDUP F* 
F+ FDUP FQ F! 1 . 0  E O F<= 

UNTIL -2 . 0  E O FQ F@ F/ FQ F@ FLN Fi FSQRT ; 

: RANDOM 1 350756 162 SEED ! 0 . 0 E O FDUP SUM I  F !  SUM2 F !  
NO I SE !  DUP NSE1 ! NOISE2 NSE2 ! @ 1 +  1 
DO RDH FDUP 
VA F@ Fl FDUP I 1 NSE1 SEEK F !  SUH! F@ F+ SUM I F !  
V B  F @  F i  FDUP I 1 NSE2 SEEK F !  SUH2 F @  F +  SUH2 F !  

LOOP ( SUH! F@ NOISE ! @ S>F F/ SUM I F !  
( SUH2 F@ NOISE ! @ S}f f/ SUN2 F !  NO I SE ! @ 1 +  1 ) 

( DO I  1 NSE1 SEEK F@ SUH! F@ F- I 1 NSE l  SEEK F !  ) 
( I 1 NSE2 SEEK r@ SUM2 F@ r- I 1 NSE2 SEEK F !  ) 
( LOOP ) ; --> 

Screen # 93 
( find t he stat ist ics of noise in t he noise vectors • • • • • • • • •  
: STAT NSEl ! 0 . 0 E O NSE 1 @ @  1+ 1 

DO I 1 NSE1 SEEK F@ F+ 
LOOP NSE l @ @  S>F F/ FDUP FQ F !  

C R  S P  . 1 sample mean : • 
8 F . R  0 . 0 E O NSE 1 @ @  1 +  1 

DO I 1 NSE l SEEK F@ FQ F@ F- FDUP Fi F+ 
LOOP NSE l @ @  S>F F/ FSQRT 

CR SP . 8 st d .  dev . : 
8 F . R ; 

( random noise generator • • • • • • . • • • • • • • • • • • • • • • • • • • • • • • • • • • • •  
1 3507561 62 SEED ! 1000000000 RANGE ! ( rang e  o f  random no' s ) 
: RD SEED @ 259 i 3 + 32767 AND DUP SEED ! ; 
: RND RANGE @ RD 32767 ii S)F RANGE @ S>f F/ ; 

Screen # 95 
--> 

( l oad vec tors  W and V w i t h  new-noise ele1ent s  • • • • • • • • • • • • • •  

: I NPOINT 1 WPOI NT ! 1 VPO I NT ! ; 

: NO I SE W @  1 +  1 
DO WPO I NT @ NO ISE ! @ >  
I F  1 WPO INT ! CR . • using old process noise ° CR 
THEN NO I SE !  WPO I NT @ 8 i + F@ 
W I  8 i + F! WPO INT @ 1+ WPO INT ! 

LOOP V @  1 +  1 
DO VPO I NT @ NO ISE2 @ > 
IF 1 VPO I NT ! CR . •  using old measurement noise• CR 
THEN NO ISE2 VPO I NT @ 8 * + F@ 
V I  8 * + F !  VPO I NT @ 1+ VPO I NT ! 

LOOP ; 
--) 

,_. 
0 
00 



Screen # 96 
--) 

Screen # 98 
( 1at r i c es used i n  the syste; 1odel • • • • . • • • • • • • • • • • • • • • • • • • •  ) 
( ****** ** ** ************************************************* ) 
( name al l otment rows col u,ns name ) 
( ----------------------------------------------------------- ) 
FVARIABLE A 72 ALLOT 3 3 A D I N  
FVAR IABLE C 2 4  ALLOT 1 3 C D I M  
fVARI ABLE X 24 ALLOT 3 1 X D I M  
FVAR IABLE N Z  8 ALLOT 1 1 NZ D I M  --> 
( ***** ****************************************************** ) 

Screen # 97 . . 
( iiiiititiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii****** ) --) 
( ) 

( NOMINAL SYSTEM HODEL ) 
( ) 

C XU+l } = A Hk }  + WC k }  ) 
C VC k + l }  = C X { k + l } + V { k }  ) 
( ) 

C . I O O -< . 5H . 8 }U2 I ) 
·c A = I 1 0 - { . B }U2 I ) 
C I O 1 - { .  5 }  I ) 
( ) 

( ) 

C C =  I 1 1 1 I ) 
( ) 

( ) 

( *************************************'********************* ) 

Screen # 99 
( tempor ary storage mat r i ces • • • • • • • • • • • • • • • • • • • • • • . • •  , • • • • •  , ) 
( iiitiiiiiiiiiiiiiiiiiiiiiiiiliiiiiiititiiiiliiii*i********* ) 
( name al l ot ment r ows c ol umns name ) 
( ----------------------------------------------------------- ) 
FVAR IABLE Tl 200 ALLOT 5 5 Tl D I M  
FVARI ABLE T2 . 200 ALLOT 5 5 T 2  D I N  
FVAR I ABLE T3 200 ALLOT 5 5 T 3  D I M  
FVAR I ABLE T 4  200 ALLOT 5 5 T 4  D I N  
FVARI ABLE T S  200 ALLOT 5 5 T 5  D I N  
FVARI ABLE T6 200 ALLOT 5 5 T 6  D I M  
FVAR I ABLE T 7  200 ALLOT 5 5 T 7  D I M  
FVARI ABLE T8 200 ALLOT 5 S T S  D I M  
FVARIABLE T 9  200 ALLOT 5 5 T 9  D IN · 
( ********************************iitiiit.ii1iiiiiiiiiiiiiiiii ) 
VARI ABLE KOUNT 

--> 

� 
0 



Screen # 100 
( i n i t i al i z e t h e  state t r ansi t i on mat r i x • • • • • • • • • • • • • • • • • • • •  

· A LD 
0 . 0  E O 1 1 L 0.0 E O 1 2 L -0. 32 E O 1 3 L 
1 . 0  E O 2 1 L 0 . 0 E O 2 2 L -0 . 64 E O 2 3 L 
0 . 0  E O 3 1 L 1 . 0  E O 3 2 L -0 , 5  E O 3 3 L 

( i ni t i al i z e  t h e  i nput 1at r i x  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  ) 

C wh en u sed ) 

( i n i t i al i z e  t he observat i on mat r i x  • • • • • • • • • • • • • • • • • • • • • • • • •  
C LO 

1 . 0  E O 1 1 L 1 . 0  E O 1 2 L 1 . 0  E O 1 3 L 

Screen # 102 
( syste1 model , , , . . .  , , • • .  , . , , , . , , , , , . , . , • , , , . , , , • , . •  , , , , . . • •  
: HODEL NO ISE 

T 1  W X ADD 
A X  Tl NPY 
C X Tl MPV Tl V NZ ADD ; 

( i ni t i al i z e  the system model • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •  
: !MODEL I X  INPOINT NZ NULL ; 

--)  

--)  
( HODEL l eaves t he stat e o f  the mod � l  d r i ven by p r oc ess noi se ) 
( i n  X ,  and the output c onta1i nated by measur eient noi se i n  ) 
C i n  NZ  ) 

Screen # 10 1 
( d e f i n e  the i n i t i al state vec tor . . . . . . . . . . . . . . . . . . . . . . . . .  . .  

