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ABSTRACT 

The release of fly ash at the Tennessee Valley Authority (TVA) Kingston Fossil 

Plant (KIF) on 22 December 2008 discharged approximately 4.1 million cubic meters of 

coal ash into the adjacent aquatic and terrestrial systems. Previous benthic invertebrate 

investigations conducted by TVA and collaborative researchers concluded that benthic 

invertebrates in the Emory River were at moderate risk from ash-related constituents, 

primarily arsenic, in ash-contaminated sediment that remained in the Emory River 

following extensive dredging efforts. These conclusions were based on the observation 

of statistically significant reductions in growth and biomass in laboratory toxicity tests 

with Emory River sediment. Benthic invertebrate community survey results from 2010, 

however, did not support this conclusion. These previous surveys evaluated benthic 

invertebrate community data and sediment data across a large spatial scale, providing 

an “area-wide” interpretation of the relationships between the benthic invertebrate 

community results to the ash release. In the present research, co-located sediment and 

benthic invertebrate community samples were collected from nine locations in the Emory 

River. Community metric results were compared among samples, locations, and 

previous years and to co-located sediment chemistry and physical sediment properties. 

Temporal trends were also evaluated over a 5-year period of time at two locations to 

gauge if an initial impact and/or recovery could be determined. Despite this refined 

investigation, no trends or significant differences were identified between ash-impacted 

locations compared to the reference location, and no evidence of an initial impact or 

subsequent recovery trends were established. Furthermore, no significant relationships 

could be established between benthic invertebrate community metrics and sediment 

chemistry results. This information is important for the informed monitoring, remediation, 
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and damage assessment of the benthic invertebrate community at the Kingston Ash 

Recovery site. This research also increases our knowledge of benthic invertebrate 

tolerance to metal mixtures in sediment of natural systems. 
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CHAPTER 1 
INTRODUCTION 

Despite numerous environmental laws and regulations meant to prevent or 

control natural disasters, accidents causing adverse effects to environmental resources 

continue to occur. The release of fly ash at the Tennessee Valley Authority (TVA) 

Kingston Fossil Plant (KIF) on 22 December 2008 discharged an unprecedented amount 

of coal ash slurry into the adjacent aquatic and terrestrial systems of the Emory River. 

Immediately following the Kingston ash spill, on the basis of a few hastily-collected 

samples several researchers predicted dire effects on the aquatic ecology in the region 

as a result of bioaccumulation of ash-related constituents (Chattanooga Times Free 

Press, Emory River at ‘tipping point’, May 19, 2009). Metals and metalloids, including 

arsenic and selenium, are the primary constituents of potential concern for coal fly ash. 

The initial response focused on public protection and stabilization of the released ash, 

but rapidly evolved to include comprehensive monitoring of ambient media and 

ecological receptors. The size and complexity of the potentially affected ecosystems 

necessitated a comprehensive environmental monitoring program, which TVA continues 

to perform in cooperation with numerous federal, state, and academic organizations to 

evaluate the potential for adverse environmental effects from the Kingston fly ash spill. 

As discussed in the chapters to follow, benthic invertebrate communities in the Emory 

River were of particular concern given their importance to the health and function of both 

aquatic and terrestrial systems. 

1.1 Benthic Invertebrates as Biological Monitors and Indicators 

Benthic invertebrates are organisms that dwell in or attach to the sediments on 

the river bottom, near the sediment-water interface and on top of sediments. These 
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organisms are vital to cycling nutrients and processing organic matter in aquatic 

systems. Various species of fish and wildlife also feed on benthic invertebrates, making 

them an essential part of the aquatic and riparian food chain. The distribution and 

abundance of benthic invertebrates are largely defined by the habitat and feeding 

requirements of the various taxa and the environmental complexity of river beds. Two of 

the most important factors influencing benthic invertebrate community composition 

include the availability of food and the substrate type (Hawkins et al. 1982, Downes et al. 

2000, Jones et al. 1999). Benthic invertebrates are commonly grouped based on their 

mode of feeding. The five main categories for functional feeding include: collector-

gatherer, scraper-grazer, predator, shredder, and filterer. The physical environment 

(e.g., substrate and current velocity) typically dictates the types of organisms that will be 

present (Wallace and Webster 1996).  

The quality of an aquatic ecosystem is often determined by the presence or 

absence of environmental stressors. A stressor is defined as a factor that is outside of 

the normal range, due to the influence of anthropogenic influence (Townsend et al. 

2008). Benthic invertebrates have long been used as indicators of stream or water 

quality in both lenthic and lotic systems, as these organisms are in direct contact with 

surface water and sediment (Li et al. 2010; Wallace and Webster 1996; Sundermann et 

al. 2013; Clements 1994; Allan 2004; Maret et al. 2003; Gebler 2004; Clements 1999). 

Benthic invertebrate species may respond differently to chemical contaminants than to 

other types of environmental stressors, such as nutrient enrichment and changes to 

stream hydrology or habitat structure. As our understanding of indicator species 

assemblages and rapid bioassessment protocols has increased, the use of benthic 

invertebrates for biomonitoring has also increased (Clements 1994). Identifying and 
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understanding the relationships between aquatic organisms and environmental stressors 

is critical for “the effective management, restoration, and preservation of aquatic 

ecosystems” (Burton and Johnston 2010).  

Benthic invertebrates are used in biomonitoring for a number of reasons. They 

are made up by a diverse group of organisms found in all freshwater ecosystems. These 

organisms are relatively immobile; consequently, they are closely associated with 

sediments and other local conditions. Benthic invertebrates accumulate metals and other 

contaminants, which are often times bound to the sediments in which they live, and can 

transfer these contaminants into aquatic and riparian food chains by serving as prey for 

upper trophic level receptors. Many of these organisms are in immature stages of 

development, so reproductive cycles and sexual differences need not be accounted for, 

and life-spans range from several months to multiple years, allowing for accumulation of 

contaminants (Li et al. 2010; Goodyear and McNeill 1999, Kiffney and Clements 1994). 

Benthic invertebrate communities are often described and summarized by calculating 

metrics or indices. These metrics are used to analyze the community data and are often 

categorized as: composition/abundance, richness/diversity, sensitivity/tolerance, or 

function (Sundermann et al. 2013; Barbour et al. 1995). 

The Tennessee Department of Environment and Conservation (TDEC) 

commonly uses benthic invertebrate metrics to evaluate aquatic systems (TDEC 2011). 

Seven metrics, including taxa richness, total Ephemeroptera, Plecoptera, and Tricoptera 

(EPT) taxa, percent EPT taxa (excluding Cheumatopsyche), percent chironomids and 

oligochaetes, North Carolina Biotic Index (NCBI) for tolerance, percent clingers, and 

percent nutrient tolerant organisms, are typically used to evaluate streams and rivers 

within the state. TVA has also created a multi-metric evaluation of larger rivers, known 
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as the Reservoir Benthic Index (RBI). The RBI evaluates benthic invertebrate 

communities in reservoir systems, as these communities differ greatly from free-flowing 

river systems. Reservoirs are man-made systems, and as such, are difficult to compare 

to other rivers or upstream reference locations because the physical habitat has been 

altered to meet the needs of human use. TVA also selected seven metrics to evaluate 

reservoirs; however, they vary based on the type of reservoir being evaluated (e.g., 

run-of-river versus tributary reservoirs). Watts Bar Reservoir, a run-of-river reservoir, 

would be evaluated based on the following metrics:  taxa richness, total number of EPT 

taxa, long-lived taxa (i.e., the presence or absence of at least one long-lived organism, 

such as Corbicula or Hexagenia), percent oligochaetes, percent of the two most 

dominant taxa, density (excluding chironomids and oligochaetes), and zero-samples 

(proportions of samples with no organisms present). A scoring criteria was established 

for each metric using 6 years of collections from several reservoirs, rating each metric 

from excellent to very poor (Baker 2006). 

Changes in a number of benthic invertebrate community metrics are often 

associated with either increased or decreased human impact. Metrics that commonly 

decrease with increasing impact include: total taxa richness; number of intolerant 

species; EPT taxa richness; sediment-surface taxa richness; total abundance; and the 

proportion of individuals that feed as shredders, grazer-scrapers, and predators (Kerans 

et al. 1992). On the contrary, metrics that generally increase with human impact include: 

the proportion of Corbicula, oligochaetes, and chironomids; the proportion of individuals 

in the two most abundant taxa; the proportion of omnivorous individuals; and the 

proportion of individuals feeding as detritivores, filterers, or gatherers (Kerans et al. 

1992). Clements (1999) found that predator-prey interactions within benthic invertebrate 
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communities may also be impacted by environmental stressors, such as exposure to 

contaminants, as some species are more sensitive to contaminants than others. 

Tolerance values, ranging from 0 (very intolerant) to 10 (very tolerant) are widely used to 

evaluate the ability of different benthic invertebrate taxa to occur in aquatic ecosystems 

with varying water quality (Wallace and Webster 1996). In systems with historical 

contamination, benthic invertebrate communities with more tolerant individuals may be 

the result of individual physiological adjustments or adaptations, or from more tolerant 

species simply replacing those species that are sensitive to contamination (Clements 

1999, Burton and Johnston 2010).  

Benthic invertebrates are also used as indicators of sediment quality and 

contaminant transfer from aquatic to riparian ecosystems by evaluating upper trophic 

level consumers that feed on these insects. Aquatic- and riparian-feeding receptors, 

such as birds, bats, and predatory invertebrates (e.g. spiders), feed on emergent benthic 

invertebrates exposed to sediment for a period of their lifespan. Walls et al. (2015) found 

that tree swallows, insectivorous passerines whose diet consists primarily of emergent 

aquatic insects, had higher concentrations of selenium in eggs collected from colonies 

closer to the Kingston ash release compared to reference colonies. Similarly, a study by 

Otter et al. (2013) reported concentrations of selenium in Tetragnathid spiders, receptors 

that feed over bodies of water, were higher in ash-associated sites compared to 

reference sites following the ash release. Another study by Custer et al. (2003) used tree 

swallows nesting along a polychlorinated biphenyl (PCB) contaminated portion of the 

Housatonic River to evaluate hatching success. Here, reduced hatching success was 

associated with increased PCB concentrations in benthic invertebrate tissues and 

sediments.  
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1.2 Effects of Heavy Metals and Coal Ash on Benthic 
Invertebrates 

Heavy metals may persist in aquatic ecosystems even after the source of 

contamination has been removed, with sediments often acting as a “sink” for various 

types of contaminants (Ho and Burgess 2013). Given that benthic invertebrates often 

live, feed, or breed within sediments, contamination within the sediment can be a 

primary stressor to these aquatic organisms throughout a portion of their lifespan 

(Courtney and Clements 2002; Burton and Johnston 2010). Benthic invertebrates can 

bioaccumulate contaminants within their tissues, providing possible toxic body burdens 

for themselves, as well as creating a route for trophic transfer of these contaminants to 

their predators (Goodyear and McNeill 1999; Cherry and Guthrie 1977; Maret et al. 

2003; Rowe et al. 2002). In a study by Cain et al. (2011), several species of mayflies 

were found to accumulate high concentrations of cadmium and copper. While the 

different species accumulated these metals at varying rates, the study indicated that 

consumption of periphyton was the leading exposure over uptake from the aqueous 

phase.  Similarly, Culioli et al. (2009) discovered higher concentrations of arsenic and 

antimony in benthic invertebrate taxa downstream of mining activity, with levels of 

accumulation relating to the feeding behavior, specific habit, and position of the different 

taxa in the food chain. Conley et al. (2009) found that selenium concentrations reduced 

fecundity in adult female mayflies, and also caused a reduction in adult body mass. 

Mouthpart deformities of one chironomid species, Chironomis riparius, were found when 

exposed to concentrations of copper and zinc (Di Veroli et al. 2014).   

Field observations of the community structure and function can often times be 

linked with this contamination. Streams with heavy-metal pollution frequently have 
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benthic invertebrate communities characterized by reduced abundance and species 

richness, as well as a host of more tolerant taxa (e.g., chironomids) and fewer sensitive 

taxa (e.g., mayflies), due to toxicity of select metals (Cortelezzi et al. 2011; Jones et al. 

1999, Courtney and Clements 2002; Harper and Peckarsky 2005; Pollard and Yuan 

2006; Hickey and Clements 1998). A study by Maret et al. (2003) evaluating benthic 

invertebrate communities located downstream of mining activities found that elevated 

metal concentrations in surface water and sediment (e.g., cadmium, lead, and zinc) were 

directly related to reduced total taxa richness and density and EPT taxa richness and 

density. Clements (1994) found that heavy metal pollution impacted the distribution and 

composition of the benthic invertebrate community in the Arkansas River in Colorado; 

however, other factors, such as differences in environmental conditions and 

recolonization ability, also likely influenced the community characteristics.  

Coal fly ash and effluent from settling ponds contain heavy metals that can 

provide a potential source of contamination to aquatic ecosystems. Releases of coal ash 

and effluent in streams have negatively impacted benthic invertebrate densities and 

species richness by causing both physical disturbance and chemical toxicity (Rowe 

2014; Rowe et al. 2002; Smith 2003; Cherry et al. 1979; Cairns et al. 1970; Specht et al. 

1984; Guthrie and Cherry 1979). Furthermore, coal ash has been shown to influence the 

composition of community structure. Physical effects include smothering and increased 

turbidity to stream habitats, as particles that are suspended in the water column may 

clog or damage the respiratory organs of aquatic invertebrates (Burton and Johnston 

2010). Releases of fly ash can create environmental conditions similar to conditions 

caused by sedimentation or siltation (Smith 2003). A study conducted on fly ash effluent 

discharged from a settling pond into a stream found that the reduction of benthic 
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invertebrate density was the most severe during the period when suspended solids were 

highest. Chemical toxicity was also attributed to the heavy metals found in fly ash (Rowe 

2014; Mayfield et al. 2013; Rowe et al. 2002; Winner et al. 1980; Cherry and Guthrie 

1977; Clements et al. 1988). Harper and Peckarsky (2005) found that abundance and 

taxa richness were both reduced following the release of coal into a small stream in New 

York. Two years following the release, benthic invertebrate communities continued to 

demonstrate impacts. While no significant effects (p=0.871) were identified for EPT taxa, 

other less sensitive invertebrates within the community had declined. These impacts 

were thought to be the result of the clean-up, which included changes to the stream 

banks and modified channel. A study by Cairns et al. (1970) evaluating an accidental 

release of coal ash effluent into the Clinch River found similar kinds of organisms at 

impacted and reference sites, but reduced densities of the various organisms in 

impacted areas compared to reference areas. However, Cairns et al. (1970) also noted 

that the benthic invertebrate communities were quickly recovering just 2 years after the 

release. Another study by Smith (2003) evaluating a small stream in Tennessee 

receiving discharges of coal fly ash found that benthic invertebrate density and taxa 

richness began to recover as soon as coal ash discharges were reduced and then 

stopped. Furthermore, Smith (2003) noted that the rate and extent of community 

recovery depended on a number of factors, including the type of disturbance, habitat 

conditions, the season the disturbance ended, and the potential for colonizing 

invertebrates to reoccupy the area.  

While the dynamics of metal pollution to benthic invertebrate communities have 

been studied for decades, interactions between heavy metals and benthic community 

structure are still highly uncertain. Smith (2003) stated that the recovery of the benthic 
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invertebrate community in McCoy Branch, a small headwater stream that received heavy 

metals from decades of ash slurry discharge before operational changes removed the 

source, could not be attributed to the physical reduction of ash or the chemical 

contamination associated with the ash. A study by Winner et al. (1980) compared two 

benthic invertebrate communities with different types of heavy-metal pollution stress. 

