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Abstract 

In fluorescence correlation spectroscopy and dynamic light scattering, digital 

correlators acquire the autocorrelation function of detected photons to measure 

diffusional dynamics of biomolecules and small particles. Multi-channel data from 

different wavelengths or scattering angles provide increased information for 

resolving multiple species. Similarly, in single-molecule spectroscopy and in 

experiments on photon entanglement, there is a need to acquire time stamps of 

photons from multiple detectors. To enable such advances, a cost-effective 

Multichannel Time-Correlator (MTC) and a Multichannel Hardware Simulator 

(MHS) were developed, each based on a reconfigurable digital input/output card, 

recently available from National Instruments. The field-programmable-gate-array 

(FPGA) cores of the cards are programmed to implement counters and first-in-

first-out (FIFO) buffers for data transfer by direct-memory-access (DMA). The 

MTC scans 16 digital inputs each 12.5 nanoseconds to detect voltage pulses 

coming from a multichannel single-photon detector. Whenever one or more 

pulses are detected, the timing, which is recorded as a 32-bit timestamp, and a 

16-bit flag that specifies the channel(s) are sent to the host computer (PC) for 

further analysis and storage to a binary file. The DMA data transfer to or from the 

host PC allows a sustained photon rate of >10 million per second among the 16 

channels. An algorithm simultaneously calculates all 16x16 autocorrelation and 

cross-correlation functions for logarithmically spaced delays directly from the 

timestamps and channel flags. The MHS reads simulated timestamp and channel 

data from a binary file and sends the information by DMA to the FPGA card, 

which uses the received data to generate voltage pulses at 16 digital outputs to 

thereby simulate the signal from a 16-channel single-photon detector. When the 

MHS is connected to the MTC, each within a separate PC, the recovered 

timestamp data is correct to within the expected digital error of +/- 1 timing count. 
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Chapter I 

Introduction 

 

Fluorescence correlation spectroscopy (FCS) is a common technique used by 

physicists, chemists, and biologists to experimentally characterize fluorescent 

species (proteins, biomolecules, pharmaceuticals, etc.) and their dynamics. To 

achieve FCS, light is focused onto a sample in a confocal microscope, and the 

measured fluorescence intensity fluctuations (due to diffusion, chemical 

reactions, aggregation, etc.) are analyzed using the temporal autocorrelation 

function (ACF) of the photon counts. 

The typical FCS setup consists of a laser beam (typically with 450-650 nm 

wavelength), which is reflected into the objective by a dichroic mirror. The 

objective focuses the laser beam into the sample, causing the particles to 

fluoresce. The fluorescence light then passes through a series of lenses and a 

pinhole before reaching a single photon detector, typically a photomultiplier tube 

or avalanche photodiode. A computer with a digital correlator card computes the 

ACF from the averaged fluorescence intensity signal and stores the result. The 

parameters of interest are found after fitting the ACF to known functional forms 

[1]. A typical FCS setup that uses an avalanche photo diode for single-photon 

detection and a digital correlator card is shown in Figure 1. The digital correlator 

obtains the light intensity by counting the number of photons detected in a fixed 

period of time. Then it calculates the ACF of the light intensity function and sends 

the result to a PC. Most commercial hardware digital correlators use a hardware 

implementation of a multi-tau digital correlation algorithm [2] to calculate the 

ACF. In principle, the multi-tau algorithm could be expanded to implement cross-

correlations, but this has not been reported in the literature. The complexity of the 

algorithm would increase significantly with the number of channels. 
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Figure 1 A common instrumental setup of the FCS measurement in solution. 
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Multi-tau digital correlation uses a special algorithm to calculate the ACF over a 

wide range of temporal delays. In contrast to the use of linearly-spaced delay 

times, the multi-tau Correlation technique uses blocks of 8 linear channels at the 

same sampling rate, and doubles the sampling time from block to block. 

Reference [2] explains in detail the theory of the multi-tau correlator algorithm 

and its software implementation using the Labview programming language. 

Digital correlators are available as hardware or software correlators. The former 

are powerful electronic devices that carry out the computation of the signal 

correlation function via hardware. They may be stand-alone or installed into a 

personal computer (PC) and are often provided with nontrivial software libraries 

for data analysis. Several hardware correlators are commercially available, the 

most popular ones probably being those manufactured by ALV (Langen, 

Germany) such as the ALV5000 [9] and by Brookhaven Instrument (Holtsville, 

NY) [10], and in more recent years by Correlator.com (Bridgewater, NJ) [11]. 

More recently, fast software correlators have been developed and shown to be 

competitive with the hardware ones [2] [4]. In a software correlator the signal 

coming from the photon detector is acquired with a standard fast counter and the 

correlation function is computed via software. Although software correlators are 

somewhat slower in operation than hardware correlators, they are amenable to 

fast development and have the further advantage of being much more flexible 

and less expensive [3]. 

Digital correlators have several limitations because they are designed and 

manufactured for carrying out only the task of measuring the correlation function 

of a digital signal. They are not very flexible, some of them have a fixed delay-

time grid and fixed number of bits per channel and they are rather expensive [2]. 

