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ABSTRACT 

 This thesis presents the design and implementation of a power management 

integrated circuit (IC) that is capable of both current and voltage charging thin-film, 

solid-state, lithium-ion micro-batteries.  The power management system has been 

fabricated using a single-poly, 0.35-µm, partially-depleted, silicon-on-insulator process 

(PD-SOI).  The system contains a temperature stable current charger (current generator 

and a 4-bit current-mode DAC), a regulated voltage supply (voltage amplifier), and a 

voltage monitoring circuit (2-bit flash ADC).  Experimental results of the first version of 

the power management system show proper functionality was obtained.  The current 

charger produced a 2% worst-case variation in output current over the temperature range 

0–100°C.  The regulated voltage output was measured to be 4.4 V and the digital outputs 

of the flash ADC transitioned at 3.45 and 4.76 V.   
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CHAPTER 1  

INTRODUCTION AND OVERVIEW 

Introduction 

 Recent successes in the effort to miniaturize spacecraft components using 

microelectromechanical systems (MEMS) technology, integrated passive components, 

and low power electronics have driven the need for very low power, low profile, low 

mass micro-power sources for micro/nanospacecraft applications [1].  The power sources 

chosen to combat this problem are rechargeable, thin-film and micro-scale batteries 

prepared using microelectronic fabrication techniques.  A number of thin-film micro-

batteries have been documented in literature and of these, rechargeable lithium (Li) 

batteries have shown the best performance of cycle life and shelf life [2].  These Li-Ion 

micro-batteries are proving themselves to be useful in more applications than expected. 

 Due to the complications and safety requirements needed to send a human into 

deep space, unmanned space flights aimed at exploring the far reaches of the universe are 

underway.  However, the cost of launching a spacecraft into outer space is proportional to 

its mass, so efforts are being made to achieve the goal of “microspacecrafts” as shown in 

Figure 1.1.  Power electronics generally contribute considerably to the mass and volume 

of the total avionics systems, which can be problematic for applications leveraging 

miniaturized components [1].  As power electronics miniaturize, the power sources must 

also decrease in size in order to meet this goal of microspacecrafts. 

 Micromachining manufacturing methods have made MEMS-based sensors and 

actuators a reality and there is a push for power sources small enough to fit on a 

microchip to power them [2].  Because of this, there is a growing interest in the 

development, fabrication, and volume manufacturing of these micro-power sources [3].  

With the enhancement of power sources on the same microchip as MEMS, energy 

efficiency could be maintained due to low power transmission losses, cost would 

decrease due to reduced complexity of electrical connections and packaging, and the 
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Figure 1.1:  Reduction in spacecraft mass and volume over time. 

micro-power cells could be arrayed to achieve different combinations of operating 

voltages for an integrated circuit [2]. 

 Circuit designers could also benefit from the use of micro-battery structures.  One 

possibility in the case of low current applications is for a micro-battery to act as an on-

chip power supply [4].  Something being investigated at JPL is the use of thin-film micro-

batteries to act as momentary CMOS memory backup in the event of system power 

failure [1].  Analog circuit designers could also utilize micro-batteries as voltage shifters 

or as on-chip, low noise, reference voltages.  This is a vast area that has yet to be 

explored fully for use in CMOS analog circuit design for system on a chip (SOAC) 

applications. 

 As one can see, the use of a micro-battery structure is only limited by the 

imagination of the user.  The one thing missing from all the literature dealing with micro-

power sources, however, is the design of a power management IC capable of recharging 

these micro-batteries. 
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Overview 

 This thesis provides a detailed overview of a power management IC designed for 

solid-state, Li-Ion micro-batteries using a standard 3.3-V/0.35-µm, single-poly, PD-SOI 

process.  The power management design consists of a programmable current charger, a 

constant voltage charger, and a voltage monitoring circuit that reads the micro-battery’s 

voltage during the current charging process.  The programmable current charger is 

designed using a temperature stable, low-level current reference that feeds into a current-

mode digital-to-analog converter (DAC), which uses a new technique to bias low-voltage 

cascode current mirrors (LVCCM).  The voltage charger is designed using voltage 

amplifier techniques and the voltage monitoring circuit is designed using a low-resolution 

flash analog-to-digital converter (ADC) architecture. 

 Contained in this thesis are four main sections.  Chapter 2 starts with a brief 

description of the micro-battery structures that are currently being developed by 

researchers at JPL.  Also included in this chapter are descriptions of the different circuit 

designs that were considered when investigating the design of this micro-battery power 

management system. 

 Chapter 3 provides an in-depth analysis of the topologies chosen to implement 

this system including first-order theory and simulation results where applicable.  A 

comparative discussion of alternate topologies is also presented. 

 Chapter 4 gives the measured results achieved from first-run silicon as well as 

presents the test setup used in taking these measurements.  The measured results are 

compared against theoretical and simulated results obtained from the previous chapter. 

 Chapter 5 provides conclusions for this work and details the enhancements that 

were made for the first revision of this system.  Figure A-1 contains the typical design 

flow used in designing each component of this power management IC. 

 

3 



 

CHAPTER 2  

MICRO-BATTERY POWER MANAGEMENT SYSTEM CONCEPTS 

Micro-Battery Structure 

 The batteries that are to be charged with this power management system are thin-

film, solid-state, Li-Ion micro-batteries.  Numerous papers have been written on 

processing procedures and characterization of these types of micro-batteries [1]–[8].  The 

power management IC presented in this thesis is targeted for use on the micro-batteries 

developed at JPL. 

 JPL researchers have been trying to develop a processing technique aimed at 

integration of micro-battery cells directly on-chip.  The fabrication process used by JPL is 

based upon the Oak Ridge National Laboratory (ORNL) process.  This process calls for 

annealing the sputtered films at 700°C in order to crystallize the cathode film [1].  This 

high temperature anneal makes it almost impossible to fabricate cells on temperature 

sensitive substrates (such as ICs), so JPL has pushed for developing a lower annealing 

temperature process on the order of 300°C, which is more compatible with CMOS 

technology.  Using this lower annealing temperature, they have fabricated cells with 

slightly reduced capacity cathodes but maintained excellent cycle life. 

 Just recently, JPL has found an improved method of fabrication for micro-battery 

cathodes that requires less processing steps [7].  The energy storage capability of a micro-

battery is limited by the amount of active material present [2].  The volume of active 

electrode material that can be deposited by sputtering is limited and the process is slow.  

The new method uses electrophoretic deposition (EPD), which is much faster and has 

shown to produce cells with a factor of ten increase in discharge capacities [7].   

 Micro-batteries that have been made available for this project have a reported 

capacity of 50 nAh.  The full-rated voltage for a cell is 4.25 V with a normal operating 

condition between 3 and 4.25 V.  A cell is overcharged if its voltage is above 4.4 V and 

in deep discharge for a voltage level below 2 V.  The normal charge rate is 50 nA or 1 

capacity (1 C) of the micro-battery with efficient charge rates as low as 0.1 C [5]. 
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 Two charging methods are needed when charging a Li-Ion micro-battery—current 

charging and voltage charging [5].  The necessity to charge micro-batteries at or below 

50 nA requires the design of a low-level current reference.  The voltage charger is given 

the task of maintaining a 4.25-V voltage bus to trickle charge a micro-battery to complete 

its charging cycle once it reaches full voltage capacity, or storing unused micro-batteries.  

Since a fully charged micro-battery is 4.25 V, this system has to operate with a 5-V 

supply, but recall that a 3.3-V/0.35-µm technology is being used to fabricate this system.  

This requires the use of dual VDD supply rails denoted by VDDH and VDDL for the 5 and 

3.3-V supplies, respectively, and carefully designed circuit topologies.   

 The micro-battery’s voltage state during the current charging process has to be 

monitored so that when the micro-battery reaches 4.25 V, it can be transitioned from 

current charging to voltage charging.  A low-resolution ADC was chosen to create the 

digital output representation of a micro-battery’s voltage state. 

Current Source 

 Current references are one of the basic building blocks of analog circuitry.  

Requirements desired from most current references are high output impedance, low 

temperature sensitivity over a broad temperature range and good power supply rejection.  

CMOS current references that perform well over temperature or require small area to 

implement have been reported [9]–[14].  For this power management system, it is desired 

to have a low-level current reference that occupies a small area and is insensitive to 

temperature variations.   

 In MOS transistors, the temperature dependence of the drain current originates 

from various physical parameters such as threshold voltage (VTH), mobility (µ), and 

thermal voltage (UT).  The mobility dependence of carriers in the conduction channel on 

temperature is given by 

 ( ) ( )
5.1

0
0

−









×=

T
TTT µµ  (2.1) 
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where T is the absolute temperature in Kelvin and T0 is 300K [15].  Some circuits reduce 

the effects of temperature on mobility by generating a proportional-to-absolute 

temperature (PTAT) voltage reference that can be used to produce an output current that 

is proportional to T 0.5, and therefore only slightly increases with temperature [10]. 

 A common way to produce a PTAT voltage reference is to use bipolar transistors, 

but the only bipolar transistor available in a standard CMOS process is a parasitic vertical 

bipolar.  These vertical bipolar transistors are poorly modeled, so an all CMOS topology 

seems better suited to design a current reference.  Sansen et al. developed an 800-nA 

current reference based off a bipolar PTAT voltage source implemented using floating 

MOSFETs operating in weak inversion [10].  This circuit uses several weakly inverted 

MOSFETs to generate the PTAT source, which in turn requires a large aspect ratio for 

those devices, consuming a large amount of chip area.  Measured results of this system 

show 3% temperature dependence between 0 and 80°C with a MOSFET acting as the 

current defining element. 

 To further reduce the temperature insensitivity of this type of design, Lee and 

Park [11] tried to completely cancel out the mobility dependence in the output current by 

multiplying a current that is proportional to mobility and a current that is inversely 

proportional to mobility with a CMOS square root circuit.  The CMOS square root circuit 

uses four pMOS transistors operating in weak inversion, which again requires a large 

area.  The result of this work is a 1.7% variation of output current (285 nA at 60°C) over 

a temperature range 0–75°C. 

 A well-known current reference proposed by Vittoz and Fallrath [9] is expanded 

upon by eliminating the need for a space-consuming resistor [12].  In lieu of a resistor, 

the new topology calls for a MOSFET operating in triode or linear mode of operation.  

This circuit topology uses weak inversion MOSFETs to set up a PTAT voltage source 

across the linear MOSFET.  This circuit is capable of producing extremely low reference 

currents (5 nA with a 3-V supply at 20°C), but occupies a large area due to the aspect 

ratio of the linear MOSFETs needed to create a large resistance used in generating a low-

level reference current. 
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 Another possible method of generating an on-chip current reference is explored in 

[13] using a switched-capacitor network.  The motivation for a switched-capacitor circuit 

is to avoid relying on physical parameters of MOS transistors and IC resistors to set an 

accurate reference current.  In addition, capacitance per unit area can be substantially 

independent of temperature.  The value of the reference current generated using Torelli’s 

switched-capacitor circuit is given by [13] 

 
clk

Ref

f
VC

I
×

=  (2.2) 

where C is the value of the capacitance, and fclk is the clock frequency in Hz.  One of the 

problems associated with this method of current generation is a ripple in the output 

current at the switching frequency.  This output current is also directly dependent on the 

reference voltage (VRef) applied, but can be adjusted by varying the clock frequency. 

