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ABSTRACT  

The American black bear (Ursus americanus) in the southern Appalachians has been the 

subject of intensive research.  In particular, the focus has been on population monitoring 

using livecapture, bait stations, harvest records, and radio-active feces tagging.  Genetic 

(DNA) sampling for mark-recapture is an emerging technique for estimating population 

abundance, but the efficacy of various sampling regimes for estimating populations of 

different densities has not been established.  I conducted a pilot study to determine 

whether genetic sampling for population estimation is feasible to monitor black bear 

abundance in the southern Appalachians and to develop appropriate sampling regimes to 

obtain desired levels of precision.  Specifically, I investigated how the density of 

sampling sites, number of samples analyzed, and sampling duration affect the accuracy 

and precision of population estimates.  Research was conducted for 10 weeks from 9 June 

to 15 August 2003 on 2 study areas: a high-density black bear population in a portion of 

Great Smoky Mountains National Park (the national park study area), and a lower-density 

black bear population on national forest lands in North Carolina, South Carolina, and 

Georgia (the national forest study area).  DNA was extracted from hair collected from 

baited barbed-wire enclosures.  The average number of hair-capture sites within a typical 

female home range was 2.71 and 2.48 for the national park and national forest study 

areas, respectively.  Twenty-five hair samples/week were randomly chosen for DNA 

analysis.  Individuals were identified by their unique genetic profile obtained from 9 to 

10 microsatellite loci.  I identified 129 and 60 individual bears in the national park and 

national forest study area, respectively.  Reductions in site density, subsample intensity, 

or sampling duration tended to produce low, heterogeneous capture probabilities, 
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resulting in unreliable population estimates.  Sample sizes and capture probabilities were 

smaller and population estimates decreased as the 3 factors were reduced.  Those trends 

were particularly apparent for the national park study area, where capture probabilities 

were particularly low.  The combination of small sample sizes and heterogeneous capture 

probabilities likely were a result of an insufficient number of hair-capture sites and 

number of analyzed hair samples relative to the size of the sampled population.  

Increasing these 2 factors likely would increase sample sizes and capture probabilities 

and reduce heterogeneity of capture probabilities present in the data.  However, 

increasing the number of analyzed samples also would increase costs.  Because pooled 

sampling periods increased capture probabilities, I selected a pooled configuration for 

population estimation that yielded relatively high capture probabilities (3 periods 

comprised of 3 weeks each).  I used the heterogeneity model Mh Chao, which produced 

an estimate of 292 bears (95% CI = 214–435) for the national park study area and 98 

bears (95% CI = 76–149) for the national forest study area (density = 1.83 bears/km2 and 

0.30 bears/km2, respectively).  My results indicate that effective implementation for black 

bear population estimation requires careful consideration of study design.  Capture 

probabilities of ≥20% are required to minimize bias, and this would be best achieved by 

analyzing more subsamples from a greater density of hair-capture sites, particularly in 

high-density populations.  I recommend ≥4 hair-capture sites/female home range to 

reduce heterogeneity and a sampling duration of 6–8 weeks to reduce violation of 

geographic closure.  In the national forest study area reasonably unbiased population 

estimates were achieved with 20 hair samples/week, but as many as 40 hair samples/week 

may be required to produce reliable estimates for the national park study area. 
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CHAPTER I 

INTRODUCTION 

 
General Problem Statement  
 

The American black bear (Ursus americanus) was numerous and widespread in 

the southern Appalachians at the time of European settlement, but subsequent 

unregulated exploitation led to severe population declines through the late 1800s (Clark 

and Pelton 1999).  Bears were hunted for meat, fat, and fur, and were persecuted as pests 

by settlers.  Furthermore, bear habitat was rapidly lost and degraded during the late 1800s 

and early 1900s because of farming, logging, road construction, and the introduction of 

the chestnut blight, which eliminated the American chestnut (Castanea dentata) as a key 

food source for bears from eastern forests (LaFollette 1974).  However, during the first 

half of the 20th century, the U.S. government initiated programs to acquire land for the 

establishment of national parks and national forests, most notably Great Smoky 

Mountains National Park in 1934.  Bear populations began to slowly recover and, by the 

mid 1900s, the black bear was designated a game species by most southeastern states, 

which resulted in further protection and regulation (Clark and Pelton 1999). 

As bear populations began to recover, it became evident that there was a need for 

a better understanding of bear ecology to improve management.  The University of 

Tennessee initiated research in Great Smoky Mountains National Park in the late 1960s. 

This research effort has provided valuable long-term information on the bear population.  

Research topics have been numerous and varied, including habitat use, denning ecology, 
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nuisance bear behavior, food habits, population monitoring, and population 

demographics.   

During the early 1970s, there were indications of a regional decline of the bear 

population and managers realized that the black bear population was a shared resource 

(Pelton and van Manen 1996).   It became clear that bear management in the southern 

Appalachians would benefit from closer cooperation between managers and researchers 

in the region.  In 1976, state biologists and researchers from Georgia, North Carolina, and 

Tennessee formed the Tri-State Black Bear Study (Carlock et al. 1983).  In subsequent 

years, South Carolina, the National Park Service, and the U.S. Forest Service joined the 

group, and they became what is now known as the Southern Appalachian Black Bear 

Study Group (SABBSG).  

The SABBSG has consistently identified the need for an accurate population 

estimate for the region and the ability to track population trends over time.  Currently, a 

bait-station survey is used by 3 of the 4 state wildlife agencies in the region to monitor 

bear population trends.  The bait-station survey is conducted annually in the summer and 

consists of hanging sardine cans from trees along designated routes and counting the 

number of bear visits to obtain an index of population abundance.  Although this 

technique may be useful to indicate relative changes in population size over time, it 

cannot be used to derive an estimate of population abundance or density (Garshelis 

1990).  

A regional estimate of black bear population size and density is important to 

guide management.  Conventional mark-recapture techniques based on capture and 

release have been used to estimate bear populations in smaller study areas but present 
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logistical difficulties when applied to a large region.  Live-capture techniques tend to be 

costly and labor intensive and often provide population estimates with relatively low 

precision and accuracy.  Poor precision can result when sample sizes and recapture rates 

are low.  The accuracy of estimates obtained with live-capture techniques can be affected 

when sampling biases, such as unequal capture probabilities, are present (Pollock et al. 

1990).  For example, live-capture studies on black bears frequently produce “trap smart” 

bears that consume bait at trap sites without being captured.  

Advances in DNA technology offer alternative methods for population estimation 

that may help overcome problems with conventional mark-recapture techniques based on 

livetrapping (Taberlet et al. 1997, Woods et al. 1999, Mowat and Strobeck 2000).  

Whereas conventional mark-recapture studies use physical markers (e.g., ear tag, leg 

band, tattoo) to mark individuals, a relatively new technique is to “mark” animals based 

on DNA collected from hair or tissue samples.  This DNA technique has advantages over 

live trapping, such as increased capture probability, tag permanency, reduced bias, and 

decreased intrusiveness (Woods et al. 1999, Mills et al. 2000).  Initial research efforts 

were based on tissue samples to determine abundance of humpback whales (Megaptera 

novaeangliae) in the north Atlantic Ocean (Palsbøll et al. 1997) and hair samples to 

determine abundance of brown bears (Ursus arctos) in British Columbia (Mowat and 

Strobeck 2000, Poole et al. 2001) and Glacier National Park (Kendall et al. 2001).  Since 

then, the DNA technique has been applied to black bears in many areas, including Tensas 

River National Wildlife Refuge in Louisiana (Boersen et al. 2003), Okefenokee National 

Wildlife Refuge and Oceola National Forest in Florida (Dobey et al. 2005), portions of 

the coastal plain in North Carolina (Thompson 2003; C. Tredick, Virginia Polytechnic 
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Institute and State University, unpublished data), and the lower peninsula of Michigan 

(B. Dreher, Michigan State University, unpublished data). 

Justification  

DNA sampling for population estimation is a promising technique to study black 

bears in the southern Appalachians.  However, the efficacy of DNA sampling under 

various sampling regimes and population densities has not been established.  As with any 

population estimation technique, DNA sampling requires an investment of time and 

resources and its feasibility should be assessed before a monitoring program is 

established.  Much of the initial enthusiasm for the technique was soon tempered by the 

realization that DNA sampling comes with a new realm of unique challenges.  For 

instance, the ability to identify individuals using genetic markers is hampered when 

quantities of DNA are low, such as when DNA is extracted from hair (Goossens et al. 

1998, Taberlet et al. 1999).  Small quantities of DNA are susceptible to a genotyping 

error known as allelic dropout, in which individuals are incorrectly identified as  

homozygotes when in fact they are heterozygotic (Taberlet et al. 1999).  Another type of 

error involves the creation of false alleles due to artifacts of the polymerase chain 

reaction (PCR) process (Taberlet et al. 1996).  Whereas genotyping errors have the 

potential to bias estimates of population abundance (Waits and Leberg 2000), their effect 

can be reduced by collecting a sufficient quantity of DNA (≥10 hairs), reducing DNA 

degradation by using proper collection and storage techniques, using appropriate markers 

with high heterozygosity, adhering to stringent laboratory protocols, and re-analyzing 

questionable samples (Goossens et al. 1998; Taberlet et al. 1999; Woods et al. 1999; 

Paetkau 2003, 2004; McKelvey and Schwartz 2004a,b).   
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DNA studies also require special study design consideration.  Most DNA mark-

recapture studies use closed models for population abundance estimation; thus, the issue 

of closure becomes imperative.  Suggestions for minimizing geographic closure 

violations include scaling the size of the sampling area to be large relative to the home 

range of the species, using topographic features to enhance closure, defining a “core” 

sampling area from which estimates of density are derived, and radiocollaring animals to 

obtain an estimate of movement across study area boundaries (Boulanger and McLellan 

2001, Boulanger et al. 2004a).  Furthermore, it is not clearly understood what types of 

sampling bias can be expected with DNA sampling, and what capture probabilities can be 

expected under certain sampling scenarios.  It is not known how sample-site density, the 

number of samples analyzed per sampling period (subsampling intensity), or sampling 

duration affect the quality of population estimates obtained from a DNA study.  For 

instance, Boulanger et al. (2002) examined DNA mark-recapture data for grizzly bears in 

Canada and found that there was a trade-off between intensively sampling a small study 

area with many sample sites or less intensively sampling a large study area.  The small 

study area was prone to closure violations, whereas recapture rates decreased with the 

large study area, thus decreasing precision.   

No information is available regarding the ideal sampling design that would reduce 

closure violation, increase capture probabilities, and be logistically efficient for the study 

of black bears in the southern Appalachians.  Therefore, a pilot study is needed to 

determine whether genetic sampling for population estimation is feasible and to develop 

appropriate sampling regimes to obtain desired levels of precision and identify potential 

sources of bias (Taberlet et al. 1999).  Moreover, a pilot study would provide baseline 
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population estimates and would be useful to develop sampling protocols that minimize 

logistical issues. 

Objectives  

The overall goal of my study was to establish effective DNA sampling regimes 

and sampling protocols for estimation of black bear population abundance in the southern 

Appalachian region.  The specific objectives of my study were to: 

1) determine the influence of bear density, sample site density, length of 

sampling period, and the effects of subsampling on the precision and 

accuracy of population abundance estimates using DNA sampling; 

2) evaluate the feasibility and effectiveness of DNA sampling based on 

comparisons with other mark-recapture techniques; and 

3) provide baseline estimates of population size and density. 
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CHAPTER II 

STUDY AREAS 

Location  

 Two study areas were established based on relative densities of black bears in the 

southern Appalachian region (Fig. 1).  The national park study area, in the northwest 

portion of Great Smoky Mountains National Park in Tennessee, had a relatively high 

density of black bears (Eason 2002).  The sampling area covered approximately 160 km2.  

The national forest study area had a relatively low density of black bears compared with 

the national park study area (SABBSG, unpublished data) and included portions of the 

Tallulah Ranger District of the Chattahoochee National Forest in Georgia, the Pickens 

Ranger District of the Sumter National Forest in South Carolina, and the Cheoah Ranger 

District of the Nantahala National Forest in North Carolina.  The national forest study 

area was approximately 329 km2 (see Methods for calculation of study area size).   