I X  X LD 

Screen # 103 

1 . 0  E O 1 1 t 
1 . 0  E O 2 1 L 
1 . 0  E O 3 1 L ; 

--)  

( ********************************************************> --) 
t (  ) 
( ADAPT I VE KALHAN FI LTER ALGORI THH FOR THE SYSTEM : ) 
( ) 
( X { k+ 1 }  = AF X { k }  + W{ k }  ) 

( Y { k+ l }  = CF X { k+ l }  + V { k }  ) 

( ) 

( I 0 0 -{&2 } {& 1 }it2 I I 1 I ) 

( AF = I 1 0 -{& 1 >U2 I XF{O} = I 1 I ) 

( I 0 1 -{&2 } I I 1 . I ) 
( ) 

( I &3 0 0 I ) 

C COV C W{ k } l  = I 0 &4 0 I COV C V{ k } l  = I 1 I ) 
( I 0 0 &5 I ) 
( ) 
( **************** ******************************************* ) 

i--' 

0 



Screen · · # 1 0 4  Screen # 105 
( ******************************************************* ) --> ( name a l l ohent rows c ol . n ame ) 

( ) ( ----------------------------------------------------------- ) 
( �n - i nd i c at es uncer t ai n  par a;eters ) FVARIABLE K 24  ALLOT 3 1 K D IH 
( ) FVAR IABLE s · 8 ALLOT 1 1 s D IM 
( t h e  i n i t i a l  est i mate and t r ue value o f  the  ) FVAR IABLE D 72 ALLOT 3 3 D D IH 
( paramet er vec tor i s : ) FVARIABLE RES B ALLOT 1 1 RES D IM 
( ) FVAR IABLE @ 1 A  7 2  ALLOT 3 ,, @ 1 A  D IH ,) 

( est . t r ue ) FVARIABLE @2A 72 ALLOT 3 . 3 @2A D IM 
( ) FVAR IABLE @3A 72 ALLOT 3 3 @3A DIM 
( I U I I 0 . 2 I I 0 . 8  I ) FVAR IABLE @4A 72 ALLOT 3 3 @4A D IN 
( I 1!2 I I 0 . 2  I I O . S I ) FVARIABLE @ SA 72 ALLOT 3 3 @SA DIM 

I &3 I .  I 1 . 0  I I 1 . 0  I ) fVAR IABLE @ 1 RES 8 ALLOT 1 1 @ 1 RES D IM 
( I &4 I I 1 . 0  I I 1 . 0  I ) FVAR IABLE · @2RES 8 ALLOT 1 1 @2RES D IH 
( I &5 I I 1 . 0  I I 1 . 0  I ) FVARIABLE @3RES 8 ALLOT 1 1 @3RES D IM 
( ) FVAR IABLE @4RES 8 ALLOT 1 1 @4RES DIM 
( *********************************************************** ) FVARIABLE @SRES 8 All.OT 1 1 @5RES D I M  -- >  
Screen # 106 Screen # 107 ..... ..... 
( na1e al l ohent rows col umns na111e ) ( narue a l l otment r ows c ol umns narae ) 

..... 
( ----------------------------------------------------------- ) ( ----------------------------------------------------------- ) 
FVARIABLE GRAD 40 ALLOT 1 5 GRAD D IM FVAR IABLE @ 1 K  2 4  ALLOT 3 1 @ 1 K  DIM 
FVAR IABLE @SROW 40 ALLOT 1 C: @SROW DIM FVARIABLE @2K 24 ALLOT 3 1 @2K D IM .J 

FVAR IABLE @ 1 QN 72 ALLOT 3 3 @ 1 QN D IN FVARIABLE @3K 2 4  ALLOT 3 1 @3K D IM 
FVAR IABLE @2QN 72 ALLOT 3 3 @2QN DIM FVARIABLE @4K 24 ALLOT 3 1 @4K D IM 
FVAR IABLE @3QN 72 ALLOT 3 3 @3QN D IM FVAR IABLE @5K 24 ALLOT 3 1 @SK D IM 
FVAR IABLE @4QN 72 ALLOT 3 3 @4QN DIM FVAR IABLE @ 1 S  8 ALLOT 1 1 @ 1 S  D IM 
FVAR IABLE @5QN 72 ALLOT 3 3 @5QN DIH FVARIABLE @2S 8 ALLOT 1 1 @2S D IM 
FVARIABLE @ 1RN 8 ALLOT 1 1 @1RN DIM FVAR IABLE @3S 8 ALLOT 1 1 @3S D IM 
FVARIABLE @2RN 8 ALLOT 1 1 @2RN D IN FVAR IABLE @4S 8 ALLOT 1 1 @4S D IM 
FVAR IABLE @3RN 8 ALLOT 1 1 @3RN D IM FVARIABLE @5S 8 ALLOT 1 1 @5S D IM 
FVARIABLE @4RN 8 ALLOT 1 1 @4RN D IH FVAR IABLE I DH 72 ALLOT 3 3 IDM DIM 
FVAR IABLE @SRN 8 ALLOT 1 1 @SRN D IM --) 
FVAR IABLE PARAHH 40 ALLOT 5 1 PARAHH D IH C these aat r i ces a r e  not requ i r ed t o  d e f i n e  the  state o f  t h e  ) 
FVAR IABLE PARAML 40 ALLOT 5 1 PARAHL D IM --> C f i l t e r ;  t h ey are used as t empor ary stor ag e on l y  ) 



Screen # ·108 
C var i ab l es cont ai n i ng  ad dr esses o f  corr espond i n g  1at r i c es 
C t hat d e f i n e  t h e  stat e of t h e  f i l ter • • • • • • • • . • • • • • • . • • • • • • •  

VAR IABLE AF VARI ABLE er VARI ABLE If 
VAR I ABLE RN VARI ABLE QN VARI ABLE P VARI ABLE R 
VAR I ABLE SOLD VAR IABLE GOLD VARI ABLE PARAH 

