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ABSTRACT 

 

Microbes play critical roles in nutrient cycling in terrestrial ecosystems.  In particular, 

microbial decomposition of organic matter is a key step in carbon and nutrient cycling, 

linking above-ground and below-ground pools.  It is well known that the microbial 

community changes in structure and function following the introduction of organic matter 

into a terrestrial system.  The decomposition of plant litter has been extensively 

investigated but the decomposition of animal-derived organic matter has often been 

overlooked.  The unique characteristics of animal input are hypothesized to dictate a 

distinct decomposition process.  This study examined the microbial community 

responsible for decomposition of animal-derived organic matter.  Our objective was to 

determine the taxonomic and functional succession of microbial populations in a Cadaver 

Decomposition Island (CDI) during decomposition.  To address our objectives, soils from 

beneath four cadavers at the UT Anthropological Facility were sampled throughout the 

decomposition process.  Reproducible patterns in the concentration of extractable total 

nitrogen, ammonia and organic carbon in the soil were observed.  The distinct trends in 

microbial respiration and net N mineralization rates indicated that a major functional shift 

in the community occurred following the Active Decay stage.  Human-associated 

Bacteroides were detected at high concentrations throughout decomposition, up to 198 

days after cadavers were first placed.  This study revealed the succession in microbial 

community function and structure during decomposition of animal-derived organic 

matter, and has implications in the fields of public health and forensic science. 
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PREFACE 

 

“We tend to train our attention and science on life and growth, but of course death and 

decomposition are no less important to nature’s operations …” (Pollan 2006).   

 

Microbial ecology has long been separated conceptually from the ecology of macrobiota. 

But as investigation continues on their survival strategies and interactions, we are starting 

to see some unifying principles across the divisions of life.  We are also starting to realize 

their importance in nutrient cycling, generation of economically important secondary 

metabolites and enzymes (Karlovsky 2008), and their ability to degrade contaminants 

(Lee Wise 2000).  We have only just scratched the surface of the ‘black box’ (it will take 

some time to study the estimated 10
4
-10

9 
bacterial species on Earth!).  This study 

investigates the microbes responsible for a key soil process: decomposition.  Extensive 

study has been done on the decomposition of fertilizer and plant organic matter, but we 

barely know anything about animal organic matter.  Below is a brief review of studies on 

the microbial decomposition of plant matter, which give us a framework for 

understanding animal organic matter as an important part of the organic matter pool and 

global biogeochemical cycles. 
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CHAPTER I  

LITERATURE REVIEW 

Microbial Nutrient Cycling in Soils 

 

An important, often overlooked occupation in any community (even a microbial 

one!) is waste management.  Saprophytic microorganisms, such as bacteria and fungi, 

play this key role in recycling organic residue into below and above ground pools of 

nutrients.  They target dead organic material (detritus) or existing recalcitrant soil organic 

matter (SOM) for their energy, carbon and nitrogen needs.  In a terrestrial ecosystem, 

detritus is usually a variety of plant litter and animal carcasses.  Depolymerization is the 

critical, often rate-limiting, step from detritus polymers to something bioavailable (Figure 

1).  This step releases bioavailable monomers such as amino acids, lignin, starch, lipids, 

nucleic acids etc. for immediate use by plants or microbes.  Studies suggest that even in 

high nitrogen conditions, extracellular enzymes are still excreted by microbes to 

depolymerize complex detritus to ‘mine’ C and N (an often limiting element in soil 

ecosystems) (Jans-Hammermeister et al. 1997; Fontaine et al. 2003).   

When N is not limited, microbial metabolism can mineralize monomeric organic 

compounds to inorganic forms like ammonium (NH4), phosphate (H2PO4
-
), and sulfate 

(SO4
2-

).  When ammonium is abundant, it can be transformed into nitrate through 

nitrification, a two-step process.  First, ammonium is oxidized to nitrite by specific 

obligate aerobes like Aerobacter aerogenes, Stretomyces grisens and a variety of 

Pseudomonas 

species; oxygen must 

be present for 

nitrifiers to conduct 

ammonia oxidation, 

but some have the 

capacity to slowly 

respire with nitrite as 

the final electron 

acceptor (Robertson 

& P. Groffman 2007).   

Second, nitrite is 

oxidized into nitrate 

by the α, δ and γ 

Proteobacteria 

subclasses, 

Nitrobacter, Nitrospina, Nitrospira and Nitrococcus (Robertson & P. Groffman 2007).  

Besides the lack of oxygen, nitrification can be inhibited by low pH, and high chloride 

concentrations (Johnson 1992).  Nitrate is a strong acid anion and high concentrations 

lead to acidification of soil, and depletion of minerals like Ca
2+

 and Mg
2+

 (Likens et al. 

2013).  Also, nitrate is more susceptible to leaching than ammonium (does not adsorb to 

negative clay particles) and could cause health effects if it contaminants the groundwater 

Figure 1. Simplified schematic of decomposition in N cycle. Figure taken 

from Schimel et al. (2004)  
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(Rail 2000).  Nitrate can also be lost via denitrification to nitrous oxide and then 

dinitrogen gas.  Any of the inorganic forms of N mentioned above can be stored as plant 

and microbial biomass (immobilization), although there is some evidence that plants in a 

variety of ecosystems can uptake organic N forms like amino acids (Joshua P Schimel & 

Chapin F. Stuart 1996).  Upon cell death, microbial cellular components such as lipids, 

amino sugars and cell walls, can be recycled back into the pool of organic N polymers. 

 The strongest factor that dictates the speciation of inorganic nitrogen is the 

concentration of oxygen.  In an anoxic (anaerobic) system, the inorganic N speciation is 

dominated by ammonium since nitrification is limited.  Generally, when oxygen is not 

present, facultative aerobes must use another terminal electron acceptor, like NO3
−
, Fe 

(III), Mn (IV) etc., with a lower potential energy yield than oxygen.  If an inorganic 

electron acceptor is not available, glucose can act as an electron donor and acceptor 

during fermentation.  Both processes yield less energy compared to aerobic respiration 

thus anaerobic metabolism slows down decomposition (Tate 1979).  Even in oxic, well-

drained soils, pockets (<1 centimeter) of anoxic ‘microsites’ allow anaerobic processes, 

like fermentation or anaerobic respiration, to occur (Parkin 1987).  These anoxic 

microsites can arise from limited water diffusion, or high local respiration from new 

detritus deposits (Parkin 1987).  Opposing redox processes could be only millimeters 

away (G. van der Lee et al. 1999).  Despite their small size, microsites can contribute 

greatly to the total activity of a local ecosystem (Parkin 1987).    

 The contribution of microbes to nutrient cycling on a landscape scale is not 

limited to the nitrogen cycle: microbes balance plant CO2 fixation (in photosynthesis) by 

respiring CO2 back into the atmosphere as they decompose detritus and/or SOM.  The 

turnover of carbon from recent plant residue varies from 10 years in tropical savannas 

and grasslands to 520 years in wetlands (this is why they are such good C sinks!) (Raich 

& Schlesinger 1992).  In contrast, carbon in recalcitrant SOM are protected by clay 

aggregates and can remain for thousands of years (Paul et al. 2001).  To complete the 

terrestrial C cycle, over time and pressure the organic material buried in soil and 

sediments may become fossil fuels, such as coal and oil.  When these are burned, carbon 

is returned back into the atmosphere. 

Soil Organic Matter 

The formation and decay of SOM is important to the biochemical and physical 

properties of soil and therefore, the health of soil microbial communities and plant 

growth.  Microbial byproducts of metabolism will complex into recalcitrant, 

heterogeneous, amorphous mixtures of polysaccharides, melanin, proteins, plant and 

microbial lipids, nucleic acids, etc.  These ‘humic substances’ (a major part of SOM) 

associate with soil minerals and amorphous oxides to form complexes that contribute to 

aggregate stability.  These organo-mineral complexes also improve aeration, 

nutrient/water flux, and temperature retention capacity.  Soil microbes benefit from the 

additional habitats created by improved soil structure.  SOM buffers soil pH, increases 

cation exchange capacity (CEC) and complexes metal cations and nonionic organic 

compounds (Essington 2004; Horwath 2007). 

The input of new labile litter does not mean that recalcitrant SOM is ignored as a 

nutrient source: new litter deposition is often associated with the increased decomposition 
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of the SOM already present (Fontaine et al. 2004).  This phenomenon could be explained 

by an increase in SOM-degrading populations subsidized by the increased bioavailability 

of energy/C from the litter, or there could be a general increase in exoenzyme production.  

This is called the ‘priming effect’ (Fontaine et al. 2003).  The decomposition of this older 

SOM is also affected by soil texture and water potential.  In contrast, climate and C:N:P 

ratio affect decomposition of new plant litter (Berg & McClaugherty 2008; Scott 1996).  

The drivers of animal carcass decomposition will be discussed in a subsequent section.  

SOM is retained better in a soil with more clay than a soil with a higher sand content 

(Horwath 2007; Jenkinson 1977), although local climate and organic matter input might 

be factors as well (Müller & Höper 2004). 

 

Decomposition of Animal-Derived Organic Matter 

Basic processes in animal decomposition 

While carcass/cadaver decomposition on the soil surface is not a process with 

distinct stages, it helps to categorize common phenomena for investigational purposes.  

While the terminology and number of stages varies, most researchers in the field adopted 

Payne’s 1965 division of decomposition into five stages: Fresh, Bloat, Active Decay, 

Advanced Decay, and 

Dry/Remains 

(summarized in Figure 

2).  The assignment of 

stages relies on a 

combination of the 

larval development 

stage of blowfly 

species and the 

characteristics of the 

cadaver.  Variables 

that affect decay rates 

of carcasses and 

human cadavers 

include temperature, 

rainfall, humidity, 

trauma, burial depth 

and soil pH (Mann et 

al. 1990). 

 It only takes four minutes after death for decomposition to begin: oxygen 

depletes, carbon dioxide levels increase, and pH decreases, killing the animal’s cells.  As 

a cell dies, the lysosomes release enzymes, like proteases and DNases, which dissolve the 

insides, and eventually break the membrane causing this fluid to spill into the body cavity 

(Vass et al. 2002).  After enough autolysis, the process of putrefaction can begin.  

Putrefaction is the widespread digestion of human tissue by enteric microorganisms.  Due 

to the depletion of oxygen levels, the cavity becomes completely anaerobic and creates an 

Figure 2. The operational stages of carcass decomposition. 
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ideal environment for the proliferation of enteric bacteria originating from the gut- one of 

the largest bacterial communities in the body (Vass et al. 2002).  Sometimes, this is first 

marked by a green discoloration of the lower abdomen.  At this stage, anaerobic (and 

incomplete aerobic) decomposition will release organic acids, alcohols and acetate as 

fermentation byproducts, which will start to demineralize the bone, leaching calcium and 

phosphate into the cavity (Child 1995).  Sulfur-containing amino acids are reduced to 

produce hydrogen sulfide and ammonia.  Hydrogen sulfide and iron form a black 

precipitant in the capillaries near the skin surface: this is referred to as ‘marbling’.  

Released gases, such as carbon dioxide, methane, ammonia, and sulfur dioxide, will bloat 

the body cavity- deforming it until it splits open (Vass et al. 2002).  

 At this point, a diverse set of compounds leach into the soil.  These include 

adipose tissues; volatile fatty acids (primarily butyric and propionic acids); organic acids, 

like acetic acid and oxalic acid, derived from oxaloacetic acid from the Krebs cycle; 

organic nitrogen from nucleic acids and proteins; amino acids from muscle 

decomposition, and phenolics (Vass et al. 1992).  Also, aerobic bacteria from the soil are 

presumably introduced into the cadaver (Vass et al. 2002; Dent et al. 2004).  Active 

Decay is characterized by cadaver mass loss due to purging of fluid/gas into the 

surrounding environment, and continued decomposition by microorganisms and blowfly 

larvae.  When the larvae have migrated away from the cadaver to the pupate stage, this 

signals the start of Advanced Decay (Howard et al. 2010).  Initial skeletalization and 

mummification of the body is seen in this 

phase.   

The transition from Advanced Decay to 

Dry/Remains stage has no conclusive definition 

but more bones are continually exposed as the 

severely desiccated tissue disintegrates (Payne 

1965; Carter & Tibbett 2008). Figure 3 

summarizes the breakdown from cadaver 

biomolecules, such as protein, to biomass and 

respiratory gases.  Even after skeletonization, 

elevated soil concentrations of total nitrogen, 

ammonium and phosphorus still persist even up 

to three years post-mortem (Hopkins et al. 

2000; Towne 2000; Parmenter & MacMahon 

2009). 