Reference [4] describes an alternative method to implement a non-commercial 

time-correlator based on a National Instruments PCI-6602 Counter/Timer card 

and a multi-tau algorithm running on a host PC and implemented using Labview 

software.  This approach is less expensive than a commercial digital correlator 
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and also more flexible, as it allows storage of the photon counting data on a host 

PC. However, it still has some limitations. For example in reference [4], only one 

photon-stream from a single detector is processed at a time, as two of the 3 DMA 

channels available in the PCI-6602 are needed, along with 2 of the 8 available 

counters. In their implementation, there are not enough DMA channels to 

process two photons stream lines and hence it would not be possible to calculate 

the cross-correlation function. However, a two-channel correlator based on the 

PCI-6602 has been implemented [15]. Another limitation is the maximum photon 

count rate that this design can process, achieving at most 105 Hz count rate. This 

maximum count rate limitation is related to the fact that the PCI-6602 card has no 

hardware FIFO buffer. Instead, the PCI-6602 card only has two registers for each 

counter to hold the current count and the previous count [5] [16] [17]. The 

previous count register is read every time the DMA executes a transfer operation 

without perturbing the current count value. Thus to avoid data loss the previous 

count register must be read before the next count is ready and hence the lack of 

a hardware FIFO in the PCI-6602 limits the minimum time between photon 

counts. The main limitations of this design, no more than three photon stream 

line processing and a maximum total count rate of about  105 photon/second, 

come from the PCI-6602 counter/timer card hardware resources, i.e., the 

absence of an on-board FIFO and limited number of counter-DMA pairs that can 

work simultaneously, namely three counter-DMA pairs.  

Since FCS has become a mature technology, there is a desire to increase its 

functionality by extending the technique to an increasing number of detection 

channels [6]. Multi-channel data from different wavelengths provides increased 

information for resolving multiple species. Similarly, in single-molecule 

spectroscopy and in experiments on photon entanglement, there is a need to 

acquire time stamps of photons from multiple detectors. Thus, in addition to the 

goal of designing a more flexible and cost effective non-commercial time-

correlator, there is a new requirement, namely multi-channel photon time-

stamping and multi-channel digital correlation. 
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This project consists of the implementation of a non-commercial Multichannel 

Time-Correlator (MTC) that fulfills the requirements of a flexible, cost-effective 

and multiple channel detection design. This project also involves the 

implementation of a Multichannel Hardware Simulator (MHS), which is the 

counterpart of the MTC as explained later in this chapter. Both designs are 

implemented entirely using a relatively new series of data acquisition cards 

based on a reconfigurable FPGA, the National Instruments PCI-7811R and PCI-

7833R. The PCI-7833R, which was used to implement the MTC, provides 

additional analog input/output capabilities that are not required in this work. The 

National Instruments cards have overcome the hardware limitations of the PCI-

6602 card. 

The MTC developed in this thesis can process 16 simultaneous photon-streams 

from 16 photon detectors (photomultipliers or avalanche photodiodes) in order to 

calculate their 16x16 autocorrelation and cross-correlation functions. It also 

achieves a maximum sustained total count rate of the order of 107 Hz among the 

16 digital channels. Therefore, this is an improved Time-Correlator version that 

overcomes the limitations of the one implemented using the PCI-6602 card 

(single channel autocorrelation, 105 maximum count rate). 

The main features of the PCI-7811R card are a group of 160 digital lines 

reconfigurable as inputs, outputs or counters, and a reconfigurable FPGA core 

for parallel on-board processing. The FPGA core has been configured, in a way 

that will be explained in detail in the following chapters, to create three large on-

board FIFOs using the FPGA embedded memory blocks. These large FIFOs are 

the special feature of this design that makes possible to process high count rates 

of photon bursts. Combinational logic configured inside the FPGA samples the 

16 digital input lines and generates time stamps for the photons detected at any 

digital input line. Then the time stamps are stored in the on-board FIFOs for 

further transmission to a host PC by means of DMA transfer operations. It is 

important to mention that the 3 DMA engines available on-board are used 
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simultaneously to get close to the maximum possible throughput data transfer 

from the card to the host PC. A program running on the host PC stores the 

photon timestamps and channel information in a file, and calculates all 

autocorrelation and cross-correlation functions of the 16 detection channels. 

Along with the application of new hardware for a MTC, this project replaces the 

multi-tau correlation algorithm with an alternative algorithm for calculating 

multichannel autocorrelation and cross-correlation functions by direct processing 

of the photons time of arrival information. The basis for this algorithm, devised by 

Dr. L. Davis, and yet to be published, can be found in reference [7]. 