VARI ABLE @ 1 X  VARI ABLE @2X VARI ABLE @3X VARIABLE @4X 
VAR IABLE @SX 
VARI ABLE @ 1 P  VARIABLE @2P VAR I ABLE @3P VARI ABLE @4P 
VAR IABLE @SP 

C 1i scel l aneous var i ab l es • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •  ) 
VAR I ABLE ALPHA 1 ALPHA ! FVARIABLE BETA 1 . 0  E O BETA f !  
VAR IABLE 5 1  VAR IABLE S2 VARI ABLE 53 

Screen # 1 10 
C i ni t i al i z e  vec t or of est i mat ed par amet ers • • • • • • • • • • • • • • • • •  

IPARAH PARAHt LD 
0 . 20 E O 1 1 L 
0 . 20 
1 . 00 
1 . 00 
1 . 00 

E O 2 1 L 
E O 3 1 L 
E O 4 1 L 

. E O 5 1 L ;  

( est i mat ed a 
( est i mated b 
( est i 1ated COV [ W l l  
( est i mated COV(W2 ] 
( est i 1ated COV [W3l 

--> 

) 

) 

) 

) 

) 

--> 

Screen # 109 
( t he fol l ow i ng de fi n i t i ons wer e de f i ned t o  a l l ow· several 
( al gor i thms t o  use the same set o f  equat i ons  • • • • • • • • • • • • • • •  

: AFt AF @ ;  
: P* p @ ;  
: Rt R @ ;  

: RNi RN @ ;  
: CF* Cf @ ;  
: QN* QN @ ;  

: Xft Xf @ ; 
: PARAHi PARAH @ ; 

: SOLDi SOLD @ ; : GOLD; GOLD @ ;  

: @ lU @ I X  @ ; : @2U @2X @ ; : @3U: @3X @ ; : @4U @4X @ ; 
: @SU @5X @ ; 

: @ ! Pi @ I P  @ ; : @2P* @2P @ ; : @3Pt @3P @ ; : @4P* @4P @ ; 
: @5Pt @5P @ ;  

--> 

Scree» # 1 1 1  
( i n i t i al i z e  vec t or o f  l ower bound o f  est i mated par amet er s • •  ) 
PARAML LD 0 . 0 1 E O 1 1 L ( l ow est i 1ate of  a ) 

0 . 0 1  E O 2 1 L ( l ow est i �at e of b ) 
0 . 0 1 E O 3 1 L ( l ow est i aa t e  of COV (W l l  ) 
0. 0 1  E O 4 1 L ( l ow est i mat e of COV(W2 l  ) 
0 . 0 1  E O 5 1 L ( low est i 1at e of COY [W3l ) 

( i n i t i al i z e  vec t or o f  upper bound o f  est i mated par amet er s • •  ) 
PARAMH LD 0 . 99 E O 1 1 L ( h i gh est imat e o f  a > 

0 . 99 E O 2 1 L ( h i gh est i mate of b ) 
1 0 . 00 E O 3 1 L ( h i gh est i mate o f  COV (W l l ) 
1 0 . 00 E O 4 1 L ( h i g h  est i mate o f  COV [W2 l  ) 
10 . 00 E O 5 1 L ( h i gh est i mate o f  COV [ W3 l  ) 

--) 

...... ...... 
N 



Scree» # 1 12 
( update t h e  AF mat r i x wi th paramet ers i n  PARAH . • • • • • • • • • • • •  ) 
: UPAf 2 1 PARAMf DSEEK f@ 1 1 PARAMt DSEEK f@ fDUP Fi Fi fCHS 

1 3 Aft DSEEK f !  
1 1 PARAHt DSEEK f @  FDUP f* FCHS 2 3 AFi DSEEK F !  
2 1 PARANt DSEEK F @  FCHS 3 3 AFi DSEEK F !  

( i ni t i al i z e  the AF mat r i x  wi t h  paramet er s i n  PARAH • . • • • • • • .  
IAF Afl NULL Afi LO 

1 . 0  E O 2 1 L 1 . 0  E O 3 2 L UPAF ; 

( i n i t i a l i z e  the XF vec t or • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 
: I XF XF* LD 

1 . 0  E O 1 1 '  L 
1 . 0  E O 2 1 L 
1 . 0  E O 3 1 L ; 

Scree» # 1 1 4  
--> 

( update the  QN 1at r i x wi t h  para1eter s i n  PARAH • • • • .  , • • . . • . •  
: UPON 3 1 PARAHt DSEEK F@ 1 1 QNl DSEEK F !  

4 1 PARAHi DSEEK F@ 2 2 QNi DSEEK F !  
5 1 PARAHt DSEEK F@ 3 3 QNi DSEEK f !  

( i n i t i al i z e t h e  ON mat r i x  w i t h  p ar ameter s i n  PARAN • • • • • • • •  , 
: I ON QNi NULL UPON ; 

--> 

Scree» # 1 1 3  
C update t he BF matr i x  wi t h  par amet er s i n  PARAM • • • • • • • • • . • • .  
C not used ) 

( i ni t i al i z e  t he  BF mat r i x  w i t h  paraaet ers i n  PARAN • • • • • • • • •  
( not used ) 

( updat e t h e  Cf mat r i x wi t h  par ameters  i n  PARAM • • . • • . • • • • • • • 
( not used ) 

( i n i t i a l i z e  t he CF mat r i x  w i t h  par ameters i n  PARAH . • • • • . . • •  
: I CF C CFt HOVE ; 

--) 
( the s i mu l ati on 1ay be expanded to est i ma te  p ar a1et er s in 
( any o f  t hes� 1at r i c es 

Screen # 1 15 
( in i t i a l i z e the e r r or covar i ance mat r i x  • • • • • • • • • • • • • • • • • • • •  
: I P  P t  NULL P i  L D  

1 . 0  E 1 1 1 L 1 . 0  E 1 2 2 L 1 . 0  E 1 3 3 L ;  

( updat e the  RN mat r i x w i t h  par ameters i n  PARAH • . • • • • . • • • . • .  
: UPRN ; 

( i ni t i a l i ze t he  RN mat r i x  w i t h  par amet ers i n  PARAH • • • • • • • • •  
: I RN RN:t ID ;, 

( i n i t i al i z e  the Hessi an niat r i x . . . . . . . . . . . . . . . . . . . . . . . . . . .  . .  
I R  Rt I D  ; 

-�> 

..... ...... 
v,l 



Scree» # 1 16 
C coapute the p arti al s of A wrt unknown par ameters • • • • • • • • • •  
: P@ lA @ 1 A  NULL 1 1 PARAHi DSEEK F@ -2 , 0  E O F* FDUP 

2 1 PARAH* DSEEK F@ Ft 
1 3 @ lA DSEEK F !  
2 3 @ 1 A  DSEEK F !  ; 

: P@2A @2A NULL 1 1 PARAHi DSEEK F@ FDUP Fi FCHS 
1 3 @2A DSEEK F !  

