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ABSTRACT 

Federal programs incentivize livestock managers to adopt best management practices (BMPs), 

such as rotational grazing, water tank systems, stream crossings, and pasture improvement to 

prevent or reduce soil erosion. This thesis addresses the challenge of integrating socio-economic 

data on rotational grazing (RG) adoption behavior with hydrologic/biophysical models to 

analyze the association between incentives, BMP adoption, and changes in soil erosion. Using 

primary survey data of livestock producers in an East Tennessee watershed, the study estimates 

willingness to adopt BMPs among livestock producers. The propensity to adopt one or multiple 

management technologies, given an incentive, is estimated with a multivariate probit regression. 

The likelihood producers adopt RG is integrated into the Soil and Water Assessment Tool 

(SWAT) hydrologic model to generate upland sediment loss abatement curves for the watershed. 

Abatement curves specific to each hydrologic response unit (HRU) comprising the watershed are 

estimated and then aggregated to determine an aggregate abatement curve for the watershed. 

Based on the abatement curves, HRU are ranked according to programmatic cost efficiency. The 

maximum upland sediment loss reduction with rotational grazing totals 1,450 tons/year at a cost 

of $170/ton across the Oostanaula Creek Watershed.  
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CHAPTER 1: PROBLEM IDENTIFICATION AND EXPLANATION 

Overgrazing and poor pasture management affect erosion, water quality, and soil fertility. 

Grazing activities on pastureland are positively correlated with increased levels of upland 

sediment loss (ULS) (Pimentel et al., 1995; Knowler and Bradshaw, 2007; Smith et al., 2014). 

Reductions in soil depth decrease soil productivity leading to nutrient runoff and USL, harming 

aquatic plants and other organisms (Bhattarai and Dutta, 2007; Fu, Ruan and Gao, 2013; Gooday 

et al., 2014; Jeffrey et al., 2014). Soil erosion on pastureland continues despite increasing 

awareness of its consequences. Pastures in the United States (U.S.) lose about 2.43 tons/acre/year 

of soil (USDA-NASS, 2003). More than half of the area on pastureland on non-federal and 

federal lands is now overgrazed and has become subject to high erosion rates (Campbell, 1998; 

Pimentel, 2006). Livestock managers can use best management practices (BMPs) such as 

rotational grazing, water tanks, stream crossings, and pasture improvement to prevent or reduce 

soil erosion.  

Laws and regulations have been enacted, such as the Federal Water Pollution Control 

Act, as designated by the Clean Water Act of the U.S. Congress, to address water quality 

problems. The water quality problems addressed by the U.S Congress are linked to discharges 

from point sources (single, identifiable sources such as wastewater treatment plants and 

industrial sewage outlets) and nonpoint sources (diffuse sources). Although the U.S. government 

has primarily relied on regulatory approaches to address water pollution from point sources, 

voluntary approaches are often used to reduce pollution from non-point pollution sources. A 

typical voluntary approach for reducing non-point source pollution like USL is to offer 

incentives to landowners and agricultural producers to and/or adopt BMPs (including installing 
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BMP structures if necessary) that lower upland soil loss. The Environmental Quality Incentives 

Program (EQIP), a program managed by the United States Department of Agriculture’s 

(USDA’s) Natural Resources Conservation Service (NRCS) provides producers incentives of 50 

to 75% of start-up costs of BMPs (like installing fencing for rotational grazing) (Jensen et al., 

2015). The Tennessee Department of Environmental Conservation (TDEC) and the Tennessee 

Department of Agriculture encourage adoption of BMPs by offering educational training and 

monetary incentives to agricultural producers with funding from the federal government (USDA, 

2015; TDEC, 2015). TDEC supports a Tennessee Healthy Watershed Initiative (THWI), which 

offers producers incentives that adopt practices to reduce soil erosion and USL (TDEC, 2015; 

USDA-NRCS, 2015b).  

This thesis focuses on pastureland management practice adoption by livestock operators 

in the Oostanaula Creek Watershed (OCW) in Southeastern Tennessee, which, until May 2015, 

did not meet national water quality standards largely due to high USL levels (TDEC, 2014). It 

was estimated that a 59.4% reduction in USL would be needed for the OCW to meet applicable 

water quality standards. The existing USL load was estimated to be 0.34 tons/acre/year and the 

target was 0.14 tons/acre/year (Hagen and Walker, 2007). Since the OCW totals 34884.9 acres, 

the USL load estimates is converted to an estimated USL output of 12000.41 tons/year with a 

target of 4866.44 tons/year. Therefore the target reduction of USL was approximately 7134 

tons/year.  

Research Problem 

The effect of BMPs on soil loss is specific to the physical characteristics of farm parcels 

and the hydrology of watersheds. The slope gradient, land use, and soil type affect soil erosion 

rates differently (Bhattarai and Dutta, 2007). Currently, in many watersheds in East Tennessee, 
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insufficient information is available to address the complex spatial, temporal, soil type and 

technological impacts on USL reduction with water quality initiative levels. These knowledge 

gaps may be important for determining how and where to allocate limited funds to encourage 

BMP adoption and reduce USL. Calculating the cost of USL abatement based on the biophysical 

characteristics of land is also important for enhancing program efficiency in terms of 

expenditures and marginal abatement costs. With these calculations, federal and local agencies 

like the United States Department of Agriculture (USDA) and TDEC could more accurately 

target the financial incentive levels necessary to achieve critical BMP adoption thresholds to 

meet local water quality objectives.  

Supplementing hydrologic models with primary survey data adds an important context to 

the recruitment of producers into programs. Incorporating land parcel topography in policy 

analysis may also facilitate the optimal distribution of incentives to producers who manage 

livestock on HEL or other sensitive land near waterways. A BMP’s USL abatement potential 

may be more accurately characterized if the estimate accounts for features specific to the 

watershed. Estimating the abatement costs associated with specific parcels and their landowners 

is important to identify where programmatic expenditures could have the greatest marginal 

impact on USL. With additional information about producer incentives to adopt specific 

practices, state and federal agencies could more effectively determine the financial incentive 

levels needed to target and sustain local water quality objectives.  

There is extensive research on soil loss, USL (Herr et al., 2002; Khanna et al., 2013; Jang 

et al., 2014), and BMP adoption (Lambert et al., 2014; Signore, 2014; Jensen et al., 2014). 

However, additional information is needed to quantify the USL that results from the adoption of 

BMP practices and determine producer willingness to adopt BMPs given different incentive 
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levels. Topographic characteristics (e.g., soil type and slope) of pastureland must be factored into 

USL models to determine site-specific USL abatement cost curves and eventually the total costs 

and benefits of programs designed to conserve soil resources and maintain water quality.  

Research Objectives  

Thus, the objectives for this research are to:  

 Evaluate the effect of incentives on BMP adoption among livestock producers in an East 

Tennessee Watershed; and 

 Quantify the reduction in USL from grazing on pastureland given RG adoption, using the 

hydrologic-biophysical Soil and Water Assessment Tool (SWAT)  
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CHAPTER 2: LITERATURE REVIEW 

Voluntary BMPs are important to reduce non-point source pollution to supplement point 

source control efforts under the Clean Water Act. Studies conclude that voluntary programs are 

effective for mitigating the externalities generated by agriculture and are an important 

supplement to mandatory compliance programs (Ice, 2004; Feng et al., 2006). Flexibility in 

voluntary BMP programs is important because pasture management may vary across landscapes, 

and impacts on USL may also vary across time. Feng et al. (2006) found that BMPs on working 

land are more cost-effective relative to land retirement for many target levels of environmental 

benefits like carbon sequestration and soil erosion. Many studies examined factors influencing 

the adoption of BMPs to achieve environmental goals (Jeffrey et al., 2014; Knowler and 

Bradshaw, 2007; Prokopy et al., 2008). Studies of BMP adoption patterns examine practice costs 

and federal and state initiatives including cost-share incentives and educational programs.  

Description of Best Management Practices  

This thesis focuses on RG, and the reason for the choice of RG will be discussed later. The 

three other BMPs analyzed are pasture improvement (PI), water tank installation (WT), and 

stream crossing (SC). Descriptions of the four BMPs are: 

1. RG [similar to prescribed grazing, NRCS practice # 528 (USDA-NRCS, 2016)] is a BMP that 

entails partitioning pasture into smaller areas with paddocks. Cattle are rotated between 

paddocks to rejuvenate forage by providing time for vegetation regrowth, reducing the 

potential of overgrazing. The benefits of adopting rotational grazing for producers include 

increased pasture yields, improved forage quality, enhanced water quality, reduced weed 

growth, and healthier livestock leading to an increase in animal yield (USDA-NRCS, 2009). 
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The environmental effects of overgrazing include the degradation of grasses or changes in the 

types of grasses on pastureland (palatable tall grasses may be replaced by shorter varieties). 

Damaged grass increases the area of soil-exposed patches, making soil more vulnerable to 

erosion. Soil erosion may then also increase USL in watersheds (USDA-NRCS, 1996; Jang et 

al., 2014). Adopting RG to maintain healthy vegetation on pasture thus reduces soil exposure 

to weathering and prevents erosion and USL.  

2. PI [or conservation cover, NRCS practice # 327 (USDA-NRCS, 2016)] also mitigates USL. 

PI includes planting grasses and/or vegetation to provide shade and soil cover. These grasses 

protect soil from rain, retain and rebuild pasture soil by decreasing USL rates into nearby 

water bodies, improve forage quality, reduce gully formation, and improve farm appearance 

(Ritter, 2012; Lambert et al., 2014). The effectiveness of the pasture cover depends on the 

intensity of adoption such as the vegetation type and the number of acres covered (Ritter, 

2012).  

3. The installation of WTs [NRCS practice # 614 (USDA-NRCS, 2016)] may include permanent 

or portable devices to provide sufficient drinking water for maintaining livestock health. WT 

use dissuades cattle from congregating in a stream and disturbing soil in and around the 

waterway. WTs are typically required if RG is adopted because livestock may not have direct 

access to a water source (USDA-NRCS, 2009).  

4. SCs [NRCS practice #578 (USDA-NRCS, 2016)] provide firm footing for cattle to cross 

streams. A typical SC involves covering a stream with coarse gravel for livestock to safely 

cross while discouraging them from congregating in the stream (Hoormand and McCutcheon, 

2015). Cattle crossing the river on a solid footing are less likely to disturb sediment on the 
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stream bed. Solar-powered electric fences and woven fence can also be used to exclude 

livestock from other points of the stream. Restricting stream access to waterways reduces the 

likelihood of contamination by fecal matter.  

Determinants of BMP Adoption 

Many agricultural producers in the U.S. are hesitant to adopt BMPs despite increasing 

awareness of USL and its environmental consequences. One hypothesis about why some 

agricultural producers are reluctant to adopt BMPs is that erosion impacts occur over a long-term 

horizon, whereas producers are more sensitive to costs on the farm in one career-span (Kuhlman, 

Reinhard, and Gaaff, 2010). Second, the benefits are often partially distributed to society as a 

whole. However, producers do not typically cite these reasons as an explanation for non-

adoption in the soil erosion literature. More often, producers list that they are unfamiliar with a 

BMP, or that they could not afford the installation or maintenance costs associated with BMP 

adoption (Prokopy et al., 2008).  

It is often unclear, and likely context-specific, how producer characteristics such as age, 

income, land ownership and land use affect WTA and BMP adoption intensity. Prokopy et al. 