The MHS is designed to emulate 16 photon detectors working simultaneously by 

generating electrical TTL pulses on each digital output line as though the TTL 

pulses were produced in response to photon detection events. The MHS is 

intended to be used for testing digital correlators, and in this project is 

indispensable for testing the MTC. The implementation of the MHS is similar to 

the MTC and uses the same model PCI-7811R card but with a reverse data flow, 

that is to say the data being transferred from the host PC to the PCI-7811R card 

through DMA channels. An ab-initio Monte Carlo simulation of FCS from 

reference [8] is used to generate a file of photon timestamps and channel 

information. A Labview program running on a host PC reads this file and 

transfers the data to the PCI-7811R card by DMA transfer operations. The FPGA 

core of the PCI-7811R card is configured with three large on-board FIFOs and 

with combinational circuitry that generates the respective TTL pulses on the 16 

digital output lines synchronized to each simulated photon timestamp. 

The testing process was carried out by connecting the 16 channels of the MHS to 

the 16 channels of the MTC. The MTC and the MHS were implemented on the 

National Instruments cards PCI-7833R and PCI-7811R respectively and installed 

in two separate PCs. A further and final test was to calculate the autocorrelation 

and cross-correlation of the two files, the original timestamps file (from the Monte 

Carlo simulation) and the detected timestamp file (from the experiment), in order 
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to make a comparison and error measurement. The result was optimum. The 

error was confined to a very low occurrence of one clock delay or advance of the 

detected timestamp with respect to the original timestamp, due to the jitter proper 

of the electrical signal at the digital input and output lines in both cards. 

Both designs, when tested together, were configured using independent 80MHz 

clocks internal to each card, which gave a resolution of 12.5ns for the 

timestamps detected by the MTC and also 12.5ns resolution for the TTL pulses 

simulated by the MHS. The MTC, when tested alone, had the capability to run at 

up to 160Mhz clock, yielding a resolution of 6.5ns for the detected photon 

timestamps. The MHS failed to operate at 160MHz clock frequency; it is possible 

that a more efficient programming of the DMA transfer and the FPGA core may 

yield to a capability of 160MHz clock speed hence a resolution of 6.25ns at the 

digital output lines. 

The following chapters will develop in detail the design process carried out to 

implement the MTC and MHS, the PCI-7811R card configuration process and the 

test results. 
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Chapter II 

Background Information 

 

The MTC and the MHS are implemented using National Instruments 

Reconfigurable FPGA based cards PCI-7833R and PCI-7811R respectively. 

Both cards were programmed using Labview FPGA Module software. For the 

MTC, the FPGA card PCI-7833R was configured to scan 16 digital inputs and 

send data to a host PC.  For the MHS, the FPGA card PCI-7811R was 

configured to receive data from a host PC and output the desired TTL pulses to 

simulate photon detection pulses. For both cases it is necessary to have a 

Labview program running in the National Instrument card, called FPGA VI; and 

another Labview program running on the host PC, called Host VI. These two 

programs transfer data from one to the other through DMA channels. The Auto-

correlation and Cross-correlation Labview program runs in the Host PC and 

works independently, by processing a file of timestamps obtained by use of the 

MTC, or from a Monte Carlo simulation. This chapter will present the background 

information needed to understand these implementations. 

2.1 FPGA Fundamentals 

The Field Programmable Gate Array (FPGA) represents a relatively new 

development in the field of Very Large Scale Integrated (VLSI) circuits. An FPGA 

is a device that contains a matrix of reconfigurable gate array logic circuitry called 

"logic blocks". Logic blocks can be programmed to perform the function of basic 

logic gates such as AND, and XOR, or more complex combinational functions 

such as decoders or simple mathematical functions. In most FPGAs, the logic 

blocks also include memory elements, which may be simple flip-flops or more 

complete blocks of memories. When a FPGA is configured, the internal circuitry 

is connected in a way that creates a hardware implementation of the software 

application. Unlike processors, FPGAs use dedicated hardware for processing 
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logic and do not have an operating system. FPGAs are truly parallel in nature so 

different processing operations do not have to wait for the same resources. As a 

result, the performance of one part of the application is not affected when 

additional processing is added. Also, multiple control loops can run on a single 

FPGA device at different rates.  Unlike hard-wired printed circuit board (PCB) 

designs, which have fixed hardware resources, FPGA-based systems can 

literally rewire their internal circuitry to allow reconfiguration after the control 

system is deployed to the field. 

The National Instruments cards used on this project are based on a Xilinx FPGA 

that provides reconfiguration and flexibility to the card. The Xilinx FPGA 

architecture is shown in Figure 2. 

2.2 National Instruments PCI-7811R and PCI-7833R Reconfigurable Cards 

The National Instruments PCI-7811R features a 1-million-gate FPGA-based core 

system; 160 digital I/O lines configurable for application-specific operation; a PCI 

bus interface; three DMA channels; flash memory (to store the FPGA 

configuration file); and configuration control circuitry as shown in Figure 3.  The 

FPGA inside the PCI-7811R card itself has 80K bytes of configurable embedded 

memory that will be used to create DMA FIFOs, as will be explained in chapter 3. 