- 1 . 0  E O 3 3 @2A DSEEK F !  ; 

: P@3A @3A NULL ; 
: P@4A @4A NULL ; 
: P@SA @SA NULL ; 

: P@IA P@ lA P@2A P@3A P@4A P@5A ; 

Scree» # 1 18 

--) 

( compute i n i ti a l parti als of X l /0 wrt to unknown parameter s 
: I @IX l/0 @ 1 A  Xf* @ 1 X t  HPY 

@2A XFt @2X* HPY 
@3A XFi @3X* HPV 
@ 4A XF* @4Xt MPY 
@5A XFi @SXj MPY ; 

( compute i n i ti al parti als of P l /0 wrt to unknown parameter s  
: E I @IP l / 0  S3 ! S 2  ! S 1  ! 

S 1 @ T l  T3 NPY S 1 @ T4 TRSP T2 T4 T5 HPY 
T3 T5 T4 ADD T4 S2 @ S3 @ ADD ; 

I @IPl /0 . AFS T3 TRSP P* T3 T l  MPY AFt P* T2 HPY 
@1A @ 1 QN @1Pt E I@IP l /0 
@2A @2QN @2P* E I @tP l /0 
@3A @3QN @3Pt E I @IP l / 0  
@4A @4QN @4P* E l @IPl /0 
@SA @SQN @5Pi E I@iP l /0 ; -�) 

Screen # 1 17 
( i n iti alize the parti al s of RN wrt unknown par a1eters • • • • • •  
: I P@IRN @ 1RN NULL @2RN NULL @3RN NULL @4RN NULL 

@5RN NULL ; 

( i n i ti al i ze the parti als of QN wrt unknown p ar ameters  • • • • • •  
: I P@ IQN @ 1 QN NULL @2QN NULL 

@3QN NULL 1 . 0  E O 1 1 @3QN DSEEK F !  
@4QN NULL 1 , 0  E O 2 2 @4QN DSEEK F !  
@5QN NULL 1 . 0  E O 3 3 @SQN DSEEK F! ; 

--) 
( Parti al der i vati ves of elements in the noi se covar i ance 
( Matr i ces do not change. Updati ng t hese p ar t r i al 
( der i vati ve 1atr i c es i s· not required .  

Screen # 1 19 
( compute the i nver se of the er r or covar i ance , • • • • • • • • • • • • • •  
: CS CFi Tl TRSP P* T l  T2 MPY CFi T2 Tl HPY 

Tl RNi S ADD S INVERT ; 

( c oapute  the parti a l s  of S wrt to unknown p arameter s • • • • • • •  
: EP@IS S3 ! S2 ! S 1  ! 

S 1 @ T l  T2 NPY CFt T2 T3 HPY S2 @ T3 T2 ADD 
S T2 T3 HPY T3 S S3 @ HPY - 1 . 0  E O S3 @ CNPY ; 

: P@IS CF* Tl TRSP 
@ 1 Pt @ 1RN @ 1 S  EP@IS 
@2Pi @2RN @2S EP@IS 
@3Pt @3RN @3S EP@IS 
@4P* @4RN @4S EP@IS 
@5Pi @SRN @5S EP@IS ; 

--> 

..... ..... 
+:' 



Scree» # 120 
C p ropagate the error covar iance . . . . . . . . . . . . . . . . . . . . . . . . . . .  ) 
: PROPP AF* T l  TRSP Pt Tl T2 MPV 

AF* 12 Tl MPV Tl QN* Pt ADD ; 

C propagate the state esti 11ate . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  . 
: PROPX AFt XF* T l  HPV Tl XFi MO�E ;  

( f ind the residual fro� a noi sy 1easureient • • • . . . . • • . • • • . . .  
: CRES Cf* XF* Tl HPV NZ T l  RES SUB ; 

C compute the parti a l s  of the r es id  wrt to unknown p arameters ) 
: P@IRES Cfi @ 1 Xl @ IRES MPV - 1 . 0  E O @ IRES CMPV 

Cfl @2Xt @2RES MPV - 1 . 0  E O @2RES CHPV 
Cfi @3Xi @3RES MPV -1 . 0  E O @3RES CHPV 
crt @4X* @4RES HPV - 1 . 0  E O @4RES CHPV 
Cfi @5Xt @5RES HPV -1 . 0  E O @5RES CHPV ; --> 

Scree» # 122 
- ·- -- -

< ********************* f i rst vari ation ********************* ) 

C update par ameter s ,  unwei ghted stochastic g radient approach 
: UPPARAH 1  CRES P@IRES PGRAD 

GRAD Tl TRSP Tl RES T2 MPV 
GAMA-N 1 /f T2 CHPV PARAMl T2 Tl SUB 
6 1 DO I 1 Tl DSEEK F@ I CLAMP LOOP ; 

( *********************************************************** ) 
--} 

Scree» # 121 
C ************! parameter esti mation al gori th 1s ************* ) 

C 1ul t .  correction by none accelerated gai n sequence . • • • . • • •  ) 
: GAMA-N KOUNT @ S}F ; 

C cl amp parameter to compact subset and store i n  PARAH vector ) 
: CLAHP DUP S t  ! 1 PARAHH DSEEK f@ FHI N  

5 1 @ 1 PARAHL DSEEK F @  FHAX 
5 1 @ 1 PARAMl DSEEK f! ; 

( fora g radient matr i x fro1 der i vati ves of residua l  vectors 
: PGRAD @ I RES GRAD 1 VMAT 

@2RES GRAD 2 VHAT 
@3RES GRAD 3 VMAT 
@4RES GRAD 4 VHAT 
@5RES GRAD 5 VHAT ; --> 

Screen # 123 
( ******************** second variation ********************* ) 

( compute app rox imate Hessian matr i x . • • • • • . • • . • . . • • • • • . • • • . •  ) 
: PHESS GRAD Tl TRSP Tl S T2 MPV T2 GRAD Tl HPV 

Tl R* T2 SUB Tl ID 0 . 0 1  E O Tl CHPV Tl T2 T3 ADD 
GAHA-N 1 /f T3 CHPV Rt T3 R* ADD ; 

C update parameters ,  recurs ive pred iction er r or • • • • • • • • • • • • •  ) 
: UPPARAH2 CRES P@IRES PGRAD CS PHESS 

GRAD T l  TRSP T l  S T2 MPV T2 RES Tl MPV 
Rt T2 MOVE T2 INVERT 

T2 Tl T3 NPV 6AHA-N 1 /f T3 CHPV 
PARAM* T3 T2 SUB 
6 1 DO I 1 T2 DSEEK f@ I CLANP LOOP ; --> 

( *********************************************************** ) 

� � u, 



Screen # 124 
( reserved for expans ion • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •  ) --} 

Screen # 126 
( c omput� the parti a ls o f  P l / 1  wrt t o  unknown para1eters • • • •  
: EP@IP l / 1  S3 ! S2 ! 5 1  ! 