 Instead of trying to just obtain first-order temperature effect cancellation of a 

current reference, some designs try to compensate for second-order temperature effects as 

well [14].  The proposed circuit by Fiori and Crovetti uses only five MOSFETs operating 

in strong inversion saturation and two resistors to cancel second-order temperature 

effects.  Simulated results of this circuit show that a 13.65-µA reference current with less 

than 0.5% variation of current output over the temperature range from –30 to 100°C has 

been developed in a 0.35-µm process.  This circuit can be very compact because it 

requires only MOSFETs operating in strong inversion saturation to be used, which 

normally translates to transistors with small aspect ratios. 

 Once a low-level reference current topology has been chosen, the reference 

current can be scaled accordingly using weighted current mirrors.  The application for 

this power management system dictates that it should be able to charge multiple micro-

batteries at one time.  This can be achieved by designing a low-resolution current-mode 

DAC to scale the reference current.  We set the limit for the number of micro-batteries to 

be charged at once to 15, which means the DAC needs to be capable of maintaining 4-bit 

accuracy if binary weighted current mirrors are used. 
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 When charging either a single or multiple micro-batteries at a time, the current 

charging output must remain a high impedance node to efficiently deliver current to the 

micro-battery.  Cascode current mirrors provide an improvement of output resistance 

over simple current mirrors.  The small-signal output resistance (Ro) of the cascode 

current source in Figure 2.1 is given by 

  (2.3) ( ) 2
24422 1 omoomoo rgrrgrR ≈++=

where ro = ro2 = ro4 is the MOSFET small-signal output resistance and gm is the MOSFET 

small-signal transconductance.  If M1 and M2 were removed from Figure 2.1, a simple 

current mirror would be left whose small-signal output resistance would be equal to ro4. 

 Although this cascode current mirror provides high output impedance, it does not 

allow for a high output voltage swing.  The dynamic range of this cascode current mirror 

with respect to VDD is limited to less than 

 VVVVVV DDTHPSatSDDDOUT 3.12 , −≈−−=  (2.4) 

where VSD,Sat is the saturation voltage of a pMOS transistor and VTHP is the pMOS 

threshold voltage.  Recall that the full voltage capacity of a micro-battery is 4.25 V.  If 

the 5-V supply were used to bias this cascode current mirror, there would not be enough 

M3

M1 M2

M4

VDD

IIN IOUT

VDD - VSD,Sat
- |VTHP|

VDD - 2(VSD,Sat
- |VTHP|)

VDD - VSD,Sat
- |VTHP|

 
Figure 2.1:  Cascode current mirror. 
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VBias = VDD - 2VSD,Sat -
|VTHP|

M3

M2

M4

VDD

IIN IOUT

M1

VDD - VSD,Sat VDD - VSD,Sat

VDD - VSD,Sat
- |VTHP|

 
Figure 2.2:  Wide-swing, low-voltage cascode current mirror. 

headroom to charge a micro-battery fully with this current mirror.  Alternate schemes of 

biasing cascode current mirrors for wide-swing or low-voltage applications exist [16]–

[20]. 

 The typical wide-swing, low-voltage cascode current mirror is presented in Figure 

2.2.  For this wide-swing current mirror to work efficiently, VBias must be set at VDD – 

2VSD,Sat – |VTHP|, leaving a VSD,Sat across mirror devices M3 and M4.  This is called a wide-

swing current source because the minimum voltage across the current source for proper 

operation is 2VSD,Sat [16], which is one threshold voltage drop less than the regular 

cascode mirror shown in Figure 2.1.  This current mirror is dependent on the voltage of 

VBias remaining constant and only works well for a small variation of input current.  For a 

large change of the input current, additional circuitry is required to track the VSG of the 

cascode devices M1 and M2, so the current mirror’s output characteristics do not vary 

[19]. 

 One approach to increase the dynamic range of a current mirror without extra 

biasing voltages is the self-biased structure shown in Figure 2.3.  Assuming that the 

threshold voltage of the devices are similar, [18] shows that the mirror devices M3 and M4 
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M3

M2

M4

VDD

IIN IOUT

M1

 
Figure 2.3:  Self-biased cascode current mirror. 

are in the triode or linear region and the cascode devices M1 and M2 are in saturation.  

This topology allows for simple implementation and high output voltage swing, but 

having the mirror devices biased in the linear region lead to some disadvantages [19].  

Linear mode MOSFETs have a high susceptibility to transistor mismatch causing current 

gain errors and output impedance is reduced compared to a conventional cascode current 

mirror. 

 Minch developed a circuit that biases the mirror devices in a cascode current 

mirror right at the edge of saturation, thus optimizing its dynamic range [20].  A 

schematic of this circuit is shown in Figure 2.4.  The values of the aspect ratios n and m 

are described in the paper.  The circuit operates by using the input current and a ratio of 

the input current to set up an exact VSD,Sat voltage drop across device M4.  M5 then acts as 

a level shifter, which creates a voltage of VDD – VSG – VSD,Sat on the gate of M5.  The gate 

voltage on M5 is used to bias the gate voltages of the cascode devices M7 and M9 of the 

current mirror.  The mirror devices M6 and M8 in the output of the current mirror now 

have the optimum headroom (VSD,Sat) to provide for the largest dynamic range possible 

from a cascode current mirror.   
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Figure 2.4:  Minch cascode current mirror. 

 An advantage of this circuit is that a replica of the input current is being used to 

generate the VSD,Sat voltage reference.  This means that as the input current changes over a 

wide range, the VSD,Sat voltage reference will adaptively bias itself to accommodate any 

level of inversion—weak, moderate, or strong.  One disadvantage of this circuit is 

reduced output impedance of the current mirror compared to a normal cascode current 

mirror because the mirror devices are biased right at the edge of saturation.  This will be 

explained in more detail in Chapter 3. 

Voltage Source 

 Once a micro-battery has been current charged up to 4.25 V, it has to be 

transitioned to a voltage charger to complete its charging process.  The voltage charger 

needs to output a constant voltage of 4.25 V and be able to trickle charge and/or store 

multiple micro-batteries attached to it at one time.  The exact values for resistance and 

capacitance of these micro-batteries have not yet been established, but the resistance is 



 

estimated to be as high as 1 GΩ.  For this reason, extra caution needs to be taken in 

designing the voltage source to handle a large variation of capacitance and resistance. 

 An ideal voltage amplifier provides infinite input impedance, zero output 

impedance, and a steady output voltage regardless of loading conditions.  If a voltage 

sample-voltage sum feedback amplifier is designed properly, the voltage gain is 

determined by the feedback network, the output resistance (Ro) is decreased, the input 

resistance (Ri) is increased, and the voltage gain remains constant for changes in circuit 

parameters [21].  This type of configuration is ideally suited for voltage amplifiers. 

 Voltage regulators are widely used components that accept a poorly specified DC 

input voltage and produce from it a constant, well-specified output voltage that can then 

be used as a supply voltage for other circuits [22].  The most common voltage regulator is 

the series regulator shown in Figure 2.5.  The output of this voltage regulator is based off 

the ratio of the resistors and the reference voltage (VRef) given by 

 
2

21

R
RR

VV RefOut
+

=  (2.5) 

Low drift and offset are essential for the op-amp so that the output voltage (VOut) is as 

stable as possible.  Very low output impedance will be produced at VOut, which is a 

requirement for a good voltage source. 

+VRef

VSS

VOut

R1

R2

 
Figure 2.5:  Schematic of series voltage regulator. 
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 The voltage sources described above are generally used to drive low resistive 

loads with a large amount of current output.  In contrast, for this application of voltage 

charging micro-batteries, a high output current availability is not needed from the voltage 

regulator.  The micro-batteries would have been current charged at a rate of 50 nA before 

they are transitioned to the voltage charger.  As long as the voltage charger node is at the 

same potential as the micro-batteries right before they are connected, each micro-battery 

should not draw more than 50 nA of current from the voltage charger node.  The purpose 

of the voltage charger is to provide a decaying current supply to each micro-battery until 

their full capacity of 50 nAh is reached.  In the worst-case scenario, the voltage charger 

would need to be able to provide 50 nA of current to each of the 15 micro-batteries at one 

time. 

Low-Resolution ADC 

 To be able to monitor the micro-battery voltage while current charging, a low-

resolution ADC is required.  The accuracy of a digitized signal is dependent on the 

number of samples taken and the resolution, or number of quantization levels, of the 

converter [16].  The resolution required of an ADC is dependent on its application.  The 

finer the range of interest, the more resolution required.  The sampling rate of an ADC is 

defined by the Nyquist criterion, which states that the sampling rate must be at least two 

times the highest frequency of the analog signal for it to be reconstructed accurately in 

the digital domain.  The analog signal that is of interest in this application is the slow, 

continuous ramping of the micro-battery voltage as it is being current charged.  Current 

charging times for micro-batteries have been reported to be greater than 30 minutes [5]. 

 Probably the four most popular architectures for ADC conversion are the flash, 

pipeline, successive approximation (SAR), and sigma-delta (Σ∆) converters.  Each of 

these ADC converters is intended for different applications, but all of them require one or 

more steps involving comparison of an input signal with a reference [17].   

 The flash converter is the most straightforward ADC architecture.  It requires a set 

of 2n comparators to measure an analog signal to n-bit resolution.  An example of a flash 

ADC architecture is shown in Figure 2.6, where FS is the full-scale input and AIN is the 

13 



 

. . .

En
co

de
r

+
_

+
_

+
_

+
_FS

2n

2FS
2n

2n-2FS
2n

2n-FS
2n

AIN

Digital

 
Figure 2.6:  Basic flash ADC architecture. 

analog input.  For a 3-bit flash ADC, eight comparators would be needed, each of which 

is biased with a discrete voltage value spaced 1 LSB apart.  The analog input signal is 

compared against the discrete voltage values to simultaneously generate 2n discrete 

digital output states.  The digital output is in the form of thermometer code and is usually 

converted to binary form using an encoder.  The benefit of the flash architecture is that 

the conversion only takes one ADC cycle.  The disadvantage of this type of architecture 

is the large number of carefully matched and properly biased comparators needed to 

generate a high-resolution output.   

 Pipelined or pipelined-flash converters divide the conversion process over several 

consecutive stages.  Each stage normally consists of a sample-and-hold circuit, an m-bit 

ADC (flash converter), and an m-bit DAC.  The m-bit flash converter converts the 

sampled signal from the sample-and-hold circuit to digital data.  This digital output forms 

one of the significant bits of the digital output.  The same digital output is fed back into 

the DAC whose output is subtracted from the original sampled signal.  The residual 

analog signal is then amplified (k) and sent to the next stage in the pipeline to undergo the 
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Figure 2.7:  Single stage of pipelined converter. 

same process.  This process continues until the desired resolution is acquired.  An 

example of a single stage of a pipelined ADC is shown in Figure 2.7. 

 The pipelined converter with p pipeline stages, each with an m-bit flash converter, 

can produce a resolution of n = p × m bits using p × (2m–1) comparators [17].  This 

corresponds to a higher resolution of pipelined converters compared to flash converters 

for the same number of comparators.  The total conversion time increases though from 

one to p cycles for pipelined converters.  However, since each stage samples and holds its 

input, p conversions can take place simultaneously so the total throughput of the 

pipelined converter can be equal to the flash converter, now with added p cycle latency. 