One community was exposed to copper at relatively low, constant concentrations, while 

the other had highly variable concentrations of copper, chromium, and zinc. Both benthic 

invertebrate communities demonstrated similar patterns of decreased diversity and 

dominance of tolerant taxa, indicating that continuous low-level stress may have an 

overall comparable biological impact to mixtures of metals found with potentially greater 

intensity. Winner et al. (1980) concluded that as chemical stress decreases in a system, 

changes in substrate composition and seasonal variability begin to account for more of 

the differences found in community composition. Tolerant organisms, such as 

chironomids, may still be dominant in some areas; however, this occurrence is not as 

predictable. In many cases, metal pollution is not the only environmental stressor; as a 

result, it is difficult to demonstrate with confidence the contribution of heavy metals to 

ecological effects observed within the benthic invertebrate community in the field 

(De Jonge et al. 2013). Distinguishing natural variation in benthic invertebrate 

communities from variation caused by anthropogenic disturbances is also an on-going 

problem (Clements 1994). Additional research is needed to address these uncertainties. 

1.3 Tennessee Valley Authority Background and Kingston Ash 
Release 

TVA, an independent corporation owned by the federal government, provides 

power to the majority of Tennessee and some portions of the surrounding southern 
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states. The TVA KIF, one of TVA’s larger fossil plants, was built at the confluence of the 

Emory and Clinch Rivers within Watts Bar Reservoir located in Roane County, 

Tennessee (Figure 1) in 1955. The KIF produces electricity by burning coal, which heats 

water drawn from the surrounding rivers. The heated water produces steam, which is 

then directed into a turbine connected to a generator. As the generator spins, electricity 

is produced. Ash, a by-product of the coal-burning process, has historically been stored 

in unlined containment areas onsite. An unprecedented release of coal fly ash occurred 

at this facility in December 2008, when an ash containment area wall failed. 

Approximately 4.1 million cubic meters (m3) of coal ash was released into the Emory 

River and overbank areas, covering approximately 121 hectares. While the released ash 

mainly consisted of fine aluminosilicate particles, it also contained trace amounts of 

heavy metals such as arsenic, copper, mercury, nickel, selenium, and zinc, which occur 

naturally in coal (Jacobs 2010; Gieré et al. 2003; Tishmack and Burns 2004; Rowe et al. 

2002). 

1.4 Kingston Ash Release Site Conditions and Clean-Up 

Given the force and sheer volume of the released ash, field surveys and 

subsequent laboratory analyses on sediment indicated that ash was initially pushed and 

deposited upriver as far as Emory River mile (ERM) 5.75, and following several heavy 

rains with high river flow events, was distributed downriver into the Clinch and 

Tennessee Rivers. In the immediate vicinity of the spill, at ERM 2.2, ash filled the main 

river channel, with thicknesses of ash approximately 10 meters (m) deep (Figure 1). 

Upstream of the spill, ash deposits appeared to rapidly decrease beyond ERM 3.5, 

approximately 1.5 river miles from the initial release. Similarly, ash deposition in the 

downstream direction also quickly diminished below ERM 1.0. While pockets of ash 
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occurred in the lower Emory and Clinch Rivers, only small amounts of ash (generally 

less than 5 centimeters (cm)) were found downstream of Clinch River mile (CRM) 2.0. 

Ash was also detected in the Tennessee River at Tennessee River mile (TRM) 566 

(approximately 2 river miles south of the confluence with the Clinch River and 8 river 

miles downstream of the initial spill location); however, deposition was limited to 1 to 3 

cm (Jacobs 2010). 

Approximately 3 months after the release, dredging efforts began in the Emory 

River. The initial dredging pilot program was conducted from March to July, 2009. 

Beginning in August, 2009, Phase I production dredging was implemented to reduce the 

potential for upstream flooding and downriver migration of ash by removing ash from the 

river channel as quickly as possible. Phase II precision dredging began in February 

2010. While this phase of dredging continued to minimize downriver movement of ash, it 

was also intended to return the river channel to pre-release elevations. All dredging 

efforts were completed by August, 2010, in total removing approximately 2.7 million m3 

of released ash and sediment from portions of the Emory River. Throughout the entire 

dredging process, both hydraulic and mechanical dredges were used, and engineering 

and operational controls were implemented to reduce the levels of suspended solids 

generated during the dredging operations. These controls included the use of silt 

curtains, and the reduction of cutter head speeds, rates of advance, and reverse cutter 

head rotation (ARCADIS 2012; Jacobs 2011). Efforts were also made to reduce the 

disturbance of legacy sediment located between ERM 0.0 and ERM 1.75. This portion of 

the Emory River, as well as sediments in the KIF intake channel, was not dredged due to 

the presence of cesium-137 in underlying sediment samples. Unrelated to the ash 
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release, cesium-137 is the result of historical releases from U.S. Department of Energy 

(USDOE) facilities on the Oak Ridge Reservation (ARCADIS 2012). 

To date, approximately 407,000 m3 of ash remain in the river system, as 

described in the U.S. Environmental Protection Agency (USEPA)-approved Kingston 

Ash Recovery Project, On-Scene Coordinator Report for the Time-Critical Removal 

Action at the TVA Kingston Fossil Fuel Plant Release Site, Roane County, Tennessee 

(Jacobs 2011). This estimate of residual ash was based on interpretations of data from 

multiple sources, including pre- and post-release river bathymetric data, dredging logs, 

visual surveys, and VibeCore™ data; consequently, these estimates include some 

uncertainty. Additional sediment samples have been collected to refine the distribution of 

residual ash in the river system. Using interpretations of bathymetric survey information 

and results of VibeCore™ sampling data, the most current prediction of ash deposition 

suggests that residual ash may be present in distinct pockets, as well as intermixed or 

imbedded with submerged natural river sediments (Figure 2) (Jacobs 2010). 

1.5 Emory River Hydrology and Sediment Characterization 

The Emory River is one of the major tributaries that drains into Watts Bar 

Reservoir. This reservoir is contained within portions of Loudon, Meigs, Rhea, and 

Roane counties in eastern Tennessee. Watts Bar Reservoir was created in 1942 with 

the construction of the Watts Bar Dam and holds approximately 15,783 hectares of 

surface water (TVA 2009). The drainage basin associated with the reservoir 

encompasses approximately 45,000 square kilometers (km2) in Tennessee, North 

Carolina, and Virginia, and includes almost 3,000 km of streams that drain directly to the 

reservoir. Watts Bar Reservoir contains three main branches, including:   

 Emory River: 19.3 km of navigable water 
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 Clinch River: 37.0 km of navigable water from the confluence of the Clinch 

and Tennessee Rivers to Melton Hill Dam (CRM 23.1) 

 Tennessee River: 115.9 km of navigable water from the Watts Bar Dam 

(TRM 529.9) to Fort Loudoun Dam (TRM 602.3). 

Watts Bar Reservoir is considered a “run-of-river” reservoir, meaning that the 

waters within it have a short retention time (approximately 18 days) and that the winter 

drawdown only reduces the depths by approximately 1 m. Consequently, sediment 

within Watts Bar Reservoir is classified as seasonally-exposed sediment or submerged 

sediment. Seasonally-exposed sediment refers to the sediment that is exposed to the air 

during the winter months when water levels are low. Submerged sediment refers to the 

sediment that is below water year-round (Baker 2006; ARCADIS 2012).  

Submerged sediments in the Emory River vary in substrate type and thickness. 

As the river changes from riverine to lacustrine (moving from upstream to downstream), 

the classification of sediment substrate follows suit. Upstream portions of the river 

bottom, above ERM 6.0, are characterized with bedrock, hard-packed sediments, silts, 

clays, sands, and detritus (leaves, twigs, and other natural organic materials). This 

portion of the river was used as a reference area following the spill because no 

observable released ash was found in the sediments. Moving downstream, closer to the 

initial release (ERM 6.0 to ERM 3.5), sediments are comprised of increasing ash 

content, along with hard-packed clays and bedrock near overbank areas. This portion of 

the river is prone to scouring during heavy rain events. Areas that are not scoured are 

comprised of gravels, fine silts, detritus, or sands with some coal particles. The 

sediments in the area of the river immediately impacted by the release, ERM 3.5 to 

ERM 1.5, are highly variable. The general composition includes fine clays and silts 
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mixed with ash. Some areas near ERM 3.0 also include fine silts and sands with detritus 

or hard-packed clay. This section of the river channel widens considerably, allowing for 

more deposition to occur. The lower, undredged sediment of the Emory River (ERM 1.5 

to ERM 0.0) consists of fine silts, detritus, and ash (ARCADIS 2012). This section of the 

river is immediately upstream of the confluence with the Clinch River, and contains 

sediment contaminated with cesium-137 from historical releases from USDOE.  

Submerged sediment is an important component of aquatic ecosystems. It 

provides habitat for a variety of aquatic organisms, such as benthic invertebrates, which 

come in direct contact with the sediments. Wildlife that inhabit or forage in the river 

system (e.g., great blue heron, killdeer, and muskrats) may be indirectly exposed to 

submerged sediments through incidental ingestion in their diet. These types of 

ecological exposures typically occur only in the upper 15 cm of submerged sediments; 

therefore, this portion of sediment has been the focus of sampling and ecological studies 

previously conducted at the site and in most literature studies (ARCADIS 2012). 

1.6 Benthic Invertebrate Communities in the Emory River 

Dominant benthic invertebrate taxa found in the Emory River include Diptera, 

Oligochaete, and Ephemeroptera. Predominant dipteran taxa include non-biting midges 

(Chironomidae), phantom midges (Chaoborus), and biting midges (Ceratopogonidae). 

Oligochaete taxa consist mainly of aquatic worms and tubificids (e.g., Tubificidae and 

Lumbriculidae). Burrowing mayflies (Hexagenia) are the primary Ephemeroptera taxa; 

however, occasional gatherer/collector mayflies (Caenis and Callibaetis) have also been 

observed. A variety of freshwater bivalves, including fingernail clams (Musculium 

transversum) and Asiatic clams (Corbicula fluminea) are also present throughout the 

river, as well as freshwater snails (e.g., Hydrobiidae and Viviparidae) and leeches 
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(Glossiphoniidae) (Baker 2006; Buys et al. 2015; ARCADIS 2012). Historical surveys 

conducted in Watts Bar Reservoir identified a number of protected or sensitive 

invertebrate species. Alabama lamp mussel (Lampsilis virescens), dromedary pearly 

mussel (Dromus dromas), purple bean (Villosa perpurpurea), fine-rayed pigtoe 

(Fusconaia cuneolus), and Anthony’s river snail (Athearnia anthonyi) are species of 

protected mollusks that have historically been observed within Watts Bar Reservoir area 

and its tributaries; however, these species have not been found in the past 30 years. 

Their absence is likely a result of the construction of Watts Bar Dam (TVA 2009). 

Benthic invertebrate community composition and structure can offer insight to the 

general habitat conditions present within the river bottom and may also indicate if 

environmental stressors are affecting the quality of habitat used by these communities 

(Jones et al. 1999). Sediment grain size and texture, spatial distribution, substrate 

diversity, and organic content are all environmental factors that influence benthic 

invertebrate communities (Jones et al. 1999, Jahnig and Lorenz 2008; Lepori et al. 2005; 

Boyero 2003). In a field study by Cummins and Lauff (1968), substrate particle size was 

identified as the most likely “common denominator” in various benthic invertebrate 

community compositions. A study by Jones et al. (1999) in the Clinch River, Tennessee, 

found that variation in habitat explained more than 50% of the variance observed in the 

diversity of benthic invertebrate communities. Due to the sedentary nature of these 

organisms and their direct contact and exposure to surface water and sediment, benthic 

invertebrates are often the most sensitive receptor group to metals and other stressors 

in sediments and related porewaters. Changes from expected benthic invertebrate 

communities may be the result of environmental stressors, including the presence of 

chemical constituents in surface water or sediment, increased sedimentation, or 
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hydrological changes. Consequently, they are often used as indicators of the quality 

associated within a given stream or river bottom (Courtney and Clements 2002; 

ARCADIS 2012).  

1.7 Previous Benthic Invertebrate Studies in the Emory River 

Post-spill investigations for benthic invertebrates conducted by TVA and 

collaborative researchers concluded that benthic invertebrates continue to be at 

moderate risk in the Emory River from ash-related constituents, primarily arsenic, in the 

residual ash-contaminated sediment (ARCADIS 2012; Carriker et al. 2015). A number of 

studies were conducted on benthic invertebrates in the Emory River in order to reach 

this conclusion of moderate risk; however, the results of the sediment toxicity tests were 

the driving line of evidence. Statistically significant reductions in growth and biomass in 

Hyalella azteca (p<0.05) and significantly decreased emergence and survival of 

Chironomus dilutus (p<0.05) were observed in sediment toxicity tests conducted with 

Emory River sediment in Spring 2011. The majority of these effects were sub-lethal, 

indicating that effects are not likely to be immediate or severe, but could result in impacts 

to the population over time (Stojak et al. 2015). This evidence was augmented by 

findings that showed ash-related metal concentrations were present in benthic 

invertebrate tissue, sediment, and porewater at concentrations potentially associated 

with adverse effects to benthic invertebrates. Benthic invertebrate tissue concentrations 

indicated that arsenic, and to some degree selenium, may be bioaccumulating in 

invertebrates such as Hexagenia sp., a burrowing mayfly commonly found in the Emory 

River (Smith et al. 2015; Conley et al. 2009). Sediment concentrations indicated that 

ash-related constituents may pose a low risk based on exceedances of conservative 

benchmarks. Similarly, porewater concentrations indicated that ash-related constituents 
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may also pose a low risk based on exceedances of ambient water quality criteria 

(ARCADIS 2012). 

Benthic invertebrate community survey results, however, did not support this 

conclusion. Prior to the ash release at KIF, benthic invertebrate communities were 

evaluated as part of TVA’s Valley-Wide Vital Signs Monitoring Program in 31 different 

reservoirs managed by TVA; however, of the three rivers impacted by the ash release, 

only the Tennessee River was monitored prior to the spill (Carriker 1999). No historical 

invertebrate data are available as a baseline comparison for the Emory and Clinch 

Rivers. Following the release in 2008, benthic invertebrates were collected in 2009, 

2010, and 2011 to evaluate potential impacts from ash and ash-related contaminants in 

the Emory, Clinch, and Tennessee Rivers. The surveys conducted in 2010 and 2011 

provided no substantive evidence that the community composition has been negatively 

impacted. Macroinvertebrate density and taxa richness in the immediate area of the ash 

release were similar to or even greater than other locations in the river system. These 

data did not indicate a trend of decreasing macroinvertebrate abundance or decreasing 

richness. Combined, these results showed no obvious patterns of persistent adverse 

impacts from the ash release and differences were associated with habitat variation. The 

community composition was strongly correlated with substrate type rather than 

ash-related constituents. Despite this contrary evidence, it is possible that over time 

reductions in growth and biomass could result in a measurable impact on reproduction 

or community structure (Buys et al. 2015). For this reason, risk management actions 

were recommended for the protection of the benthic invertebrate community (Carriker et 

al. 2015). 
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1.8 Objectives and Justification for Research 

Previous investigations conducted on benthic invertebrates in the Emory River 

have evaluated non-co-located benthic invertebrate community data and sediment data 

across a larger spatial scale; chronic and long-term sediment toxicity tests; 

bioaccumulation of ash-related constituents in invertebrate tissue; and ambient media 

concentrations. The sediment toxicity tests indicated toxicity to sensitive laboratory 

organisms when sediment concentrations had approximately 40% ash; however, single-

species toxicity tests often times overestimate or do not adequately reflect the effect of 

contaminants on natural communities in the field (Kiffney and Clements 1994). As a 

result, sediment toxicity tests are used in conjunction with other lines of evidence to 

evaluate a benthic invertebrate community. While areas remain in the Emory River with 

ash percentages at or above the 40% range, the benthic invertebrate community results 

showed no differences associated with the ash release in the impacted Emory River 

transects compared to the upstream Emory River reference transect (Buys et al. 2015). 

The previous evaluations of the benthic invertebrate community data and non-co-located 

sediment data provided an “area-wide” interpretation of the relationships between the 

benthic invertebrate community metric results to the ash release; however, given the 

discrepancy between the sediment toxicity test results and the benthic invertebrate 

community results additional evaluation is warranted.  