Hot Spots and Hot Moments 

Previous discussion of decomposition in 

terrestrial ecosystems has mostly focused on 

plant litter as detritus, since most studies to date 

have focused solely on this input.  But dead 

organic residue can be animal-derived (like 

carcasses, excrement etc.) too.  Animal-derived 

organic matter is chemically and physically 

distinct from plant-derived organic matter, 

Figure 3. Breakdown of cadaveric protein, 

figure taken from Dent et al. (2004) 
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resulting in unique decomposition process dynamics.  Mammal carcasses have a narrow 

carbon to nitrogen ratio (5:1-8:1), high water content, and a wider variety of nutrients and 

faster decomposition rates than plant litter (Parmenter & MacMahon 2009).  As much as 

5,000 kg per year of carcasses can be introduced to a square kilometer of a terrestrial 

ecosystem, as in the case of large ungulates in prairie ecosystems; they also contribute to 

landscape heterogeneity and biodiversity (Carter et al. 2007; Parmenter & MacMahon 

2009).  

The deposition of an animal carcass creates a fertility island.  The term “fertility 

island” was first coined in 1970 by Garcia-Moya et al. (1970) to describe a phenomenon 

of nitrogen and other nutrient accumulation around/beneath shrubs in arid and semiarid 

ecosystems.  The resulting landscape heterogeneity is probably from the shrubs’ (usually 

legumes) ability to attract animal activity and form a symbiotic relationship with nitrogen 

fixers, and/or eluvium and alluvium deposits (wind and water transported soil) (Ridolfi et 

al. 2008; Perroni-Ventura et al. 2010).  Forensic scientists and terrestrial ecologists have 

adapted the fertility island concept to describe the fact that a cadaver or carcass creates a 

similar localized ecosystem as a result of the intense pulses of nutrients and organic 

matter flowing into the area; they call these newly created areas ‘cadaver (or carcass) 

decomposition islands (CDIs)’ (Carter et al. 2007).  The result of this input is an area of 

biogeochemical cycling that is disproportionally higher than its surroundings- this is 

known as a "hot spot" (Parkin 1987).  If biogeochemical cycling increases for a short 

time span, it produces a "hot moment" (McClain et al. 2003).  Indeed, previous studies 

have noted increases in microbial respiration (Carter & Tibbett 2008; Hopkins et al. 

2000; A. S. Wilson et al. 2007), and biomass production (Carter & Tibbett 2008; Hopkins 

et al. 2000) underneath carcasses.  A CDI is clearly an overlapping of a hot spot and a hot 

moment.     

The CDI can be seen shortly after Active Decay stage as a darkening of the soil 

underneath and surrounding the body, presumably from the purge fluid.  The size of the 

CDI is determined by the mass of the cadaver, maggot quantity and the soil texture 

beneath the cadaver.  During Advanced Decay and Dry/Remains stages, vegetation death 

in and around the CDI is often seen.  Possible causes include: nitrogen toxicity, and /or 

suffocation by the cadaver (Carter et al. 2007).  In contrast, immediately outside the CDI, 

increased plant growth can be seen (Carter et al. 2007).  The spatial area of elevated total 

organic carbon (TOC) and nitrogen (TON) from the CDI is larger than other compounds 

associated with grave soils such as phosphate, sulfate, calcium etc. (Aitkenhead-Peterson 

et al. 2012).   
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Biological Invasion 

 To complicate matters, the hot spot 

and hot moment of a CDI are accompanied by 

a biological invasion.  In this case, the 

‘invaders’ are the commensal microflora 

associated with the cadaver.  This is a very 

distinct community compared to that of the 

soil (Figure 4) (Ley et al. 2008).  Over a 

trillion microorganisms (estimates range from 

10
11

 to 10
14 

per gram of wet weight) live in 

the human gut, helping it to break down 

otherwise indigestible foods, and providing its 

host with vitamins, such as Vitamin B and K 

(Gill et al. 2006; Hill 1997).  These microbes 

are purged into the soil with the rest of the 

bodily fluids following the Bloat stage. 

To the author’s knowledge, no study 

has examined a soil invasion of an entire 

bacterial community.  If the effects of an 

invasive plant pathogenic fungus are any 

indication, the cascading repercussions could 

be great: disrupting symbiosis, changing 

decomposition pattern and introducing 

pathogen resistance (which could threaten the 

plant species and possibly affect the microbial community) (Van der Putten et al. 2007).  

Without any literature, we can only review macro-scale biological invasion concepts and 

speculate on possible requirements for invader persistence using articles on genetically 

modified bacterium release. 

 Historically, the term ‘invasive’ has taken on a negative connotation.  Since the 

impact on the indigenous community is unknown in this study, we will define an invasion 

as the proliferation of any non-indigenous species in a new geographical location 

(Desprez-Loustau et al. 2007).  For any species to survive, they must exploit a novel 

niche or utilize resources more efficiently than the current dominant population.  The 

dispersal and proliferation of pathogenic bacteria from a cadaver is of concern for public 

health if they are capable of reaching the groundwater.  Thankfully, surface charges on 

clay particles and OM adsorb microbes and tortuous soil structure, like that of clayey 

soils, retards microbial diffusion by slowing the water infiltration (Marshall 1971).  But a 

slope of 10% or more was shown to increase the risk of dispersal (Rahe 1978).  High pH 

is also favorable to transport: twice as many bacteria were retained in the soil matrix of a 

microcosm at a pH of three instead of six (Bitton et al. 1974). 

The combination of a CDI and biological invasion can be looked at as a 

‘disturbance’ to the current ecosystem.  Not to be confused with the term ‘stress’, a 

disturbance is an isolated pulse that disrupts the ecosystem, community or population; 

this could change the physical environment or resource availability (McClain et al. 2003).  

Instead, stress is usually a chronic state, like drought, freezing, changes in salinity/pH etc. 

Figure 4. Variation in community structure 

between vertebrate gut-associated (green) 

and free-living bacterial communities (red), 

as in the soil. Taken from Ley et al. (2008)  
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(J. P. Schimel et al. 2007).  It has been shown that most microbial groups are sensitive to 

disturbances such as elevated CO2, mineral fertilization, abrupt temperature changes and 

C amendments- all of which are present when a cadaver is introduced to the environment 

(Vass et al. 1992; A. S. Wilson et al. 2007; Allison & Martiny 2008). 

 

Building a Cell 

  

Understanding a microbial community’s nutrient requirements is key to the study 

of decomposition.  While their nutrient utilization is complex, unifying principles have 

emerged.  When detritus is introduced into an ecosystem, microbes have to produce 

exoenzymes to break down the complex compounds of the litter.  Depending on their 

need, 10–20% of total biomass production can be devoted to this exoenzyme production 

(J. Schimel & Weintraub 2003).  This concept of having to ‘spend money to make 

money’ is a risky enterprise for microbes: if they do not get a return on their investment 

(amount of nutrients/energy returned is less than the energy cost to produce the enzymes) 

growth would stop and the organism could starve.  Often times, labile compounds from 

root exudates are useful pools of nutrients that can be initially used for exoenzyme 

production.  Once the nutrients and energy are obtained, the microbe’s first priority is to 

preserve homeostasis; maintenance activities include any non-growth activity such as 

motility, osmoregulation, metabolic pathway shifts, synthesis of DNA/ RNA/enzymes 

and stress response (Van Bodegom 2007).  After these functions are met, the leftover 

nutrients are allocated to microbial growth to build biomass.  When microbes are under 

nutrient-limited conditions, the leftover element is released as waste through 

mineralization (if N is in excess) or respiration (if C is in excess).  This is termed 

‘overflow metabolism’ and results in elevated mineralization (or respiration) rates that do 

not accompany an increase in biomass (J. Schimel & Weintraub 2003).   

Stoichiometry Rules 

Much like human beings, microbes eat a variety of compounds but retain the same 

stoichiometric composition.  Bacterial C:N ratios range from 3:1 to 12:1 and fungal ratios 

range from 10:1 to 15:1.  Regardless of the proportion of bacteria and fungi in the 

community, overall microbial biomass has a ratio of 4:1 to 8:1 (Horwath 2007; Cleveland 

& Liptzin 2007).  Because of these stoichiometric rules, the C:N and lignin:N ratios can 

predict decomposition rates- although there are some studies that suggest that nutrient 

solubility/availability (Rousk & Erland Bååth 2007), microbial community composition 

and/or resource history of that community can contribute to the rate (Strickland, Osburn, 

et al. 2009; Strickland, C. Lauber, et al. 2009). 

In cross-site studies, different communities have been shown to follow very 

similar patterns of decomposition when a common substrate is introduced.  This suggests 

that, irrespective of ecosystem and associated microbial community’s decomposition 

capacity, a set of common metabolic pathways stabilizes carbon in the soil long term.  

The fact that SOM structural, chemical and elemental (C:N:P ratio) properties are 

generally consistent across ecosystems supports this theory (Horwath 2007).  SOM 

converges on a ratio of 14:1 in less disturbed systems (Cleveland & Liptzin 2007) and 
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10:1 in cultivated soils (Stevenson 1994).  Grandy et al. (2007) studied two 

environmentally distinct basins in Colorado, and the authors found that, although their 

uncomplexed carbon fractions were chemically different (presumably from dissimilarities 

in quality/ quantity of plant inputs and decomposition rates), the SOM chemical 

compositions were the same.  Also, in a preliminary investigation by the current study 

authors, leachate was collected over time from a compost pile in which cow carcasses 

were placed.  DNA was extracted from the leachate samples and 16S PCR products were 

submitted for phylogenetic analysis on the 454 pyrosequencing platform.  The leachate 

samples from two different time points contained almost identical ratios of the dominant 

taxonomic groups, despite the fact that their respective controls were clearly different 

(Walker et al. 2012).   

This evidence supports the theory of microbial biogeography that ‘everything is 

everywhere, but environment selects’; this elegant phrase, written by Dutch 

microbiologist Lourens Gerhard Marinus Baas Becking in a 1934 book, describes the 

theory that all microbial communities contain the same taxa in varying abundances 

depending on the environmental conditions.  The common metabolic pathways and tight 

microbial biomass C:N range seems to debunk the opposing theory that microbial 

community structure is a result of stochastic circumstances and dispersal limitations.  

Microbial Life Histories 

By using established population ecology concepts developed for macrobiota, 

researchers try to make sense of the complexities of the microbial world.  One of the 

most frequently stolen terms by microbiologists continues to be “r-, K- selection” (Table 

1).  Developed by MacArthur and Wilson in 1967, these generalized life history 

strategies continue to be useful to explain population dynamics.  K-selected species 

persist when the habitat is near its carrying capacity (the number of organisms that the 

area’s resources can support).  Therefore, they survive under stable, nutrient limiting 

conditions, have a slow growth rate and experience a great deal of intra-population 

competition.  In contrast, r-selected species have a high growth efficiency, adapted to a 

variable environment with plentiful resources (Morris & Blackwood 2007).  

There are two other sets of terms that are nearly synonymous with r-, K- strategies 

that will be valuable to this study.  Famous microbiologist Sergei Winogradsky coined 

the terms autochthonous and zymogenous in 1925 (Table 1).  The former is used to 

describe a stable species that can grow gradually on organic matter with a high substrate 

affinity.  The latter is used to describe a species that proliferates quickly on fresh organic 

matter.  Microbiologists also use the terms copiotroph and oligotroph.  Copiotrophs 

growth quickly in high nutrient environments and are expected to have a fluctuating 

population size and lower substrate affinities than oligotrophs.  In contrast, oligotrophs 

grow only at low nutrient levels (Killham & Prosser 2007).  This slow growth gives 

oligotrophs an advantage over their counterpart during extended periods of stress, as 

actively growing organisms are more susceptible to stress (J. P. Schimel et al. 2007).  

Regardless of naming scheme, an overall theme of two distinct proliferation strategies 

emerges: one describes a fast-grower in high nutrients level and another is a slow, steady 

grower in times of stress.  It should be noted that these are generalized terms and 

organisms probably exist on a continuum between the two life histories. 
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The structures of microbial communities have been shown to change dramatically 

when fresh detritus is added to the soil (Griffiths et al. 1998).  This is evidence that the 

nutrient level introduces a bias toward certain organisms.  The ability of copiotrophs to 

rapidly utilize new detritus jump-starts the decomposition process.  A few studies have 

even attempted to assign this strategy to individual bacterial taxa.  β-Proteobacteria and 

Bacteroidetes phyla were found to be ecological opportunists and metabolized labile 

compounds quickly after their placement in the soil (Fierer et al. 2007; P. Padmanabhan 

et al. 2003).  