 The SAR converter uses a single comparator over many cycles to generate its 

digital output.  The SAR compares the unknown sampled voltage against a known 

voltage.  If the sampled voltage is higher than the known voltage, the SAR will set the 

significant bit.  If the sampled voltage is lower than the known voltage, the SAR does not 

set the significant bit.  This process repeats by using successively smaller weights in 

binary progression until the desired resolution, n, is reached.  An example of a SAR ADC 

is shown in Figure 2.8.  The limitation of the SAR is that it takes n comparison cycles to 

generate n-bit resolution, compared to p cycles for the pipelined converter and one cycle 

for the flash converter. 
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Figure 2.8:  Successive-approximation (SAR) ADC architecture. 

 The Σ∆ converter is advantageous to use when a high resolution, on the order of 

20+ bits, is needed.  It is able to have such high resolution because of a process known as 

noise-shaping in which the low-frequency noise components are pushed to higher 

frequencies beyond the input signal bandwidth.  The limitation of this type of converter is 

the latency associated with its digital output, which is significantly higher than the other 

architectures presented, and the digital filtering overhead required to produce a parallel-

bit binary output word.   

 Now that some possible circuit topologies have been investigated, this 

information can be used in collaboration with our system requirements to design a power 

management IC for micro-batteries.  The three main components of the design are a 

programmable low-level current charger, a constant voltage charger, and a voltage 

monitoring circuit. 

 

 

 

16 



 

CHAPTER 3  

DESIGN OF MICRO-BATTERY POWER MANAGEMENT SYSTEM 
COMPONENTS 

Programmable Current Source 

 To be able to charge micro-batteries effectively, a low-level current source with a 

high output impedance across a wide range of output currents is desired.  This output 

current also needs to have low temperature sensitivity so that it is able to function 

accurately in a variety of environments.  For these reasons, the current source chosen for 

this project encompasses two different parts; a temperature stable, low-level current 

generator (400 nA) and a 4-bit current output DAC with a novel output stage, dubbed the 

“VGS-multiplier,” which ensures a high output impedance over a large range of output 

current. 

Current Generator 

 Different current reference circuits were discussed in the previous chapter, but 

one design stood out due to its low sensitivity to temperature variations when used for 

this application.  Shown in Figure 3.1 is a beta-multiplier current reference with the 

nMOS devices M1 and M2 operating in weak inversion.  This architecture of the beta-

multiplier with weakly inverted devices functions as a PTAT voltage reference [9]. 

 MOSFETs operating with a VGS less than VT0 are said to be operating in weak 

inversion or sub-threshold mode as shown graphically in Figure 3.2.  In this region of 

operation, diffusion current dominates and the drain current becomes an exponential 

function of the gate voltage.  It is important to size M1 and M2 of Figure 3.1 such that for 

a given current level, the devices are guaranteed to remain in weak inversion in order for 

the PTAT reference to properly function. 

 To better illustrate analytically where the region of weak inversion exists, an 

inversion coefficient was first introduced by Vittoz [23] and then later expanded upon by 

Binkley et al. [24].  The simplified definition of inversion coefficient (IC) is 
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Figure 3.2:  Drain current plotted from weak to strong inversion. 
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Figure 3.1:  Beta-multiplier current reference topology. 
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where ID is the drain current, W and L are the effective channel width and length 

respectively, and Io is a process dependent current known as the technology current.  The 

technology current is defined as the drain current for a device with an aspect ratio of 

unity, W/L = 1, which is biased at the center of moderate inversion where IC = 1.  

According to Vittoz’s definition [23], a device is weakly inverted if its IC is less than 0.1, 

moderately inverted for an IC between 0.1 and 10, and strongly inverted for an IC greater 

than 10.  For this design, an aspect ratio of 120 was used to ensure that both devices 

would remain in weak inversion for drain currents less than 1 µA. 

The equation for an n-channel MOSFET operating in weak inversion is given by 

[25] 
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where µn is the electron mobility, C  is the gate oxide capacitance per unit area, k is 

Boltzman’s constant, T is the temperature in Kelvin, q is the electron charge, V

'
ox

THN is the 

nMOS threshold voltage, and n is the process dependent sub-threshold slope factor.  

Summing the voltages around the bottom half of Figure 3.1 using Kirchoff’s Voltage 

Law (KVL) yields 
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where 
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Solving for VGS from (3.2) gives 
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where UT is equal to the thermal voltage (kT/q) and IDO=2nµn
'
oxC W/L.  Substituting (3.5) 

into (3.3) and solving for the PTAT reference voltage yields 
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The cascode pMOS current mirror in Figure 3.1 provides the k ratio of the 

currents so that M1 and M2 devices have different drain currents allowing for a systematic 

VGS offset.  By sizing these two devices the same, it is possible to symmetrically layout 

the MOSFETs allowing for better matching, which will cause less error associated with 

random VGS mismatch of the nMOS pair.  For this design, a current ratio of k = 2 was 

implemented in the pMOS current mirror in order to limit the size of the resistor needed 

to generate a low-level reference current (IRef) of 400 nA. 

 P-well resistors with high sheet resistivity (ρ) exist in the SOI process selected to 

fabricate this power management system.  This allows a low-level current to be produced 

without the required resistor consuming a large chip area.  In addition, the temperature 

coefficient associated with the p-well resistor tracks that of the generated PTAT reference 

voltage to provide temperature stable operation of the current reference.  For a different 

technology without a high resistivity p-well option, the PTAT reference voltage 

generated by the weakly inverted MOSFETs can be reduced by connecting the body 

terminals of M1 and M2 together.  The new equation for the PTAT reference voltage 

would then be given by [9] 

  (3.7) ( ) RIkUV RefTPTATR ×==− ln

The only difference between (3.6) and (3.7) is the absence of the sub-threshold slope 

factor in (3.7).  This means that either an equivalent low-level reference current can be 

generated using a lower resistivity resistor option or a dimensionally smaller resistor can 

be implemented to generate the same IRef. 

 Mobility of bulk silicon in a semiconductor is determined by various scattering 

mechanisms.  The two most important mechanisms are lattice scattering and impurity 

scattering [26].  Lattice scattering results from thermal vibrations of the lattice atoms at 
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any temperature above absolute zero.  At higher temperatures, lattice scattering 

dominates and the mobility decreases with increasing temperature.  The hole mobility in 

p-type, bulk silicon is given by [27] 
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where Tn is T/300 K and N is the impurity concentration.  This equation was obtained by 

Arora et al. through experimental data over the temperature range 250 to 500K [27].  Due 

to the limitation of the temperature range in deriving (3.8), measured results of p-well 

resistors for this SOI process were obtained and compared against the derived equation as 

seen in Figure 3.3.  Notice that the two curves track well within the 250 to 500K 

temperature range and then start to deviate at lower temperatures.  This broad 

temperature range from –150 to 150°C was chosen for measurement purposes because of 

 
Figure 3.3:  Hole mobility in bulk silicon vs. temperature. 
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the possible extreme environments in which this system might operate. 

 Resistivity, ρ, of bulk silicon is dependent on its mobility and concentration of 

majority carriers, p [26]: 

 
pq pµ

ρ 1=  (3.9) 

The resistance per square (Rsq) for an IC resistor can be found by dividing its resistivity 

by the thickness of the silicon island.  Once the Rsq is known, then an integrated circuit 

resistor of any value can be made by varying its aspect ratio. 
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 Figure 3.4 shows a comparison plot of the resistance per square calculated using 

the mobility equation in (3.8), SPICE simulations with a process specific, first-order 

temperature coefficient term, and measured results across temperature.  Also included in 

this figure is a plot of the thermal voltage across temperature.  Recall from (3.6) that the 

only temperature dependent term in the PTAT reference is the thermal voltage, UT.  

Notice how well the thermal voltage tracks the measured Rsq curve from 0 to 100°C, 

which in turn will provide the current reference generator with temperature stable 

operation over this temperature range.  Simulation results of the current reference output 

show a 7% change in IRef from 0 to 100°C. 

Current Output DAC 

 In order for the generated 400-nA reference current to be scaled to different levels 

to charge one to N micro-batteries in parallel, it is fed into a current-mode DAC.  The 4-

bit DAC consists of a series of binary-weighted current mirrors driven by MOSFET 

switches (S3–S0) and is shown in Figure 3.5.  Using four bits, it is possible to produce 16 

different continuous current output levels ranging from 0 to 750 nA in 50-nA steps.  

When charging micro-batteries at a normal rate of 1 C (50 nA), up to 15 micro-batteries 

can be charged simultaneously given a full-scale input to the DAC. 
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Figure 3.4:  Comparison of Rsq calculated using Arora’s mobility equation, SPICE 

simulations, and measured results, all compared to thermal voltage UT. 
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Figure 3.5:  Current-mode DAC topology. 
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 Another key component to this design is the ability to interchange between 

continuous current charging and pulse-width modulated (PWM) current charging.  By 

applying a PWM voltage input to the switches of the DAC, it is possible to charge micro-

batteries at an average rate lower than that made possible by the least significant bit 

(LSB) of the DAC (50 nA).  For instance, a 10% duty cycle input can be applied to S0 of 

the DAC producing an overall effect of charging at 5 nA or a 0.1 C rate.  Experimental 

results have shown that pulse-charging increases the cycle life of Li-Ion batteries due to 

improved replating of Lithium [28]. 

 Most often charge injection issues do not arise unless dealing with a sample and 

hold topology where switched capacitors are utilized.  For the sample and hold case, 

shown in Figure 3.6, the inversion layer charge is dumped into the holding capacitor 

when the switch is opened.  The error associated with this type of setup is a positive 

voltage spike at the output as the hold capacitor (CH) is injected with a small surge of 

current.  The problem then of course is how to minimize the inversion layer charge, 

which will in turn minimize errors associated with charge injection.  Usually, the effect of 

charge injection when a switch is closed is not taken into consideration because the signal 

source is driving CH through the MOS switch. 

 Wegmann et al. [29] show that a rapid variation of the gate voltage causes a 

variation of the MOSFET surface potential because the amount of mobile charges cannot 

change instantaneously.  The surface potential induces an immediate variation of the 

depletion width, which compensates the excessive charge.  Equilibrium corresponding to 

the new gate voltage is reached by the subsequent charge flow to drain and source.  This 

Vin Vout

CH

Clk

 
Figure 3.6:  Sample and hold circuit illustrating charge injection. 
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is “charge injection.”  This undesirable effect had to be examined and minimized for this 

system since a low-level output current is desired and severe current output transients 

could damage micro-batteries.   

 The equation for charge injection is given by [30] 

  (3.11) ( THGSoxch VVCLWQ −××= ' )

where Qch is the total charge in the inversion layer.  From this equation, it is clear that the 

physical size of the switch and the VGS voltage are both factors that the designer can 

manipulate to minimize the charge in the inversion layer.  What is not evident in this 

equation, however, is how the charge is shared between the source and drain of the 

device.  In most cases, it is assumed that half the excess charge is shared equally between 

the source and drain.  In reality, the fraction of charge that exits through the source and 

drain terminals is a relatively complex function of various parameters such as the 

impedance seen at each terminal to ground and the transition time of the clock [29]. 