(2008) summarized 55 studies to establish patterns in BMP adoption and concluded that 

education levels, income, number of acres managed, capital, diversity in agricultural outputs 

produced, having more access to labor, and access to information generally led to higher 

adoption rates. They also found that the type of operation impacted likelihood of adoption, as 

livestock operations were less likely to adopt BMPs compared to other types of farm enterprises 

such as row crops (Prokopy et al., 2008). Lambert et al. (2007) analyzed the effects that producer 

characteristics (such as education, experience, age), producer perceptions (e.g., about 

government incentive programs) and land characteristics (farm size, income, yield) have on 
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participation in incentive programs. The authors used the USDA’s Agricultural Resource 

Management Survey (ARMS), which provides a nationally representative sample of information 

on producers’ characteristics and BMP adoption behavior. Lambert et al. (2008) found that the 

agricultural producer was more likely to adopt BMPs on working land if he/she considered 

farming as his/her main occupation, was slightly younger, and relied less on off-farm income 

than farm households that participated in land retirement programs. Another study found that 

agricultural producer awareness of soil erosion problems and conservation alternatives is critical 

for BMP adoption (Knowler and Bradshaw, 2007). Prokopy et al. (2008) found that producers 

with social networks, access to information (such as from the internet), prior experience adopting 

BMPs, and positive environmental attitudes were positively correlated with BMP adoption, 

underscoring the importance of building social capital to facilitate interaction between farmers 

and the community. A study by Jensen et al. (2015) focused on the adoption of prescribed 

grazing. Their findings coincided with Prokopy et al.’s (2008) conclusions about the effect that 

age, acreage, education, income, capital and adoption of management-intensive grazing have on 

BMP adoption. Programs with limited funding constraints may be more cost-effective if 

incentives were offered only to farm operations with characteristics associated with higher 

adoption rates (Prokopy et al., 2008; Jensen et al., 2015).  

Financial incentives could increase adoption rates, intensify the use of currently 

employed BMPs, or promote continued use of a BMP technology (Feng et al., 2006; Khanna et 

al., 2003; Lambert et al., 2014). Farm managers are more likely to adopt BMPs that are 

profitable (Kuhlman, Reinhard, and Gaaff, 2010; Smith et al., 2014; Knowler and Bradshaw, 

2007). Studies have found that operators with a higher percentage of cost sharing achieved 

greater erosion reductions (Feng et al., 2006; Cooper and Signorello, 2008; Jeffrey et al., 2014). 
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One reason for this is that incentives provided for the adoption of already profitable BMPs often 

increases the intensity of BMP adoption. For instance, Conservation Reserve Program (CRP) 

per-acre payments were positively related with the acres supplied to the land retirement 

component of the CRP (Lambert et al., 2007).   

However, even if producers find adopting BMPs to be profitable, risk aversion and 

payoff uncertainties may require a premium paid to farmers above compensation to any costs 

incurred by BMP adoption (Feng et al., 2006). An article by Cooper and Signorello (2008) found 

that risk premiums accounted for approximately 36% of the mean BMP adoption incentive rates 

that producers would require to adopt BMPs. Therefore, it is reasonable to provide BMP 

incentives above 100% of the total installation and maintenance cost to compensate for risk to 

the producer. 

Landscape Effects on BMP Adoption and USL Abatement Rates 

Information about the landscape and biophysical environment that agricultural producers 

operate on is important to consider when analyzing BMP adoption and effectiveness. Farmland 

characteristics may influence producer WTA or affect the USL abatement potential once BMPs 

are adopted. Operators may initially choose to produce livestock on steep land due to a lack of 

consideration for soil loss effects (Jang et al., 2014). As a result, producers who initially 

disregarded soil erosion in their land purchasing decision are likely to be non-receptive to BMP 

programs targeting soil loss (Jha, Rabotyagov, and Gassman, 2009). Prokopy et al. (2008), found 

steeper slopes and better soil conditions were associated with higher adoption rates. Also, 

producers operating on land with streams may be more likely to state they were unfamiliar with a 

BMP, did not prefer the BMP, or did not adopt the practice due to prohibitive costs (Prokopy et 

al., 2008).  
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Differences in landscape features also impact the USL abatement rate and maximum 

abatement potential of BMPs (Bhattari and Dutta, 2007). Some studies find that less productive, 

and highly sloping HEL adjacent to streams may be targeted for land retirement or BPM 

incentive programs to achieve higher rates of USL abatement (Khanna et al., 2003). Location of 

parcels relative to waterways further impacts USL rates. BMPs used on farm parcels closer to 

streams often have higher USL reduction impacts. Also, longer and steeper gradients accelerate 

soil erosion (USDA-NRCS, 1996; Ritter, 2012). It is hypothesized that adopting RG on HEL will 

lead to a higher absolute value of USL abatement compared to land not designated as HEL 

(Khanna et al., 2003). High-impact slope or soil type may be a prerequisite for receiving a cost-

share, or may qualify livestock producers for increased funding levels, given the higher returns 

on expected USL abatement. Soil type impacts erosion differently depending on its texture, 

structure, permeability and organic matter characteristics (USDA-NRCS, 1996; Ritter, 2012). 

The suitability of a particular BMP, such as tillage practice, depends on the soil characteristics 

including fertility, salinity, porosity, and other attributes such as closeness to ground water and 

slope of the land (Färe and Grosskopf, 1998). Heterogeneous soil characteristics often lead to 

variation in the cost of USL abatement. For instance, it was found the loss in profit due to a one 

ton increase in soil erosion varied from $0.60 to $6.06/acre (Govindasamy and Huffman, 1993). 

To adjust for the heterogeneity of costs across soil types, employment of a coupon system, or 

USL load bidding could also increase the economic efficiency of soil conservation payments 

(Govindasamy and Huffman, 1993). Therefore, the marginal cost of controlling USL is not the 

same across different land characteristics including location, slope and soil types (Govindasamy 

and Huffman, 1993; Ritter, 2012; Jang et al., 2014).  
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Modeling BMP Adoption and Program Efficiency  

The effectiveness of BMPs may be measured according to the USL abatement rate 

without incorporating WTA decisions in the analysis. A basic approach to measuring the 

effectiveness of BMPs is to compare levels of environmental indicators before and after BMP 

adoption. One study (Ice, 2004) estimated management impacts by comparing USL levels with 

BMP adoption in 2004 to an earlier study conducted in 1979 before BMPs were applied. Ice 

(2004) estimated that BMPs reduce USL tenfold compared to USL erosion levels with no BMPs 

in place.  

Secondly, studies have estimated the cost-effectiveness of voluntary BMP adoption. A 

BMP is considered cost-effective if its adoption is price elastic to cost-share incentives. Some 

studies evaluated cost-effectiveness of BMPs by minimizing the cost per-ton of soil loss given an 

environmental target (Pimentel et al., 1995; Jang et al., 2014) or maximizing environmental 

benefits given cost constraints (Feng et al., 2006). Kurkalova, Kling, and Zhao (2006) analyzed 

the adoption of conservation tillage through observed behavior. The authors estimated the 

financial incentives required for adopting conservation tillage, differentiating between the 

expected payoff and premium of adoption based on observed behavior. The conceptual model 

they used explicitly incorporated an adoption premium to reflect risk aversion and real options. 

Kurkalova, Kling and Zhou’s study indicated that a premium may play a significant role in 

farmers’ adoption decisions, and that 86% of the subsidy would be an income transfer to existing 

and low-cost adopters.  

Mathematical programing models have also been developed to analyze environmental 

management decisions under uncertainty. Some studies applied fuzzy mathematical 

programming (e.g., Chanas and Zielinski, 2000; Cui et al., 2011; James et al., 2013). Interval 
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mathematical programming (IMP) has also frequently been used (e.g., Liu et al., 2006; Hu et al., 

2014; Li et al., 2014). Jianchang et al. (2015) used an interval-fuzzy linear programming (IFLP) 

model to estimate the costs and benefits between agricultural revenue, pollution control and 

BMPs in a watershed where the predominant economic activity is agricultural production. Given 

these estimated costs and benefits, sensitivity analysis ranked cost-effective BMPs. The analysis 

was conducted with Agricultural Nonpoint Source (AGNPS), a BMP modeling tool that 

simulates reduction of nonpoint source pollution. The goal was to minimize the cost of achieving 

reductions in pollution loads (by 10% and 15%) while comparing the cost of pollution abatement 

of various BMP bundles.   

Survey-Based BMP Analysis 

A survey-based approach can be used to determine producer WTA BMPs. Producer 

provision of ecosystem services through the implementation of BMPs, subject to an incentive, is 

estimated as a supply curve. By adjusting the incentive level, the corresponding supply schedule 

indicates the cost of achieving a target threshold of an environmental good. For example, 

agricultural economists have conducted BMP simulations with econometric models (Cooper, 

1997; Fu, Ruan and Gao, 2013; McConnell, 1983; Nash and Hannah, 2011; Jensen et al., 2015). 

In Cooper’s (1997) study, contingent value analysis of survey data was combined with market 

data from four watershed regions to evaluate the impact of incentives on BMP incentive 

effectiveness. Cooper found that adoption rates were higher over a larger range of offers with 

market data information included than with the exclusive use of CVM, indicating overpayment. 

Cooper concluded that changes in the incentive levels lead to a relatively low impact on BMP 

participation rates. Lichtenberg (2004) estimated the cost-responsiveness of BMP adoption using 

a revealed preference approach. Lichtenberg combined multiple practices into a bundled package 
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using survey data and information on BMP start-up costs. The research indicated that adoption of 

all seven of the BMPs were positively correlated with BMP cost-share levels. 

Jang et al. (2014) ranked watersheds based on the potential of BMPs to reduce erosion 

and USL and calculated the marginal change in conserved area per conservation dollar invested. 

A prioritization model was used to assess watersheds within the southeastern Coastal Plain eco-

region of the U.S. Jang et al. measured the change in total USL as a function of the area 

conserved, and also the hydrologic response of the watershed. The area conserved was based on 

survey data from relevant professionals, managers and other stakeholders to obtain information 

about the social and economic drivers of USL reduction. The findings from Jang et al.’s research 

indicates that the watershed with the highest marginal water quality return per conservation 

dollar invested were located in southern Alabama, northern Florida, and eastern Virginia (largely 

based on positive community perception of water conservation practices). 

Another example of an econometric analysis used to measure land use change is a study 

conducted by Jensen et al. (2015). Willingness to adopt (WTA) prescribed grazing on pasture in 

the U.S. was estimated based on a hypothetical incentive program with a survey. As well as 

discussing producer characteristics correlated with adoption, Jensen et al. found that the 

respondents who had not previously used prescribed grazing, 53% replied that they would adopt 

prescribed grazing given an incentive based on the NRCS cost estimates of implementing and 

maintaining prescribed grazing. About 71% of the respondents willing to adopt prescribed 

grazing were also willing to participate in the incentive program, with the average annual 

payment offered at just over $50 per acre (Jensen et al., 2015). 

Gooday et al. (2014) use the Farmscoper decision support tool to quantify baseline 

pollutant losses and incorporate an algorithm-based procedure to determine optimal mitigation 



 
 

 

 
 

 

14 

methods. Different bundles of pollutants were analyzed simultaneously to rank according to the 

cost-effectiveness of the combinations.  

Hydrologic Modeling of BMP Impacts 

SWAT is a modeling framework to measure the impact of agricultural practices on water, 

soil erosion, sedimentation and agricultural yields in watersheds. SWAT is a continuation of 

approximately 30 years of modeling efforts conducted by the USDA’s Agricultural Research 

Service. SWAT is a physically-based model developed to simulate land-management and 

rainfall-runoff processes with a high level of spatial detail by separating land into sub-basins 

based on soil type, slope, land use and management practices (Hydrologic Response Units, or 

HRUs) (Gassman et al., 2007).  The SWAT model includes regionally-specific components such 

as hydrology, weather, erosion, soil, temperature, crop growth, and agriculture management 

time, and can simulate the effects of management practices such as planting, fertilizer use, 

irrigation, tillage and pesticide use (Santhi et al., 2005).  