 
 

Table 1. Summary of Life History Strategies 

Term Traits Reference(s) 

Copiotroph Associated with nutrient- rich 

environments; adapted to use resources 

rapidly when available 

(Weber 1907; 

Poindexter 

1981) 

Oligotroph Usually found in environments consistently 

low in nutrients; persist in chronic 

starvation state 

Zymogenous Ability to proliferate on fresh organic  

matter 

(Winogradsky 

1924) 

Autochthonous Grow steadily on recalcitrant organic matter 

r-selected 

species 

Adapted to variable environment with high 

levels of resources; high growth efficiency 

(MacArthur & 

E. O. Wilson 

1967) K-selected 

species 

Persist under conditions of scarce resources; 

stable but slow growth rate 

 

 

Bacterial-Fungal Interactions 

 Although this work focuses more on bacteria’s role in the decomposition of 

organic matter, fungi are no less important in the ‘waste management’ aspect of an 

ecosystem.  Since they have similar roles, competition for resources is inevitable.  

Competition between bacteria and fungi can take place in two ways: interference or 

exploitation.  Interference involves one group directly inhibiting the other, possibly using 

a chemical compound.  Exploitation involves one group outcompeting the other for a 

common resource.  Evidence suggests that most bacteria compete via exploitation (Rousk 

et al. 2008).  In addition to competitive pressure, certain abiotic factors affect fungi 

differently than bacteria.  For example, the ratio of fungal to bacterial abundances seems 

to shift in favor of fungi in acid soils, while bacteria seem to dominate in neutral or 

slightly basic soils; in general, fungi have a wider pH range than bacteria (Wheeler et al. 

1991; Brady & Weil 2008).  Both fungi and bacteria respond to temperature similarly 
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(Allison & Treseder 2008).  The correlation between group dominance and elevated CO2 

is unclear (Lipson et al. 2005; Niklaus et al. 2003; Sonnemann & Wolters 2005).  

 

Why Microbial Diversity Matters 

 

The advent of molecular methods has shed some light on the identities of the soil 

bacteria species and overall community structure.  All the organisms of the same species 

are considered a “population”.  All the organisms that live in one area are a “community” 

and the types and number of species in that community is the “community structure” 

(Morris & Blackwood 2007).  Because of the non-homogenous habitat and fluctuation of 

environmental conditions, soil communities are very distinct from the communities of 

other ecosystems, such as oceans, freshwater and human-associated communities (of 

which, the gut community is relevant in this study).  As seen in Figure 5, these two 

communities are particularly different even at the phylum level of classification (Ley et 

al. 2008).  Soil communities are also more diverse than homogeneous aquatic 

environments: 4.8 × 10
9
 prokaryotic cells per cm

3 
of forest soil and 6000 species were 

Figure 5. Relative abundances of phyla in 16S rRNA gene libraries from a 

variety of ecosystems.  Boxed in black are soil (left) and gut (right) 

communities. Figure adapted from Ley et al. (2008). 
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estimated using fluorescence microscopy and DNA reassociation rates (Torsvik et al. 

1998).  

As previously discussed, soil microbial communities are similar in their elemental 

composition and decomposition biochemical pathways.  But they are also surprisingly 

similar in their phenotypic characteristics: just several bacterial phyla dominant most 

soils- they just vary in relative abundance (Janssen 2006).  Top phyla include: 

Acidobacteria, α-Proteobacteria, β-Proteobacteria, Bacteroidetes, Actinobacteria and 

Firmicutes.  Surprisingly, phylogenetic differences do not equate to changes in 

decomposition rates, even if those differences are large (Strickland, C. Lauber, et al. 

2009; Kemmitt et al. 2008).   

Despite unchanged decomposition dynamics, limited study shows phylogenetic 

differences do change ecosystem process rates (Allison & Martiny 2008).  There is much 

interest in studies that link composition and function but it is difficult when most whole 

community manipulation only result in a correlated response by the community; although 

useful for future experimental design, it’s not a definitive causation affect (Reed & 

Martiny 2007).  There has been some elucidation of key soil phyla roles in the 

environment (i.e. nitrification, nitrogen fixation etc.), but general decomposition phyla 

remain a mystery.  Irrespective of the obstacles, understanding the relationship between 

microbial composition and ecosystem function, like decomposition, is the key to 

marketing the relevance of microbial community composition in global climate change 

models- most of which consider microbes irrelevant (Reid 2011).  This study aims to 

investigate the dynamics and roles of microorganisms during decomposition. 

Regardless of whether you believe that microbial composition should be included 

in climate change models, conserving biodiversity in microbial communities is essential.  

Anthropogenic inputs into the N cycle, pollutants and climate change can affect the 

microbial world (Zogg et al. 1997; Avrahami et al. 2002).  Diversity provides resistance 

to those environmental changes.  It is important to have a variety of organisms that have a 

slightly different response to a certain biological and physical state.  Theoretically, 

microbial populations can react to stress/disturbances in four ways; they can either 

withstand change (resistance), return to earlier structure after disturbance (resilience), 

remain functionally constant but change structure (redundant) or remain a functionally 

different community indefinitely (Allison & Martiny 2008).  Greater diversity increases 

the probability that the community will be resilient or redundant and maintain the current 

properties of the ecosystem.  In microcosm experiments, there is less variability in 

ecosystem processes if the community has a greater number of species present (species 

richness) (Naeem & Li 1997).  Species richness, along with species evenness (relative 

abundance), is a component of species diversity (Chapin et al. 2000).   
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CHAPTER II  

OBJECTIVES AND HYPOTHESES 

Objective 1 

Determine the functional succession of microbial populations in the cadaver 

decomposition island during decomposition. 

Hypothesis 1  

Biomass production and respiration will increase rapidly upon introduction of 

purge fluid and decrease once resources deplete. 

Rationale   

 Copiotrophic bacteria would be expected to proliferate quickly upon the 

introduction of new labile detritus and remain in the environment while the nutrient 

levels are high.  A sharp escalation in biomass production and respiration should be seen 

in the Active Decay I stage and remain high until Advanced Decay, as was previously 

reported (Hopkins et al. 2000; Carter & Tibbett 2008).  Once the soil organic carbon 

depletes and quality of the detritus drops, oligotrophs would increase in relative 

abundance to the copiotrophs.  

Hypothesis 2 

 There will be a succession of N compounds corresponding to ammonification 

then nitrification.  Subsequent peaks of ammonium and then nitrate/nitrite will occur. 

Rationale 

 As microbes depolymerize proteins and mineralize the amino acids and peptides, 

the ammonia concentration should increase, and then decline as substrate is used up.  

This should be followed by an increase in nitrite/nitrate as ammonia oxidation occurs.  

Other studies recorded a sharp increase in ammonium followed by a decrease 

(Aitkenhead-Peterson et al. 2012; Vass et al. 1992). 

Approach 

Ammonium, nitrate/nitrite, phosphate, organic extractable carbon and total 

nitrogen will be measured.  Microbial response patterns, like respiration and leucine 

incorporation rate, will also be measured. 

Objective 2 

Determine the taxonomic succession of microbial populations in the CDI during 

decomposition. 
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Hypothesis 1 

Carcass-associated microbes will enter the soil in the purge fluid and will persist 

in the soil environment until they are outcompeted by the indigenous soil microbes. 

Rationale 

During the Bloat stage, destruction of soft tissue is caused by cadaver-associated 

enteric bacteria.  The increased activity of these anaerobes generates high levels of 

carbon dioxide, methane, and sulfur dioxide, causing the body to bloat.  This eventually 

ruptures the body, sending the enteric bacteria into the soil solution.  It is hypothesized 

that they will colonize their new soil habitat.  The abundance of opportunistic indigenous 

bacteria is hypothesized to rapidly increase soon after the release of bodily fluids 

(putrefaction).  It is hypothesized that the opportunistic bacteria and the cadaver-

associated bacteria will co-exist until the CDI becomes nutrient- limited early in the 

Advanced Decay stage.  Then, the cadaver-associated bacteria will be the less 

competitive community as they are accustomed to a high abundance/diversity, acidic, 

temperature-stable, nutrient-rich environment (Ley et al. 2008) (Figure 6).  In this open 

soil environment, there is fluctuating temperature, osmotic strength and water content, 

and oxic conditions (Van Elsas et al. 2011).  Although there is no direct evidence to 

support this theory, the 

1967 study by Klein and 

Casida experimented with 

different combinations of 

glucose and ammonium 

nitrate applied to an 

artificially inoculated soil 

of pathogenic Escherichia 

coli.  In unammeded soils, 

E.coli only lasted 28 days. 

When glucose was added 

in levels beyond what is 

normally found in the soil, 

E.coli only decreased two 

orders of magnitude, even 

after 49 days.  The 

addition of ammonium 

nitrate, regardless of 

glucose, had no effect on 

survival.  This suggested 

that the competition for carbon determines enteric bacteria survival.   

The bacterial communities found in the gastrointestinal tract and on the skin 

surface display some interpersonal variability (Fierer, Hamady et al. 2008; Costello, 

Lauber et al. 2009; Grice, Kong et al. 2009), but every person has the same main phyla, 

just in different proportions: Actinobacteria, Firmicutes, Bacteroidetes and 

Figure 6. Hypothesized response curves of the two main 

microbial assemblages in CDI soils: carcass associated 

microflora (blue) and a succession of soil opportunists 

(green). 
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Proteobacteria.  Therefore, we should be able to track the gastrointestinal community’s 

fate in the soil regardless of the individual. 

Hypothesis 2 

The Fungi:Bacteria ratio will increase shortly after the purge fluid enters the soil, 

then stabilize back to original ratio upon depletion of nutrients. 

Rationale 

Studies found that the addition of easily available carbon substrates (sugars, 

amino acids, organic acids, glucose) in very high concentrations favored the increase in 

fungal growth compared with bacterial growth.  At low concentrations, only bacterial 

growth increased significantly (Griffiths et al. 1999). 

Approach 

qPCR will be used to quantify human-associated Bacteroides, Fungi (ITS copies), 

and Bacteria (16S rRNA gene copies).  
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CHAPTER III 

MATERIALS AND METHODS 

Study Design 

Site Description 
 
 Founded in 1980 by Dr. William Bass, the University of Tennessee 

Anthropological Research Facility (ARF) seeks to study human decomposition by 

conducting research with human cadavers in an outdoor setting (Shirley, Wilson et al. 

2011).  The 1.3 acre facility is adjacent to the University of Tennessee Medical Center in 

Knoxville, Tennessee (Figure 7).  Soil from this area is classified as a fine, mixed, 

thermic Typic Paleudalf (more specifically, the Coghill-Corryton Complex series), a 

well-drained, fine textured clayey soil (NCSS 2004). 

 

 

 

 

Figure 7. Aerial view of UT Anthropological Research Facility (Photo credit: Google Maps) 

 

 

 

 

Climate 

 Climatic data at the Institute of Agriculture (across the Tennessee River from the 

ARF) is compiled every 15 minutes by the University of Tennessee Biosystems 

Engineering and Soil Science (BESS) Department.  For the past 8 years, average highs 

and lows of the area were 21.3 and 10.9 degrees Celsius, respectively; the average 

humidity was 71.3% and the average yearly rainfall was 124.7 centimeters (Anon 2013) 

 
 



 

 16 

Study Location Within the ARF 

 As seen in Figure 8, adapted from Damann (2010), the placement of cadavers at 

the ARF is non-random due to topography and other access issues.  The specific location 

of each cadaver at ARF has been recorded using GPS; the coordinate data has been 

layered on the map so the frequency of human decomposition per five by five meter grid 

unit can be calculated.  The units were grouped by the amount of previous decomposition 

and categorized as none (seen on the figure in white), low (pale yellow), middle (orange), 

and high decomposition (dark orange) (Damann 2010).  It has been suggested that 

repeated cadaveric inputs might alter microbial populations: the repeated burial of 

skeletal muscle tissue led to more rapid decomposition tissue mass and more carbon 

dioxide evolution (Vass et al. 1992; Carter & Tibbett 2008).  Every effort was made to 

obtain plots for the study that, to our knowledge, had not been previously compromised.  

Placement of the cadavers in this study is marked in red in Figure 8. 
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Figure 8. Density of cadaver placement from 2001-2005 at the ARF, Demann 

(2010).  Placement of cadavers from the current study is marked in red. 
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Soil Sampling 

 Shortly after death, the cadaver was transported to the William Bass Building, a 

processing facility for the ARF.  It was stored in a refrigerated room until placement.  

Immediately before placement, the cadaver’s cecum was sampled and the incision was 

re-sealed with standard duct tape.  The cecum swabs were transported on ice back to the 

lab and stored at -20°C until DNA extraction, to be used for a different research project.  

Before the cadaver was laid on the soil (fresh stage), a baseline soil sample was collected 

from the future placement site and the control site adjacent to the cadaver (to account for 

natural seasonal/temporal variation).  Using the methodology detailed in Parkinson et al. 