Topography  

The national park study area in Great Smoky Mountains National Park was 

characterized by rugged terrain consisting of long ridgelines flanked by steep coves and 

valleys (King and Stupka 1950).  Elevations in Great Smoky Mountains National Park 

range from 267 to 2,025 m.  Access to the national park study area was limited by only 1 

improved road and a network of maintained trails.   

In the national forest study area the topography was less rugged and complex 

compared with the national park study area.  The national forest study area had a higher 

density of U. S. Forest Service roads than the national park study area. 
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Fig. 1.  Study areas to determine the feasibility of DNA sampling to estimate black bear 
population abundance, Great Smoky Mountains National Park, Tennessee, and portions 
of Chattahoochee National Forest in Georgia, Sumter National Forest in South Carolina, 
and Nantahala National Forest in North Carolina, 2003.   



 9

 
Climate  
 Climatic conditions in the southern Appalachians varied by season, aspect, and 

elevation (Shanks 1954).  High elevations were generally cooler and had more 

precipitation than lower elevations.  Some portions of Great Smoky Mountains National 

Park were considered temperate rainforest (Thornthwaite 1948).  In low- to mid-elevation 

areas, the average high and low temperatures from June through August were 30.5°C and 

15°C, respectively.  Summer days typically were warm and humid.  Rainfall in the 

summer occurred in the form of frequent afternoon thunderstorms, producing an average 

of 13.7 cm per month.  During winter, average temperatures in the lower elevations 

ranged from 11.3°C to -2.1°C and precipitation averaged 11.9 cm of rain and 4.6 cm of 

snow per month (National Park Service 1997).  The climate of the national forest study 

area was slightly moderated compared with the national park study area because of a less 

rugged topography and lower elevations. 

Flora  

The vegetation in Great Smoky Mountains National Park was diverse, with >130 

native tree species and communities ranging from lowland mixed hardwoods to spruce 

(Picea rubens)-fir (Abies fraseri) at high elevations (King and Stupka 1950).  Although 

much of the land was logged prior to formation of the park, substantial portions of old 

growth forest still remained, making this area one of the largest tracts of temperate old-

growth forest in eastern North America.  Sampling was restricted to the northwest 

quadrant of Great Smoky Mountains National Park, in areas of low to mid elevation.  

Vegetation in the sampling area primarily consisted of mixed hardwoods, including oaks 

(Quercus spp.), tulip poplar (Liriodendron tulipifera), red maple (Acer rubrum), sweet 
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gum (Liquidambar styraciflua), yellow buckeye (Aesculus flava), and dogwood (Cornus 

florida).  A dense understory of rhododendron (Rhododendron maxima), mountain laurel 

(Kalmia latifolia), or huckleberry (Gaylussacia spp.) was common.  Streamside areas 

typically were dominated by eastern hemlock (Tsuga canadensis), whereas ridges were 

dominated by pine (Pinus spp.).  Vegetation of the national forest study area was similar 

to that of Great Smoky Mountains National Park, but it was actively managed by the U.S. 

Forest Service and tended to have a more dominant pine component.    
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CHAPTER III 

METHODS 

Approach  

I constructed baited, barbed-wire enclosures (hair-capture sites) to collect black 

bear hair for DNA analysis (Woods et al. 1999).  The DNA sampling technique uses 

microsatellites, which are small, non-coding, segments of DNA that consist of a series of 

repeated pairs of nucleotides (Sia et al. 1997).  Other molecular markers, such as 

allozymes or mitochondrial DNA, have been used on a variety of species, but genetic 

variation is generally lower (McConnell et al. 1995).  In contrast, microsatellites are 

highly variable and easier to interpret.  Microsatellite analysis uses polymerase chain 

reactions (PCR) to amplify small or degraded DNA samples, making it suitable for use 

on hair (Paetkau et al. 1995, Mills et al. 2000).  Because microsatellites are highly 

variable, researchers can use a relatively small suite of microsatellite loci to identify the 

unique genetic profile of an individual.  The ability to identify recaptured individuals 

from hair samples enables the use of traditional mark-recapture models to estimate 

population abundance.   

Sample Site Selection and Study Area Delineation  

I established 65 and 60 hair-capture sites for the national park and national forest 

study areas, respectively.  That level of sampling was based on a compromise between a 

recommendation of ≥4 sites/home range (Otis et al. 1978) and logistical constraints (i.e., 

available personnel and limited access).  Elevations of sample sites ranged from 

approximately 360–820 m on the national park study area, and 330–930 m on the 

national forest study area.  I calculated the effective sampling area of each site by 



 12

circumscribing arcs around each sample site, the radii of which were based on the size of 

an average female home range to represent the smallest expected sample range (Boersen 

et al. 2003, Dobey et al. 2005).  For the national park study area, I set that radius to 1,635 

m based on an average home range of 8.4 km2 (minimum convex polygon method) 

reported for Great Smoky Mountains National Park (Beeman 1975, Garshelis 1978, 

Quigley 1982, Carr 1983; Fig. 2).  For the national forest study area, I set the radius to 

2,108 m representing an average home range of 14.0 km2 on national forest areas in the 

southern Appalachians (Villarrubia 1982, Garris 1983, Beringer 1986, Seibert 1989, 

Reagan 1991; Fig. 3).  Locations for hair-capture sites were established by generating 

random Universal Transverse Mercator (UTM) coordinates within the 2 study areas with 

ArcView® geographic information systems (GIS; ESRI, Redlands, California, USA) with 

the goal of creating approximately circular study areas without any gaps in sampling 

coverage.  To facilitate field logistics, I chose sampling locations so that none were >500 

m from a road or trail.  The resulting dispersion of hair-capture sites yielded a sampling 

area of 160 km2 and 329 km2 for the national park and national forest study areas, 

respectively. 

In order to examine how well the study areas met the criteria of ≥4 sites/home 

range suggested by Otis et al. (1978), I conducted a moving window analysis in 

ArcView® GIS to calculate the average number of hair-capture sites/female home range.  

I determined that the average number of sites within a typical home range was 2.71 and 

2.48 for the national park and national forest study areas, respectively.  Hair-capture site 

density was at the recommended level at the center of each study area, but peripheral 

areas typically had 1–3 hair-capture sites/female home range.  However, male bears, 
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Fig. 2.  Location of black bear hair-capture sites and calculated study area based on 
average female home-range size in the national park study area, Tennessee, 2003. 
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Fig. 3.  Location of black bear hair-capture sites and calculated study area based on 
average female home-range size in the national forest study area, North Carolina, South 
Carolina, and Georgia, 2003.
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which have larger home ranges than females, were more likely to have 4 or more hair-

capture sites in their home range.   

Field Sampling of DNA  

Field personnel located each hair-sample site using a global positioning system 

(GPS) receiver (GPS 12XL; Garmin International, Olathe, Kansas, USA).  Because of 

logistical considerations (e.g., hair-capture site coordinates occurring close to a residence 

or inaccessible terrain), hair-capture sites could be established anywhere within 250 m of 

the targeted site.   In the national park study area, personnel used a network of improved 

and unimproved roads and >25 trails to access hair-capture sites.  In the national forest 

study area, vehicle access was good and most hair-capture sites were accessible by short 

walks from maintained roads.   

Each hair-capture site consisted of a barbed-wire enclosure with bait.  The 

enclosure was constructed using 15.5-gauge barbed wire (7.5 cm spacing between each 4-

pointed barb), which was stretched around 4 corner trees and nailed in place to enclose an 

area of approximately 5 x 5 m.  The wire was placed 40–50 cm above ground and 

stretched tight with standard fencing tools.  Bait consisting of bakery products was placed 

in a small waxed-paper sack and hung on a smooth wire stretched diagonally between 2 

corner trees at a height and position such that a bear could not reach it without entering 

the enclosure.  A tampon soaked in raspberry extract (Mother Murphy’s Laboratories, 

Greensboro, North Carolina) was used as a scent lure to attract bears.  As a human safety 

precaution, all sites were marked with orange flagging to make them more visible. 

 All sites were checked for hair samples and rebaited once every 7 days for 10 

weeks.  Each hair sample with >5 hairs was collected and individually stored in labeled 
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coin envelopes with desiccant (Drie-rite®, W. A. Hammond Drierite Company Ltd., 

Xenia, Ohio, USA).  After hair collection, any remaining hairs were burned off the barbs 

to prevent contamination with future hair samples. 

Subsampling and Microsatellite Analysis  

For DNA analysis, I randomly chose 25 samples/sampling period for each study 

area with each sample coming from a different hair-capture site within a sampling period.  

Given a range of capture probabilities, this sample size consistently yielded coefficients 

of variation (CV) ≤20% based on simulations using the Lincoln-Peterson estimator 

(Chapman 1951).  Thus, this number of samples was considered sufficient to examine 

estimates based on smaller sample sizes.  

I prepared hair samples for analysis by clipping a small portion (≈ 0.5 cm) of the 

root end of a hair and placing it in a clear 1.5-ml boil-proof microcentrifuge tube.  Five to 

15 hairs were clipped from each sample (Goossens et al. 1998) and each tube containing 

a single sample was labeled with a unique identification number.  The samples were sent 

to the Leetown Science Center, a U.S. Geological Survey facility in Kearneysville, West 

Virginia, for microsatellite DNA sequencing (Appendix A).  Ten microsatellite loci were 

analyzed for each hair sample (Appendix A): G1A, G10B, G1D, G10C, G10L, G10X, 

G10M, G10P, MU23, and MU50 (Paetkau and Strobeck 1994, Paetkau et al. 1995). 

Probability of Identity  

An important assumption of mark-recapture models is that animals have unique 

marks.  Although each individual has a unique genetic profile, only a certain number of 

loci can be analyzed because of a limited number of markers and cost restrictions.  Thus, 

2 individuals may share the same genetic profile at the selected markers (Mills et al. 



 

 17

2000).  Furthermore, extracting DNA from hair or feces often results in degraded DNA, 

which can lead to genotyping errors due to a phenomenon known as allelic dropout.  

Allelic dropout occurs when only one allele of a heterozygous individual is detected, 

producing a false homozygote (Taberlet and Luikart 1999).  Close relatives can thus be 

mistaken for recaptures, which will bias the population estimate low (Taberlet and 

Luikart 1999, Mills et al. 2000).  Thus, it is important to quantify the power of the 

molecular markers (microsatellites) to differentiate between individuals.  The probability 

of identity (PI) is the statistic most commonly used for this purpose and is defined as the 

probability of obtaining identical genotypes given certain allele frequency distributions.  

The frequency can be calculated for each locus by: 

PIsingle locus = ∑pi
4 +  ∑(2pi pj )2, 

where pi  and   pj  are the frequencies of the ith and jth alleles, assuming the alleles at each 

locus are independent and, thus, in Hardy-Weinberg equilibrium.  The overall PI across 

multiple loci is the product of the PIs at each locus (Taberlet and Luikart 1999).  The 

assumption of independent loci can be easily violated, which would bias the resulting PI 

calculation low (Mills et al. 2000).  Populations containing many siblings are a good 

example of a situation in which loci may not be independent.  Therefore, a PI calculated 

for siblings gives a more conservative estimate for the number of loci needed to obtain a 

sufficiently low PI (Taberlet and Luikart 1999): 

PIsibs = 0.25 + (0.5 ∑pi
2 ) + [0.5( ∑pi

2 )2] – (0.25 ∑pi
4 ). 

Using this formula, Taberlet and Luikart (1999) found that approximately 14 loci were 

needed to obtain a low probability (e.g., 0.0001) of finding 2 siblings with identical 

genotypes in their study population, whereas approximately 7 loci would be needed to 
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obtain the same PI for 2 random individuals.  I used 10 loci to determine genotypes of 

hair samples from this study, which is considered to be sufficient for populations that do 

not contain many siblings (Taberlet and Luikart 1999) and has been adequate for 

previous studies (Thompson 2003, Paetkau 2004).   

 Another set of tests described by Woods et al. (1999) identifies samples that have 

a high probability of having the same genotype as another sample at the loci examined.  