Spatial variability of individual benthic invertebrate organisms and communities is 

commonly studied in aquatic ecosystems. Understanding the natural variability that 

occurs in both substrate composition and benthic invertebrate communities at a site is 

critical before conclusions can be made on human disturbance (Gebler 2004). A 

previous study conducted by Boyero (2003) found that substrate composition had a 
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significant effect on benthic invertebrate abundance, richness, and evenness on a 

sample scale; however, these effects were not found to be significant when data were 

evaluated by larger segments or reaches. Similarly, Downes et al. (1993) found high 

variability in smaller stream segments was not represented when combining these areas 

into larger segments. As a result, the spatial scale at which evaluations are conducted 

are of particular interest.  

The purpose of this proposed research is to assess the differences in the benthic 

invertebrate community in the Emory River, 4 years following the ash spill. The 

objectives are to:  1) compare community metric results among samples, locations, and 

previous years, 2) compare community metric results to co-located sediment chemistry 

and physical sediment properties, and 3) determine if the geographic spatial scale of the 

evaluation influences the overall interpretation of the differences in community results. 

This information is important for the informed monitoring, remediation, and damage 

assessment of the benthic invertebrate community at the Kingston Ash Recovery site. 

This recovery is currently being monitored as part of TVA’s long-term monitoring 

program (Carriker et al. 2015). Results from this research could alter the understanding 

of the recovery of the benthic invertebrate community in the Emory River; as a result, 

changes in the sampling design and/or frequency of benthic invertebrate community 

collections in the long-term monitoring program may be warranted if relationships are 

established between community metrics and percent ash in sediment. This research will 

increase our knowledge of benthic invertebrate tolerance to metal mixtures in sediment 

of natural systems. While scientific literature is available for disturbances of stream 

benthic invertebrate communities, there are a limited number of studies for benthic 

invertebrate communities in large reservoir systems. Consequently, this research may 
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increase our knowledge of benthic invertebrate tolerance to metal mixtures in sediment if 

no relationships between community metrics and percent ash or ash-related 

contaminants are found. 

A number of hypotheses have been proposed from this research. Previous 

studies have indicated strong relationships between community relationships and 

sediment substrate type, which are expected to continue. In addition, given the natural 

sedimentation processes and river system recovery that is likely to continue, it is 

hypothesized that benthic community metrics from impacted areas will have higher 

numbers of organisms and more taxa diversity compared to previous years. Finally, 

given the results of the laboratory sediment toxicity testing which indicated toxicity to 

benthic invertebrates when sediments contained >40% ash, it is hypothesized that 

benthic community samples co-located with >40% ash in sediment will have reduced 

numbers of organisms, taxa diversity, and EPT taxa as well as a stronger percent of taxa 

tolerant to anthropogenic disturbance and pollution.  
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CHAPTER 2 
SPATIAL ANALYSIS OF BENTHIC INVERTEBRATE 

COMMUNITIES IN THE EMORY RIVER AFTER DREDGING, 
WATTS BAR RESERVOIR, ROANE COUNTY, TN 
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Abstract  

The release of fly ash at the TVA KIF on 22 December 2008 discharged 

approximately 4.1 million cubic meters of coal ash into the adjacent aquatic and 

terrestrial systems. Previous benthic invertebrate investigations conducted by TVA and 

collaborative researchers concluded that benthic invertebrates in the Emory River were 

at moderate risk from ash-related constituents, primarily arsenic, in ash-contaminated 

sediment that remained in the Emory River following extensive dredging efforts. These 

conclusions were based on the observation of statistically significant reductions in 

growth and biomass in toxicity tests with Emory River sediment. Benthic invertebrate 

community survey results from 2010, however, did not support this conclusion. These 

previous surveys evaluated benthic invertebrate community data and sediment data 

across a large spatial scale, providing an “area-wide” interpretation of the relationships 

between the benthic invertebrate community results to the ash release. In this study, co-

located sediment and benthic invertebrate community samples were collected over a 2-

year period from nine locations in the Emory River. Benthic invertebrate community 

metric results including taxa abundance, taxa richness, Shannon Diversity, and 

tolerance were compared among samples, locations, and years. These metrics were 

also evaluated with the co-located sediment chemistry and physical sediment properties. 

Despite this refined investigation, no trends or significant differences were identified 

between ash-impacted locations compared to the reference location. Furthermore, no 

significant relationships could be established between benthic invertebrate community 

metrics and sediment chemistry results. This information is important for the informed 

monitoring, remediation, and damage assessment of the benthic invertebrate community 

at the Kingston Ash Recovery site. This research also increases our knowledge of 

benthic invertebrate tolerance to metal mixtures in sediment of natural systems. 
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2.1 Introduction 

Previous research has demonstrated impacts to aquatic- and riparian-feeding 

organisms associated with releases of coal combustion residues (CCRs) into aquatic 

ecosystems (Cherry and Guthrie 1977; Rowe et al. 2002; Smith 2003; Ruhl et al. 2012). 

The release of CCRs into aquatic systems not only physically changes the habitat 

through sedimentation and turbidity, but may also chemically alter the ecological 

conditions by changing water pH and introducing high concentrations of contaminants 

(Rowe et al. 2002). Fly ash, one of the main components of CCRs, contains several 

trace elements (primarily arsenic, cadmium, copper, lead, nickel, selenium, strontium, 

and zinc) (Rivera et al. 2015). Uptake and bioaccumulation of these trace elements from 

surface waters, sediments, and prey items have resulted in various effects in aquatic- 

and riparian-feeding organisms. A comprehensive body of literature, including both field 

and laboratory studies, has documented these impacts to fish, amphibians, reptiles, and 

birds (Rowe et al. 2002; Rowe 2014). One laboratory study evaluating lake chubsuckers 

(Erimyzon sucetta) exposed to sediments with coal ash found significantly (p<0.001) 

higher body burden concentrations of selenium, strontium, and vanadium after four 

months of exposure (Hopkins et al. 2000). This exposure resulted in 25% mortality of the 

exposed fish during the study (Hopkins et al. 2000). Similarly, eggs of eastern narrow-

mouth toads (Gastrophryne carolinensis) collected near a coal-burning power plant 

contained elevated concentrations of selenium and strontium and were linked to reduced 

hatching success (by approximately 11%). Hopkins et al. (1999) also studied trace 

element concentrations in banded water snakes (Nerodia fasciata) near polluted coal 

combustion waste sites. Higher concentrations of arsenic and selenium in snakes from 

the polluted study site were found compared to those captured in reference locations, 
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which was attributed to ingestion of contaminated dietary items of the snake (Hopkins et 

al. 1999).  Beck et al. (2013) and Walls et al. (2015) found that colonies of tree swallows 

(Tachycineta bicolor) nesting near the TVA Kingston ash release were exposed to higher 

concentrations of ash-related elements such as selenium in their diet, resulting in higher 

concentrations of these elements in tree swallow egg tissues.  

Perhaps one of the most studied groups of organisms exposed to CCR releases 

are benthic invertebrates. These organisms are in direct contact with the sediment and 

often have the highest potential for exposure to contaminants. Benthic invertebrates can 

accumulate ash-related metals within their tissues, leading to body burdens which can 

be a source of contaminants for higher level trophic feeding wildlife (Goodyear and 

McNeill 1999, Cherry and Guthrie 1977, Maret et al. 2003; Rowe et al. 2002). A study of 

heavy metals accumulation from coal ash found concentrations of barium, copper, 

manganese, mercury, and zinc in invertebrate tissue from within a coal ash basin 

(Guthrie and Cherry 1979). Similarly, Conley et al. (2009) found that elevated exposure 

to selenium reduced fecundity and also caused a reduction in adult body mass. While 

the dynamics of metal pollution to benthic invertebrate communities have been studied 

for decades, long-term, multi-generational effects of exposure to heavy metals on 

benthic community structure are still highly uncertain. 

Initial evaluations of the benthic invertebrate community in the Emory River 

suggested potential short-term impacts, but noted that the community quickly recovered 

after the majority of ash was removed from the river system (Buys et al. 2015). However, 

Buys et al. (2015) noted few to no measurable impacts on the benthic community related 

to the ash. The majority of these findings were based on a similarity analysis conducted 

across large stretches of the Emory River. The purpose of the present investigation is to 
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provide a more comprehensive assessment of benthic invertebrate community 

responses to ash and metals in the Emory River using co-located sediment samples and 

benthic invertebrate community samples. This investigation began approximately 

8 months after a substantial dredging effort of released ash was completed.  

2.2 Materials and Methods 

2.2.1 Study Site 

An unprecedented release of coal ash (4.1 million m3) from the TVA KIF occurred 

on 22 December 2008 in Watts Bar Reservoir in Roane County, Tennessee (Figure 3). 

Following the release, TVA used hydraulic and mechanical dredges to remove mass 

amounts of ash from sediments in large segments of the Emory River (Figure 4). The 

released ash contains trace amounts of heavy metals that naturally occur in the coal and 

remain after the combustion process. Following more than 1 year of dredging, 

approximately 300,000 m3 of ash were estimated to remain in the Emory River between 

ERM 0.0 and ERM 6.0 (Jacobs 2012). The current study evaluated samples collected 

approximately 8 months and 18 months after dredging was completed. 

2.2.2 Sample Collection 

Co-located benthic invertebrate community samples and sediment were collected 

in January 2012 (Period 4) and December 2012 (Period 5) from nine locations in the 

Emory River (Figure 3). These collection months were selected to coincide with previous 

years of monitoring, which typically occur in the late fall or early winter. One reference 

location (ERM 6.0) with no recordable ash deposition and eight impacted locations (ERM 

5.0, 4.1, 3.5, 3.0, 2.6, 2.2, 1.0, and 0.7) with varying amounts of ash deposition were 

sampled. Ten samples, evenly spaced across the width of the channel, were collected at 

each of the nine locations during both periods of collection. Each sample consisted of a 
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benthic invertebrate community survey and a co-located submerged sediment sample, 

both of which were individually collected using a Ponar dredge (0.05 m2). Benthic 

invertebrate community survey samples were rinsed through a 0.6 mm mesh screen. 

The remaining contents were placed into a container (the size and number of containers 

depended on the amount of material; containers include 0.5 and 1 liter glass jars) and 

preserved in a 10% formalin solution. Samples were sorted at Pennington and 

Associates, Inc. Laboratory, where they were preserved in 85% ethanol and identified to 

the lowest taxon possible. Each co-located submerged sediment sample was collected 

and homogenized, removing twigs and other large debris. All submerged sediment 

samples were analyzed for percent ash using Polarized Light Microscopy. At each 

transect, a minimum of three sediment samples were randomly selected and analyzed 

for metals using inductively coupled plasma mass spectrometry (ICP-MS) (23 analytes 

including:  aluminum, antimony, arsenic, barium, beryllium, boron, cadmium, chromium, 

cobalt, copper, iron, potassium, mercury, manganese, molybdenum, nickel, selenium, 

lead, silver, strontium, thallium, vanadium, and zinc). All sediment samples were 

analyzed for sediment grain size and total organic carbon. The grain size analysis 

classified substrates as ash, silt, sand, clay, or gravel.  

2.2.3 Benthic Invertebrate Metric Calculations 

Data from benthic invertebrate community surveys were analyzed using a series 

of metrics to evaluate abundance, richness, diversity, and tolerance of organisms in the 

Emory River community. All metrics were calculated for each sample from all nine 

locations for both periods of study. Specific metrics included: 1) number of total taxa 

(abundance); 2) number of distinct taxa (richness); 3) Shannon Diversity; and 4) NCBI to 

evaluate organism tolerance. Abundance metrics may include counts of all organisms, 
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relative abundance of various taxonomic groups (e.g., orders, families, etc.), and others. 

These metrics provide information about the identity of organisms within a community 

and also help to recognize ecological patterns or specific environmental conditions 

present (Barbour et al. 1995). Abundance metrics may increase or decrease depending 

on the environmental stressor. Richness metrics describe the number of different or 

distinct taxa in a community. Generally, the number of taxa decreases as water quality 

declines (Merritt et al. 2008). Shannon Diversity accounts for abundance and evenness 

of the species present, and was calculated using the following equation, where i is the 

proportion of species relative to the total number of species (pi). The resulting product is 

summed across species and multiplied by -1 (Peet 1975).  

Shannon Diversity = - ∑ pilnpi 

NCBI includes tolerance scores for taxa, such as species, genus, and family, 

from the North Carolina Department of Environment and Natural Resources (TDEC 

2011). If a North Carolina tolerance score has not been assigned for a taxon, values 

from USEPA’s Rapid Bioassessment protocols were substituted in the following order: 

Southeast, Midwest, Upper Midwest, Mid-Atlantic, and Northwest. If no genus level 

tolerance values are available from any of these sources, the family level tolerance value 

from North Carolina was substituted. Organisms with no tolerance value were excluded 

from this metric. The following equation was used to calculate NCBI (TDEC 2011), 

where xi is the number of individuals within a taxon, ti is the tolerance value of a taxon, 

and N is the total number of individuals in the subsample that have been assigned a 

tolerance value:  

NCBI = ∑ xi ti 
                N 
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2.2.4 Statistical Analysis 

For all benthic invertebrate community metrics, metals, and substrate types with 

normal or lognormal distribution, two-way analysis of variance tests were conducted for 

similar locations (e.g., sites identified as sampled in both January and December), 

evaluating period or year, location, and the interaction of year and location using 

parametric tests (using SAS, v. 9.4). Means were separated with Tukey-Kramer at 5% 

significance level. The data for each of these variables were tested for normality and 

homogeneity of variance to ensure a parametric test was appropriate.  

To evaluate whether constituents were related to reductions in benthic 

invertebrate community metrics, concentrations of metals in sediment, percent ash, 

sediment grain size, percent dredgefull, and water depth were correlated with community 

metrics measures (total abundance, total richness, NCBI, and Shannon Diversity) using 

Spearman (rank correlation) coefficients. 

Variable selection modeling was also conducted prior to running multiple 

regression analyses to determine if potential relationships exist between each benthic 

invertebrate community metrics and physical and chemical sediment data. The goal of 

variable selection modeling was to identify important sediment variables that can predict 

patterns in benthic invertebrate community structure. Concentrations of 22 ash-related 

metals (aluminum, antimony, arsenic, barium, beryllium, boron, cadmium, chromium, 

cobalt, copper, iron, lead, manganese, mercury, molybdenum, nickel, selenium, silver, 

strontium, thallium, vanadium, and zinc) and percent ash were included in the variable 

selection model, along with the sediment grain size and water depth. Metals detected in 

less than 25% of the samples (antimony, boron, molybdenum, selenium, silver, and 

thallium) were excluded from the analysis. Also, multicollinearity and non-significant 
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variables were removed. Following the variable selection modeling, a multiple regression 

analysis was conducted to see if the selected variables could predict benthic 

invertebrate community metrics, such as total abundance or richness.  

2.3 Results 

A spatial analysis of benthic invertebrate community metrics, chemical 

concentrations, and substrate composition are discussed in the subsections below. 

Relationships between these components and their ability to make future predictions of 

the benthic invertebrate community are also presented.  

2.3.1 Benthic Invertebrate Community Metrics 

Benthic invertebrate community metrics are summarized below. A total of 180 

samples with 17,404 organisms, representing five phyla, eight classes, 19 orders, and 

42 families, were collected during the 2 years of study (Table 1). Included in Insecta 

were the following number of distinct families: five Diptera, five Ephemeroptera, three 

Plecoptera, three Tricoptera, two Coleoptera, two Odonata, and one Megaloptera. The 

five most common and abundant taxa across all locations during both years included 

Tubificidae, Chironomus sp., Musculium transversum, Chaoborus punctipennis, and 

Procladius sp. 