The FPGA Integrated Circuit (IC) is configured using the Labview FPGA Module 

software.  The PCI-7833R card is a larger version of the PCI-7811R and has 

additional resources. The extended resources of the PCI-7833R include analog 

inputs and analog outputs, which are not used in this project, and a larger FPGA 

with a higher number of gates and larger embedded memory. The PCI-7833R 

has 96 reconfigurable digital inputs/outputs which is less than the 160 

reconfigurable digital inputs/outputs provided by the PCI-7811R; enough to 

implement the MTC. From a high-level point of view, the PCI-7811R can be seen 

as a FPGA interconnecting the PCI bus interface with 160 fixed I/O resources as 

shown in Figure 4. 
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Figure 2 Xilinx FPGA architecture showing digital clock manager (DCM), 

configurable logic blocks (CLB), and input/output blocks (IOB) [12] 
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Figure 3 PCI-7811R block diagram [18] 
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Figure 4 PCI-7811R high-level functional overview [18] 
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Besides the reconfigurable interconnection capability, the FPGA provides fast on-

board processing capability and execution of multiple control loops. 

2.3 Labview FPGA Module Programming Process 

The Labview FPGA Module is part of the Labview software. The Labview 

software provides a graphical interface for creating a software based virtual 

instrument (VI) using data acquisition cards from National Instruments and many 

third-part vendors. The Labview FPGA Module allows configuring the National 

Instruments reconfigurable cards, i.e., the PCI-78333R and the PCI-7811R 

cards. The first step is to create a program, using Labview FPGA Module, which 

will be downloaded and run on the FPGA device. This type of program is called 

the FPGA VI. If it is necessary to transfer data between the FPGA device and a 

host PC, another program called the Host VI must be created and run on a PC 

using Labview, as shown in Figure 5. The following sections: 2.3.1 DMA FIFO 

programming; 2.3.2 Single Cycle Time Loop; and 2.3.3 FPGA Derived Clock; 

explain three important programming features available in the Labview FPGA 

Module software that are indispensable for the implementation of this project. 

DMA FIFO programming is necessary to enable the system to transfer data from 

the FPGA card to the host PC, and also in the opposite direction, without losing 

data due to interruption of transfer due to the needs of other processes. On the 

FPGA card, a Derived Clock allows the creation of other clock frequencies 

generated from the 40MHz on-board clock.  And finally, a Single-Cycle Time 

Loop is needed to synchronize operations to an 80MHz Derived Clock. 

2.3.1 DMA FIFO Programming 

The Labview FPGA Module allows Direct Memory Access (DMA) transfers of 

data to be accomplished with the use of FIFO architecture. The FIFO is 

composed of two parts that behave as one FIFO. The first part of this DMA FIFO 

is created on the FPGA device using the FPGA’s embedded RAM blocks. The 

second part of the DMA FIFO is on the host PC. 



 14 

 

Figure 5 Interface between FPGA device and host PC 
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This portion of the FIFO uses RAM memory on the host PC. An autonomous 

DMA engine automatically transfers data from the FPGA FIFO to the Host FIFO.  

A block diagram along with the Labview programming nodes are shown in Figure 

6. 

2.3.2 Single-Cycle Time Loop 

A Single-Cycle Time Loop is a Labview programming structure that is 

synchronized to the FPGA card on-board clock or to a FPGA card derived clock. 

This structure executes any logic operation located inside the loop as a 

combinational circuit in exactly one clock duration. The Single-Cycle Timed Loop 

removes registers from code inside the loop, which saves time and space. In 

Figure 7, the code within the While Loop takes four clock cycles to execute, 

excluding the overhead of the While Loop, which takes two additional clock 

cycles to execute. The red vertical lines indicate where each clock cycle ends 

inside the While Loop. The same operation in a single-cycle Timed Loop 

executes within one clock cycle without any additional overhead clock operation. 

It is necessary that all operations inside the single-cycle time loop executes in 

less or equal time than that the clock period [13]. 

2.3.3 FPGA Derived Clock 

Each FPGA card has an on-board 40MHz clock. In some applications that need 

a different clock frequency, the on-board clock has to be multiplied or divided. 

This is done by using the Labview FPGA Module software to create a Derived 

Clock with higher or lower frequency. Labview automatically configures the 

FPGA’s internal PLL (Phase Locked Loop) to multiply or divide the on-board 

clock frequency to create Derived Clocks. 

2.4 Multi-tau Autocorrelation Algorithm  

There is a long and detailed theoretical explanation of the multi-tau algorithm in 

reference [2]. The multi-tau algorithm samples the input function at different 

sample rates for different “tau” (τ) delays. Therefore the input signal is averaged 
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Figure 6 DMA FIFO configuration block-diagram and Labview programming nodes 
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Figure 7 While Loop compared to a Single-Cycle Time Loop [13] 

 



 18 

over different integration times “∆ti” that are chosen so that the ratio α=τi/∆ti is 

higher than a given value; usually if an accuracy of 10─3 is wanted, α must be 

greater than 7 according to reference [2]. In this way the input signal passes 

through different correlators at the same time, each correlator with a specific “∆ti”. 