The most conservative of these tests is the sibling match test (Psib), which examines the 

probability that an individual would share a genotype with its sibling at the loci 

examined.  The sibling match test differs from PIsibs in that Psib is a test on individual 

samples, whereas PIsibs calculates a probability for the entire study population (Woods et 

al. 1999).  For the sibling match test, it is assumed that samples are not necessarily 

acquired at random and may come from family groups that visit a hair-capture site 

together (Woods et al. 1999).  The sibling match test can be calculated as: 

Psib = (1 + 2pi
 + pi

2) ⁄ 4  

for homozygotes and 

Psib = (1 + pi
 + pj + 2pi

 pj) ⁄ 4  

for heterozygotes (Woods et al. 1999).  I performed the sibling match test for every 

sample on both study areas.  Samples with a Psib > 0.05 were not considered to be unique 

individuals and were excluded from analysis (Woods et al. 1999, Boersen et al. 2003, 

Thompson 2003).   

Hardy-Weinberg and Linkage Disequilibrium  

The calculation of PI is based on the assumption that the study population 

conforms to the Hardy-Weinberg equilibrium.  A population is in Hardy-Weinberg 
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equilibrium when allelic and genotypic frequencies remain constant over time.  This 

equilibrium can be violated when conditions such as mutation, migration, genetic drift, or 

non-random mating occur (Gillespie 1998).  A population in Hardy-Weinberg 

equilibrium will show the following allele frequencies: 

p2 + 2pq + q2 = 1, 

where p is the frequency of allele Ai and q is the frequency of allele Aj.  I used Program 

GENEPOP (version 3.4; Raymond and Rousset 1995) to determine if my data conformed 

to Hardy-Weinberg expectations.  I used sequential Bonferroni adjustments, designed for 

use with multiple statistical tests, to determine statistical significance (Rice 1989). 

 Another assumption required for the analysis of genetic data is that of linkage 

equilibrium.  When loci are in a state of linkage equilibrium, it means that alleles from 

different loci are independent of one another, and therefore occur in predictable 

frequencies as a result of recombination rates during meiosis (Gillespie 1998).  Linkage 

disequilibrium occurs when alleles from different loci consistently occur together due to 

the low rate of recombination.  The 10 loci used in my study were previously determined 

to be independent (Paetkau and Strobeck 1994, Paetkau et al. 1995). Therefore, the 

presence of linkage disequilibrium in my data could be indicative of sampling bias, non-

random mating, sampling of siblings, the presence of immigrants, or stochastic processes 

(T. L. King, U.S. Geological Survey, personal communication).  I used Program 

GENEPOP to test for linkage disequilibrium and used sequential Bonferroni adjustments 

to determine statistical significance.   
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Population Estimation  

I used closed models for population estimation, principally the multiple mark-

recapture models described by Otis et al. (1978).  These models are based on the 

following assumptions (Otis et al. 1978): 

(1) the population is closed to additions (births or immigrants) and deletions (deaths 

or emigrants), 

(2) animals do not lose their marks during the experiment, 

(3) all marks are correctly noted and recorded at each trapping occasion, and  

(4) each animal has a constant and equal probability of capture on each trapping 

occasion. 

Because the data were collected during a short period of time, during which no 

births occurred and survival was high, it is reasonable to assume that the 2 sample 

populations met the criteria for demographic closure.  However, the assumption of 

geographic closure can be difficult to meet with study areas embedded within larger areas 

of black bear habitat (White et al. 1982).  Because all bears are permanently marked with 

their own unique genetic code that cannot be lost, assumption 2 can reasonably be met 

with the DNA sampling technique.  However, this assumption can be violated if errors in 

genotyping occur, such as allelic dropout or the presence of false alleles, but these errors 

are rare when enough original (i.e., template) DNA is used.  Goossens et al. (1998) 

showed that when using 10 hairs, these errors occurred a combined total of only once out 

of 350 PCRs (0.29% error rate).  Therefore, I did not analyze samples with ≤5 hairs.  

Assumption 3 was addressed based on the PI statistic.  However, it is widely recognized 

that the assumption of equal and constant capture probability is not met in many capture-
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recapture studies (White et al. 1982).  For example, a capture may affect the probability 

of future captures of an animal.  However, multiple mark-recapture models have been 

developed so that the assumption of equal catchability can be relaxed (Otis et al. 1978, 

Chao 1987).  Model Mt allows capture probabilities to vary by time.  This model would 

be useful in situations where, for example, weather conditions or different trapping 

methods may reduce trap activity over the course of the study.  Model Mb allows capture 

probabilities to vary by behavioral response.  The behavioral model would be useful 

when animals become “trap happy” or “trap shy” based on previous trapping experiences 

(White et al. 1982).  Model Mh, the heterogeneity model, allows capture probabilities to 

vary by individual animal.  The heterogeneity model could be used for many situations, 

including differences in capture probabilities because of age, sex, social dominance, or 

accessibility to traps (Otis et al. 1978).   

Combinations of the 3 unequal capture probability models (Mtb, Mth, Mbh, and 

Mtbh) were not considered.  I chose to focus on the single-factor models because my 

primary goal was to examine bias in the data, for which the single-factor models were 

most useful.  Moreover, no estimator currently exists for model Mtbh.  Likewise, models 

Mtb and Mth lack rigorous statistical estimators and generally are not as reliable as the 

other models for population estimation (White et al. 1982).   

For sampling scenarios with low capture probabilities, I considered 2 additional 

multiple mark-recapture models described by Chao (1987, 1988, 1989) and Chao et al. 

(1992).  These estimators are modifications of the Mh and Mt  models described by Otis et 

al. (1978) and were designed to provide reliable population estimates with sparse data 

(i.e., animals captured only 1–2 times; Chao 1989).   
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Sensitivity Analysis 

The sensitivity analysis was designed to examine the effects of the 3 field 

sampling factors on the performance of the population models.  For this analysis, the 

following terminology applied: factor referred to the 3 field sampling variables that I 

examined (sampling duration, subsampling intensity, and trap density) and levels referred 

to the various values of these factors in the simulations.  A sampling scenario (or 

scenario) was a single combination of levels from the factors and represented a subset of 

the entire dataset.  To evaluate potential biases in the data and select an appropriate 

sampling regime for the southern Appalachians, I created 53 and 51 different sampling 

scenarios for the national park and national forest study area, respectively (Tables 1 and 

2).  I created a master dataset for each study area, which contained a bear ID number 

associated with each sample, the site number where the sample was collected, an 

assigned sample number, and the week the sample was collected.  I used SAS® statistical 

software (SAS Institute, Cary, North Carolina, USA) to create the subsets required for the 

sensitivity analysis and to convert the subsets into properly formatted capture histories for 

population estimation in Program CAPTURE (Rexstad and Burnham 1992).   

For each study area, I created 40 sampling scenarios that involved a combination 

of subsampling intensity and sampling duration.  Twenty of those scenarios were based 

on each of the 10 hair-sampling periods separately (the single–week scenarios) and 20 

involved pooling the weekly sampling periods (the pooled sampling scenarios).  For the 

former, sampling duration was examined at 4 levels: 10 weeks, 8 weeks, 6 weeks, and 4 

weeks.  I chose those levels to examine how reductions in time investment would affect 

the precision and bias of the population estimates.   
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Table 1.  Configuration of sampling duration scenarios considered for sensitivity analysis 
on the national park study area (NPSA) and national forest study area (NFSA), 2003.  
Twenty scenarios involved combinations of single weeks and subsample levels, and 20 
scenarios involved pooled week configurations and subsample combinations.  Each 
scenario was replicated 100 times in Program CAPTURE, and the number of replicates 
that successfully produced output for model Mh Chao are listed. 
 

 
 
 
 
 

Sampling duration Number of 
subsamples 

Number of successful 
replicates for Mh Chao 

(NPSA/ NFSA) 
 

10 weeks 25 100 / 100  
10 weeks 20 100 / 100  
10 weeks 15 100 / 100  
10 weeks 10 100 / 100  
10 weeks 5 93 / 99  
8 weeks 25 100 / 100  
8 weeks 20 100 / 100  
8 weeks 15 100 / 100  
8 weeks 10 86 / 100  
8 weeks 5 96 / 98  
6 weeks 25 100 / 100  
6 weeks 20 100 / 99  
6 weeks 15 100 / 100  
6 weeks 10 96 / 100  
6 weeks 5 97 / 95  
4 weeks 25 100 / 100  
4 weeks 20 86 / 100  
4 weeks 15 85 / 100  
4 weeks 10 91 / 93  
4 weeks 5 98 / 100  
3 periods of 3 weeks 75 100 / 100  
3 periods of 3 weeks 60 80 / 100  
3 periods of 3 weeks 45 69 / 100  
3 periods of 3 weeks 30 61 / 100  
3 periods of 3 weeks 15 58 / 100  
3 periods of 2 weeks 50 100 / 100  
3 periods of 2 weeks 40 98 / 100  
3 periods of 2 weeks 30 89 / 100  
3 periods of 2 weeks 20 69 / 99  
3 periods of 2 weeks 10 76 / 97  
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Table 2.  Configuration of site reduction scenarios considered for sensitivity analysis on 
the national park study area (NPSA) and national forest study area (NFSA), 2003. 
Thirteen and 11 different scenarios were considered for the NPSA and NFSA, 
respectively. Each scenario was replicated 100 times in Program CAPTURE, and the 
number of replicates that successfully produced output for model Mh Chao are listed. 

Number of sites 
Number of successful 

replicates for Mh Chao 
(NPSA/NFSA) 

 

65 (NPSA only) 100  
60 (NPSA only) 100  
57 (NFSA only) 100  
55 (NPSA only) 100  
50 100 / 100  
45 100 / 100  
40 100 / 100  
35 98 / 100  
30 99 / 100  
25 98 / 100  
20 99 / 100  
15 99 / 99  
10 99 / 98  
5 98 / 92  
 

 

Table 1.  Continued.    

Sampling duration Number of 
subsamples 

Number of successful 
replicates for Mh Chao

(NPSA/NFSA) 

 

4 periods of 2 weeks 50 100 / 100  
4 periods of 2 weeks 40 100 / 100  
4 periods of 2 weeks 30 98 / 100  
4 periods of 2 weeks 20 80 / 99  
4 periods of 2 weeks 10 70 / 99  
5 periods of 2 weeks 50 100 / 97  
5 periods of 2 weeks 40 100 / 100  
5 periods of 2 weeks 30 97 / 100  
5 periods of 2 weeks 20 86 / 100  
5 periods of 2 weeks 10 83 / 100  
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Subsampling intensity was examined at 5 levels: 25, 20, 15, 10, and 5 subsamples.  

I chose those levels to include a range of samples representative of typical studies based 

on this technique (Boersen et al. 2003, Thompson 2003, Dobey et al. 2005).  Although 25 

subsamples were selected each week for DNA analysis, typically only about 85% of 

those samples actually produced usable quantities of DNA for analysis.  Therefore, my 

sensitivity analysis was based on the assumption that other DNA studies would have 

similar success rates for DNA analysis  

The analysis of the single-week scenarios involved examining all possible 

combinations of the different levels of sampling duration and subsampling intensity, 

resulting in a total of 20 scenarios (Table 1).   I also used various pooling configurations 

of the weekly sampling periods to increase sample sizes and capture probabilities within 

each period.  The pooling allowed me to examine the effects of increased capture 

probabilities on model performance (Menkens and Anderson 1988).  The 20 pooled 

sampling scenarios I examined were 5 periods of 2 weeks, 4 periods of 2 weeks, 3 

periods of 2 weeks, and 3 periods of 3 weeks.  Subsample levels per week for pooled 

sampling scenarios were pooled accordingly and thus had subsamples ranging from 10 to 

50 samples for 2-week sampling periods, and 15 to 75 samples for the 3-week sampling 

periods (Fig. 4).   