SWAT has been used to determine minimum-cost solutions for reducing nutrient load 

levels. Jha, Rabotyagov and Gassman (2009) used SWAT to identify least-cost combinations and 

placement of BMPs to achieve nitrogen and phosphorus reductions in the Raccoon River 

Watershed, Iowa. They built objective functions to reduce loadings of nitrogen and phosphorous 

at the watershed outlet while minimizing cost. Santhi et al. (2005) used SWAT to quantify the 

impacts of BMP implementation on sediment and nutrients in irrigation districts in the Lower 

Rio Grande Valley, Texas. SWAT was used to simulate hydrological processes associated with 

soil, plant and water interactions using location-specific spatial and temporal variability of the 

exogenous variables. Potential water savings were then measured for three agricultural BMPs 

(Santhi et al., 2005). Liu and Jun (2015) used SWAT to simulate and evaluate the individual and 
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combined impacts of management practices on total nitrogen and total phosphorous loads in a 

watershed in China. Liu and Jun (2015) input parameter values such as topography, landscape, 

land use, and weather data information into SWAT. They concluded that no-tillage offered more 

environmental benefits than moldboard plowing.  

SWAT may be used to simulate the use of BMPs on pastureland by adjusting a parameter 

called BIO-MIN (White et al., 2003; Sheshukov et al., 2016). The BIO-MIN factor is the 

minimum dry above ground biomass in the watershed in lbs/acre (White et al., 2003). BIO-MIN 

can be used to represent the minimum dry forage area in at which grazing is permitted. Setting a 

high BIO-MIN value could represent BMP use and low BMP may represent overgrazing. A low 

BIO-MIN value represents an overgrazed landscape, and a higher value represents better land 

management conditions. Sheshukov et al., (2016) estimated pasture BMP effects in a watershed 

in eastern Kansas using SWAT. In their study, the BIO-MIN value ranged from 0 – 650 (with 

BIO-MIN’s default value of 0) to represent fencing off areas designated as high-risk for pollutant 

output into the watershed. They estimated a 59% reduction in phosphorus, a 19% reduction 

nitrate loads, but found no significant reduction in suspended solid loads.  

Because USL occurs during rainfall events, in the absence of rainfall, the simulated BIO-

MIN factor effect does not greatly impact USL rates. However, during simulated rainfall 

episodes, the changes in USL rates become significant between the baseline simulation and the 

500 lb/acre BIO-MIN scenario. Therefore, most of the USL occurs during the summer months 

with heavy rainfall. To avoid seasonal bias, studies often generate yearly pollution load estimates 

(White et al., 2003; Sheshukov et al., 2016). 

Although the SWAT model is useful for predicting the long-term impacts of BMPs on 

large and complex watersheds, SWAT has limitations in simulating the effects of BMPs. First, 
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RG is the most straightforward BMP to model with SWAT, but the method for estimating USL 

impacts of the other BMPs included in the survey, PI, WTs or SCs is not as evident.  
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CHAPTER 3: METHODS AND CONCEPTUAL FRAMEWORK 

This research combines biophysical simulation analysis with a contingent-valuation 

survey to determine sediment reduction goals given a hypothetical program. A survey was used 

to conduct a hypothetical choice experiment (CE) in which a producer simultaneously decides 

whether or not to adopt the 4 BMPs analyzed in this study. Although this research considers four 

BMPs, the emphasis of this thesis is on rotational grazing (RG). The RG practice was chosen 

because it often requires the use of other BMPs. For instance, beef cattle producers engaging in 

RG must also install water tanks if cattle do not have access to water otherwise in the paddocks 

(USDA-NRCS, 2009). Also, modeling the USL effect of RG is relatively straightforward 

compared to modeling the USL effect of the other BMPs in this study.  

Using responses to the survey, WTA was estimated for bundles of BMPs jointly. Joint 

estimation (as opposed to isolating the WTA of RG) was necessary because it was hypothesized 

that unobservable factors affect the decision to adopt all of the BMPs jointly. The second reason 

for joint estimation is the CE presented the 4 BMPs simultaneously to respondents, so the 

decision to choose one or several BMPs is correlated. Thirdly, there could be cross-price effects 

associated with the BMPs that must be factored in with joint probability estimation.  

Despite assessing the joint probability of adopting BMP bundles, the USL effect is only 

measured for RG. In other words, given producer willingness to adopt a specified BMP bundle, 

only the USL abatement impact from RG was estimated for that bundle. Therefore, the results of 

the joint WTA analysis were used to estimate the USL effect of RG with the biophysical 

modeling tool SWAT. Estimating the USL effects of the other BMPs would be a possible 

direction for future research.  
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Survey Instrument 

The survey of beef cattle producers in the OCW and surrounding watersheds was 

conducted in 2011 and 2013. The USL abatement analysis in this thesis focused exclusively on 

the OCW. The surrounding watersheds were included in the regression analysis to bolster the 

sample size needed to estimate joint adoption decisions. The survey followed Dillman’s Tailored 

Design Method in which a booklet-type questionnaire, introductory letter, return postcard and 

return stamped envelope were mailed to potential respondents (Dillman, 2000).  

There were four sections in the survey. The questions in the first section, “Your Farm 

Operation,” focused on producer and operational characteristics, and the value placed on 

objectives related to BMPs (e.g., improving forage quality, providing cattle access to a year-

round supply of clean drinking water). 

The second section, “Best Management Practices (BMPs),” asked about previous 

experience with the BMPs and also included the CE. The sub-section preceding the CE, 

“Description of Best Management Practices,” outlined the benefits and implementation of the 

four BMPs. For the CE, there were 4
7
 possible combinations of cost share amounts offered for 

the BMPs and 49 versions of the survey. The hypothetical costs for the BMPs are included in 

Table 1. The SAS statistical software package (SAS version 9.2) macro %MkTex was used to 

determine an optimal factorial design and the optimal number (49) of practice/incentive 

combinations (Lambert et al., 2014). The survey used NRCS cost estimates of implementation 

and maintenance for each practice. A hypothetical cost-share was offered to the livestock 

producer ranging from 50% to 125% of the total estimated cost of each BMP. An excerpt of the 

CE in the survey is found in the Appendix.  
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Table 1: Hypothetical Cost Share Percentages and Dollar Values 

Cost Share 

(% total estimated cost) 

Rotational 

Grazing 

 ($/acre) 

Stream Crossing  

($/square foot) 

Water Tank 

($/unit) 

Pasture 

Improvement 

($/acre) 

50 16 1.94 767 127 

63 20 2.44 966 159 

75 24 3.00 1, 150 190 

88 28 3.41 1, 349 223 

100 32 3.87 1, 533 253 

112 36 4.33 1, 717 283 

125 40 4.84 1,916 316 
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Questions in the third section, “Your Opinions,” included perceptions on local water quality and 

causes of water quality degradation. The fourth section, “Information About You” asked several 

demographic questions (e.g., total household income, off-farm income, age, gender, education, 

family size). 

Best Management Practice Scenarios 

It was assumed in the survey that producers could adopt BMPs in bundles, since the 

survey provided an adoption scenario for all 4 BMPs simultaneously.  Examples of possible 

BMP bundles that may be adopted simultaneously are included in Table 2. 

 

Table 2: Best Management Practice Scenarios  

Scenario Rotational Grazing Pasture Improvement Stream Crossing Water Tanks 

1 ✗    

2 ✗   ✗ 

3 ✗  ✗ ✗ 

4 ✗  ✗  

5 ✗ ✗   

6 ✗ ✗ ✗  

7 ✗ ✗ ✗ ✗ 

 

 

Assessing the probability of adopting various bundles is important because producer WTA of a 

BMP may be positively or negatively correlated with the adoption of one or more BMPs. For 

instance, some form of PI is often used with the implementation of RG. There also may be cross-

correlation effects of cost share values of other BMPs. An increased incentive for RG may 

increase the WTA of WTs so that cattle are provided access to drinking water. 
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Survey Data Collection 

 The parcel sample was collected using addresses from a publicly available tax parcel list 

frame, which includes the physical addresses and land use classifications of land parcels (Clark, 

Park, and Howell, 2006; Lambert et al., 2014). Survey responses of livestock producers were 

collected in two survey waves. Wave 1 was sent by mail in March 2011 to 1,480 owners of 1,736 

unique (agricultural) land parcels located in portions of the OCW (McMinn County) and the five 

surrounding watersheds: Sweetwater, Mouse Creek, Middle Creek, Pond Creek and Lower 

Chestuee Creek. The second wave was sent in February 2013 to 3,678 unique owners of 4,720 

agricultural parcels located in the parts of Sweetwater, Mouse Creek, Middle Creek, Pond Creek 

and Lower Chestuee Creek, Hiwassee, Lower Little Tennessee and Watts Bar Lake watersheds. 

These waterways are located within Bradley, McMinn and Monroe Counties. A map of the 

counties is shown in Figure 1 and Figure 2. 

There was a pre-survey of 131 parcels, which are not included in the analysis. Therefore, 

5,027 unique producers were surveyed during both waves. Figure 2 depicts the surveyed parcels 

(purple) with an overlay of the boundary of the OCW. There are 34,885 acres within the OCW. 

Parcels were selected if they were classified as “farm” or “agricultural.” These two 

classifications differ in that land designated as “agricultural” is not enrolled in Tennessee’s 

Greenbelt Program (Agricultural, Forest and Open Space Land Act of 1976; Lambert et al., 

2014). 
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Figure 1: Bradley, McMinn, and Monroe Counties in Southeastern Tennessee 

 

 

 

 

Figure 2: Surveyed Parcels with Oostanaula Creek Watershed Boundary Overlay 
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Conceptual Framework 

 Respondents choose to adopt a BMP based on what option provides the most utility. A 

farmer is willing to accept a cost share incentive c to adopt a BMP j if the farmer’s indirect 

utility with the BMP adopted along with the incentive 𝑉1𝑗(𝑥, 𝜀1; 𝛽) is at least as great as the 

initial state, 𝑉0(𝑥, 𝜀0; 𝛽), i.e., the farmer’s decision to adopt the practice can be expressed as 

𝑉1𝑗 ≥  𝑉0, where 0 is the base state, 1 is the state with the BMP j adopted, x is a vector of 

explanatory variables, 𝜀 an independently and identically distributed random variable (𝜀) with 

zero mean and a constant variance, and 𝛽 parameter vector. Similar to Cooper’s (2003) model, if 

𝑐𝑗
∗ is the cost share value that solves 𝑉1𝑗(𝑥, 𝜀1; 𝛽) =  𝑉0(𝑥, 𝜀0; 𝛽), then 𝑐𝑗

∗ is the minimum WTA 

for adopting BMP j.  

The difference: ∆𝑉 = 𝑉1𝑗 −  𝑉0 can be expressed in a probabilistic framework as:  

 

Pr(∆𝑉 ≥ 0)           (1) 

 

= Pr(𝑐𝑗  ≥  𝑐𝑗
∗) = Pr (𝑉1𝑗 ≥ 𝑉0)        (2) 

 

which indicates Pr (WTA response is "yes"). The parameters necessary to estimate 𝑐𝑗
∗ can be 

estimated with maximum likelihood. The probability a livestock producer adopts a BMP j at 𝑐𝑗 is 

Φ4 [∆𝑉(𝑐𝑗)], where Φ4 is a cumulative density function (CDF) for a bundle of the 4 BMPs, 𝐺(4) 

is a joint distribution function. 