(2009), an open weave mesh was placed underneath prone cadavers to allow for minimal 

disturbance while rolling aside for sampling of the soil underneath.  At around 10:00 

A.M. on the day of sampling, the top 0-3 centimeters of soil beneath the torso was 

sampled using a 0.34” corer; approximately 20 cores were randomly collected and 

composited.  The frequency of the sampling was determined by the approximate stage of 

decomposition.  Usually, soil was sampled three to four times at the Bloat stage, twice 

during the Active, and three to five times during the Advanced stage.  All composite 

samples were sieved using standard soil sieve No. 10 (2 mm mesh) and stored at -20°C 

until DNA extraction.  Every attempt was made to remove small rocks, plant material, 

hair, insects etc.  In total, four cadavers (two men and two women) were used in this 

study (Table 2).  Photos were taken each day from different angles to document the 

decomposition process for data binning purposes, discussed further in the Statistical 

Analysis section of the Materials and Methods chapter.   

 

 

 

Table 2. Metadata associated with cadavers placed in this study 

Body Code Sex Cause of Death Approx. weight 

(pounds) 

Date of 

Placement 

Mean temp. 

through 

Active Decay 

(°C) 

36-12D                  180 5-21-12      

47-12D       130 6  7 1   7.8 

50-12D                150 7 6 1     

67-12D       165 9 19 1       
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Normalization for Temperature Differences 

Since each cadaver was placed at different times of the year, we needed to 

account for differences in temperatures during the decomposition process.  For the entire 

length of the study, the hourly temperatures were obtained from the BESS database and 

used to calculate the Cumulative Degree Hours (CDH) for each cadaver.  For greater 

accuracy, this method uses the twelve hour temperature cycle to describe the 

temperature’s effect on the decomposition process (Vass et al. 2002).  The maximum and 

minimum temperatures from 10:00AM (when sampling usually occurred) to 10:00PM 

were averaged together and added to the average max/min temperatures of the 10:00PM-

10:00AM 12-hour interval to equal the 24-hour interval CDH. 

Soil Characteristics 

Soil Moisture Content 

Soil moisture content was determined gravimetrically by drying 2 grams of each 

soil sample for approximately a week at 105°C in an Isotemp Oven (Thermo Fisher 

Scientific, Waltham, MA) to calculate the soil moisture content.  

 

                               
                                    

                      
 

 

 

Soil Chemistry 

First, 8 grams of soil was extracted with 2M KCl by shaking horizontally with the 

extract at 300RPM and centrifuging 10,000 RPM for 30 minutes at 4°C using a Sorvall
®
 

RC6 Plus Centrifuge (Thermo Fisher Scientific, Waltham, MA).  The supernatant was 

filtered through 7 centimeter diameter P5 filter paper and stored at -20°C until analysis. 

The samples were sent to the Biosystems Engineering and Soil Science Water Quality 

Lab for analysis of nitrogen (Total N, NH4+, NO2 +NO3, organic N), total organic carbon 

and phosphate.  A Shimadzu TOC-VCPH analyzer (SHIMADZU Corporation, Kyoto, 

Japan) was used to determine total carbon by the combustion catalytic oxidation/NDIR 

method and a Shimadzu N analyzer was used to determine total nitrogen by combustion, 

then chemiluminescence detection.  Nitrate, ammonia, and phosphate were analyzed 

using a Skalar San
++ 

colorimetric autoanalyzer (Skalar Analytical B.V., Breda, The 

Netherlands).  Net N mineralization was calculated as the change in NH4-N plus (NO3-

NO2)-N divided by the change in time (in days). 

pH   

An UltraBasic UB-10 Benchtop Meter (Texas Instrument, Dallas, TX) was 

calibrated using standard buffers of 4, 7, and 10 prior to use.  Soil pore water was 

extracted by vortexing 5 grams of soil and 10 mL of sterile water for a few minutes.  The 

tube was allowed to sit for a minute to allow settling of soil particles and the electrode 

was submerged in the pore water until the read-out was constant.  
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Microbial Activity 

Microbial Biomass Production 

Microbial biomass production rates was measured using the 
3
H- leucine 

incorporation method (Kirchman 2001) adapted for soil bacteria (E Bååth et al. 2001)  

Leucine is an amino acid- a building block of protein.  When sufficient leucine is added 

to the medium, de novo synthesis is inhibited and radioactively labeled leucine is 

incorporated into the cell’s biomass.  Briefly, 0.5 g soil (wet weight) was deposited into a 

15 mL conical centrifuge tube.  Exactly 10 mL of sterile deionized water was added and 

shook at 300 RPM for 30 minutes to dislodge soil bacteria.  The tubes were centrifuged at 

1000 x g for 10 minutes to pellet soil particles.  An appropriate volume (700nM) of a 

1:10 dilution of tritiated to untritiated (“cold”) leucine into 3 microcentrifuge tubes- one 

“kill” tube for background reading and two “live” sample tubes.  Trichloroacetic acid 

(TCA 100%) was added to the kill tube.  Exactly 1.5 mL of soil extract was added to all 

tubes and they were allowed to incubate for about 1 hour at room temperature.  The exact 

start and stop times were noted.  To stop, 100% TCA was added to the live tubes.  All 

tubes were centrifuged in a refrigerated AccuSpin Micro 17R centrifuge (Thermo Fisher 

Scientific, Waltham, MA) at 13,200 RPM for 10 minutes at 4°C to pellet cells.  The 

supernatant was aspirated off and the pellet was washed with ice cold 5% TCA and 

centrifuged at 13,200 RPM for 10 minutes at 4°C.  The supernatant was aspirated off and 

the pellet was washed with ice cold 80% ethanol and centrifuged at 13,200 RPM for 10 

minutes at 4°C.  The supernatant was aspirated and the pellet was allowed to dry 

overnight.  Then, 1 mL of Ecoscint H biodegradable scintillation fluid (National 

Diagnostics, Atlanta, GA.) was added to the tubes, allowed to sit for 24 hours and 

counted on a LS 6500 Multi-Purpose Scintillation Counter (Beckman Coulter, Inc. Brea, 

CA.).  

The amount of biomass carbon produced per unit of carbon substrate utilized (in 

this case leucine) was calculated using an empirical conversion factor estimated for soil 

bacteria: The conversion factor- 0.54 kilograms of carbon per mole of leucine- was 

determined by simultaneous measurement of leucine incorporation and bacterial carbon 

production in ten isolated soil bacterial strains (Michel & Bloem 1993). 

Microbial Respiration  

Ten grams of soil was added to a 50 mL conical centrifuge tube and was allowed 

to stand for 24 hours, with the cap vented.  Four milliliters of 1.5N NaOH in a 10x75mm 

disposable borosilicate glass culture tube was inserted into the conical tube as a CO2 trap.  

The conical tube was capped and sealed with parafilm and sat undisturbed for 

approximately 48 hours (exact start and stop times were noted).  The vial of NaOH was 

removed from the tube and solution was transferred to a 15mL falcon tube.  2 milliliters 

of BaCl2 was added to each tube and they were centrifuged at 3,500 RPM for 5 minutes 

in an AccuSpin 3R Centrifuge (Thermo Fisher Scientific, Waltham, MA.)  The 

supernatant was removed to a 50mL disposable beaker.  Three drops of phenolphthalein 

indicator were added to each beaker and it was titrated with 1.0N HCl to a clear endpoint.  

The amount of HCl (in moles) used to titrate to the endpoint was subtracted from the 

moles of NaOH originally in the trap to obtain the amount of CO2 released    
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Microbial Growth Efficiency 

The microbial growth efficiency is the percent of the metabolism that results in 

biomass, as opposed to mineralization.  Because respiration was measured from a 

microcosm, it includes all microorganisms.  The biomass production measurement was 

derived from leucine incorporation.  In short incubation periods, microorganisms with 

large biomass (i.e. fungi) cannot uptake leucine quickly enough to affect the 

incorporation rate.  Microbial Growth Efficiency (MGE) was estimated by using the 

following equation:  

 

        
                  

                              
     

 

 

DNA Extraction and Preparation 

DNA Extraction 

All samples were extracted using the PowerLyzer
TM

 PowerSoil
® 

DNA Isolation 

Kit (MOBIO Laboratories, Inc. Carlsbad, CA.), with three key protocol changes.  In 

brief, 0.25 grams of soil was weighed into a PowerLyzer
TM

 Glass Bead Tube, 0.1mm. 

The “bead solution” was added and the tubes were incubated at 65°C for 10 minutes in a 

Precision
®
 182 Water Bath (Thermo Fisher Scientific, Waltham, MA.).  The tubes were 

temporarily vented and incubated at 95°C in an Isotemp
®
 heat block (Thermo Fisher 

Scientific, Waltham, MA.) for another 10 minutes.  These two steps were not included in 

the original kit protocol, but previous optimization resulted in higher quality yields with 

these changes.  The SDS solution (“Solution 1”) was added as normal and the tubes were 

placed into the PowerLyzer
TM 

24 (MOBIO Laboratories, Inc. Calsbad, CA.).  The sample 

ran for 45 seconds at 3,100 RPM.  They were then centrifuge at 10,000 x g for 30 

seconds at room temperature in an AccuSpin Micro 17R centrifuge (Thermo Fisher 

Scientific, Waltham, MA).  The supernatant was transferred to a clean tube and a 

patented Inhibitor Removal Technology
®

 (IRT) solution was added.  The tubes were 

incubated on ice for 5 minutes.  The tubes were then centrifuged, and the supernatant was 

treated to another round of IRT solution (“Solution 3”) to precipitate additional organic 

and inorganic material like humic acid, cellular debris etc.  After incubation on ice for 5 

minutes, the samples were centrifuged for 2 minutes (protocol change, originally: 1 

minute).  A high concentration salt solution (“Solution 4”) was added to the removed 

supernatant and the mixture was loaded onto a Spin Filter.  The Spin Filters were 

centrifuged at 10,000 x g for 1 minute and the flow-through was discarded.  This was 

repeated in batches until no more sample remained.  All of the DNA should be bound to 

the silica membrane of the Spin Filter.  An ethanol wash (“Solution 5”) was added to 

remove any extra salts, humic acid and other contaminants, and centrifuged for 30 

seconds at 10,000 x g.  The flow-through was discarded and the tubes were centrifuged 

again at the same conditions to ensure all traces of the ethanol wash were gone.  The spin 
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filter was then placed in a clean tube and eluted with nuclease-free water (Thermo Fisher 

Scientific Inc. Waltham, MA.).  Extracted DNA was stored at -20°C. 

DNA Quantification 

The DNA concentration of each sample was measured using the fluorometry-

based Quant-it
™

 PicoGreen
®
 dsDNA kit (Invitrogen, Eugene, OR).  To quickly 

summarize the protocol, a standard curve was made using λ Standard DNA (Invitrogen, 

Eugene, OR) by diluting to the concentrations: 100, 50, 25, 12.5, 6.25, 3.13, 1.56, and 0 

ng per well.  DNA extractions were diluted 1:10 to fall within this curve.  The standards 

were added to a black 96-well plate in duplicates.  1X TE buffer and sample was added to 

the sample wells.  Then, working solution of Quant-iT
™

 PicoGreen
®
 reagent was mixed 

into each sample and incubated in the dark for 2 to 5 minutes at room temperature.  After 

incubation, the fluorescence was measured using a Synergy HT microplate reader 

(BioTek, Winooski, VT) at the following wavelengths: excitation 480 nm, emission 520 

nm.  The fluorescence value of the 0 ng per well (no DNA control) was subtracted from 

the sample value and the standard curve was used to calculate DNA concentrations. 

Quantitative PCR (qPCR) 

Creation of Bacterial 16S Plasmid for qPCR Standard 

The 16S rRNA gene was amplified from genomic DNA of Alphaproteobacteria 

sphingomonas, previously isolated from soil at the Kellogg Biological Station 

(Kalamazoo, MI.), using the universal bacterial primers 8F and 1492R (Hicks et al. 

1992).  For each  5μl PCR reaction, 1 .5μl Finnzymes Phusion High Fidelity PCR 

Master Mix (Thermo Fisher Scientific Inc. Waltham, MA.), 9.5µl of nuclease-free water 

(Thermo Fisher Scientific Inc. Waltham, MA.), 1.0µl of 8F primer (10 μM) and 1.0µl of 

149 R primer (10 μM) (Eurofins MWG Operon, Huntsville, AL.) and 1.0μl template 

DNA were added together.  PCR was performed on a Mastercycler
®
 pro Thermocycler 

(Eppendorf, Hauppauge, NY.) using the following protocol: 95°C for 5 minutes, then 40 

cycles of denaturing at 95°C for 30 seconds, annealing at 45°C for 30 seconds, and 

extending at 72°C for 30 seconds, with 10 minutes at 72°C for final extension.  To 

confirm the success of the PCR reaction, gel electrophoresis (1.5% (w/v) agarose gel with 

Ethidium Bromide) was used. 

