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ABSTRACT 

EETA79001 is a unique shergottite composed of two mafic lithologies (termed 

LithA and LithB) that are separated by an igneous contact.  Both lithologies have basaltic 

compositions; however, LithA contains megacrysts of olivine, orthopyroxenes, and 

chromite whereas LithB does not; also, LithA is finer-grained than LithB.  Currently, the 

literature is in disagreement regarding the formation of this unique meteorite, especially 

regarding LithA.  Different formational theories (e.g. fractional crystallization, magma 

mixing, assimilation, and impact melting) have their own constraints (chemical, thermal, 

or petrographic).  This study uses petrographic observations combined with major- and 

trace- element compositions within minerals to investigate the petrogenesis of LithA.  

Previous formational theories are addressed and a new model is proposed.  

The groundmass composition of LithA is important in explaining the relationship 

between megacrysts and the groundmass.  Previous estimates do not consider weighted 

compositional averages or overgrowths on olivine megacrysts.  In this study, a new 

estimate of the LithA groundmass composition is obtained using weighted averages of 

zoned minerals (major-element), and includes the overgrowth rims on megacrysts.   

Here, I introduce a new LithA formational model that involves the mixing of cold 

megacrysts with magma.  This hybrid model suggests that the interaction of the 

megacrysts and magma altered the heat balance and changed the crystallization sequence, 

as evidenced by the major-element trend in pyroxenes and the finer grain size of the 

LithA groundmass.  The megacryst overgrowths and groundmass then crystallized, and 

was later followed by the removal of the late-stage fractionated melt (liquid ~Mg# 20).  

This new model would explain the formation of the overgrowths and avoids the heat 
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constraints associated with magma mixing and assimilation.  However, a short-coming of 

this theory lies in the necessity for the late-stage removal of the last ~10% of the melt, 

necessary to modify the original magma composition to that of the observed LithA 

groundmass composition. 
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1. INTRODUCTION 

Of the tens of thousands of meteorites collected worldwide, thirty-eight have been 

identified as having a Martian origin, and are classified as SNC (Shergottite, Nakhlite, and 

Chassignite) meteorites.  These meteorites are unique among the achondrite group.  They are 

unbrecciated, tend to have a high oxidation state, show complex REE patterns, have young 

crystallization ages, and contain shock-implanted gases that show compositional similarities 

to the Martian atmosphere (Bogard and Johnson, 1983; Treiman et al., 2000).  The SNC 

meteorites are particularly important because they are the only samples we have from Mars.  

They provide invaluable information about the geologic, geochemical, and atmospheric 

evolution of the red planet.  The study of EETA79001, one of the most well-known SNC 

meteorites, has contributed significantly to our current knowledge of Martian petrology. 

Elephant Moraine A79001 (EETA79001) may be considered the most unique SNC 

meteorite, because it is composed of two texturally distinct, mafic lithologies that are 

separated by a gradational geologic contact (McSween and Jarosewich, 1983).  This 7.94 kg 

shergottite was discovered during the 1979 ANSMET field expedition in Antarctica.  

Lithology A (hereafter referred to as LithA), is classified as an olivine-phyric shergottite, 

whereas LithB (hereafter referred to as LithB) is a basaltic shergottite .  The two lithologies 

show obvious differences in texture (porphyritic versus non-porphyritic for LithA and LithB 

respectively), and subtle differences in grain size, bulk chemistry, and mineral compositions 

(Steele and Smith, 1982; McSween and Jarosewich, 1983; Wadhwa et al., 1994).   

The formation of the two juxtaposed lithologies is currently under debate, and 

numerous theories have been proposed (Ma et al., 1982; McSween, 1982; Steele and Smith, 

1982; Wooden et al., 1982; McSween and Jarosewich, 1983; Nyquist et al., 1984; Nyquist et 



 9

al., 1986; Wadhwa et al., 1994; Warren, 1997; Boctor et al., 1998; Kaiden et al., 1998; 

Mikouchi et al., 1999; Mittlefehldt et al., 1999, Goodrich, 2003).  Most formational theories 

have suggested an igneous origin (such as magma mixing, fractional crystallization, or 

assimilation), but one (Mittlefehldt et al., 1999) implied an impact melt origin.   

The first model (as discussed here) suggests that LithA formed by mixing LithB 

magma with an ultramafic, phenocryst-bearing magma, similar in composition to a spinel-

harzburgite or a lherzolitic shergottite (McSween and Jarosewich, 1983; Wadhwa et al., 

1994).  Mittlefehldt et al. (1999) reported that previous magma mixing models overestimated 

the LREE abundance in LithA, and the ultramafic endmember must be a LREE-depleted 

lherzolitc magma.  This magma could have only formed by high degrees of melting, a process 

unlikely to occur because of heat constraints.  Therefore, Mittlefehldt et al. (1999) argued that 

the magma mixing model is not plausible. 

The second formational model favored assimilation of ~36% spinel-harzburgite rock 

by a magma having a similar composition to LithB (McSween and Jarosewich, 1983; 

Wadhwa et al., 1994).  However, the amount of heat need to assimilate such an ultramafic 

material may be greater than the heat provided by the latent heat of crystallization (Wadhwa 

et al., 1994).   

A third model suggests that LithA is an impact melt composed of a mixture of 

approximately 44% LithB and 56% light lithology (incompatible-element poor) ALHA77005 

(Mittlefehldt et al., 1999).  The LithA impact melt incorporated LithB as a clast.  According 

to this model, the Au enrichment in the LithA groundmass indicates that the LithA 

groundmass is of meteoritic origin.  However, Warren and Kallemeyn (1997) state that the Au 

does not correlate with Ir, so the Au enrichment is most likely terrestrial contamination. 
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The fourth formational model states that LithA formed by various degrees of partial 

melting of a peridotite source rock (McSween and Jarosewich, 1983).  According to the 

partial melting model, the megacrysts originated from the residue of the partial melt.  A 

strong argument against this model contends that garnet exists in the shergottite source region 

(Ma et al., 1981; Wooden et al., 1982), and the chromium megacrysts found in LithA are 

unlikely to occur with garnet (McSween and Jarosewich, 1983).  

Finally, the possibility that LithA and LithB formed by fractional crystallization of a 

common parent melt has been considered.  McSween and Jarosewich (1983) and Ma et al. 

(1982) discounted this theory because the olivine and orthopyroxene megacrysts were 

believed to be out of equilibrium with the groundmass.  Also, Goodrich (2003) used the 

quartz-olivine-plagioclase phase system to demonstrate that the LithA whole-rock 

composition (Mg# 61) “does not become cosaturated with orthopyroxene until ~26% olivine 

has crystallized”.  Therefore, the olivine and orthopyroxene megacrysts cannot be in 

equilibrium with a melt having this whole-rock composition. 

In the present study, we approach the petrogenesis of these two lithologies by 

analyzing major- and trace-element variations within minerals obtained by electron 

microprobe analysis (EMP) and laser-ablation inductively-coupled-plasma mass-spectrometry 

(LA-ICP-MS).  Specifically, this study addresses the nature of the relationship between the 

megacrysts in LithA and its groundmass, and the relationship between lithologies A and B.  
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2. METHODOLOGY 

Six polished sections (four thin and two thick) were obtained from NASA Johnson 

Space Center Astromaterials Curation.  Two sections were cut from LithA (,616; ,439), two 

from LithB (,457; ,392), and two at the contact between the lithologies (,615; ,39).  All slides 

range in surface area from 50-78 mm2, except ,39, which has a surface area of approximately 

170 mm2.  The initial petrography of each section was examined using a petrographic 

microscope.  Crystal sizes were determined optically by averaging two perpendicular 

measurements of crystal diameters.  Up to 20 crystals per mineral were measured. 

A Cameca SX-50 electron microprobe (EMP) was used to obtain major-element 

chemistry on minerals.  All minerals (except maskelynite and glass) were examined using an 

excitation voltage of 15 keV, a beam current of 20 nA, and a spot size of 1 µm.  To reduce Na 

loss, maskelynite and glass were examined using a beam current of 10 nA and a spot size of 5 

µm.  Standard PAP corrections were used to remove matrix effects.  The detection limits (3σ 

above background) for SiO2, TiO2, Al2O3, MgO, CaO, Na2O, K2O, and Cl are <0.03 wt%.  

For Cr2O3, MnO, FeO, P2O5, NiO, and Co, the detection limits are <0.05 wt%.  All other 

oxides and elements have detection limits between <0.05-0.1 wt%.   

 Modes were obtained on all sections using an Oxford Instrument energy dispersive 

spectrometer (EDS), coupled to the EMP.  Modal analyses acquisition used an excitation 

voltage of 15 keV, a beam current of 20 nA, a spot size of 1 µm, 70 msec counting time, and 

a step-size of 4 µm.  A total of ~250,000 points per slide were analyzed, using the Feature 

Scan Phase Distribution Software (developed by Oxford Instruments) and following the 

procedure of Taylor et al. (1996).   
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Trace-element abundances of all minerals and melt veins in the thick sections (LithA, 

616; and LithB, 615) were analyzed in-situ using a laser-ablation, inductively-coupled-plasma 

mass-spectrometer (LA-ICP-MS) at the Australian National University in Canberra, 

Australia.  Trace-element data were obtained by following the analytical procedure of 

Norman et al. (1996).  Laser ablation was performed using a 193 nm Excimer UV laser 

system utilizing a 25% reduction mirror.  The laser beam spot size ranged between 24-54 µm 

with a repetition rate set at either 5 Hz or 10Hz.  Each analysis totaled 60 sec, and included 20 

sec for background acquisition followed by 40 sec of ablation.  Each ablated spot resulted in a 

circular hole having a depth of 20 to 40 µm, depending on the spot size and laser-repetition 

rate.  Ablation was performed under an argon atmosphere, and the ablated product was 

transported to the ICP-MS by an argon-helium gas flow.   

A NIST 612 glass was used as a calibration standard along with the following USGS 

basaltic glass standards: TB-1G, BIR-1G, BCR-2G, and BHVO-2G.  The detection limits 

were calculated by Lamtrace, a software program developed by Simon Jackson at Macquarie 

University, Sydney, Australia.  The detection limits were calculated following the method of 

Longerich et al. (1996).  The amount of ablation product varied for each spot analyzed; 

therefore, detection limits were calculated after every analysis.  The average detection limits 

for all elements analyzed (calculated at 3σ of the sample) are listed as follows: <0.02 wt % 

for Na2O, MgO, Al2O3, SiO2, CaO, and FeO;  0.01 -0.06 ppm for Mn, Co, Ga, Rb, Sr, Y, Zr, 

Nb, Ba, La, Ce, Pr, Nd, Sm, Eu, Tb, Gd, Dy, Ho, Er, Yb, Lu, Hf, Ta, Pb, Th, Cs, and V; 0.13-

0.16 ppm for Sc and Zr; and 0.2-1.0 ppm for Ni and Ti.  The resulting time-resolved data 

were reduced using Lamtrace.  This program allowed for the adjustment of the integration 

interval for each ablated spot and assured that the data represents the ablation of one mineral.  
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Finally, each ablation spot was normalized to the corresponding EMP analysis using wt% 

CaO for pyroxene, maskelynite, glass, and phosphate, and wt% FeO for olivine, chromite, 

ilmenite, and pyrrohotite. 
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3. PETROGRAPHY AND COMPOSITION 

The petrography, modal abundances, and major-element compositions of minerals are 

discussed below.  Mineral modal abundances (Table 1) were determined for all sections; 

however, only the sections that do not contain the contact are compared to values obtained by 

previous studies (McSween and Jarosewich, 1983; Schwandt et al., 2001).  This is because 

the sections that contain the contact have the largest variations in mineral modes, and may not 

be representative of each lithology as a whole.  We report the major-element compositions of 

minerals from all six sections (summarized in Table 2) because the actual mineral 

compositions do not appear to vary with distance from the contact.  These modal and major-

element observations are supported by the EMP and modal analysis work by Steele and Smith 

(1982) and McSween and Jarosewich (1983).    

3.1 Lithology A 
LithA is a porphyritic basalt that contains megacrysts of olivine, orthopyroxene, and 

chromite.  The groundmass is comprised of pyroxene (mainly pigeonite), maskelynite, 

chromite, ilmenite, pyrrohotite, whitlockite, ulvöspinel, and a silica phase (possibly 

tridymite?).  The LithA groundmass crystals are finer-grained than the crystals in LithB.   

Lithology A Megacryst Assemblage 
The LithA megacrysts (in the analyzed sections) exist as large individual crystals (Fig. 

1 a-c), although a few clusters of two or more olivine megacrysts have been identified.  

Previous studies (Steele and Smith, 1982; McSween and Jarosewich, 1983) reported areas of 

composite megacrysts of olivine and orthopyroxene, which were interpreted 



Table 1. Average modal abundances of LithA and B. 
Section # pig aug opx mask ol whit po chr sil il usp
Mellin (LithA Megacrysts + Groundmass)
,616 (A) 60.4 5.47 2.08 21.1 8.02 1.73 0.35 0.30 0.02 0.34 0.24
,439 (A) 58.0 5.25 5.04 17.8 10.8 1.64 0.41 0.42 0.01 0.34 0.23
Average 59.2 5.36 3.56 19.5 9.43 1.68 0.38 0.36 0.01 0.34 0.23
Mellin (LithA Groundmass Only)
,616 (A) 66.4 6.01 1.02 23.3 0.23 1.90 0.39 0.10 0.02 0.38 0.26
,439 (A) 68.2 6.20 1.05 21.2 0.05 1.93 0.48 0.20 0.01 0.40 0.27
Average 67.3 6.11 1.04 22.3 0.14 1.92 0.44 0.15 0.02 0.39 0.27
Mellin (LithB)
,392 (B) 37.0 11.8 0.08 44.4 0.00 3.75 0.39 0.00 0.84 0.87 0.80
,457 (B) 57.9 7.35 1.14 29.4 0.02 2.55 0.48 0.06 0.24 0.55 0.31
Average 47.5 9.59 0.61 36.9 0.01 3.15 0.44 0.03 0.54 0.71 0.56

McSween and Jarosewich (1983)
pig aug opx mask ol whit meso opaq

,75 (A) 62.8 3.20 3.40 18.3 10.3 trace 0.00 2.20
,68 (A) 60.7 6.50 5.70 15.9 7.20 trace trace 4.00
,79 (A), 80 (A) 54.5 8.50 7.2 17.0 9.10 0.40 0.30 3.00
*Average 61.8 4.85 4.55 17.1 8.75 0.40 0.00 3.10

,79 (B), 80 (B) 54.4 11.6 0.00 28.2 0.00 0.70 1.10 3.40
,71 (B) 32.2 23.9 0.00 29.4 0.00 0.20 0.50 3.80
,69 (B) 31.8 24.5 0.00 29.6 0.00 0.20 0.50 3.40
*Average 43.3 17.8 0.00 28.8 0.00 0.45 0.80 3.60

Schwandt et al. (2001)
pig aug opx mask ol whit meso opaq

,68 (A) 42.0 18.0 3.00 22.0 10.0 2.00 0.00 3.00

Mineral Abbreviations: pig - pigeonite, aug - augite, opx - orthopyroxene, mask - maskelynite, ol - olivine, whit - whitlockite, po - pyrrhotite, chr -  
chromite, sil - silica, il - ilmenite, usp - ulvospinel, opq - opaques, meso - mesostasis