: PHP l / 1 

S t @ T4 T6 HPV 
TB T l  T6 HPV 
T3 TB T7 MPV 

K 53 @ T7 MPV 
T6 T8 T7 ADD 

T7 TB S2 @ ADD ; 

D T 1  TR5P 

D S2 @ T7 MPV 
5 1 @ CF* T7 HPV 

T6 T7 T8 SUB 
T6 T7 T9 ADD 
S t @ T6 TRSP 

K T2 TRSP 
CF* Pt T4 MPV K RN* TS MPV 
@ 1 K  @ 1Pi @ l RN EP@IP 1 / l  
@2K @2Pi @2RN EP@IP ! / 1  
@3K  @3Pt @3RN EP@iP l / 1  
@4K @4Pi @4RN EP@#P l / 1  
@5K @5Pt @5RN EP@iP l / 1 ; 

T7 T6 TB SUB 
T7 TB TRSP 

S 1 @ RN* T6 NPV 
T9 T2 T6 MPV 
TS T6 T8 HPY 

D Pl T3 HPV 

--} 

Screen # 125 
( c ompute the kal man gai n • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •  
: GA I N  CFi T l  TRSP Pi Tl T2 MPV T2 5 K MPV ; 

( compute D matr i x · · · � · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·  
: CD K CF* T l  MPV I DM T l  D SUB ; 

( compute the partial s o f  K wrt to unknown paraaet ers , , , , , , ,  
: EP@IK 53 ! 52 ! 51 ! 

5 1 @ Tl T3 MPV T2 S2 @ T4 MPV T3 T4 S3 @ ADD ; 

: P@IK CH T3 TRSP T3 S Tl MPV P:t: T3 T2 HPV 
@ 1 Pi @ 1 5  @ 1 K  EP@iK 
@2P1 @25 @2K EP@IK 
@3Pi @35 @3K EP@IK 
@4Pt. @45 @4K EP@IK 
@SPt. @5S @5K EP@iK ; --) 

Scree>) # 127 
( c ompute the new state esti aate • • • • • • • • • • • • • • • • • • • • • • • • • • • •  
: UPXF K RES T l  MPV XFi T l  XFi ADD ; 

( c o1pute the new error c ovariance • • • • • • • • • • • • • • • • • • • • • • • • • •  
: UPP D Tl TRSP D P* T2 HPV T2 Tl T3 HPY 

K Tl TRSP K RNi T2 MPV T2 T l  T4 MPV 
T3 T4 Pi ADD ; 

--} 

...... ...... 



Screen # 128 
( comput e the p ar t i al s  o f  X l/0 wr t t o  un known para1eters • • • •  
: EP@i X l /0 S3 ! S2 ! S 1  ! 

: P@IX 1 /0  

AFi  S1 @ T2  HPV S2 @ K T3 HPV T2 T3 T4 ADD 
T4 RES T2 MPV T l  S3 @ T3 MPV T2 T3 T4 ADD 

S2 @ XF* T2 HPY T2 T4 S3 @ ADD ; 

AH D T1 HPV 
@ l K  @1A @ l x t  EP@iX l/0 
@2K @2A @2Xl EP@lm/0 
@3K @3A  @3U EPHX1 /0 
@4K @4A @4U EPHX l /0 
@SK @SA @SU EP@I X 1 /0 ; -- } 

Screen # 130 
( unmodi fi ed g r ad i en t  appr oach adap t i ve f i l t er • • • • • . • • • . • • • •  
: AFI LTER1 PROPP PRDPX UPPARAM 1 

UPAF UPRN UPQN 
CS P@iS GAI N  
C D  P@IK P@iP l / 1  UPP P@iA 
P@IP t /0 P@I X t /0 UPXF ; 

( 1odi f i ed g r ad i ent ap�roach adapt i ve f i l t er • • • • • • • • • • • • • • • •  
: AFILTER2 PROPP PROPX UPPARAH2 

UPAf UPRN UPQN 
CS P@IS GAIN 
CD P@IK P@IP l / 1  UPP P@IA 
P@IP l /0 P@iX l /0 UPXF ; 

( conven t i onal kal 1an f i l t er i ng • • • • . • • • • • • • • . • • • • • • • • . • • • • • •  ) 
: CF I LTER PROPP PROPX CRES CS GA I N  CD UPP UPXf ; -- > 

Scree» # 129 
( c ompu te  t h e  par t i a l s  o f  P l /0 wr t t o  unknown paramet ers • • • •  
: EP@#P l /0 S3 ! S2 : 5 1  

S I @ T2  T4  MPV AFi S2 @ TS MPV 
T4 T6 TS ADD S I @ T4 TRSP 

TS Tl T6 HPV 
T3 T4 T6 MPV 

TS T6 T4 ADD S3 @ T4 S2 @ ADD ; 
: P@#P l /0 AFi T l  TRSP P; Tl  T2 MPV AF* P* T3 MPV 

@ I A  @ !Pi @ 1QN EP@IPl /0 
@2A @2Pi @2QN EP@IP l /0 
@3A @3Pi @3QN EP@IP1/0 
@4A @4Pi @4QN EP@IP l /0 · 
@SA @SPi @5QN EP@iP 1 /0 ; 

( i n i t i al i ze e i t her adapt i ve kal man· f i l t er • • • • • • • • • • • • • • • • • •  
: I AFILTER IPARAH I AF I CF I R  I RN I QN I P  I XF 

P@#A I @iX l /0 IP@iQN I P@ffRN I@IP l /0 I DM I D ; 
--) 