 To help minimize the total charge in the inversion layer of the input switches in 

the DAC, the lower 3.3-V supply voltage, VDDL, was used as the switching voltage 

instead of the higher 5-V supply voltage, VDDH.  In addition, all the switches were sized 

identically instead of sizing them with their respective binary-weighted value, like the 

cascode devices above them, thus reducing their effective area.  Also, charge injection 

decreases when a slow transient is applied to the input of a switch compared to a fast 

transient [29].  For this reason, an input slew-rate control circuit consisting of an inverter 

buffer and a capacitor were added before each switch input as shown in Figure 3.7. 

 The inverter buffer consists of a short L inverter (fast) followed by a longer L 

inverter (slow).  A capacitor is added to further slow the input transient response to the 

DAC.  The purpose of the slew-rate control buffers is to ensure symmetrical inputs to 

each switch and slow the rise and fall time of the digital inputs, so the circuit has more 

time to dissipate each switch’s inversion layer charge.  A simulated response of the slew-

rate control circuit is shown in Figure 3.8.  As the switch input transitions high, the first 

inverter transitions low immediately followed by the second inverter which has to charge 

the capacitor at its output, slowing its rise time. 
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Figure 3.7:  Input slew-rate control circuit applied to each of the DAC inputs. 

 

 

 

 
Figure 3.8:  Simulation of input slew-rate control circuit. 
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 Two different situations arise in simulating the DAC design of Figure 3.5 when 

the switching voltages are applied to the inputs (S3-S0).  When the DAC is in a steady-

state or start-up condition where no initial voltage has been applied to a given switch, 

there is a delay in the output current response.  This delay occurs on the rising edges of 

the output current pulses as seen in Figure 3.9 and is due to an initial charging of all 

capacitances associated with a given switch’s cascode devices and any parasitics within 

the output current path.   

 The other condition seen in Figure 3.9 involves the DAC being in an active state 

where all the capacitances and cascode devices have been fully charged prior to the next 

switch cycle.  The difference between the two states is the delay associated with 

capacitance charging that is no longer present in the active state.  This situation was 

simulated by including an initial full-scale input pulse to the DAC (‘1111’) before 

individually pulsing the inputs to the switches.   

 
Figure 3.9:  Simulation results of start-up and active conditions of DAC output. 
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 Figure 3.9 also shows how much charge injection affects the output current when 

a switch is open or closed.  When the circuit is operating in the initial-state condition, an 

input switch closing does not affect the output current because its charge injection is just 

transferred to the uncharged capacitances that are inherently present in the system.  For 

the active-state condition, the charge injection associated with a switch closing does 

affect the output current because the circuit’s stray capacitances are already pre-charged 

by the initial pulse input.  For both active and initial conditions, a switch opening 

contributes to an overshoot of output current due to charge injection.  From Figure 3.9 it 

looks like the charge injection from a switch opening is proportional to the output 

current, but this is not the case.  The large current spike occurring at the end of the 

simulation comes from the combination of all four input switches opening 

simultaneously, so all the switches’ charge injection is being summed at the output  

(400-nA overshoot). 

 Despite the lengths taken to reduce charge injection into the system by including 

the input slew-rate control circuit, minimizing the sizing of the input switches, and using 

the lower supply voltage as the switching supply, the DAC still seems to produce 

considerable charge injection.  However, without the input slew-rate control circuit 

applied to the input switches of the DAC, the output current overshoot is 1.85 µA.  This 

equates to almost a factor of five reduction in the overshoot of output current with the 

addition of the input slew-rate control circuitry.  The current overshoots in the output 

current would also not be so obvious if larger current levels were being output since 

channel charge is not dependent on the current level.  If the DAC were providing a 10-µA 

output current, a 400-nA overshoot would only equate to a 4% change of the output 

current.  The overshoot in the initial output response to a full-scale input and the final 

pulse in Figure 3.9 can be further reduced by opening the input switches in a controlled 

manner.  Offsetting the switch openings in time would decrease the amount of overshoot 

of the output current that a micro-battery would have to sink at one time. 

 The output stage of the DAC consists of a LVCCM biased by VBias shown 

previously in Figure 3.5.  A cascode current mirror provides for higher output impedance 

(Ro) of the current charger compared to a single output device.  High output impedance is 
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important for the system because we want to mimic the operation of an ideal current 

source, which theoretically has infinite output impedance.  The LVCCM scheme was 

used because a fully charged micro-battery has a voltage capacity of 4.25 V and the 

current source needs to provide adequate headroom to charge to this level.  A regular 

cascode current mirror would only provide a charging capability up to VDDH – |VTHP| – 

2VSD,Sat.  For a standard 0.35-µm SOI process, this would equate to approximately 1.3 V 

below the VDDH supply voltage (3.7 V).  For the case of the LVCCM used in this design, 

the micro-batteries can charge to approximately 2VSD,Sat (500 mV) below the VDDH supply 

voltage or 4.5 V. 

 The bias voltage for the LVCCM is generated using the “VGS-multiplier” [31] 

shown biasing the output stage of the DAC in Figure 3.10.  The op-amp senses the gate 

voltage of M10 and M11 with respect to VDD (VSG) with its non-inverting input.  Assuming 

an ideal op-amp with no error voltage between the two input terminals of the op-amp, the 

inverting input is at the same voltage as the non-inverting input, VSG down from VDD.  

This is an accurate assumption if the op-amp has a large open-loop gain and negligible 

offset.  The resistor divider between the VDD supply voltage and the inverting input sets 
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Figure 3.10:  VGS-multiplier biasing the LVCCM of the DAC output stage. 
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up a current that flows through the resistor between the inverting input and the output of 

the op-amp.  If all the resistors are equally sized, then the output of the op-amp and the 

gates of M12 and M13 are forced to be 1.5VSG down from VDD.  This leaves the mirror 

devices M10 and M11 with 0.5VSG, which is greater than VSD,Sat, for their voltage headroom 

(VSD) in the LVCCM. 

 The novelty of this circuit comes in its ability to provide adequate headroom for 

M10–M13 to remain in saturation from weak to strong inversion, over a wide range of 

input currents, and over a broad temperature range while still providing high output 

impedance.  Some other LVCCM bias circuits have been developed [23], [20], [32], but 

none encompass all the benefits of the VGS-multiplier.  Minch describes a method that 

biases the current source devices of a LVCCM right at the edge of saturation where VSD = 

VSD,Sat [20].  This, however, does not deliver the highest output impedance possible from 

the current mirror.   

 The output resistance of the Minch current mirror shown in Figure 2.4 is 

  (3.12) ( ) 6677 1 oomoo rrgrR ++=

where ro6 is the small-signal output resistance of the device biased at the edge of 

saturation.  The VGS-multiplier does an opposite trade-off by biasing the current source 

device a little farther into the saturation region thus reducing the current mirror’s overall 

output voltage swing, but provides higher output impedance.  The output resistance of the 

VGS-multiplier shown in Figure 3.10 has the same form as (3.12) 

  (3.13) ( ) 11111313 1 oomoo rrgrR ++=

but ro11 is greater than ro6 of the Minch circuit since M11 is biased further into saturation 

than M6.   

 To help illustrate graphically where VDS,Sat is located and how it pertains to output 

impedance, Figure 3.11 shows a typical IDS vs. VDS curve for an nMOS device.  The area 

to the left of the pinch-off locus is known as the linear or triode region of operation in 

which a resistive channel directly connects the source and drain of the MOSFET.  Once 

the channel has reached the pinch-off point for a given VGS, the drain current becomes 

31 



 

 
Figure 3.11:  IDS vs. VDS curve showing regions of operation of an nMOS transistor. 

constant if short-channel effects are neglected [33].  This region of constant current is 

known as the saturation region of operation.  The intersection of the pinch-off locus and a 

given VGS curve defines a MOSFET’s VDS,Sat voltage [33].  A transistor’s output 

impedance can by found by finding the slope of the curve at a given point.  As the slope 

flattens out in the saturation region, the output impedance reaches its maximum; hence 

the reason for higher output impedance in the VGS-multiplier over the Minch circuit. 

 The temperature stable beta-multiplier current reference, the DAC with input 

slew-rate control circuitry, and the VGS-multiplier comprise the current charger in this 

design.  Figure 3.12 shows a DC simulation of the current charger output at room 

temperature as the micro-battery voltage (VBatt) is swept from 0 to 5 V.  The three curves 

in the figure represent the output current generated by a 1 LSB input, a mid-scale input, 

and a full-scale input into the DAC.  The current charging profile associated with these 

inputs remains flat over the entire battery voltage range, 0–4.25 V, indicative of the 

current charger’s high output impedance.  Above 4.5 V, the cascode devices start to fall 
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Figure 3.12:  Simulated DC sweep of current charger output at room temperature for 

selected input codes. 

out of saturation as the battery voltage nears the upper supply voltage, VDDH, turning off 

the output stage of the DAC. 

 The charger output current as a function of temperature is dependent mainly on 

the beta-multiplier reference current.  Figure 3.13 shows a simulation of how the charger 

output for a mid-scale input varies with temperature.  Notice that at lower temperatures, 

the charger output current starts to increase because the reference current increases.  This 

might not be an accurate representation of how the actual current reference will operate 

since the resistor parameters used in simulations were not modeled for low temperature 

situations.   

 Recall from (3.1) that the IC is temperature dependent on Io, which is described 

by 

  (3.14) 2'2 Toxoo UCnI µ=
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Figure 3.13:  Simulation of DAC mid-scale output plotted against temperature. 

Based off experimental resistance measurements, the hole mobility was determined 

(Figure 3.3) and used to find the technology current for this process.  Calculations show 

that Io is proportional to temperature, which corresponds to inverse temperature 

proportionality to IC, assuming a constant ID.  Therefore, as temperature decreases, 

devices are moved from weak inversion slightly into moderate inversion (Figure 3.14), 

which will cause a shift in the reference current.  Note that as M1 and M2 of the current 

generator (Figure 3.1) move well into moderate inversion for temperatures below  

–100°C, the generated reference voltage is no longer a PTAT voltage, thus temperature 

compensation against the p-well resistor is no longer achieved.  For an extreme 

temperature case of –100°C, the devices M1 and M2 are at the transition point between 

weak and moderate inversion (IC = 0.1) so the reference voltage can still be assumed 

PTAT.   

 The largest contributor to the shift in output current at low temperatures in Figure 

3.13 is the temperature dependence of the p-well resistor used in the beta-multiplier 
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Figure 3.14:  Calculated IC of M1 and M2 devices of beta-multiplier current reference. 

current reference.  Measured results of the resistance per square of a p-well resistor 

(Figure 3.4) show that as the temperature decreases the resistance increases.  Assuming 

that the PTAT reference created by the weak inversion MOSFETs has not changed, this 

increase in resistance would cause a decrease in the output current, not an increase as 

seen in Figure 3.13.  Remember however, that the simulated p-well resistance against 

temperature does not display the same low-temperature effects as the measured p-well 

resistance (Figure 3.4), hence the discrepancy between the expected output current and 

the simulated output current seen in Figure 3.13 for temperatures below 0°C. 

Regulated Voltage Source 

 As well as being current charged, micro-batteries also need to be voltage charged 

to complete their charging cycle [5].  The methodology for charging these Li-Ion micro-

batteries is to provide them with a constant current or PWM current charge until they 

reach full voltage capacity (4.25 V) and then switch them to a constant voltage charge.  

