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Abstract 

 Shortleaf pine (Pinus echinata Mill.) seedlings are capable of sprouting and continuing growth 

after the stem is killed. The sprouting ability of shortleaf pine could be used to favor the species 

silviculturally after disturbance. Information is limited on shortleaf pine seedling sprouting after burning 

and clipping at different periods of the growing season and the effects of these treatments during their 

first three years after outplanting. Survival, seedling growth, and sprout production of shortleaf pine were 

evaluated after burning and clipping. The research was conducted on one, two, and three-year-old 

seedlings on an above average productivity site on the Cumberland Plateau region of east Tennessee.  

Replicated treatments were analyzed as a randomized block design which included: clipping in March, 

burning in April (early growing season burn), burning in July (mid growing season burn), burning in 

November (late growing season burn), and an untreated control completed on one, two, and three-year-

old seedlings. Each experimental unit received a treatment once over the course of the study. Variability 

in burn treatments and their effects on the dependent variables were accounted for by using burn duration 

and intensity covariates in the analyses for sprout number and height. Results indicate that survival 

improved with increasing age and was greatest in early and late growing season burns among burn 

treatments and improved even more with clip treatments. Sprout production following treatments was 

greatest with the late growing season burn across years and was affected by the maximum burn 

temperature and mean burn temperature covariates at different seedling ages. Height growth following 

treatments was greatest with the late growing season burn or clip treatment across years. The burn 

duration covariate affected seedling height in two-year-old seedlings. Taller seedlings post treatment 

tended to produce fewer sprouts. These results indicate that late growing season burns may be best to 

promote the greatest survival rates and sprout growth in the species.  
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Chapter 1: Introduction 

 Shortleaf pine has the widest range of the four native southern pines, but has been declining in 

stocking and area coverage over the last thirty-plus years. According to Forest Inventory and Analysis 

surveys (Oswalt 2012), the number of shortleaf pine stems greater than or equal to one inch diameter at 

breast height (DBH) has decreased 52 percent since 1980. The steady decline in shortleaf pine across its 

range has prompted more research into its silvical characteristics and management as well as investment 

in restoration efforts. Shortleaf pine has a basal crook just below the ground surface that contains dormant 

buds, which allows the species to sprout when the stem suffers topkill or injury. Sprouting can occur in 

trees up to six to eight inches diameter at breast height or thirty-five years old (Fowells 1965, Guldin 

1986, Little and Somes 1956). The sprouting ability of shortleaf pine may aid in its regeneration and 

perpetuation. 

The persistence of shortleaf pine on poor to moderate productivity upland sites with frequent 

disturbances and its sprouting capabilities provides management opportunities that set it apart from other 

southern pines. Knowledge of the sprouting capability of shortleaf pine seedlings in response to different 

disturbances such as burning or clipping at different ages or at different periods in the growing season are 

not well known, especially in the eastern portion of the species’ range. An understanding of when to  

apply disturbances such as burning or clipping to favor shortleaf pine regeneration by sprouting over 

more vigorous competitor species would be valuable to forest managers attempting to restore shortleaf 

pine ecosystems.  

 The objectives of this research were to investigate the survival rate, sprout production response, 

and height growth response of one, two, and three-year-old shortleaf pine seedlings burned during the 

early, mid, and late growing season as well as the impact on these variables on one, two, and three-year-

old seedlings clipped during the early growing season. In addition, this research evaluates the effects of 

burn variables such as maximum temperature and burn duration on shortleaf pine seedling sprouting 

responses. 
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Chapter 2: Review of the Literature 

The Shortleaf Pine Resource 

 Shortleaf pine has a wide native range that covers 22 states, over 281 million acres, and occurs as 

far west as eastern Texas and Oklahoma and as far northeast as New Jersey and Long Island, New York 

(Guldin 1986, Oswalt 2012). The species is common from the Coastal Plain to the Piedmont and 

Highland provinces of the Southeast. The only areas of the Southeast where it is absent or rare are the 

bottomlands of the Mississippi River drainage and along the Gulf and Atlantic coasts. Approximately 65 

percent of the present shortleaf pine forests are found in Arkansas, Oklahoma, Louisiana, and Texas 

(Oswalt 2012). Shortleaf pine is considered the second most important southern pine species behind 

loblolly pine in terms of softwood timber volume produced (McWilliams and others 1986). There is an 

estimated 13 billion cubic feet of shortleaf pine growing stock volume in the United States as of 2006. 

Tennessee has an estimated 437 million cubic feet of that total, whereas in comparison, Arkansas, the 

state with the greatest acreage of shortleaf pine forests, has an estimated 3.4 billion cubic feet of total 

growing stock volume. As of 2006, there was an estimated 1.9 billion shortleaf pine growing stock trees 

in the United States, and Tennessee has an estimated 32 million of that total (Moser and others 2007).  