The rest of the protocol follows the pGEM
®
-T Vector System (Promega 

Corporation, Madison, WI.).  Briefly, a ligation reaction combines 2X Rapid Ligation 

Buffer, T4 DNA Ligase, pGEM
®
-T Vector, and PCR product.  This reaction was allowed 

to incubate overnight at 4°C.  An aliquot of ligation reaction was added to a 15 mL falcon 

tube on ice. Thawed, mixed JM109 High Efficiency Competent Cells (Promega 

Corporation, Madison, WI.) were added to the tube and placed on ice for 20 minutes.  

Then, the cells were heat-shocked in a 42°C water bath for 45 seconds.  The tube was 

returned to the ice for 2 minutes.  Room temperature SOC medium was added to the 

transformed cells and incubated for 1.5 hours at 37°C, shaking at 150 RPM.  The cells 

were plated on LB/ampicillin/IPTG/X-Gal plates and incubated overnight at 37°C.  

Afterward, the plates were stored overnight in 4°C to amplify the blue color in the 
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colonies.  A white colony was then picked from the plate and inoculated to liquid 

LB/ampicillin broth. 

Once the cells reached an appropriate growth density, they were harvested for 

plasmid isolation using the Wizard
® 

Plus SV Miniprep DNA Purification System 

(Promega Corporation, Madison, WI.).  In summary, the cells were centrifuged for 5 

minutes at 10,000 x g in an AccuSpin Micro 17R centrifuge (Thermo Fisher Scientific, 

Waltham, MA).  The supernatant was poured off and the pellet suspended in Cell 

Resuspension Solution.  Cell Lysis Solution was added, mixed and allowed to incubate 

until a partial clearing was seen in the lysate.  Alkaline Protease Solution was added, 

mixed and allowed to incubate for 5 minutes to inactivate proteins such as endonucleases 

that were released during cell lysis.  A Neutralization Solution was added, the tube mixed 

and then centrifuged at 14,000 x g for 10 minutes at room temperature.  The cleared 

lysate was transferred to a Spin Column and centrifuged at 14,000 x g for 1 minute.  The 

flow-through was discarded and Column Wash solution was added to the Spin Column.  

After centrifugation at 14,000 x g for 1 minute, the flow-through was discarded and the 

wash/centrifuge/decant step was repeated.  The Spin Column was centrifuged again to 

remove any residual Column Wash for 2 minutes at 14,000 x g and transferred to a clean 

tube for elution into nuclease-free water (Thermo Fisher Scientific Inc. Waltham, MA.). 

The plasmid was stored long-term at -20°C.  To confirm the presence of the insert in the 

plasmid, the plasmid was sequenced at the University of Tennessee Knoxville Molecular 

Biology Resource Facility on a 3730 DNA Analyzer (Applied Biosystems, Foster City, 

CA.) using the T7 primer set.  

Quantification of Bacterial 16S rRNA genes 

To enumerate copies of bacterial 16S rRNA genes, universal bacterial primers 

1055F and 1392R were used in qPCR (G J Olsen, et al. 2003).  For each  5μl qPCR 

reaction, 1 .5μl Maxima
®
 SYBR Green/Fluorescein qPCR Master Mix (2X) (Thermo 

Fisher Scientific Inc. Waltham, MA.), 5.5µl of nuclease-free water (Thermo Fisher 

Scientific Inc. Waltham, MA.), 1.0µl of 1055F primer (10 μM) and 1.0µl of 1392R 

primer (10 μM) (Eurofins MWG Operon, Huntsville, AL.) and 5.0μl template DNA were 

added together.  The standard curve was made by diluting the plasmid previously 

mentioned from 10
8
 to 10

4 
copies per reaction.  The DNA extraction of each sample was 

diluted 100-fold to fall within this standard curve and the reactions were done in 

triplicates.  qPCR was performed on a C1000 Thermal Cycler with a CFX96 Real Time 

System (Bio-Rad, Hercules, CA.) using the following protocol: 95°C for 10 minutes (hot 

start), then 40 cycles of denaturing at 95°C for 30 seconds, annealing at 51°C for 25 

seconds, and extending at 72°C for 25 seconds.  Gene copy numbers were found using an 

equation for the regression line that related the cycle threshold (C(t)) value to the known 

number of copies in the standards. 

Quantification of Human-Associated Bacteriodes 

The gastrointestinal flora of humans has recently been elucidated (Costello et al. 

2009) and this unique community can be tracked as it enters the soil by the real-time PCR 

assay.  We will focus on enumerating human-associated Bacteriodes (HuBac) throughout 

the decomposition process following the method of Layton et al. (2006).   
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HuBac primers, HuBac566f and HuBac692r, were designed from partial                                                                                                                                         

alignments of Bacteroides 16S genes from fecal source libraries and GenBank (Layton et 

al. 2006).  For each  5 μl qPCR reaction, 1 .5 μl ABsolute Blue qPCR Master Mix 

(Thermo Fisher Scientific Inc. Waltham, MA.), 6.5µl of nuclease-free water (Thermo 

Fisher Scientific Inc. Waltham, MA.), 1.5µl of HuBac566f primer (10 μM), 1.0µl of 

HuBac69 r primer (10 μM) and 0.5µl HuBac594Bhqf probe (10µM) (Eurofins MWG 

Operon, Huntsville, AL.) and  .5μl template DNA were added together.  All qPCR 

reactions were performed in triplicate. The standard curve ranged from 10
1
 to 10

7
 copies 

per reaction.  The plasmid used for the standard curve was obtained from the A. Layton 

lab group (UTK).  qPCR was performed on a C1000 Thermal Cycler with a CFX96 Real 

Time System (Bio-Rad, Hercules, CA.) using the following protocol: 50°C for 2 minutes, 

95°C for 15 minutes (hot start), then 40 cycles of denaturing at 95°C for 30 seconds, 

annealing at 60°C for 45 seconds.  Gene copy numbers were found using an equation for 

the regression line that related the cycle threshold (C(t)) value to the known number of 

copies in the standards. 

Quantification of Fungal ITS Region 

To determine shifts in bacterial and fungal populations during decomposition, a 

DNA-based approach known as quantitative PCR (qPCR) will be used, following the 

method of (Fierer et al. 2005).  Oligonucleotides specific to bacterial 16S rRNA and 

fungal ITS region (primers) will amplify DNA and a florescent reporter molecule will 

bind to the new double-stranded DNA and the amount of fluorescence is measured to 

determine the abundance of gene copies.  Since fungi have a variable number of nuclei 

and bacteria can have more than one 16S rRNA gene copies, it cannot be used to 

determine absolute cell abundances (Klappenbach et al. 2000).  Also, DNA extraction 

and PCR amplification introduce their own bias: extraction efficiencies may differ; 

primers may not target genes consistently in all taxa (Martin-Laurent et al. 2001).  

Despite these disadvantages, we can perform relative comparisons between samples in 

this study and study how the ratios change during decomposition. 

To create the plasmid for the qPCR standard curve, the Fungal ITS I region was 

amplified from genomic DNA of Bipolaris oryzae organism, obtained from the B. 

Ownley lab group (UTK), using the ITS1f and 5.8S-R primers (Gardes & Bruns 1993; R 

Vilgalys & Hester 1990).  For each 25μl PCR reaction, 1 .5μl Finnzymes Phusion High 

Fidelity PCR Master Mix (Thermo Fisher Scientific Inc. Waltham, MA.), 9.5µl of 

nuclease-free water (Thermo Fisher Scientific Inc. Waltham, MA.), 1.0µl of ITS1f primer 

(10 μM) and 1.0µl of 5.8S-R primer (10 μM) (Eurofins MWG Operon, Huntsville, AL.) 

and 1.0μl template DNA were added together.  PCR was performed on a Mastercycler
®
 

pro Thermocycler (Eppendorf, Hauppauge, NY.) using the following protocol: 95°C for 5 

minutes, then 40 cycles of denaturing at 95°C for 1 minute, annealing at 53°C for 30 

seconds, and extending at 72°C for 1 minute, with a final extension at 72°C for 10 

minutes.  To confirm the success of the PCR reaction, gel electrophoresis (1.5% (w/v) 

agarose gel with Ethidium Bromide) was used.  The rest of the protocol for ligation, 

transformation and harvesting were identical to the 16S rRNA gene plasmid creation 

protocol previously discussed.  
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For each  5 μl qPCR reaction, 1 .5μl Maxima
®
 SYBR Green/Fluorescein qPCR 

Master Mix (2X) (Thermo Fisher Scientific Inc. Waltham, MA.), 5.5µl of nuclease-free 

water (Thermo Fisher Scientific Inc. Waltham, MA.), 1.0µl of ITS1f primer (10 μM) and 

1.0µl of 5.8s primer (10 μM) (Eurofins MWG Operon, Huntsville, AL.) and 5.0μl 

template DNA were added together.  The standard curve was made by diluting the 

plasmid previously mentioned from 10
8
 to10

3 
copies per reaction.  qPCR was performed 

on a C1000 Thermal Cycler with a CFX96 Real Time System (Bio-Rad, Hercules, CA.) 

using the following protocol: 95°C for 15 minutes, then 40 cycles of denaturing at 95°C 

for 1 minute, annealing at 53°C for 30 seconds, and extending at 72°C for 1 minute 

(Fierer et al. 2005).  Gene copy numbers were found using an equation for the regression 

line that related the cycle threshold (C(t)) value to the known number of copies in the 

standards.  The fungal ITS copy number was divided by the total bacterial 16S rRNA 

gene copy number from the same sample. 

 

Statistical Analysis 

Where appropriate, data were standardized to grams of dry weight soil. 

Surprisingly, the moisture content in the CDI did not significantly differ from the control 

soils (Wilcoxon Signed Rank Test, data not shown). 

Binning 

Upon the conclusion of the study, images taken of the cadavers throughout the 

decomposition process were reviewed to determine the traditional decomposition stage as 

categorized by J.A. Payne (Payne 1965).  Since the cadavers decomposed at different 

temperatures, the rates of decomposition varied.  In order to combine the four cadavers as 

experimental replicates, data from each cadaver were binned by decomposition stage 

during which they were obtained.  To attain a higher resolution of data visualization, 

intermediate stages were added.  The data was divided into the following stages for each 

cadaver: Initial (before placement of cadaver), Bloat, Bloat-Active, Active, Initial 

Advanced Decay, Advanced Decay I, Advanced Decay II, Advanced Decay III.  Their 

abbreviations for the remainder of the paper: Initial, Bloat, Bloat-Act, Act, Initial Adv, 

Adv I, Adv II, Adv III, respectively.  Then, data from each stage for replicate cadavers 

were combined and subjected to graphical and statistical analysis.   

Statistical Tests 

Spearman rank-order correlation (rs) was used to estimate the association between 

paired samples.  This rank-based measure of association was used because the data was 

not expected to follow a normal distribution.  Asymptotic t approximation was used to 

test the association value as zero.  Select correlations were graphed with the ggplot2 

package of the open source software, R (Wickham 2009; R Core Team 2012).  Non-

parametric alternatives to Student’s t test, Wilcoxon signed rank and Wilcoxon rank sum 

tests, were used to determine if the CDI samples in each decomposition stage were 

significantly different from the control samples at the 5% level.  A Wilcoxon signed rank 

test assesses the null hypothesis that the median difference between pairs of observations 
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was zero.  When Wilcoxon rank sum test (also known as the Mann-Whitney test) was 

carried out in unpaired cases, the null hypothesis was that the population medians are 

equal.  All statistical tests were performed in R (R Core Team 2012). 
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CHAPTER IV  

RESULTS 
Four cadavers were placed at the University of Tennessee Anthropological 

Research Facility (ARF) on plots that, to the best of our knowledge, had not been 

previously used for decomposition studies.  The study was conducted through the 

summer and fall of 2012 when the average temperatures were 22.4, 27.8, 26.0, and 17.2 

degrees Celsius for cadavers #36, #47, #50, and #67 respectively.  An open weave mesh 

was placed underneath the cadavers to allow for minimal disturbance while rolling aside 

for sampling of the top 0-3 centimeters of soil beneath the torso.  Usually, soil was 

sampled three to four times at the Bloat stage, twice during the Active, and three to five 

times during the Advanced stage.  The study length did not allow for sampling during the 

Dry/Remains stage.  Cadavers #36, #47, #50 and #67 were sampled for 87, 198, 83 and 

114 days, respectively.  For each composite soil sample, the soil solution was extracted 

and soil chemistry, pH, soil moisture and microbial activity were measured.  Also, 

human-associated Bacteroides, total bacterial, and total fungal abundances were 

measured via qPCR.  Data from each cadaver were binned by decomposition stage during 

which they were obtained.  The categorization of the sampling days can be found in 

Appendix, Table A1. 