*Only thin sections  ,75, 68, 71, and ,69 are included because the exact location of the gradational geologic contact is subjective and abundances may not 
be representative
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Table 2. Major-element compositional ranges for all phases in LithA and B, obtained from EMP analyses. 
Phase

core rim core rim core rim core rim core rim core rim core rim core rim core rim core rim
Lith. A A B B A A B B *A *A B B *A *A *A *A A A B B A B A B A B

wt%
SiO2 54.1 49.7 53.4 47.8 52.8 49.2 52.3 49.9 53.9 49.9 54.2 49.1 38.0 34.6 0.16 0.03 52.6 56.4 52.6 57.1 0.06 0.03 0.05 0.09 96.8 95.9
TiO2 0.13 0.45 0.12 0.80 0.24 0.94 0.28 0.58 0.05 0.96 0.07 0.76 − − 0.67 16.5 − − − − 52.0 51.9 29.3 27.6 0.32 −
Al2O3 0.32 0.95 0.74 0.67 1.45 1.04 1.48 1.05 0.56 0.76 0.47 1.31 − − 9.39 4.24 29.0 27.3 29.8 26.2 0.00 0.07 1.51 1.78 2.0 1.6
Cr2O3 0.52 0.36 0.49 0.08 0.60 0.19 0.88 0.13 0.55 0.06 0.51 0.35 0.15 0.08 54.8 26.6 − − − − 0.38 0.01 0.74 0.53 − −
MgO 25.1 12.4 23.2 8.1 16.9 10.0 17.4 12.2 25.9 12.7 26.2 12.0 38.3 23.4 4.81 2.90 0.10 0.06 0.17 0.04 1.76 0.14 0.60 0.35 0.00 0.02
CaO 3.43 6.98 4.24 7.39 15.4 14.5 14.7 13.0 2.15 8.48 2.04 9.70 0.33 0.22 0.01 0.08 12.6 9.7 13.0 9.2 0.09 0.02 0.02 0.01 0.39 0.30
MnO 0.59 0.68 0.56 0.78 0.47 0.66 0.48 0.57 0.48 0.70 0.50 0.72 0.46 0.78 0.44 0.52 − − − − 0.69 0.64 0.66 0.58 − −
FeO 16.3 27.7 17.3 33.0 12.8 22.9 12.4 21.3 15.3 26.2 15.0 25.1 21.4 41.2 27.7 46.5 0.75 0.63 0.52 0.78 44.1 46.6 65.9 66.7 0.27 0.19
Na2O 0.04 0.09 0.05 0.07 0.15 0.12 0.17 0.10 0.03 0.07 0.03 0.11 − − − − 4.08 5.54 3.84 5.71 − − − − 0.13 0.45
K2O − − − − − − − − − − − − − − − − 0.12 0.27 0.07 0.68 − − − − − −
Total 100.5 99.3 100.0 98.7 100.8 99.5 100.0 98.8 99.0 99.8 99.1 99.2 98.7 100.3 97.9 97.4 99.2 99.9 100.0 99.7 99.1 99.5 98.8 97.7 99.9 98.5

Si 1.97 1.96 1.97 1.96 1.95 1.94 1.95 1.96 1.98 1.96 1.98 1.94 1.00 0.99 0.01 0.00 2.41 2.54 2.39 2.58 0.00 0.00 0.00 0.00 0.98 0.98
Ti 0.00 0.01 0.00 0.03 0.01 0.03 0.01 0.02 0.00 0.03 0.00 0.02 − − 0.02 0.46 − − − − 0.99 0.99 0.85 0.81 0.00 −
Al 0.01 0.04 0.03 0.03 0.06 0.05 0.07 0.05 0.02 0.04 0.02 0.06 − − 0.39 0.18 1.56 1.45 1.59 1.40 0.00 0.00 0.07 0.08 0.02 0.02
Cr 0.02 0.01 0.01 0.00 0.02 0.01 0.03 0.00 0.02 0.00 0.02 0.01 0.00 0.00 1.52 0.78 − − − − 0.01 0.00 0.02 0.02 − −
Mg 1.36 0.73 1.27 0.50 0.93 0.59 0.96 0.71 1.42 0.74 1.43 0.71 1.50 1.00 0.25 0.16 0.01 0.00 0.01 0.00 0.07 0.01 0.03 0.02 0.00 0.00
Ca 0.13 0.30 0.17 0.32 0.61 0.61 0.59 0.55 0.08 0.36 0.08 0.41 0.01 0.01 0.00 0.00 0.62 0.47 0.63 0.45 0.00 0.00 0.00 0.00 0.00 0.00
Mn 0.02 0.02 0.02 0.03 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.01 0.02 0.01 0.02 − − − − 0.02 0.01 0.02 0.02 − −
Fe 0.50 0.92 0.53 1.13 0.40 0.76 0.39 0.70 0.47 0.86 0.46 0.83 0.47 0.99 0.81 1.43 0.03 0.02 0.02 0.03 0.93 0.99 2.11 2.18 0.00 0.00
Na 0.00 0.01 0.00 0.01 0.01 0.01 0.01 0.01 0.00 0.01 0.00 0.01 − − − − 0.36 0.48 0.34 0.50 − − − − 0.00 0.01
K − − − − − − − − − − − − − − − − 0.01 0.02 0.00 0.04 − − − − − −
Total 4.01 4.00 4.01 4.00 4.01 4.01 4.01 4.01 4.00 4.00 4.00 4.01 3.00 3.01 3.01 3.03 5.00 4.99 4.99 4.99 2.01 2.00 3.11 3.13 1.01 1.01

Mg# 73.1 44.3 70.5 30.6 69.9 43.7 71.4 50.5 75.1 46.3 75.7 46.0 76.1 50.3 23.6 10.0
%An 62.6 48.5 64.9 45.2

Wo 6.53 15.3 8.51 16.6 31.4 31.3 30.2 27.9 4.27 18.2 4.07 21.1
En 68.3 37.5 64.5 25.5 47.9 30.1 49.8 36.4 71.9 37.8 72.6 36.3
Fs 25.1 47.2 27.0 57.9 20.6 38.7 19.9 35.7 23.9 43.9 23.3 42.6
* Megacrysts

SilicaChromite IlmeniteOlivine Pigeonite MaskelyniteAugite UlvöspinelOpx
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Figure 1.  BSE images of LithA and B.  (a-c) show LithA megacrysts of (a) olivine (b) orthopyroxene and 
(c) chromite.  Features found in both lithologies include (d) Type 1 and Type 2 fractures, (e) 
pyroxferroite breakdown textures, and (f) melt vein (outlined)
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to be xenoliths.  This type of megacryst clustering is not observed in the sections 

analyzed for this study.  

The abundance of megacrysts (olivine plus orthopyroxene) in the LithA sections 

(Table 1) ranges from 9.1 to 14.8 vol%.  The large size of the megacrysts (> 0.5 mm) 

suggests that this variation may be due to a sampling effect.  The reported abundances of 

olivine and orthopyroxene megacrysts from McSween and Jarosewich (1983) (excluding 

the contact-bearing slides ,79 and ,80), however,  show only slight variations that range 

between 12.9-13.7 vol%.  The differences in megacryst abundance between this study 

and McSween and Jarosewich (1983) may be due to differences in analytical technique.  

This study obtained mineral abundances by image processing of BSE maps while 

McSween and Jarosewich (1983) used a point-counting method.  Chromite megacrysts in 

the analyzed sections, however, only vary in abundance from 0.20-0.22 vol%. 

 The olivine megacrysts are large (1-3mm) subhedral to anhedral grains with 

irregular crystal boundaries which may be the result of shear deformation due to shock 

(Goodrich 2003) or resorption (Steele and Smith 1982).  Shock veins and microfaults 

were reported in the olivine megacrysts by Goodrich (2003), and the presence of these 

features is confirmed in this study.  Some olivine-crystal shapes are difficult to 

distinguish because these megacrysts display extensive shock-induced fracturing at the 

contact of the megacryst with the groundmass. 

Olivine megacrysts (in the analyzed sections) are commonly zoned from Mg-rich 

(Fo76) cores to Fe-rich (Fo50) rims (Fig. 2c).  Steele and Smith (1982), however, reported 

olivine megacryst compositions of up to Fo81.  Calcium contents in



 
Figure 2. Mineral compositions for pyroxene, olivine, and maskelynite in lithologies A and B. Pyroxene data are compared to 

values (solid field) obtained from Mikouchi et al. (1999).
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three olivine megacrysts are plotted relative to distance from the rim in Figs. 3a-c.  These 

figures show an enrichment of CaO at the rim (or overgrowth) having a thickness of 100-

200 µm.  Plotting calcium versus forsterite content (Fig. 3d) shows that enrichment starts 

at a composition of ~Fo69.  Interestingly, a similar enrichment was also reported in 

another olivine-phyric shergottite, Yamato 980459 (Usui et al., 2007). 

The pyroxene megacrysts in LithA (Fig. 1b) range in size from 0.5 mm to 1 mm 

and have subhedral to anhedral shapes.  These megacrysts are zoned with orthopyroxene 

composing the core (En72Fs24Wo4), and pigeonite (En55Fs33Wo12) or augite 

(En48Fs23Wo29) composing the rim (Fig. 2a).  The composition of the pigeonite rimming 

the orthopyroxene core is similar to the composition of the groundmass pyroxenes.  

Chromite inclusions are found in the orthopyroxene and, less commonly, in the olivine 

megacrysts.  

Chromite megacrysts exist only in LithA, have diameters >100 µm (e.g. Fig. 1c), 

and have subhedral to anhedral crystal boundaries.  These megacrysts have low-Ti cores 

and ulvöspinel-rich rims (Fig. 4).  The ulvöspinel rims have a lower-Ti composition 

compared to ulvöspinel in the groundmass.  The chromite cores show extensive 

fracturing; however, this texture terminates at the core/rim boundary.  

Lithology A Groundmass 
The LithA groundmass pyroxenes have an average crystal size of 0.29 mm (Table 

3), and have complex Mg-Fe zoning patterns from core to rim.  A Ti-Al plot (Fig. 5a) of 

groundmass pyroxenes and orthopyroxene megacrysts show that they initially crystallize 

along a 1:6 slope; however, plagioclase crystallization begins when the Al



 
 
Figure 3. (a-c) Major-element distribution profiles of selected olivine megacrysts. 

Olivine rims show thicknesses that range from ~80-200 µm. Major-
element enrichments are interpreted to start at the location of the vertical 
dashed line. (d) A plot of wt% CaO vs Fo, shows CaO enrichments begin 
at approximately Fo 69. All values (a-d) are obtained by EMP 
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Figure 4. Plot of spinel compositions in LithA and B. Chromite megacrysts have high-Ti 
rims that trend toward ulvöspinel. Shaded region represent values obtained by 
McSween and Jarosewich (1983). 
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Table 3. Average crystal sizes of selected minerals  in LithA and LithB. 
Lithology A

616 (A) 439 (A) 39 (A) 615 (A) Average
Oliv megacryst 1.16 1.18 0.91 0.69 0.99
Opx megacryst 0.77 0.77 0.50 0.52 0.64
Chrom megacryst 0.17 0.10 0.15 0.12 0.14
Pyx groundmass 0.25 0.27 0.31 0.32 0.29
Maskelynite 0.19 0.14 0.29 0.27 0.22

 Lithology B
39 (B) 615 (B) 457 (B)  392 (B) Average

Pyxroxene 0.42 0.37 0.58 0.46 0.46
Maskelynite 0.61 0.33 0.49 0.62 0.51
Opx crystals – – 0.83 – 0.83

Mean Crystal Size (mm) 

Mean Crystal Size (mm)         
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Figure 5. Pyroxene compositions of Ti versus Al of LithA and B (afu-atomic formula 

units). Arrow denotes crystallization trend. Values obtained from EMP 
analysis. 
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concentration of the residual melt reaches 0.105 afu and 0.08 afu for pyroxene 

groundmass and orthopyroxene megacrysts, respectively.  Interestingly, the pyroxenes in 

the LithA groundmass and LithB (Fig. 5a and 5b) show similar crystallization trends. 

Plagioclase grains in LithA have been transformed to maskelynite as a result of 

intense shock.   Maskelynites are lath-shaped, with no preferential orientation, and show 

compositional zonations from An63 in the core to An49 in the rim (Fig. 2d), consistent 

with results of Mikouchi et al. (1999).  

 Chromite crystals in the groundmass and chromite inclusions within other 

megacrysts are uniformly low in Ti.  Ilmenite, ulvöspinel, and pyrrhotite generally occur 

as subhedral crystals that are <100 µm in size, and show no chemical zoning from core to 

rim.  Whitlockite occurs as subhedral crystals, <200 µm, and is typically bounded by 

pyroxene and maskelynite.  

3.2 Lithology B 
LithB is a non-porphyritic basalt composed of augite, pigeonite, maskelynite, 

ilmenite, whitlockite, ulvöspinel, and a silica phase (tridymite?).  It is more coarse-

grained than LithA and has crystal sizes that range from 0.33-0.83 mm, whereas LithA 

crystal sizes range from 0.14-0.32 mm (Table 3).  

The LithB sections studied here generally have a higher abundance of pigeonite 

and lower abundance of augite than reported by McSween and Jarosewich (1983).  These 

differences may be due to the use of an alternate method of obtaining modes.  McSween 

and Jarosewich (1983) used the optical point counting method.  The x-ray digital modal-

analysis technique used in the present study is more exacting than optical techniques in 

mineral identification.  However, if the total vol% of pigeonite + augite in the LithA 
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sections studied here is compared to the total vol% of pigeonite + augite determined by 

McSween and Jarosewich (1983), the results are similar (64.6% and 66.7%, respectively).   

The LithB pyroxenes have compositions that range from Mg-rich pigeonite cores 

to Fe-rich pigeonite or augite rims (Fig. 2b).  These Fe-rich rims extend into the 

“forbidden region,” which is common of basalts that have undergone extreme 

differentiation. This is not observed in pyroxenes in LithA.  Also, pyroxferroite 

breakdown textures (Fig. 1e) exist in the LithB groundmass.  Bladed maskelynite crystals 

are similar in composition to those in LithA and other studies (Fig.2e).  LithB 

maskelynite display wider compositional variation (An65-45) relative to maskelynites in 

LithA (An63-49).  Ulvöspinel, ilmenite and pyrrhotite show similar characteristics to those 

reported in LithA. 

The analyzed sections reveal distinctive features that have been previously 

unreported.  Contrary to previous studies (Steele and Smith, 1982; McSween and 

Jarosewich 1983; Mikouchi et al., 1999; Goodrich, 2003), large orthopyroxene crystals 

were observed in LithB section ,457.  These crystals have similar compositions and 

abundances as the orthopyroxene megacrysts in LithA (Tables 1 and 2, Fig. 2b).  These 

orthopyroxenes occur as subhedral grains (0.5–1.2 mm).  Melt inclusions may exist in the 

largest orthopyroxene crystals (>1.0 mm).  These crystals are zoned from Wo4En73 in the 

cores, and are rimmed by pigeonite having a composition of Wo21En36.  Other than the 

presence of orthopyroxene crystals, thin-section ,457  resembles the other LithB sections 

(in mineral abundance and compositions) analyzed in this study. 
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Shock Features 
Evidence of shock deformation includes numerous fractures and melt veins that 

cross-cut all minerals in both lithologies (Fig. 1d and 1f).  Intense fracturing occurs on 

both large and small scales.  Type 1 fractures are laterally continuous, often dendritic, 

and have depths that extend through the bottom of the cut section.  Type 2 fractures are 

abundant in all minerals, except maskelynite and silica.  These fractures are less than 5 

µm in width, are bounded by the minerals occupied, and often result in the formation of 

polygonal units within the minerals.  Melt veins are often linear and non-branching.  

They may extend for several millimeters and have variable widths that range between 10 

and 50 µm.  Many areas within the glass veins (especially near the edges) show a 

heterogeneous mixture of partially melted minerals such as pyroxene and maskelynite, as 

seen in Fig. 1f.   