As an example, suppose a livestock producer is offered cost-shares for four BMPs. The 

producer indicates “no” to cost-share offers for SCs and PI, and “yes” to WT and RG.  
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The Pr ("no” to SCs and PI, “yes” to WTs and RG) is outlined in equations 3 and 4.  

 

Φ4  = Pr(𝑐𝑆𝐶 ≤ 𝑐𝑆𝐶
∗ , 𝑐𝑃𝐼 ≤ 𝑐𝑃𝐼

∗ , 𝑐𝑊𝑇  ≥  𝑐𝑊𝑇
∗ , 𝑐𝑅𝐺 ≥ 𝑐𝑅𝐺

∗  )     (3) 

 

= ∫ 𝐺(4)
𝑐𝐽

0
(𝑐𝑆𝐶 , 𝑐𝑃𝐼 , 𝐶𝑊𝑇 , 𝐶𝑅𝐺)𝑑𝑐𝑊𝑇,𝑅𝐺

         (4) 

 

Assuming the ∆𝑉(𝑐𝑗) are distributed normally but are correlated through the error terms, 

then a multivariate distribution needs to account for the correlation structure, where the (𝐽x1) 

vector ∆𝑉 is distributed as ∆𝑉~Φ4(𝑥𝑖𝛽𝑆𝐶 , 𝑥𝑖𝛽𝑃𝐼 , 𝑥𝑖𝛽𝑊𝑇 , 𝑥𝑖𝛽𝑅𝐺 ;  𝑅), and where 𝜌 is the (𝐽x𝐽) 

matrix of correlation between the  BMP error terms.  

Multivariate Probit Regression 

A multivariate probit regression was used to estimate the effect of the incentives on 

producer adoption of BMPs, holding other variables, including operator characteristics, 

managerial preferences, landscape features, and land value, constant. The probit regression was 

also used to estimate the parameters in Φ4. Personal attributes include age, gender, and 

education. Farm managerial characteristics include acres owned, stocking density, acres farmed 

as a percent of acres owned, pasture as a total share of acres, whether the producer planned on 

passing on the farm to family members, and if the BMPs are in use already. Economic variables 

include household income, BMP cost share incentives, and land value from tax assessment 

records. Landscape features include slope and soil type [STATSGO2 data (USDA-NRCS, 

2015d)]. A description of the covariates included in the regression are detailed in Table 3.  
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Table 3: Variable Descriptions and their Hypothesized Effects on BMP Adoption 

Variable Description 
Hypothesized 

Effect 

Cost Share Variables 
 

 

p_rg RG cost share ($/acre) + 

p_sc SC cost share ($/sq. ft.) + 

p_wt WT cost share ($/800 gallon tank) + 

p_pi PI cost share ($/acre) + 

 

Producer Characteristics  

 

age years - 

male male = 1 - 

college has a college degree = 1 + 

passon 
plan to pass farm to a family 

member = 1 

+ 

tenure 
total acres owned as a share of total 

acres farmed 

+ 

 

Farm Characteristics  

 

spast pasture as share of total acres farmed 
+ 

stockden 
stocking density (number of cattle 

per pasture acres farmed) 

- 

landval appraised land value/acres owned 
+ 

acown number of acres owned 
- 

slope_maj* 
slope category (%) with largest 

(majority) surface area 

- 

 

Current use of BMPs  

 

use_pi  currently use PI practices = 1 
+ 

use_sc  currently use SCs = 1 
+ 

use_rg  currently use RG = 1 
+ 

use_wt currently use WTs = 1 
+ 

* Slope categories include 0-2%, 2-8%, 8-16% and +16%  
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Respondents were asked if they produced cattle. Only those who replied “yes” were 

included in the analysis. The decision making framework is represented in Figure 3. 

 

 

Figure 3: Decision Making Structure  

 
 

The survey dataset was combined with the list frame to differentiate the slope and soil 

type values from multiple parcels owned by one respondent. There were also some respondents 

included in the list frame who did not reply to, or were not included in the survey. The 

combination of the datasets totaled 6,811 parcels. In total, 6,301 records were removed because 

respondents did not produce cattle (this also eliminated parcels not included in the survey). A 

total of 136 parcels were also eliminated that did not have streams, reducing the number of 

parcels to 374. The land value variable was calculated as appraisal value/number of acres owned 

as listed in the publicly available tax information list frame. Parcels with very high appraisal 

values and few acres had unrealistically high land value values (sometimes in the millions of 

dollars per acre). The variable for land value (landval) included outliers that skewed the data 
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right. The 76 parcels with land value over $8500/acre were removed to achieve a mean land 

value representative of the three counties surveyed. Parcels missing a response for the adoption 

variables (23) were dropped. The parcels removed from the analysis due to missing exogenous 

variables totaled 40 parcels. In total, the statistical analysis included 235 parcels and 204 

respondents (some respondents owned more than one parcel). This process is delineated in 

Figure 4. Variables pi, rg, wt, and sc represent the hypothetical incentive value for the BMPs. 

Empirical Model 

The empirical model is: 

 

𝑦𝑖𝑗
∗ = 𝑥𝑖𝛽𝑗 + ∑ 𝛼𝑗

𝑘𝑐𝑖𝑗 +  𝜀𝑖𝑗
4
𝑗=1 ,  𝑦𝑖𝑗 = {

1,  𝑦𝑖𝑗
∗ > 0 

0,  𝑦𝑖𝑗
∗ ≤ 0 

         (5)  

 

where 𝑦𝑖𝑗
∗  is a latent variable indicating the change in utility with the adoption of BMP j, given an 

incentive level offered for a BMP. In equation (5), k aliases j. The probability 𝑦𝑖𝑗 = 1 if the utility 

(equation 2) holds, i.e., the probability that the indirect utility of the producer with BMP 

adoption, and a cost share is equal or greater compared to the absence of adoption and no cost-

share. The subscript i indexes producers, j indexes BMPs, x are exogenous variables, 𝑐 is the cost 

share level, 𝛼 is the coefficient associated with a cost share, and 𝜀 is an error vector with the 

𝐽 × 𝐽 correlation matrix R. The errors are assumed to be ~ MVN (0, R). The system of equations 

were estimated as a multivariate probit regression. 

Equation (5) has a structure similar to that of the seemingly unrelated regression (Zellner, 

1962). The probit equation (5) consists of several relationships linked by a correlation in   
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Figure 4: Attrition of Survey Respondents 

 

Does not operate on stream 

(136 responses removed) 

parcels = 374 

Does not produce livestock 

(6301 responses removed) 

parcels = 510 

No response for exogenous variables: 

(40 responses removed) 

parcels  = 235 

respondents = 204 

 

age  

(7 responses removed) 

spast 

(22 responses removed) 

stockden 

(10 responses removed) 

tenure  

(1 responses removed) 

Missing willingness to adopt variables 

(pi, rg, wt, sc) dropped 

(23 responses removed) 
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(76 responses removed) 
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disturbances. They seem unrelated in the sense that no endogenous (left-hand side) variables 

appear on the right side of other equations (Roodman, 2011). The difference for equation (5) is 

the dependent variables are binary (0,1) variables (Cappallari and Jenkins, 2003). Correlation 

between the error terms (R) indicates that information is lacking on the right hand side of the 

BMP adoption probability models. 

If the error terms are correlated, estimating the BMP probit models simultaneously will 

increase efficiency because the correlation of the error terms factors into the probability of 

adopting each BMP bundle (Roodman, 2011). If there is no correlation between the error terms, 

the probit models may be estimated independently. Failure to reject the null hypothesis, H0: 

𝜌𝑗𝑘 = 0 ∀ 𝑗 ≠ 𝑘, indicates that there is no correlation between the error terms. Following the 

estimation of the multivariate probit model, the marginal effects of the exogenous variables on 

the willingness to adopt each BMP was calculated with equations 6.1 – 6.4. 

 

𝜕Pr(𝑌𝑅𝐺=1,𝑌𝑊𝑇=0,𝑌𝑆𝐶=0,𝑌𝑃𝐼=0)

𝜕𝑥
         (6.1) 

 

𝜕Pr(𝑌𝑅𝐺=0,𝑌𝑊𝑇=1,𝑌𝑆𝐶=0,𝑌𝑃𝐼=0)

𝜕𝑥
         (6.2) 

 

𝜕Pr(𝑌𝑅𝐺=0,𝑌𝑊𝑇=0,𝑌𝑆𝐶=1,𝑌𝑃𝐼=0)

𝜕𝑥
         (6.3) 

 

𝜕Pr(𝑌𝑅𝐺=0,𝑌𝑊𝑇=0,𝑌𝑆𝐶=0,𝑌𝑃𝐼=1)

𝜕𝑥
         (6.4) 
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Estimation of the BMP Scenarios 

The multivariate probit regression is estimated with simulated maximum likelihood, an 

optimization method where the parameter estimates are chosen to maximize the log likelihood 

function: 

 

max𝛽,𝑅 ln L = ∑ 𝑙𝑛Φ4( 𝑞𝑖𝑅𝐺 ∙ 𝑥𝑖,𝑅𝐺𝛽𝑅𝐺 , 𝑞𝑖𝑆𝐶 ∙ 𝑥𝑖𝑆𝐶𝛽𝑆𝐶, 𝑞𝑖𝑃𝐼 ∙ 𝑥𝑖𝑃𝐼𝛽𝑃𝐼, 𝑞𝑖𝑊𝑇 ∙ 𝑥𝑖𝑊𝑇𝛽𝑊𝑇, 𝑄𝑖𝑅)𝑛
𝑖=1 (7) 

 

where Φ4 is the standard normal multivariate cumulative distribution function; i.e., the 

probability of adopting the specified BMP scenario. For estimation and simulation purposes, the 

(0, 1) adoption of a BMP is transformed to a (-1, 1) indicator variable: 

 𝑞𝑖𝑗 = 1 if 𝑦𝑖𝑗 = 1 and -1 if 𝑦𝑖𝑗 = 0.  𝛽𝑗 is a vector of regression coefficients, x for each of the 

BMPs, and 𝑄𝑖𝑅 is the matrix of the 𝑞𝑖𝑘 ∙ 𝑞𝑖𝑗 ∙ 𝜌𝑖𝑗  combinations, 𝑗 ≠ 𝑘. For example, the 

probability of adopting only RG is estimated jointly. 

 

Pr [𝑌𝑖𝑅𝐺 = 1, 𝑌𝑖𝑃𝐼 = 0, 𝑌𝑖𝑆𝐶 = 0, 𝑌𝑖𝑊𝑇 = 0]       (8.1) 

 

= Φ4(𝑞𝑖,𝑅𝐺 ∙ 𝑥𝑖𝛽𝑅𝐺 , 𝑞𝑖,𝑃𝐼 ∙ 𝑥𝑖𝛽𝑃𝐼 , 𝑞𝑖,𝑆𝐶 ∙ 𝑥𝑖𝛽𝑆𝐶 , 𝑞𝑖,𝑊𝑇 ∙ 𝑥𝑖𝛽𝑊𝑇 , 𝑄𝑖𝑅 )    (8.2) 

 

= Φ4( 𝑥𝑖𝛽𝑅𝐺 , −𝑥𝑖𝛽𝑆𝐶, − 𝑥𝑖𝛽𝑃𝐼 , −𝑥𝑖𝛽𝑊𝑇 , 𝑄𝑖𝑅)      (8.3)  
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CHAPTER 4: DATA AND METHODS 

Simulation of the effect of RG on USL 

The SWAT model was used to generate an estimation of USL yield in tons/ha/timestep 

across the watershed
1
. To streamline the SWAT output with the survey data, annual USL was 

converted from tons/hectare to tons/acre. USL rates were calculated for HRUs within OCW. 