During the constant voltage charging phase, the current delivered by the regulated 
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voltage source decays exponentially to zero (trickle charge) until full capacity of the 

micro-battery has been reached (50 nAh). 

 The optimum situation for constant voltage charging would be to have an ideal 

voltage source available on-chip to charge the micro-batteries.  Since this is not possible, 

an alternative method must be used to provide a constant voltage low impedance node 

with a variable current output capability.  The regulated voltage source shown in Figure 

3.15 was designed using a operational transconductance amplifier (OTA) to meet these 

criteria.  This type of op-amp configuration represents a voltage-sample, voltage-sum 

amplifier that can provide low output impedance due to the nature of negative feedback 

[21]. 

 The desired output of this amplifier (VReg) coincides with the full voltage capacity 

of a micro-battery (4.25 V).  The non-inverting input of the op-amp is driven by an input 

reference voltage chosen to be equal to a bandgap voltage reference, 1.2 V, for quick 

conversion to an on-chip reference in the future.  For a 1.2-V non-inverting input and VReg 

= 4.25V, the ratio of resistors can be found by using 
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Figure 3.15:  Regulated voltage source using a voltage amplifier. 
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The voltage loop needs to be capable of providing a stable operating voltage for multiple 

micro-batteries connected to VReg at one time.  Simulation results show that the regulated 

voltage source can drive a resistive load as low as 70 kΩ.  With the addition of a 

compensation capacitor (CC) that is provided off-chip, the voltage source can handle 

capacitive loads up to 100 µF at its output without compromising loop stability.  As 

further testing of micro-batteries is done and its capacitance is determined as a function 

of both voltage and number of charge cycles, this external compensation capacitance 

could be moved on-chip. 

Micro-Battery Voltage Monitor 

 A micro-battery’s voltage needs to be monitored during the current charging 

process so that when it reaches its full voltage capacity, it can be transitioned to constant 

voltage charging.  The digital representation of a micro-battery’s voltage state is sent to a 

microcontroller that decides to continue current charging a micro-battery or to transition 

it to the voltage charging source.  The microcontroller bases its decision from three 

different voltage level states of the micro-battery––undercharged, normal, and 

overcharged.  Since only three states are needed by the microcontroller to make its 

decision, a 2-bit output from the voltage monitor is all that is needed. 

 To be able to continuously monitor the micro-battery’s voltage state a 2-bit flash 

ADC, shown in Figure 3.16, was designed.  Flash converters typically have the highest 

speed of any type of ADC and they are relatively easy to design due to their simple 

topology.  The disadvantage of the flash ADC is the amount of physical layout area they 

consume.  For every bit of increased resolution in a flash ADC, the area occupied by it 

doubles [16].  Since this design only has a 2-bit output, D0 and D1, the amount of area 

needed is minimal.  The output of a flash ADC is given in thermometer code and 

typically is converted to binary code using an encoder to minimize the number of output 
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Figure 3.16:  Two-bit flash ADC architecture. 
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VDDH

pins.  For this application, only three voltage levels need to be distinguished so no 

encoder is needed. 

 The conversion from an analog to digital signal in the flash ADC is done by using 

comparators fed by reference voltages.  The two reference voltages that are needed to 

determine a micro-battery’s state are 3 and 4.25 V.  A micro-battery with a voltage level 

below 3 V is undercharged, between 3 and 4.25 V is normal, and above 4.25 V is 

overcharged [34].  The reference voltages for the comparators are set by passing a fixed 

current (I) through a resistor ladder.   

 The current, I, is generated through a negative feedback loop using the OTA’s 

reference input voltage, VRef, and R1.  Again, the reference voltage was chosen to be 1.2 V 

for easy conversion to an on-chip bandgap voltage reference.  Using a 1 to 1 ratio of 

currents in the pMOS current mirror in Figure 3.16, the same current, I, flows through the 

resistor ladder.  The ratio of resistors to set the comparator voltage references is 

determined by 

 V
R
R

VV RefLow 3
1

2 =







=  (3.16) 
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and 
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 +
=  (3.17) 

 The decision-making aspect of the flash ADC is left up to the comparator.  If the 

non-inverting input of a comparator is larger than its inverting input, then it outputs a 

logic 1, whereas if the inverting input is larger than its non-inverting input, it outputs a 

logic 0.  Most comparators consist of three stages; a preamplification stage, a decision 

circuit consisting of a positive feedback loop, and an output buffer [16].  Measurements 

used to characterize a comparator are its gain, offset voltage, propagation delay, and 

hysteresis window.  The comparator design for this flash ADC is shown in Figure 3.17.  

Note that the upper supply voltage used for this comparator is VDDH (5 V) in order to 

handle a 4.25-V reference input.  The use of the output level shifter in the comparator is 

to limit the voltage that is supplied to the next gate in this 3.3-V process to avoid gate 

IBias Vinv
Vpos

Vout

VDDH

VSS

Decision
Circuit

Output
Level

Shifter

 
Figure 3.17:  Comparator architecture used in the flash ADC. 
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oxide breakdown.  The input clamp is included to ensure that the drain nodes of the input 

pair are never more than a VTHN voltage of each other to minimize transient recovery 

time. 

 The micro-batteries are expected to reach full capacity after being charged for 

approximately an hour [5].  This translates into a slow ramp that the inverting input (Vinv) 

of the comparator will see as the micro-battery voltage increases.  For this reason, it is not 

necessarily important to have an extremely fast comparator stage.  We also expect the 

micro-battery voltage to be steady as it is being charged so that we can use a small 

hysteresis window. 

 A simulation of the hysteresis characteristic of the comparator is shown in Figure 

3.18.  The inverting input, Vinv, was held at mid supply (2.5 V) while Vpos was swept from 

both below and above 2.5 V.  Switching of the comparator output occurs approximately  

6 mV above and below 2.5 V yielding a 12-mV hysteresis window.  The sharp transitions 

of this simulation plot also allude to the high gain of the comparator.  Gain of a 

 
Figure 3.18:  Simulation of comparator hysteresis window with Vinv = 2.5 V. 
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comparator is determined by calculating the derivative of the DC transfer curve.  Through 

simulations, the gain of this comparator was found to be approximately 77 dB, which 

results in a 400-µV resolution.  The output voltage (VOut) in this plot does not reach up to 

the 5-V supply voltage due to the voltage shifters at the output of the comparator. 

 Propagation delay is the time difference between the Vpos input crossing the Vinv 

input and the output changing states.  Figure 3.19 shows the simulated propagation delay 

for the comparator shown in Figure 3.17 to be approximately 150 ns, easily sufficient for 

this application.  This simulation displays an almost worst-case scenario where Vpos is 

applied at a level just 20 mV above the reference level, Vinv = 2.5 V, and then suddenly 

taken away.  The reason for the long delay time in this comparator is that single high-gain 

stage comparators exhibit a longer propagation delay time than those having several 

cascaded low-gain stages [16].   

 A 3.3-V digital output buffer is included after each comparator’s output in order 

for the flash ADC to be able to drive an off-chip load.  The buffer consists of a 1× 

 
Figure 3.19:  Simulation of propagation delay of comparator. 
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Figure 3.20:  Flash ADC simulation by sweeping VBatt. 

inverter followed by a 3× inverter.  Simulation results for the entire flash ADC are shown 

in Figure 3.20.  The micro-battery voltage, VBatt, was swept from 0 to 5 V and plotted 

against the reference voltages to show the switching points of the digital outputs of the 

ADC.  Notice that the comparators change state immediately following VBatt increasing 

past a given comparator voltage reference level (VLow and VHigh). 
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CHAPTER 4  

MICRO-BATTERY POWER MANAGEMENT SYSTEM – MEASURED RESULTS 

Test Setup 

 A system level diagram of the micro-battery power management system is shown 

in Figure 4.1.  Two external references are required for the system to function properly, a 

10-µA bias current (IBiasN) and a 1.2-V reference voltage (VINP).  Four outputs of this 

power management IC need to be measured, the two digital outputs from the voltage 

monitoring ADC (D0 and D1), the charger current output (Icharge), and the voltage 

regulator output (VReg).   

 The system operates by attaching one or more micro-batteries to Icharge and 

inputting a 4-bit digital word to the DAC to choose the level of current charging  

(0–750 nA).  The flash ADC continuously monitors the voltage level of the micro-

Micro-Battery
Power Management

System

Icharge

50 nAh 50 nAh

micro-batteries

VReg

CC

D
ig

ita
l O

ut
pu

ts
D

0  
D

1 VBatt
Sensor

Digital Inputs
S3  S2  S1  S0

Icharge
Control

Dual Power
Supply

3.3V

 
Figure 4.1:  System level diagram of micro-battery power management system. 
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batteries attached to the Icharge node and outputs a digital representation of the micro-

battery’s voltage state via D0 and D1.  The voltage regulator output VReg should output a 

constant voltage equal to 4.25 V and be able to support multiple micro-batteries at one 

time without loss of voltage integrity.  A compensation capacitor (CC) node from the 

voltage regulator circuit is padded out off-chip.  This allows external compensation of the 

voltage regulator loop so stability is maintained when driving a large capacitive load. 

 A test board was built for this system using a solid copper ground plane board, 

shown in Figure 4.2.  Each digital input was created using a triple pole, triple throw 

(3P3T) switch.  For each switch, two of the switch poles are connected to VDDL and to VSS 

to simulate a logic ‘1’ and logic ‘0’, respectively, for constant current charging testing.  

The third pole of each switch is connected to a common BNC connector that drives all 

the inputs to the DAC.  The common BNC input can be driven by a function generator to 

simulate PWM current charging.   

 The 10-µA bias current generated off-chip is input to IbiasN, where it is mirrored 

on-chip to provide current biases for multiple cells.  It is created using the configuration 

 
Figure 4.2:  Copper ground plane test board used in taking measurements. 
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Figure 4.3:  Off-chip 10-µA bias current generator. 

shown in Figure 4.3.  The bias current output (IBias) is set by the ratio of the resistors 

 ( ) 321

1

RRR
RVI DDLBias +

=  (4.1) 

The 1.2-V reference is generated using a ratio of two resistors and a ceramic bypass 

capacitor to filter out any noise at this node.   

Micro-Battery Current Charger 

 A Keithley 2400 SourceMeter® was used to measure the current charger output 

because it can act as both a voltage source and current meter at the same time with 

current measuring capabilities as low as 10 pA.  Sweeping the voltage source of the 

Keithley mimics the response of a micro-battery increasing voltage as it is being current 

charged.  DC sweeps to test the current charger output were measured in this manner.  A 

typical DC sweep of the current charger output from 0 to 5 V at room temperature for 

each DAC input code is presented in Figure 4.4.  Also included in this figure are labels 
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Figure 4.4:  Measured DC sweep of VBatt at room temperature for each DAC code. 

distinguishing between the three different operating regions for a micro-battery—under-

voltage, normal, and over-voltage. 

 From Figure 4.4, it is obvious that as the DAC input code increases, the amount of 

charger output current increases as well.  The output current remains constant over most 

of the swept range until VBatt approaches the VDDH supply voltage (5 V).  This constant 

current output is indicative of a high impedance output stage of the DAC made possible 

by the use of a cascode current mirror.  Another thing to note from this figure is the wide 

range of current that is being sourced by the output stage of the DAC while maintaining a 

large voltage swing at the output of the current mirror because of the use of the VGS-

multiplier.  The charger current starts to fall off at higher voltages because the output 

stage of the DAC is being shut-off.   