The benthic invertebrate community composition for each transect is presented 

in Figure 5. Total abundance of organisms collected was not significantly different 

(p>0.05) among locations or between periods (Figure 6,). The average total abundance 

of organisms collected from ash-impacted locations with ash ranged from 41 to 158 

organisms, while the average total abundance from the reference location (ERM 6.0) 

was 42 and 125 organisms (Table 2). The highest number of organisms collected in a 

single sample was 324 from ERM 2.2 during Period 5, and the lowest number of 
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organisms collected was four from ERM 3.5 and ERM 5.0 during Period 4. Similarly, the 

total number of distinct taxa (richness) was not significantly different (p>0.05) among 

locations or between periods (Figure 7). The total richness of organisms collected from 

locations with ash ranged from seven to 17 distinct taxa, while the average reference 

richness numbers were eight and nine. The highest and lowest numbers of distinct taxa 

were both recorded in Period 4, with the highest at ERM 1.0 (30) and the lowest at the 

reference ERM 6.0 (1). Shannon Diversity was not significantly different (p>0.05) among 

locations or between periods. Average diversity scores in ash impacted locations were 

similar, ranging from 1.3 to 2.2, compared to the reference location, which ranged from 

1.4 to 1.5 (Figure 8). Similarly, NCBI values were not significantly different among 

locations (p>0.05) but were different between periods. Higher tolerance scores were 

recorded in Period 5 compared to Period 4 (p<0.05), indicating that more sensitive 

species were observed closer to the end of dredging (during Period 4) than after more 

time had passed (Figure 9). When specific locations and periods were evaluated, 

however, these differences were limited to NCBI scores from Period 4 at ERM 1.0 and 

ERM 3.5 (NCBI score of 7.0 and 6.6, respectively) compared to the reference in Period 5 

(NCBI score of 8.8). 

2.3.2 Chemical Analysis 

Of the 23 metals analyzed in sediment samples, only eight constituents (arsenic, 

barium, beryllium, boron, chromium, selenium, strontium, and vanadium) were 

previously associated with benthic invertebrate measurement endpoints in sediment 

toxicity tests for the Emory River (Stojak et al. 2015). As a result, only these eight 

constituents are discussed within this evaluation (Table 3, Figure 10A through 10F). No 

significant differences (p>0.05) among location or between period of study were 
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identified for boron or selenium. Arsenic (p<0.05), barium (p<0.05), beryllium (p<0.05), 

and strontium (p<0.05) concentrations were significantly different among locations but 

did not differ between periods of study. Mean arsenic concentrations were significantly 

(p<0.05) higher at ERM 0.7, ERM 1.0, ERM 2.2, and ERM 3.0 compared to the 

reference locations (Figure 10A). Mean arsenic concentrations were at least four times 

higher at ash-impacted locations (16.6 to 29.8 milligrams per kilogram (mg/kg)) 

compared to the reference location (3.7 mg/kg). Mean barium concentrations were 

higher at ERM 0.7 compared to the reference location and two of the upstream impacted 

locations (ERM 4.1 and ERM 5.0). The mean barium concentration at ERM 0.7 was 

more than twice that of the reference location with a concentration of 148.6 mg/kg 

compared to 67.8 mg/kg, respectively (Figure 10B). No location-specific significant 

differences (p>0.05) were identified for beryllium concentrations (Figure 10C); however, 

mean concentrations at the impacted locations (0.8 to 1.5 mg/kg) were higher than those 

means recorded at the reference location (0.6 mg/kg). Mean strontium concentrations 

were significantly (p<0.05) higher at ERM 0.7, ERM 1.0, ERM 2.2, and ERM 3.0 

compared to the reference locations (Figure 10D). Mean strontium concentrations from 

these impacted locations ranged from 48.5 to 93.8 mg/kg compared to 10.9 mg/kg at the 

reference location. 

Mean concentrations of chromium were significantly different by location (p<0.05) 

and period of study (p<0.05). Chromium concentrations during Period 5 were found to 

be significantly (p<0.05) higher compared to Period 4 (Figure 10E). This difference 

appears to be driven by mean chromium concentrations at ERM 3.0, ERM 3.5, and 

ERM 4.1. Mean concentrations of vanadium also differed by location (p<0.05) and 

period of study (p<0.05). Mean vanadium concentrations were higher at ERM 0.7, 
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ERM 1.0, ERM 2.2, ERM 2.6, and ERM 3.0 compared to the furthest upstream impacted 

location ERM 5.0 (p<0.05), but were similar to the reference location (p>0.05). Mean 

vanadium concentrations from these impacted locations ranged from 27.6 to 34.5 mg/kg 

compared to 12.0 mg/kg at ERM 5.0 (Figure 10F). Vanadium concentrations were also 

higher during Period 5 compared to Period 4 (p<0.05), which was likely driven by mean 

vanadium concentrations at ERM 3.0, ERM 3.5, and ERM 4.1. 

2.3.3 Substrate Composition 

Average substrate compositions in Period 4 and Period 5 are depicted in 

Figure 11 (A and B, respectively). Silt and sand dominated the substrates at all of the 

locations, accounting for 80 to 95% of the sediments. Mean percentages of silt and sand 

were significantly different among locations (p<0.05) but did not differ between periods 

of study (p>0.05). Silt was more prevalent at ERM 0.7, ERM 1.0, and ERM 2.6 

compared to the reference location. On the contrary, sand was more prevalent at the 

reference compared to ERM 2.6. Measurements of percent ash in the substrates were 

also significantly different among locations (p<0.05), with higher concentrations of ash at 

ERM 0.7, ERM 1.0, ERM 2.2, ERM 2.6, ERM 3.0, and ERM 3.5 compared to the 

reference location (Figure 11). Percent of ash from these impacted locations ranged 

from 19 to 30%, compared to no observable ash in the reference location. Percent ash 

also differed by period of study (p=0.001), with higher percentages of ash observed in 

Period 5 compared to Period 4. No significant differences (p<0.05) among locations or 

between period of study were identified for clay or gravel. Clay accounted for roughly 

10 to 20% of the substrates in most of the locations, while gravel typically accounted for 

less than 5%. 
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2.3.4 Relationships between Community Metrics and Sediment 

Each of the benthic invertebrate community metrics were significantly correlated 

(Spearman rank) with ash-related metals, sediment grain size, percent dredgefull, and/or 

water depth. Specifically, the total abundance was moderately correlated to the percent 

dredgefull (r = 0.62, p<0.05). Total richness was correlated moderately but negatively to 

water depth (r = -0.60, p<0.05). NCBI scores were moderately correlated to manganese, 

gravel, and water depth (r = 0.40, r = 0.52, and r = 0.61, p<0.05). NCBI was also 

moderately but weakly correlated with silt (r = -0.41, p<0.05). Shannon Diversity was 

moderately but negatively correlated with barium, manganese, gravel, and water depth 

(r = -0.35, r = -0.42, r = - 0.46, and r = -0.39, p<0.05). Notably, no combination of 

ash-related constituents was negatively correlated with total abundance or total richness, 

which supports the lack of differences between location metrics.  

Despite the correlations identified above, results of the variable selection 

modeling indicated that no one sediment variable or set of sediment variables (including 

17 ash-related metals, percent ash, water depth, percent dredge full, and sediment grain 

size) could predict total abundance, total richness, NCBI, or Shannon Diversity in Emory 

River samples.   

2.4 Discussion 

Initial predictions of long-term impacts to the benthic invertebrate community and 

subsequent effects to the aquatic ecosystem were catastrophic (Lisenby et al. 2009; 

Chattanooga Times Free Press, Emory River at ‘tipping point’, May 19, 2009). However, 

the results of this investigation do not support those claims. A review of previous studies 

evaluating exposure of benthic invertebrate communities to CCRs also contradicts the 

findings of the current study. Specht et al. (1984), Cherry et al. (1979), Harper and 
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Peckarsky (2005), and Smith (2003) each reported initial impacts to benthic invertebrate 

communities with reduced richness and abundance measures. In each of these studies, 

abundance and richness metrics improved within several months to 2 years after the 

majority of the coal combustion source material was removed from each aquatic system. 

In this study, spatial differences were expected due to the difference in the amount of 

residual ash and ash-related metals at each location and the effects that dredging the 

river bottom likely had to the benthic invertebrate community at several of the transects 

(Figure 4). While spatial differences were observed in percent ash, arsenic, barium, 

strontium, and vanadium, with higher concentrations at locations closest to the initial 

release, these differences did not lead to measureable variances in the abundance of 

benthic organisms or in the number of distinct taxa, diversity, or tolerance of collected 

individuals.  

The rapid recovery or overall lack of impact of invertebrate assemblages in the 

Emory River locations suggests that 1) the benthic invertebrate community in the Emory 

River pre-release was comprised of highly tolerant organisms, 2) abundant upstream 

sources of recolonizing organisms populated the impacted portions of the river, or 3) the 

ash provided a similar silty substrate that was previously present in much of the 

impacted river reach.  

A review of literature has indicated that aquatic systems most likely to recover 

following a disturbance are those systems with more irregular and unpredictable water 

flows with either periods of low or no water to frequent flooding (Mackay 1992; Poff and 

Ward 1990). Mackay (1992) stated that lotic invertebrate communities that experience 

more frequent disturbance are likely to be more resilient to environmental disturbances. 

The Emory River typically flows at 700 to 1,300 cubic feet per second (cfs) but is also 
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subject to flash flooding during storm events with 110,000 cfs marking a 10-year flood. 

During the main period of dredging following the TVA Kingston ash release, from 

May 2009 to May 2010, the river experienced four storm events with flows between 

50,000 and 70,000 cfs (Jacobs 2012). These reoccurring high flow rates still cause 

channel scouring, transport, and deposition of sediments from the narrow sections of the 

river to the wider sections of the river (Scott 2014).  

Given the fluctuation of water flow, the invertebrate community in the Emory 

River may have been accustomed to unstable substrate conditions prior to the ash 

release. Furthermore, the benthic invertebrates found in the Emory River were also likely 

adapted to reservoir conditions, including softer substrates and low dissolved oxygen 

(Baker 2006). During Periods 4 and 5, the Emory River benthic invertebrate community 

was dominated by chironomids and oligochaete taxa. Pre-release benthic invertebrate 

community data are not available for the Emory River; however, assemblage data 

collected in similar “run-of-the-river” reservoirs monitored by TVA (including Kentucky, 

Pickwick, Wheeler, Guntersville, Chickamauga, and Fort Loudoun reservoirs) were 

reviewed. Benthic invertebrate community surveys conducted in these reservoirs found 

similar dominant taxa compared to those collected in the Emory River, including 

predominately chironomid and oligochaete taxa. Previous literature has documented the 

tolerance of chironomids and oligochaetes to various forms of environmental 

disturbances and pollution (Mousavi et al. 2003; Waterhouse and Farrell 1985; Lenat 

1983; Beck 1977). The abundance of these taxa may have subdued some initial impacts 

of the ash release. Furthermore, the total abundance (reported as density [number of 

organisms/m2) was almost twice as high in impacted Emory River transects compared to 

other reservoirs, with 1,700.73 number/m2 compared to 963.8 number/m2. Total taxa 
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richness was similar, with an average of 13.6 distinct taxa collected per transect in 

similar reservoirs compared to 12.6 taxa collected in the ash impacted Emory River 

locations (unpublished data; T. Baker, personal communication, September 25, 2013).  

Following the 2008 release and subsequent year of dredging, the disturbed 

stretches of the Emory River would likely have provided unoccupied habitat that could be 

quickly recolonized from unimpacted sources. Previous studies have indicated that 

following a localized disruption of the community, even one that is severe, stream 

invertebrates will begin to populate the substrate as soon as shelter and food become 

available (Mackay 1992). Drift, swimming, crawling, and flight are the primary methods 

of redistribution of benthic invertebrates in streams (Williams and Hynes 1976; Minshall 

and Petersen 1985). While some benthic species are extremely mobile and may have 

crawled from side channels or neighboring drainages that were not impacted by the ash, 

the dominant taxa found in the Emory River following the spill (i.e., chironomids and 

oligochaetes) are typically sedentary; as a result, these organisms likely drifted into the 

impacted areas. Chironomids and oligochaetes are commonly associated with drifting as 

a means of redistribution and also possess other characteristics that make them early 

colonizers, including their small body size, high rate of reproduction and short life span 

(Oliver 1971; Kennedy 1966). Smith (2003) noted that benthic communities were 

dominated by common, tolerant taxa during the first 2 years of sampling following the 

ash release. These taxa included chironomids, hydropsychid caddisflies, and Baetis 

mayflies, all of which have been known to tolerate moderately disturbed conditions. 

However, several taxa associated with good water quality were collected roughly 5 years 

after ash discharges to the McCoy Branch watershed had ceased. Furthermore, the 
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frequent high flows commonly occurring on the Emory River also encourage drift of 

invertebrates. 

Finally, the released ash, which is comprised primarily of silica particles, provided 

a silty substrate that was likely similar to the substrate in the Emory River prior to the ash 

release. Benthic invertebrate community abundance and diversity are closely related to 

substrate diversity (Henley et al. 2000). Baker (2011) described the pre-released 

substrate in the Emory River between ERM 0.0 and ERM 6.0 as predominately fines (silt 

and clay) or a mix of fines, sand, and detritus. Fly ash has a spherical shape, unlike the 

irregular particle shapes found in quartz-based sediments, and also has a lower particle 

density than in native sediments. Given these properties, fly ash consolidates and 

compacts when allowed to settle, much like sedimentation processes of fine sediment 

(Rivera et al. 2015).  

Given this similarity and the dominance of silty substrate in the Emory River, the 

released ash likely did not result in the same degree of habitat alteration as would have 

occurred if ash was released into a stream or river with predominately cobble or bolder 

substrate. In a system with large cobble, the ash would have filled all of the interstitial 

space, reducing habitat availability and increasing the instability of substrate (Henley et 

al. 2000). Smith (2003) related the effects of released ash to that of conditions caused 

by sedimentation or siltation, which are typically associated with negatively affecting the 

ability of invertebrates to breathe and gather food. Similarly, Cherry et al. (1979) 

determined turbidity and the associated smothering effects of coal ash passing through 

the aquatic system to be the leading factors in eliminating or reducing populations of 

even the most tolerant aquatic taxa. However, the substrate in this portion of the Emory 

River was predominantly silty, with little to no stable substrate.  
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While the released ash would have initially smothered the benthic invertebrates 

inhabiting the sediment, it likely did not significantly alter the type of habitat available for 

these organisms to colonize. Harper and Peckarsky (2005) stated that the longest 

recovery times are generally associated with stressors leading to long-term alterations in 

physical stream habitat. Where sedimentation is actively occurring and substrates are 

predominately soft and silty, sediment-intolerant taxa become increasing displaced by 

sediment-tolerant taxa (Relyea et al. 2000). Moderate additions of sediment provide 

conditions that are tolerated by highly mobile taxa and taxa that are specifically adapted 

for living in deposited sediments, such as oligochaeta and some Chironomidae (Mackay 

1992, Wiederholm 1984). Consequently, the benthic community that existed in the 

vicinity of the TVA Kingston facility had already adapted to reservoir conditions and was 

likely predominately composed of organisms that tolerated or preferred soft substrates 

and hence were less sensitive to this sedimentation-like release. 