Screen # 131 
( The equat i ons  o n  t h e  p r evi ous scr eens wi l l  n e x t  be  mod i f i ed ) 
( so 1or e t han one set of iat r i c es c an be passed t o  and f ro1 ) 
( e i t her al gor i t hm .  Th i s  si apl i f i es debugg i ng s i nc e  t he 1ai n ) 
( al gor i t h1  was ver i f i ed t o  g i ve c or r ec t  r esul t s .  Thr ee set s ) 
( o f  mat r i c es and par aaet ers wi l l  be de f i �ed : ) 
C Set 1 : PARAH AF , BF , CF, XF� P ,  RN ,  QN, @#X , @IP ) 
( -these wi l l  be passed bet ween e i t her mod i f i c at i on and the ) .  
( 1ai n program. They determ i ne .  the  s t a t e  o f  t h e  f i l t er . ) 
C Set 2 :  RES , S ,  K, D, @IRES , @IS ,  @IK ,  @#A ) 
( -these ar e not passed, t h ey ar e c omputed each i t er at i on ) 
( o f  the al go� i t hm .  ) 
C Set 3 :  @IRN ,  @IQN, N Z ,  U ,  I DH ,  PARAHL , PARAHH, ALPHA 
( -these ar e used by ei ther al gor i thm .  Th ey ar e not expect ed ;  
( t o  c hange dur i n g  t h e  ent i r e  si �aul at i on .  ) 

--} 

...... ...... 
-...J 



Scree» # 132 
( arr ays de f i n i ng the or i g i nal adapt i ve f i l t er • • • • • • • • • • • • • •  ) 
( *********************************************************** ) 
C name al l ot 1ent rows col u�ns name ) 
( ----------------------------------------------------------- ) 
FVARI ABLE AF1 72 ALLOT 3 3 AF1 D I M  
FVAR I ABLE CF 1 24 ALLOT 1 3 C F l  D I H  
FVARI ABLE XFl 24 ALLOT 3 1 XF 1  D IH  
FVAR I ABLE QN l 72 ALLOT 3 3 Q N 1  D IH 
FVARI ABLE RN 1 8 ALLOT 1 1 RN1 D I M  
FVAR IABLE P l  72 ALLOT 3 3 P l  D I M  
FVAR IABLE R t  200 ALLOT 5 S R t  D I N  
FVAR IABLE GOLD ! 40 ALLOT 5 1 GOLD! D I M  
FVARI ABLE SOLD ! 4 0  ALLOT 5 1 SOLD1 D I N  
FVAR IABLE PARAH! 4 0  ALLOT 5 1 PARAH! D I M  
FVAR IABLE NSEl 2 4  ALLOT 3 1 HSE1 D I M  

--) 
Screen # 134 
C ar r ays d e f i n i ng the 1od i f i ed adapt i ve f i l ter . �  • • • • • • • • • • • •  ) 
( *********************************************************** ) 
( nar,e al l ohent rows col unins name ) 

( ----------------------------------------------------------- ) 
FVARI ABLE AF2 72 ALLOT 3 3 AF2 D IH 
FVAR IABLE CF2 24 ALLOT 1 3 CF2 D I M  
FVAR I ABLE XF2 24 ALLOT 3 1 XF2 D I M  
FVAR I ABLE QN2 72 ALLOT 3 3 QN2 D I M  
FVARI ABLE RN2 8 ALLOT 1 1 RN2 D i t1  
FVARI ABLE P2 72 ALLOT 3 3 P2 D I M  
FVARI ABLE R2 200 ALLOT 5 5 R2 D I H  
FVAR IABLE GOLD2 40 ALLOT C 1 GOLD2 D I M  J 

FVAR I ABLE SOLD2 40 ALLOT 5 1 S0LD2 D I M  
FVAR IABLE PARAM2 40 ALLOT 5 1 PARAH2 D I M  
FVARIABLE HSE2 24 ALLOT 3 1 MSE2 D I M  

--> 

Scree» # 133 
( ar r ays d e fi n i ng the o r i g i nal adapt i ve fi l ter • • • • • • • • • • • • • •  ) 
( *********************************iiiiiiiiiiiiiiiiiiiiiiiiii ) 
( name al l ot ment r ows c ol umns name ) 
( ----------------------------------------------------------- ) 
FVAR I ABLE @ 1 X 1  24 ALLOT 3 1 @ 1 X 1  D I M  
FVARI ABLE @2X 1 24 ALLOT 3 1 @2X 1 D I M  
FVARIABLE @3X 1 2 4  ALLOT 3 1 @3X 1 D I N  
FVAR I ABLE @4X 1  24 ALLOT 3 1 @4X 1 D I M  
FVARI ABLE @5X 1 2 4  ALLOT 3 1 @5X 1  D I N  
FVARI ABLE @ 1 P 1  7 2  ALLOT 3 3 @ 1P 1  D IM 
FVARI ABLE @2P 1 72 ALLOT 3 3 @2P1 D I M  
FVARIABLE @3P1 7 2  ALLOT 3 3 @3P 1 D I H  
FVAR I ABLE @4P l 72 ALLOT 3 3 @4Pl DIH 
FVAR IABLE @5P 1 72 ALLOT 3 3 @5P l DIM 

--> 

Screen # 135 
C ar r ays d ef i n i ng the mod i f i ed adapt i ve f i l t er • • • • • • • • • • • • • •  ) 
( *******************************************************!*** ) 
( name al l ohient r ows c ol umns name ) 

( ----------------------------------------------------------- ) 
FVARIABLE @ 1 X 2  2 4  ALLOT 3 1 @ 1 X2 D I M  
FVAR I ABLE @2 X2 24 ALLOT 3 1 @2X2 D I M  
FVARI ABLE @3X2 24 ALLOT 3 1 @3X2 D I M  
FVARI ABLE @4X2 24 ALLOT 3 1 @4X 2 D I M  
FVARI ABLE @SX2 24 ALLOT 3 1 @5X2 D I M  
FVARI ABLE @ 1P2 72 ALLOT 3 3 @ 1P2 D I M  
FVARI ABLE @2P2 72 ALLOT 3 3 @2P2 D I M  
FVARI ABLE @3P2 72 ALLOT 3 3 @3P2 D IH 
FVAR I ABLE @4P2 72 ALLOT 3 3 @4P2 D I M  
FVARI ABLE @5P2 72 ALLOT 3 'J @5P2 D IM " 

--) 

..... ..... 