All resulting autocorrelation functions are merged to form the complete 

autocorrelation function for all “tau” delays. A diagram of the multi-tau algorithm 

for autocorrelation is shown in Figure 8. 

The implementation of the multi-tau algorithm can be carried out in hardware or 

in software. Most of the commercially available digital correlators implement the 

multi-tau algorithm using Application Specific Integrated Circuits (ASIC) in order 

to process the input signal and calculate the autocorrelation function in real-time. 

There are also in the market software correlators that use the multi-tau algorithm 

implemented in some programming language. The large RAM memory and very 

high speed of the current personal computers allows the software correlators to 

operate effectively in real-time. 

2.5 Autocorrelation Time-of-Arrival Algorithm  

This algorithm devised by Dr. L. Davis and explained in reference [7], uses the 

information of the photon Time-of-Arrival (TOA), previously referred as photon 

timestamps, to calculate the ACF (autocorrelation function) by creating a 

histogram of the cumulative delays. Rather than calculating the ACF as           

G(τ ) = ∑t I(t) I(t-τ), processing time is saved by eliminating all multiplication 

operations. Calculating the equation is reduced to creating a histogram of delays, 

in other words, accumulating the number of coincidences for which                  

“I(t) = I(t-τ) = 1” for each delay value “τ”. If the values of “τ” vary linearly the result 

will be a linear correlator. However this technique can be expanded to arbitrarily 

spread delays. In this project “τ” was incremented with logarithmically spaced 

delays. Figure 9 shows a simplified graph of calculating the ACF by creating a 

histogram of delays for every photon TOA. 
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Figure 8 Multi-tau algorithm for autocorrelation 
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Figure 9 Autocorrelation function calculated as a histogram of delays between the 

TOA of the same channel [7] 
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Every time a new photon arrives, its TOA is compared to all the previous photon 

TOAs in order to find the delays that have to be added to the histogram. “G[n]” 

represents the histogram, and “t[i]-t[j]” is the difference between the TOAs of the 

photons, which is the delay between the photons. This algorithm is extended to 

accumulate a histogram of logarithmically spaced delays. 

A similar process is followed to calculate the cross-correlation between two 

channels. The cross-correlation is calculated by creating histograms of delays 

between the TOAs of photons from two different channels, as shown in Figure 

10. Although only two channels are shown in Figure 10, this method can be 

extended to process 16 channels all at once and thereby calculate the 

autocorrelation and cross-correlation functions of all 16x16 pairs of channels. 
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Figure 10 Cross-correlation function calculated as a histogram of delay between 

the TOAs of two channels [7] 
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Chapter III 

Programming and Design Realization 

 

This chapter comprises a detailed explanation of the implementation of the three 

parts of this project, i.e., the MTC, the MHS and the autocorrelation and cross-

correlation program. 

3.1 Multichannel Time-Correlator (MTC) 

The MTC is made of a FPGA VI (Virtual Instrument) Labview program and a Host 

VI Labview program. The FPGA VI program, which runs on a PCI-7811R card, 

generates a timestamp for each detected photon and sends this information to a 

host PC by FIFO buffers and DMA channels. The Host VI program running on a 

PC reads the timestamps from the host PC FIFO buffer and stores them to a file. 

3.1.1 Multichannel Time-Correlator Detector FPGA VI 

A block diagram that explains in more detail how the FPGA VI works is shown in 

Figure 11. The FPGA VI program samples 16 digital inputs connected to 16 

Single Photon Counting Modules (SPCM) at a rate of 80MSamples per second. 

Every time a rising TTL pulse is detected on any digital input, a timestamp from a 

32-bit counter is stored in a temporary register. At the same time, a 16-bit flag is 

stored in another temporary register. This saves the information of which digital 

inputs detected rising edges. After two timestamps and flags of two consecutive 

intervals for which one or more photons are detected, the temporary registers’ 

contents are written into the respective FIFO-DMA. The older timestamp is 

written into FIFO-DMA0, the recent timestamp is written into FIFO-DMA1, the 

flag of the older timestamp is written in the Less Significant Bytes of the FIFO-

DMA2, and the flag of the recent timestamp is written in the Most Significant 

Bytes of the FIFO-DMA2. This timestamp arrangement in pairs is shown in 

Figure 12. The reason for sending two timestamps at the same time is to use all  
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Figure 11 Block diagram of the MTC FPGA VI 
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Figure 12 Timestamps pairs arrangement for DMA transfer operation 
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3 DMA channels for maximum data throughput, achieving a sustained average of 

at least 10 Million photon counts per second among the 16 channels. The total 

count rate can be higher than 10M counts per second if photons are detected 

simultaneously on different channels. The Labview program of the MTC FPGA VI 

is shown in Figures 13, 14 and 15. The program is made of a One-Cycle Time 

Loop that runs at the speed of the 80 MHz from a derived clock. All the logic 

circuits inside the One-Cycle Time Loop are processed in one clock cycle, 

namely in 12.5ns. Thus, the 16 digital inputs, the 32-bit counter, the 32-bit 

timestamp registers and the 16-bit flag registers are updated at 80MHz rate. 