HRUs are areas within a watershed grouped according to a unique land use (pastureland in this 

study), slope, and soil type combination. HRUs are assumed to be homogeneous in their USL 

response to BMP adoption. The parcels owned by respondents were grouped into HRUs for USL 

analysis estimated with SWAT. The baseline measurement of USL was estimated to represent 

USL levels in the absence of RG use across the watershed. The USL effect is averaged over data 

from 2002 – 2012. Originally, USL was estimated for the years 2000 – 2012, but SWAT requires 

a warm-up period in which there is a high level of variation in the upland sediment loss 

estimates. Therefore, information for years 2000 – 2001 were removed. 

The effects of RG on USL were simulated by adjusting the BIO-MIN factor. In this 

analysis, the purpose of the BIO-MIN factor for the analysis is to generate scenarios whereby RG 

is implemented. An augmented BIO-MIN value is compared to a scenario in which the BIO-

MIN level is low, simulating livestock overgrazing. The BIO-MIN level for overgrazing was set 

to 0 lb/acre, which was compared to a BIO-MIN value 500 lb/acre representing a reduction of 

forage intensity (i.e., an expected outcome of implementing RG). The SWAT analysis assumes 

that fertilizer is applied to avoid overestimation of USL rates. The USL was averaged by year to 

avoid seasonal weather variation. 

                                                      
1
 Dr. Shawn Hawkins and Hannah McClellan generously provided the data, calibration and 

simulation output for this thesis. 
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Parcel/Typography Layers 

The coverage of pastureland (fescue grass) across the three counties is shown in Figure 5. 

The land cover data comes from satellite imaging, so it is reasonable to predict a high degree of 

error in the pastureland coverage estimate. Pasture acres in Oostanaula (fescue grass land) total 

17,045 acres, which accounts for 48.86% of the OCW. Only parcels on pastureland were 

included in the analysis. 

 

 

 

Figure 5: Pastureland Coverage Across Surveyed Parcels 

 
 

The slope and soil data is from the USDA NRCS Geospatial Data Gateway (USDA, 

2015a). This data was used to determine the majority soil type and slope of the parcels surveyed. 

The majority slope and soil type comprises the greatest percent share of each parcel compared to 
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the percent coverage of other slope and soil types respectively within the parcel. Median or mean 

soil type was not feasible, since soil type is a categorical value and the focus was on area 

coverage.  

Parcels were mapped with Geographical Information System (GIS) software (Srinivasan, 

Arnold, and Jones, 1998). Using the “Zonal Statistics as Table” tool, each parcel was assigned 

one slope category based on the slope classification comprising the largest surface area on the 

parcel (Figure 6). The majority slope category was generated using a GIS digital elevation map 

(DEM). The slope categories were calibrated with the “Slope” tool in GIS. Slope categories were 

designated as 0-2%, 2-8%, 8-16%, and ≥16% gradients. 

 

 

Figure 6: Surveyed Parcels Categorized by Majority Slope Category 
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Each parcel was assigned to one soil type category based on the soil type that constitutes 

the largest surface area of that parcel and this information (Figure 7). The “majority soil” of each 

parcel was calculated based on the USDA-NRCS’ digital general soil map of the U.S. 

(STATSGO), which is an inventory of soil pattern areas in the U.S. (USDA-NRCS, 2015a).  

 

 

Figure 7: Surveyed Parcels Categorized by Majority Soil Type 

 
 

Characteristics of each subbasin lead to unique USL effects in the watershed. Parcels 

with the same slope/soil type combinations that are located on different subbasins are assigned to 

different HRUs. The 15 subbasins in the OCW are represented in Figure 8, each with a unique 

color.  
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Figure 8: Subbasins in the Oostanaula Creek Watershed 
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Land Characteristics 

Since there are 4 slope categories and 18 soil types in the survey dataset, there were 72 

possible slope-soil type combinations. Of the 72 possible combinations, there were 36 unique 

majority slope and soil type combinations represented by parcels. However, there are 66 unique 

HRUs because some parcels with similar slope/soil type combinations are located on different 

subbasins. The subbasin, majority slope, and majority soil type corresponding to each HRU 

represented in the survey data within the OCW are listed in Table 4.  

Matching Parcels with the HRU Designations 

If a parcel spanned more than one subbasin, the area of the parcel was divided, 

effectively creating multiple parcels with the same producer characteristics, and each producer 

belonging to a respective HRU. Figure 9 depicts OCW separated by the 15 subbasins (each 

subbasin in a different color) with the parcels overlaid in red. The exploded area shows parcels 

that span multiple subbasins, and are accordingly assigned to multiple HRUs. In total, 76 parcels 

were split because they straddled a subbasin boundary. Each segment of the split parcel are 

treated as a separate parcel with the same farm and farmer characteristics, and therefore adoption 

probabilities. It is assumed that the area that could be managed under RG applies to an HRU. 

Only the USL output from fescue grass land across the OCW was considered because the 

focus of the analysis was on livestock producers and RG. The total HRU area with fescue-land is 

generally larger than the surveyed area by HRU due to unavailable data (e.g., survey non-

response). To compensate for this, parcels were reapportioned to compose a representative area 

of the HRU. Figure 10 provides a didactic example of reapportioned parcels. Suppose the total 

area of Figure 10 is an HRU categorized by SWAT (labeled as ASWAT) and totals 9 acres. Also,   
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Table 4: HRU Characteristics 

HRU Subbasin 
Soil 

Type 

Slope 

Gradient 

(%) 

HRU Subbasin 
Soil 

Type 

Slope 

Gradient 

(%) 

4 1 TN110 8-16 150 9 TN110 2-8 

6 1 TN110 2-8 151 9 TN121 2-8 

7 1 TN121 2-8 152 9 TN121 8-16 

22 2 TN120 0-2 155 9 TN143 8-16 

23 2 TN120 2-8 162 10 TN120 2-8  

25 2 TN121 8-16 163 10 TN120 8-16 

26 2 TN121 2-8 165 10 TN143 8-16 

33 3 TN110 8-16 166 10 TN143 2-8 

34 3 TN110 2-8 176 11 TN110 2-8 

47 4 TN110 8-16 177 11 TN110 8-16 

48 4 TN110 2-8 178 11 TN121 2-8 

49 4 TN120 8-16 179 11 TN121 8-16  

50 4 TN120 2-8 198 12 TN120 16-9999 

52 4 TN121 2-8 199 12 TN120 8-16 

53 4 TN121 8-16 200 12 TN120 2-8 

70 5 TN110 2-8 202 12 TN143 8-16 

72 5 TN110 8-16 203 12 TN143 2-8 

73 5 TN121 0-2 204 12 TN143 16-9999 

74 5 TN121 2-8 213 13 TN110 8-16 

75 5 TN121 8-16 214 13 TN110 2-8 

76 5 TN143 8-16 216 13 TN121 2-8 

77 5 TN143 16-9999 217 13 TN121 8-16 

78 5 TN143 2-8 224 14 TN120 16-9999 

86 6 TN120 8-16 225 14 TN120 2-8 

87 6 TN143 16-9999 226 14 TN121 2-8 

88 6 TN143 8-16  227 14 TN121 8-16  

89 6 TN143 2-8 228 14 TN143 2-8 

129 8 TN120 8-16 229 14 TN143 8-16 

131 8 TN120 16-9999 241 15 TN110 8-16 

132 8 TN143 16-9999 242 15 TN121 2-8 

133 8 TN143 2-8  244 15 TN121 8-16  

134 8 TN143 8-16  245 15 TN143 8-16 

149 9 TN110 8-16  246 15 TN143 2-8 
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Figure 9: Fracturing of Parcels Along Subbasin Boundaries 
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Figure 10: Hypothetical Example of Calculating Representative Parcel Size 

  

𝐴𝑆𝑊𝐴𝑇 (9 acres) 

Parcel 1 Parcel 2 

𝐴𝐻𝑅𝑈
𝑃𝑎𝑟𝑐𝑒𝑙2 (1 acre) 𝐴𝐻𝑅𝑈

𝑃𝑎𝑟𝑐𝑒𝑙1 (1 acre) 𝐴𝐻𝑅𝑈
𝑃𝑎𝑟𝑐𝑒𝑙3 (1 acre) 

Parcel 3 
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there are 3 equal sized parcels surveyed. The area for each parcel (𝐴ℎ
𝑃𝑎𝑟𝑐𝑒𝑙𝑖) is 1 acre. The total 

area of the parcels that completed surveys in this HRU (h) (∑ 𝐴ℎ
𝑃𝑎𝑟𝑐𝑒𝑙𝑖𝑃

𝑖=1 ) is 3 acres. Each 

parcel’s area (𝐴ℎ
𝑃𝑎𝑟𝑐𝑒𝑙𝑖) was then assigned a weight for coverage of total surveyed land area in 

that HRU, calculated as 𝑤𝑖
ℎ. 

 

 𝑤𝑖
ℎ =  (

𝐴ℎ
𝑃𝑎𝑟𝑐𝑒𝑙𝑖

∑ 𝐴ℎ
𝑃𝑎𝑟𝑐𝑒𝑙𝑖𝑃

𝑖=1

⁄ )       (9) 

 

In the didactic example, the weight would be 1/3. The resulting weight was multiplied with the 

HRU area calculated with SWAT (ASWAT) to create a proportional area representation of each 

parcel’s coverage (∑ 𝐴ℎ
𝑃𝑎𝑟𝑐𝑒𝑙𝑙𝑃

𝑖=1 ) in the HRU: 

  

𝐴𝑖
𝑟𝑒𝑝 =  𝑤𝑖

ℎ ∙  𝐴𝑆𝑊𝐴𝑇           (10) 

 

where 𝐴𝑖
𝑟𝑒𝑝

 is the reapportioned areas of a surveyed parcel. Following Figure 10, the product of 

the weight (1/3) and the total HRU area (9 acres) is 3 acres. The 3 acre value for each parcel 

yields a proportionally representative area that could potentially be managed under RG. The 

adoption probabilities corresponding with each parcel within an HRU ostensibly reflect the 

proportion of the parcel managed under RG. This relationship is the keystone to bridging the 
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survey data (adoption probabilities and $/unit incentives) and parcels with the USL reduction 

potential of an HRU. 

Estimation of USL Abatement Levels 

The probability of adoption is hypothesized to reflect the intensity of adoption of a BMP 

(i.e., the area managed under a BMP). For example, if the producers’ probability of adopting RG 

is 50%, it is assumed that 50% of that producer’s pasture will be managed using RG. The 

management intensity (or area enrolled) of a BMP program by HRU (𝑃𝑖
ℎ), is denoted as: 

 

𝑃𝑖
ℎ = ∑ 𝑤𝑖

ℎ ∙ Φ4(𝑧𝑖(ℎ)
𝑅𝐺 , 𝑧𝑖(ℎ)

𝑃𝐼 ,  𝑧𝑖(ℎ)
𝑊𝑇 , 𝑧𝑖(ℎ)

𝑆𝐶 , R)𝑖∈ℎ       (11) 

 

where i indexes producers in HRU h, 𝑤𝑖
ℎ has already been defined, Φ4 is the probability of 

adopting a technology combination, and 𝑧𝑖(ℎ)
𝑗

 is a linear index indicating the adoption of practice 

j; equation 𝑧𝑖(ℎ)
𝑗

= 𝑞𝑗𝑥𝑖𝛽𝑗. 

Equation 12.1 is used to estimate the USL in tons per year for each HRU.  