2.5 Summary 

In the case study presented here, co-located benthic invertebrate community 

samples and submerged sediment samples were collected in order to identify 

relationships between community metrics and ash-related variables. These relationships 

would then be used to predict community results in future evaluations. Contrary to 

previous literature, benthic invertebrate community results of this spatial evaluation could 

not be tied to ash-related variables, such as percent ash or ash-related metals 

concentrations. Some hypotheses were made to explain this occurrence, including a 

pre-release benthic invertebrate community that was highly tolerant of environmental 

disturbance (i.e., flooding), abundant upstream sources of recolonizing organisms that 

could quickly fill the newly dredged or smothered habitat, and ash providing a similar 
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substrate that was previously present in much of the impacted river reach. The results 

from Periods 4 and 5 found the benthic invertebrate community dominated by 

oligochaetes and chironomid taxa. While pre-release data are not available for this 

section of the Emory River, data collected from other similar locations were also 

dominated by chironomid and oligochaete taxa. These organisms prefer soft, silty 

substrates and are often distributed through drift mechanisms. They can also be highly 

tolerant to environmental stressors. Given the known substrate types prior to the 2008 

release, it is likely that the lack of differences in the community richness, tolerance, and 

diversity are due largely in part to the tolerance and adaptability of the Emory River 

organisms that were historically occurring in this reservoir system.   
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CHAPTER 3 
TEMPORAL RESPONSES OF BENTHIC INVERTEBRATE 

COMMUNITIES IN THE EMORY RIVER IMPACTED BY COAL FLY 
ASH OVER FIVE YEARS, WATTS BAR RESERVOIR, 

ROANE COUNTY, TN 

  



 
 
 
 

41 
 

Abstract 

The release of fly ash at the TVA KIF on 22 December 2008 discharged 

approximately 4.1 million m3 of coal ash into the adjacent aquatic and terrestrial 

systems. Previous benthic invertebrate investigations conducted by TVA and 

collaborative researchers concluded that benthic invertebrates in the Emory River were 

at moderate risk from ash-related constituents, primarily arsenic, in ash-contaminated 

sediment that remained in the Emory River following extensive dredging efforts. These 

conclusions were based on the observation of statistically significant reductions in 

growth and biomass in toxicity tests with Emory River sediment. Benthic invertebrate 

community survey results from 2010, however, did not support this conclusion. These 

previous surveys evaluated benthic invertebrate community data 1 year after dredging in 

the Emory River was complete. In this study, benthic invertebrate community metric 

results including taxa abundance, taxa richness, EPT richness, Shannon Diversity, 

tolerance, feeding guilds, and organism habits were compared over a 5-year period of 

study at one ash-impacted location and one reference location. Despite this long-term 

investigation, no trends indicating benthic invertebrate community recovery were noted 

over time. In addition, no significant differences were identified between the ash-

impacted location compared to the reference location. This information is important for 

the informed monitoring, remediation, and damage assessment of the benthic 

invertebrate community at the Kingston Ash Recovery site. This research also increases 

our knowledge of benthic invertebrate tolerance to environmental disturbances in 

sediment of natural systems. 



 
 
 
 

42 
 

3.1 Introduction 

Biomonitoring of benthic invertebrates in stream systems is commonly used to 

assess degradation of water and sediment quality caused by various environmental 

stressors, ranging from land development to chemical pollution (Goodyear and McNeill 

1999; Maret et al. 2003). Benthic invertebrates are relatively sedentary and are closely 

linked with the sediments; as a result, this diverse group of organisms is fairly 

representative of local surface water and sediment conditions. Determining the reasons 

for community characteristic differences or changes among benthic invertebrates, 

however, is difficult given the number of factors influencing these organisms. Some 

benthic invertebrate species are associated with specific substrate type, water depth, 

water flow, and the amount of oxygen available. Likewise, benthic invertebrate 

community structures can be strongly influenced by the physical habitat (Jones et al. 

1999; Jahnig and Lorenz 2008; Lepori et al. 2005; Boyero 2003). As a result, differences 

in community characteristics may occur naturally throughout water systems. Changes in 

community characteristics may also be due to species-specific differences in sensitivity 

to various environmental stressors, as individual benthic invertebrate taxa exhibit a 

range of sensitivities to pollutants.  

Previous research has shown that some species of caddisflies, chironomids, and 

oligochaetes are relatively tolerant to metal concentrations, and others, such as 

mayflies, show a higher sensitivity to metals (Kiffney and Clements 1994; Cain et al. 

2004; Courtney and Clements 2002). Individual taxa sensitivities may result in reduced 

abundance and species diversity, or ultimately lead to local elimination of some sensitive 

species (Courtney and Clements 2002; Cain et al. 2004; Clements 1994). The 

mechanisms explaining metals toxicity and tolerance to individual species are generally 
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understood. However, their expression in community-level effects is not well 

documented, and identifying exact cause and effect relationships between pollutants and 

changes in benthic invertebrate community compositions remains unclear (Clements et 

al. 1988; Clements 1999). 

Over the past decade, trace metals and other constituents found in CCRs are 

environmental stressors that have caused increasing concern, particularly following the 

TVA Kingston ash release in 2008. CCRs include various solid materials that are 

produced as by-products during the coal-burning process at coal-fired electric power 

plants. These by-products include fly ash, bottom ash, boiler slag, flue gas 

desulfurization residues, and fluidized bed combustion wastes (Mayfield et al. 2013). 

Approximately 118 million metric tons of coal ash are produced in the United States 

each year. The majority of this waste is stored onsite at the facility in wet impoundments, 

such as surface impoundments (i.e., ash ponds or lagoons), or in dry landfills. These 

types of storage methods present potential risk to ecological resources, as coal ash 

contains trace amounts of heavy metals, such as arsenic, copper, mercury, nickel, 

selenium, and zinc (Gieré et al. 2003; Tishmack and Burns 2004; Rowe et al. 2002). 

While these metals occur naturally in coal, ash stored in both wet and dry facilities is 

subject to leaching and seeping of these contaminants from the impoundments or 

landfills into groundwater, aquifers, or nearby water systems (Lemly 2010; Lemly and 

Skorupa 2012). The USEPA has recently proposed new regulations for the disposal of 

CCRs that will potentially change the current rules for surface water impoundments 

(USEPA 2010).   

Previous studies of CCR impacts on benthic invertebrate communities have 

focused on releases of ash or ash by-products into small streams and tributaries or into 
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closed systems (Smith 2003; Harper and Peckarsky 2005; Cairns et al. 1970; Specht 

et al. 1984; Cherry et al. 1979). Each of these studies identified initial impacts to the 

benthic invertebrate communities to some degree but recovery was typically noted within 

a relatively short period of time (2 to 5 years). A benthic invertebrate community study 

conducted after the TVA Kingston Ash Recovery Project, however, did not follow these 

same trends. Buys et al. (2015) found no discernable impacts to the benthic invertebrate 

community in the Emory River, despite the unprecedented release of approximately 

4.1 million m3 of coal ash released from a TVA containment cell into the Emory River in 

December 2008. Because some sections of the river were not accessible immediately 

following the release, the findings were based on data collected 2 years post-release, 

after large sections of the Emory River had been mechanically and hydraulically dredged 

to remove ash from the riverbed (Buys et al. 2015). Benthic invertebrate communities 

are closely linked to the substrates in which they occur; consequently, the physical 

changes to the riverbed from dredging, in addition to the time delay in the evaluation, 

may have masked ash-related impacts in the benthic invertebrate community in the 

Emory River.  

The purpose of the present investigation is to provide a comprehensive temporal 

assessment of changes in the benthic invertebrate community to ash and ash-related 

metals in an un-dredged portion of the Emory River. Total abundance of taxa, taxa 

richness, and other community metrics were used to compare 5 years of study, 

beginning immediately after the ash release, to determine if any trends or patterns of 

benthic community degradation or subsequent recovery could be detected. It was 

hypothesized that taxa abundance, richness, and diversity would be lowest immediately 

following the release at the downstream study site and would gradually increase as 
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mixing and capping of the ash by native sediments occurred through natural attenuation, 

returning the sediment to pre-release conditions. 

3.2 Materials and Methods 

3.2.1 Study Site 

Field studies were conducted at two locations in the Emory River, in Watts Bar 

Reservoir, Roane County, Tennessee (Figure 12), one upstream and one downstream 

of the initial release of coal fly ash. The ash was discharged into the Emory River near 

ERM 2.2 when a containment wall failed. The force and volume of released ash, along 

with subsequent storms, pushed the ash upstream almost 5 km and downstream more 

than 32 km into lower parts of the Emory River as well as into the Clinch and Tennessee 

Rivers. The first collections of benthic invertebrate communities began in January 2009 

(Period 1), and continued in December 2009 (Period 2), January 2010 (Period 3), 

December 2011 to January 2012 (Period 4), and November to December 2012 

(Period 5).  

An upstream location at ERM 6.0 was selected as a reference site, as it was the 

closest area to the spill (approximately 5.6 km upstream) that did not have fly ash in the 

substrate (Figure 12). Water depths at ERM 6.0 range from 2.1 to 10.7 m; however, the 

main channel encompasses the majority of the channel width. Specific water quality 

parameters for ERM 6.0 are shown in Table 4. The substrate is dominated by silt, sand, 

and detritus (Table 5). A downstream location at ERM 1.0 was also sampled. Since the 

time of the release, ERM 1.0 is the only impacted benthic invertebrate sampling location 

in the Emory River that has been monitored annually but was not dredged during the 

spill clean-up. Despite the large volume of ash deposited in this area, ERM 1.0 was 

excluded from dredging because of historical sediment contamination of cesium-147 
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from the USDOE facilities on the Oak Ridge Reservation (ARCADIS 2012). 

Consequently, ERM 1.0 is the only location sampled on the Emory River that was 

determined to have large deposits of ash but that incurred no physical change to the 

riverbed from dredging (Figure 2). ERM 1.0 is approximately 2.4 km downstream of the 

initial ash release. Five years after the release, 129,000 m3 of ash (of the 4.1 million m3 

ash) were estimated to remain in the lower section of the Emory River, between 

ERM 1.8 to ERM 0.0. Water depths at ERM 1.0 range from 2.4 to 9.1 m. Water quality 

parameters for ERM 1.0 are also shown in Table 4. After the release, ERM 1.0 

substrates were dominated by silt, ash, and detritus (Table 5).   

3.2.2 Sample Collection 

Benthic invertebrate community samples were collected following the TVA 

Reservoir Vital Signs Monitoring Program methodology, which was established in 1990 

to evaluate reservoirs and their tributaries (Kerans and Karr 1994). At each location, a 

line-of-site transect was established across the river channel. Ten samples, evenly 

spaced across the width of the channel, were collected at each location during each 

period of study. Benthic invertebrate community surveys were collected using a Ponar 

dredge (0.05 m2). Water depth and dominant substrate composition were recorded for 

each collection. Samples were rinsed through a 0.6 mm mesh screen. The remaining 

contents were placed into a container (the size and number of containers depended on 

the amount of material; containers include 0.5 and 1 liter glass jars) and the remaining 

contents were preserved in a 10% formalin solution. Samples were then sorted at 

Pennington and Associates, Inc. Laboratory, where they were preserved in 85% ethanol 

and identified to the lowest taxon possible.  
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3.2.3 Benthic Invertebrate Metric Calculations 

Metrics are commonly used by USEPA (1999; 2006) and TDEC (2011) to 

quantify characteristics of benthic invertebrate community structure and function. The 

benthic invertebrate community metrics selected for this study were based on metrics 

used in Tennessee’s Quality System Standard Operating Procedure for 

Macroinvertebrate Stream Surveys (TDEC 2011), TVA’s Vital Signs Monitoring Program 

for reservoirs (Baker 2006), and other scientific literature (Kerans et al. 1992). The 

metrics presented in this evaluation included: 1) number of total taxa (abundance); 

2) number of distinct taxa (richness); 3) number of distinct EPT taxa; 4) NCBI; and 

5) Shannon Diversity. Together, these selected metrics describe the abundance and 

diversity of the taxa present, as well as consider the occurrence of sensitive and tolerant 

species.  

Metrics often change in predictable ways with increased levels of anthropogenic 

influences or disturbances (Barbour et al. 1995). The total number of taxa or total 

abundance, the total number of distinct taxa or total richness, and the total number of 

distinct EPT taxa are typically expected to decrease in response to disturbances to 

benthic invertebrate communities (Kerans and Karr 1994). For consistency with past 

evaluations of the Emory River benthic invertebrate communities, taxa of Copepoda, 

Collembola, Daphnids, Ostracoda, and Hydrozoa were not included in the benthic 

community metric calculations. In addition, some specimens could only be identified at 

high taxonomic levels (i.e., family) due to specimen condition, size, or age (i.e., early 

instar). These damaged or early instar specimens may not be identifiable or have 

developed diagnostic characteristics that distinguish them from other specimens. As a 

result, some specimens are only counted as distinct taxa (i.e., taxa richness) if no other 
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specimen(s) of the genera are identified at lower taxonomic levels in the same sample. 

The NCBI is a tolerance index similar to the Hilsenhoff Biotic Index (Hilsenhoff 1987) that 

is based on a scoring scale of 0 (sensitive) to 10 (tolerant). The purpose of the NCBI 

index is to evaluate the tolerance of species that occur in a sample relative to their 

abundance in that sample. NCBI scores in benthic invertebrate communities generally 

increase when habitats are disturbed as sensitive species are replaced by those more 

resilient to changing conditions (Hilsenhoff 1987; TDEC 2011). Shannon Diversity is 

another metric that accounts for species diversity and abundance of each species. 

Larger numbers calculated in this index indicate greater diversity within the sample. 

Shannon Diversity is another metric likely to decrease when benthic invertebrate 

communities are disturbed, as sensitive species are unable to withstand changes to the 

environment (Krebs 1999; USEPA 2006).   

Feeding guilds and organism habits were also evaluated for all genera. Feeding 

guild metrics categorize different feeding strategies (i.e., predator, scraper, shredder, 

gatherer, filterer, parasite, and piercer). They are often determined by the type and 

availability of food, and may change when environmental stressors are present (USEPA 

1999). Organism habit describes the way an individual moves or maintains its position in 

the water or sediment (i.e., burrower, climber, clinger, sprawler, and swimmer). Similar to 

feeding guilds, organism habit can also be influenced by environmental stressors 

(USEPA 1999). Typically, the percent of shredders (feeding guild) and the percent of 

clingers (organism habit) decrease as disturbance to benthic invertebrate communities 

increase (Merritt et al. 2008; TDEC 2011). 
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3.2.4 Statistical Analysis 

A completely randomized design (CRD) was used to evaluate benthic 

invertebrate community metrics at ERM 1.0 and at ERM 6.0 to determine if metrics 

differed among periods within each location. A mixed-model analysis of variance was 

conducted (using SAS, v. 9.4), and means were separated with Tukey-Kramer at 5% 

significance level. Locations were then compared in a CRD with split-plot treatment 

arrangement to evaluate differences between the impacted and reference locations. 

Factors included location, year, and number of samples (replicates within each location). 

Location and year were fixed factors while the number of samples per location was 

considered a random factor. Again, a mixed-model analysis of variance was conducted 

(using SAS, v. 9.4), and means were separated with Tukey-Kramer at 5% significance 

level.  

3.3 Results 

Benthic invertebrates collected at ERM 6.0 and ERM 1.0 included similar 

community compositions. A list of all species collected from ERM 6.0 and ERM 1.0, 

along with the period of collection is presented in Table 6. Throughout the 5 years of 

study, a total of 2,931 individual organisms were collected from ERM 6.0, including 60 

distinct taxa. The community was comprised primarily of chironomids, oligochaetes, and 

other non-chironomid Diptera, with the following three dominant genera: Chironomus 

sp., Tubificidae, and Chaoborus punctipennis. Chironomids and oligochaetes accounted 

for 53% and 27%, respectively, of the total collected organisms (Figure 13). The average 

total abundance of organisms collected was statistically significantly different among 

periods (p<0.05). The number of individuals ranged from 27 to 97, with the highest 

abundance in Periods 1 and 5 (Table 7). During Period 3, the average total abundance 
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of individuals was significantly lower (p<0.05) than those collected in all other periods. 

The average number of distinct genera collected per period ranged from 5.9 in Period 3 

to 8.6 in Period 1 (Table 7). While the highest richness was observed in Period 1, taxa 

richness at ERM 6.0 was statistically similar among all periods (p>0.05). The benthic 

invertebrate communities at ERM 6.0 also had similar diversity and number of distinct 

EPT taxa among periods (p>0.05) (Table 4). NCBI tolerance scores were statistically 

different among periods (p<0.05). Period 4 had significantly lower NCBI scores than 

other periods of collection (p<0.05); however, the scores for all periods were relatively 

high, ranging from 7.2 to 8.6 (Table 7), indicating that the community was mainly 

comprised of tolerant species. Feeding guilds included mainly gatherers and predators, 

although filterers, parasites, scrapers and shredders were also occasionally collected 

(Figure 14). Organism habits were dominated by burrowers and sprawlers; climbers and 

clingers were found only sporadically (Figure 15).  