However, the FIFO write blocks are put inside two “case loops” to make them 

execute only once every other time in order to write a pair of timestamps at once. 

Each FIFO located in the FPGA card was configured for 32-bit size words and 

depth of 1023 words, providing plenty of memory space to store a large number 

of timestamps that can be caused by photon bursts. Therefore the large FPGA 

FIFO ensures that no timestamp information will be lost if a momentarily high rate 

of photon detection occurs. 

3.1.2 Multichannel Time-Correlator Host VI 

The Labview program of the MTC Host VI is shown in Figure 16.  The Host VI 

program first creates and opens three empty binary files and makes a reference 

to the FPGA card to link the DMA FIFOs from the FPGA card to the DMA FIFOs 

in the Host PC. The configuration of the two parts of a DMA FIFO is explained in 

more detail in section 2.3.1. For this project the Host FIFO is configured for 2000 

words depth and can be increased if necessary. Then, the main part of the Host 

VI is a while loop that contains DMA “FIFO read” blocks and “File write” blocks. 

Therefore, at every “while loop” recursion, this program reads up to 2000 

timestamps from each of the three Host FIFOs and stores them into one binary 

file until the program is stopped by the user. This binary file of photon timestamps 

can be further processed to calculate correlation functions. 

 



 27 

 

Figure 13 MTC Detector FPGA VI Labview program 
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Figure 14 MTC Detector FPGA VI Labview program 
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Figure 15 MTC Detector FPGA VI Labview program 
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Figure 16 MTC host VI Labview program 
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3.2 Multichannel Hardware Simulator (MHS) 

Similarly to the MTC, the MHS is made of a FPGA VI program and a Host VI 

program. Conversely to the MTC, in the MHS the timestamp information flows 

from the Host PC to the FPGA card.The MHS Host VI reads timestamps from a 

binary file and transfers them to the FPGA card by three DMA channels. In turn, 

the FPGA VI reads the timestamps from the DMA channels and generates TTL 

pulses on any of 16 digital outputs. Therefore, the TTL pulses coming out of the 

FPGA card will simulate the TTL pulses coming from 16 photon detectors. 

3.2.1 Multichannel Hardware Simulator FPGA VI 

The functional block diagram of the MHS FPGA VI is shown in Figure 17. The 

FPGA VI program retrieves two consecutive timestamps and their respective 

flags from the DMA-FIFOs and stores them in temporary registers. Then the 

timestamps pass to a logic circuit that compares them to the current count of a 

32-bit counter. When a match happens, the digital output generates the 

corresponding TTL pulses on channels indicated by the 16-bit flag. 

The Labview program for the MHS FPGA VI is shown in Figures 18 and 19. The 

program runs at 80MHz inside a One-Cycle Time Loop. Therefore, most of the 

logic circuit executes in one clock cycle of 12.5ns, i.e. the 32-bit counter and the 

16 digital outputs are updated each one clock cycle. However, the programming 

blocks inside “case loops” execute only when their respective truth condition is 

satisfied. In this manner, the FPGA FIFOs are read only when a new pair of 

timestamps is required, in other words when the previous timestamps have 

already been used to generate TTL pulses and a new one is needed. After a pair 

of timestamps are read from the FPGA FIFOs and stored in temporary registers, 

they are held until the timestamp matches the count of the 32-bit counter (12.5ns 

increments timer). When a match occurs, a logic circuit generates a three-clock 

long TTL pulse on one or more of the 16 digital outputs, as shown in the second 

and third “case loops” in Figure 18. 
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Figure 17 Block diagram of the MHS 
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Figure 18 Labview program of the MHS FPGA VI 
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Figure 19 Labview program of the MHS FPGA VI 
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3.2.2 Multichannel Hardware Simulator Host VI 

As mentioned earlier, the MHS Host VI reads timestamps from a file and sends 

them to the FPGA card through three DMA channels. The MHS Host VI Labview 

program that performs this task is shown in Figure 20. First, the Host VI program 

opens a binary file containing timestamps and their respective flags. This file may 

be generated by an existing computer simulation of FCS or it could be 

experimentally collected. The MHS Host VI program also makes a reference to 

the FPGA card in order to link the FPGA FIFOs to the Host FIFOs to enable the 

DMA transfer operations. Second, the program enters a “while loop” that iterates 

constantly until the last timestamps have been read and sent to the FPGA card 

or until stopped by the user. During each “while loop” iteration, 3000 timestamps 

with their corresponding flags are read at once.  

These timestamps are divided to form two groups of 1500 timestamps that are 

written into the Host FIFO. The first group of timestamps is written into the FIFO-

DMA0, the second group of timestamps is the consecutive of the first group of 

timestamps, and is written into the FIFO-DMA1. Similarly the flags are written 

into the FIFO-DMA2. Finally, the DMA channels automatically transfer the 

timestamps from the Host FIFOs to the FPGA card. 