 

𝛿ℎ̅ = 𝑃𝑖
ℎ ∙ 𝛿ℎ

1 + (1 − 𝑃𝑖
ℎ) ∙ 𝛿ℎ

0         (12.1) 

 

which, rearranged is:  

 

δ̅ℎ = 𝑃𝑖
ℎ ∙ 𝛿ℎ

1 −  𝑃𝑖
ℎ ∙ 𝛿ℎ

0 + 𝛿ℎ
0         (12.2) 

       

δ̅ℎ = 𝑃𝑖
ℎ ∙ ∆𝛿ℎ + 𝛿ℎ

0          (12.3) 
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where 𝛿ℎ 
1  is the USL (tons/year) after RG adoption for the number of acres in each HRU, 𝛿ℎ

0 is 

the USL (tons/year) absent adoption in each HRU, ∆𝛿ℎ is the difference between USL in the 

absence of adoption and full adoption of RG (∆𝛿ℎ ≤ 0), and 𝛿ℎ is the expected USL in tons per 

year per HRU at a given cost share level and an area of the HRU managed under RG. Variables 

𝛿ℎ
0 and 𝛿ℎ

1 are generated from SWAT under the contrasting BIO-MIN parameterizations. The 

right hand side of equation (12.1) has two parts. The product of the probability of BMP adoption 

(the predicted coverage of BMP adoption) and USL with BMP adoption over the entire HRU. 

The second is the product of the probability of BMP non-adoption and the estimated USL with 

non-adoption across the entire HRU. The result of equation (12.3) is the expected amount of 

USL over the HRU. The progression from equation (12.1) to equation (12.3) shows that the 

expected amount of USL per year is the USL absent RG adoption (𝛿ℎ
0) added to the product of 

the probability of BMP adoption (assumed to be coverage of adoption) and the change in USL 

from non-adoption to BMP adoption across the entire HRU: 

 

𝑃𝑖
ℎ ∙ ∆𝛿ℎ

1            (13) 

 

The change in USL from pasture management under RG is expected to yield a negative value. 

With full implementation (area coverage) of RG, on the parcels surveyed in Oostanaula, it was 

estimated that there would be 6,522 tons/year of USL generated on the HRUs represented in the 

survey. In the absence of RG, there would be a USL load of 24,569 tons/year. The total possible 

reduction in USL was therefore approximately 18,000 tons of USL.  



 
 

 

 
 

 

43 

Imputation Procedure 

Only parcels in the Oostanaula watershed boundary are used in the USL abatement analysis, 

which is contrasted with the WTA probability analysis that uses data from OCW and the 

surrounding counties. To estimate USL levels, only parcels in the OCW were used because the 

necessary slope, soil type, subbasin information is available for them to be grouped by HRU. 

There were 329 parcels that fit these criteria (2 of which did not respond to the survey). Parcels 

from the 2 non-respondents to the survey were included in the analysis because although there 

was not survey data attributable to these respondents, it was hypothesized that their land may 

have a USL impact given cost-share scenarios. There were missing responses to some questions 

in the survey data, so an imputation procedure was used to fill in the data gaps. The imputation 

procedure was conducted in steps according to the detail of the information available for each 

HRU and subbasin. For instance, if an age value was missing for a respondent, the age would be 

replaced with the mean age of the HRU. If there were no age responses for that HRU, the 

missing value would be replaced with the mean age at the subbasin level. If there was no data 

available for age at the subbasin level, the missing age variable was replaced with the average 

age across the Oostanaula watershed. This process was repeated for all explanatory variables 

with missing information. Once the imputation process was complete, vectors of the explanatory 

variables for each of the 329 parcels was included in the regression analysis to estimate the USL 

abatement curves. Table 5 outlines the number of imputed values for each variable out of the 329 

responses.  
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Table 5: Number of Imputed Values for Variables for USL Abatement Analysis 

Number of Imputed Values 

age 227 

male 0 

college 0 

acown 224 

spast 288 

passon 0 

stockden 307 

tenure 229 

use_pi 0 

use_sc 0 

use_rg 0 

use_wt 0 

landval 2 

Slope_Maj 0 

p_rg 0 

p_pi 0 

p_sc 0 

p_wt 0 

N = 329 
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Analysis of BMP Adoption and USL Abatement 

Generating USL abatement supply curves is the final step in combining the econometric WTA 

results with SWAT’s generated USL estimates. A USL abatement curve was estimated for each 

HRU, given the probability of adopting each of the BMPs with SWAT at different cost-share 

levels. 

For each HRU, the USL abatement curves were estimated as a regression of cost of 

abatement ($/ton) on USL reduction at each of the cost-share values offered to the survey 

respondents.  

 

𝑅ℎ =  𝛼0
ℎ + 𝛼1

ℎ𝑥 + 𝜇ℎ          (14) 

 

where 𝑅ℎ is the cost of reducing USL ($/ton) for a BMP scenario in HRU (h), x are levels of 

USL reduction estimated at different cost share levels for each HRU, 𝛼1
ℎ is a (9x1) coefficient 

vector. The amount 𝑅ℎ ($/t) was calculated as the product of the survey cost-share level ($/acre) 

for RG and the inverse of the USL reduction in each HRU estimated with SWAT (t/acre)
-1

: R = 

$

𝑎𝑐𝑟𝑒
∙ (

𝑎𝑐𝑟𝑒

𝑡
)

ℎ
= (

$

𝑡
)

ℎ
. This regression was conducted for every HRU. Figure 11 is a didactic 

example of USL abatement curves for hypothetical HRUs 1-3. The HRU-specific supply curves 

are aggregated into a single USL abatement supply curve representative of the entire watershed 

(right panel, Figure 11). The aggregate USL reduction is the horizontal summation of the 

individual HRU USL abatement supply curves. There are different “choke points” for each HRU  
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Figure 11: Hypothetical USL Abatement Curves 

 
 
abatement curve. A choke point is the cut-off point where USL abatement beyond that point for 

the HRU is unobtainable. For example, provided an area coverage of RG enrolled at some 

maximum incentive level, HRU 1 would yield 2 tons of USL abatement. Compare that to HRU 

2, which would result in 3 tons per year of USL abatement at the same maximum incentive 

(Figure 11). Because the land characteristics and USL reduction production are heterogeneous 

across HRUs, the choke points occur at different values of USL abatement potential and at 

different incentive levels. Although HRU 2 can achieve a higher tonnage of USL abatement than 

HRU 1, the marginal cost of USL abatement is higher for HRU 2 (Figure 11, left panel). One can 

measure the price response to USL by the slope of the abatement line. At $1.00/ton abated, 2 

tons are abated in HRU 1 compared with 1 ton in HRU 2.  

Refer to Figure 12 as an explanation of the horizontal summation procedure. At the $1.00 

cost-share level, take the sum of HRU 1 – HRU 3 (0.5 + 1 + 2) = 3.5 tons /year of USL 

abatement. To horizontally sum the USL abated at each choke point (e.g., at the $3.00 cost-share, 
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the previous abatement level from the $1.00 cost-share level (3.5) is added to the new sum of 

HRU curves at the $3.00 cost-share level (4.5) to total to 8 tons/acre/year of USL abatement.  

 

 

Figure 12: Horizontal Summation of USL Abatement Supply Curves 

 
 
USL abatement is assumed to be positively related to a practice’s own cost share level as well as 

hypothesized to have a positive cross-price effect among other BMPs; an increase of offered cost 

share amounts for the BMPs (p_pi, p_rg, p_wt, p_sc) are expected to increase a producer’s 

probability of adopting RG, assuming these practices complement RG. To the extent that WTs 

and SC may be necessary features of a RG package on a variety of topographies, this seems a 

reasonable expectation.  
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CHAPTER 5: RESULTS 

Figure 13 is the cumulative distribution of producers who indicated they would adopt RG for the 

successive cost share scenarios. The blue portion of the bar chart represents the number of new 

respondents willing to adopt RG at each cost-share level, and the red represents the number of 

producers who were WTA at lower cost-share levels. The combination of the blue and red 

portions is the total number of respondents who replied to the WTA RG question.  

 

 

Figure 13: New and Cumulative RG Adoption at Each Cost-Share Level 

 
 
Figure 13 is consistent with the economic literature in terms of a proportional increase of RG 

given increased of cost-share levels. Increasing the cost share rate from 50% to 63% increases 

RG adoption by 36 respondents. At 125% of the total RG cost-share rate, there are 227 

respondents willing to adopt RG. 

 Table 6 summarizes the participation rates for PI at the hypothetical cost-share values in 

the survey (comprising of all 3 counties surveyed, beyond the OCW). For $127 per acre of PI,  
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Table 6: Cost/Practice Summary of Raw Survey Data for Pasture Improvement 

Pasture improvement     Cumulative   

Offer Participation acres Stderr L95 U95   Offer participation Slope 

 $           127  2050 365 1332 2768   127 2050 0.017153 

 $           158  1312 339 646 1978   158 3362   

 $           190  2157 396 1379 2935   190 5519   

 $           222  1819 432 969 2669   222 7338   

 $           253  2112 439 1248 2976   253 9450   

 $           285  1902 306 1299 2504   285 11351.7   

 $           317  1219 194 837 1601   317 12570.7   

Total cost= $2,743,447               
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2,050 acres of PI are adopted. At $158 per acre of PI, 1,312 acres have PI in use. Therefore, the 

cumulative adoption at $158 is 3,362 acres. At $317 per acre for PI, the cumulative PI adoption 

is approximately 12,571 acres. The cumulative participation rates in Table 6 are expressed 

graphically in Figure 14. There is a steady upward trend in adoption across all of the hypothetical 

cost-share levels. 

 

 

Figure 14: Cost/Practice Summary of Raw Survey Data for PI 

 

 

Table 7 summarizes the participation rates for SC at the hypothetical cost-share values in 

the survey. For an offer of $1.93 per square foot of SC, 2,220 square feet of SCs are 

implemented. At $2.42 per square foot of SC, 7,420 square feet of SCs are implemented.  
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Table 7: Cost/Practice Summary of Raw Survey Data for Stream Crossing 

Stream crossing     

Cumulative 

participation 

  

Offer 

Participation  

(sq ft) Stderr L95 U95   Offer Slope 

 $          1.93  2220 1393.35 -524.26 4964.26   1.93 2220 0.045 

 $          2.42  7420 5077.12 -2579.58 17419.58   2.42 9640   

 $          2.90  1337 649.62 57.54 2616.46   2.90 10977   

 $          3.39  24552 11122.54 2645.74 46458.26   3.39 35529   

 $          3.87  7002 3207.71 684.29 13319.71   3.87 42531   

 $          4.35  9998 3823.15 2468.16 17527.84   4.35 52529   

 $          4.84  6221.84 3192.64 -66.18 12509.86   4.84 58750.84   

Total cost = $209,987               

*Note: slope is × 1000 
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Therefore, the cumulative adoption at $2.42 per square foot of steam crossing is 9,640 square 

feet. At $4.84 per square foot of SC, the cumulative SC adoption is approximately 58,751 square 

feet. The cumulative participation rates in Table 7 are expressed graphically in Figure 15. There 

is an upward trend in adoption across increases in cost-share levels with the most significant shift 

upward after $2.90. 