All lithologies in EETA79001 show evidence of intensive-shock metamorphism 

(Bocter et al., 1998).  Pyroxenes display shock twinning, and olivines possess patchy 

extinction and strong mosaicism (Steele and Smith, 1982; McSween and Jarosewich, 

1983).  Pockets and veins of impact-generated melt occupy lithologies A and B, and 

plagioclase from both lithologies has been converted to maskelynite (Steele and Smith, 

1982; McSween and Jarosewich, 1983).  It is estimated that EETA79001 has experienced 

shock pressures of approximately 34 ±2 GPa (Lambert, 1985).  

Mikouchi et al., (1999) reported compositional lamellae in some pyroxenes in 

LithA groundmass and LithB.  The lamellae were described as having widths and spacing 

on the nanometer scale and are not observed optically or in back-scattered-electron 

imaging.  Shock lamellae (Fig. 6) exist in pyroxenes of both lithologies, but tend to be  



 
Figure 6. Shock lamellae in pyroxenes in (a) lithology A, and (b) lithology B. EMP analyses reveal no major-element variation 

among lamellae.  
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more prevalent in lithology A.  All lamellae rarely exceed widths of 50 µm and may have 

a slight curvature as shown in Fig. 6b.  Pyroxenes and olivines show undulatory 

extinction, a feature reported in other shergottites (Steele and Smith, 1982, Kaiden et al., 

1998). 

3.3 Trace-Element Composition 
Pyroxene REE patterns (CI-normalized) for lithologies A and B are displayed in 

Fig. 7.  Both lithologies display typical concave-downward patterns, with distinct LREE- 

depletions, slight HREE-enrichments, and weak negative-Eu anomalies.  The REE 

concentrations progressively increase with Ca and Fe enrichment, consistent with 

fractional crystallization.  Figure 8 shows the range of pyroxene compositions that were 

sampled by LA-ICP-MS.  Pyroxenes with similar compositions in LithA and LithB show 

strong similarities in their REE patterns, a fact well illustrated by a La/Sm versus La/Yb 

plot (Fig 9).  It is expected that the extremely fractionated pyroxenes in LithB (Fe-rich 

pigeonite) contain highly enriched REEs.  This is not shown in Fig. 8 because the beam 

spot used in our LA-ICP-MS analysis (54 µm) was larger than the Fe-rich rim analyzed.  

The REE patterns overlap data from Wadhwa et al. (1994) for pyroxenes with similar 

compositions.   

Figure 10 shows REE patterns from LithA and LithB maskelynite. These patterns 

display typically strong positive-Eu anomalies and have relatively constant 

concentrations from LREE to HREE.  The patterns become enriched with decreasing An 

content, as expected from studies of REE behavior by Jones (1995).  The analyzed 

sections from this study show a higher average Eu anomaly than reported in Wadhwa et 

al. (1994).  
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Figure 7. Normalized REE plots of (a) LithA pyroxene and olivine and (b) LithB 

pyroxene. The shaded region in both plots show the compositional range for 
low and high Ca pyroxenes from Wadhwa et al. (1994). The REE patterns are 
normalized to primitive CI carbonaceous chondrite using the values of Anders 
and Grevesse (1989). 
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Figure 8. Locations of all pyroxene compositions analyzed by EMP (closed circles) and 
LA-ICP-MS (open circles) for lithologies A and B.  
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Figure 9. La/Sm vs La/Yb of pyroxenes within lithologies A and B. 
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Figure 10. Normalized REE compositions of maskelynite of (a) LithA and (b) LithB. 
Both plots show prominent (+)Eu anomalies. The shaded region shows the 
average maskelynite composition (including error) reported by Wadhwa et al. 
(1999) 
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Figure 7a shows normalized REEs for megacrystic olivines in LithA.  The LREEs are 

undetectable, and the HREEs increase in concentration from Tb to Lu.  The olivines 

contain a high concentration of Ni (164-493 ppm) and Ga (0.27-0.69 ppm) (Table 4).  

Nickel concentration generally decreases with decreasing Mg#, whereas zinc 

concentration generally increases with decreasing Mg#.  As expected, whitlockite 

contains the highest concentrations of REEs (Table 4), followed in decreasing 

abundances by melt veins, pyroxene, maskelynite, olivine, and opaque phases (chromite, 

ilmenite, and pyrrhotite), which typically have REE values below the detection limits. 

3.4 Parental Melt 
The LithA and LithB parental-melt REE compositions that equilibrated with 

primitive groundmass pyroxenes (Wo12) were calculated twice (Figs. 11a and 11b), using 

separate sets of distribution coefficients (Dpyx-melt).  The first parental-melt calculation 

used distribution coefficients from McKay et al. (1986), shown in Fig. 11a.  These 

coefficients were determined experimentally by analyzing synthetic Shergotty pyroxenes 

and melts. The values are listed as follows: 0.002 (La), 0.004 (Ce), 0.019 (Nd), 0.031 

(Sm), 0.016 (Eu), 0.043 (Gd), 0.09 (Er), 0.13 (Yb), and 0.13 (Lu).  McKay et al. (1986) 

stated that their LREE values (namely La and Ce) exhibit uncertainties of up to 50%.  

Therefore, the parental-melt composition was also calculated using a different set of 

distribution coefficients from Lundberg et al. (1990), Fig. 11b.  These values are based on 

mineral-melt experiments from Lundberg (1988) on ALHA77005, a lherzolitic 

shergottite with pyroxenes that are similar in composition to the EETA79001
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Table 4. Sample trace-element analyses of LithA and B using LA-ICP-MS. 
 

opx ol chr
(ppm) A B A B *A A B *A A B A B *A A B A B
Sc 36.5 50.2 90.4 75.2 22.4 1.07 0.76 6.48 24.5 37.0 64.8 − 8.45 71.8 − <0.58 −
Ti 1226 1507 3363 1968 580 384 286 26.1 3508 6783 13.0 − 3270 287278 − <2.65 −
V 188 266 343 306 124 4.13 3.34 28.9 127 145 4.98 − 2273 466 − 3.72 −
Cr 2624 3419 3718 3153 2446 2.76 <1.81 1720 2452 1547 14.6 − 274295 2106 − 319 −
Co 44.1 56.6 43.7 43.9 42.6 0.62 0.50 81.2 73.0 37.6 2.31 − 95.5 29.6 − 206 −
Ni 93.8 87.1 116 56.0 112 0.83 0.85 493 391 130 7.25 − 120 52.8 − 6923 −
Zn − 72.9 65.9 57.9 − − − 65.2 77.6 79.1 2.54 − 486 52.6 − 1.59 −
Ga 3.39 3.98 8.24 4.94 1.61 43.5 35.4 0.45 13.0 30.2 10.5 − 43.1 4.59 − 0.13 −
Rb 0.89 0.17 0.03 0.04 0.09 7.96 0.25 <0.04 0.91 2.00 1.09 − <0.25 <0.19 − <0.15 −
Sr 1.37 1.18 1.52 0.77 0.30 78.9 64.9 0.02 16.0 36.7 93.5 − 0.14 2.94 − 1.38 −
Y 3.49 4.29 9.23 6.01 1.23 0.11 0.09 0.07 9.10 7.11 727 − <0.06 0.34 − <0.05 −
Zr 4.41 4.71 16.30 2.46 1.03 0.10 0.04 0.03 22.6 46.8 82.5 − 3.14 2389 − <0.16 −
Nb 0.12 0.13 0.09 0.03 0.04 0.00 <0.01 0.02 0.87 1.70 0.13 − 3.37 26.1 − <0.04 −
Cs − 0.02 0.02 0.01 − − − <0.01 0.08 0.13 0.38 − <0.13 <0.11 − <0.06 −
Ba 0.70 0.59 0.15 0.05 0.13 7.09 4.69 0.03 4.26 10.6 8.81 − <0.05 <0.06 − 0.53 −
La 0.06 0.07 0.02 0.01 0.01 0.05 0.04 <0.01 0.33 0.20 32.1 − <0.04 <0.04 − <0.04 −
Ce 0.17 0.19 0.13 0.06 0.03 0.09 0.08 <0.01 0.87 0.55 84.3 − <0.03 <0.06 − <0.03 −
Pr 0.03 0.04 0.04 0.01 0.00 0.01 0.01 0.00 0.18 0.11 14.0 − <0.03 <0.05 − <0.02 −
Nd 0.19 0.23 0.29 0.14 0.04 0.05 0.06 <0.02 0.96 0.52 85.2 − <0.14 <0.21 − <0.11 −
Sm 0.13 0.21 0.42 0.21 0.04 <0.02 <0.05 <0.02 0.72 0.34 56.5 − <0.38 <0.29 − <0.16 −
Eu 0.06 0.06 0.12 0.07 0.01 0.78 0.74 <0.01 0.35 0.41 17.8 − <0.07 <0.07 − <0.05 −
Tb 0.07 0.09 0.22 0.14 0.02 0.00 0.00 0.00 0.20 0.16 18.9 − <0.03 <0.03 − <0.03 −
Gd 0.36 0.42 0.94 0.57 0.10 0.06 0.03 <0.02 1.33 0.84 115 − <0.15 <0.18 − <0.14 −
Dy 0.61 0.68 1.61 1.08 0.20 0.04 <0.02 <0.02 1.44 1.39 138 − <0.15 <0.11 − <0.13 −
Ho 0.13 0.15 0.37 0.24 0.05 0.00 <0.01 0.00 0.32 0.29 27.9 − <0.04 <0.04 − <0.03 −
Er 0.42 0.51 1.08 0.70 0.15 <0.01 0.04 <0.02 0.94 0.83 74.4 − <0.17 <0.14 − <0.05 −
Yb 0.38 0.52 0.96 0.73 0.16 <0.03 <0.04 <0.02 0.95 1.06 55.1 − <0.23 <0.31 − <0.17 −
Lu 0.07 0.08 0.16 0.11 0.03 0.00 <0.01 0.01 0.10 0.15 7.75 − <0.03 <0.05 − <0.03 −
Hf 0.17 0.20 0.69 0.16 0.04 <0.01 <0.03 <0.01 0.89 1.41 2.77 − <0.13 65.5 − <0.10 −
Ta 0.00 0.01 0.00 0.00 0.00 0.00 <0.01 0.00 0.06 0.07 <0.02 − <0.05 1.63 − <0.04 −
Pb 0.03 0.03 0.12 0.01 0.01 0.04 0.02 − − − − − − − − − −
Th − − − − − <0.01 <0.01 − <0.08 0.10 4.21 − − <0.10 − <0.04 −
U − − − − − <0.01 <0.01 − <0.04 <0.05 0.45 − − 0.20 − <0.04 −
* Megacrysts
* Abbreviations are similar to those in Table 1.

Si-rich glass poaugpig whit ilmask
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Figure 11. Parental-melt compositions of Wo12 groundmass pyroxenes using distribution 
coefficients from (a) McKay et al. (1986) and (b) Lundberg et al. (1990).  
LithA whole-rock values are averaged analyses from Burghele et al. (1983), 
Kong et al. (1999), and Neal et al. (2001). LithB whole-rock values are 
averaged analyses from Burghele et al. (1983), Laul (1986), and Ma et al. 
(1982). 
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pyroxenes (Lundberg et al., 1990).  The distribution coefficients were modified by 

Lundberg et al. (1990) to adjust for Wo content, and are as follows: 0.003 (La), 0.006 

(Ce), 0.012 (Nd), 0.018 (Sm), 0.043 (Dy), and 0.068 (Er).   

The calculated parental melts for LithA and LithB low-Ca pigeonites (Fig. 11a 

and 11b) have similar REE patterns, and calculation results lie above their averaged 

published whole-rock values from Burghele et al. (1983), Kong et al. (1999), and Neal et 

al. (2001) for LithA, and Ma et al. (1982), Burghele et al. (1983), and Laul (1986) for 

LithB.  The higher REE values in the calculated melts versus the whole-rock values could 

be due to:  (1) inaccurate D values; (2) mixing-effect of megacrysts in LithA; and/or (3) 

some fractionation of the melt some before pigeonite formation.  The whole-rock data of 

LithA are expected to be lower than the melt that formed groundmass pigeonite, because 

Mg-rich olivine and orthopyroxene take little REEs and these two minerals are early 

liquidus phases.  Indeed, the differences between calculated-melt and whole-rock 

compositions are larger for LithA than those for LithB (Fig. 11), which indicate the 

diluting effects of the olivine and orthopyroxene megacrysts (especially the cores; 

discussed below).  However, the abundances of the megacrysts cannot fully explain the 

differences in some elements (e.g. La, Eu), which could be the result of uncertainties in D 

values and fractionation of minerals.  The calculated LithB melt has slightly higher REEs 

than those of LithA, possibly indicating that LithB melt may have undergone a higher 

degree of crystallization before pigeonite formation.  

3.5 Previous estimates on LithA groundmass  
There are several existing theories for the petrogenesis of EETA79001 and the 

contact between lithologies A and B (e.g., McSween and Jarosewich, 1983; Wadhwa et 
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al. 1994; Mittlefehldt et al. 1999).  Most of the early formational theories were developed 

with the idea that the megacrysts in LithA are out of equilibrium with the groundmass, 

and therefore must be xenocrysts (Ma et al., 1982; Steele and Smith 1982; McSween and 

Jarosewich 1983).  Perhaps the strongest assertion for the xenocrystic origin of the 

megacrysts was based on the Fe-rich rims present on olivine and orthopyroxene (Steele 

and Smith 1982; McSween and Jarosewich 1983).  Although Herd et al. (2002) stated 

that orthopyroxene megacrysts are xenocrysts, they are rimmed by overgrowths that 

crystallized from a melt similar in composition to the LithA groundmass.  However, 

Goodrich (2002) suggested that most of the megacrysts are phenocrysts.  

Much of the controversy about the petrogenesis of LithA and LithB stems from 

uncertainty in the relationship between the megacrysts and groundmass in LithA; this is a 

key issue that needs to be further investigated.  Here, we review previous calculations of 

the groundmass compositions and introduce new, hopefully more-precise, compositional 

estimates.  The results of the new groundmass estimates, along with petrographic and 

chemical data from the present study, are later integrated into various formation 

hypotheses. 

There have been several estimates of groundmass composition of LithA (e.g., 

McSween and Jarosewich, 1983; Longhi and Pan, 1989, Schwandt et al. 2001; Herd et 

al., 2002).  In the present study, the bulk composition of LithA Groundmass is referred to 

as “AG”.  McSween and Jarosewich (1983) calculated the AG by averaging analyses on 

megacrysts, and then, along with their modes and densities, subtracted the averaged total-

megacryst composition from their measured LithA whole-rock composition.  This 

subtraction method resulted in a groundmass composition having Mg# of 58.6, and is 
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labeled as AG1 in Table 5.  However, because megacrysts are zoned and most of the mass 

of a grain resides in the outer portion of a crystal (especially near the rims), a direct 

average of random compositional data could be biased (depending on the number of 

analyses).  A more accurate method for obtaining the chemical abundance of 

compositionally zoned megacrysts would be to apply a weighting-factor based on volume 

(i.e., mass) considerations for various EMP analyses; this accounts for analyses further 

from the cores of concentrically zoned crystals representing larger volumes/masses.  In 

addition, mineral modes by McSween and Jarosewich (1983) were obtained by optical 

point counting, which is subjective to some extent, and has a lower precision than newer 

methods that use compositionally-sensitive x-ray digital imaging.  

Longhi and Pan (1989) modeled the crystallization sequence for a melt using the 

LithA composition, AG1 of McSween and Jarosewich (1983).  Their results showed AG1 

to be strongly olivine-normative.  Because no olivine was reported to occur in the LithA 

groundmass, they concluded that McSween and Jarosewich (1983) over-estimated the 

groundmass MgO content.  Longhi and Pan (1989) recalculated AG1 by subtracting a 

higher percentage of olivine megacrysts from LithA whole-rock composition, so that no 

olivine would crystallize in the “groundmass” melt they modeled.  Their revised bulk 

composition resulted in a quartz-normative magma having a Mg# of 53.8 (AG2, Table 5).  