The density of hair-capture sites was examined at 13 and 11 levels for the national 

park and national forest study areas, respectively (Table 2).  Those levels consisted of all 

hair-capture sites followed by stepwise reductions of 5 hair-capture sites, until only 5 

hair-capture sites remained.  Due to logistical difficulties encountered in the field, only 

57 sites were established in the national forest study area, so the first reduction increment
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A. 10 sampling periods of 1 week each     
     (subsample levels: 25, 20, 15, 10, 5)                                                                                                                                                        
 
 
B. 8 sampling periods of 1 week each     
     (subsample levels: 25, 20, 15, 10, 5)                                                                                                                                
 
 
C. 6 sampling periods of 1 week each     
     (subsample levels: 25, 20, 15, 10, 5)                                                                                                                                
 
 
D. 4 sampling periods of 1 week each      
     (subsample levels: 25, 20, 15, 10, 5)                                                                                                                                
 
 
E. 3 sampling periods of 3 weeks each     
     (subsample levels: 75, 60, 45, 30, 15)                                                                                                                                 
 
 
F. 3 sampling periods of 2 weeks each     
     (subsample levels: 50, 40, 30, 20, 10)                                                                                                                                
 
 
G. 4 sampling periods of 2 weeks each     
     (subsample levels: 50, 40, 30, 20, 10)                                                                                                                                
 
 
H. 5 sampling periods of 2 weeks each 
     (subsample levels: 50, 40, 30, 20, 10)                                                                                                                 

1 2 3 4 5 6 7 8 9  10 

1 2 3 4 5 6 7 8 

1 2 3 4 5 6 

1 2 3 4 

1—3 4—6 7—9 

1—2 3—4 5—6 

1—2 3—4 5—6 7—8 

1—2 3—4 5—6 7—8 9—10 

Fig. 4. Pooling configurations of 10 hair-sampling periods (weeks) for the national park and national forest study areas, 2003.  
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for the national forest study area was 7, and all subsequent reductions were in increments 

of 5.  I chose this level of reduction because 5 hair-capture sites is a meaningful number 

in terms of field sampling logistics, but small enough to detect trends associated with 

reductions in the density of hair-capture sites.  Those factor levels were expressed as the 

absolute number of hair-capture sites rather than site density.  Although almost all hair-

capture sites had bear activity, not all sites were originally represented in the master 

dataset because of random subsampling.  However, for my analysis all sites had an equal 

probability of being selected for inclusion in a sampling scenario.  

I replicated each sampling scenario 100 times to account for variability due to 

random sampling of data points within the master dataset.  Model parameters of interest 

were averaged across the 100 replications and standard errors (SE) were calculated.  If 

Program CAPTURE was unable to produce results for a scenario (e.g., if the scenario 

contained no recaptures), then a value of zero was assigned to the model selection 

criteria, and all other output parameters were averaged with the failed replications 

removed.   

Summary statistics for each sampling scenario and population model were 

graphed to examine trends in parameter estimates.  In particular, I focused on examining 

the relationship between subsample level, population estimate, and capture probability for 

the different combinations of sampling duration and site density.    
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CHAPTER IV 

RESULTS 

Hair Sampling  

Field personnel collected 1,372 hair samples in the national park study area from 

9 June to 15 August 2003.  All but 1 of the 65 hair-capture sites had bear activity during 

≥1 of the 10 sampling periods.  The average number of samples collected/week was 137 

(SE = 15.11).  An average of 41 (SE = 2.06) of the 65 hair-capture sites (63%) had bear 

activity each week (Fig. 5).  In the national forest study area, field personnel collected 

584 samples from 9 June to 15 August 2003.  Three hair-capture sites were omitted from 

the original design of 60 hair-capture sites due to sampling logistics encountered in the 

field.  All but 10 of the 57 hair-capture sites had bear activity during ≥1 of the 10 

sampling periods.  The average number of samples collected per week was 58 (SE = 

8.29) and an average of 24 (SE = 1.69) hair-capture sites (42%) yielded samples each 

week (Fig. 6).  Both study areas experienced a peak in site visitation and number of 

samples collected during week 3 (23 June–27 June; Figs. 5 and 6). 

Microsatellite Analysis  

 For the national park study area, 250 samples were selected for analysis, of which 

204 (82%) yielded sufficient quantities of DNA for analysis.  The DNA analysis 

identified 129 individual bears: 41 individuals (represented by 117 samples) were 

recaptured and 88 individuals were captured only once.   

For the national forest study area, 211 samples were selected for analysis because 

some sampling periods did not yield 25 samples given the condition that each sample 

came from a different site.  Of the 211 samples, 181 (86%) yielded sufficient DNA.  For  
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Fig. 5.  Summary of hair-sampling results for the national park study area, 2003.  
A.  Number of hair-capture sites visited by black bears/sampling period.  B.  Number of 
hair samples collected/sampling period.   
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Fig. 6.  Summary of hair-sampling results for the national forest study area, 2003. 
A.  Number of hair-capture sites visited by black bears/sampling period.  B.  Number of 
hair samples collected/sampling period.   
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the national forest study area, a problem arose with locus MU50.  This locus yielded 

conflicting and confusing results for some individuals.  A few samples were identical at 

all loci except MU50.  It is rare for 2 bears to be identical at 9 loci and only differ at 1 

locus if they are indeed unique individuals (T. King, U.S. Geological Survey, personal 

communication).  Therefore, it seemed unlikely that the samples in question were from 

different individuals.  Eliminating MU50 from the analysis for all national forest study 

area samples and thereby allowing the questionable samples to match at the remaining 9 

loci reduced the number of unique individuals from 65 to 60.  The decision to remove 

MU50 was thus intended to reduce potential error in identification.  Of the 60 individuals 

identified, 29 individuals (represented by 150 samples) were recaptured, and 31 

individuals were captured once.   

For the 10 loci analyzed for the national park study area, 4–10 alleles per locus 

were observed.  The 9 loci analyzed for the national forest study area had 5–9 alleles per 

locus.  I calculated allele frequencies for each locus for both study areas (Table 3). 

Probability of Identity  

 On the national park study area, the PIsinglelocus ranged from 0.039 to 0.264 (Table 

4).  The overall PI estimate was 2.17 × 10-7, corresponding to a 1 in 4.6 million chance 

that an individual shared its genotype with another individual.  However, the more 

conservative PIsibs values ranged from 0.358 to 0.547.  The overall PIsibs was 8.63 × 10-5, 

corresponding to a 1 in 11,587 chance that a bear shared its genotype with another bear.  

The national forest study area had PIsinglelocus values that ranged from 0.050 to 0.209 

(Table 5).  The overall PI estimate was 7.57 × 10-10, corresponding to a 1 in 1.3 billion 

chance that a bear shared its genotype with another bear.  PIsibs ranged from 0.347 to
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Table 3. Observed allele frequencies for black bears on the national park study area, 
Tennessee, and national forest study area, North Carolina, South Carolina, Georgia, 2003. 

   
Locus National park study area National forest study area 
G1A   
(N) 128 60 
1 0.004 0.000 
2 0.043 0.167 
3 0.186 0.275 
4 0.271 0.092 
5 0.302 0.167 
6 0.186 0.300 
7 0.008 0.000 
   

G10B   
(N) 129 59 
1 0.636 0.550 
2 0.132 0.200 
3 0.031 0.017 
4 0.202 0.217 
5 0.000 0.017 
   

G10C   
(N) 129 57 
1 0.008 0.000 
2 0.023 0.025 
3 0.008 0.000 
4 0.310 0.400 
5 0.368 0.150 
6 0.171 0.317 
7 0.035 0.000 
8 0.043 0.058 
9 0.035 0.000 
10 0.000 0.050 
   

G1D   
(N) 128 59 
1 0.236 0.058 
2 0.260 0.283 
3 0.031 0.000 
4 0.140 0.033 
5 0.019 0.000 
6 0.147 0.425 
7 0.163 0.100 
8 0.004 0.083 
9 0.000 0.017 
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Table 3. (Continued).   

   
Locus National park study area National forest study area 
G10L   
(N) 129 60 
1 0.322 0.217 
2 0.012 0.000 
3 0.000 0.042 
4 0.143 0.092 
5 0.120 0.125 
6 0.050 0.083 
7 0.147 0.300 
8 0.140 0.075 
9 0.066 0.067 
   

G10M   
(N) 127 59 
1 0.093 0.183 
2 0.124 0.008 
3 0.221 0.233 
4 0.236 0.117 
5 0.081 0.083 
6 0.229 0.358 
7 0.016 0.017 
   

G10X   
(N) 129 60 
1 0.124 0.108 
2 0.380 0.525 
3 0.058 0.017 
4 0.004 0.000 
5 0.132 0.050 
6 0.004 0.000 
7 0.004 0.117 
8 0.004 0.017 
9 0.291 0.167 
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Table 3. (Continued).   
   

Locus National park study area National forest study area 
MU23   

(N) 129 60 
1 0.008 0.142 
2 0.085 0.033 
3 0.229 0.067 
4 0.236 0.175 
5 0.062 0.033 
6 0.058 0.017 
7 0.000 0.075 
8 0.322 0.208 
9 0.000 0.250 
   

MU50   
(N) 128  
1 0.023  
2 0.062  
3 0.047  
4 0.446  
5 0.016  
6 0.039  
7 0.167  
8 0.000  
9 0.023  
10 0.128  
11 0.043  
12 0.008  
   

G10P   
(N) 117 57 
1 0.047 0.025 
2 0.050 0.008 
3 0.012 0.000 
4 0.012 0.250 
5 0.236 0.242 
6 0.186 0.125 
7 0.136 0.250 
8 0.136 0.042 
9 0.089 0.008 
10 0.004 0.000 
11 0.093 0.050 
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Table 4. Probability of identity estimates for black bears on the national park study area, 
Tennessee, 2003 (n = 129). 

Locus Number of alleles Probability of 
identity 

Probability of 
identity (siblings) 

G10C 9 0.113 0.411 
G1A 6 0.095 0.392 
G10B 4 0.264 0.547 
G10M 6 0.062 0.359 
G10X 9 0.112 0.410 
G10L 8 0.057 0.358 
G1D 8 0.065 0.362 
MU23 7 0.086 0.384 
MU50 10 0.088 0.398 
G10P 10 0.039 0.334 
    
Overall 7.7a 2.17 x 10-11 b 8.63 x 10-5 b 

a Average number of alleles. 
b Product of individual values. 
 
 
 
 
 
Table 5. Probability of identity estimates for black bears on the national forest study area, 
North Carolina, South Carolina, and Georgia, 2003 (n = 60). 

Locus Number of alleles Probability of 
identity 

Probability of 
identity (siblings) 

G10C 5 0.131 0.427 
G1A 5 0.090 0.387 
G10B 5 0.209 0.497 
G10M 6 0.092 0.392 
G10X 7 0.143 0.452 
G10L 8 0.054 0.353 
G1D 6 0.120 0.421 
MU23 9 0.050 0.347 
G10P 8 0.072 0.370 
    
Overall 6.56a 7.57 x 10-10 b 2.78 x 10-4 b 

a Average number of alleles. 
b Product of individual values. 
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0.497.  The overall PIsibs was 2.68 × 10-4, corresponding to a 1 in 3,731 chance of sharing 

the same genotype.  The sibling match test (Psib) indicated that all samples from both 

study areas had Psib < 0.05.  Thus, all samples were included in the analysis. 

Hardy-Weinberg and Linkage Disequilibrium  

 For the national park study area, 2 loci (MU50 and MU23) tested significant (P = 

0.044 and 0.044, respectively) for violations of Hardy-Weinberg expectations.  However, 

no tests were significant (αcrit = 0.005) when using the sequential Bonferroni adjustments.  

Similarly, for the national forest study area, MU50 and G10B loci were significant (P = 

0.045 and 0.046, respectively), but not after sequential Bonferroni adjustments (αcrit = 

0.006). 

 The linkage disequilibrium test for the national park study area showed 

associations among 8 of 45 pairs of loci (αcrit = 0.05), but only 1 pair remained significant 

after sequential Bonferroni adjustment (αcrit = 0.0011).  For the national forest study area, 

15 of 36 pairs of loci showed associations (αcrit = 0.05) and 2 pairs remained significant 

after sequential Bonferroni adjustments (αcrit = 0.0014). 