Bacterial biomass production rates 

During the Active Decay stage of all cadavers, a sharp decrease in 
3
H-leucine 

incorporation rate was seen in the cadaver decomposition island (CDI) soils compared to 

controls; however, because of the variability between cadavers, the average bacterial 

production rate in CDI soils was not significantly different than the control at any stage 

(Table 3).  All CDI soils in Advanced Decay stage, except for #47, increased in leucine 

incorporation rates under the cadavers to surpass the control soil rates (Figure 9).  

Leucine incorporation rates were significantly correlated to extractable organic carbon, 

pH (Table 4) and total 16S rRNA gene copies (Figure 10).
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Table 3. Summary of mean and standard deviations from all CDI data.  Asterisk (*) indicates value was significantly above respective control 

value using the Wilcoxon Signed Rank Test (p<0.05).  A double asterisk (**) indicates value was significantly above initial value using the 

Wilcoxon Rank Sum test (p<0.05) 

Variable 

Decomposition Stage 

Initial Bloat Bloat-Active Active Initial Advanced Advanced I Advanced II Advanced III 

pH 6.678 ±0.151 6.243 ±1.054 7.025 ±1.126 6.622 ±0.978 6.628 ±0.935 7.163 ±1.061 7.203 ±0.906 6.023 ±0.380 

Dry weight (%) 0.785 ±0.106 0.789 ±0.088 0.761 ±0.042 0.742 ±0.091 0.744 ±0.028 0.712 ±0.053 0.710 ±0.106 0.696 ±0.143 

Total 16S gene copies 

(log/gdw) 
10.295 ±0.716 10.225 ±0.771 10.681 ±0.731* 10.255 ±0.858 10.269 ±0.836 10.696 ±0.728 10.695 ±0.233 11.169 ±NA 

HuBac 16S gene copies 

(log/gdw) 
1.367 ±2.734 3.306 ±3.652 6.958 ±2.862** 7.691 ±0.768** 7.567 ±0.490** 7.565 ±0.962** 7.866 ±1.287** 7.347 ±1.352** 

Fungi ITS gene copies 

(log/gdw) 
9.179 ±0.524 9.143 ±0.517 9.444 ±0.444 9.749 ±0.324 9.706 ±0.478 9.740 ±0.591 9.574 ±0.620 9.468 ±0.354 

EOC  

(mg C/gdw) 
0.310 ±0.245 0.623 ±0.397* 1.889 ±0.337* 5.565 ±2.831* 5.989 ±1.932* 5.998 ±1.800* 5.901 ±3.175* 4.301 ±5.149 

PO4 (ppm) 0.294 ±0.215 1.237 ±1.334 1.04 ±1.059 1.412 ±1.422 2.058 ±1.582 2.860 ±2.154 5.177 ±5.736* 0.704 ±0.316 

NO3-NO2  

(mg N/gdw) 
0.021 ±0.017 0.132 ±0.241 0.102 ±0.162* 0.067 ±0.098 0.039 ±0.075 0.041 ±0.043 0.208 ±0.238 0.045 ±0.054 

NH3 

(mg N/gdw) 
0.011 ±0.008 0.129 ±0.117* 1.189 ±0.845* 2.541 ±2.103* 2.695 ±0.812* 3.762 ±1.702* 3.097 ±0.870* 0.710 ±0.933 

TN (mg/gdw) 0.046 ±0.023 0.371 ±0.335* 1.779 ±1.256 3.244 ±2.036* 3.182 ±0.610* 4.482 ±1.197 3.739 ±0.970* 1.300 ±1.589 

Net Mineralization 

(mg N/gdw/day) 

 

NA 
 

0.106 ±0.166 0.231 ±0.246* 0.362 ±0.320* 0.062 ±0.364 -0.070 ±0.276 -0.010 ±0.042 -0.030 ±0.005 

Leucine Incorporation 

(µmol Leu/day/gdw) 

1.01E-03 

 ±5.52E-04 

1.24E-03 

±9.96E-04 

1.86E-03 

±1.72E-03 

3.66E-04 

±4.75E-04 

2.63E-04 

±4.90E-04 

6.42E-04 

±9.29E-04 

5.05E-04 

±4.08E-04 

1.15E-03 

±9.87E-04 

Respiration 

(mg C/hr/gdw) 

3.22E-03 

±1.47E-03 

9.07E-03 

±6.30E-03 

2.48E-02 

±8.44E-03* 

3.16E-02  

±1.12E-02* 

2.07E-02  

±4.39E-03 

3.74E-02  

±1.12E-02* 

3.03E-02  

±1.09E-02* 

2.42E-02  

±1.54E-02 

Microbial Growth 

Efficiency (%) 
0.576 ±0.344 0.206 ±0.160 0.170 ±0.160* 0.021 ±0.037* 0.023 ±0.041 0.034 ±0.050 0.039 ±0.037 0.241 ±0.340 
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Figure 9. Difference in bacterial biomass production between cadaver decomposition island (CDI) 

soils for four cadavers (36, 47, 50, 67) and control soils, estimated from leucine incorporation rates in 

bacterial suspensions extracted from soil.  Data is presented by cumulative degree hours (CDH).   
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Table 4. Variables that were significantly correlated with Spearman Rank-Order Correlation 

coefficients, (rs) > 0.50.  

Variable 1 Variable 2 N rs p-value 

NH3 Total Extractable 

Nitrogen 

47 0.9500 0 

Total Extractable 

Nitrogen 

Extractable Organic 

Carbon 

47 0.8533 0 

Total 16S gene 

copies 

Leucine Incorporation 

Rate 

38 0.8225 3.87E-08 

NH3 Extractable Organic 

Carbon 

47 0.7750 0 

pH Leucine Incorporation 

Rate 

44 0.7047 9.37E-08 

Respiration NH3 45 0.6628 1.48E-06 

Respiration Total Extractable 

Nitrogen 

45 0.6390 4.10E-06 

Respiration Extractable Organic 

Carbon 

45 0.5847 3.50E-05 

PO4 Extractable Organic 

Carbon  

37 0.5116 0.00140 

pH  Microbial Growth 

Efficiency 

42 0.5092 5.73E-04 

Extractable 

Organic Carbon 

Leucine Incorporation 

Rate 

44 -0.5248 2.55E-04 

Microbial Growth 

Efficiency 

Total Extractable 

Nitrogen 

42 -0.6098 2.70E-05 

Microbial Growth 

Efficiency 

Extractable Organic 

Carbon 

42 -0.7757 4.14E-08 
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Figure 10. Correlation between leucine incorporation rates and total 16S rRNA gene copies 

(rs=0.8225, p<0.001). 
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Microbial Respiration 

The microbial respiration rate remained relatively constant in all of the control 

soils over the course of the study with bin averages ranging from 0.004-0.009 mg 

C/hr/gdw (data not shown).  In all of the CDI soils, while the cadavers were in Bloat 

stage, there was a small increase in respiration (Figure 11).  Then, two significant 

increases in respiration were seen (Table 3).  The first increase occurred during the 

Active Decay stage for each cadaver (best seen in Figure 12).  The second increase 

occurred near the beginning of Advanced Decay stage.  Respiration was significantly 

correlated with total extractable organic carbon (Figure 13), total extractable nitrogen 

(Figure 14), and extractable organic carbon (Table 4).   

 

 

 

 

Figure 11. Soil respiration rates during a 48 hour incubation at room temperature (mg CO2–C per 

hour per gram dry weight (gdw)) as a function of the cumulative degree hours (CDH) in soils beneath 

cadavers and their respective control samples. 
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Figure 12. Data presented in Figure 11 is here shown for just the Bloat and Active Decay stages.  

Data is presented by cumulative degree hours (CDH). 
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Figure 13. Correlation between total extractable organic carbon and microbial respiration (rs= 

0.5847,  p<0.001). 
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Figure 14. Correlation between total extractable nitrogen and microbial respiration (rs=0.6390, 

p<0.001). 
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Microbial Growth Efficiency 

While the control soils are characterized by considerable variability in the 

microbial growth efficiency (MGE), the main trend in CDI soils was the steady decrease 

of MGE throughout the decomposition process until the Advanced Decay III stage, where 

it returned to fifty percent of the initial value (Figure 15).  MGE was significantly lower 

than control soils during the Bloat and Bloat-Active transition (Table 3).  Microbial 

growth efficiency was significantly inversely correlated to pH, total extractable nitrogen, 

and extractable organic carbon (Table 4). 

 

 

 

 

Figure 15. Microbial growth efficiency, calculated as biomass production rate divided by the sum of 

biomass production rate and respiration rate, during the different stages of decomposition.  

Abbreviation key as follows: Bloat-Act (Bloat-Active), Act (Active), Initial Adv (Initial Advanced 

Decay), Adv I (Advanced Decay I), Adv II (Advanced Decay II), Adv III (Advanced Decay III). 
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Nitrogen Fractions 

In the control soils, the concentration of total extractable nitrogen (TN) was 

variable, ranging from 0.01 to 0.8 mg N/gdw with nitrate/nitrite and ammonium 

alternating as main contributors to the TN pool during the duration of the study (Figure 

16).  The TN in CDI soils was up to 140 times greater than the control soils.  The most 

obvious trend in the CDI soils was strong correlation between ammonium and TN (Table 

4).  Nitrate/nitrite-N was only significant in the Bloat-Active Decay stage.  At the start of 

the Bloat stage, in the CDI soils, there was a significant increase in ammonium- which 

drove the TN concentration higher as well.  Another common observation worth noting: 

at the end of Active Decay stage, underneath all of the cadavers except for #50, there was 

a drop in TN/ammonium-N followed by an increase back to previous concentrations.  

The high variability in Advanced Decay III stage can be accounted for by the fact that TN 

and ammonium concentrations vary depending on the cadaver: soils beneath #47 and #50 

returned to original levels while the soils beneath #36 and #67 remained high.  

TN in the CDIs was significant in the Bloat, Active, Initial Advanced and 

Advanced Decay II stages, while ammonia-N was significant from Bloat to Advanced 

Decay II stages (Table 3).  Ammonia and TN were significantly correlated to extractable 

organic carbon, respiration and only TN was significantly inversely correlated to 

microbial growth efficiency (Table 4). 
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Figure 16. Extractable Nitrogen fractions of cadaver decomposition island (CDI) soils during 

decomposition compared to total nitrogen concentrations in the control soils.  Abbreviation key as 

follows: Bloat-Act (Bloat-Active), Act (Active), Initial Adv (Initial Advanced Decay), Adv I 

(Advanced Decay I), Adv II (Advanced Decay II), Adv III (Advanced Decay III). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 39 

 

Net Nitrogen Mineralization 

Net N mineralization was calculated as the change in NH4-N plus (NO3-NO2)-N 

divided by the change in time (in days).  Regardless of the net nitrogen mineralization 

behavior in the control soils, the most obvious trend in the CDI soils was the sharp 

increase at around 500 CDH (Figure 19).  As a whole, the net N mineralization increased 

significantly in the Bloat and Bloat-Active stages (Table 3).  In every CDI, except #50, 

the peak corresponded to the entire Active Decay stage and the first peak in respiration; 

in #50, the increase in net N mineralization slightly preceded the increase in respiration. 

 

 

 

 

 

Figure 17. Net N mineralization in cadaver decomposition island (CDI) soils and their respective 

control soils (a) #36, (b) #47, (c) #50, and (d) #67.  Data is presented by cumulative degree hours 

(CDH). 
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Extractable Organic Carbon 

The extractable organic carbon (EOC) was stable in all of the control soils over 

the course of the study, ranging from 0.08 to 0.45 mg C per gram dry weight.  At the start 

of the Bloat stage, there was significant increase in EOC in the CDI soils (Figure 18).  At 

the end of Active Decay stage, underneath all of the cadavers except for #50, there was a 

slight drop in EOC, after which an increase back to the previous concentration was seen 

shortly afterward.  As a whole, EOC was significantly higher in CDI soils compared to 

control soils until Advanced Decay II stage (Table 3).  As with TN, the fate of EOC 

varied in the Advanced Decay III stage: soils beneath #47 and #50 returned to original 

levels while the soils beneath #36 and #67 remained high.  In all cases the highest EOC 

values occurred at the same CDH that had the highest TN values. 

EOC was significantly correlated to microbial respiration, phosphate, leucine 

incorporation, ammonia, and total extractable nitrogen, and significantly inversely 

correlated to microbial growth efficiency (Table 4).  