 Schwandt et al. (2001) re-analyzed mineral modes and compositions from section 

79001, 68, one of the original six sections petrographically described by McSween and 

Jarosewich (1983).  The mineral modes were obtained by using a digital-mapping method 

based upon processing of x-ray elemental maps obtained by WDS on the EMP.  A total 

of 330,000 points were collected by Schwandt et al. (2001), which provided a
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Table 5. Bulk-chemical compositions for EETA79001 LithA groundmass (AG). 
 

AG1 AG2 AG3 AG4 AG5 AG6 AG7

SiO2 49.2 50.7 48.4 49.0 50.4 50.2 50.2
TiO2 0.78 0.86 1.98 1.70 0.7 0.8 0.61

Al2O3 6.44 7.10 7.20 7.40 6.5 6.5 5.42
Fe2O3 0.39 0.00 0.00 0.00 0.00 0.00 0.00
Cr2O3 0.12 0.12 0.00 0.15 0.5 0.4 0.37

FeO 18.1 18.7 17.7 18.4 16.8 17.7 19.5
MnO 0.51 0.52 0.55 0.52 0.5 0.5 0.55
MgO 14.4 12.2 12.0 11.5 15.6 14.9 15.7
NiO 0.00 0.00 0.00 0.00 0.00 0.00 0.00
CoO 0.00 0.00 0.00 0.00 0.00 0.00 0.00
CaO 7.96 8.74 9.00 9.20 7.9 8.0 6.64

Na2O 0.97 1.07 0.80 0.90 1.0 1.0 0.92
K2O 0.06 0.07 0.00 0.00 0.00 0.00 0.00
P2O5 0.75 0.00 0.00 1.20 0.00 0.00 0.00
Mg# 58.6 53.8 54.7 52.7 62.4 60.1 59.0

AG1 McSween and Jarosewich (1983)
AG2 Longhi and Pan (1989)
AG3 Schwandt et al. (2001)
AG4 Herd et al. (2002)
AG5 This study: LithA Whole Rock (McSween and Jarosewich, 1983) minus weighted average of megacryst cores and rims (includes overgrowths)
AG6 This study: LithA Whole Rock (McSween and Jarosewich, 1983) minus weighted average of megacryst cores (excludes overgrowths) 
AG7 This study: Weighted average of cores and rims of groundmass crystals plus overgrowths of megacrysts
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more precise approximation of modal abundances than the optical point-counting method 

(1000 points per slide) performed by McSween and Jarosewich (1983).  Schwandt et al. 

(2001) determined modes with significantly lower abundances of pigeonite but higher 

abundances of augite (Table 1), which resulted in a lower Mg# of 54.7 (AG3 in Table 5), 

versus the Mg# of 58.6 from McSween and Jarosewich (1983).  To obtain the bulk-

composition of the groundmass, Schwandt et al. (2001) used the “average” compositions 

of mineral, but details are not given on the averaging method used.  As discussed above, 

a direct average of random analyses could be erroneous because crystals are zoned and 

most of the volume (mass) of a grain is located in the near-rim locales.   

Herd et al. (2002) recognized the need to obtain a better estimate of the LithA 

bulk-groundmass composition, because the megacrysts rims, if formed by overgrowth, 

should not be considered part of the megacryst chemistry, and should not be subtracted 

from the LithA whole-rock composition.  Based on their experimental data of Cr and V 

partitioning, Herd et al. (2002) suggested that the pigeonite rims on orthopyroxene 

megacrysts are simple overgrowths, because they have the same Cr and V abundance 

(within error) as pigeonite in the groundmass.  The Cr and V concentrations of liquid 

derived from olivine rims are reported to be much lower than the Cr and V concentrations 

of the groundmass pyroxene.  Therefore, they concluded that olivine rims are possibly 

not overgrowths, but formed before incorporation into the LithA groundmass.  Herd et al. 

(2003) then modified AG3 (from Schwandt et al., 2001) by adding pigeonite overgrowth 

rims on orthopyroxene megacrysts to the LithA groundmass, resulting in a lower bulk 

Mg# of 52.7 (AG4, Table 5).   
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When Herd et al. (2002) analyzed the Cr and V concentrations in the calculated 

liquid-olivine rims and pyroxene groundmass, they compared different liquid Mg#’s of 

the aforementioned phases (Mg# 34 and Mg# 30 for pyroxene groundmass and olivine 

rims, respectively).  Also, the D values of late-stage melts are kinetically influenced, and 

may be unreliable to use in modeling and determining disequilibrium effects.  Later in 

this study, we suggest that the olivine rims are overgrowth features. 

In summary, previously reported estimates of the bulk-groundmass composition 

(AG1 – AG4, Table 5) have large differences.  Part of these discrepancies may be 

attributed to the methodology of obtaining “average” compositions for the megacryst 

crystals.  Here, we advance a more realistic means of obtaining the compositions of 

zoned megacrysts.  If one assumes a constant spacing of compositional analyses from 

core to rim, each consecutive analysis away from the core represents a larger volume 

(mass) of the crystal.  Therefore, an analysis at the core represents a significantly smaller 

volume (mass) than one taken at the rim.  Another reason for the AG differences may be 

the variations in megacryst abundances between studies: 10 vol% olivine from Schwandt 

et al. (2001) compared to 7 vol% in McSween and Jarosewich (1983).  Apparent 

differences in modes appear to be due to the different analytical methods used.  However, 

the different modes in the LithA groundmass between Schwandt et al. (2001) and 

McSween and Jarosewich (1983) could be a result of “the chemical criterion rather than 

McSween’s optical one” as quoted from Schwandt et al. (2001).  In order to address the 

bulk composition of LithA groundmass, we conducted extensive modal recombinations 

of megacrysts taken from the several polished sections studied here.   
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3.6 NEW LithA Groundmass Reconstructions 
In this study, we calculated LithA bulk-groundmass compositions (AG5, AG6, 

AG7) by modal recombination using three methods (Table 5).  To obtain a different 

methodology for obtaining the groundmass compositions, we used the “weighted 

average” compositions of the groundmass phases and their modal analyses from our x-ray 

digital imaging technique.  For this, we used a modification of simply averaging EMP 

compositions, whereby we took into consideration the placement of each EMP analysis 

within a crystal, with a weighing factor.  Although each method used averaged LithA 

mineral modes (Table 1), the main difference between our study and previous ones is that 

we used a position-sensitive method for obtaining “a weighted average” for the zoned 

crystals.   

The first method for determining the bulk-composition of the groundmass (AG5, 

Table 5) is by subtracting the weighted-average compositions of megacrysts from the 

LithA whole-rock composition reported by McSween and Jarosewich (1983).  

Megacrysts commonly have a diameter of approximately 1 mm and rims that are 150 µm 

thick based upon CaO profiles (Fig. 3a-c).  Using an approximate-spherical shape 

approximation, cores and rims comprise approximately 35 vol% and 65 vol%, 

respectively, of the crystal.  Therefore, the compositions of megacrysts were averaged by 

weighting the compositional analyses of the cores and rims according to the volumes they 

represented.  This method results in the highest Mg# reported (Mg# 62.4), but there was 

no consideration here for the possibility of the megacryst overgrowth being secondary 

(e.g., after incorporation into a melt of a different composition).   
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The second method of calculating bulk-groundmass LithA assumes the rims of 

olivine, orthopyroxene, and chromite are overgrowths.  Herd et al. (2002) and Goodrich 

(2003) indicated that orthopyroxene and chromite megacrysts have overgrowths of 

pigeonite and ulvöspinel, respectively.  Here, we suggest that Fe-rich rims of olivine 

megacrysts are also overgrowth features. The olivine megacrysts show sudden CaO 

enrichment at Mg# 69, at an average of ~150 µm from the rim (Fig. 3d).  This suggests 

that those rims are overgrowths and may represent the onset of olivine (and 

orthopyroxene) crystallization from a secondary magma in contact with the megacrysts.  

Therefore, to obtain the LithA groundmass-melt composition, instead of subtracting the 

entire megacryst from the whole-rock total, only the compositions of the megacryst cores 

(including chromite cores) were subtracted from the LithA whole-rock from McSween 

and Jarosewich (1983), (AG6, Table 5).  The resulting Mg# of 60.1 for AG6 is 

significantly lower than AG5.   Importantly, this assumes that the rims on the megacrysts 

are direct crystallization from the groundmass melt. 

3.7 LithA Groundmass Composition Direct 
The third method calculates the bulk-groundmass composition directly using the 

weighted-averages of minerals in the groundmass and includes overgrowths on the 

olivine, orthopyroxene, and chromite megacrysts (AG7, Table 5).  The groundmass 

crystals are zoned, and the cores and rims share similar volume percentages as the 

megacryst cores and rims.  Therefore, the composition of the groundmass minerals (that 

display zonations) are given a weight of 65% for the rims and 35% for the cores.  We 

consider this AG calculation as the most reasonable and precise of all reported 

compositions.  Unlike some of the previous calculations (AG1-AG4), its derivation is 
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based upon groundmass mineral abundances (from multiple sections) that were obtained 

from the x-ray digital-imaging technique with the EDS on the EMP (~250,000 

points/section).  These data were used with the weighted compositional averages of the 

minerals (and their densities), and are independent of any LithA whole-rock 

compositional values.  Interestingly, the resultant Mg# of 59.0 is similar to the value of 

Mg# 58.6 reported by McSween and Jarosewich (1983).  The results of this method 

(AG7) can be interpreted to indicate that McSween and Jarosewich (1983) may have 

fortuitously subtracted a representative amount of olivine and orthopyroxene megacrysts 

from the whole-rock composition when calculating AG1.  Therefore, the modification of 

AG1 to form AG2 by Longhi and Pan (1989) may be inappropriate.  Also, slight changes 

in AG7 overgrowth abundances result in only minor changes in the calculated AG7 

composition.    
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4. DISCUSSION 

In the following discussion, we investigate the various formation models and possible 

relationships between the two lithologies using our petrographic observations, major- and 

trace-element chemistry data, and the newly derived LithA groundmass composition 

(AG7).  The formation models that we will address include fractional crystallization, 

assimilation, and magma-mixing scenarios.  Other theories such as an impact origin or 

partial melting have been discounted by Warren (1997) and McSween and Jarosewich 

(1983), respectively, and will not be addressed further.  

4.1.1 Fractional Crystallization 
The fractional crystallization model was examined by McSween and Jarosewich 

(1983) but was dismissed because of the megacrysts were identified as being out of 

equilibrium with the groundmass.  However, Goodrich (2003) suggested that most 

megacrysts may actually be phenocrysts, based on textures, olivine CSD data, 

orthopyroxene trends in Al2O3 versus Cr2O3 plots, and chromite textures.  The olivine 

and orthopyroxene megacrysts from the analyzed sections have continuous Fe-Mg 

zonations from core to rim that suggest they formed under fractional crystallization 

conditions.  Further support can be found in the trace-element chemistry of pyroxenes; 

the REE trends show progressive enrichment with increased Mg#.  

The LithA crystallization history was modeled using the MELTS software 

package (Ghiorso and Sack, 1995).  This software was chosen over similar computer 

modeling software because it has been reportedly shown by Thompson et al. (2003) to 

successively model a Martian meteorite better than MAGPOX or COMAGMAT.  A 
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starting pressure of 0.01 GPa and oxygen fugacity of QFM -2 (Herd et al. 2001) were 

used.  The results show that MELTS does not reproduce the observed mineral 

compositions (e.g., pyroxenes) and mineral abundances (e.g., excess of orthopyroxene).  

This appears to be an insurmountable obstacle to overcome for the fractional 

crystallization formation model. 

4.1.2 Assimilation-Fractional Crystallization (AFC) 
McSween and Jarosewich (1983) explored the possibility of an assimilation 

scenario.  Their mixing calculation suggested that LithA can be formed by adding ~36% 

harzburgite to a LithB-type magma.  Thermal calculations by Wadhwa et al. (1994) 

showed that the heat needed to assimilate this amount of ultramafic material is greater 

than the heat that can be provided by the latent heat of crystallization.  However, mixing 

models by Mittlefehldt et al. (1999) suggested that there may be just enough heat 

generated by the latent heat of crystallization to drive assimilation.  The concurrent 

fractionation of a melt and assimilation of a rock (where the energy is provided by the 

latent heat of crystallization) is called assimilation-fractional crystallization (AFC).  Here, 

we model an AFC process by following the method of DePaulo (1981), using whole rock 

trace-elements; the results are shown in Figure 12. 

As assumed by previous studies (e.g. McSween and Jarosewich 1983; Wadhwa et 

al. 1994), LithB is taken to be the melt, and lherzolitic shergottite ALHA77005 is the 

composition of the rock being assimilated.  These two end-members are appropriate 

because LithA megacrysts show close similarities in both major- and trace-element 

chemistry to minerals in ALHA77005 (Steele and Smith, 1982; McSween and 

Jarosewich, 1983; Wadhwa et al., 1994).  In our AFC modeling, we have assumed an “r”
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Figure 12. Modeled AFC crystallization pathway (solid line) of  trace elements at various melt fractions between LithB (melt) and 

ALHA77005 (assimilated rock). Trace-element concentrations of the assimilating liquid start at LithB and move away 
from ALHA77005.   
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value (mass assimilated/melt) of 0.2 (or 20% assimilation), because it has been shown to 

be a conservative estimate of similar basalt-high-Mg basalt interactions in lunar systems 

(Neal and Taylor, 1989).  Figure 12 shows the change in minor- and trace-element 

concentrations with decreasing liquid-mass fraction (solid line) of several trace elements.  

At the onset of AFC, the initial concentration of elements in the liquid is bulk LithB.  

With progressive assimilation-fractional crystallization, the trace-element concentration 

in the liquid becomes enriched and moves away from the ALHA77005 and LithB end-

members, as well as away from both whole-rock LithA and LithA groundmass 

compositions.  The same results are obtained when r values are varied from 0.1 to 1.0.  

The fact that LithA lies on the wrong side of the predicted trend by AFC suggests that at 

least one of the end- members is incorrectly assumed. 

4.1.3 Magma Mixing 
The magma-mixing model suggests that LithA formed by mixing a LithB type 

magma with a lherzolitic and phenocryst-bearing magma similar in composition to 

ALHA77005 (McSween and Jarosewich, 1983; Wadhwa et al., 1994).  Wadhwa et al., 

(1994) favored a magma-mixing process over assimilation because of the temperature 

constraints associated with the latter.  Mixing models by Mittlefehldt et al. (1999) 

suggested that an incompatible-element-poor lherzolite is needed to generate LithA, and 

the suitable end-member would be a cumulate lherzolite with minor-trapped melt.  They 

suggested that it was unlikely that magma with the composition of a trace element-poor 

lherzolite would occur on Mars.  It would require that the melts formed by high degrees 

of melting (to dilute incompatible trace elements) of an ultramafic-cumulate-source 

region (Mittlefehldt et al., 1999). 
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Magma mixing is likely if both magmas had similar compositions and existed at 

similar temperatures before they mixed.  It is assumed that a high degree of mixing of 

two magmas would be required to form LithA.  The mixing of basaltic magma with 

lherzolitic magma may result in incomplete mixing because of possible differences in 

density, viscosity, and melt temperatures between the two magmas.  Therefore, the 

following mixing scenarios include other possible types of end-members: 

The first mixing scenario suggests that LithA melt mixed with cumulate 

olivine/orthopyroxene crystals that are homogeneous in composition from core to rim 

(Fo80, Fo73).  The olivine and orthopyroxene then re-equilibrated with the crystallizing 

groundmass, so that the Fe-rich rims were formed.  This theory is unlikely because the 

kinetics of Fe-Mg exchange in olivine is much faster than orthopyroxene; the olivine 

should be homogenized for the duration that formed the rim of pyroxenes.  This mixing 

scenario is also unlikely because the olivine megacrysts are large (~800 µm in diameter), 

and the groundmass is fine-grained; this suggests the cooling conditions may have been 

faster than that needed for reequilibration of the megacrysts. 