Shortleaf Pine Silvics 

  Shortleaf pine (Pinus echinata Mill.) is capable of growing in a wide variety of temperature and 

moisture conditions, but grows best in regions that receive from 45 to 55 inches of rainfall per year 

(Fowells 1965). Many soil types will accommodate shortleaf pine growth, but the best growth is on fine 

sandy loams or silt loams in northern Louisiana, Arkansas, and the southern Piedmont. The most 

widespread occurrence of the species is on ultisols that develop in humid climates. Suitable sites range 

from ridgetops to lowland areas that are not excessively wet. Shortleaf pine is not tolerant of soils with a 

high pH, high calcium content, or excessively wet or dry conditions. Shortleaf pine can grow at a wide 

range of  elevations from nearly sea level in New Jersey to approximately 3,300 feet in the Appalachian 
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Mountains. The best growth is at 150 to 1,000 feet in the upper west Gulf Coastal Plain in Arkansas and 

Louisiana (Fowells 1965, Lawson 1990).   

 Several forest types contain shortleaf pine as a component, but the three most common are 

shortleaf pine-oak, loblolly pine-shortleaf pine, and the shortleaf pine type (Eyre 1980). Ecologically, 

shortleaf pine increases in importance on drier sites and where disturbances such as fire are more frequent 

and extreme. Loblolly pine (Pinus taeda L.) and shortleaf pine are frequently found together throughout 

much of shortleaf’s range and have similar growth rates on average sites, but sites with very poor or good 

quality will favor one species over the other (Fowells 1965, Guldin 1986, Williston 1972).   

 Primary and secondary growth of shortleaf pine seedlings is greatest from April through late July 

or early August, after which growth virtually stops unless major precipitation events occur before the end 

of the growing season when the first frost occurs. Shortleaf pine has a determinate growth pattern where 

only one bud may develop on a shoot each year, or multiple buds may form sequentially and develop in 

the same growing season (Pallardy 2008). The species typically grows one to three feet per year while 

seedlings are young and vigorous (Hardin and others 2001).  Shortleaf pine is considered shade intolerant, 

yet can survive (with much slower growth) under a full or partial overstory for a short period of time and 

resume full sun growth rates after overstory shade is removed (Guldin 1986, Lawson 1986, Shelton and 

Cain 2000).  Shade tolerance usually decreases with increasing size and age (Baker 1992). Hardwoods 

will almost always occur in varying densities in association with shortleaf pine. In even-aged stands, 

shortleaf pine will maintain dominance over hardwoods on all but moderately good to very productive 

sites where it may be outgrown by species such as sweetgum (Liquidambar styraciflua L.), yellow-poplar  

(Liriodendron tulipifera L.), and red maple (Acer rubrum L.). Quercus species will eventually 

outcompete shortleaf pine on most sites due to their longer average lifespan (Guldin 1986, Lawson 1990, 

Williams 1998). Exemplary individuals may reach heights of 130 feet, diameters of 40 inches, and ages of 

170 years or older under optimum conditions.  Intraspecific and interspecific competition in even-aged 
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stands results in pruning of the trunk over time, which produces a more desirable tree form (Hardin and 

others. 2001).       

 Shortleaf pine may produce new progeny either through seed production or vegetative 

reproduction. Shortleaf pine possesses the unique ability among the southern pine species to reproduce 

vegetatively by sprouting. The species is monoecious, yet cones with viable seeds are usually not 

produced before an individual tree reaches twenty years old. Some seeds have been reported on trees as 

young as nine years old (Fowells 1965). Female cones take two growing seasons to mature once they 

emerge, which is usually about two weeks after the male cones emerge (Lawson 1990). Some seed may 

be produced each year, but bumper crops every three to six years are common in the southern range of the 

species, while longer intervals between bumper crops are usual in northern populations. Adequate seed 

crops likely occur every two to three years. (Baker 1992, Guldin 1986). Between 80,000 and 100,000 

viable seeds per acre is considered a good seed crop to fully stock a scarified seedbed. In Texas, Georgia, 

and South Carolina upwards of a million viable seeds per acre have been reported in some years (Wittwer 

and Shelton 1992). Seeds are spread by wind starting in late October or early November, and 

dissemination continues until April. A sufficient seed supply, a receptive, scarified or burned seedbed, 

ample soil moisture, and freedom from competing vegetation are required for optimal regeneration of 

shortleaf pine from seed. Some residual overstory protection from larger trees can also improve 

conditions for regeneration from seed by moderating conditions for germination from excessive dryness 

or late frosts in the spring (Dennington 1992, Guldin 1986, Shelton 1995). Epigeal germination occurs in 

the spring following dissemination (Baker 1992, Haney 1962).  