 

 

Figure 15: Cost/Practice Summary of Raw Survey Data for Stream Crossing 

 

Table 8 summarizes the participation rates for RG at the hypothetical cost-share values in the 

survey. For $16 per acre of RG, 1,202 acres of RG are adopted. At $20 per acre of PI, 1,438 

acres have PI in use. Therefore, the cumulative adoption at $20 is 2,640 acres. At $40 per acre 

for PI, the cumulative PI adoption is approximately 11,539 acres. 
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Table 8: Cost/Practice Summary of Raw Survey Data for Rotational Grazing 

Rotational grazing     Cumulative   

Offer 

Participation 

(ac) Stderr L95 U95   Offer participation Slope 

 $              16  1202 326 560 1844   16 1202 0.002195 

 $              20  1438 342 766 2110   20 2640   

 $              24  856 211 441 1271   24 3496   

 $              28  2386 593 1220 3552   28 5882   

 $              32  1002 238 534 1470   32 6884   

 $              36  3427 1297 877 5977   36 10311   

 $              40  1228 258 720 1736   40 11539   

Total cost = $339,900               
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The cumulative participation rates in Table 8 are expressed graphically in Figure 16. There is a 

steady upward trend in adoption across increases in cost-share levels. 

Table 9 summarizes the participation rates for WTs at the hypothetical cost-share values 

in the survey. For $767 per WT, 57 WTs will be implemented. At $958 per WT, 25 are used. 

Therefore, the cumulative adoption at $958 is 82 units. At $1,917 per WT, the cumulative 

adoption of WTs is approximately 380 units. 

The cumulative participation rates in Table 9 are expressed graphically in Figure 17. 

There is a steady upward trend in adoption across increases in cost-share levels.A summary of 

the four tables above are outlined in Table 10 for comparison. The average cost per participant 

for RG in the survey is $1,910. There would be 178 participants at the highest cost-share level 

($40.00). To implement this policy, it would cost on average $29.46/acre for RG. 

Summary statistics of the variables included in the BMP adoption analysis are included in Table 

11. The average age of the producer surveyed is approximately 63 years old. The respondents 

were predominantly male (90%). Less than half (38%) had a college degree. Since all producers 

included in this analysis manage livestock, it makes sense that a relatively large proportion 

(74.08%) of acres farmed was on pastureland. In total, 48 parcels had an appraised value of 0 

dollars. As was discussed in the literature review, personal characteristics such as age and 

education contribute to the WTA a BMP regardless of the level of cost-share provisions. Of the 

respondents, 91% indicated they intend to pass on their farm operation to the family, indicating 

many producers have long-term goals for their land, as opposed to potentially prioritizing short-

term profits. Long-term planning is consistent with the fairly high degree of adoption of PI:  
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Figure 16: Cost/Practice Summary of Raw Survey Data for Rotational Grazing 

 

 

Table 9: Cost/Practice Summary of Raw Survey Data for Water Tanks 

Water tank     Cumulative   

Offer Participation (units) Stderr L95 U95   Offer participation Slope 

 $           767  57 9.96 37.41 76.59   767 57 3.401 

 $           958  25 8.94 7.41 42.59   958 82   

 $        1,150  51 11.11 29.15 72.85   1150 133   

 $        1,342  61 11.58 38.21 83.79   1342 194   

 $        1,533  72 12.38 47.65 96.35   1533 266   

 $        1,725  45 9.80 25.71 64.29   1725 311   

 $        1,917  69 12.31 44.78 93.22   1917 380   

Total cost= $528,455               
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Figure 17: Cost/Practice Summary of Raw Survey Data for Water Tanks 

 
 
Table 10: Comparison of Costs/Practices of Raw Survey Data Across BMPs 

Item 

Pasture 

improvement Stream crossing Rotational grazing Water tank 

Units acres square feet acres 800 gal tank 

Total units 12,571 58,751 11,539 380 

Total cost $2,743,447 $209,987 $339,900 $528,455 

Marginal cost/unit $0.0172 $0.0000 $0.0022 $3.40 

Average cost/unit $218.24 $3.57 $29.46 $1,390.67 

Average offer/unit $221.66 $3.39 $28.00 $1,341.71 

Participants 245 66 178 153 

Average cost/participant $11,197.74 $3,181.63 $1,909.55 $3,453.95 
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Table 11: Description of Variables and Mean Values  

Variable Description 
Mean 

Value 

Min. 

Value 

Max. 

Value 

Cost Share Variables 
    

p_rg RG cost share ($/acre) 27.74 16 40 

p_sc SC cost share ($/sq. ft.) 3.34 1.94 4.84 

p_wt WT cost share ($/800 gallon tank) 1393.00 767 1917 

p_pi PI cost share ($/acre) 217.42 127 317 

 

Producer 

Characteristics 
    

age years 62.5 20 91 

male male = 1 0.90 0 1 

college has a college degree = 1 0.38 0 1 

passon plan to pass farm to family member 0.91 0 1 

tenure total acres owned/ total acres farmed 1.31 0.04 14 

 

Farm Characteristics     

spast pasture as % of total acres farmed 74.08 4.65 100 

stockden 
stocking density (number of cattle per 

pasture acres farmed) 
0.78 0.05 11.67 

landval appraised land value/acres owned 4015.34 0 8483.65 

acown number of acres owned 206.55 5 2000 

slope_maj* 
slope category (% gradient) with 

largest surface area 
2.69 1 4 

use_pi  current use of PI practices = 1 0.62 0 1 

use_sc  current use of SCs = 1 0.41 0 1 

use_rg  current use of RG = 1 0.61 0 1 

use_wt current use of WTs = 1 0.43 0 1 

 

n = 235 

* Slope categories include 0-2%, 2-8%, 8-16% and +16% 
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74.08% of respondents report use of PI. RG is one of the most frequently reported BMPs in use 

(61%), which makes sense because RG often requires WTs and/or some form of PI. 

Econometric Results 

The marginal effects of the multivariate BMP adoption equation are listed in Table 12. 

The fit of the model was tested using various methods. The H0: 𝛽𝑗𝑘 = 0 ∀ 𝑗𝑘  was tested with a 

Wald test and a likelihood ratio test. The regression yields a Wald 𝜒𝑘
2 value of 75.85 indicating 

that the H0 is rejected (significant at the 1% level). The likelihood ratio test yields a 𝜒𝑘
2 value of 

160.70, so the null hypothesis was again rejected (significant at the 1% level). Therefore, the 

explanatory variables in the model are jointly statistically different from 0. A second likelihood 

ratio test was used to test the H0: 𝜌𝑗𝑘 = 0 ∀ 𝑗𝑘, 𝑗 ≠ 𝑘. There are 6 degrees of freedom (𝜌𝑗𝑘 

terms). The second likelihood ratio test yields a 𝜒𝑘
2 value of 156.27, indicating that the null 

hypothesis is rejected (significant at the 1% level). Therefore, there is statistically significant 

correlation between the error terms in the multivariate probit model. The pseudo R
2
 value is 

0.157. The mean VIF value is 1.16 indicating that collinearity is not impacting the standard 

errors.  

An increase in one dollar per foot of the cost share for SC increased the likelihood of SC 

adoption by 17.91%. An increase in one dollar per acre of cost share for RG increased the 

probability of adopting RG adoption by approximately 1.9%. The results indicate that RG cost-

shares could have complimentary effects on the adoption of other BMPs. In addition to 

contributing to its own adoption, RG cost share was positively correlated with the adoption of 

WTs and SCs. Therefore, the three technologies could be well suited as a BMP bundle. For 

instance, the cost-share levels for WT and RG were both positively correlated with the 
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Table 12: Marginal Effect of Variables on BMP Adoption 

*p<0.10, **p<0.05, ***p<0.01 

 

  

  Marginal Effect  

Variable WT RG SC PI 

 

Cost Share Variables 

0.0235** 0.0186* 0.0207* 0.0006 p_rg 

p_sc 0.0888 0.1750* 0.1791* 0.1003 

p_wt - 6.6e-05 0.0004* -0.0005* -0.0002 

p_pi 0.0015 0.0003 0.0024* 0.0002 

 

Producer Characteristics 

    age -0.0442*** -0.0178** -0.0183** -0.0108 

male 0.0626 -0.1876 -0.0236 0.1470 

college 0.0576 0.3064* 0.4247** 0.1524 

passon 0.4054 0.3044 -0.1311 0.8758*** 

tenure -0.1564*** 0.0514 -0.0693 -0.0420 

 

Farm Characteristics     

acown 0.0006 5.03e-05 0.0011*** -0.0009* 

spast -0.0035 -0.0053 0.0052 -0.0034 

stockden -0.0170 -0.1175** 0.1024 0.0017 

landval 3.17e-05 1.46e-05 1.19e-05 1.21e-05 

slope_maj* 0.2357** 0.0056 -0.0936 -0.0027 

 

Previous use of BMPs     

use_pi 0.8301*** 0.6135*** 0.1857 0.5793*** 

use_sc  -0.2779 -0.0645 0.1243 -0.2279 

use_rg  0.0735 0.1532 0.1148 -0.4186** 

use_wt -0.2385 -0.2430 - 0.5058** -0.0128 

n = 235   

LLUR = -431.32    

LLR = -511.70 

Wald 𝜒𝑘
2 = 75.85 

H0: 𝛽𝑗𝑘 = 0 ∀ 𝑗𝑘: LR 𝜒𝑘
2 = 160.7 

H0: 𝜌𝑗𝑘 = 0 ∀ 𝑗𝑘: LR 𝜒𝑘
2 = 156.27    
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probability of adopting WT and RG. Therefore, policy-makers could provide incentives for 

producers to adopt both WT and RG. 

A number of the covariates had statistically significant marginal effects. Older producers 

were less likely to adopt WT, and were less likely to adopt RG and SC. An increase of one year 

in age decreased the probability of adopting RG by approximately 1.2%, WT systems by about 

4.4%, and SC by 1.8%. Acres owned decreased the likelihood of SC adoption by approximately 

20% per 100 acres and by 9% for WT system implementation. Being college educated increased 

the probability of adopting SC by 42.5%, and increased the probability of adopting RG by 

30.6%. Stocking density had a negative impact on the likelihood of producers adopting RG. For 

every per head increase in cattle, the probability of adopting rotational grazing decreased by 

11.75%. The negative impact on RG adoption is likely due to the labor involved in rotating a 

large number of cattle between paddocks. If a producer is currently using PI, he/she was more 

likely to adopt WTs, RG and PI. This result is consistent with the literature in which using PI 

may be a first step, or “gateway” to using other BMPs (Lambert et al., 2014). The next step 

entails generating USL estimates with SWAT for different BMP combinations, focusing on RG.  

The Impact of Rotational Grazing on USL 

Figures 18 and 19 depict simulated SWAT scenarios comparing the USL output. Figure 

18 represents the level of USL in tons/acre/year each parcel would emit in the absence of RG. 

The lightly colored parcels represent lower rates of USL. Darker parcels indicate higher rates of 

USL. Figure 19 represents the difference: (baseline USL) – (USL with full adoption of RG in 

tons/acre/year). Lightly colored parcels in Figure 19 indicate little or no reduction in USL. The 

darker the parcel, the greater the reduction in USL following pasture management with RG.  
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Figure 18: USL in Absence of RG (tons/acre/year) 
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Figure 19: USL Reduction (tons/acre/year) with Full Adoption of RG 
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The degree of correlation between the USL rate in the absence of RG, and the difference 

in USL after adoption was 99.98%. As expected, the USL levels were clustered in fairly uniform 

areas of high and low USL output. For instance, the northernmost area of the watershed has 

lower USL levels in the presence of overgrazing (as depicted in Figure 18) compared to the rest 

of the watershed; thus RG slightly reduces USL on these parcels compared to the rest of the 

watershed, as depicted in Figure 19. The rate of USL is fairly low in OCW (most parcels well 

below 1 ton/acre/year) compared with the average rates USL rates on pastureland across the 

United States, which as previously stated totals approximately 2.43 tons/acre/year (USDA-

NASS, 2003). 