The second mixing scenario for the formation of LithA involves a LithB magma 

that mixed with olivine cumulate crystals (Fo 81 cores).  This theory would require LithB 

to mix (or back-react) with a significant amount of megacrysts to increase its whole rock 

composition from Mg# 42.6 to that of LithA (Mg# 61).  This mixing scenario is possible, 

especially because the REE concentration of LithA whole rock lies under the LithA 

parental melt (Fig. 11a-b). 

The third mixing scenario suggests that a magma (M1), having the composition of 

AG7, begins to crystallize olivine crystals (Fo81-70) that are removed from the melt.  This 
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M1 magma (megacryst free) then mixes with megacryst cumulate crystals form a separate 

magma (M2) forming overgrowths that begin at ~Fo 69 for olivine.  This scenario may be 

unlikely because it requires M1 magma to be in equilibrium with the cumulate crystals it 

incorporates.  Also, the olivine cumulate crystals (from M2) are likely to have been 

entrained in a late-stage Fe-rich magma.  Mixing M1 of AG7 composition with this late-

stage magma may significantly lower the Mg# of the melt to values lower than Mg# 59, 

and would not match the LithA whole rock composition of Mg# 61. 

4.1.4 Formation of Lithology A  
 The groundmass composition of LithA presents a unique problem when the 

crystallization sequence is modeled by the MELTS software program.  The MELTS 

results for the AG7 composition indicates that approximately 6 vol% olivine crystallizes, 

starting at approximately Fo 83.9.  No olivine is observed in the groundmass; therefore, 

olivine must be present as overgrowths on the olivine megacrysts.  If the crystallization 

sequence of AG5 is modeled by MELTS (the groundmass composition only, no 

megacryst overgrowths), olivine still crystallizes in the groundmass. 

 The bulk-chemical composition of each lithology and the composition of the 

megacryst cores (including the start of the inferred overgrowths) are given in Table 6.  

Based on these values, we suggest the following model (Fig. 13). 

1. The megacrysts form as phenocrysts from a peridotitic magma. 

2. The megacrysts are incorporated by an evolved magma, having a liquid Mg# of 

40.  This magma is the LithA groundmass parent (AGP).  It is imagined that the 

megacrysts are part of the peridotite wallrock through which the AGP magma 

intrudes.  



 

Table 6. Megacryst compositions, and LithA and LithB whole-rock chemistry. 

LithA Megacrysts Olivine Mg# Liquid (Kd=0.3) Orthopyroxene Mg# Liquid (Kd=0.27)
Core Fo 81 Mg# 57 Mg# 75 Mg# 45
Start of overgrowths Fo 69 Mg# 40 Mg# 71 Mg# 40
End of overgrowth Fo 50 Mg# 23 Mg# 45 Mg# 18
Type of overgrowth Olivine Pigeonite

LithA Whole Rock* Mg# 61.0
LithB Whole Rock* Mg# 42.6
AG7 Mg# 59.0
*McSween and Jarosewich (1983)  
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Figure 13. Suggested model for the formation of LithA. Megacrysts mix with magma 
having a composition of Mg# 40. Overgrowths and groundmass form, and late-stage melt 
is removed.
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3. Overgrowths form on the megacrysts. 

4. Groundmass crystals form until the liquid reaches ~Mg# 20. 

5. Removal of late-stage liquid.  This process is required to raise the AGP 

composition (Mg# 40) to the observed AG7 composition (Mg# 59). 

 There will undoubtedly be some interaction (e.g. resorption, diffusion, etc…) 

between the megacrysts and the melt, which will disrupt the heat balance of the magma 

and alter the crystallization of minerals.  This may explain why LithB pyroxenes 

crystallize toward the Fe-rich compositions, whereas LithA pyroxenes do not (Fig. 2a-b).  

This may also explain why the LithA groundmass is finer-grained than LithB (i.e. faster 

crystallization).  A disruption in the heat balance of the magma requires the megacrysts to 

exist at cool temperature before incorporation.  One scenario in which this might happen 

is if the AGP magma intruded a peridotite rock, and removed megacrysts of olivine, 

orthopyroxene, and chromite off of the wall rock (Fig. 13). 

 One benefit of this model is that it is able to explain the overgrowth features on 

the olivine and orthopyroxene megacrysts.  Also, it avoids the heat constraints associated 

with the magma mixing and assimilation theories.  This model requires the removal of 

the remaining late-stage melt, because the liquid that initially forms the overgrowths on 

the megacrysts (Mg# 40) does not match the observed groundmass composition derived 

by modal recombination (Mg# 59).  Therefore, there must have been some late-stage melt 

removal after the overgrowths formed (liquid Mg# 20).  One shortcoming of this model is 

that only ~10 wt% liquid remains at Mg# 20.  Removing ~10 wt% liquid may not be 

enough to fully raise the groundmass composition.  Also, the removal of late-stage melt 

would require a process such as filter processing, possibly an unrealistic process. 



4.1.5 Radiogenic Isotope Relationships between LithA and LithB 
 Radiogenic isotope work by Wooden et al. (1982) suggested that LithA and LithB 

contain different initial Sr isotope values.  They concluded that LithA and LithB cannot 

be related by co-magmatic processes, and must have come from two different sources.   

Nyquist (1984) stated that the initial Rb-Sr data for handpicked megacrysts lies below the 

LithA isochron, and suggested an assimilation theory (that includes LithB) for the 

formation of LithA.  However, Wadhwa et al. (1994) described a conversation with 

Nyquist where he stated that there were problems with the Sr blanks when analyzing the 

megacrysts; the megacrysts now lie on the LithA isochron.  This suggests that the 

megacrysts may be related to the LithA groundmass.  No further work has been done on 

this subject, and the issue remains unresolved (L. Nyquist, pers. commun.).  
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5. SUMMARY 

• Mineral trace-element compositions show that LithA and B share similar REE 

patterns and concentrations; therefore, a relationship between the two lithologies is 

inferred. 

• An entirely new LithA bulk-groundmass composition was derived (AG7, Mg# 59.0), 

using weighted compositional analyses of the phases and mineral modes from x-ray 

digital-imaging modal-analysis techniques. 

• The newly derived LithA groundmass composition confirms that McSween and 

Jarosewich (1983) subtracted, perhaps fortuitously, the correct amount of olivine 

from their whole-rock composition.  Alternative derivations, e.g. Longhi and Pan 

(1989), appear inaccurate. 

• Modeling of the crystallization sequence of AG7, and CaO profiles across olivine 

megacrysts, suggest the olivine rims are overgrowths.   

• All formational theories have their pros and cons (some more than others).  Our data 

suggest fractional crystallization is improbable.   

• The AFC formational theory cannot be modeled using the suggested endmembers 

from the literature (LithB and ALHA77005). Either one (or both) of the endmembers 

is not correct, or AFC is not a viable explanation. 

• The magma mixing model may be feasible if different end-members are chosen.  

• Our preferred petrogenetic model for LithA details the origin of the xenocrystic 

assemblage, the overgrowths on these xenocrysts, and requires the observed 
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primitive groundmass composition to be misrepresentative due to late-stage melt 

removal of the late-stage melt. 

• The proposed model, involving late-stage melt removal, would explain the 

overgrowth formations; however, there may not have been enough late-stage melt 

removed in order to raise the composition of the groundmass parent melt (Mg# 40) 

to the observed groundmass composition (Mg# 59). 
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Optical Photomosaics and Back Scattered-Electron Images 

1 mm 

79001.616 (LithA) 



 

1 2

 
 

 
 
 

 

 

3 4

 

 65



 

5 6

 
 
 
 
 

 

 

7 8

 
 
 
 
 
 
 

 66



 

 

9 10

 
 
 
 
 

11 12

 
 
 

 67



 

13 14

 
 
 
 
 
 

 

15 16

 

 68



 69

 
 
 
 
 
 
 
 
 
 

17



 

 70

1 mm

 
79001,439 (LithA)



 

1 2

 
 
 
 
 
 

 

3 4

 

 71



 72

 
 
 
 
 
 
 

 
 
 
 
 

5

7

6



 

1 mm 

 73

79001,615 (LithA/LithB) 
 



 

1 2

 
 
 
 
 
 

 

3 4

 
 
 
 

 

 74



 

5 6

 
 
 
 
 
 

 

7 8

 
 
 
 

 75



 

9 10

 
 
 
 
 
 

 

11 12

 
 
 
 
 
 
 
 

 76



 

13 14

 
 
 
 
 
 

 

15 16

 
 
 
 
 

 77



 

17 18

 
 
 
 
 
 

 

19 20

 

 78



 79

 
 

21 22



 

1 mm

 80

79001,39 (LithA/LithB)



 

1 2

 
 
 
 
 

 

 

3 4

 

 81



 

5 6

 
 
 
 
 
 

 

7 8

 

 82



 83

9

 

10

 



 

1 mm 

 84

79001,457 (LithB)



 

1 2

 
 
 
 
 
 

 

3 4

 

 85



 86

 
 
 
 
 
 

 

 
 
 
 
 
 
 
 

7

5

8

6



 

1 mm

 87

 
79001,392 (LithB) 



 

1 2

 
 
 
 
 

 

 

3 4

 

 88



 

5 6

 

 

 
 
 
 

 

87

 89



 

9

 
 
 

 90



Mineral Data 
All elements are in ppm.  All Oxides are in wt. %. 

Major- and Trace-Element Chemistry of LithA Pyroxenes
Element jn16c03 jn16c04 jn16c05 jn16c07 jn16c08 jn16c09

Sc 32.6 38.5 49.0 30.5 46.7 40.1
Ti 702 1416 1563 685 1287 1038
V 172 175 249 177 210 222
Cr 2240 2121 3450 2483 2532 2964
Co 35.9 30.8 47.6 35.9 44.9 45.5
Ni 57.2 45.7 95.7 69.8 67.0 72.0
Zn − − − − − −
Ga 1.94 3.78 3.44 1.91 3.25 3.12
Rb 0.05 0.83 0.87 0.08 0.03 0.19
Sr 0.28 1.16 1.08 0.49 0.30 1.45
Y 1.83 3.94 4.45 1.60 2.99 2.88
Zr 1.57 10.3 5.96 1.29 3.34 3.37
Nb 0.05 0.22 0.26 0.05 0.05 0.11
Cs − − − − − −
Ba 0.18 1.07 1.30 0.16 0.13 0.55
La 0.01 0.06 0.06 0.01 0.00 0.04
Ce 0.02 0.14 0.15 0.03 0.02 0.11
Pr 0.01 0.03 0.03 0.01 0.00 0.02
Nd 0.04 0.18 0.16 0.04 0.04 0.13
Sm 0.05 0.16 0.15 0.04 0.05 0.10
Eu 0.02 0.06 0.06 0.02 0.02 0.04
Tb 0.03 0.08 0.10 0.03 0.05 0.06
Gd 0.14 0.42 0.41 0.15 0.20 0.28
Dy 0.28 0.66 0.79 0.26 0.47 0.47
Ho 0.07 0.15 0.17 0.06 0.12 0.11
Er 0.23 0.48 0.50 0.20 0.37 0.33
Yb 0.23 0.44 0.59 0.20 0.41 0.33
Lu 0.04 0.07 0.09 0.04 0.06 0.05
Hf 0.05 0.32 0.22 0.05 0.13 0.11
Ta 0.00 0.01 0.01 <0.001 <0.003 0.00
Pb 0.01 0.03 0.08 0.03 0.02 0.03

SiO2 52.6 52.1 51.8 53.7 52.9 50.0
TiO2 0.08 0.23 0.27 0.06 0.12 0.60

Al2O3 0.56 0.81 0.83 0.64 0.86 0.65
Cr2O3 0.44 0.44 0.53 0.42 0.41 0.13
MgO 23.4 19.9 18.8 23.5 21.7 14.9
CaO 4.28 5.12 6.10 3.65 5.55 5.22
MnO 0.55 0.64 0.64 0.54 0.65 0.94
FeO 16.5 20.5 21.1 17.7 18.5 27.4

Na2O 0.03 0.05 0.06 0.07 0.05 0.09
Sum 98.4 99.8 100.0 100.3 100.8 99.8  
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Major- and Trace-Element Chemistry of LithA Pyroxenes
Element jn16c10 jn16c11 jn16c13 jn16c14 jn17c15 jn17c16 jn17c17 jn17c18

Sc 49.6 61.3 48.5 36.5 42.6 41.5 42.7 51.4
Ti 2307 3161 1682 1226 1135 1218 785 1140
V 147 112 222 188 243 200 232 274
Cr 1672 899 2688 2624 3433 2496 2978 3828
Co 45.6 51.5 36.6 44.1 53.8 40.1 44.9 63.6
Ni 48.8 52.7 57.6 93.8 83.1 53.1 66.9 115.0
Zn − − − − 67.3 55.0 51.4 76.9
Ga 4.06 7.02 4.17 3.39 3.25 3.52 2.64 2.99
Rb 0.02 0.03 0.45 0.89 0.08 0.14 0.06 <0.074
Sr 0.27 0.40 2.20 1.37 0.78 1.25 0.96 0.18
Y 4.85 3.95 5.92 3.49 2.56 3.31 2.06 2.35
Zr 2.39 7.09 7.46 4.41 2.60 2.69 0.53 0.97
Nb 0.03 0.04 0.16 0.12 0.06 0.06 0.03 0.05
Cs − − − − <0.034 <0.019 <0.026 <0.048
Ba 0.05 0.16 1.01 0.70 0.25 0.42 0.13 0.09
La 0.01 0.00 0.13 0.06 0.02 0.05 0.01 <0.018
Ce 0.03 0.02 0.32 0.17 0.07 0.11 <0.020 <0.015
Pr 0.01 0.01 0.05 0.03 0.01 0.03 <0.012 <0.015
Nd 0.07 0.06 0.38 0.19 0.06 0.12 <0.11 <0.085
Sm 0.12 0.07 0.28 0.13 0.10 0.11 <0.096 <0.11
Eu 0.04 0.02 0.11 0.06 0.03 0.06 0.03 <0.029
Tb 0.08 0.06 0.13 0.07 0.04 0.06 0.03 0.05
Gd 0.36 0.23 0.66 0.36 0.27 0.30 0.15 <0.11
Dy 0.79 0.58 1.05 0.61 0.34 0.54 0.35 0.40
Ho 0.20 0.16 0.24 0.13 0.11 0.14 0.08 0.11
Er 0.59 0.57 0.67 0.42 0.27 0.42 0.27 0.29
Yb 0.66 0.74 0.68 0.38 0.39 0.37 0.30 0.38
Lu 0.11 0.13 0.10 0.07 0.06 0.06 0.04 0.06
Hf 0.13 0.37 0.30 0.17 0.10 0.10 <0.039 <0.050
Ta <0.002 <0.002 0.01 0.00 <0.017 <0.010 <0.009 <0.017
Pb 0.02 0.02 0.06 0.03 0.16 0.05 0.04 0.07

SiO2 51.0 51.4 50.7 53.5 51.4 51.6 53.0 51.6
TiO2 0.32 0.49 0.27 0.14 0.24 0.22 0.13 0.33

Al2O3 0.68 0.69 0.92 0.93 0.75 0.70 0.83 0.72
Cr2O3 0.28 0.25 0.38 0.55 0.30 0.30 0.56 0.51
MgO 17.6 16.7 18.7 22.8 18.7 18.7 21.1 18.6
CaO 5.57 5.87 6.67 4.57 5.18 4.73 6.20 5.42
MnO 0.67 0.62 0.58 0.62 0.68 0.69 0.53 0.69
FeO 23.3 24.2 20.4 17.2 21.8 23.1 17.3 22.2