A total of 4,613 individual organisms were collected from ERM 1.0 during the 

study, including 73 distinct invertebrate taxa (Table 6). Throughout the 5 years of 

collection, the community was comprised primarily of chironomids, oligochaetes, and 

Bivalvia. The three dominant genera include Tubificidae, Chironomus sp., and 

Musculium transversum. Chironomids and oligochaetes accounted for 43% and 33%, 

respectively, of the total collected organisms (Figure 13). The average total abundance 

of benthic invertebrates collected at ERM 1.0 differed among periods (p<0.05), with 

average numbers ranging from 58 to 170 individuals. Significantly higher abundance 

occurred in Period 4 with almost two times the number of individuals collected than in 

any other period (p<0.05) (Table 7). Similarly, the total number of distinct taxa at 

ERM 1.0 was significantly different among periods (p<0.05), ranging from 9 to 17.5 
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genera per period. Significantly more genera were also collected in Period 4 (p<0.05). 

The benthic invertebrate communities at ERM 1.0 were generally similar between the 

five periods of study with respect to diversity, total number of distinct EPT taxa, and 

NCBI tolerance scores (p>0.05) (Table 7). Feeding guilds included mainly gatherers, 

predators, and filterers (Figure 14). Parasites, scrapers, and shredders were also 

occasionally collected. Organism habits were dominated by burrowers. Sprawlers and 

climbers were also relatively common and clingers were occasionally found (Figure 15). 

When metrics were compared between locations, significant differences were 

noted for all five calculations. Total abundance, total richness, and Shannon Diversity 

were significantly (p<0.05) higher at ERM 1.0 compared to ERM 6.0. These differences 

were mainly driven by significantly higher abundance (Figure 16), richness (Figure 17), 

and diversity (Figure 18) in ERM 1.0 Period 4 collections compared to ERM 6.0 (Tukey, 

p<0.05). Total distinct EPT taxa was higher at ERM 1.0 (p<0.05) but no period specific 

differences were noted (Figure 19). Collections of EPT taxa were uncommon in both 

locations, with the exception of the burrowing mayfly Hexagenia sp. NCBI tolerance 

scores were significantly (p<0.05) lower at ERM 1.0 compared to ERM 6.0 (Figure 20), 

indicating that more sensitive taxa were collected from the impacted location than from 

the reference location. When individual differences were evaluated between periods, the 

first (Period 1) and last (Period 5) years of study had significantly lower NCBI ratings at 

ERM 1.0 compared to ERM 6.0 (Tukey, p<0.05). The lower NCBI ratings during these 

two periods were likely driven by the presence of the sensitive chironomidae genera, 

Epoicocladius sp., which occurred at ERM 1.0 but was not found at ERM 6.0. However, 

the overall scores for both locations throughout the five periods were relatively high (7 or 
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greater) indicating that communities in both locations were dominated by tolerant 

species. 

Chironomidae and oligochaete taxa largely dominated the overall abundance and 

richness of both ERM 6.0 and ERM 1.0 (Figure 13). When total abundance of these taxa 

were evaluated, they mirrored the same patterns as the total community abundance, 

with the highest abundance observed in Period 4 at ERM 1.0 (p<0.05) (Figure 21). When 

these dominant taxa were removed from the metric calculations, similar results were 

observed as more taxa, both in abundance and richness, were collected at ERM 1.0 

than at ERM 6.0 during all five periods. At ERM 1.0, total abundance of non-dominant 

taxa was lowest in Period 1, increased slightly in Period 2, decreased in Period 3, and 

then increased dramatically during Periods 4 and 5 (Figure 22). Non-chironomid and 

oligochaete taxa abundance at ERM 6.0 was low but constant during Periods 1, 2, and 

3; dropped slightly in Period 4, and then increased during Period 5. No significant 

differences were noted. Trends in taxa richness were similar. While the number of 

distinct taxa was not statistically significantly different among periods, the lowest 

richness for both ERM 1.0 and ERM 6.0 was observed during the first two periods and 

then gradually increased during Periods 3, 4, and 5 (Figure 23).  

Qualitative evaluations of feeding guilds (Figure 14) and organism habits 

(Figure 15) were also considered. Of the six organism feeding guilds present (gatherer, 

predator, filterer, shredder, scraper, and parasite), gatherers were most prevalent at both 

locations during all periods of study. Predators were consistently second highest in 

frequency, with only one exception. While filterers were found in less than 2% of any 

ERM 6.0 period of study, they ranged from 3 to 31% of the total distribution at ERM 1.0. 

Scrapers and parasites were seldom found at either location. ERM 6.0 and ERM 1.0 
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were both dominated by burrowers across all periods. Sprawlers were the second most 

prevalent habit for both locations. Climbers were present at each location during all 

periods; however, they were found more consistently at ERM 6.0 across all periods than 

at ERM 1.0. At ERM 1.0, these organisms made up less than 1% of the overall 

distribution during the first two periods but were more prevalent during Periods 3, 4, and 

5 (11, 13, and 4%, respectively). Clingers were also present at each location during all 

periods but they made up less than 2% of the distribution during each timeframe.   

3.4 Discussion 

While benthic invertebrate communities in previous studies with coal ash 

exposure have shown a variety of responses based on the extent of the release and 

characteristics of the receiving body of water, all of these responses have included some 

notable reduction of diversity and abundance (Webster et al. 1986), changes in 

community composition from sensitive to tolerant species (Cherry et al. 1984), and/or 

sublethal effects such as reduced metabolic rates and dispersal (Hopkins et al. 2004; 

Rowe et al. 2002; Webster et al.1986). Since pre-release data are not available for the 

Emory River, it is difficult to judge whether a true recovery has occurred following the 

Kingston ash release; however, the 5 years of results observed at ERM 1.0 following the 

Kingston release contrast starkly to previously documented patterns of benthic 

invertebrate metrics recorded in other aquatic systems impacted by CCRs. In a study by 

Cherry et al. (1979), sedimentation from an overflowing coal ash settling basin 

smothered the downgradient benthic invertebrate community in surrounding swamp 

streams, reducing community abundance. Cherry et al. (1979) recorded 50 to 98% 

decline of invertebrate densities immediately following the spill, including tolerant 

species that had previously inhabited the drainage system where coal ash contaminants 
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occurred. However, when the overflow of ash was reduced and water quality improved, 

the downgradient communities showed recovery within 1 year (Cherry et al. 1979; 1984).  

Similarly, a study by Smith (2003) evaluated benthic invertebrate community 

recovery in a study of McCoy Branch, Tennessee, a stream that received over 20 years 

of effluent discharge of 80% fly ash and 20% bottom ash. Benthic invertebrate 

communities were sampled biannually over a period of 6.5 years, beginning while ash 

discharges were still occurring and ending after discharges had been eliminated. Smith 

(2003) noted significantly lower density and taxonomic richness in impacted sites, and 

an absence of pollution-sensitive taxa (i.e., mayflies and caddisflies). As operational 

changes were made to reduce ash discharges, community metrics improved and many 

peaked after 2 years of effluent reduction. Furthermore, Specht et al. (1984) studied 

effluent discharges to Adair Run, a tributary to the New River. Initial improvements were 

noted to the community 2 months after fly ash discharges were removed from the stream 

and complete recovery was determined after 10 months. These recovery results were 

similar to other stream studies of benthic invertebrate communities (Cherry et al. 1979; 

Harper and Peckarsky 2005; and Cairns et al. 1970), which also evaluated CCR 

disturbances to aquatic systems. 

In contrast to these previously reported case studies, overall abundance 

(Figure 16) and taxa richness (Figure 17) following the TVA Kingston ash release at 

ERM 1.0 were similar among four of the five periods, with significant increases only 

occurring in Period 4 (p<0.05). Period 1 samples were collected less than 1 month after 

the initial release occurred, and would likely have experienced the most severe 

“smothering” effect; however, no statistically significant differences (p>0.05) were 

observed after dredging operations removed approximately 90% of the upstream ash 
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deposits. During this period, ash was measured in more than one-half of the samples 

and overall depths of ash deposits ranged from 0.15 m to 3 m (Table 5).  

The community composition at ERM 1.0 was dominated by chironomids and 

oligochaete taxa throughout the study. Chironomids represent a diverse group of aquatic 

dipterans, comprised of five subfamilies: Tanypodinae, Podonominae, Diamesinae, 

Chironominae, and Orthocladiinae. Chironomid larvae occur in a range of habitats, with 

different habits and feeding behaviors. Oligochaetes are segmented aquatic worms that 

are common in sediment and detritus, generally preferring silt laden substrates. Most 

species feed by ingesting sediments and other microorganisms and plant matter. 

Because these taxa are common in the upstream Emory River reference and prefer silty 

substrates like those found at ERM 1.0, they may have recolonized earlier and more 

rapidly than other taxa. The life cycle of chironomids vary, with some species producing 

several generations in one year to others that produce only one generation per year 

(Pennak 1989). Oligochaete life cycles typically take 1 to 2 years (Pennak 1989; 

Brinkhurst and Jamieson 1972). Chironomids and oligochaetes have been known to 

tolerate disturbances from various forms of pollution (Mousavi et al. 2003; Waterhouse 

and Farrell 1985; Lenat 1983; Beck 1977). Consequently, the abundance of chironomid 

and oligochaete taxa may have masked some initial impacts of the ash release. Mackay 

(1992) stated that chironomids were one of the earliest arrivals on empty substrates, 

using drift from upstream locations as their primary mode of relocation. Furthermore, 

many of the dominant chironomid genera observed at ERM 1.0 are free-living taxa that 

are prone to drift (Beck 1977).  

When chironomids and oligochaetes were removed from the abundance and 

richness metrics, trends observed in non-dominant taxa were more similar to those 
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recorded in the literature, although still not producing statistically significant differences 

among periods (Figures 22 and 23). The average number of total “non-chironomid and 

oligochaete” organisms collected per drop gradually increased over the 5 years of study, 

beginning in Period 3, after dredging of upstream river segments was complete 

(Figure 22). Total richness gradually increased throughout the five periods of study, with 

the lowest richness recorded in Period 1 and the highest richness in Period 5 

(Figure 23). 

While some potential trends may indicate a recovery or shifting of species, 

evaluations of individual species should be considered with caution as they can be 

unpredictable (Smith 2003). Rather, feeding guilds and organism habits were evaluated 

as these provide a more holistic picture of the benthic invertebrate community structure 

and are less susceptible to erratic change. The evaluation of feeding guilds at ERM 1.0 

indicated that filter feeders may have been impacted from the initial release. During the 

first three periods of study, these organisms made up 17% of the total community 

distribution but slowly declined during the dredging timeframe (Figure 14). However, 

after dredging was completed and all engineering controls (i.e., silt curtains) were 

removed from the Emory River, the distribution of filter feeders in Periods 4 and 5 

steadily increased, ending at just over 30% of the total distribution. While filter feeders 

often dominate benthic invertebrate communities in ponds and impoundments, these 

organisms are particularly sensitive to sedimentation and increased turbidity, due to the 

potential for clogging and damage of their and breathing apparatus (Richardson and 

Mackay 1991). As such, they may have initially experienced stress from the increased 

turbidity of water when ash was released into the Emory River and when the dredging 

process was occurring. Similarly, the evaluation of organism habit also indicated some 
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recovery of climber species (Figure 15). During the first two periods of study, these 

organisms made up less than 1% of the overall distribution. After dredging was 

complete, their distribution jumped to 11% and was notably higher during the last two 

periods of study (13 and 4%). These differences may be attributed to the increase in 

submerged plants, roots, and other woody debris that were likely more prevalent after 

dredging was complete and engineering controls were removed from the river.   

One reason benthic invertebrate community metrics may not have reflected the 

predicted decline was that dredging of the released ash removed the majority of ash 

from the Emory River shortly after the spill occurred (within 18 months). Although 

ERM 1.0 was not included in the areas of dredging, reducing the amount of ash 

upstream would also reduce the amount of ash that migrated downstream during high 

flow events. As a result, natural sedimentation and mixing of native sediments with 

released ash occurred more quickly than if migration of upstream ash continued to 

deposit layers of ash downstream. Dredging limited the period of exposure of ash and 

ash-related constituents to benthic invertebrates, which likely reduced the biouptake of 

metals into invertebrates and other biota.   

Furthermore, this section of the Emory River within the Watts Bar Reservoir is a 

primarily lotic system. Given the relatively short retention time of water within the 

reservoir, contaminants associated with the residual ash are rapidly washed downstream 

and diluted. The retention time of water in the Emory River is rather short (averages 90 

days or less) (Baker 2006) compared to retention times of other reservoirs that may hold 

water for 6 months to several years (Rueda et al. 2006). This process may also have 

reduced exposure and accumulation of ash-related constituents, thereby preventing 

constituents from reaching levels that cause adverse effects in the water, sediment, or 
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food web (Rueda et al. 2006; Carriker et al. 2015). In contrast, selenium and other 

metals associated with CCRs have been shown to cause significant ecological effects in 

more lentic systems (Lemly 1997). Selenium-contaminated wastewater from a coal 

facility in North Carolina contaminated Belews Lake for over a decade (Lemly 1997). In 

this study, it was determined that two of the key factors influencing the reservoir’s 

inability to recover were the long hydrologic retention time and the slow sedimentation 

rate. Belews Lake typically holds water for about 4 years (1,500 days) and accumulates 

<0.5 cm of sediment per year. Consequently, selenium continued to be bioavailable in 

sediments and biota for years after the input of selenium ceased. Ten years following the 

release, impacts to the aquatic ecosystem were still evident (Lemly 1997).  

Finally, the majority of the previously discussed case studies involved releases of 

coal ash effluent or caustic water associated with coal plant processes (Cairns et al. 

1970; Cherry et al. 1979; Cherry et al. 1984; Smith 2003; Specht et al. 1984; and Lemly 

1997). The ash released from the Kingston facility, however, was predominately fly ash 

that had been stored in a dry landfill for more than 20 years. As a result, the ash-related 

metals from the Kingston ash may not have been as available to biotic uptake as those 

occurring in the more acidic effluent. Furthermore, studies evaluating metal-leaching 

from ash indicate that under natural conditions, the more weathered the ash, the lower 

the concentrations of leached metals (Meima and Comans 1999). 

3.5 Summary 

Determining community differences caused by anthropogenic disturbances 

compared to the natural variation in community structures continues to present a 

challenge in benthic invertebrate biomonitoring studies (Mousavi et al. 2003; Clements 

1994). This post-release evaluation of benthic invertebrate communities exposed to 
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CCRs in the Emory River highlights these challenges and further demonstrates the need 

for additional research of benthic invertebrate community composition and structure in 

rivers and reservoir systems. Although numerous studies have shown severe, initial 

impacts of invertebrates exposed to CCRs in smaller stream systems or man-made 

impoundments (Smith 2003; Cherry et al. 1979; Harper and Peckarsky 2005; Cairns et 

al. 1970; Cherry and Guthrie 1977), these same impacts were not clearly detected 

during this study. Some evidence of recovery at the ash impacted location ERM 1.0 was 

observed when evaluating general trends of abundance and richness metrics; however, 

the overall diversity and tolerance of the benthic community were similar to upstream 

locations and did not show temporal trends over the 5 years of study. It is unclear 

whether these results were due to the presence of tolerant organisms prior to the 

release that were able to cope with the increased environmental stressors associated 

with the spill, or if the specific characteristics associated with the released ash in this 

reservoir system did not subject the benthic invertebrates to lethal conditions. Since no 

pre-release data are available to determine if communities return to a pre-disturbed 

state, benthic invertebrate communities may need to be monitored over a period longer 

than 5 years to see if abundance or richness metrics continue to increase or indicate 

other patterns of recovery. 
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CHAPTER 4 
CONCLUSIONS AND FUTURE RESEARCH NEEDS 

4.1 Conclusions 

Benthic invertebrate communities have long been used to evaluate environmental 

stresses to aquatic ecosystems. These organisms are in direct contact with surface water 

and sediment and are relatively immobile, which closely associates them to sediments and 

other local conditions (Li et al. 2010; Wallace and Webster 1996; Sundermann et al. 2013; 

Clements 1994; Allan 2004; Maret et al. 2003; Gebler 2004; Clements 1999). Not only can 

benthic invertebrates accumulate metals and other contaminants which are bound to the 

sediments in which they live, but they can also transfer these contaminants into aquatic 

and riparian food chains by serving as prey for upper trophic level receptors. Benthic 

invertebrate communities are often described and summarized by calculating metrics or 

indices. These metrics are used to analyze the community data and are often categorized 

as: composition/abundance, richness/diversity, sensitivity/tolerance, or function 

(Sundermann et al. 2013; Barbour et al. 1995). 