Screen # 136 
C ar r ays de f i n i n g  the c onvent i onal f i l ter , i nexact mode l  • • • •  ) 
( *********************************************************** ) 
C name al l otment r ows col umns name ) 
( ----------------------------------------------------------- ) 
FVAR I ABLE AF3 72 ALLOT 3 3 AF3 D I N  
FVARI ABLE CF3 2 4  ALLOT 1 3 CF3 D I M  
FVAR I ABLE XF3 24 ALLOT 3 1 X F 3  D I M  
FVAR I ABLE QN3 7 2  ALLOT 3 3 QN3 D I M  
FVAR I ABLE RN3 8 ALLOT 1 1 RN3 D I N  
FVAR I ABLE P 3  7 2  ALLOT 3 3 P 3  D I M  
FVARI ABLE PARAM3 4 0  ALLOT 5 1 PARAM3 D IH 
FVAR IABLE NSE3 24 ALLOT 3 1 MS£3 D I N  

--> 

Screen # 138 
C p r epare t o  i t er ate  the or i g i nal adapt i ve fi l t er • • • • • • • • • • •  
: PREP t AF1 AF ! CF 1 CF ! XF 1  XF . ! 

QN1 ON ! RN1 RN ! P l  P ! Rl R ! 
@1 X 1  @ 1 X  ! @2X 1  @2X ! @3X 1  @3X ! @4X 1 @4X 
@SX 1 @SX ! GOLD1 GOLD ! SOLD 1 SOLD ! PARAM1 PARAH ! 
@ 1 P 1  @ 1 P  ! @2P1 @2P ! @3P 1 @3P ! @4P 1 @4P ! 
@5P 1 @SP ! HSE1 MSE ! ; 

( pr epar e to i t er at e  the aodi f i ed adap t i ve f i l t er • • • • • • • • • • •  
: PREP2 AF2 AF ! CF2 CF ! XF2 XF ! 

QN2 QN ! RN2 RN ! P2 P ! R2 R ! 
@ 1 X2 @ 1 X  ! @2X2 @2X ! @3X2 @3X ! @4X2 @4X ! 
@5X2 @5X ! GOLD2 GOLD ! SOLD2 SOLD ! PARAM2 PARAH ! 
@ 1P2 @ 1P  ! @2P2 @2P ! @3P2 @3P ! @4P2 @4P ! 
@5P2 @SP HSE2 HSE ! 

--> 

Screen # 137 
( ar r ays de f i n i ng the c onven t i onal f i l te r , exact model • • • • • •  ) 
( *********************************************************** ) 
C name al l otment r ows co l u�ns name ) 
( ----------------------------------------------------------- ) 
FVARIABLE XF4 24 ALLOT 3 1 XF4 D I M  
FVARI ABLE QN4 7 2  ALLOT 3 3 · QN4 D IH 
FVAR I ABLE RN4 8 ALLOT 1 1 RN4 D I M  
FVARI ABLE P4  72  ALLOT 3 3 P4 D I M  
FVARIABLE MSE4 2 4  ALLOT 3 1 MSE4 D I N  

VARIABLE MSE 

Screen # 139 

--} 

( prepare t o  i t erate the  convent i onal f i l t er , i nexact mode l  • •  
: PREP3 AF3 AF ! CF3 CF ! XF3 X F  ! 

QN3 QN ! RN3 RN ! P3 P ! PARAM3 PARAM ! 
HSE3 HSE ! 

( prepare t o  i t erat e o r i g inal adapt i ve f i l t er • • • • • • • • • • • • • • •  
: PREP4 A AF ! C CF ! XF4 XF ! 

QN4 QN ! RN4 RN ! P4 P ! MSE4 MSE ! ; 
--} 

..... ..... 
\0 



Screen # 1 40 
C ini t i al i ze t he or i ginal adap t i ve f ilter • • • • • • • • • • • • • • • • • • •  
: IAFI LTER l PREPl I AF ILTER ; 

< i n i t i ali ze the mod i f ied adapt ive fi lter • • • • • • • • • • • • • • • • • • •  
: I AF ILTER2 PREP2 I AF ILTER ; 

( ini t i ali ze t he convent i on al f ilter, i nexact model • • • • • • • •  , ) 
: ICF I LTER3 PREP3 !PARAH I AF I CF 

IRN I QN IP I XF ; 

( ini ti ali ze the conventional fi lter, e xac t model • •  , • • • • • • • •  ) 
( note : in f i lter 4 the true error covar i ances must be entered )  
: I CF ILTER4 PREP4 RN* I D  QN* ID  IP  I XF ; 

--) 

Scree,, # 1 42 
C noi se and para1eter bounds • • • •  , • • • • • . • • • • • • . • • • • • • • • • • • • • •  
: NSSG CR 

SP , •  process noi se stat i st i c sn N0 ISE1 STAT CR CR 
SP . •  1easure1ent noise stat i sti c sa N0 I SE2 STAT CR CR 
SP . •  para1eter lower bound 1 PARAHL READ CR CR 
SP , •  paraieter upper bound • PARAHH READ CR CR 
SP . •  init i al para1et er est i mate u PARAH! READ CR ; 

C l i st the status of the cumulati ve mean square error • • • • • • •  
: STATS C KOUNT @ 25 MOD O= ) 
C ff > CR CR 

SP . ·  MEAN SQUARE ERROR AT TIME u KOUNT @ I CR 
SP . u  ori ginal adap t ive f i lter• MSE l READ CR CR 
SP . •  modi f ied adapti ve f ilter "  NSE2 READ CR CR 
SP . •  conventional f i lter ,  i nexac t �odel n MSE3 READ CR CR 
SP , •  conventional fi lter , exact 1odel u MSE4 READ CR CR 

C THEN ) ; --> 

Screen # 1 41 
C coapute recursi vely t he mean square state esti 1ation er ror 
: MSEl NSE @ ; 
: CMSE X XFi Tl SUB Tl SQM Tl MSEt Tl SUB 

KOUNT @ S >F 1 /F Tl CNPY Tl NSE; MSEi ADD ; 

C compute the esti mation error squared • • • • • • • • • • • • • • • • • • • • • •  
: CSE X XFi HSEi SUB MSEf SQH ; 

--> 

Screen # 1 43 
C status 1essages for 1odel and f ilter algori th1s • . • • • • • • • • •  

STATH C KOUNT @ 25 MOD O= ) 
C IF ) 

SP . •  MODEL RESPONSE AT T INE • 
SP . •  syste1 input • 
SP • 8 t rue system state" 
SP . •  noi sy syst e1 out put• 

C THEN ) ; 

: STATCF C KOUNT @ 25 HOD O= ) 
C IF > 

SP . • CONVENTI ONAL F I LTER No. " 
• I AT TINE • 

SP . u  kalman gain" 
SP . •  state esti mate •  

C THEN ) ; 