Na2O 0.07 0.07 0.08 0.03 0.07 0.05 0.06 0.04
Sum 99.5 100.2 98.7 100.4 99.1 100.1 99.7 100.0  
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Major- and Trace-Element Chemistry of LithA Pyroxenes
Element jn17d04 jn17d05 jn17d08 jn17d09 jn17d10 jn17d11 jn17d12 jn17d13

Sc 31.7 45.9 33.0 40.5 44.0 42.4 30.2 46.0
Ti 609 1805 1048 1175 1456 1666 1514 1768
V 182 209 175 203 221 164 156 177
Cr 2441 2658 2208 2493 2589 1968 2092 2007
Co 39.8 47.9 33.6 35.3 30.8 37.8 33.8 29.7
Ni 75.9 63.8 48.3 58.5 41.6 49.7 58.0 45.0
Zn 44.3 77.3 43.9 45.1 44.3 62.3 45.1 47.3
Ga 1.97 4.44 2.65 2.91 4.00 4.85 3.13 4.97
Rb 0.02 0.09 0.16 0.25 0.15 0.09 0.38 0.03
Sr 0.12 0.83 0.52 0.69 0.79 1.45 1.19 0.88
Y 1.41 4.59 2.64 3.21 3.76 3.83 3.64 4.46
Zr 0.63 7.05 4.73 10.6 6.68 8.79 7.49 12.10
Nb 0.04 0.10 0.15 0.32 0.27 0.12 0.25 0.13
Cs <0.015 0.02 0.02 0.02 0.03 0.01 0.03 <0.020
Ba 0.02 0.37 0.39 1.10 0.37 0.48 1.28 0.31
La <0.010 0.06 0.04 0.02 0.04 0.01 0.07 0.02
Ce <0.008 0.16 0.10 0.06 0.10 0.06 0.20 0.05
Pr <0.006 0.02 0.02 0.01 0.02 0.01 0.03 0.01
Nd <0.030 0.18 0.12 0.08 0.13 0.09 0.22 0.15
Sm 0.07 0.15 0.09 0.10 0.16 0.10 0.15 0.11
Eu 0.01 0.06 0.03 0.04 0.06 0.05 0.07 0.08
Tb 0.02 0.09 0.05 0.07 0.08 0.07 0.08 0.11
Gd 0.07 0.45 0.26 0.27 0.29 0.30 0.40 0.46
Dy 0.26 0.71 0.44 0.57 0.66 0.62 0.65 0.85
Ho 0.04 0.17 0.11 0.12 0.15 0.14 0.14 0.18
Er 0.18 0.58 0.32 0.40 0.47 0.46 0.44 0.50
Yb 0.20 0.58 0.32 0.44 0.42 0.52 0.43 0.50
Lu 0.03 0.10 0.05 0.06 0.07 0.08 0.06 0.09
Hf <0.032 0.24 0.16 0.31 0.26 0.33 0.27 0.46
Ta <0.011 <0.004 0.01 0.02 0.02 0.01 0.01 <0.010
Pb 0.02 0.02 0.01 0.02 0.03 0.02 0.02 0.03

SiO2 53.8 50.1 53.0 53.4 51.5 51.8 51.9 51.4
TiO2 0.12 0.60 0.17 0.15 0.39 0.23 0.17 0.39

Al2O3 0.21 0.67 0.91 0.90 1.02 0.82 0.65 0.96
Cr2O3 0.56 0.24 0.53 0.56 0.42 0.41 0.31 0.40
MgO 24.2 15.9 22.4 22.4 17.9 19.4 20.3 17.3
CaO 4.03 5.58 4.36 5.51 6.41 5.21 3.78 6.74
MnO 0.55 0.68 0.62 0.57 0.73 0.58 0.64 0.69
FeO 16.9 25.2 17.8 16.4 21.4 20.7 21.8 22.1

Na2O 0.04 0.08 0.04 0.05 0.08 0.10 0.03 0.07
Sum 100.4 99.1 99.8 100.0 99.8 99.2 99.5 100.0  
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Major- and Trace-Element Chemistry of LithA Pyroxenes
Element jn17d14 jn17d15 jn17d18 jn17e03 jn17e04 jn16c12 jn17d06 jn16c15

Sc 46.8 41.0 41.2 55.3 34.9 51.0 48.7 42.6
Ti 1681 1562 <1650 2106 681 1713 2750 993
V 213 182 210 210 219 262 186 236
Cr 2672 2284 2576 2550 3437 3605 2556 3191
Co 44.9 37.8 37.6 49.3 54.2 61.5 47.2 45.8
Ni 64.3 69.3 54.3 60.4 114.0 101.0 63.1 84.6
Zn 65.2 58.8 52.6 76.8 54.5 − 82.3 −
Ga 4.17 4.22 <3.76 4.78 1.76 4.65 5.73 3.03
Rb 0.10 1.30 <2.25 0.10 0.02 0.53 0.13 0.80
Sr 0.67 1.54 <3.10 0.75 0.12 1.09 0.64 1.05
Y 3.76 4.61 <5.09 4.77 1.18 3.93 4.08 2.64
Zr 7.29 10.60 21.80 4.83 0.33 8.83 12.30 2.26
Nb 0.19 0.27 0.46 0.11 0.04 0.20 0.23 0.08
Cs <0.011 0.11 <0.050 0.02 0.01 − <0.011 −
Ba 0.40 2.00 <2.34 0.42 0.04 0.81 0.23 0.46
La 0.02 0.07 <0.16 0.03 0.01 0.05 0.03 0.02
Ce 0.07 0.19 <0.38 0.08 0.01 0.13 0.07 0.06
Pr 0.01 0.04 <0.068 0.02 <0.003 0.02 0.02 0.01
Nd 0.10 0.21 <0.44 0.12 <0.034 0.13 0.11 0.08
Sm 0.13 0.17 <0.32 0.14 0.03 0.14 0.13 0.08
Eu 0.04 0.07 <0.13 0.05 0.01 0.06 0.05 0.04
Tb 0.08 0.09 <0.14 0.09 0.02 0.07 0.07 0.05
Gd 0.30 0.46 <0.66 0.42 0.09 0.31 0.32 0.25
Dy 0.64 0.78 <0.89 0.76 0.15 0.60 0.63 0.44
Ho 0.14 0.19 <0.19 0.18 0.04 0.14 0.15 0.10
Er 0.44 0.56 <0.60 0.58 0.17 0.46 0.54 0.31
Yb 0.50 0.55 <0.57 0.58 0.18 0.53 0.58 0.33
Lu 0.08 0.09 0.11 0.10 0.04 0.08 0.10 0.05
Hf 0.26 0.31 0.63 0.17 0.02 0.29 0.54 0.09
Ta 0.01 0.01 <0.034 <0.004 <0.006 0.01 0.02 <0.002
Pb 0.03 0.08 <0.29 0.01 0.01 0.03 0.03 0.04

SiO2 51.9 51.9 51.6 50.2 53.4 52.9 53.2 52.7
TiO2 0.14 0.23 0.32 0.63 0.11 0.14 0.14 0.14

Al2O3 0.86 0.65 0.74 0.76 0.63 0.93 0.89 0.89
Cr2O3 0.41 0.28 0.37 0.12 0.53 0.55 0.42 0.51
MgO 19.9 19.2 17.8 13.5 23.3 21.7 22.0 21.3
CaO 5.84 5.02 5.34 6.09 3.98 6.18 5.12 5.70
MnO 0.60 0.67 0.65 0.82 0.52 0.49 0.55 0.61
FeO 19.5 22.2 22.5 27.6 16.3 17.1 17.8 17.3

Na2O 0.05 0.07 0.08 0.03 0.04 0.05 0.05 0.06
Sum 99.2 100.2 99.4 99.7 98.8 100.0 100.1 99.2  
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Major- and Trace-Element Chemistry of LithA Pyroxenes
Element jn17d03 jn17d16 jn17d17 jn16c06

Sc 34.0 90.4 97.2 22.4
Ti 665 3363 3219 580
V 204 343 442 124
Cr 2886 3718 4722 2446
Co 41.0 43.7 48.6 42.6
Ni 95.5 116.0 62.5 112.0
Zn 44.0 65.9 77.1 −
Ga 1.94 8.24 8.88 1.61
Rb <0.046 0.03 0.38 0.09
Sr 0.13 1.52 2.18 0.30
Y 1.38 9.23 8.73 1.23
Zr 0.48 16.30 31.30 1.03
Nb 0.04 0.09 0.62 0.04
Cs 0.03 0.02 0.04 −
Ba 0.03 0.15 1.43 0.13
La <0.015 0.02 0.05 0.01
Ce <0.016 0.13 0.17 0.03
Pr <0.008 0.04 0.03 0.00
Nd <0.083 0.29 0.32 0.04
Sm <0.048 0.42 0.32 0.04
Eu <0.016 0.12 0.12 0.01
Tb 0.02 0.22 0.18 0.02
Gd <0.057 0.94 0.89 0.10
Dy 0.26 1.61 1.52 0.20
Ho 0.05 0.37 0.33 0.05
Er 0.15 1.08 1.02 0.15
Yb 0.25 0.96 1.02 0.16
Lu 0.03 0.16 0.16 0.03
Hf <0.028 0.69 1.05 0.04
Ta <0.013 <0.004 0.02 <0.003
Pb <0.026 0.12 0.04 0.01

SiO2 52.3 50.9 51.2 54.3
TiO2 0.11 0.45 0.51 0.05

Al2O3 0.28 2.23 1.57 0.47
Cr2O3 0.41 0.74 0.63 0.42
MgO 24.6 15.1 13.8 26.0
CaO 3.83 14.2 15.8 2.57
MnO 0.61 0.48 0.48 0.54
FeO 15.7 15.4 15.0 15.9

Na2O 0.04 0.21 0.21 0.04
Sum 97.8 99.7 99.2 100.3  
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Major- and Trace-Element Chemistry of LithB Pyroxenes

Element jn18b07 jn18b08 jn18b10 jn18b11 jn17a12 jn17a13 jn17a14 jn17a15
Sc 34.1 38.0 50.3 40.1 37.8 32.0 31.8 26.5
Ti 1168 2423 2121 973 858 806 850 528
V 152 174 165 227 204 180 158 157
Cr 2064 2314 1921 3121 2703 2526 2200 2780
Co 35.1 40.2 45.8 47.5 40.0 39.5 37.8 41.7
Ni 42.6 50.6 50.7 171.0 62.0 70.9 61.2 102.0
Zn 53.5 65.8 75.2 49.6 46.5 48.5 45.6 43.1
Ga 2.88 4.83 3.83 3.02 2.51 2.54 2.27 1.61
Rb 0.06 0.49 <0.046 0.12 0.06 1.60 0.14 0.04
Sr 0.31 3.23 0.30 1.10 0.56 1.02 0.63 0.16
Y 2.73 5.76 4.38 2.60 2.09 2.10 2.21 1.07
Zr 3.26 13.60 2.30 2.90 1.54 2.57 2.12 0.44
Nb 0.07 0.41 0.02 0.12 0.05 0.09 0.06 0.03
Cs <0.019 0.04 <0.029 <0.020 0.01 0.10 <0.015 <0.018
Ba 0.13 2.68 0.09 0.42 0.17 0.48 0.28 0.03
La 0.02 0.12 <0.008 0.03 0.01 0.02 0.03 <0.007
Ce 0.05 0.29 0.04 0.11 0.03 0.08 0.08 0.01
Pr 0.01 0.06 <0.005 0.02 0.01 0.01 0.01 <0.005
Nd 0.08 0.33 0.09 0.11 0.04 0.09 0.08 0.03
Sm 0.07 0.25 0.16 0.08 0.06 0.07 0.09 0.03
Eu 0.02 0.08 0.03 0.03 0.02 0.03 0.02 0.01
Tb 0.05 0.12 0.09 0.05 0.04 0.04 0.04 0.02
Gd 0.19 0.61 0.36 0.29 0.17 0.18 0.18 0.05
Dy 0.40 0.91 0.82 0.43 0.37 0.33 0.36 0.16
Ho 0.11 0.20 0.16 0.10 0.09 0.08 0.09 0.04
Er 0.35 0.62 0.59 0.27 0.26 0.27 0.25 0.13
Yb 0.36 0.71 0.62 0.31 0.28 0.22 0.29 0.15
Lu 0.06 0.10 0.09 0.05 0.04 0.05 0.04 0.03
Hf 0.12 0.47 0.09 0.10 0.07 0.09 0.08 <0.019
Ta <0.008 0.02 <0.008 <0.010 <0.003 0.00 <0.006 <0.005
Pb 0.03 0.14 <0.015 0.02 0.01 0.04 0.02 <0.014

SiO2 53.7 51.4 50.0 53.0 52.9 53.1 52.6 53.4
TiO2 0.09 0.35 0.63 0.10 0.12 0.08 0.10 0.10

Al2O3 0.63 0.87 0.64 0.60 0.85 0.56 0.61 0.73
Cr2O3 0.51 0.44 0.21 0.46 0.43 0.49 0.50 0.61
MgO 23.2 19.8 14.2 22.6 23.0 24.1 23.3 25.0
CaO 4.08 4.48 5.64 5.10 4.20 3.91 3.70 3.05
MnO 0.59 0.70 0.76 0.55 0.61 0.57 0.67 0.63
FeO 17.1 21.0 27.0 16.8 17.8 16.5 17.7 15.7

Na2O 0.04 0.07 0.05 0.04 0.06 0.09 0.06 0.07
Sum 100.0 99.1 99.2 99.3 99.9 99.4 99.1 99.3  
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Major- and Trace-Element Chemistry of LithB Pyroxenes

Element jn17a16 jn17a17 jn17a18 jn17b03 jn17b07 jn17b08 jn17b10 jn17b11
Sc 39.1 74.3 38.3 36.0 38.9 50.2 38.6 35.3
Ti 755 3730 805 963 807 1507 922 702
V 234 128 212 198 215 266 219 220
Cr 3696 754 2767 2966 2996 3419 3482 4719
Co 54.1 49.1 44.5 51.1 46.3 56.6 57.5 75.4
Ni 123.0 48.6 71.5 103.0 88.3 87.1 129.0 254.0
Zn 56.3 128.0 50.7 58.3 52.1 72.9 61.6 75.4
Ga 2.10 6.96 2.59 2.50 2.36 3.98 2.87 2.04
Rb <0.031 <0.030 0.11 0.08 <0.030 0.17 0.16 0.05
Sr 0.20 0.39 0.52 0.58 0.26 1.18 1.07 0.08
Y 1.55 3.80 2.55 2.26 2.00 4.29 2.21 1.03
Zr 0.65 7.60 1.95 1.87 0.85 4.71 2.21 0.35
Nb 0.04 0.02 0.06 0.07 0.04 0.13 0.07 0.05
Cs <0.018 <0.015 0.02 <0.017 <0.011 0.02 0.02 <0.022
Ba 0.03 0.02 0.25 0.23 0.06 0.59 0.34 0.01
La <0.006 0.01 0.03 0.02 0.01 0.07 0.02 <0.008
Ce 0.01 0.05 0.11 0.05 0.03 0.19 0.07 <0.009
Pr <0.004 0.01 0.02 0.01 0.01 0.04 0.01 <0.005
Nd <0.039 0.07 0.14 0.07 <0.035 0.23 0.08 <0.042
Sm 0.04 0.07 0.10 0.07 0.07 0.21 0.06 <0.067
Eu 0.01 0.05 0.05 0.03 0.02 0.06 0.03 <0.010
Tb 0.02 0.06 0.05 0.04 0.04 0.09 0.04 0.01
Gd 0.15 0.30 0.24 0.20 0.18 0.42 0.17 0.07
Dy 0.23 0.64 0.45 0.36 0.33 0.68 0.43 0.16
Ho 0.06 0.16 0.10 0.08 0.08 0.15 0.09 0.04
Er 0.17 0.52 0.31 0.27 0.24 0.51 0.26 0.12
Yb 0.19 0.71 0.30 0.25 0.27 0.52 0.28 0.12
Lu 0.04 0.13 0.05 0.05 0.05 0.08 0.05 0.02
Hf 0.03 0.38 0.08 0.08 0.03 0.20 0.08 0.03
Ta <0.007 <0.005 <0.005 0.01 <0.005 0.01 <0.006 <0.009
Pb <0.014 0.02 0.01 0.01 0.01 0.03 0.03 <0.015