Benthic invertebrate species may respond differently to chemical contaminants 

than to other types of environmental stressors, such as nutrient enrichment and changes 

to stream hydrology or habitat structure. As our understanding of indicator species 

assemblages and rapid bioassessment protocols has increased, the use of benthic 

invertebrates for biomonitoring has also increased (Clements 1994). Identifying and 

understanding the relationships between aquatic organisms and environmental stressors 

is critical for “the effective management, restoration, and preservation of aquatic 

ecosystems” (Burton and Johnston 2010).  
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While a considerable body of literature exists documenting the impact and 

recovery of benthic invertebrate communities to CCR releases into aquatic systems, the 

case study presented here did not follow the trends previously recorded at other spill sites. 

Previous evaluations of benthic invertebrate community metrics have demonstrated 

severe, initial impacts of invertebrates exposed to CCRs. These studies focused on small 

stream systems or man-made impoundments (Smith 2003; Cherry et al. 1979; Harper and 

Peckarsky 2005; Cairns et al. 1970; Cherry and Guthrie 1977). Contrary to these 

recordings, the benthic invertebrate community metrics measured following the TVA 

Kingston ash release showed little to no change in abundance, richness, diversity, or 

tolerance over a 5-year period of time. Furthermore, few relationships could be established 

between these metrics and any of the measured sediment variables (including: 17 ash-

related metals concentrations, percent ash, water depth, percent dredgefull, and sediment 

grain size) in co-located sediment samples. No single variable or group of variables could 

predict, with even weak confidence, increases or decreases in any of the four benthic 

invertebrate community metrics.  

Determining community differences caused by anthropogenic disturbances 

compared to the natural variation in community structures continues to present a 

challenge in benthic invertebrate biomonitoring studies (Mousavi et al. 2003; Clements 

1994). It is unclear why the results from the present study differ from so many of the 

previous evaluations; however, several ideas have been considered.  

One potential explanation for the lack of observed effects on the benthic 

invertebrate community in the Emory River was the initial properties of the released ash 

and immediate dredging of the riverbed. The ash released from the Kingston facility was 

predominately weathered fly ash. The majority of the previously discussed case studies, 
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however, involved releases of coal ash effluent or caustic water associated with coal plant 

processes (Cairns et al. 1970; Cherry et al. 1979; Cherry et al. 1984; Smith 2003; Specht 

et al. 1984; and Lemly 1997). Studies evaluating metal-leaching from ash indicate that 

under natural conditions, the more weathered the ash, the lower the concentrations of 

leached metals (Meima and Comans 1999). As a result, the ash-related metals from the 

Kingston ash may not have been as available to biotic uptake as those occurring in the 

more acidic effluent. In addition, the majority of the ash was removed from the Emory 

River within 18 months of the initial release. While not all areas of the river were dredged, 

reducing the overall amount of ash in the Emory River would also reduce the amount of 

ash that migrated downstream during high flow events. Furthermore, the impacted section 

of the Emory River is also within the Watts Bar Reservoir. The retention time of water in 

the Emory River is relatively short (averages 90 days or less) (Baker 2006) compared to 

retention times of other reservoirs that may hold water for 6 months to several years 

(Rueda et al. 2006). As a result, contaminants associated with the residual ash were likely 

washed downstream and/or diluted. Together, these processes may have reduced 

exposure and accumulation of ash-related constituents, thereby preventing constituents 

from reaching levels that cause adverse effects in the water, sediment, or benthic 

invertebrate tissue (Rueda et al. 2006; Carriker et al. 2015).  

Following the 2008 release and subsequent year of dredging, the disturbed 

stretches of the Emory River would likely have provided unoccupied habitat that could be 

quickly recolonized from unimpacted sources. Previous studies have indicated that 

following a localized disruption of the community, even one that is severe, stream 

invertebrates will begin to populate the substrate as soon as shelter and food become 

available (Mackay 1992). In addition, aquatic systems most likely to recover following a 
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disturbance are often those systems with more irregular and unpredictable water flows 

with either periods of low or no water to frequent flooding (Mackay 1992; Poff and Ward 

1990). While the Emory River typically flows at less than 1,500 cfs, it is also subject to 

flash flooding during storm events. The frequent high flows commonly occurring on the 

Emory River not only enable drift of invertebrates, but may also promote invertebrate 

communities that are more likely to be resilient to environmental disturbances (MacKay 

1992).  

Finally, benthic invertebrate community abundance and diversity are closely 

related to substrate diversity (Henley et al. 2000). The benthic invertebrates found in the 

Emory River were likely adapted to reservoir conditions, including softer, fine substrates 

(predominately silt and clay) as described in Baker (2011). The released ash, which is 

comprised primarily of silica particles that are spherical in shape, consolidates and 

compacts when allowed to settle, much like sedimentation processes of fine sediment 

(Rivera et al. 2015). Given this similarity and the dominance of silty substrate in the Emory 

River, the released ash likely did not result in the same degree of habitat alteration as 

would have occurred if ash was released into a stream or river with predominately cobble 

or bolder substrate. Where sedimentation is actively occurring and substrates are 

predominately soft and silty, sediment-intolerant taxa become increasing displaced by 

sediment-tolerant taxa (Relyea et al. 2000). Moderate additions of sediment provide 

conditions that are tolerated by highly mobile taxa and taxa that are specifically adapted 

for living in deposited sediments, such as oligochaeta and some chironomidae (Mackay 

1992, Wiederholm 1984). Consequently, the benthic community that existed in the vicinity 

of the TVA Kingston facility had already adapted to reservoir conditions and was likely 
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predominately composed of organisms that tolerated or preferred soft substrates and 

hence were less sensitive to this sedimentation-like release. 

4.2 Future Research Needs 

This post-release evaluation of benthic invertebrate communities exposed to CCRs 

in the Emory River highlights the challenges associated with distinguishing natural 

variability and environmental stress in aquatic ecosystems. Since no data recording the 

benthic invertebrate community are available for this area of the Emory River, it is difficult 

to determine if communities have returned to a pre-disturbed state. Furthermore, 

community data for reservoir systems remain undocumented, providing few comparisons 

for typical metrics measured in these unique environments. These issues demonstrate the 

need for additional research of benthic invertebrate community composition and structure 

in large rivers and reservoir systems. In addition, benthic invertebrate communities in the 

Emory River may need to be monitored over a period longer than 5 years to see if 

abundance or richness metrics continue to increase or indicate other patterns of recovery. 
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Table 1. Summary of the benthic invertebrate community composition in 
the Emory River following the TVA Kingston ash release, Watts Bar 
Reservoir, Roane County, TN1 

Phylum Class Order Family 
Platyhelminthes Turbellaria Tricladida Planariidae 
Arthropoda Insecta Coleoptera Elmidae 
      Hydrophilidae 
    Diptera Ceratopogonidae 
      Chaoboridae 
      Chironomidae 
      Simuliidae 
      Tipulidae 
    Ephemeroptera Ameletidae 
      Caenidae 
      Ephemerellidae 
      Ephemeridae 
      Heptageniidae 
    Megaloptera Sialidae 
    Odonata Coenagrionidae 
      Gomphidae 
    Plecoptera Capniidae 
      Chloroperlidae 
      Taeniopterygidae 
    Trichoptera Hydroptilidae 
      Leptoceridae 
      Polycentropodidae 
  Arachnida Acariformes Arrenuridae 
      Hygrobatidae 
      Lebertiidae 
      Pionidae 
      Unionicolidae 
  Malacostraca Amphipoda Talitridae 
Mollusca Gastropoda Architaenioglossa  Viviparidae 
    Basommatophora Ancylidae 
      Physidae 
    Neotaenioglossa  Hydrobiidae 
      Pleuroceridae 
  Bivalvia Unionoida Unionidae 
    Veneroida Corbiculidae 
      Sphaeriidae 
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Table 1. Continued.  

Phylum Class Order Family 
Annelida Hirudinea Pharyngobdellida Erpobdellidae 
    Rhynchobdellida Glossiphoniidae 
  Oligochaeta Haplotaxida Enchytraeidae 
      Naididae 
      Tubificidae 
    Lumbriculida Lumbriculidae 
Nematoda - - - 

 

1 – Sample periods included Period 4 (December 2011 - January 2012) and Period 5 (November - December 2012). 
Samples were collected from Emory River mile (ERM) 6.0 (reference) and ERM 0.7, 1.0, 2.2, 2.6, 3.0, 3.5, 4.1, and 
5.0 (impacted). 
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Table 2. Average benthic invertebrate community metrics calculated in the 
Emory River, Watts Bar Reservoir, Roane County, TN1 

Location2 Period 
Total 

Abundance 
Total 

Richness 
Shannon 
Diversity NCBI3 

ERM 0.7 4 124 14 2.0 7.3 
5 145 14 1.7 7.2 

ERM 1.0 4 134 17 2.0 7.0 
  5 113 14 1.9 7.5 

ERM 2.2 4 74 12 2.0 7.3 
  5 158 10 1.3 7.5 

ERM 2.6 4 113 15 2.1 7.5 
  5 101 11 2.0 7.6 

ERM 3.0 4 128 13 1.8 7.5 
  5 101 11 1.7 7.8 

ERM 3.5 4 90 14 1.8 6.6 
  5 57 7 1.5 8.0 

ERM 4.1 4 65 11 1.8 7.4 
  5 64 10 1.6 8.0 

ERM 5.0 4 89 11 1.6 7.6 
  5 41 13 2.2 7.7 

ERM 6.04 4 42 8 1.5 7.2 
  5 125 9 1.4 8.8 

 

1 – Sample periods included Period 4 (December 2011 - January 2012) and Period 5 
2 – ERM = Emory River mile. 
3 – NCBI = North Carolina Biotic Index. 
4 – ERM 6.0 = Reference location. 
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Table 3. Average concentrations of ash-related metals (mg/kg) in submerged sediment collected in the Emory 
River, Watts Bar Reservoir, Roane County, TN1 

Location2   Arsenic Barium Beryllium Boron Chromium Selenium Strontium Vanadium 
ERM 0.7 Period 4 17.9 156.04 1.44 10.78 15.39 2.55 82.8 30.3 

Period 5 16.3 141.13 1.28 8.36 14.57 1.83 77.8 27.7 
Average 17.1 148.6 1.4 9.6 15.0 2.2 80.3 29.0 

ERM 1.0 Period 4 17.3 163.58 1.52 11.35 16.17 2.95 82.0 31.6 
Period 5 16.0 117.55 1.14 7.03 12.53 1.76 58.8 23.7 
Average 16.6 140.6 1.3 9.2 14.3 2.4 70.4 27.6 

ERM 2.2 Period 4 32.8 170.20 1.55 16.44 13.18 3.29 103.8 35.2 
Period 5 26.8 157.83 1.51 9.78 17.50 2.10 83.8 33.9 
Average 29.8 164.0 1.5 13.1 15.3 2.7 93.8 34.5 

ERM 2.6 Period 4 35.8 161.58 1.57 15.17 17.15 3.15 77.7 35.4 
Period 5 14.8 106.55 1.22 8.95 15.84 1.82 54.2 27.1 
Average 25.3 134.1 1.4 12.1 16.5 2.5 65.9 31.2 

ERM 3.0 Period 4 14.4 99.20 1.06 8.17 10.12 2.13 30.2 18.1 
Period 5 27.8 161.48 1.50 14.36 21.75 1.91 66.9 37.3 
Average 21.1 130.3 1.3 11.3 15.9 2.0 48.5 27.7 

ERM 3.5 Period 4 14.5 65.12 0.84 9.31 6.40 1.64 39.8 14.5 
Period 5 36.1 157.43 1.75 11.83 20.45 2.32 85.5 39.1 
Average 25.3 111.3 1.3 10.6 13.4 2.0 62.7 26.8 

ERM 4.1 Period 4 3.4 37.50 0.60 5.92 4.48 1.48 6.4 7.3 
Period 5 8.3 105.90 1.12 8.52 20.38 2.13 24.3 27.2 
Average 5.8 71.7 0.9 7.2 12.4 1.8 15.4 17.2 

ERM 5.0 Period 4 15.1 68.85 0.95 9.96 8.13 2.27 31.7 15.9 
Period 5 4.9 52.33 0.75 6.80 6.28 3.06 8.9 8.2 
Average 10.0 60.6 0.8 8.4 7.2 2.7 20.3 12.0 

ERM 6.03 Period 4 3.1 48.28 0.72 6.66 5.77 1.67 6.7 8.8 
Period 5 4.3 87.37 0.57 23.09 27.54 2.90 15.0 19.0 
Average 3.7 67.8 0.6 14.9 16.7 2.3 10.9 13.9 

 

1 – Sample periods included Period 4 (December 2011 - January 2012) and Period 5 (November - December 2012). 2 – ERM = Emory River mile. 3 – ERM 6.0 = Reference 
location.
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Table 4. Chemical and physical characteristics at ERM 6.0 (reference 
location) and ERM 1.0 (impacted location), Watts Bar Reservoir, Roane 
County, TN1 

Parameter ERM 6.0 ERM 1.0 

Water Depth (meter) 7.09 6.99 

Range (meter)2 (0.46 - 3.2) (1.6 - 11.4) 

Channel Width (meter) 150 700 

Temperature (oC) 5.39 8.6 

Dissolved Oxygen (mg/liter) 12.46 10.13 

Turbidity 3.0 4.4 

pH 7.02 7.63 

Conductivity 55 273 
 

1 - Parameters recorded during Period 4 sampling event, unless otherwise noted; ERM = Emory River Mile. 
2 - Water depth range recorded during each period of study for all samples. 
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Table 5. Qualitative substrate composition at ERM 6.0 (reference location) 
and ERM 1.0 (impacted location), Watts Bar Reservoir, Roane County, TN1 

Location Period2 Ash Clay Silt Sand Gravel Detritus 

ERM 6.0 1 0.0 0.0 74 17 0.0 8.5 

( 0 - 0) ( 0 - 0) (25 - 95) (0 - 70) ( 0 - 0) (5 - 20) 

2 0.0 0.0 49 22.0 4.5 24 

( 0 - 0) ( 0 - 0) (5 - 90) (0 - 60) (0 - 40) (5 - 90) 

3 0.0 0.0 43 37 3.0 18 
( 0 - 0) ( 0 - 0) (0 - 80) (0 - 85) (0 - 15) (10 - 45) 

4 0.0 12 43 39 2.5 3.7 
( 0 - 0) (0 - 90) (0 - 95) (0 - 99) (0 - 20) (0 - 15) 

5 0.0 0.0 80 17 1.0 2.9 
      ( 0 - 0) ( 0 - 0) (0 - 100) (0 - 100) (0 - 5) (0 - 15) 

ERM 1.0 1 29 0.0 51 0.0 0.0 20 

(0 - 85) ( 0 - 0) (0 - 93) ( 0 - 0) ( 0 - 0) (5 - 40) 

2 38 0.0 36 1.5 1.5 22 

(0 - 85) ( 0 - 0) (5 - 75) ( 0 - 15) ( 0 - 15) (0 - 60) 

3 24 0.0 63 9.0 0.5 4.0 

(0 - 70) ( 0 - 0) (25 - 100) (0 - 65 ( 0 - 5) (0 - 20) 

4 9.9 0.0 81 10 4.0 4.7 

(0 - 24) ( 0 - 0) (5 - 98) (0 - 90) (0 - 40) (0 - 10) 

5 27 3.0 46 15 0.0 8.0 
      (0 - 60) (0 - 30) (15 - 95) (0 - 80) ( 0 - 0) (0 - 25)   

1 – Composition of samples (%) was characterized based on visual observations.  Percentages may not add to 100 due 
to rounding. ERM = Emory River mile. 