3.3 Multichannel Auto-correlator and Cross-correlator Program 

The Multichannel Auto-correlator and Cross-correlator program runs in the host 

PC and uses the binary file generated by the MTC, for example from a FCS 

experiment. The program reads the photon timestamps and the corresponding 

flags from the binary file and calculates the auto-correlation and cross-correlation 

functions of the 16x16 pairs of channels, generating at the end either a binary file 

or a text file that may be opened by a spreadsheet program. These files can be 

used for plotting the respective graphs or for curve fitting. This program is written 

in C-language based on a Time-Of-Arrival algorithm devised by Dr. L. Davis and 

explained in reference [7]. 
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Figure 20 Labview program of the MHS Host VI 
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The multichannel autocorrelation and cross-correlation C-language program was 

written and compiled using Labview CVI software which is a standard C compiler. 

For the results discussed in Chapter IV, the program was set to process the 

correlation functions only for two channels; but it can be configured to process 16 

channels. 



 38 

Chapter IV 

Test and Results 

The MTC, the MHS and the Auto-correlation and Cross-correlation program were 

designed and tested separately. Then, all parts were connected and tested as a 

whole system. The following sections explain the tests carried out for each part of 

the project and the results. 

4.1 Multichannel Time-Correlator Test 

The MTC, with the FPGA card configured to run at 80MHz clock frequency, was 

thoroughly tested in order to check that all 16 digital inputs were working 

correctly and generating the correct timestamps. Another important goal was to 

check the performance of the FIFOs and the DMA transfer operations. It was 

necessary to check that the size of the FPGA FIFO and the Host FIFO were 

large enough to avoid losing any timestamp information in the case of high rate 

burst of input pulses. To achieve all these goals, a train of pulses from a pulse 

generator with a fixed duty cycle and fixed period was applied to the 16 channels. 

The outcome of these tests was a binary file of timestamps that proved the 

correct detection of the test pulses and correct operation of the FIFO-DMA 

transfer operations. A final test was to use a photon detector module, the 

PerkinElmer SPCM-AQR-15, to test the MTC with real random photon 

timestamps in dark count conditions. The satisfactory result was a binary file of 

random photon timestamps at an average rate of 56 photons per second, which 

is close to the specified dark count rate of 50 counts per second of the single-

photon count module SPCM-AQR-15. 

4.2 Multichannel Hardware Simulator Test 

The MHS was also tested to check the proper functionality of the 16 digital 

outputs and a suitable size configuration of the FPGA FIFO and Host FIFO. The 

test was carried out by using a binary file that simulated timestamps evenly 
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spaced that the MHS program read to produce a train of TTL pulses. The 16 

digital output signals were checked on an oscilloscope and found to be 

satisfactory for the signal accuracy of the 16 digital outputs. The FIFO and DMA 

performance was also satisfactory. For a second test, the MTC was connected to 

the MHS using the 16 channel inputs. A binary file of evenly spaced timestamps 

was used on the MHS to generate simulated photon pulses. The file obtained 

from the MTC was compared against the original binary file used by the MHS. It 

was found that the timing of the timestamps in both files were almost equal 

except for some cases where the compared pair of timestamps had a difference 

of one clock tick in advance or in delay. This difference is due to inherent jitter in 

the digital outputs of the FPGA card and because the two FPGA cards (one from 

the MTC and the other from the MHS) may have a very little difference in their 

clock frequency speed even though they are programmed with same nominal 

frequency of 80MHz. This small error can be considered acceptable, because the 

error happens randomly, in delay or advance. 

4.4 Multichannel Auto-correlation and Cross-correlation Program Test 

The auto-correlation and cross-correlation program was created by Dr. L. Davis 

based on the algorithm from reference [7]. However, for the purpose of checking 

the compatibility of the program with the other parts of the project, and for 

learning to use the program, a few tests were carried out. In particular, two binary 

files of timestamps of two-channel FCS were obtained from a Monte Carlo 

Simulation program available in reference [8]. These two binary files were used 

to generate 16-channel data files, which were then used to successfully test the 

autocorrelation and cross-correlation program. 

4.5 Overall system test and results 

A diagram that explains the method used to test the complete system of the MTC 

and MHS is shown in Figure 21. A binary file of simulated two-channels 

timestamps was obtained from a Monte Carlo simulation from reference [8]. 
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Figure 21 Set up used to test the complete system 
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Then, the MHS reads the Monte Carlo simulated timestamps file and generates 

photon-stream TTL pulses in two output channels. Simultaneously, the MTC 

detects the photon-stream TTL pulses received in two input channels and 

generates timestamps that are collected in a file and stored in the host PC. After 

the experiment is completed, the simulated timestamps file, obtained from the 

test, and the original timestamps file, from the Monte Carlo program, are used to 

calculate their correlation functions. The correlation functions of the two files are 

compared to prove the efficiency of the system or to find the amount of error 

yielded by the system. 