 Before continuing with the explanation of the performance of the current charger, 

some definitions of DAC performance merits need to be clarified.  In a DAC, the offset 
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error (Eoff) is defined to be the output that occurs for the input code that should produce 

zero output.  The gain error (Egain) is the difference at the full-scale value between the 

ideal and actual curves when the offset error has been reduced to zero.  The absolute 

accuracy of a converter is defined to be the difference between the expected and actual 

transfer responses [35].  The absolute accuracy includes the offset, gain, and linearity 

errors.  An n-bit accuracy implies that the converter’s error is less than the full-scale 

value divided by 2n–1. 

 After both the offset and gain errors have been removed, the integral nonlinearity 

(INL) and the differential nonlinearity (DNL) errors can be found.  INL is defined to be 

the deviation of the output from a straight line [35].  The straight line used as comparison 

can be either a line through the endpoints of the converter’s transfer response, or the best-

fit straight line such that the maximum difference is minimized.  INL measurements 

made on this DAC used the endpoint line comparison.   

 DNL is defined as the difference between the ideal and nonideal values of a 

DAC’s transfer curve.  The DNL specification measures how well a DAC can generate 

uniform analog LSB multiples at its output [16].  Generally, a DAC will have less than 

±0.5 LSB of DNL if it is to be n-bit accurate.  If the DNL for a DAC is less than ±0.5 

LSB, then the DAC is guaranteed to be monotonic [35].  A monotonic DAC is one in 

which the output always increases as the input increases, as is the case in Figure 4.4. 

 Testing of this system was done with three samples of test chips.  A plot of the 

transfer curve of the programmable current charger output is shown in Figure 4.5.  These 

data points where taken from the same measurement data in Figure 4.4 for a VBatt equal to 

4 V.  Each chip’s output current for a given DAC input is compared with the ideal 

transfer curve.  Looking at this transfer curve alone does not give much insight into the 

performance of the DAC other than the measurements of offset and gain error and 

reiterating that it is monotonic.  The measured offset error for all three chips is 0.002 

LSB.  The gain error varied from –0.2 to 0.08 LSB across the 3-chip sample. 

 To better understand how well this DAC performs, measurements of the DAC’s 

DNL and INL will be presented.  Figure 4.6 shows the DNL characteristics of the 

programmable current charger over a 3-chip sample measured at room temperature.   The  
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Figure 4.5:  Measured transfer cure of the programmable current charger. 

 

 

 
Figure 4.6:  Measured DNL of programmable current charger. 



 

monotonic nature of the DAC is once again illustrated through this figure because the 

worst-case DNL from all three chips is –0.15 LSB.  This figure also alludes to the high 

accuracy of this DAC.  For a 4-bit DAC to have 4-bit accuracy, the worst-case DNL 

would have to be less than ±0.5 LSB.  Since the LSB for this DAC is –0.15, the DAC can 

actually achieve approximately 6-bit accuracy with 4-bit resolution.   

 The INL measurements of the programmable current charger are shown in Figure 

4.7.  The worst-case INL for the 3-chip sample is 0.15 LSB indicating that the measured 

transfer curve does not deviate much from the ideal transfer curve once the gain and 

offset errors are removed.  It is common practice to assume that a converter with n-bit 

resolution will have less than ±0.5 LSB of DNL and INL [16]. 

 Temperature tests on the programmable current charger were also done to see 

how well it performed over temperature variations.  As seen in Figure 4.8, the current 

charger performed extremely well over the temperature range 0–100°C.  The figure 

 
Figure 4.7:  Measured INL of programmable current charger. 
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Figure 4.8:  Temperature comparison of 50 and 750-nA Icharge currents. 

compares the temperature variation of the output current for the two extreme cases, DAC 

input code of 1 and 15.  For an input code of 1 and 15, there is a 2.1% and 1.2% deviation 

in output current over this temperature range, respectively, which is 5% less than 

expected from simulation results.  This is the first temperature stable, low-level current 

reference fabricated on SOI that has been found to date in the literature [9]–[14].  As will 

be seen later in the chip micrograph, the programmable current reference only occupies 

an area of 0.15 mm2 (300 µm × 500 µm). 

 Below 0°C, the current charger output starts to fall off as seen in Figure 4.9.  This 

is opposite from what was simulated earlier (Figure 3.13) as expected.  Also included in 

Figure 4.9 is a plot of the measured resistance per square of a p-well resistor across 

temperature that was shown already in Figure 3.4.  As the resistance varies with 

temperature so does the output current.  Remember that back in Chapter 3, a constant ID 

was assumed when deriving Figure 3.14.  In actuality, the output current level decreases 
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Figure 4.9:  Comparison of current charger output and p-well Rsq. 

with temperatures below 0°C.  This decrease in output current keeps M1 and M2 of Figure 

3.1 in weak inversion based of off (3.1), maintaining a PTAT voltage reference.   

 To better illustrate this point, Figure 4.10 shows the calculated PTAT voltage 

reference across temperature compared to the ideal PTAT voltage reference created by 

equating UT (kT/q) over temperature.  This voltage was not padded off-chip so a direct 

measurement could not be made.  Instead, a measured resistance value was multiplied by 

the measured charger output current to give the calculated PTAT voltage.  Both the 

calculated and ideal PTAT references have similar slopes concluding that the reference 

voltage remains a PTAT reference over this temperature range and the p-well resistor is 

the cause for the decrease in output current at lower temperatures.  Using another current 

defining element other than a p-well resistor with a linear behavior at low temperatures 

will allow for a constant current output over a greater variation of temperature. 
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Figure 4.10:  Ideal and calculated PTAT voltage reference across temperature. 

Micro-Battery Voltage Charger 

 Measured results of the voltage charger output Vreg shown in Figure 3.15 across 

the 3-chip sample reveal that all three chips had approximately the same 4.4-V output 

voltage.  This excellent correlation between the chips means that the output was very 

precise, but not very accurate since the designed output was 4.25 V.  Even though the 

measured results deviate less than 4% from the designed voltage, this can still cause 

problems for the micro-batteries.  Overcharging a micro-battery leads to capacity loss 

with a significant increase in micro-battery resistance due to cathode degradation.  

Lithium metal also is deposited on the anode and releases hydrogen gas when a micro-

battery is overcharged [5]. 
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 Something that might not be obvious to the reader so far is the importance of the 

transition from current to voltage charging due to the limited capacity of the micro-

battery (50 nAh).  Ignoring overcharging effects for the moment, the output voltage of the 

voltage regulator and the voltage of the micro-battery after it has been current charged 

must match very closely.  The mechanism by which the micro-battery’s voltage state is 

known is the voltage monitoring ADC.  This means that the voltage state denoted by a 

‘11’ digital transition at the output of the flash ADC in Figure 3.16 must correspond to 

the output voltage of the voltage regulator.  Any mismatch between these two voltages 

can possibly create a situation through which a micro-battery can be flash-charged or 

discharged.   

 For instance, if the micro-battery voltage monitor transitioned to a ‘11’ digital 

output at 4.2 V and the micro-battery was then transitioned to the 4.4-V regulated voltage 

source without any voltage loss in the transfer, the voltage potential difference between 

the micro-battery and the regulated voltage supply would be 0.2 V.  This voltage 

difference would result in the voltage regulator supplying a large amount of current to the 

micro-battery so that the micro-battery’s voltage would equalize to the voltage regulator 

output voltage.  This instant rush of current can be quite large and result in damaging the 

micro-battery or degrading its capacity.  The same would be true in the opposite case, but 

the micro-battery would have to source a large amount of current to reduce its voltage 

instantly.   

 Upon looking into the source of the 4% deviation in the output voltage of the 

regulator, a problem with our Cadence layout extraction method was discovered.  For the 

preliminary design of the voltage regulator, a resistor model that modeled both first-order 

temperature and voltage coefficients was used.  The modeled resistance was based on 

providing an aspect ratio and the resistance per square for the resistor in the netlist file.  

When translating the design into Cadence software, the aspect ratios of the resistors used 

in the design were directly ported over and entered into their respective resistor model in 

Cadence.   

 Cadence extraction methods for the process design kit (PDK) used to fabricate 

this system are based on the Spectre simulation tool.  In our laboratory, SmartSpice is 
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preferred over Spectre for simulations, so the extracted netlists from Cadence are run 

through a perl script that converts the Spectre netlist to a SmartSpice compatible netlist.  

Through the process of extracting a netlist from either a schematic or a layout view, 

Cadence removes the aspect ratios of the resistors and only reports a resistance value.  In 

order to include temperature and voltage effects of the resistors in simulations, the aspect 

ratio of the resistors had to be entered manually into the extracted netlists.  The aspect 

ratios entered into the netlist were the aspect ratios reported in the schematic view of 

Cadence.   

 The problem lies in that the aspect ratio and the resistance per square given by 

Cadence does not relate directly to the resistance value generated by Cadence.  Recall 

from (3.10) that the resistance of an IC resistor is 

 





=
W
LRR sq  (4.2) 

Figure 4.11 shows the properties window for a resistor used in the voltage regulator 

circuit.  Using equation (4.2) with the reported W, L, and Rho (same as Rsq) parameters 

from this window yields a resistance of 30.2 kΩ and does not equal the overall resistance 

value reported by Cadence (25.6066 kΩ).  Cadence uses a factor to scale either the 

effective width or length thus reducing the overall resistance that is not evident in this 

properties window.  So, when copying the reported W and L factors from this window to 

include in our SmartSpice simulations, a higher resistance value was used in simulations 

compared to what was fabricated, offsetting certain voltage and current levels defined by 

resistors.  This same problem relates to all of the resistors used throughout the system 

including the current charger and flash ADC.  This problem can be easily remedied by 

changing the resistor model used in simulations to accept resistance and width values 

instead of length and width values. 
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Figure 4.11:  Cadence properties window of resistor. 
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Micro-Battery Voltage Monitor 

 The transition points of the of the flash ADC were also at a higher voltage than 

expected due to the aforementioned problem with the aspect ratio of the resistors.  The 

typical transition points for D0 and D1 as VBatt is swept from 0 to 5 V are approximately 

3.45 and 4.76 V, respectively.  Both of these values correspond to a 9% error compared 

to the Cadence simulated output voltages (3.17 and 4.36 V).  The difference between the 

micro-battery voltage associated with the transitioning of D1 (4.76 V) and the voltage 

regulator output (4.4 V) is 360 mV.  This voltage difference is enough to cause the micro-

battery to flash discharge as it is transitioned from current to voltage charging as 

discussed earlier. 

 Looking back at Figure 4.4 closer reveals two glitches in the output current at 

approximately VBatt equal to 3.4 and 4.7 V.  An enlarged plot of these two glitches for a 

mid-scale DAC input (400 nA) is shown in Figure 4.12.  At first it was believed that the 

 
Figure 4.12:  Current charger output for a mid-scale input to show glitches. 
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two dips in output current were an artifact of the measuring equipment because simulated 

DC sweeps of the charger output did not show this phenomena.  However, recall that the 

2-bit flash ADC that monitors the micro-battery voltage is also connected to the same 

Icharge node and its digital outputs transition at 3.45 and 4.76 V.   