Sensitivity Analysis 

Model Selection Criteria.—For both study areas, and for all sampling scenarios, 

Program CAPTURE’s model selection criteria did not indicate the presence of significant 

behavioral or temporal variations in capture probabilities.  Therefore, I specifically 

focused on the results of the null model (Mo), the jackknife heterogeneity model (Mh 

jackknife), and the Chao heterogeneity model (Mh Chao).   The null model and the 
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heterogeneity model were the 2 most frequently selected models (Table 6).  The Chao 

models are not included in Program CAPTURE’s model selection criteria. 

 For the single-week sampling scenarios on the national park study area, the null 

model was selected for all but 3 scenarios, for which the heterogeneity model was 

selected (10 week/25 subsample (i.e., 10w25s), 10w20s, and 8w25s).  The single-week 

scenarios on the national forest study area were more evenly divided among the 2 

models, with the heterogeneity model selected more often for scenarios with 6, 8, and 10 

weeks and subsamples in the 10–25 range.  For the sampling scenarios with reduced data, 

the null model was most often selected.   

 For the pooled sampling scenarios on the national park study area, the null model 

was selected for all but 2 scenarios (5 periods of 2 weeks each period/50 subsamples, i.e., 

5p2w50s and 5p2w40s), for which the heterogeneity model was selected (Table 6).  For 

the national forest study area, patterns were similar to the single-week data.  The larger 

datasets (i.e., the 3 largest subsample levels; 3p3w, 4p2w, and 5p2w) were better fitted to 

the heterogeneity model by Program CAPTURE and the sparser datasets were better 

fitted to the null model.  However, all 5 sampling scenarios with 3 periods of 2 weeks 

were best fitted to the null model. 

 For reductions in density of hair-capture sites on the national park study area, site 

levels of 40–65 and 5–35 were best fitted to the heterogeneity and null model, 

respectively (Table 6).  Similarly, for the national forest study area the heterogeneity and 

null models were best fitted to site levels of 25–57 and 5–20, respectively. 

 Closure.—Program CAPTURE’s test for population closure detected a lack of 

closure (i.e., P-value < 0.05) on the national park study area for only 2 scenarios: 8w25s  
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Table 6.  Model selected by Program CAPTUREs model selection routine for each 
sampling scenario for the national park study area (NPSA) and national forest study area 
(NFSA), 2003. 

 

Sampling scenario NPSA model NFSA model  

    
10 weeks    

25 subsamples Mh jackknife Mh jackknife  
20 subsamples Mh jackknife Mh jackknife  
15 subsamples Mo Mh jackknife  
10 subsamples Mo Mh jackknife  
5 subsamples Mo Mo  

8 weeks    
25 subsamples Mh jackknife Mh jackknife  
20 subsamples Mo Mh jackknife  
15 subsamples Mo Mh jackknife  
10 subsamples Mo Mo  
5 subsamples Mo Mo  

6 weeks    
25 subsamples Mo Mh jackknife  
20 subsamples Mo Mh jackknife  
15 subsamples Mo Mh jackknife  
10 subsamples Mo Mo  
5 subsamples Mo Mo  

4 weeks    
25 subsamples Mo Mo  
20 subsamples Mo Mo  
15 subsamples Mo Mo  
10 subsamples Mo Mo  
5 subsamples Mo Mo  

3 periods of 2 weeks    
50 subsamples Mh jackknife Mo  
40 subsamples Mh jackknife Mo  
30 subsamples Mo Mo  
20 subsamples Mo Mo  
10 subsamples Mo Mo  

3 periods of 3 weeks    
75 subsamples Mo Mh jackknife  
60 subsamples Mo Mh jackknife  
45 subsamples Mo Mo  
30 subsamples Mo Mo  
15 subsamples Mo Mo  
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Table 6. (Continued).    
Sampling scenario NPSA model NFSA model  

4 periods of 2 weeks    
50 subsamples Mo Mh jackknife  
40 subsamples Mo Mh jackknife  
30 subsamples Mo Mo  
20 subsamples Mo Mo  
10 subsamples Mo Mo  

5 periods of 2 weeks    
50 subsamples Mo Mh jackknife  
40 subsamples Mo Mh jackknife  
30 subsamples Mo Mh jackknife  
20 subsamples Mo Mo  
10 subsamples Mo Mo  

Sites    
65 Mh jackknife   
60 Mh jackknife   
57  Mh jackknife  
55 Mh jackknife Mh jackknife  
50 Mh jackknife Mh jackknife  
45 Mh jackknife Mh jackknife  
40 Mh jackknife Mh jackknife  
35 Mo Mh jackknife  
30 Mo Mh jackknife  
25 Mo Mh jackknife  
20 Mo Mo  
15 Mo Mo  
10 Mo Mo  
5 Mo Mo  
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and 8w20s.  Lack of closure was detected on the national forest study area for 4 

scenarios: 10w25s, 6w25s, 57 sites, and 50 sites.  As site density decreased on the 

national forest study area, P-values for the closure tests increased.  For the national park 

study area, P-values for the closure tests were relatively constant across varying densities 

of sample sites. 

 Comparison of Sampling Scenarios.—For both study areas, several consistent 

trends were apparent.  The 3 field design factors of subsample intensity, site density, and 

sampling duration all had considerable influence on capture probabilities, population 

estimates, and the precision of the population estimates.  However, these trends differed 

slightly for each of the 3 models.  A reduction in subsamples, sites, or sampling duration 

generally resulted in a reduction of the population estimate (Figs. 7–14).  This trend was 

most apparent with the Mh jackknife estimator (Figs. 11 and 12), although it was also 

present with Mo, and, to a lesser extent, Mh Chao.  Population estimates generally 

increased within each subsample level as sampling duration increased.  Similarly, 

scenarios with longer sampling durations generally produced larger population estimates 

than scenarios with shorter durations, regardless of subsample level.   

The confidence intervals of the estimates produced by Program CAPTURE 

generally increased as the number of subsamples decreased across all sampling durations 

for model Mo.  The opposite was true, however, for model Mh.  Confidence intervals for 

model Mh increased as the number of subsamples increased, although they generally were 

not as variable across all scenarios as were the confidence intervals for Mo.  Confidence 

intervals for the Mh Chao model were less consistent.  Longer sampling durations (i.e., 8 



 

 41

A.

0

100

200

300

400

500

600

5 10 15 20 25

Number of subsamples

Po
pu

la
tio

n 
es

tim
at

e 
M

(o
) 

4 week 6 week 8 week 10 week
 

 

B.

0

20

40

60

80

100

120

140

5 10 15 20 25

Number of subsamples

Po
pu

la
tio

n 
es

tim
at

e 
M

(o
) 

4 week 6 week 8 week 10 week
 

Fig. 7.  Relationship between estimates of black bear population abundance (95% 
confidence interval, model Mo) and subsampling intensity for 4 sampling duration 
schemes in the national park study area and national forest study area, 2003 
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Fig. 8.  Relationship between estimates of black bear population abundance (95% 
confidence interval, model Mo) and subsampling intensity for 3 pooled sampling duration 
schemes in the national park study area and national forest study area, 2003. 
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Fig. 9.  Relationship between estimates of black bear population abundance (95% 
confidence interval, model Mh Chao) and subsampling intensity for 4 sampling duration 
schemes in the national park study area and national forest study area, 2003. 
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Fig. 10.  Relationship between estimates of black bear population abundance (95% 
confidence interval, model Mh Chao) and subsampling intensity for 3 pooled sampling 
duration schemes in the national park study area and national forest study area, 2003. 
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Fig. 11.  Relationship between estimates of black bear population abundance (95% 
confidence interval, model Mh jackknife) and subsampling intensity for 4 sampling 
duration schemes in the national park study area and national forest study area, 2003. 
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Fig. 12.  Relationship between estimates of black bear population abundance (95% 
confidence interval, model Mh jackknife) and subsampling intensity for 3 pooled 
sampling duration schemes in the national park study area and national forest study area, 
2003. 
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Fig. 13.  Relationship between estimates of black bear population abundance (95% 
confidence interval, models Mo, Mh, and Mh Chao) and subsampling intensity for the 
pooled sampling duration scheme of 3 periods of 3 weeks in the national park study area 
and national forest study area, 2003. 
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Fig. 14.  Relationship between estimates of black bear population abundance (95% 
confidence interval, models Mo, Mh, and Mh Chao) and number of sites for the national 
park study area and national forest study area, 2003. 
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weeks, 10 weeks, and 5 periods of 2 weeks) showed increasing precision as the number 

of subsamples increased, but the sampling scenarios with shorter duration displayed no 

clear trends.   

Capture probability was another parameter that displayed strong trends.  For both 

study areas and all 3 models, subsampling intensity was closely related to capture 

probability.  Capture probability generally increased as the number of subsamples 

increased (Figs. 15–17).  However, contrary to that trend, capture probability tended to 

increase as sampling duration decreased.  This trend was most evident for model Mh and 

was most prominent for the national park study area.  Capture probabilities for the 4-

week sampling scenarios appeared to be inflated compared with the 6-, 8-, and 10-week 

sampling scenarios, particularly for model Mh (Figs. 15B and 16B).  Although capture 

probabilities are estimated in Program CAPTURE, no confidence intervals are provided 

for this statistic, so I did not examine the precision associated with these trends. 

Both study areas displayed the same general trends for all 3 models, but there 

were some differences.  Compared with the national park study area, parameter estimates 

in the national forest study area were slightly more uniform across scenarios (i.e., 

population estimates and capture probabilities produced by similar scenarios did not 

differ as much as those in the national park study area).  Also, there generally were fewer 

instances of model failure for national forest study area scenarios compared with the 

national park study area (Tables 1 and 2).  Population estimates for the national forest 

study area were lower than those for the national park study area and capture probabilities 

were greater (Figs. 7–17).
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Fig. 15.  Relationship between capture probability and number of subsamples for models Mo (A), 
Mh (B), and Mh Chao (C).  The figure represents values for the single week sampling scenarios of 
4 weeks, 6 weeks, 8 weeks, and 10 weeks, represented from left to right on the x-axis, for both 
the national park study area (NPSA) and national forest study area (NFSA), 2003.   
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Fig. 16.  Relationship between capture probability and number of subsamples for models 
Mo (A), Mh (B), and Mh Chao (C).  The figure represents values for the 3 pooled week 
sampling scenarios of 3 periods of 2 weeks (i.e., 3p2w), 4p2w, and 5p2w, represented 
from left to right on the x-axis, for both the national park study area (NPSA) and national 
forest study area (NFSA), 2003.   
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Fig. 16.  Continued.  (C.) Mh Chao.  
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Fig. 17.  Relationship between capture probability and number of subsamples for models 
Mo, Mh, and Mh Chao.  The figure represents values for the pooled week sampling 
scenario 3 periods of 3 weeks for the national park study area and national forest study 
area, 2003.   
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Population Estimation  

For population estimation, I chose the sampling scenario that had the largest 

capture probability, which was the 3 periods of 3 weeks (75 subsamples) scenario.  I used 

model Mh Chao, which produced an estimate for the national park study area of 292 

bears, with a 95% confidence interval of 214–435 and an estimated capture probability of 

0.17.  The estimate for the national forest study area was 98 bears, with a 95% confidence 

interval of 76–149 and an estimated capture probability of 0.32. 
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CHAPTER V 

DISCUSSION 

Data Quality 

An estimate of animal abundance is most useful when it is both accurate and 

precise.  Accuracy refers to how closely the estimate reflects reality, whereas precision 

refers to the level of uncertainty of the estimate (White et al. 1982).  The precision of a 

population estimate is expressed through statistics such as the CV or confidence interval.  

Accuracy, however, is difficult to assess in studies where population size is not known.  

Many factors can affect the accuracy and precision of a population estimate, such as low 

sample sizes, biases in the data that are inherent to sampling design, or model behavior 

under the influence of these factors.  