 

 

 

 

Figure 18. Total extractable organic carbon (EOC) in cadaver decomposition island (CDI) and 

control soils during decomposition.  Abbreviation key as follows: Bloat-Act (Bloat-Active), Act 

(Active), Initial Adv (Initial Advanced Decay), Adv I (Advanced Decay I), Adv II (Advanced Decay 

II), Adv III (Advanced Decay III). 
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Extractable Phosphate 

The extractable phosphate concentration in the control soils was negligible, 

ranging from 0.19 to 0.75 parts per million.  Phosphate was not analyzed underneath 

cadaver #36.  Beneath all three cadavers, there was a spike in phosphate concentration as 

soon as the cadaver was placed, except underneath #50 where the first spike comes later 

in the Bloat stage (Figure 19).  The first peak was followed soon after with a second peak 

that roughly corresponds to the Active Decay stages of each cadaver.  Beneath #50, the 

phosphate concentration returns to near original levels during the course of this study, 

while the soil concentrations underneath #47 and #67 remained elevated.  Because of the 

large variability in phosphate concentrations, Advanced Decay II stage was the only stage 

in which the phosphate concentration was significantly higher than control soils (Table 

3).  Extractable phosphate was significantly correlated to extractable organic carbon 

(Table 4). 

 

 

 

 

Figure 19. Extractable phosphate concentrations in the cadaver decomposition island (CDI) soils and 

control soils.  Abbreviation key as follows: Bloat-Act (Bloat-Active), Act (Active), Initial Adv (Initial 

Advanced Decay), Adv I (Advanced Decay I), Adv II (Advanced Decay II), Adv III (Advanced Decay 

III). 
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pH 

There was no consistent trend in pH for the four replicates (Figure 20).  In some cases, 

CDI soils had elevated pH (#47 and #67), while for the other two cadavers, pH decreased.  

As a result, there were no significant differences between CDI and control soils for any 

stage of decomposition (Table 3).  Despite the inconsistency between cadavers, pH was 

significantly correlated to microbial growth efficiency and leucine incorporation (Table 

4).  

 

 

 

 

Figure 20. pH in cadaver decomposition island (CDI, filled symbols) and respective control soils 

(open symbols) for (a) #36, (b) #47, (c) #50, and (d) #67.  Data is presented by cumulative degree 

hours (CDH). 

  

a 

d c 

b 



 

 43 

Human-Associated Bacteroides 16S rRNA Abundances via qPCR 

No human-associated Bacteroides (HuBac) 16S rRNA gene copies were detected 

in the soil samples before placement and during Bloat stage of #47 and #67 (Figure 21b, 

d).  HuBac copies significantly increased at the beginning of Active Decay (Table 4).  

The site underneath cadaver #50 was discovered to have been previously exposed to 

HuBac (Figure 21c).  Beneath cadaver #36 (Figure 21a), HuBac was detected shortly 

after placement (but not before), but during the next sampling period, HuBac was not 

detected.  After this initial peak, the trend of the rest of the graph concurred with #47 and 

#67 graphs.  In all CDI soils, copy numbers were significantly elevated starting at the 

Bloat-Active transition for the duration of the study (Table 3).  

  

Figure 21. Human-associated Bacteroides 16S rRNA gene abundances in soil underneath cadavers (a) 

#36, (b) #47, (c) #50, and (d) #67.  Data is presented by cumulative degree hours (CDH). 
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Total Bacterial 16S and Fungal ITS region rRNA Abundances via qPCR 

Beneath #47 and #50, there was a decline in 16S rRNA copies immediately after 

the cadaver was placed (data not shown).  All of the CDI soils are had a significant 

increase in 16S rRNA gene copies in Bloat stage and decline in copies in the Active 

Decay stage (Table 3).  Curiously, this decline in copy number in the CDI occurs in 

Active Decay, when increased respiration was observed.  Total 16S rRNA gene copies 

were positively correlated to leucine incorporation rates (Figure 10).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 45 

 

CHAPTER V  

DISCUSSION AND CONCLUSIONS 
 Microbes play critical roles in a variety of nutrient cycles, such as the carbon and 

nitrogen cycles.  This study focused of the microbial role in organic matter 

decomposition in a terrestrial ecosystem.  This is a key step that links above-ground and 

below-ground pools of nutrients.  Microbial community structure changes following plant 

litter additions have been extensively investigated, but the decomposition of animal-

derived organic matter has often been overlooked.  This study examined the microbial 

community responsible for this process by determining the taxonomic and functional 

succession in a cadaver decomposition island (CDI).  In order to address our objectives, 

soils from beneath four cadavers at the UT Anthropological Facility were sampled during 

decomposition.  The soil solution was extracted and total nitrogen, ammonia, nitrate, 

phosphate and organic carbon were measured, as well pH, and soil moisture content.  

Microbial activity factors, such as biomass production and respiration, were assessed and 

human-associated Bacteroides, total bacterial, and total fungal abundances were 

measured via qPCR.  

 During cadaver decay, a few clear patterns emerged.  During Bloat-Active Decay 

stage there was a marked increase in total nitrogen (TN), extractable organic carbon 

(EOC) and phosphate, corresponding to the influx of decomposition fluids.  This increase 

was observed by other studies as well (Aitkenhead-Peterson et al. 2012; Benninger et al. 

2008; Hopkins et al. 2000).  All three remained significantly high until Advanced Decay 

III stage.  In comparison to other studies, we observed phosphate concentrations ranging 

from 0.6-39 µg/gdw and Aitkenhead-Peterson et al. (2012) reported an average of 3.15 

µg/gdw.  For organic carbon, Aitkenhead-Peterson et al. (2012) reported an average of 

1.28 mg/gdw, which fell within our range of 0.15-10.1 mg/gdw, but was lower than the 

average EOC concentration of 3.7 mg/gdw.  Discrepancy between the Aitkenhead-

Peterson et al. (2012) study and the present study could be due to the differences in the 

extracting solvent.  The previous study used water and we extracted with the salt, 

potassium chloride. It should be noted that, while the Aikenhead-Peterson et al. (2012) 

study also placed human cadavers at the soil surface, Hopkins et al. (2000) buried pig 

carcasses and Benninger et al. (2008) left pig carcasses to decompose at the soil surface 

for their studies.  We expect little variation in the decomposition process between human 

cadavers and pig carcasses, only the magnitude of data values should differ (due to mass 

differences).   

Although we cannot compare the scale between this study and that of Benninger 

et al. (2008), we can still compare trends.  They also observed two peaks in phosphate 

concentrations during the course of their study.  Likewise, the current study had a large 

increase in phosphate, but unlike Benninger et al. (2008) we did not see phosphate 

concentrations revert to basal levels.  One study found elevated phosphorus levels even 

39 months later after the decomposition of a mule deer (Parmenter & MacMahon 2009).   

An anomaly in the phosphate concentration dataset occurred immediately following the 

placement of the #47 and #67 cadavers: there was a sharp increase in the phosphate 

concentration in their CDIs during the Fresh stage.  Because this occurred before any 

purge fluids entered the soil, it is believed that a residual cleaning solution on the 
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cadavers’ skin entered the soil solution, but the human skin naturally has phosphorus on 

it.  Normal values range from 450- 980 mg per kg dry defatted weight (Subryan et al. 

1975).   

One of the clearest observations in this study was the huge increase in total 

nitrogen (TN) in CDI soils and the largest fraction of TN was ammonia.  Very little 

change in nitrate/nitrite was observed; this suggests that nitrification is not prevalent in 

the system.  Because of similarly high ammonia levels Aitkenhead-Peterson et al. (2012) 

also hypothesized that nitrification was not occurring in their grave soils.  A conceivable 

hypothesis to explain the lack of nitrate/nitrite is the presence of anaerobic conditions.  

Clay soils, like those at the ARF, set up a perfect environment for possible anoxic 

conditions: small pore sizes can slow the draining of water and the exchange of gasses.  

Under anoxic conditions, decomposition would decrease, volatile fatty acids (VFAs) (via 

fermentation) and ammonia accumulates, and methane is liberated (Acharya 1935).  Vass 

et al. (1992) reported the presence of VFAs, such as propionic, n-butyric and iso-valeric 

acids, in the soil solution beneath human cadavers.  More evidence for reducing 

conditions in CDIs was put forth by Hopkins et al. (2000) and Aitkenhead-Peterson et al. 

(2012): the former observed grey/green tinged soil underneath the carcass (consistent 

with the reduced forms of iron) and the latter, the lack of or low values of soil sulfate and 

bicarbonate.  Another possibility for the lack of nitrification is the presence of an 

inhibitor.  Various chelating agents, pyridine compounds and even certain amino acids 

can inhibit ammonia oxidizers (Bedard & Knowles 1989).  Another alternative to explain 

the lack of nitrate/nitrite is denitrification (reduction of nitrate/nitrite to gaseous N2): 

denitrification is found to be more active in water-logged anaerobic conditions rather than 

well-drained soils (Akiyama et al. 2006).  Stable isotope probing found that nitrate and 

succinate were used as an electron acceptor and donor, respectively, for denitrification in 

rice paddy soils (Saito et al. 2008).  

Another observation worth noting is the decline in ammonia (and therefore TN) in 

Advanced Decay stages II and III in CDI soils under #47 and #50.  Vass et al. (1992) saw 

a similar trend.  The reason for this remains unknown, but ammonia volatilization is a 

possibility.  Unfortunately, the evidential support is mixed.  The accepted pH cutoff for 

ammonia volatilization is usually 7.5.  The soil beneath #47 ranged from 4.5-7.0 and 

therefore not conducive to ammonia volatilization.  In contrast, the soil under #50 was 

above 7.5 through much of Advanced Decay stage.  Also, there was the slight decrease in 

TN (largely driven by ammonia) in Initial Advanced Decay; although Benninger et al. 

(2008) did not assign stages to their data points, this double peak in total nitrogen was 

also observed in this study.  This depression in TN concentration between two peaks 

coincides with a depression between respiration peaks, further discussed below.        

 Net nitrogen mineralization is the change in nitrate and ammonia production 

divided by the change in time, but the nitrate fraction of total N is so minimal that net N 

mineralization in this case could be thought of as the rate of ammonia production as a 

byproduct of microbial metabolism.  Net N mineralization was not reported in any 

previous decomposition study.  Hopkins et al. (2000) calculated an average net 

mineralization for the entire study, that ranged from 0.069-1.99 mg/gdw/day for the 

replicates and it was within the same order of magnitude as the values in this study, 

which ranged from -0.62-0.87 mg/gdw/day.  In natural soils of northern forests, net 
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nitrogen mineralization ranges from 0.01-250 µg N per gram dry weight of soil per day 

(Yin et al. 2012; Naples & Fisk 2010; Trap et al. 2009; Boerner et al. 2008; Coates et al. 

2008), and our control soils were within this range.  The maximum net N mineralization 

rates observed in the CDI soils was about 400% higher than this ‘natural’ range.  For 

cadavers #47 and #50, there was considerable variability in rates, possibly due to very 

warm temperatures during those time periods.  Experimental warming experiments 

showed that increases in temperature significantly increased net N mineralization (Yin et 

al. 2012; Guntiñas et al. 2012).  Dry-wet cycling has also been shown to increase net N 

mineralization (Q.-H. Chen et al. 2012).  The hot temperatures coupled with the 

intermittent rain during the summer could have mimicked this cycling and caused the 

fluctuation in mineralization rates.  The main trend was an increase in the net N 

mineralization during the Active Decay stage and subsequent drop in the rate of N 

mineralization.  It should be noted that this observation does not seem to hold in CDI #50 

as the increase in net N mineralization begins in the Initial Advanced Decay stage and the 

scale of mineralization values is one order of magnitude smaller than the rest of the CDIs.  

The reason for this is unknown. 

In this study, we hypothesized that biomass production and respiration would 

increase rapidly upon introduction of purge fluid and drop once resources deplete.  For 

respiration, this postulate was correct: microbial respiration increased during the onset of 

decomposition and declined in every CDI except for #36 in the Advanced Decay stages 

(which could be attributed to a corresponding drop in EOC in CDIs under #47 and #50).  

In contrast to our hypothesis, microbial biomass production rates initially increased 

during Bloat-Active stage, but then there was a sharp and significant decrease during 

Active Decay.  Using both biomass production and respiration measurements, we were 

able to compute microbial growth efficiency (MGE).  A sharp drop in MGE immediately 

occurs after the placement of the cadaver (but before the purge of the bodily fluids) and 

again in Active Decay stage, despite the fact that studies have found a positive correlation 

between MGE and phosphorus and dissolved organic carbon in aquatic systems (both of 

which are high in the CDIs) (Smith & Prairie 2004; Eiler et al. 2003). 