SiO2 53.0 48.7 53.3 53.2 53.4 51.6 52.7 53.2
TiO2 0.13 0.70 0.13 0.29 0.11 0.30 0.23 0.05

Al2O3 0.74 0.67 0.73 0.90 0.77 0.94 1.02 0.49
Cr2O3 0.65 0.13 0.35 0.36 0.46 0.45 0.42 0.31
MgO 23.5 10.6 22.7 20.3 22.7 17.9 19.8 24.5
CaO 4.22 5.99 5.10 4.19 5.16 6.54 5.05 3.29
MnO 0.61 0.78 0.57 0.69 0.57 0.61 0.56 0.53
FeO 16.4 32.5 17.2 20.2 17.3 21.6 20.6 17.1

Na2O 0.07 0.05 0.04 0.06 0.08 0.08 0.08 0.07
Sum 99.3 100.1 100.1 100.3 100.5 100.0 100.5 99.6  

 
 
 
 
 
 

 97



Major- and Trace-Element Chemistry of LithB Pyroxenes
Element jn17b12 jn17b13 jn17b14 jn17b16 jn17b18 jn17c03 jn17c04 jn17c05

Sc 36.4 65.5 30.0 52.9 32.5 40.0 50.1 35.4
Ti 875 2506 564 1132 644 1302 1269 911
V 215 203 180 270 188 201 205 170
Cr 3923 2131 2837 3124 2442 2572 2061 2036
Co 64.9 52.0 39.0 47.5 30.3 41.5 36.8 33.5
Ni 257.0 59.3 101.0 63.3 51.0 58.5 41.5 43.4
Zn 61.5 86.0 40.1 56.9 32.8 56.7 51.1 41.4
Ga 2.62 4.92 1.59 3.34 1.78 3.24 3.62 2.73
Rb 4.50 0.05 0.07 0.07 0.20 0.26 0.13 0.08
Sr 1.28 0.44 0.34 0.35 0.43 0.95 0.74 0.80
Y 1.78 5.51 1.28 2.93 1.83 4.49 3.54 2.38
Zr 2.60 2.14 0.40 1.24 0.86 5.51 1.73 1.97
Nb 0.09 0.03 0.03 0.04 0.03 0.11 0.03 0.06
Cs 0.15 0.01 0.01 0.01 0.01 0.02 <0.004 0.01
Ba 0.52 0.05 0.08 0.08 0.10 0.36 0.18 0.28
La 0.03 0.01 <0.004 0.01 0.01 0.09 0.01 0.02
Ce 0.09 0.04 0.02 0.03 0.03 0.24 0.03 0.06
Pr 0.01 0.01 0.00 0.01 0.00 0.04 0.01 0.01
Nd <0.051 0.10 0.02 0.06 0.05 0.25 0.07 0.08
Sm 0.10 0.16 0.03 0.07 0.06 0.22 0.09 0.08
Eu 0.03 0.05 0.01 0.02 0.02 0.07 0.03 0.03
Tb 0.03 0.10 0.02 0.05 0.04 0.10 0.06 0.04
Gd 0.22 0.44 0.09 0.20 0.14 0.48 0.28 0.21
Dy 0.29 0.89 0.21 0.46 0.30 0.75 0.59 0.38
Ho 0.09 0.22 0.05 0.10 0.07 0.18 0.13 0.09
Er 0.21 0.70 0.15 0.37 0.23 0.50 0.45 0.29
Yb 0.22 0.75 0.16 0.40 0.24 0.49 0.52 0.29
Lu 0.05 0.12 0.03 0.06 0.04 0.08 0.07 0.05
Hf 0.10 0.13 0.02 0.07 0.05 0.18 0.09 0.08
Ta <0.008 <0.003 <0.002 <0.002 <0.003 0.00 <0.004 0.00
Pb 0.06 0.01 0.01 <0.005 0.03 0.03 0.01 0.01

SiO2 53.3 48.3 54.1 52.1 53.3 52.0 52.1 53.8
TiO2 0.14 0.64 0.12 0.24 0.12 0.25 0.21 0.12

Al2O3 0.78 0.64 0.55 1.52 0.79 1.17 0.74 0.70
Cr2O3 0.48 0.09 0.42 0.42 0.49 0.43 0.18 0.43
MgO 24.3 9.5 24.6 19.6 23.0 18.8 18.0 23.3
CaO 3.77 6.43 3.37 5.49 4.60 4.74 4.50 3.75
MnO 0.53 0.85 0.63 0.70 0.59 0.65 0.78 0.60
FeO 16.5 32.7 16.9 19.8 16.7 21.8 22.9 16.9

Na2O 0.04 0.08 0.04 0.06 0.02 0.02 0.06 0.06
Sum 99.9 99.2 100.8 99.9 99.4 99.9 99.4 99.7  
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Major- and Trace-Element Chemistry of LithB Pyroxenes
Element jn17c06 jn17c10 jn17c08 jn17b09 jn17b15 jn17b05 jn18b09 jn17b17

Sc 37.4 66.0 34.9 66.4 34.5 43.1 68.1 58.9
Ti 1002 2961 842 2387 1120 1390 5624 2880
V 185 155 164 261 154 162 241 123
Cr 2197 1281 1782 2759 2013 1523 2701 893
Co 34.6 44.2 17.3 52.3 38.8 39.1 57.1 31.5
Ni 47.0 52.4 23.8 66.8 67.5 49.8 58.6 48.4
Zn 45.3 104 22.2 84.2 48.9 57.0 114 80.2
Ga 2.76 6.16 3.43 5.63 2.67 3.28 9.05 6.11
Rb 0.30 0.04 0.05 1.13 0.26 0.14 0.30 0.42
Sr 0.81 0.65 1.50 1.15 0.78 0.90 1.16 1.45
Y 2.96 4.61 2.67 6.15 2.92 3.87 7.75 5.06
Zr 2.81 9.41 1.97 4.54 3.07 3.47 10.5 19.2
Nb 0.08 0.04 0.02 0.15 0.08 0.07 0.41 0.25
Cs 0.01 <0.012 <0.018 0.07 0.01 0.02 0.04 0.02
Ba 0.35 0.13 0.22 0.43 0.38 0.42 0.49 1.37
La 0.03 0.01 <0.008 0.05 0.04 0.04 0.05 0.03
Ce 0.09 0.04 0.04 0.14 0.09 0.12 0.14 0.10
Pr 0.02 0.01 0.01 0.03 0.02 0.02 0.03 0.02
Nd 0.13 0.08 0.06 0.24 0.12 0.15 0.21 0.16
Sm 0.11 0.14 0.12 0.22 0.11 0.14 0.21 0.19
Eu 0.04 0.04 0.05 0.07 0.04 0.05 0.07 0.07
Tb 0.06 0.08 0.04 0.12 0.06 0.07 0.15 0.11
Gd 0.29 0.41 0.29 0.57 0.28 0.34 0.79 0.45
Dy 0.51 0.80 0.46 1.00 0.50 0.71 1.40 0.88
Ho 0.12 0.17 0.10 0.23 0.11 0.14 0.30 0.21
Er 0.34 0.55 0.37 0.69 0.35 0.46 0.92 0.63
Yb 0.35 0.68 0.30 0.71 0.37 0.48 1.04 0.71
Lu 0.06 0.11 0.05 0.11 0.06 0.08 0.15 0.12
Hf 0.12 0.40 0.14 0.20 0.13 0.11 0.44 0.76
Ta 0.00 <0.005 <0.007 <0.006 0.00 <0.004 <0.011 0.01
Pb 0.02 0.03 <0.016 0.04 0.01 0.01 0.04 0.03

SiO2 53.6 49.7 53.1 51.0 54.0 53.5 50.6 54.7
TiO2 0.14 0.45 0.18 0.21 0.11 0.11 0.37 0.08

Al2O3 0.79 0.95 1.02 1.03 0.69 0.64 1.35 0.54
Cr2O3 0.50 0.36 0.47 0.56 0.43 0.41 0.36 0.64
MgO 22.3 12.4 20.6 17.8 23.7 22.8 14.1 26.3
CaO 5.30 6.98 5.88 8.50 3.98 4.50 8.02 2.34
MnO 0.63 0.68 0.62 0.54 0.57 0.46 0.65 0.47
FeO 17.0 27.7 18.1 19.7 16.8 18.2 24.4 15.0

Na2O 0.07 0.09 0.06 0.10 0.02 0.08 0.10 0.02
Sum 100.3 99.3 99.9 99.5 100.2 100.7 100.0 100.1  
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Major- and Trace-Element Chemistry of LithB Pyroxenes
Element jn17c11 jn17c12 jn17c09 jn17c13 jn17c14 jn17c07 jn17b06

Sc 88.2 118.0 93.3 105.0 88.6 75.2 28.6
Ti 4157 5364 2956 3110 2826 1968 599
V 216 222 373 418 312 306 174
Cr 1958 1332 4129 4292 3151 3153 3695
Co 60.3 63.2 64.8 64.7 38.2 43.9 57.6
Ni 83.9 78.9 83.3 77.3 52.8 56.0 200
Zn 126 142 98.2 97.9 55.9 57.9 56.2
Ga 8.56 9.70 7.52 7.82 6.56 4.94 1.77
Rb 0.75 0.14 0.82 0.26 0.08 0.04 0.07
Sr 2.33 1.74 1.67 1.76 1.65 0.77 0.20
Y 7.82 8.55 8.76 8.94 8.55 6.01 1.01
Zr 21.6 11.9 9.19 7.92 7.50 2.46 0.58
Nb 0.41 0.13 0.24 0.14 0.05 0.03 0.04
Cs 0.04 <0.042 0.06 <0.053 <0.036 0.01 0.02
Ba 2.05 0.53 0.96 0.70 0.12 0.05 0.09
La 0.06 <0.026 0.05 0.05 0.04 0.01 0.01
Ce 0.18 0.09 0.19 0.16 0.15 0.06 0.02
Pr 0.04 0.02 0.03 0.02 <0.017 0.01 0.00
Nd 0.29 0.20 0.26 0.28 0.29 0.14 0.03
Sm 0.25 0.29 0.35 0.32 0.36 0.21 0.02
Eu 0.10 0.08 0.10 0.12 0.12 0.07 0.01
Tb 0.16 0.19 0.19 0.18 0.18 0.14 0.01
Gd 0.76 0.79 0.81 0.77 1.00 0.57 0.05
Dy 1.48 1.48 1.55 1.45 1.61 1.08 0.16
Ho 0.30 0.33 0.33 0.36 0.31 0.24 0.03
Er 0.92 1.02 1.00 1.09 1.01 0.70 0.13
Yb 1.19 1.24 1.00 0.98 1.02 0.73 0.17
Lu 0.20 0.21 0.15 0.15 0.15 0.11 0.02
Hf 0.91 0.56 0.34 0.36 0.45 0.16 0.03
Ta 0.02 <0.017 0.01 <0.035 <0.015 0.00 0.01
Pb 0.17 0.07 0.05 0.05 0.08 0.01 <0.013

SiO2 50.1 49.2 48.3 51.2 51.1 50.0 54.0
TiO2 0.56 0.56 0.64 0.31 0.42 0.52 0.0

Al2O3 0.90 0.88 2.21 1.83 1.25 0.96 0.4
Cr2O3 0.29 0.26 0.53 0.73 0.56 0.28 0.4
MgO 12.1 11.3 12.2 16.1 13.1 12.7 25.5
CaO 10.83 12.24 12.95 13.52 14.28 9.61 2.6
MnO 0.77 0.67 0.62 0.51 0.59 0.67 0.5
FeO 24.0 23.3 19.5 14.7 18.5 24.2 16.5

Na2O 0.10 0.12 0.15 0.13 0.15 0.11 0.0
Sum 99.7 98.6 97.1 99.1 99.9 99.0 100.1  
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Major- and Trace-Element Chemistry of LithA Maskelynite

Element jn16a11 jn16a13 jn16a14 jn16a15 jn16a16 jn16a17
Sc 1.07 1.09 1.05 1.23 1.39 0.968
Ti 384 350 389 372 553 317
V 4.13 3.79 3.22 4.4 5.22 3.01
Cr 2.76 2.96 2.57 4.36 21.5 3.19
Mn 62.4 63.9 65.6 64.2 91.8 56.3
Co 0.623 0.69 0.57 1.01 0.86 0.48
Ni 0.829 1.38 1.34 3.98 1.66 0.559
Ga 43.5 44.5 44.5 33.6 66 43.9
Rb 7.96 2.17 0.916 1.12 4.16 0.21
Sr 78.9 74.7 71.6 73.3 89.4 70.2
Y 0.108 0.29 0.14 0.13 0.15 0.10
Zr 0.097 0.10 17.3 0.08 0.11 0.02
Nb <0.0042 <0.0047 0.47 0.0053 <0.0029 <0.0020
Ba 7.09 8.22 5.85 5.85 16.8 5.24
La 0.05 0.05 0.04 0.05 0.04 0.04
Ce 0.09 0.16 0.09 0.08 0.10 0.08
Pr 0.01 0.02 0.01 0.01 0.01 0.01
Nd 0.05 0.08 0.06 0.08 0.07 0.07
Sm <0.020 <0.023 <0.034 <0.018 0.08 0.02
Eu 0.78 0.74 0.74 0.69 0.88 0.76
Tb <0.0041 0.01 0.01 0.01 <0.0034 0.01
Gd 0.06 0.07 0.05 0.02 0.03 0.04
Dy 0.04 0.05 0.03 0.05 0.03 <0.018
Ho 0.00 0.01 0.01 0.01 0.01 <0.0042
Er <0.012 0.06 0.02 <0.013 0.02 0.01
Yb <0.030 <0.017 <0.021 <0.028 <0.023 <0.021
Lu <0.0041 0.00 <0.0046 <0.0032 <0.0027 <0.0051
Hf <0.014 <0.0048 0.55 <0.012 <0.015 <0.012
Ta <0.0036 <0.0035 0.01 <0.0042 <0.0071 <0.0037
Pb 0.04 0.08 0.06 0.05 0.13 0.04
Th <0.012 <0.0064 <0.0071 0.01 <0.0073 <0.010
U <0.0066 <0.0047 <0.0063 <0.0060 <0.0037 <0.0050

SiO2 53.1 53.7 52.7 54.7 53.9 53.2
Al2O3 29.6 29.1 29.2 28.2 29.1 29.2
MgO 0.1 0.1 0.1 0.1 0.1 0.2
CaO 12.5 11.9 12.0 10.8 11.6 11.9
FeO 0.7 0.6 0.6 0.5 0.5 0.5

Na2O 4.0 4.5 4.4 5.0 4.7 4.4
K2O 0.2 0.2 0.2 0.2 0.2 0.1
Sum 100.1 100.1 99.2 99.6 100.2 99.4  
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Major- and Trace-Element Chemistry of LithA Maskelynite
Element jn16a18 jn16b03 jn16b04 jn16b05