Sparse Data.—My data generally displayed smaller population estimates and 

capture probabilities as sample size decreased.  Although the trends in population 

estimates cannot be strictly interpreted because the 95% confidence intervals of the 

estimates often overlapped, the consistency of these patterns suggests that small sample 

size contributed to bias in the population estimate.  This effect also was reflected in a 

corresponding decrease in precision of the population estimates for models Mo and Mh 

Chao.  Sparse data occur when sample sizes and capture probabilities are small.  Closed 

population models require a minimum amount of input data to produce reliable 

population estimates that are both accurate and precise (Otis et al. 1978, White et al. 

1982).  For example, Otis et al. (1978) simulated a population of 400 individuals sampled 

over 7 sampling occasions, and partitioned their simulated data into 3 quality levels based 
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on capture probability: good p̂( = 0.35), medium p̂( = 0.20), and poor p̂( = 0.05).  They 

found that population estimates declined in accuracy and precision as capture probability 

decreased and concluded that high capture probabilities are important for reliable model 

performance.  Similarly, Boulanger et al. (2002) stated that capture probabilities >0.20 

are needed to accurately estimate a population abundance of about 100, and White et al. 

(1982) suggested that capture probabilities should never be <0.30 and, ideally, close to 

0.50 for N < 100 when trapping occasions are ≤10.  Those authors further stated that if 

these criteria can not be achieved, then it is unlikely the estimate will be precise or 

unbiased.  White et al. (1982) concluded that, in general, as population size decreases, 

capture probabilities must increase in order to maintain similar model performance.  

These issues illustrate that prior knowledge regarding the population of interest is 

important before an effective mark-recapture study can be conducted.  

Trends in population abundance estimates may be an indication that the modeling 

procedures require greater samples sizes and capture probabilities to produce unbiased 

population estimates.  Theoretically, population estimates should approach an asymptote 

if a sufficient quantity of data were used for modeling.  My results for the national park 

study area do not seem to approach a point of stabilization, whereas the larger sample 

size scenarios on the national forest study area seem to stabilize (Figs. 10 B and 13 B).  

Although capture probabilities for both study areas were relatively small, the national 

forest study area had higher capture probabilities than the national park study area, which 

would account for better model performance. 

Other, more subtle, indicators of sparse data were present from my analysis.  For 

instance, as sample sizes increased, model complexity increased (Stanley and Burnham 
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1998).  The null model was most often selected, whereas the Mh jackknife model was 

selected only for a few sampling scenarios with large sample sizes and high capture 

probabilities.  Program CAPTURE has limited power to detect variations in capture 

probability when capture probabilities are low (Boulanger and McLellan 2001) and it has 

been specifically shown that the model selection procedure has low power to detect 

heterogeneity when population size is <200 (Boulanger et al. 2004a).  Thus, 

heterogeneity likely was present in my data, but Program CAPTURE probably could not 

detect it due to small sample sizes.  Another indication of a sparse data effect was that 

model failure occurred more often with small sample scenarios (e.g., 4 week/5subsample 

scenario for the national park study area), which was caused by zero recaptures in the 

input dataset.  Model failure occurred slightly more often in the national park study area, 

which is another indication that data from the national park study area was not as 

sufficient as the national forest study area for estimating abundance. 

Lastly, Otis et al. (1978) suggest that adequate sampling should result in few 

unmarked individuals captured towards the end of the sampling period.  In the national 

forest study area, 2 of 14 bears identified in week 9 were unmarked individuals, and 1 of 

10 bears identified in week 10 was an unmarked individual.  In the national park study 

area, however, 10 of 22 bears identified in week 9 and 13 of 21 bears identified in week 

10 were initial captures.  Consequently, out of 129 total bears identified in the national 

park study area, 18% came from the last 2 sampling periods.  Thus, sampling in the 

national park study area may have detected an insufficient proportion of the entire study 

population. 
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Violations of Assumptions.—Aside from sparse input data, the performance of 

the models may be explained in part due to violations of assumptions.  Primarily, the 

presence of heterogeneity can cause notable bias (Cormack 1968).  In general, the 

magnitude and direction of bias introduced by heterogeneity can be difficult to predict 

(Otis et al. 1978).  However, in my study, insufficient sampling (particularly for the 

smaller sampling scenarios) likely led to recapturing the same individuals repeatedly 

while neglecting to capture others, leading to an underestimate of abundance. 

The trend of increasing population estimates as sampling duration increased likely 

can be attributed to violations in geographic closure.  As the number of sampling periods 

increased, some marked bears likely moved out of the study population, whereas the 

probability of capturing bears previously outside the study area increased.  This process 

resulted in decreasing estimates of capture probability and increasing population 

estimates as sampling duration increased, as was the case for my study.  This effect was 

particularly amplified for model Mh, as evidenced by more distinct trends in population 

estimates and capture probabilities with increasing sampling duration.  Those high 

capture probabilities may be related to the heterogeneity models adjusting capture 

probabilities upward to account for animals in the population that are less likely to be 

captured.  Alternatively, the high values may be associated with high visitation on both 

study areas during week 3, which may have influenced capture probabilities and model 

performance for the 4-week sampling scenarios.  However, no temporal or behavioral 

effects were detected by Program CAPTURE.  The trends that resulted from closure 

violations were more apparent for the national park study area than the national forest 

study area, particularly for the longer durations and larger subsamples (Figs. 7 and 8).  
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This could be the product of a lower-density bear population combined with a study area 

that is surrounded by less contiguous bear habitat compared with the national park study 

area.     

The trend of increasing population estimates as the number of subsamples 

increased is related to the link between subsamples and hair-capture sites.  Reducing sites 

or samples resulted in reducing the effective study area size, thus violating the 

assumption of a known and defined study area.  This effect was exacerbated due to 

heterogeneity, which may have been caused by insufficient availability of hair-capture 

sites.  Because subsamples and sites were inextricably linked, reducing the number of 

subsamples in effect reduces the number of sites, which makes site availability even less 

sufficient.  For example, Fig. 18 illustrates the impact of the linkage between hair-capture 

sites and subsamples on the effective study area size.  Scenarios in which either 

subsamples or sites were reduced essentially produced population estimates for smaller 

study areas.  As a result, the estimates using model Mh Chao for the 3 examples varied 

widely (16 bears, 161 bears, and 309 bears, respectively).  I speculate that the lower 

population estimates produced from the reduced sampling scenarios may have 

corresponded to different and smaller study areas.   

Study Design and Implementation  

Several aspects of my study design potentially impacted the accuracy and 

precision of the population abundance estimates.  I will focus on 3 factors that directly 

affect the ability of a DNA study to produce reliable population estimates: sampling 

intensity, genetic considerations, and geographic closure.
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Fig.18.  An example of the effect of reductions in subsample level and sampling 
duration on the number of hair-capture sites, national park study area, Tennessee, 2003.  
A. Sampling scenario: 4 weeks/5 subsamples (14 sites were sampled once and 1 site was 
sampled twice).  B. Sampling scenario: 6 weeks/15 subsamples (25 sites were sampled 
once, 21 sites twice, and 3 sites 3 times).  C. The complete dataset of 65 hair-capture 
sites, 10 weeks, and 25 subsamples per week.  Seven sites were sampled once, 16 sites 
twice, 12 sites 3 times, 12 sites 4 times, 9 sites 5 times, and 6 sites 6 times. 

C. 

A. 

B. 
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Sampling Intensity.—Sampling intensity encompassed 2 factors that were closely 

linked in my analysis: subsampling intensity and density of hair-capture sites.  A 

reduction in the number of hair-capture sites also resulted in a reduction in subsamples.  

Conversely, because I analyzed no more than 1 sample from each site per sampling 

period, a reduction in subsamples effectively removed a site from the landscape.  

Nevertheless, these were 2 distinct factors.  The size of my dataset could be increased by 

analyzing ≥25 samples per sampling period.  Selecting additional samples with the 

constraint that no 2 samples can come from the same site within a given week has the 

benefit of potentially reducing capture heterogeneity by more evenly distributing 

sampling effort across the study area.  Analyzing more samples would likely be the most 

effective means of increasing capture probabilities but would also be expensive.  My 

results may yield some insights regarding what sampling level could produce sufficient 

capture probabilities (Fig. 19).  Both study areas showed a decreasing percent change in 

the population estimate as the number of samples increased.  The percent change in 

population estimate is an indication of instability in model performance and therefore 

should be close to zero with sufficient sample sizes.  Percent change in the estimate using 

model Mh Chao was approximately 11% and 2.5%, for the national park and national 

forest study areas, respectively, when the dataset with 3 periods of 3 weeks was reduced 

from 75 to 60 subsamples (i.e., 25 to 20 subsamples per week).  This observation 

provides another indication that the bias associated with the population estimate in the 

national park study area was greater than in the national forest study area, likely as a 

result of the greater capture probabilities on the national forest study area.  Therefore,
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Fig. 19.  Percent change in population estimate as a function of subsample intensity for 
model M(h) Chao (3 periods of 3 weeks sampling scheme) for the national park study 
area (NPSA) and national forest study area (NFSA), 2003. 
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depending on study objectives regarding reliability of population estimates, subsampling 

intensity could be reduced to 20 subsamples/week for low-density bear populations.  

However, subsample rates should be increased for higher-density population to produce a 

reliable estimate.   

It is evident that subsample intensity can have a large impact on capture 

probabilities, and thus, model performance.  Subsample intensity in my study reveals an  

interesting relationship: although absolute subsample levels were similar for both study 

areas (approximately 25/week), the proportion of subsamples analyzed from the entire  

number of samples collected was rather different.  The total number of samples collected 

on the national park study area was 1,372, of which 204 (15%) were successfully 

analyzed.  For the national forest study area, 181 of 584 samples (31%) were analyzed.  

Assuming that the total number of samples collected is indicative of the number of bears 

in the area, sampling intensity on the national forest study area was double that of the 

national park study area.  Therefore, it is not necessarily surprising that capture 

probabilities for the national forest study area were approximately double that of the 

national park.  The implication is that sampling intensity should be gauged based on the 

analysis of a set proportion of the total number of samples collected, and in my study it 

appears that the 30% level was acceptable whereas the 15% level was not fully sufficient.   

My study did not achieve ≥4 sites/female home range as recommended by Otis et 

al. (1978) to provide sufficient trap availability to all individuals and thus reduce 

heterogeneity.  However, this level of site density may be difficult to achieve with a 

wide-ranging carnivore in relatively inaccessible areas.  Alternatively, I could have 

sampled more intensively over a smaller area.  However, when sampling a small area 
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relative to the size of the home range, the assumption of closure is more likely violated; 

consequently, it may be unclear what population of animals was sampled (Boulanger et 

al. 2004a).  Sampling a small area increases the influence of stochastic processes (e.g., 

temporary movements that occur on a small scale due to a random event, such as a small 

fire).  DNA sampling studies on grizzly bears have been based on trapping grids to ensure 

intensive, uniform sampling effort and used site relocations between sampling sessions to 

reduce a behavioral (trap-happy) response (Mowat and Strobeck 2000; Boulanger et al. 

2004a, 2004b).  Those measures may help minimize capture variation (White et al. 

1982), but are labor intensive and were not implemented in my study.  My data did not 

indicate that a behavioral response was present, but capture heterogeneity likely existed.  

Therefore, I suggest that a trapping grid might prove useful, but moving sites may not be 

necessary, especially given the additional labor required to do so.  Alternatively, it may 

be effective to detect and reduce heterogeneity by establishing a greater density of sites 

without restricting their placement to specific grid cells.  

Sampling duration was 10 weeks for my study.  My data suggest that reducing 

sampling duration may help reduce closure violations.  Sampling duration could be 

reduced provided that capture probabilities and sample sizes remain sufficient.  Figs. 

15A. and 15C. show that capture probabilities were relatively stable across all levels of 

sampling duration at the 25 subsample level for both study areas.  However, both study 

areas experienced a peak in site visitation at week 3, which resulted in a peak in capture 

probability for the 4-week scenarios that was apparent only at lower subsample levels.  

Other studies have experienced a similar peak in the number of samples collected (L. 