The autocorrelation and cross-correlation C-program from reference [8] is applied 

to calculate the correlation functions of the Monte Carlo timestamps file and the 

correlation functions of the simulated timestamps file. The correlation functions of 

the Monte Carlo file, including the autocorrelation of channel 0 (a[0][0]), 

autocorrelation of channel 1 (a[1][1]), cross-correlation of channel 0 with respect 

to channel 1 (a[0][1]) and cross-correlation of channel 1 with respect to channel 0 

(a[1][0]) are shown in Figure 22. Similarly, the four correlation functions of the 

simulated timestamps are shown in Figure 23. These graphs show that the 

correlation functions obtained from the test are almost equal to the correlation 

functions from the Monte Carlo simulation. 

The graphs obtained by subtracting the correlation functions of the test and the 

correlation functions of the Monte Carlo simulation are shown in Figure 24. 

The graphs show that larger errors occur for “tau” delays less than 100ns. 

Furthermore, the error became very small for greater “tau” delays. Thus the 

difference demonstrates that the +1/-1 error of the timestamps affects the 

autocorrelation function. This also shows that the autocorrelation function is 

useful for curve fitting because the larger error occurs at the beginning of the 

curve at “tau” delays less than 100ns, and is very small for “tau” delays larger 

than 100ns. 
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Figure 22 Correlation functions of the two-channel timestamp data obtained from the Monte Carlo Simulation 
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Figure 23 Correlation functions of the two-channels timestamp data obtained from the MTC during the system test. 
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Figure 24 Error or Difference between the experimental correlation functions compared with the correlation functions of the 

Monte Carlo simulated data. 
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Despite the small error discussed above, the system performed very well proving 

that the size of the DMA-FIFOs, the digital inputs sampling rate and digital 

outputs update rate were configured correctly. 
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Chapter V 

Conclusions 

A MTC and a MHS for fluorescence correlation spectroscopy have been 

implemented based on the relatively new reconfigurable FPGA cards PCI-7811R 

and PCI-7833R from National Instruments. The MTC has been proven to work 

efficiently to detect simultaneously photon streams on 16 channels at 80 MHz 

sampling rate and to store the photon timestamps to a file. The MHS has been 

proven to read a file of photon timestamps and generate simultaneously 16 

photon-stream TTL pulses at 80MHz update rate. Both programs theoretically 

can process > 10 Million counts per second among their 16 channels. 

Additionally a novel algorithm from reference [7] written in C language was used 

to calculate the autocorrelation and cross-correlation functions. The MTC, the 

MHS and the correlation C-program were tested together as a whole system. 

The small errors found in the correlation functions were produced by the ± 1 

clock timing jitter of the FPGA card. The larger errors occur for “tau” less than 

100ns. Thus, despite the occurrence of errors on the correlation functions, they 

are considered useful for curve-fitting and for FCS analysis. 

 Through the process of designing and testing the MTC and MHS, some possible 

improvements for future designs were discovered. For instance, the whole 

system may be upgraded from processing simultaneously photon-stream pulses 

on 16 channels to processing simultaneously photon-stream pulses on 32 or 64 

channels; also the sampling frequency and the timing resolution may be 

improved from 80MHz and 12.5ns to 160MHz and 6.25ns. In order to accomplish 

these improvements, the main modifications have to be done in the FPGA VI 

programs. For instance, increasing the number of channels to 32 can be 

achieved by programming 32 digital inputs and creating 32-bit flags instead of 

16-bit flags. There will be a tradeoff between the number of channels and the 

maximum counts per second processed. If the number of channels is increased, 
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the maximum DMA throughput will be shared by more timestamps from different 

channels; therefore each channel will process a smaller maximum count per 

second. In order to increase the sampling frequency to 160MHz, the clock of the 

one-cycle-time loop has to be configured for 160MHz. Therefore the logic circuit 

inside the loop has to be re-designed in order to execute in less than 6.25ns. It 

means that the 32-bit counter, digital input logic circuit, the FIFO logic circuit, and 

other combinational circuits inside the one-cycle time loop have to execute in 

less than 6.25ns. The DMA-FIFO circuit executes in more than 6.25ns; thus an 

intermediate FPGA-scoped FIFO has to be used inside the 6.25ns one-cycle 

time loop to send the data to a DMA-FIFO in a 12.5ns one-cycle time loop. 

Furthermore, the flexibility of the FPGA card may allow implementing other 

algorithms to calculate the correlation functions, i.e., the multi-tau algorithm, or 

real-time algorithms. 

Photon correlation spectroscopy (PCS) (also known as dynamic light scattering) 

is a similar optical technique to the fluorescence correlation spectroscopy (FCS). 

They differ in some optical or physical aspects, i.e., the applications, the type of 

light beam that irradiates the sample, etc. However both techniques require 

calculating the temporal correlation functions of the photon streams derived from 

the sample under experiment. Furthermore, photon correlation spectroscopy will 

be also improved by using multiple detectors to simultaneously scan different 

scattering angles. Thus, the MTC presented in this project can also be applied for 

photon correlation spectroscopy without need of modification of the design. 

Additionally, there are many applications in physics and other fields where the 

timestamps of detected photons are very useful. Therefore, this project can also 

be applied for multichannel photon time stamping. 
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