USL Abatement Curves 

Figure 20 is an inverted linear regression of USL abatement (tons/year) on the USL that 

is estimated to occur at each hypothetical cost-share level (equation 14). The x-axis is USL 

abatement in tons/year. The y-axis is the cost share range. The figure represents the cost of 

abatement ($/ton) on USL reduction at each of the cost-share values offered to the survey 

respondents. The HRUs in Figure 20 are ranked according to efficiency based on the slope of 

each HRU curve. The flatter the slope of the HRU curve, the higher the response to USL 

abatement according to cost share level. The HRUs that exhibit a weaker USL response to BMP 

cost-share levels have a steeper slope. Therefore, HRU efficiency may be ranked depending on 

the slope of each HRU’s linear regression.  

Each subbasin included in the USL regression is highlighted in a unique color in Figure 

21. The subbasins not represented in the regressions are shaded gray. An issue arises when 

comparing the USL output aggregated across HRUs for each BMP combination. In the RG and  
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Figure 20: USL Abatement by HRU at Various Costs for the RG Scenario 
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WT scenarios, 48 HRUs are represented, and 55 HRUs are represented in the other scenarios. 

The reason for the difference in HRU representation is that HRUs in the RG and WT scenario 

exhibited a perfectly inelastic incentive response to USL abatement (according to the regression 

equation 14), and thus HRUs in subbasins 3 and 7 were not included in the analysis. 

Aggregate USL Abatement Curves 

The USL abatement curves were aggregated by HRUs for each BMP technology combination, 

focusing explicitly on changing the RG incentive, all else equal. USL abatement was 

horizontally summed across all HRUs. The following four curves, Figures 22 to 25 are 

abatement supply curves in the OCW. The cost in $/ton of USL is on the y-axis and USL 

abatement is on the x-axis. The abatement is measured in $/ton/year of USL because these 

aggregate abatement curves represent information from the policy-makers’ perspective (who are 

interested in the total USL effect). Since it is assumed that producers are already maximizing 

profit by adopting BMP combinations with a cost-share scenario, the economics of adopting 

BMPs from the producer perspective is not explicitly modeled.   

Figure 22 represents the aggregated USL abatement in tons/year for the scenario in which 

only RG is used: Pr(𝑌𝑅𝐺 = 1, 𝑌𝑊𝑇 = 0, 𝑌𝑆𝐶 = 0, 𝑌𝑃𝐼 = 0). There are 55 HRUs included in this 

scenario. Cost-share levels have the greatest impact on USL abatement going from 0 to 1,370 

tons/year abated at a cost of approximately $3/ton/year. Subsequently, the abatement curve 

becomes steeper; e.g., inelastic to the incentive level. The maximum possible USL abatement is 

1,450 tons/year at a cost of $170/ton/year. To achieve a 1,450 ton/year reduction in USL with 

perfect price discrimination, the total abatement cost would be approximately $8,805 (found by 

integrating underneath the aggregate abatement curve). Perhaps a more practical estimate of the  
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Figure 21: Subbasins Represented in the USL Abatement Regression 
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Figure 22: Aggregated USL Abatement Levels (tons/year) for the RG Scenario: 

Pr(Y_RG=1,Y_WT=0,Y_SC=0,Y_PI=0) 
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Figure 23: Aggregated USL Abatement Levels (tons/year) for the Rotational Grazing, Stream 

Crossing and Water Tank Scenario: Pr(Y_RG=1,Y_WT=1,Y_SC=1,Y_PI=0)  
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Figure 24: Aggregated USL Abatement Levels (tons/year) for the Rotational Grazing and Stream 

Crossing Scenario: Pr(Y_RG=1,Y_WT=0,Y_SC=1,Y_PI=0) 
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Figure 25: Aggregated USL Abatement Levels (tons/year) for the Rotational Grazing and Water 

Tank Scenario Pr(Y_RG=1,Y_WT=1,Y_SC=0,Y_PI=0) 
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total programmatic costs assumes no price discrimination. Without assuming price 

discrimination, the cost to achieve 1,450 tons/year of USL abatement is $246,500 (a product of 

1,450 tons/year and $170/tons/year). The same method could be applied to any target level of 

USL along the curve. One finding is that although the maximum cost-share level of $40.00/acre 

for RG achieves a 1,450 ton/year reduction in USL, it falls short of the previously specified 7134 

ton/year reduction target (Hagen and Walker, 2007) in the OCW. This shortfall indicates that 

other actions in the watershed beyond the adoption of RG are needed to achieve government 

specified USL reduction goals. 

Figure 23 represents the aggregated USL abatement in tons/year where RG, SC and WTs 

are used: Pr(𝑌𝑅𝐺 = 1, 𝑌𝑊𝑇 = 1, 𝑌𝑆𝐶 = 1, 𝑌𝑃𝐼 = 0). There are 55 HRUs included in this scenario. 

This bundled BMP scenario yields a slightly less elastic abatement curve. At a payment of $46/ 

ton/year, USL is reduced by approximately 165 tons/year. The total possible USL abatement is 

170 tons/year at a cost of approximately $130/ton/year. Integrating the curve to represent perfect 

price discrimination for the scenario in Figure 23 yields a total cost of $1604 to achieve the 

maximum USL reduction of 170 tons/year. However, assuming no price discrimination, the total 

cost in providing $130/ton across the watershed, the total cost to reduce the USL by 170 tons is 

$22,100. 

Figure 24 represents the aggregated USL abatement in tons/year where RG and SC 

technologies are used: Pr(𝑌𝑅𝐺 = 1, 𝑌𝑊𝑇 = 0, 𝑌𝑆𝐶 = 1, 𝑌𝑃𝐼 = 0). A total of 54 HRUs are included 

in this analysis. USL abatement is approximately 370 tons/year for a cost of $50/ton/year. The 

total possible USL abatement is 380 tons/year at a cost of $163/tons/year. Integrating the curve 

for the scenario in Figure 24 yields a total cost of $2,370 to achieve the maximum USL reduction 
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of 380 tons/year of USL under perfect price discrimination. Without assuming price 

discrimination, achieving 380 tons/year of USL would cost $61,940. 

Figure 25 represents the aggregated USL abatement in tons/year where RG and WTs are 

used. There are 48 HRUs included in this scenario. There are fewer HRUs represented in this 

regression because some HRUs exhibited zero abatement potential (due to negative cross price 

effects and negative correlation of the error terms). As a result, the USL abatement potential for 

the RG and WT scenario is less than the other BMP scenarios in this analysis. As an example of 

policy analysis, Figure 25 indicates that if policy makers were to provide $45/ton/year for USL 

abatement, the result will be 21 tons/year of USL abatement. The total possible USL abatement 

is 23 tons/year at a cost of $185/tons/year. Under price discrimination, Figure 25 yields a total 

cost of $446 to achieve the maximum USL reduction of 23 tons/yr. Where price discrimination is 

not practical, the total cost of reducing USL by 23 tons costs $4,255. 

Policy implications of the BMP scenarios include calculating the total potential of USL 

abatement, and the cost to achieving the maximum abatement goals. The USL impact of PI was 

not included in the analysis, since none of the cost-share values had a statistically significant 

effect on PI adoption. Table 13 details the maximum USL that may be abated for each BMP 

scenario. Suppose policy makers aimed to reduce over 1,000 tons of USL. The RG scenario 

would be the optimal BMP scenario because it is the only scenario in which a reduction over 

1,000 tons is possible. Using the aggregated USL abatement curves, it is possible to compare the 

USL reduction possible at a given cost/tons/year. For instance, comparing the cost of USL 

reduction at the maximum USL abatement seems to indicate that scenario 3 is the most cost 

effective (170 tons of USL is abated). However, given a budget of $120 ton/year of USL abated,  
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Table 13: BMP Scenarios with Corresponding Maximum USL Abatement and Cost 

Scenario Rotational 

Grazing 

Pasture 

Improvement 

Stream 

Crossing 

Water 

Tanks 

Cost ($/t/yr) Max. USL 

Abatement (t/yr) 

1 ✗    170 1,450  

2 ✗   ✗ 185 23  

3 ✗  ✗ ✗ 130 170  

4 ✗  ✗  163 380  
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scenario 1 would achieve 1,423 tons/year of USL abatement, scenario 2 would result in 

approximately 21 tons/year abated, 167 tons/year abated for scenario 3 and 373 tons/year abated 

for scenario 4.Therefore, if the goal was to abate the maximum tons of USL at $120/ton, the 

optimal choice is scenario 1.  
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CHAPTER 6: CONCLUSION 

The goals of this research were to 1) propose a methodology to link primary survey data 

on WTA RG with a biophysical-hydrological modeling system, 2) estimate the relationship 

between cost-shares for BMPs among livestock producers, and 3) estimate the change in USL 

associated with RG adoption. To analyze this relationship, first survey data from livestock 

producers in a watershed in southeastern Tennessee was analyzed. Secondly, the biophysical 

land characteristics of the watershed were determined to estimate annual USL loads using the 

biophysical modeling tool SWAT.  The willingness to adopt BMPs was estimated using the 

survey data, to determine the influence of previous BMP use, farmer and farmland characteristics 

on the future adoption of BMPs. With the willingness to adopt BMPs estimated, SWAT was 

used to estimate the total USL load by incorporating the physical land characteristics (slope, soil 

type and land use) of each parcel surveyed.  

Younger, higher educated livestock producers who planned to pass on their farm to future 

generations were more likely to adopt the BMPs included in the survey. The previous use of PI 

was positively correlated with the adoption of all four of the BMPs. The own cost share effect for 

implementing PI was not statistically significant, although many producers already have PI in 

use. The own cost share levels for RG, WTs and SC were statistically significant. 

The USL abatement analysis was conducted to examine trade-offs among producer costs 

for operation and pollution abatement attributed to BMP adoption. By linking WTA estimates 

from the surveys with the SWAT model, costs and USL reduction benefits from BMP adoption 

were estimated. As previously stated, the target USL reduction for the OCW was estimated to be 

7134 tons/year (Hagen and Walker, 2007). However, setting the BIO-MIN value to the extremes 

to simulate the effect of rotational grazing (0 lb/acre of dry forage to simulate overgrazing and 
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500 lb/acre of dry forage to simulate rotational grazing practice) and paying the highest cost-

share level ($40.00/acre), only 1,450 tons/year of USL abatement will occur for the RG bundle.  

Despite a shortfall in achieving the target USL abatement in the OCW with RG alone at 

$40.00/acre, linking the probability of adoption of RG to the predicted reduction in USL is 

important in determining the cost of USL abatement, sustainable soil use and healthy watershed 

maintenance. A limitation of this study is that rather than adopting RG on highly erodible land, a 

producer may opt to purchase hay to feed to livestock, rather than having the cattle rely on 

grazing. The option for purchasing hay was not included in this study. Also, favorable 

environmental factors conducive to forage production may also diminish interest in RG adoption. 

USL estimates were averaged over a 10 year time period, so the WTA BMPs based on weather 

patterns was not explicitly addressed. 

Future research could more accurately estimate the relationship between cost-shares for 

BMPs and improvement of water quality in the OCW by incorporating USL estimates of the 

other BMPs (SC, WT, and PI) in SWAT. Estimating the total USL for all four BMPs will 

provide policy makers with a total USL estimate for various BMP bundles, taking into account 

cross price effects and correlation in the error terms. This knowledge will increase efficiency in 

programs seeking to reduce soil erosion because producers who manage operations on high-

impact HRU areas may appropriate targets for cost-share opportunities.  
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Figure 26: Excerpt of the Choice Experiment as Outlined in the Survey 
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