Thompson, University of Tennessee, personal communication), but it is unclear if this 
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pattern is related to intrinsic factors (i.e., a behavioral response) or extrinsic factors (e.g., 

seasonal movement patterns related to food, timing of the molt).  Until this trend is better 

understood, I suggest a sampling duration of 4 weeks or less would likely be more 

susceptible to anomalies in visitation rates and would probably not be sufficient.  

Therefore, I suggest that sampling duration could be shortened to 6–8 weeks without a 

negative impact on capture probabilities.  Shortening sampling duration should be 

combined, however, with more sites and subsamples than achieved with my study, 

otherwise the sparse data effect would be exacerbated.  Additionally, a variety of pooled 

time period configurations may be considered.  Pooling configurations that produce the 

highest capture probabilities while minimizing assumption violations should be selected 

for population estimation.   

My study design was similar for both study areas, but study design could be 

tailored based on bear density.  For instance, on the high-density national park study area, 

capture probabilities were particularly low.  Therefore, increasing the number of analyzed 

hair samples seems to be imperative in areas with high bear densities.  Capture 

probabilities were greater for the national forest study area, but fewer hair samples were 

collected there because of the low bear density.  When a hair sample is collected in an 

area where bear density is low, the likelihood of being a recapture is greater compared 

with a higher-density population.  However, low bear density resulted in fewer collected 

hair samples, with some sampling periods in the national forest study area yielding <25 

samples (with the requirement that no 2 samples came from the same site).  Therefore, I 

suggest that the low number of collected hair samples in the national forest study area 

may have been a limiting factor, which likely was a result of low site density.  Thus, 
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future studies should pay particular attention to establishing more sites per female home 

range in low-density bear populations.  

My primary goal with this analysis was to develop appropriate DNA sampling 

regimes to produce reliable population estimates for black bears in the southern 

Appalachians.  However, my ability to suggest an optimal sampling scheme on the 

national park study area is limited because sample sizes and capture probabilities were 

low.  However, some scenarios did provide greater capture probabilities and sample sizes 

(Table 7), and these scenarios again illustrate the better quantity of data obtained in the 

national forest study area.  On the national forest study area estimates and their precision 

fluctuated only slightly among sampling scenarios, whereas the estimates for the national 

park study area were more varied.  It is likely that higher overall capture probabilities in 

the national forest study area contributed to the relative stability of the population 

estimates.   

However, it seems that high capture probabilities were not the only driving force 

behind model performance.  The national park study area data illustrate this, because the 

estimates and CVs were very similar between the 3 periods of 3 weeks (75 samples each) 

scenario and the 10 weeks with 25 samples scenario, although the capture probabilities 

were different.  Furthermore, a comparison of the 2 scenarios of 4 periods of 2 weeks (50 

samples each) and 5 periods of 2 weeks (50 samples each) illustrates that estimates may 

increase even as capture probabilities decrease.  I suggest that fluctuation of the 

population estimate for the national park study area may be related to many new 

individuals being captured, even during the final weeks of sampling.  Therefore, robust 

estimation requires not only high capture probabilities, but also the assurance that a
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          Table 7.  A comparison of black bear population estimates (model Mh Chao), CVs, and capture probabilities ( p̂ ) for  
          DNA sampling scenarios with relatively large sample sizes in the national park study area (NPSA) and national forest  
          study area (NFSA), 2003.  

Sampling scenario NPSA   NFSA  

 Mh population estimate (CV) p̂   Mh population estimate (CV) p̂  

3 periods of 3 weeks/75 samples 292 (19%) 0.17  98 (18%) 0.32 
3 periods of 3 weeks/60 samples 264 (21%) 0.16  96 (22%) 0.29 
4 periods of 2 weeks/50 samples 216 (16%) 0.16  98 (20%) 0.23 
5 periods of 2 weeks/50 samples 330 (19%) 0.11  97 (18%) 0.23 
10 weeks/25 subsamples 309 (18%) 0.06  107 (21%) 0.13 
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sufficiently large proportion of the study population is captured.  

Genetic Considerations.—One of the critical assumptions of any mark-recapture 

study is that all animals are uniquely marked.  With the DNA technique, a low PI can 

lead to a biased population estimate (Waits and Leberg 2000).  The PIsibs for the national 

park study area indicated there was a 1 in 11,587 chance of an individual sharing its 

genotype with another individual, and a 1 in 3,731 chance for the national forest study 

area.  These results were corroborated by the Psib test.  Therefore, I conclude that there 

was a high likelihood that each unique genotype represented a single individual.    

The PI calculations are based on the assumption that alleles between different loci 

are independent (the linkage disequilibrium test) and that alleles are in Hardy-Weinberg 

proportion (Taberlet and Luikart 1999).  The genetic data from both study areas met the 

criteria for Hardy-Weinberg equilibrium.  The linkage disequilibrium test showed 

associations between only 1 pair of loci for the national park study area, and 2 pairs for 

the national forest study area.  The 10 loci used in my study have been found to be 

independent (Paetkau and Strobeck 1994, Paetkau et al. 1995), so the significant 

associations found in my data may represent sampling bias, sampling of siblings, 

stochastic processes, or the presence of immigrants (T. King, U.S. Geological Survey, 

personal communication).     

I used 10 loci to distinguish between individuals, but my data indicated that fewer 

loci could be equally sufficient.  By reducing the number of loci needed to produce a 

genotype, both cost and error are also reduced (Taberlet and Luikart 1999, Waits and 

Leberg 2000, Paetkau 2004).  Average observed heterozygosity (a measure of marker 

variability) was 0.72 for the national forest study area and 0.73 for the national park study 
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area.  Paetkau (2003) suggested that studies on small populations (N < 100) are feasible 

with a minimum average heterozygosity of 0.69 for 6-loci systems, whereas 

heterozygosity should be close to 0.75 for 6-loci systems with N between 200 and 400.  

Therefore, I recommend that future DNA studies in the southern Appalachians use the 6 

most variable loci out of the 10 used in my study.  For the national park study area, those 

loci were G1A, G1D, G10L, G10M, G10P, and MU50, which had an average observed 

heterozygosity of 0.79.  For the national forest study area, those loci were G1A, G1D, 

G10L, G10M, G10P, and MU23, which had an average heterozygosity of 0.77.  

Considering that MU50 was not a good marker for the national forest study area 

population, I recommend that future studies in the southern Appalachians avoid the use of 

that locus.  Based on my study, an appropriate suite of 6 markers for the southern 

Appalachians should be chosen from G1A, G1D, G10L, G10M, G10P, MU23 and G10C. 

The concerns surrounding MU50 illustrate that some markers may work well for 

one population and not another, although the reason why this might occur is not always 

clear.  To examine the possibility that the questionable hair samples from the national 

forest study area were from a single family unit in a small geographic area, I determined 

the location of the hair-sample sites where the samples were taken.  Those samples were 

distributed evenly across the entire study area, making this scenario unlikely.  It is 

important to note that MU50 is a marker that was originally developed for use in a 

European brown bear (Ursus arctos) population (Taberlet et al. 1997).  Although it may 

work well in most black bear populations, that marker was not effective in the national 

forest study area.  That finding highlights the need for a more complete and well-
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established genetic library for the black bear (T. King, U.S. Geological Survey, personal 

communication). 

Much research has been conducted on the genetic aspects of non-invasive hair 

sampling (Goossens et al. 1997, Taberlet et al. 1997, Mills et al. 2000, Waits and Leberg 

2000, Paetkau 2003).  The various sources of error, such as allelic dropout and null 

alleles, have been clearly identified and examined.  Guidelines have been established for 

rigorous lab protocols to detect and minimize genetic errors.  Given proper lab 

procedures and quality hair samples, genetic error is likely to be limited (Paetkau 2003).  

Nevertheless, recent research continues to focus on the potential sources of bias 

associated with genetic error rates (McKelvey and Schwartz 2004a, b; Lukacs and 

Burnham 2005).  Although much emphasis has been placed on genetic considerations in 

the past, I speculate that the future utility of the DNA technique to provide reliable 

population estimates mostly hinges on the ability to develop and refine field sampling 

protocols and models for estimation. 

Geographic Closure.—Lack of geographic closure can lead to a population 

estimate that is biased high.  The assumption of geographic closure may have been 

violated in my study because neither study area was separated from surrounding black 

bear habitat.  This bias is particularly a problem with animals whose home ranges are 

large relative to the sampling grid (Boulanger and McLellan 2001).  Program 

CAPTURE’s test for closure for each sampling scenario rarely indicated that closure was 

violated on either study area, but this test is not reliable.  The closure test is based on the 

assumption of equal catchability and violations of that assumption make the closure test 
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difficult to interpret.  Therefore, closure should be assessed mostly from a biological 

basis rather than from statistical tests (Otis et al. 1978).   

If indeed the assumption of geographic closure was violated, my population 

estimates likely are biased high (i.e., representing the superpopulation, which Kendall 

(1999) defined as the population of animals in the study area and surrounding region) and 

may not be suitable to estimate density.  Because this bias could potentially be large, it is 

important for studies using closed models to incorporate techniques that detect and 

minimize closure violations.  Boulanger et al. (2004a) used radio-collared bears to detect 

and model geographic closure violations.  They found that the superpopulation estimates 

provided by Program CAPTURE were 15%–36% greater than adjusted estimates that 

were scaled based on the proportion of radio-marked bears on the grid at each sampling 

occasion.  Boulanger and McLellan (2001) dealt with geographic closure violations by 

deriving a core population estimate, which ignored bears captured within a certain 

distance from the study area edge, but they cautioned that this was not a substitute for 

direct measurement of movements across study area boundaries.  They concluded that 

using topographic boundaries and obtaining large sample sizes may help to detect and 

account for closure violations.   

Closure violations may be addressed in a more indirect manner as well.  For 

instance, DNA sampling could be implemented on an annual basis and data could be 

analyzed using open models (Boulanger and McLellan 2001).  Alternatively, a web 

sampling design, originally developed for small mammals, bypasses estimates of 

abundance altogether and directly measures density through the use of carefully spaced 

traps in a web pattern (Anderson et al. 1983).  However, web sampling may not be 
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logistically feasible to sample black bears in the mountains of the southern Appalachians, 

because this technique requires accurate distance measurements for trap placement from 

the center of the web, a very high density of traps, and all collected hair samples would 

have to be analyzed.  Limited trail access, difficulty acquiring GPS coverage for accurate 

site placement, and high costs might hamper the web sampling design.  Also, increasing 

the number of individuals captured and recaptured by analyzing more samples and 

establishing more hair-capture sites would reduce the need for a long sampling duration.  

Reduced sampling duration, combined with increased capture probabilities and grid cells 

that are appropriately scaled to home-range size, also may reduce closure violations 

(Rosenberg et al. 1995).  Lastly, Kendall (1999) suggested that random movements of 

animals into and out of the study area reduces precision of closed models but does not 

introduce bias.  Therefore, if density estimates are desired, site distribution should be 

planned to incorporate topographic boundaries to maximize closure and implement the 

direct accounting measures for closure violation as previously mentioned (Boulanger et 

al. 2004a).  However, if DNA sampling is implemented on a region-wide basis in the 

southern Appalachians, then the issue of geographic closure becomes less important 

because sampling would occur over a large area.  

Population Estimation  

Estimates from DNA Sampling.—I used Program CAPTURE’s model selection 

criteria as a guide to determine which models may be appropriate for my data.  The null 

model was most often selected for my data.  However, assumptions of the null model are 

restrictive and the model is typically considered unrealistic for most biological situations 

(Otis et al. 1978, White et al. 1982).  Additionally, the model selection procedure in 
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Program CAPTURE often is unreliable (Otis et al. 1978, Menkins and Anderson 1988, 

Manning et al. 1995).  The model selection procedure tends to select the null model when 

data are sparse but more complex models are selected with greater sample sizes (Stanley 

and Burnham 1998, Mowat and Strobeck 2000).  For instance, Boulanger et al. (2004a) 

conducted simulations that showed CAPTURE’s model selection procedure had low 

power to detect heterogeneity when population size was small (50–100).  Thus, the 

frequent selection of the null model may be another indication of the sparseness of my 

data.  Furthermore, Program CAPTURE indicated that capture probabilities likely were 

heterogeneous, and heterogeneity causes the estimates from Mo to be biased low (Pollock 

et al. 1990).  My data showed that Mo indeed produced the lowest estimates compared 

with the 2 heterogeneity models.   