 One of the most interesting and important trends of the study was the 

reproducible double peaks in respiration during the Active Decay and Initial Advanced 

Decay stages, respectively.  Since total fungal ITS and bacterial 16S gene copy numbers 

were not significantly different from the control soils in these stages, it can be inferred 

that the respiration increases were not caused by an increase in overall microbial 

population size, but by changes in per cell microbial activity.  In combination with the 

other microbial rates measured, it suggests that the two peaks in respiration correspond to 

two functionally distinct microbial communities.  During the incline and decline of the 

first peak, there was a similar increase and decrease in biomass production and net N 

mineralization.  Following the first peak in respiration, the reduction in respiration 

corresponded to the lowest net N mineralization rates.  The second peak in respiration, 

during Advanced Decay, corresponded to no net N mineralization and the MGE was 

lower than the MGE in during the Active Decay peak.  This supports the explanation that 

two different communities with different N mineralization rates and efficiencies were 

present.  Phylogenetic sequencing is needed to confirm this functional shift. 
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We can infer that the first increase in respiration is caused by soil copiotrophs 

utilizing the new labile nutrients in the system.  To our knowledge, there are no other 

studies that have determined respiration as a rate or bacterial biomass production during 

decomposition.  In cumulative measurements, Carter et al. (2008, 2010) reported an 

increase in cumulative CO2-C evolution shortly after the placement of skeletal tissue and 

rat carcasses, respectively, and Carter et al. (2010) noted a decrease in microbial biomass 

carbon in very wet soils (a matric potential of -0.01 MPa).  Due to the narrow C:N of 

cadaveric material, it might also be beneficial to examine traditional nutrient input 

studies: high N additions have a negative effect on respiration and bacterial biomass 

production (E Bååth et al. 1981; Thirukkumaran & Parkinson 2000; F. Demoling et al. 

2008; Rousk & Erland Bååth 2007).  Demoling et al. (2008) reported decreases up to 

44% in bacterial growth rates when ammonium sulfate was added.  After the addition of 

high concentrations of urea or ammonium nitrate, basal respiration decreased 

(Thirukkumaran & Parkinson 2000).  The discrepancy between respiration effects could 

be attributed to the difference in methods.  The microcosms that were set up in our 

laboratory measured ‘potential respiration’, as oxygen was artificially introduced before 

incubation when sieving.  Dissimilarly, in the Thirukkumaran et al. (2000) study, for 

example, they monitored the soil-CO2 evolution using an infrared gas analyzer in situ.  

While the MGE in this study range from 0.001-0.9% in the CDI soils, normal soils range 

from 23% to 63% (Z. M. Lee 2011; Herron et al. 2009; D. S. Schimel 1988).  It should be 

noted that there is no consensus in the discipline on the methods used to determine 

microbial biomass production (and the conversion factor if applicable) and respiration.  

Also, the biomass production reported here consists almost entirely of the bacterial 

fraction.  As explained in the methods section, leucine is not incorporated into larger 

microorganisms like fungi.  Most of the values reported in this study are not outside the 

natural range though: the average bacterial growth efficiency (BGE) in aquatic 

environments is 15% but some have reported BGEs less than 5% (Eiler et al. 2003; del 

Giorgio & Cole 1998).   

It has been thought that the negative effect of nitrogen on biomass production 

could be explained by the ‘ammonium metabolite repression’ phenomenon seen in fungi 

or an osmotic effect (Thirukkumaran & Parkinson 2000).  Ammonia is known to inhibit 

lignolytic and nitrate-uptake enzyme production in fungi (Arst & Cove 1969); it is 

possible that this inhibitory effect at very high concentrations also plagues the bacterial 

community.  Growth is also a very sensitive indicator of stress, so there could be a toxic 

osmotic potential; the detoxification processes could be diverting cellular energy from 

biomass production.  It is also conceivable that the cadaver was emitting an inhibitory 

compound or an inhibitory metabolic byproduct besides ammonia was building up.  

Another possibility is that the system reached a physical or nutritional carrying capacity, 

although the latter appears unlikely given reported high overflow metabolism (high 

mineralization and respiration rates).  The 10
10

 16S rRNA gene copies per gram of soil 

reported by this study is one to two orders of magnitude higher than the average estimates 

in forest soils (S. Yarwood et al. 2013; Barta et al. 2010; Kuramae et al. 2012).  

Unfortunately, to the best of our knowledge, no study has examined the density limits of 

a terrestrial ecosystem.  The decline in MGE at the introduction of purge fluid lends 

further evidence of soil anoxia, and the absence of the nitrification process.  The decrease 
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in MGE could have been caused by anaerobic conditions in the CDI as the cadaver 

smothered the soil environment during the first drop and the influx of purge fluid during 

the second drop.  As previously stated, anaerobic respiration and fermentation are not as 

efficient as aerobic respiration.  Further evidence for this theory comes from the fact that 

MGE increased late in Advanced Decay stage, presumably when most of the purge fluid 

has leached out of the system and the cadaver mass has decreased.   

In our study, we observed no consistency in soil pH during decomposition.  There 

is also no consensus in the literature on pH in grave soils.  Some studies have reported an 

increase (Hopkins et al. 2000; A. S. Wilson et al. 2007; Carter et al. 2010; Rodriguez & 

Bass 1985; Reed  Jr. 1958), decrease (Fiedler et al. 2004), or no significant change 

(Benninger et al. 2008).  The present study results also reflect this variability.  

Conflicting trends also plagued Aitkenhead-Peterson et al. (2012).  One prominent study 

saw a pH increase during decomposition but then it dropped below basal levels in the 

long-term (Vass et al. 1992).  This trend was consistent with the one in the CDI under 

#50 (where cadaveric material was found to have been after the study’s conclusion) and 

in a repeat-burial study by Carter et al. (2008).  

We hypothesized that the Fungi:Bacteria ratio would increase shortly after the 

purge fluid entered the soil, then stabilize back to the original ratio upon depletion of 

nutrients.  We reject this hypothesis on the basis that fungal ITS gene copies numbers in 

the CDI were not significantly higher than the controls.  In a similar cadaver study, 

Parkinson et al. (2009) used the terminal restriction fragment length polymorphism (T-

RFLP) method to resolve variations in DNA sequence in the fungal ITS gene to generate 

a community profile.  No clear succession was found over time in the CDI.  Although 

forests are naturally higher in fungal abundances, the control and CDI abundances, which 

ranged from 8.5-10.7 log/gdw, were at least one order of magnitude higher than previous 

studies (Kuramae et al. 2012; Jangid et al. 2008).  This could be explained by high 

residual fertility from cadavers placed in the plots before the arrival of GPS-aided 

mapping of the cadavers at the ARF.      

We hypothesized that carcass-associated microbes would enter the soil in the 

purge fluid and persist in the soil environment until they are outcompeted by the 

indigenous soil microbes.  In this study, we observed the persistence of human-associated 

Bacteroides in high abundance in the CDI soils throughout the entire duration of the 

experiment.  The Bacteroides species (of the Bacteroidetes phyla) are anaerobic, non-

spore-forming, gram negative rods that enjoy a mutualistic relationship with its host.  

Together with Firmicutes, Bacteroidetes consist of 95 to 99% of the gut microbiota 

(Karlsson et al. 2011).  No study has examined the survival of the fecal bacterium 

Bacteroides in the soil environment.  The literature has predominantly focused on 

transient pathogenic organisms like Salmonella species, Camplyobacter species and 

Escherichia coli O157.  Survival rates varied, as it appeared to depend on (but not limited 

to) the location of the study (laboratory vs. field), physical properties of the soil (like 

CEC), bacterial physiology, and soil organic matter (Abu-ashour et al. 1994; Amin et al. 

2013).  For example, fecal bacteria persist longer in a laboratory microcosm than in situ 

conditions in general.  Escherichia coli O157 could survive up to 193 days in the 

laboratory and up to 99 days under natural conditions (Bolton et al. 1999; Jiang et al. 

2002; Gagliardi & Karns 2002).  A discrepancy between species seems to exist as well.  
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Salmonella species and Camplyobacter species only survived up to 120 and 34 days 

respectively (Hutchison et al. 2004; Tamasi 1981).  Commensals E.coli and fecal 

Streptococcus survived up to 160 and 109 days respectively (Ostrolenk, Kramer, & 

Cleverdon, 1947; Tamasi, 1981).  It is important to note that in no previous study did the 

organism persist in the soil environment; there was always a decline through the course 

of the investigation.  This was attributed in part to predation and competition with the 

indigenous soil community, for E.coli O157 was found to survive much longer in 

autoclaved, manure amended soils (Jiang et al. 2002).      

Due to the absence of comparable studies with Bacteroides, we can only speculate 

on the possible explanation for this persistence.  It is likely that a combination of 

favorable conditions allowed the enteric community to persevere in the soil environment.  

In general, studies have found that a pH range between five and eight, a soil with high 

water retention (i.e. clayey soils), and an availability of SOM/ adsorption sites increases 

survival times of fecal bacteria in soil (Berry & Hagedorn 1991; Abu-ashour et al. 1994).  

All of these physical conditions are present in the CDIs of this study.  Given that 

Bacteroides is obligately anaerobic, another probable CDI trait that favors its survival is 

anoxic soil conditions.  16S phylogenetic analysis revealed that anoxic rice paddy soil 

shared species between free-living (like natural soil) and vertebrate gut environments 

(Ley et al. 2008). 

Examination of Bacteroides’ metabolism in the gut can provide clues whether its 

nutritional requirements are met in the CDI.  A proteomic analysis of the main species B. 

fragilis, revealed a complex system to detect nutrient availability, and a pump system to 

remove toxic substances (Wexler 2007).  Both of these attributes could prove to be 

beneficial in a soil environment.  They also have a multitude of polysaccharide degrading 

enzymes to digest complex carbohydrates, like starch and cellulose, which human 

enzymes are unable to break down.  Although this study did not specifically measure 

polysaccharides, it can be assumed from the known biochemistry of the body, these are 

not in short supply in a CDI.  The byproducts of the catabolic breakdown of 

polysaccharides are VFAs, many of which were found in CDIs as previously mentioned 

(Vass et al. 1992).  The types of VFAs can even give clues as to the species present.  For 

example, the presence of both succinic and iso-butyric acids indicates that Bacteroides is 

there (Baron 1996).  Vass et al. (1992) did not detect succinic acid among the water-

soluble VFAs found in the soil solution, but iso-butyric acid was present.  It is possible 

that succinate (salt form of succinic acid) is serving as an electron donor in 

denitrification, or being oxidized in Mn
4+

/Fe
3+

 sulfate reductions or nitrate respiration 

(Saito et al. 2008). 

With the persistence of a large enteric population, there is cause for concern for 

public health if leaching into the groundwater occurs.  Once in an aquifer, 

microorganisms have the opportunity to move large distances: fecal coliforms have been 

reported to move to downstream wells up to 400 feet away depending on the soil type 

(Gerba 1974).  The topography of the ARF might also contribute to bacterial transport: 

the slope in the facility ranges from 12% to >25% (Damann 2010).  Lateral flow between 

the organic and mineral horizons of the soils, or surface runoff could deposit HuBac into 

the Tennessee River downslope.  Further study needs to be performed to determine the 

extent (if any) of leaching vertically or laterally in the soil.  Also, water-soluble VFAs 
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created by anaerobic fermentation are mobile and can be harmful through their ability to 

increase the mobility of heavy metals.   

Summary 

This study has provided a small glimpse into the decomposition process from the 

viewpoint of its driving force: the microorganisms.  Many questions are left unanswered 

and many more have been raised by these results.  For future work, it will be important to 

tie the functional processes with phylogenetic identities to further elucidate the shift seen 

in this study. 
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Table A1. Decomposition stage at each sampling day. The sample code is the cadaver number 

followed by the day after placement. 

Stage Sample Code 

36 47 50 67 

Initial  

CDH 0 

36-1 47-1 50-1 67-1 

Bloat 

CDH 410-250 

36-2 

36-4 

 

47-3 

47-4 

 

50-4 

 

67-4 

67-6 

67-8 

 

Bloat-Active 

CDH 210-455 

36-6 

36-8 

47-5 

47-6 

50-5 

50-6 

67-10 

67-13 

Active  

CDH 330-610 

36-10 

36-12 

47-7 

47-8 

50-8 67-17 

Initial Advanced 

Decay 

CDH 440-945 

36-14 

36-16 

47-9 50-10 67-23 

67-29 

Advanced 

Decay I  

CDH 490-1785 

36-23 47-10 

47-13 

50-12 

50-16 

67-72 

Advanced 

Decay II 

CDH 1265-2455 

36-46 47-25 

47-48 

50-28 

50-39 

67-114 

Advanced 

Decay III 

CDH 3920-6515 

36-87 47-198 50-83  
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