CR CR 
KOUNT @ .  CR 

W READ CR CR 
X READ CR CR 

NZ READ 

CR CR 

KOUNT @ .  CR 
K READ CR CR 

xn READ 
--> 

..... 
N 
0 



Screen # 1 44 
( status 1essages for 1odel and filter algorithms • • • • • • • • • • •  ) 

: STATAF C KOUNT @ 25 MOD O= ) 
( IF ) CR CR 

SP . n  ADAPTIVE FILTER No .  a 

• •  AT T IME I KOUNT @ .  CR 
SP • 0 estimated parameter vector • PARAH* READ CR CR 
SP . •  kalman gain •  K READ CR C R  
SP . •  state estimate• Xf* READ 

C THEN ) ; 

C init ialize t he simulat ion • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •  > 
ISIH IHODEL IAFILTER1 IAf ILTER2 ICFILTER3 ICFILTER4 ; 

--> 

Scree» # 1 46 
( alternate definitions • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •  ) 

C 1ult . correc tion by accel , gain seq , and find new para1eter ) 
: 6AHA-A S1 ! KOUNT @ 1 = 

IF FDUP FO > 5 1 @ 1 SOLDt DSEEK ! 
ALPHA @ S 1 @ 1 GOLDi DSEEK ! 

THEN 
FDUP FO> DUP Sl @ 1 SOLDi DSEEK DUP @ ROT ROT ! = 
IF 1 Sl @ GOLDt DSEEK @ 
ELSE 1 5 1 @ GOLDt DSEEK DUP @ 1+ DUP ROT ! 

THEN S>F 1/F Ft 
S1 @ 1 PARAHt DSEEK F@ FSWAP F- ; 

Screen # 1 45 
( si1ulate the filtering algorithms • • • • • • • • • • • • • • • • • • • • • • • • • •  > 
: IT# l 1 KOUNT ! HODEL C STAHi > 

PREP 1 AflLTER1 X XFt HSEt SUB HSEt SQN 1 STATAF 
PREP2 AFI LTER2 X xrt MSEl SUB HSEt SQM 2 STATAf 
PREP3 CF ILTER X Xft HSEt SUB HSEt SQM C 3 STATCF > 
PREP4 CFILTER X Xfi HSEt. SUB HSE* SQM C 4 STATCF > 
STATS ; 

ITN KOUNT @ 1 +  KOUNT ! MODEL C STATH > 
1 STATAF PREP! AF ILTER1 CHSE 

PREP2 AFILTER2 CMSE 
PREP3 CFILTER CHSE 
PREP4 CF ILTER CHSE 

2 STATAF 
C 3 STATCF > 
C 4 STATCF > 

STATS 
: RUN (· PRINTER ) CR CR ISIN HSSG ITU 

1001  2 DO ITN LOOP 10 1 000 BEEP ( CONSOLE > ; 
-- . 

Screen # 1 47 
C fora gradient 1at r i x from derivatives o f  residual vectors 
: PGRAD @ I RES GRAD 1 VHAT 

@2RES GRAD · 2 VHAT 
@3RES GRAD 3 VHAT 
@4RES GRAD 4 VHAT 
@SRES GRAD S VMAT ; 

C form a row vector c ontaining par t ials o f  c ovar iance mat rix 
: P@SROW RES T1 TRSP 

Tl @ l S  T2 MPV 
T1 @2S T2 NPV 
T1 @3S T2 MPV 
Tl @4S T2 MPV 
T l  @SS T2 MPV 

0, 5 E O T1 CHPV 
T2 RES T3 MPV 
T2 RES T3 HPY 
T2 RES T3 HPY 
T2 RES T3 HPY 
T2 RES T3 MPV 

T3 @SROW 
T3 @SROW 
T3 @SROW 
T3 @SROW 
T3 @SROW 

1 VHAT 
2 VMAT 
3 VMAT 
4 VHAT 
S_ VMAT ; 

..... 
N ..... 



Screen # 1 48 
C update p ar ameter s, unweighted stoch astic gradient approach 
: UPPARAMX CRES P@IRES PGRAD GRAD T l  TRSP 

Tl RES T2 HPY GANA-N 1 /F T2 CHPY 
PARAMt T2 Tl SUB 
6 1 DO I 1 T l  DSEEK r@ I CLAMP LOOP ; 

( update parameters, weighted stochastic app rox .  approach • • •  ) 
: UPPARANX CRES P@IRES CS P@iS PGRAD P@SROW 

GRAD Tl TRSP Tl S T2 MPY T2 RES Tl MPY 
- @SROW T2 TRSP Tt T2 T3 ADD 
GAHA-N 1 /F T3 CHPY PARAMt T3 T2 SUB 
6 1 DO I 1 T2 DSEEK r@ I CLAMP LOOP ; 

Screen # 150 
C update par ameter s, unweighted r ecursive prediction error 
: UPPARAMX CRES P@IRES PGRAD CS PHESS 

GRAD Tl TRSP Tl S T2 HPY T2 RES Tt NPY 
R; T2 MOVE T2 I NVERT 

T2 Tl T3 NPY GAMA-N 1 /F T3 CNPY 
PARAMi T3 T2 SUB 
6 1 DO I 1 T2 DSEEK F@ I CLAMP LOOP ; 

( update para;eters, weighted recursive pr ediction error 
: UPPARAMX CRES P@IRES PGRAD CS P@#S PHESS P@SROW 

GRAD Tl TRSP Tl S T2 MPV T2 RES Tl HPY 
@SROW T2 TRSP Tl T2 T3 ADD 

Ri T2 HOVE T2 I NVERT 
T2 T3 Tl NPY GAHA-N 1/F Tl CNPY 
PARAHi Tl T2 SUB 
6 1 DO I 1 T2 DSEEK r@ I CLAMP LOOP ; 

Screen # 1 49 
( compute approximate Hessian matrix • • • • • • • • • • • • • • • • • • • • • • • •  
: PHESS GRAD Tl TRSP , Tl S T2 MPY T2 GRAD Tl NPY 

Tl Rt T2 SUB Tl I D  0 . 0 1  E O T l  CNPY Tl T 2  T 3  ADD 
GAHA-N 1 /F T3 CMPY R* T3 Rt ADD ; 

: GR 6 1 DO I 1 GOLDt DSEEK @ CR . LOOP ; 
: SR 6 1 DO I 1 SOLD* DSEEK @ CR . LOOP ; 

: ANS PR INTER STATS PREP ! 1 STATAF 
PREP2 2 STATAF CONSOLE ; 

Screen # 151 
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