Heterogeneity models are appropriate for species, such as black bears, that may 

show age- and sex-specific capture probabilities (White et al. 1982).  Heterogeneity 

models also are appropriate for my study design, which may not have provided sufficient 

availability of hair-capture sites to all bears (Otis et al. 1978).  Between these 2 models, 

Mh jackknife appeared to be more biased than Mh Chao, as Mh Chao showed a greater 

degree of stability within each subsample level (Figs. 9–13).  For example, on the 

national forest study area the population estimates from the pooled sampling scenarios 

using Mh Chao (Fig. 10B.) were similar for all combinations of pooling configuration and 

subsample intensity, and the estimates were particularly stable for subsample levels of 20, 

30, 40, and 50.  In contrast, model Mh jackknife produced more variable estimates using 

the same data (Fig. 12B.), with estimates increasing as subsamples increased.  My 

sensitivity analysis indicated that Mh jackknife may be more sensitive to sparse data and 
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may require large subsample levels and longer sampling durations to produce reliable 

estimates (Rosenberg et al. 1995).  Furthermore, when data are sparse, the confidence 

interval estimates can be poor for Mh jackknife due to bias in the variance estimator (Otis 

et al. 1978, Burnham and Overton, 1979).  My data seem to support this finding, because 

confidence intervals for Mh jackknife were small compared with the other 2 estimators.  

Therefore, I conclude that Mh Chao provided the best model for my data to estimate 

population abundance. 

For both study areas, the largest average capture probability occurred when data 

were pooled for 3 periods of 3 weeks with 75 subsamples per sampling period.  Although 

some data were lost by pooling sampling periods, I chose this scenario for population 

estimation because of the greater capture probabilities (0.17 and 0.32, for the national 

park and national forest study areas, respectively).   

Comparing DNA and Live-capture Estimates.—The black bear population in the 

northwestern portion of Great Smoky Mountains National Park has been the subject of 

continuous monitoring using traditional mark-recapture techniques for 37 years.  In 1968, 

University of Tennessee researchers initiated a live-capture study to estimate bear 

abundance and track population changes over time.  I used the annual live-capture data to 

estimate population abundance using the Jolly-Seber model (open model).  The 2003 

Jolly-Seber population estimate (model B, constant survival rate per unit time, time-

specific capture probabilities) for the 358-km2 study area in which livetrapping took place 

was 215 bears (95% CI = 157–272).  The study area size for the live-capture data was 

calculated similarly to the DNA study areas, by creating buffers around each trap-site 

representing the estimated radius of habitat use (Eason 2002).  
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The estimate of abundance from the live-capture study represents a density 

estimate of 0.60 bears/km2.  This density estimate is likely conservative because some 

portions of the study area are not adequately sampled by the linear traplines and the size 

of the study area was probably overestimated.  The DNA study in the national park study 

area provided an abundance estimate of 292, which represents a density estimate of 1.83 

bears/km2, more than double that of the live-capture estimate.  The national forest study 

area abundance estimate was 98, which represents a density estimate of 0.30 bears/km2.  

The DNA density estimates may be biased high for 2 reasons.  First, the closure 

assumption may have been violated.  Second, the study area size was calculated based on 

female home range, and it seems probable that some male bears that were sampled had 

portions of their home range outside of the delineated study area.  Therefore, it is likely 

that the actual sampled area was larger than what I estimated.  
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CHAPTER VI 

MANAGEMENT AND RESEARCH IMPLICATIONS 

Population Monitoring  

Many of the difficulties associated with the DNA technique have already been 

discussed, but the traditional live-capture technique also poses substantial challenges.  

Most notably, the live-capture technique uses open population models, which tend to be 

less precise.  The precision of the 2003 estimate from the live-capture study is acceptable 

(95% CI = 157–272), but this was in part due to the contribution of data from previous 

years.  Similar precision was achieved in the DNA study with only one season of data 

using closed models.    

The live-capture study in Great Smoky Mountains National Park is costly relative 

to the amount of data acquired for population estimation.  Additionally, personnel must 

be highly trained and supervised.  In contrast, a DNA study is relatively easy to conduct, 

is safer for personnel, and requires little personnel training.  The costs associated with 

establishing hair-capture sites and collecting the hair samples are relatively low.  The 

expense in DNA sampling lies in the lab costs of the DNA analysis, which typically 

range from $35 to $65 per sample.  Hence, the cost of DNA sampling can vary widely 

depending to the size and scope of the study.  The amount of data provided by a DNA 

study is therefore closely linked to budget, whereas the amount of data provided by a 

live-capture study is more dependent on uncontrollable factors, such as trap success.  

Trapping success can be hindered in a live-capture study, due in part to bears becoming 

trap smart.  Bears are highly intelligent and in a consistently trapped population, such as 

in Great Smoky Mountains National Park, many bears quickly learn to take bait without 
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being captured.  This type of bias is less likely to occur with DNA sampling, because 

hair-capture sites provide only a small food reward, which is not replenished daily.  

Likewise, bears should not have an aversion to hair-capture sites because there are no 

negative consequences to visiting a site.  Lastly, the live-capture study area was 

somewhat arbitrarily defined compared with the DNA study area.  This was a result of 

linear trapping routes along hiking trails, which were chosen to facilitate access into the 

relatively remote study area.   

 My study indicates that DNA sampling is not a panacea for the challenges 

surrounding the task of population estimation.  Future DNA studies in the southern 

Appalachians will likely require greater financial resources to achieve sample sizes above 

that achieved in my study.  DNA studies cannot provide certain information that is 

currently supplied by the live-capture technique, such as age, weight, or reproductive 

status.  Nevertheless, I suggest that this technique offers a more scientifically sound 

alternative to the live-capture technique for the purpose of population estimation.  Many 

of the weaknesses associated with the DNA sampling technique that I identified apply 

equally to live-capture data.  However, the potential to address these weaknesses is 

greater with DNA sampling.  Furthermore, it may be difficult to justify an invasive live-

capture study solely for the purpose of population estimation.  The DNA technique has a 

large advantage in this regard, with the additional benefit of potentially supplying new 

and useful information on gene flow and genetic structure.  Therefore, with careful 

consideration to study design, DNA sampling may be successfully implemented for 

population monitoring.  
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Study Design and Sampling Logistics 

Designing a mark-recapture study is not a simple task.  My pilot study was 

intended to examine elements of study design so that future studies using the DNA 

technique can be both efficient and effective.  For instance, one goal of my study was to 

investigate what size study area and what level of trap density can be reasonably 

accomplished given a certain number of personnel.  My study had between 3 and 4 

technicians on the national park study area, and a similar number on the national forest 

study area.  Pairs of technicians visited between 4 and 9 hair-capture sites a day, with 

hiking distances ranging from 4–16 km, in a workday that typically lasted 6 hours.  The 

amount of time spent gathering hair at a site was brief compared with the amount of time 

hiking between sites.  Therefore, future DNA projects in the southern Appalachians likely 

could increase the density of hair-capture sites with that number of personnel or establish 

a similar number of sites with fewer personnel working independently.  

If future DNA studies are designed to produce reliable density estimates, then 

particular attention should be paid to defining a study area.  Future studies might consider 

generating abundance estimates for males and females separately, and defining 2 study 

areas sizes accordingly.  This approach would improve estimation of study area size for 

species with differential home-range sizes between males and females.  However, 

deriving a separate male and female estimate would be costly because additional DNA 

analysis would be needed to identify the sex of the animal and the number of analyzed 

samples would double.  

In summary, I recommend that the design of future black bear DNA studies in the 

southern Appalachians should provide ≥4 hair-capture sites/female home range, sample 
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for a duration of 6–8 weeks, and analyze approximately 30% of the total samples 

collected.  If future studies are primarily concerned with producing reliable population 

estimates, I suggest taking uncertainty in model selection into consideration.  Program 

CAPTURE does not address the uncertainty in model selection.  Selecting an 

inappropriate model can lead to substantial bias in population estimation (Stanley and 

Burnham 1998).  One way to address this problem is to incorporate model selection 

uncertainty into the estimate by computing a weighted estimate that incorporates 

information from competing models (Buckland et al. 1997).  This might be most easily 

accomplished using Akaike’s Information Criterion found in the population modeling 

Program MARK (White and Burnham 1999).  Program MARK also contains the Pradel 

model (Pradel 1996), which might prove useful for studies that are more concerned with 

population growth rate rather than estimates of abundance.  The Pradel model is an open 

model, and therefore many of the issues of closure could be avoided.  Similarly, the 

robust design (Pollock 1982) incorporates the use of both open and closed models to 

estimate parameters such as survival, recruitment, and abundance from data collected 

over a longer time period.  The robust design has the advantage of using closed models to 

estimate capture probability variation, and open models to estimate survival, recruitment, 

and abundance.  However, for the study of black bears this method requires at least 3 

years of data.  Lastly, new models have been developed that are modifications of the 

closed models used in this study and are designed to account for genotyping error 

(Lukacs and Burnham 2005). 
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MICROSATELLITE ANALYSIS 

DNA Isolation 

 DNA was extracted from hair follicles using the InstaGene Matrix (Bio-Rad 

Laboratories, Hercules, California, USA).  Specifically, follicles were incubated in the 

InstaGene Matrix in the presence of Proteinase K at 65° C overnight.  This mixture was 

boiled (100° C) for 8–10 minutes, followed by centrifugation at 10,000–12,000 rpm.  The 

resulting supernatant was used in PCR reactions. 

Microsatellite Amplification and PCR 

 Microsatellite DNA amplification was performed for 10 microsatellite loci using 

the PCR primers described by Paetkau and Strobeck (1994) and Paetkau et al. (1995).  

These loci were:  G1A, G1D, G10B, G10C, G10L, G10M, G10P, G10X, MU23, and 

MU50.   

 Each PCR reaction consisted of 1.5 µl of genomic DNA extract, 0.875 X PCR 

buffer (59 mM Tris-HCl, pH 8.3; 15 mM (NH4)2SO4; 9mM β-mercaptoethanol; 6 mM 

ETDA), 2.25 mM MgCL2, 0.2 mM dNTPs, 0.15-0.43 µM of each primer (forward primer 

fluorescently labled with TET, FAM, or HEX; Applied Biosystems (ABI), Foster City, 

California, USA), 1.2 units of Taq polymerase (ABI), and deionized water added to 

achieve the final volume of 15 µl.  The amplification cycle consisted of an initial 

denaturing at 94° C for 2 minutes followed by 35 cycles of 94° C denaturing for 30 

seconds, 56° C annealing for 30 seconds, and 72° C extension for 1 minute.  Cycling 

culminated with a 5-minute extension at 72° C.  Thermal cycling was performed in an MJ 
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DNA Engine PTC 200 (MJ Research, Watertown, Massachusetts, USA) configured with 

a heated lid. 

Fragment Analysis 

Generally, 1 µl of PCR product was diluted 1:1 with deionized water and 

thoroughly mixed.  One µl of this dilution was added to 12 µl of deionized formamide 

and 0.5 µl of the internal size standard GENESCAN-500 (ABI).  Alternatively, PCR 

products of separate multiplexed reactions (2–3 loci each) and multiple separate reactions 

(2–4) were combined and analyzed without dilution.  Loci were identified in these 

multiplexed samples by virtue of their characteristic molecular mass and attached 

fluorescent label.  The size standard contained DNA fragments fluorescently labeled with 

the dye phosphoramidite TAMRA (red).  This PCR product/size standard/formamide 

mixture was heat denatured at 95° C for 3 minutes and placed immediately on ice for at 

least 5 minutes.  The mixture was subjected to capillary electrophoresis on an ABI 

PRISM 310 Genetic Analyzer (i.e., automated sequencer).  Fluorescently labeled DNA 

fragments were analyzed, and genotype data generated using Genescan software (ABI).  

GENOTYPER v. 2.0 (ABI) DNA fragment analysis software was used to score, bin, and 

output allelic (and genotypic) designations for each bear sample. 
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