 The 2-bit flash ADC contains two comparators whose non-inverting inputs (VBatt) 

are connected to Icharge that compare the micro-battery voltage against two set voltage 

reference levels shown previously in Figure 3.16.  As the micro-battery voltage increases, 

the gate voltages of the non-inverting input transistors (Vpos) in the comparators also 

increase, Figure 3.17.  This increase in gate voltage with respect to the source causes the 

accumulation layer to become depleted followed by the creation of an inversion layer.  

The accumulation and inversion layers have similar capacitance values denoted by C  

described earlier.  The change from accumulation to depletion, however, adds a depletion 

capacitance in series with the oxide capacitance [16] causing an overall decrease in 

capacitance value as seen in Figure 4.13.  Upon the creation of the inversion layer, the 

'
ox

 
Figure 4.13:  Simulation of overall gate capacitance of comparator input devices. 
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Figure 4.14:  Full system-level transient simulation of power management IC. 

overall gate capacitance value returns to C .  As the capacitance changes, some of the 

current from the charger output will flow to the gate of the comparator inputs to 

reestablish equilibrium, causing what appears to be a dip in the output current 

characteristic in Figure 4.12.   

'
ox

 Figure 4.14 shows a system-level transient simulation of the power management 

system.  In this transient simulation, the correlation between the glitches in the output 

current and the digital output transitions is apparent.  These same dips in current, 

however, are not visible in the simulated DC sweep of the system shown previously in 

Figure 3.12.  In a real-life application, when current charging actual micro-batteries, this 

glitch in output current will not be so prominent.  The amount of current needed to charge 

the gate capacitance of the comparators is given by 

 
dt
dVCI =  (4.3) 
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The measured rise time of the micro-battery voltage as it is being current charged is in 

terms of tens of minutes.  The measured charger current output results were obtained in 

seconds, corresponding to a much faster rise-time.  A comparison of the effect of the rise 

time of a micro-battery compared to the magnitude of the current glitches was done in 

simulations.  Results from this simulation show that as the rise time is decreased, the size 

of the glitches reduces.  This result follows what one would expect from (4.3). 

 The chip micrograph of the power management IC is shown in Figure 4.15.  This 

micrograph contains the programmable current charger, the voltage charger, and the 2-bit 

flash ADC, which occupies an area less than 0.34 mm2 (excluding bond pads).  Common 

centroid techniques were used when doing layout to maximize transistor matching where 

needed. 

 

 

 
Figure 4.15:  Chip micrograph of the micro-battery power management IC. 
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CHAPTER 5  

CONCLUSION 

Conclusion 

 This thesis presented the design and analysis of a power management IC for solid-

state, thin-film, Li-Ion micro-batteries developed at JPL.  The power management IC was 

implemented in a 0.35-µm, single-poly, PD-SOI CMOS process.  Measured results 

revealed that a power management IC able to charge micro-batteries has been developed.  

Working first-pass silicon showed proper functionality of this power management IC for 

use on micro-batteries, even though some voltages in the voltage charger and flash ADC 

were higher than expected.  Fixing the Cadence-induced resistor sizing error is good 

reason for a design revision that will provide for more accurate voltage output levels. 

 Temperature tests of the current charger showed that the current output was 

accurate and insensitive to temperature variations in the range 0–100°C.  The regulated 

voltage supply worked properly but contained an offset error due to improper resistor 

sizing when converting the Cadence netlist extraction into a SmartSpice compatible 

netlist used for simulations.  This is easily remedied by modifying the resistor model used 

for simulation purposes.  The 2-bit flash ADC that monitors the micro-battery during the 

current charging phase also experienced the same resistor sizing problem causing the 

digital outputs to transition at higher voltages than expected.  However, the digital 

outputs of the flash ADC did transition in the correct method as the micro-battery voltage 

increased. 

Future Work 

 Some of the improvements that can be made for this system have already been 

implemented in a second version of the power management IC and will be discussed 

next.  We received the latest release PDK for the first revision of this power management 

IC.  The Cadence resistor sizing problem in the new PDK was remedied and the reported 

W and L values of the resistor now correlates with that of the total output resistance 
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reported by the Cadence properties window.  Due to a delay in the fabrication schedule, 

measured results of the first revision power management IC are not presented in this 

thesis.   

 Part of this work was done in collaboration with the University of Idaho, also 

under contract with JPL.  The requirement of their system is to design a microcontroller 

that provides the digital inputs to this system (S3–S0) and reads its digital outputs (D0 and 

D1).  Per request from the University of Idaho, the 2-bit micro-battery voltage monitoring 

ADC was replaced with a 4-bit ADC for the first revision of this system.  With the 

addition of two more bits of resolution, a more accurate representation of a micro-

battery’s voltage state can be obtained.   

 In addition, for the original IC to operate two external biases are needed; a 1.2-V 

voltage reference (VINP) and a 10-µA current bias (IBiasN).  The first revision of this IC 

contains an on-chip bandgap voltage reference and beta-multiplier current reference to 

provide the 1.2-V and 10-µA biases, respectively.  With these two additions, the IC 

should be able to work autonomously without any external biasing other than the required 

voltage supplies (VDDH, VDDL, and VSS). 

Bandgap Voltage Reference 

 Many circuits contained in this system relied on the use of a voltage reference 

(VINP).  As described earlier, the voltage reference was set to 1.2 V for a quick conversion 

to an on-chip bandgap voltage reference in the future.  Bandgap voltage references 

combine the positive temperature coefficient (TC) of the thermal voltage, UT, with the 

negative TC of the diode forward voltage in a circuit to achieve a voltage reference with a 

theoretically zero TC [16].  Figure 5.1 shows a schematic of the bandgap voltage 

reference design that was implemented in this system.   

 Assuming no mismatch between the nMOS pair, M1 and M2, the VGS drop of these 

devices will be the same for a given current level, I.  Summing the voltages around the 

bottom loop using KVL, ignoring any mismatch between M1 and M2, yields 

  (5.1) 21 DD VRIV +×=
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Figure 5.1:  Bandgap voltage reference circuit. 

VBG

where VD1 and VD2 are the diode drops associated with D1 and D2, respectively.  The 

equations for the current through D1 and D2 are 

 T

D

nU
V

SD eII
1

1 =  (5.2) 

 T

D

nU
SD eIKI

2

2 ×=
V

 (5.3) 

where IS is the saturation current, K is the size ratio of the diodes (K = D2/D1 = 8), and n 

is very close to 1.  Solving (5.2) and (5.3) in terms of voltage gives 

 







=

S

D
TD I

I
nUV ln1  (5.4) 
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 







×

=
S

D
TD IK

I
nUV ln2  (5.5) 

Substituting (5.4) and (5.5) into (5.1) and solving for I yields 

 
R

nU
R

KnUI TT )8ln()ln(
==  (5.6) 

For this bandgap voltage reference, an I of 10 µA is chosen to limit the size of R needed 

to generate the voltage reference. 

 Using a one to one ratio in the pMOS current mirror, the same 10-µA I flows in 

the output branch of the circuit into L×R and D3.  The bandgap reference voltage (VBG) is 

then equated by 

  (5.7) 3DBG VRLIV +××=

where VD3 = VD1.  Substituting (5.6) into (5.7) and solving for the bandgap voltage yields 

  (5.8) 3)ln( DTBG VKnLUV +=

The TC of the bandgap reference is equal to zero when 

 0)ln( 3 =+=
dT

dV
dT

dUKnL
dT

dV DTBG  (5.9) 

where the TC of the thermal voltage is 0.085 mV/°C and the TC of the diode forward 

voltage is approximately –2 mV/°C.  This is true when 

 5.23
085.0
2)ln( ==KnL  (5.10) 

For K = 8 and n = 1, L equates to approximately 11.3 to achieve a zero TC.  The output 

voltage desired from the bandgap reference is 1.2 V, so the value of L needs to be 

decreased from 11.3 to 9 to achieve this voltage at the cost of increased TC.   

 The diodes in the circuit of Figure 5.1 could be implemented using any type of 

diode structure, but chips from a previous run using the same process contain 1× and 8× 
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Figure 5.2:  Voltage difference of 1× and 8× diode sizing for ESD and PN diodes. 

samples of ESD and PN diodes.  Measurements were done on these diodes to determine 

which would be better suited for the bandgap reference.  Figure 5.2 shows a measured 

comparison plot of the DC characteristics of the PN and ESD diodes at room 

temperature.  This figure was created by measuring the difference between the 1× and 8× 

voltage values for a given current level.  The ESD diode pair has a smaller slope of its 1× 

and 8× voltage difference when compared to the PN diodes.  This means that slight 

variations in the current I through the diodes should have negligible effect on the voltage 

across R of Figure 5.1. 

 Figure 5.3 shows the measured I–V characteristics of the ESD diode pair at room 

temperature.  For a given current value (IDiode), the voltage across the diodes (VDiode) 

changes due to the sizing difference, setting up a voltage drop across the resistor R.  For 

an IDiode of 10 µA, the voltage difference of the diode pair is 54 mV, which can also be 

discerned from the ESD diode voltage difference in Figure 5.2 at a 10-µA current level.  
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Figure 5.3:  Measured I–V characteristics of 1× and 8× ESD diodes. 

In order to generate the wanted 10-µA current, the R of Figure 5.1 needs to be 5.4 kΩ, 

which can be provided by a parallel combination of resistors using the p-well resistor 

option. 

 Simulations of the bandgap voltage reference are shown in Figure 5.4.  The output 

voltage across temperature is presented along with its corresponding temperature 

coefficient.  A generic diode model and a resistor model with first-order temperature 

effects were used in these simulations.  Remember from Figure 3.4 that the resistor model 

used in simulations does not track measured resistance values below –50°C.  Between 

0–100°C, the temperature coefficient of the bandgap output voltage is approximately 

–100 ppm/°C, which should provide for a stable voltage reference across temperature 

variations in this range. 

 

 

65 



 

66 

 
Figure 5.4:  Simulation of bandgap reference temperature performance. 

Beta-Multiplier Current Reference 

 A beta-multiplier self-biased current reference topology was chosen to provide the 

10-µA current reference on chip.  The schematic of the current reference is shown in 

Figure 5.5.  This topology looks similar to the low-level current reference used in the 

current charger of the micro-battery system, but in this topology, all MOSFETs are 

biased in strong inversion.   

 Summing the voltages around the bottom half of the loop yields 

  (5.11) IRVV GSGS += 21

Using the first-order theory square-law equation 
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M9
M10

M12
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VB1

VB2

I

I

I

 
Figure 5.5:  Beta-multiplier self-biased current reference. 

IBias

 ( THNGS VVI −=
2

)β , (5.12) 

the VGS voltages of M1 and M2 can be written in terms of current I as 

 THNGS VIV +=
1

1
2
β

 (5.13) 

and 

 THNGS V
K

IV +
⋅

=
1

2
2

β
 (5.14) 

where ( 1
'

1 LWCoxnµβ = ) , β2 = K×β1, and VTHN is the nMOS threshold voltage.  Note that 

here, thanks to SOI’s unique isolation properties, body effect is eliminated to provide 
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VTHN1 = VTHN2 (assuming perfect matching).  Solving for I in (5.12) using (5.13) and 

(5.14) gives 

 
2

1
2

112








−=

KR
I

β
 (5.15) 

The K size factor in the current mirror M1 and M2 must be greater than 1 for this design to 

work.  The same current flows through both M1 and M2, but since M2 has a larger area, 

the VGS voltage drop of M2 is smaller than M1, allowing for a voltage drop across the 

resistor R.  Simulations show that using a K = 1.5 and a R = 6.4 kΩ gives the desired  

10-µA bias current. 