Sc 1.03 0.976 1.18 0.939
Ti 319 402 335 306
V 3.54 2.62 3.7 3.03
Cr 2.91 1.69 2.39 2.32
Mn 62.3 52.1 69.7 52.6
Co 0.58 0.57 0.69 0.54
Ni 0.845 1.48 1.4 1.07
Ga 43.5 48.4 46 40.7
Rb 0.63 5.01 2.39 0.63
Sr 72.1 79.6 72.4 65.9
Y 0.10 0.11 0.90 0.17
Zr 0.02 0.40 0.19 0.03
Nb <0.0026 0.0068 0.01 <0.0029
Ba 5.4 13.7 8.55 5.71
La 0.05 0.05 0.10 0.05
Ce 0.08 0.10 0.32 0.10
Pr 0.01 0.01 0.04 0.01
Nd 0.04 0.07 0.19 0.06
Sm 0.02 <0.024 0.09 0.03
Eu 0.75 0.81 0.74 0.70
Tb 0.01 0.01 0.03 0.01
Gd 0.03 0.02 0.17 0.04
Dy 0.02 0.04 0.11 0.04
Ho 0.01 0.01 0.04 0.01
Er <0.0080 <0.013 0.07 0.02
Yb <0.014 <0.036 0.11 0.01
Lu <0.0032 <0.0027 0.01 <0.0028
Hf <0.0080 <0.0092 <0.0077 <0.0097
Ta <0.0038 <0.0060 <0.0059 <0.0031
Pb 0.04 0.08 0.09 0.06
Th <0.0052 <0.0093 0.01 0.00
U <0.0038 <0.0048 0.01 <0.0049

SiO2 53.5 53.7 52.7 54.8
Al2O3 28.9 28.7 29.5 28.4
MgO 0.19 0.1 0.1 0.1
CaO 12.1 11.5 12.0 10.9
FeO 0.76 0.5 0.4 0.6

Na2O 4.60 4.6 4.4 5.0
K2O 0.12 0.2 0.1 0.2
Sum 100.2 99.4 99.2 100.0  
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Major- and Trace-Element Chemistry of LithB Maskelynite
Element jn16b06 jn16b07 jn16b08 jn16b09 jn16b10 jn16b11 jn16b12 jn16b13

Sc 1.03 0.757 1.1 1.04 1.05 0.856 1.14 1.11
Ti 315 286 484 313 308 413 385 364
V 3.39 3.34 2.33 3.41 3.23 1.85 3.81 3.1
Cr 2.82 <1.81 3.43 4.29 3.52 1.78 2.51 3.45
Mn 77.4 56.2 73.9 71.9 75 52.7 83.9 72.8
Co 1.07 0.50 0.76 0.67 0.58 0.48 0.71 0.71
Ni 7.33 0.85 1.81 1.27 0.94 0.838 1.67 2.14
Ga 43.8 35.4 81.9 42.6 47.2 60.6 42.5 57.7
Rb 2.02 0.247 5.79 0.33 0.634 1.05 0.862 2.53
Sr 68.4 64.9 106 67.8 68.4 74 70.3 78.7
Y 0.14 0.09 0.11 0.11 0.09 0.08 0.47 0.77
Zr 0.84 0.04 0.37 0.06 0.06 0.04 0.21 0.61
Nb 0.03 <0.0064 0.01 0.00 <0.0026 <0.0033 0.02 0.01
Ba 9.3 4.69 22.8 5.12 6.11 10.5 5.96 15.1
La 0.05 0.04 0.03 0.04 0.03 0.04 0.07 0.07
Ce 0.08 0.08 0.07 0.07 0.07 0.05 0.16 0.23
Pr 0.01 0.01 0.01 0.01 0.01 0.00 0.02 0.04
Nd 0.05 0.06 0.05 0.06 0.06 0.06 0.19 0.16
Sm 0.03 <0.046 <0.025 <0.037 <0.020 0.03 0.05 0.08
Eu 0.64 0.74 0.86 0.75 0.71 0.76 0.78 0.76
Tb 0.01 <0.0043 0.01 0.00 0.01 0.00 0.02 0.02
Gd 0.04 0.03 0.05 0.05 0.04 <0.030 0.08 0.12
Dy 0.03 <0.017 0.02 <0.020 0.03 0.01 0.17 0.13
Ho 0.00 <0.0075 <0.0043 0.01 0.00 <0.0059 0.03 0.03
Er <0.012 0.04 <0.013 <0.014 <0.0094 <0.012 0.07 0.05
Yb <0.015 <0.038 <0.027 <0.023 <0.017 <0.027 <0.038 0.05
Lu 0.00 <0.0052 <0.0039 <0.0038 <0.0036 <0.0052 0.01 <0.0057
Hf 0.03 <0.027 0.02 <0.014 <0.0099 <0.019 0.02 0.02
Ta <0.0029 <0.013 <0.0046 <0.0065 <0.0045 <0.0068 <0.0067 <0.0068
Pb 0.12 0.02 0.17 0.09 0.06 0.04 0.05 0.22
Th <0.0099 <0.0051 <0.011 <0.0055 <0.0054 <0.011 <0.010 0.01
U <0.0054 <0.011 <0.0069 <0.0046 <0.0046 <0.0076 <0.0076 0.00

SiO2 53.7 54.2 52.6 53.7 53.9 56.3 53.6 52.6
Al2O3 28.8 28.9 29.8 28.9 29.5 27.4 29.0 29.7
MgO 0.1 0.1 0.2 0.2 0.1 0.1 0.2 0.1
CaO 11.2 11.8 13.0 12.3 12.1 10.0 12.1 12.2
FeO 0.5 0.5 0.5 0.9 0.4 0.9 0.7 0.5

Na2O 4.7 4.5 3.8 4.1 4.2 5.2 4.4 4.1
K2O 0.1 0.1 0.1 0.1 0.1 0.2 0.1 0.2
Sum 99.3 100.0 100.0 100.2 100.3 100.2 100.2 99.5  
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Major- and Trace-Element Chemistry of LithB Maskelynite
Element jn16b14 jn16b15

Sc 1.05 1.04
Ti 347 389
V 3.58 2.6
Cr 2.91 2.56
Mn 72.2 63.6
Co 0.57 0.48
Ni 1.05 0.723
Ga 49 58
Rb 0.362 1.86
Sr 72.4 76.9
Y 0.25 0.12
Zr 0.12 0.04
Nb 0.00 <0.0019
Ba 5.87 9.59
La 0.06 0.04
Ce 0.16 0.08
Pr 0.02 0.01
Nd 0.12 0.07
Sm 0.05 0.03
Eu 0.78 0.82
Tb 0.01 <0.0047
Gd 0.07 0.03
Dy 0.05 0.02
Ho 0.01 <0.0039
Er 0.03 0.01
Yb 0.03 <0.024
Lu 0.00 <0.0057
Hf <0.0090 <0.0098
Ta  − <0.0034
Pb 0.04 0.06
Th <0.0044 <0.0058
U <0.0063 <0.0029

SiO2 52.9 53.8
Al2O3 29.1 29.1
MgO 0.1 0.1
CaO 12.1 11.4
FeO 0.5 0.6

Na2O 4.3 4.6
K2O 0.1 0.2
Sum 99.2 99.7  
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Major- and Trace-Element Chemistry of LithA Olivine Megacrysts

Element jn18b15 jn18b18 jn18b17 jn18a11 jn18a17 jn18a13
Sc 9.13 20.7 8.26 9.83 8.29 9.51
Ti 73.9 4186 74.8 51.4 127 52.9
V 14.7 62.8 14.1 18.9 11.6 20.7
Cr 296 1362 251 385 251 517
Co 90.7 83.7 86.5 89.9 85.6 90.2
Ni 245 164 210 248 285 285
Zn 95 92.7 97 95.5 78.2 97.5
Ga 0.39 2.73 0.31 0.55 0.47 0.66
Rb <0.033 0.036 <0.027 <0.042 <0.041 <0.030
Sr 0.05 5 0.021 <0.011 0.026 0.023
Y 0.17 34 0.17 0.18 0.1 0.19
Zr 0.15 45.4 0.1 <0.041 1.03 0.044
Nb 0.012 1.46 <0.008 <0.011 0.014 0.008
Cs <0.014 <0.015 <0.015 <0.018 0.02 <0.012
Ba 0.042 0.29 0.012 <0.009 0.045 0.012
La <0.006 1.36 <0.005 <0.006 <0.009 <0.005
Ce 0.004 3.68 <0.006 <0.011 <0.006 <0.006
Pr <0.006 0.6 <0.004 <0.006 <0.009 <0.003
Nd <0.022 3.28 <0.029 <0.036 <0.045 <0.025
Sm <0.026 2.45 <0.023 <0.032 <0.030 <0.034
Eu <0.007 0.8 0.013 <0.006 <0.010 <0.007
Tb <0.006 0.91 <0.004 <0.007 <0.005 <0.003
Gd <0.027 5.27 <0.016 <0.050 <0.027 <0.014
Dy 0.022 6.79 <0.029 <0.026 <0.019 0.018
Ho <0.007 1.34 0.008 0.009 <0.007 0.006
Er 0.021 4.04 0.027 0.042 0.026 0.022
Yb 0.062 3.46 0.052 0.076 <0.040 0.051
Lu 0.011 0.53 0.013 0.015 0.011 0.013
Hf <0.017 1.99 <0.019 <0.021 0.076 <0.013
Ta <0.005 0.099 <0.006 <0.008 <0.009 <0.006

SiO2 35.4 35.2 35.7 35.6 36.1 35.9
Cr2O3 0.07 0.00 0.08 0.08 0.05 0.07
MgO 25.5 26.2 27.2 27.7 29.2 29.4
CaO 0.30 0.24 0.24 0.27 0.27 0.26
MnO 0.73 0.66 0.66 0.65 0.60 0.60
FeO 38.3 38.8 36.9 36.6 34.5 34.5
Sum 100.4 101.1 100.7 100.8 100.7 100.7  
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Major- and Trace-Element Chemistry of LithA Olivine Megacrysts
Element jn18a18 jn18b05 jn18a12 jn18b13 jn18b06 jn18b16 jn18b14 jn18a16

Sc 11.1 8.14 8.96 8.23 7.41 7.55 7.29 6.45
Ti 37.3 47 51.4 78 41.9 42.9 28.6 29.6
V 21.4 14.1 23.2 13.2 17 12.5 17.1 13.3
Cr 464 304 595 320 352 262 356 327
Co 87.5 82.5 90.9 84.7 84.1 77.5 81.2 83.8
Ni 279 293 360 326 321 255 396 399
Zn 84.1 83.3 97.3 86.4 76.7 78.5 70.7 75
Ga 0.49 0.45 0.69 0.33 0.38 0.34 0.32 0.27
Rb <0.014 <0.027 <0.026 <0.027 <0.049 <0.022 <0.016 <0.037
Sr 0.022 0.037 0.028 <0.006 <0.009 0.027 0.035 <0.010
Y 0.23 0.15 0.18 0.17 0.12 0.15 0.13 0.074
Zr 0.072 0.03 0.049 0.021 <0.035 0.038 0.053 <0.033
Nb 0.007 <0.005 0.008 <0.006 <0.013 <0.009 0.008 <0.014
Cs <0.006 <0.009 <0.014 <0.014 <0.021 <0.010 <0.012 <0.025
Ba 0.031 0.067 0.03 <0.007 0.019 0.022 0.021 <0.013
La <0.004 <0.004 <0.008 <0.006 <0.010 <0.005 <0.005 <0.011
Ce <0.003 <0.004 <0.006 <0.003 <0.010 0.005 <0.005 <0.008
Pr <0.002 <0.002 <0.004 <0.003 <0.005 <0.003 <0.004 <0.006
Nd <0.016 <0.020 <0.026 <0.023 <0.028 <0.024 <0.022 <0.027
Sm <0.020 <0.016 <0.019 <0.023 <0.047 <0.034 <0.033 <0.043
Eu <0.005 <0.005 <0.007 <0.007 <0.010 <0.005 <0.008 <0.011
Tb 0.003 <0.004 <0.004 <0.004 <0.004 <0.002 <0.005 <0.008
Gd <0.010 <0.019 <0.037 <0.013 <0.029 <0.017 <0.017 <0.041
Dy 0.022 <0.013 0.016 0.016 <0.017 <0.021 <0.015 <0.030
Ho 0.008 0.004 0.007 <0.006 <0.008 0.006 <0.004 0.007
Er 0.045 0.028 0.024 0.029 0.022 0.028 0.016 <0.025
Yb 0.065 0.064 0.054 0.075 <0.037 0.048 0.033 <0.036
Lu 0.013 0.012 0.011 0.013 <0.006 0.007 0.01 <0.006
Hf 0.007 <0.014 <0.017 <0.015 <0.026 <0.012 <0.012 <0.023
Ta <0.002 <0.004 <0.006 <0.004 <0.008 <0.005 <0.006 <0.006

SiO2 35.7 36.1 36.4 36.7 36.8 36.6 38.1 37.6
Cr2O3 0.12 0.02 0.07 0.03 0.05 0.05 0.05 0.01
MgO 29.7 30.0 30.9 30.7 32.5 32.7 34.4 35.3
CaO 0.26 0.26 0.24 0.25 0.28 0.19 0.23 0.19
MnO 0.61 0.60 0.55 0.60 0.50 0.53 0.49 0.52
FeO 34.2 33.7 32.8 31.9 30.7 30.2 26.6 27.2
Sum 100.6 100.6 101.0 100.1 100.8 100.2 99.9 100.8  
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Major- and Trace-Element Chemistry of LithA Olivine Megacrysts
Element jn18c03 jn18b03 jn18a14 jn18b04 jn18a15

Sc 7.46 7.75 6.75 7.81 6.48
Ti 38.4 41.5 30.7 43.9 26.1
V 35 37.3 18.8 47.2 28.9
Cr 2050 1607 596 2370 1720
Co 75.7 82 80.8 78.3 81.2
Ni 401 419 417 411 493
Zn 78.6 66.2 67.4 60.6 65.2
Ga 0.67 0.5 0.37 0.51 0.45
Rb <0.013 <0.019 <0.023 <0.013 <0.039
Sr 0.066 0.016 0.016 0.014 0.019
Y 0.14 0.11 0.07 0.12 0.072
Zr 0.042 0.029 0.029 0.065 0.031
Nb 0.02 0.012 0.012 0.026 0.021
Cs <0.008 <0.010 <0.013 <0.007 <0.012
Ba 0.016 0.028 0.031 0.021 0.029
La <0.003 <0.004 <0.006 <0.003 <0.005
Ce <0.002 <0.004 <0.004 <0.003 <0.007
Pr <0.002 <0.002 <0.005 <0.002 <0.004
Nd <0.008 <0.022 <0.030 <0.015 <0.022
Sm <0.014 <0.012 <0.030 <0.015 <0.023
Eu <0.003 <0.005 <0.005 <0.005 <0.006
Tb <0.002 0.003 <0.003 0.002 <0.004
Gd <0.010 <0.013 <0.014 <0.015 <0.024
Dy 0.018 0.019 0.018 0.017 <0.016
Ho 0.003 0.004 <0.004 <0.004 <0.004
Er 0.025 0.014 0.017 0.018 <0.016
Yb 0.034 0.032 <0.022 0.045 <0.022
Lu 0.008 0.008 <0.006 0.008 0.005
Hf <0.007 <0.009 <0.013 <0.010 <0.009
Ta <0.002 <0.005 <0.005 <0.004 <0.004

SiO2 37.6 37.9 38.0 38.1 38.5
Cr2O3 0.09 0.09 0.07 0.08 0.10
MgO 36.4 37.3 37.2 38.1 38.9
CaO 0.22 0.26 0.22 0.18 0.19
MnO 0.45 0.46 0.42 0.45 0.42
FeO 26.9 24.8 24.6 23.7 22.4
Sum 101.7 100.8 100.6 100.5 100.6  
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