2 – Sample Periods are defined as follows: 
Period 1: January 2009 
Period 2: December 2009 
Period 3: December 2010 - January 2011 
Period 4: December 2011 - January 2012 
Period 5: November - December 2012 
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Table 6. List of benthic invertebrate species collected at ERM 6.0 (reference 
location) and ERM 1.0 (impacted location), Watts Bar Reservoir, Roane 
County, TN1 

Taxa 
Period of Collection 

Period 
1 

Period 
2 

Period 
3 

Period 
4 

Period 
5 

Arachnida        

 Acariformes      

  Hygrobatidae      

   Atractides sp.     x / o 

  Lebertiidae      

   Lebertia sp.    o  

  Unionicolidae      

   Neumania sp.    x x 

   Unionicola sp. x  x x x / o 

  NA        

   Acariformes sp.   x   

Bivalvia        

 Unionoida        

  Unionidae      

   Unionidae     x / o 

 Veneroida        

  Corbiculidae      

   Corbicula fluminea x / o x / o x / o x / o x / o 

  Sphaeriidae      

   Musculium transversum x x x x x 

   Pisidium compressum    x  

   Pisidium sp.  x x x x 

Gastropoda        

 Basommatophora      

  Ancylidae      

   Ferrissia rivularis  o    

 Neotaenioglossa       

  Hydrobiidae      

   Amnicola limosa x    x 

  Pleuroceridae      

   Pleurocera canaliculata     x 

Hirudinea        

 Rhynchobdellida      

  Glossiphoniidae      

   Actinobdella inequiannulata   x  x 
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Table 6. Continued. 

Taxa 
Period of Collection 

Period 
1 

Period 
2 

Period 
3 

Period 
4 

Period 
5 

   Actinobdella sp.    x  

   Helobdella stagnalis x     

   Glossiphoniidae x x    

Insecta        

 Coleoptera      

  Elmidae      

   Dubiraphia sp. o o x x / o x / o 

   Microcylloepus pusillus   x o  

   Stenelmis sp.    x  

 Diptera        

  Ceratopogonidae      

   Ceratopogonidae x / o x x / o x / o x / o 

  Chaoboridae      

   Chaoborus punctipennis x / o x / o x / o x / o x / o 

  Chironomidae      

   Ablabesmyia annulata x / o x / o x x x / o 

   Ablabesmyia mallochi  x  x  

   Ablabesmyia peleensis    x x 

   Antillocladius sp.    x  

   Axarus sp.   x   

   Cardiocladius obscurus    x  

   Chironomus crassicaudatus    x  

   Chironomus decorus gp.    x / o  

   Chironomus sp. x / o x / o x / o  x / o 

   Chironominae subfamily    x  

   Cladopelma sp.   x   

      Cladotanytarsus sp.    x / o x / o 

   Clinotanypus sp. o     

   Coelotanypus sp. x / o o x x x 

   Coelotanypus tricolor    x  

   Cricotopus bicinctus    o  

   Cricotopus sylvestris gp.    x  

   Cryptochironomus sp. x / o x / o x / o x / o x / o 

   Dicrotendipes modestus    x x 

   Dicrotendipes neomodestus   x / o x x 

   Dicrotendipes simpsoni     x 

   Dicrotendipes sp. o     

   Endochironomus nigricans o     
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Table 6. Continued. 

Taxa 
Period of Collection 

Period 
1 

Period 
2 

Period 
3 

Period 
4 

Period 
5 

   Epoicocladius flavens  x  x / o x 

   Epoicocladius sp. x x x   

   Eukiefferiella claripennis gp.    o  

   Glyptotendipes sp. x / o  x / o x / o o 

   Hydrobaenus sp.    x / o x 

   Lipiniella sp. o     

   Microchironomus sp.    x x / o 

   Microtendipes pedellus gp.  x / o o x / o x 

   Nilothauma sp.   x   

   Orthocladius sp.    x  

   Pagastiella sp. o o  x / o o 

   Paracladopelma gp. x     

   Paracladopelma undine    x  

   Paralauterborniella 
nigrohalteralis 

 o x x / o o 

   Paratanytarsus sp.    x  

   Paratendipes albimanus    x  

   Phaenopsectra obediens gp.    o  

   Phaenopsectra punctipes gp.    o  

   Polypedilum halterale x o x / o x / o x / o 

   Polypedilum scalaenum gp.  x    

   Procladius sp. x / o x / o x / o x / o x / o 

   Pseudochironomus sp.   x / o x  

   Rheotanytarsus exiguus gp. o  o   

   Smittia sp.   x   

   Stenochironomus sp.   x   

   Stictochironomus caffrarius gp.    x x 

   Stictochironomus devinctus   o  o 

   Tanytarsus sp. o x / o x x / o x / o 

   Tribelos fuscicorne    x  

   Tribelos jucundum o x / o x / o x / o x 

   Tvetenia vitracies o     

   Zalutschia sp. x / o    x 

 Ephemeroptera      

  Ephemeridae      

   Hexagenia sp. x / o x / o x / o x / o x / o 

  Heptageniidae      

   Heptageniidae    x  
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Table 6. Continued. 

Taxa 
Period of Collection 

Period 
1 

Period 
2 

Period 
3 

Period 
4 

Period 
5 

 Megaloptera      

  Sialidae      

   Sialis sp.    x  

 Plecoptera      

  Taeniopterygidae      

   Taeniopteryx sp.   o   

 Trichoptera      

  Hydropsychidae      

   Cheumatopsyche sp.  x x   

  Hydroptilidae      

   Hydroptila sp.   o   

  Leptoceridae      

   Oecetis sp. o x  x x / o 

    Polycentropodidae      

   Nyctiophylax sp.   x   

   Polycentropus sp.  o    

Malacostraca        

 Isopoda        

  Asellidae      

   Lirceus sp.  x    

Nematoda        

   Nematoda x / o  o x / o x / o 

Oligochaeta        

 Haplotaxida      

  Enchytraeidae      

   Enchytraeidae   x x  

  Naididae      

   Arcteonais lomondi  o    

   Dero sp.  x / o  x  

   Nais pardalis     x 

   Nais sp.    x  

   Slavina appendiculata  o  o  

   Naididae x o  x / o o 

  Tubificidae      

   Aulodrilus piqueti   o x x 

   Branchiura sowerbyi x / o x x x / o x / o 

   Limnodrilus cervix   x / o  x / o 

   Limnodrilus claparedianus x / o x / o o x / o o 
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Table 6. Continued. 

Taxa 
Period of Collection 

Period 
1 

Period 
2 

Period 
3 

Period 
4 

Period 
5 

   Limnodrilus hoffmeisteri x / o x / o x / o x o 

   Limnodrilus sp.  o x o x / o 

   Quistadrilus multisetosus   o   

   Tubificidae x / o x / o x / o x / o x / o 

 Lumbriculida      

  Lumbriculidae      

   Lumbriculidae  o  x  

      Platyhelminthes     x 
 

1 – ERM = Emory River mile; gp = group; o = present at ERM 6.0 (Reference site); sp = species; x = present at ERM 1.0 
(Impacted site); x / o = present at both ERM 6.0 and ERM 1.0 

2 – Sample Periods are defined as follows: 
Period 1: January 2009 
Period 2: December 2009 
Period 3: December 2010 - January 2011 
Period 4: December 2011 - January 2012 
Period 5: November - December 2012 
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Table 7. Summary of benthic invertebrate metrics at ERM 6.0 (reference 
location) and ERM 1.0 (impacted location), Watts Bar Reservoir, Roane 
County, TN1 

Location Period 
Total 

Individuals

Number 
of Distinct 

Taxa 

Shannon 
Diversity 

Index 
Total EPT 
Richness2 

NCBI 
Tolerance 

Score3 

ERM 6.0 1 82.7 ab 8.6 a 1.5 a 0.5 a 8.4 a 

2 44.2 bc 7.7 a 1.7 a 0.5 a 7.9 ab 

3 27.1 c 5.9 a 1.4 a 0.3 a 8.3 a 

4 42.4 bc 8.0 a 1.5 a 0.2 a 7.2 b 

  5 96.7 a 7.7 a 1.4 a 0.3 a 8.6 a 

ERM 1.0 1 58 b 9.0 b 1.8 a 0.6 a 7.2 a 

2 66.5 b 9.2 b 1.8 a 0.9 a 7.4 a 

3 79.2 b 11.0 b 1.8 a 0.9 a 7.8 a 

4 169.9 a 17.5 a 2.0 a 1.1 a 7.0 a 

  5 87.7 b 12.6 ab 1.9 a 1.1 a 7.2 a 
 

1 – Two-way ANOVA comparing periods was applied to five years of data for ERM 6.0 and ERM 1.0. The mean for each 
period is shown in this table. If the ANOVA was significant, significant differences among means were determined 
using post-hoc Tukey test and are denoted with different letters (p<0.05). ERM = Emory River mile. 

2 – EPT = Ephemeroptera, Plecoptera, Tricoptera 
3 – NCBI = North Carolina Biotic Index 
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Figures 
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Figure 1. Location of Tennessee Valley Authority Kingston Ash Fossil 
Plant, Roane County, TN. ERM = Emory River mile.
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Figure 2. Bathymetric survey presenting the most current prediction of ash 
deposition in the Emory River, Watts Bar Reservoir, Roane County, TN.
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Figure 3. Location of spatial study sites in the Emory River, Watts Bar 
Reservoir, Roane County, TN. Transect line (red) at Emory River mile (ERM) 
6.0 (reference location) and ERM 0.7, 1.0, 2.2, 2.6, 3.0, 3.5, 4.1, and 5.0 
(impacted locations).
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Figure 4. Overview of dredged (green shading) and un-dredged (orange 
shading) ash deposits in the Emory River, Watts Bar Reservoir, Roane 
County, TN. ERM = Emory River mile.
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Figure 5. Benthic invertebrate community composition during Periods 4 and 5 in the Emory River, Watts Bar 
Reservoir, Roane County, TN. Sites include Emory River mile (ERM) 6.0 (reference location) and ERM 0.7, 1.0, 
2.2, 2.6, 3.0, 3.5, 4.1, and 5.0 (impacted locations). Asterisk (*) includes species of Chaoboridae, 
Ceratopogonidae, Simuliidae, and Tuplidae; (**) includes species of alderflies (Megaloptera), amphipods, 
caddisflies (Tricoptera), dragonflies (Odonata), leeches (Hirundinea), mussels, nematodes, non-parasitic 
flatworms (planarians), stoneflies (Plecoptera) and water beetles. 
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Figure 6. Average total abundance of individuals collected per transect at 
reference (†) and impacted locations in the Emory River, Watts Bar 
Reservoir, Roane County, TN. No significant difference noted between 
impacted and reference locations (p>0.05). ERM = Emory River mile.
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Figure 7. Average total number of distinct taxa (richness) collected per 
transect at reference (†) and impacted locations in the Emory River, Watts 
Bar Reservoir, Roane County, TN. No significant difference noted between 
impacted and reference locations (p>0.05). ERM = Emory River mile. 
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Figure 8. Average Shannon Diversity collected per transect at reference (†) 
and impacted locations in the Emory River, Watts Bar Reservoir, Roane 
County, TN. No significant difference noted between impacted and 
reference locations (p>0.05). ERM = Emory River mile. 
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Figure 9. Average North Carolina Biotic Index (NCBI) for tolerance of taxa 
collected per transect at reference (†) and impacted locations in the Emory 
River, Watts Bar Reservoir, Roane County, TN. Bars with different letters 
differ significantly (p<0.05). ERM = Emory River mile.
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Figure 10. Concentrations of metals in sediment (mg/kg) collected per 
transect at reference (†) and impacted locations in the Emory River, Watts 
Bar Reservoir, Roane County, TN. Bars with different letters differ 
significantly (p<0.05). ERM = Emory River mile. 
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Figure 11. Substrate composition collected per transect during Period 4 (A) 
and Period 5 (B) at reference (†) and impacted locations in the Emory River, 
Watts Bar Reservoir, Roane County, TN. ERM = Emory River mile.  
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Figure 12. Location of temporal study sites in the Emory River, Watts Bar 
Reservoir, Roane County, TN. Transect line (red) at Emory River mile (ERM) 
6.0 (reference location) and ERM 1.0 (impacted location).  
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Figure 13. Benthic invertebrate community composition at Emory River 
mile (ERM) 6.0 and ERM 1.0 during 5-year study (2009-2012), Emory River, 
Watts Bar Reservoir, Roane County, TN. Asterisk (*) includes mites, 
mussels, snails, stoneflies (Plecoptera) and water beetles in ERM 6.0 and 
alderflies (Megaloptera), leeches (Hirundinea), mites, mussels, non-
parasitic flatworms (planarians), snails, and water beetles in ERM 1.0. 
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Figure 14. Distribution of feeding guilds at (A) Emory River mile (ERM) 6.0 
(reference location) and (B) ERM 1.0 (impacted location) during all periods 
of study, Emory River Watts Bar Reservoir, Roane County, TN. Asterisk (*) 
includes scrapers and parasites for both locations. 
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Figure 15. Distribution of organism habit at (A) Emory River mile (ERM) 6.0 
(reference location) and (B) ERM 1.0 (impacted location) during all periods 
of study, Emory River, Watts Bar Reservoir, Roane County, TN. 
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Figure 16. Average (± SE) total abundance of individuals collected per 
sample at Emory River mile (ERM) 6.0 (reference location) and ERM 1.0 
(impacted location), Emory River, Watts Bar Reservoir, Roane County, TN. 
Bars with different letters differ significantly (p<0.05). 
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Figure 17. Average (± SE) total number of distinct taxa (richness) collected 
per sample at Emory River mile (ERM) 6.0 (reference location) and ERM 1.0 
(impacted location), Emory River, Watts Bar Reservoir, Roane County, TN. 
Bars with different letters differ significantly (p<0.05). 
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Figure 18. Average (± SE) Shannon Diversity collected per sample at Emory 
River mile (ERM) 6.0 (reference location) and ERM 1.0 (impacted location), 
Emory River, Watts Bar Reservoir, Roane County, TN. Bars with different 
letters differ significantly (p<0.05). 
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Figure 19. Average (± SE) total number of Ephemeroptera, Plecoptera, and 
Tricoptera (EPT) taxa collected per sample at Emory River mile (ERM) 6.0 
(reference location) and ERM 1.0 (impacted location), Emory River, Watts 
Bar Reservoir, Roane County, TN. No significant differences (p<0.05) were 
noted between impacted and reference location.  
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Figure 20. Average (± SE) North Carolina Biotic Index for tolerance of taxa 
collected per sample at Emory River mile (ERM) 6.0 (reference location) and 
ERM 1.0 (impacted location), Emory River, Watts Bar Reservoir, Roane 
County, TN. Bars with different letters differ significantly (p<0.05). 
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Figure 21. Total abundance of chironomid and Tubificidae taxa collected 
per period at Emory River mile (ERM) 6.0 (reference location) and ERM 1.0 
(impacted location), Emory River, Watts Bar Reservoir, Roane County, TN. 
Asterisk (*) indicates a significant difference between impacted and 
reference location (p<0.05).  
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Figure 22. Total abundance of non-chironomid and oligochaete taxa 
collected per period at Emory River mile (ERM) 6.0 (reference location) and 
ERM 1.0 (impacted location), Emory River, Watts Bar Reservoir, Roane 
County, TN. Asterisk (*) indicates a significant difference between impacted 
and reference location (p<0.05). 
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Figure 23. Total number of non-chironomid and oligochaete distinct taxa 
(richness) collected per period at Emory River mile (ERM) 6.0 (reference 
location) and ERM 1.0 (impacted location), Emory River, Watts Bar 
Reservoir, Roane County, TN. No significant difference noted between 
impacted and reference location (p>0.05). 
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