4-Bit Flash ADC 

 To increase the resolution of the micro-battery voltage output, the 2-bit flash 

ADC from the first chip was increased to a 4-bit flash ADC.  This higher resolution 

voltage monitoring circuit will be used by a microcontroller to determine if a micro-

battery’s capacity has been degraded to a point where it is no longer useful as a battery as 

well as monitor its voltage through the current charging process.  A micro-battery will 

either fail as a short or open circuit depending on the circumstances of its degradation due 

to repetitive deep discharge cycles [5].   

 The schematic of the 4-bit flash ADC is shown in Figure 5.6.  This schematic 

resembles that of the 2-bit flash ADC shown previously in Figure 3.16.  The basic 

principle of operation is the same but now with more comparators and reference levels 

established to distinguish between smaller voltage changes.  Since a higher number of 

comparators were used in the new voltage monitor, the 16-bit temperature code output 

from the flash ADC had to be converted to a 4-bit binary output form using a priority 

encoder. 

 Simulation results of the upgraded flash ADC with priority encoder is shown in 

Figure 5.7.  The simulation was performed by sweeping the micro-battery voltage (VBatt) 

from 0 to 5 V and viewing the digital output (D0–D3) transitions.  The digital outputs 

were scaled from their nominal 3.3-V  output,  representing a  logic  ‘1’,  to a  level that is  
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Figure 5.6:  4-bit flash ADC architecture with priority encoder. 
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Figure 5.7:  Transient simulation of 4-bit flash ADC with priority encoder.  (Digital 

output levels scaled to show transitions—normally logic ‘1’ = 3.3 V.) 

better suited for viewing the details of their switching voltages.  To better illustrate the 

digital transition points, Table 5.1 provides a list of the digital output transition points as 

VBatt is swept from 0 to 5 V.  As the micro-battery voltage reaches the specified level in 

the table, the output transitions to the corresponding digital output state. 
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Table 5.1:  Tabulated digital output transitions from 4-bit flash ADC. 
 

VBatt (V) D3 D2 D1 D0

0 0   0   0   0 

0.553 0   0   0   1 

0.817 0   0   1   0 

1.081 0   0   1   1 

1.344 0   1   0   0 

1.608 0   1   0   1 

1.873 0   1   1   0 

2.139 0   1   1   1 

2.404 1   0   0   0 

2.668 1   0   0   1 

2.931 1   0   1   0 

3.195 1   0   1   1 

3.463 1   1   0   0 

3.725 1   1   0   1 

3.993 1   1   1   0 

4.258 1   1   1   1 

71 



 

LIST OF REFERENCES 

 

72 



 

[1] W.C. West, J.F. Whitacre, E.J. Brandon, and B.V. Ratnakumar, “Lithium Micro-
Battery Development at the Jet Propulsion Laboratory,” Aerospace and Electronic 
Systems Magazine, Vol. 16, Issue 8, pp. 31–33, Aug 2001. 

[2] D.M. Ryan, R.M. LaFollette, and L. Salmon, “Microscopic Batteries For Micro 
ElectroMechanical Systems (MEMS),” Proceedings of the 32nd Intersociety Energy 
Conversion Engineering Conference, pp. 77–82, July 1997. 

[3] P. Singh et al., “Fuzzy Logic-Based Microbattery Controller for MEMS 
Applications,” Sixteenth Annual Battery Conference on Applications and Advances, 
pp. 747–751, Jan 2001. 

[4] J.B. Bates, G.R. Gruzalski, and C.F. Luck, “Rechargeable Solid State Lithium 
Microbatteries,” Proceedings of Micro Electro Mechanical Systems, pp. 82–86, Feb 
1993. 

[5] V. Sukumar, et al., “Nano Current Charging Algorithm for Thin-Film Lithium 
Microbatteries,” Proc. 11th NASA Symposium on VLSI Design, Coeur d’ Alene, 
May 28–29, 2003. 

[6] K.B. Lee and L. Lin, “Electrolyte Based On-Demand and Disposable 
Microbattery,” Micro Electro Mechanical Systems, pp. 236–239, Jan 2002. 

[7] B.V. Ratnakumar, W.C. West, and J.F. Whitacre, “Electropheretic Deposition for 
Fabricating Microbatteries,” NASA Tech Brief, Vol. 27, No. 5, May 2003. 

[8] J.B. Bates, G.R. Gruzalski, N.J. Dudney, and C.F. Luck, “New Amorphous Thin-
Film Lithium Electrolyte and Rechargeable Microbattery,” Power Sources 
Symposium, pp. 337–339, June 1992. 

[9] E.A. Vittoz and J. Fellrath, “CMOS Analog Integrated Circuits Based on Weak 
Inversion Operation,” IEEE Journal of Solid-State Circuits, Vol. SC-12, No. 3, pp. 
224–231, June 1977. 

[10] W.M. Sansen, F.O. Eynde, and M. Steyaert, “A CMOS Temperature-Compensated 
Current Reference,” IEEE Journal of Solid-State Circuits, Vol. 23, No. 3, pp. 821–
824, June 1988. 

[11] C.H. Lee and H.J. Park, “All-CMOS temperature independent current reference,” 
Electronic Letters, Vol. 14, No. 14, pp. 1280–1281, July 1996. 

73 



 

[12] H.J. Oguey and D. Aebischer, “CMOS Current Reference Without Resistance,” 
IEEE Journal of Solid-State Circuits, Vol. 32, No. 7, pp. 1132–1135, July 1997. 

[13] G. Torelli, A. de la Plaza, “Tracking switched-capacitor CMOS current reference,” 
IEE Proceedings of Circuits, Devices, and Systems, Vol. 145, No. 1, pp. 44–47, 
Feb. 1998. 

[14] F. Fiori and P.S. Crovetti, “Compact temperature-compensated CMOS current 
reference,” Electronic Letters, Vol. 39, No. 1, pp. 42–43, Jan. 2003. 

[15] S.M. Sze, Physics of Semiconductor Devices, New York:  Wiley, 1981.  ISBN 0-
471-33372-7. 

[16] R.J. Baker, H.W. Li, and D.E. Boyce, CMOS Circuit Design, Layout, and 
Simulation, IEEE Press, 1998.  ISBN 0-7803-3416-7. 

[17] B. Black, “Analog-to-Digital Converter Architectures and Choices for System 
Design,” Analog Dialogue, Vol. 33, No. 8, pp. 1–4, 1999. 

[18] C. Galup-Montoro, M.C. Schneider, and I.J.B. Loss, “Series-Parallel Association of 
FET’s for High Gain and High Frequency Applications,” IEEE Journal of Solid-
State Circuits, Vol. 29, No. 9, Sep. 1994. 

[19] F. Ledesma, R. Garcia, and J. Ramirez-Angulo, “Comparison of New and 
Conventional Low Voltage Current Mirrors,” The 45th Midwest Symposium on 
Circuits and Systems, Vol. 2, pp. 49–52, Aug. 2002. 

[20] B.A. Minch, “A low-voltage MOS cascode current mirror for all current levels,” 
The 45th Midwest Symposium on Circuits and Systems, Vol. 2, pp. 53–56, Aug. 
2002. 

[21] J.F. Pierce and T.J. Paulus, Applied Electronics, Bell & Howell Company, 1972.  
ISBN 1-878907-42-5. 

[22] P.R. Gray, R.G. Meyer, Analysis and Design of Analog Integrated Circuits, Third 
Edition, John Wiley & Sons, Inc., 1993.  ISBN 0-471-57495-3. 

[23] E.A. Vittoz, “Micropower Techniques,” in Design of Analog-Digital VLSI Circuits 
for Telecommunications and Signal Processing, J.E. Franca and Y. Tsividis, Eds., 
pp. 53-96.  Prentice-Hall, Englewood Cliffs, NJ, 1994.  ISBN 0-132-03639-8. 

74 



 

[24] D.M. Binkley, M Bucher, and D. Foty, “Design-Oriented Characterization of 
CMOS over the Continuum of Inversion Level and Channel Length,” Proceedings 
of the 7th IEEE International Conference on Electronics, Circuits & Systems, 
ICECS’2k, pp. 161–164. 

[25] C.C. Enz, F. Krummenacher, and E.A. Vittoz, “An Analytical MOS Transistor 
Model Volid in All Regions of Operation and Dedicated to Low-Voltage and Low-
Current Applications,” special issue of the Analog Integrated Circuits and Signal 
Processing Journal on Low-Voltage and Low-Power Design, Vol. 8, pp. 83–114, 
July 1995. 

[26] H.C. Casey, Jr., Devices For Integrated Circuits, John Wiley & Sons, Inc., 1999.  
ISBN 0-471-17134-4. 

[27] N.D. Arora, J.R. Hauser, and D.J. Roulston, “Electron and Hole Mobilities in 
Silicon as a Function of Concentartion and Temperature,” IEEE Trans. Electron 
Devices, ED-29, 292, 1982. 

[28] D. Linden and T.B. Reddy (eds.) Handbook of Batteries, Third Edition, McGraw-
Hill, 2002.  ISBN 0-070-37874-6. 

[29] G. Wegmann, E.A. Vittoz, and F. Rahali, “Charge Injection in Analog MOS 
Switches,” IEEE Journal of Solid-State Circuits, Vol. SC-22, No. 6, Dec. 1987. 

[30] B. Razavi, Design of Analog CMOS Integrated Circuits, McGraw-Hill, 2001.  
ISBN 0-072-38032-2. 

[31] S.C. Terry, B.J. Blalock, J.R. Jackson, S. Chen, M.M. Mojarradi, and E.A. Kolawa, 
"Development of Robust Analog Electronics at the University of Tennessee for 
NASA/JPL Extreme Environment Applications," invited paper in the 2003 Proc. of 
the University/Government/Industry Microelectronics Symp., pp. 124-127, Boise, 
Idaho, June 30-July 2, 2003. 

[32] P. Heim and M.A. Jabri, “MOS Cascode-Mirror Biasing Circuit Operating at any 
Current Level with Minimal Output Saturation Voltage,” Electronics Letters, Vol. 
31, No. 9, pp. 690–691, 1995. 

[33] R.C. Jaeger, Microelectronic Circuit Design, Irwin/McGraw-Hill, 1997.  ISBN 0-
07-032482-4. 

75 



 

[34] W.C. West, J.F. Whitacre, E.J. Brandon, and B.V. Ratnakumar, “Fabrication and 
Testing of All Solid-State Microscale Lithium Batteries for Microspacecraft 
Applications,” Journal of Micromechanics and Microengineering, Vol. 12, No. 1, 
pp. 58–62, 2002. 

[35] D. Johns and K. Martin, Analog Integrated Circuit Design, John Wiley & Sons, 
Inc., 1997.  ISBN 0-471-14448-7. 

 

 

 

 

76 



 

APPENDIX 

 

 

77 



 

 

 

Requirements

Choose
Topology

Adapt Topology
Using Existing

Prototyped Cells

Spice Simulations

Enter Schematic
Into Cadence

Extract Netlist

Custom Layout In
Cadence

Run DRC on
Layout

Run LVS

Prototype Circuit

Test Circuit

Modifications
(if needed)

 
Figure A-1:  Design flow process. 
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