Sprouting 

Sprouting is an induced response to a dramatic change in local environmental conditions or to 

injury of the tree that results in the creation of a secondary trunk(s). Death or inhibition of the apical buds 

(apical meristem) typically results in sprouting (Del Tredici 2001).  Almost all temperate hardwood 

species and some conifer species have the ability to sprout from severed stems (Oliver and Larson 1996).  
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Sprouting occurs most commonly after disturbances such as windstorms, fire, animals (such as beavers or 

deer herbivory), and human activities, all of which kill the shoots but not the roots of affected trees.  Trees 

use surviving meristems and stored carbohydrate reserves in order to sprout after damage is inflicted 

(Bond and Midgley 2001). Sprouts from non-clonal trees should be differentiated from sprouts of clones 

or clonal growth. Clones are usually defined as individual trees that are produced a considerable distance 

away from the parent tree and are considered autonomous individuals, whereas sprouts develop on the 

original root system of the parent tree and depend on it for survival. (Bond and Midgley 2001, Del Tredici 

2001). Root collar sprouts are the specific type of sprout produced by shortleaf pine. This study focuses 

on root collar sprout capabilities of shortleaf pine. 

 

The root collar is defined as the point on the seedling axis where the root and shoot systems 

merge, or the point on a tree’s stem midway between the soil surface and the cotyledon node (Chavasse 

1977, Sutton and Tinus 1983). Typically with epigeal species such as shortleaf pine, there is a bump or 

swollen area at the cotyledon node that divides the hypocotyl from the epicotyl portions of a seedling 

(Menes and Mohammed 1995). Here dormant buds occur on the root collar, and each year they typically 

grow an amount equal to the growth of the annual ring. This keeps them close to the surface of the trunk, 

unlike adventitious buds, which can become covered by new secondary growth if they fail to sprout 

within a couple of years after their formation. Adventitious buds are also found on the root collar and 

trunk of a tree. These buds lack a bud trace that extends all the way to the pith (Del Tredici 2001 

Kozlowski 1971, Pallardy 2008). Dormant buds and adventitious buds can both produce sprouts at or 

below the ground surface (Barnes and others 1998). The location of these buds on the trunk often 

determines their future ontogeny.  If sprouts originate from buds located above ground level, they are 

dependent on the existing root system and will be exposed to decay and disease that occurs in the parent 

trunk and root system over time. Conversely, if the sprouts originate from buds located at or below 

ground level, it is possible that the sprout could form adventitious roots due to its contact with mineral 
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soil. Sprouts of this origin have a much higher probability of growing into a mature tree (Del Tredici 

2001). 

 Tree species that produce root collar sprouts often are well adapted to regeneration by vegetative 

means, and in general may be lacking in ability to regenerate by seed or other sprouting means.  Species 

that are capable of sprouting (all sprout types) tend to produce fewer seeds, therefore maintaining smaller 

or more ephemeral seed banks.  As a result of this, many sprout producing species produce fewer 

seedlings from seed, which results in poorer seedling survival as compared to species that depend on seed 

as their main source of reproduction (Barnes and others 1998, Bond and Midgley 2001). Shortleaf pine 

does not reproduce from seed as well as the other southern pine species, but it is fairly well suited for both 

of these reproductive methods (Guldin 1986).  

Shortleaf Pine Sprouting 

 The ability of shortleaf pine to sprout enables the species to prosper on areas with frequent, low 

intensity disturbances where other species may decline over time (Lawson 1990, Williams 1998). 

Sprouting capability in shortleaf pine is extant to sizes of six to eight inches diameter at breast height 

(DBH). The sprouting capability of trees decreases with age and size much like other species capable of 

sprouting (Hardin and others 2001, Mattoon 1915, McGee 1978). In shortleaf pine, sprouts typically 

initiate just above a physiological adaptation called the basal crook (Lilly and others 2011). The basal 

crook is a root section one to three inches long that grows parallel to the ground surface before turning 

vertically back into the taproot while the seedling is developing (Mattoon 1915). The basal crook 

typically begins to develop within two to three months after germination and is usually finished 

developing in two to three years on vigorous seedlings growing in full sunlight. Seedlings growing in the 

shade or in crowded conditions of natural stands can take up to ten years to develop a crook if one 

develops at all (Little and Somes 1956, Little and Mergen 1966, Stone and Stone 1954).  

The basal crook lowers the position of sprout-producing dormant buds in the soil surface (Lilly 

and others 2010). Shortleaf pine can also produce bole sprouts from dormant buds in the trunk or main 
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branches after most of the foliage is consumed by a fire, or in trees that have been in shaded conditions 

that suddenly become open (Little and Somes 1956). Dormant buds below the ground surface are 

protected from high temperatures during fires. Buds above the duff layer have lower probability of 

survival (Stone and Stone 1954). Dormant buds originally form in the axils of primary needles, which 

determine the height of dormant buds in relation to ground level. With artificially regenerated shortleaf 

pine, planting depth will have an impact on the location of dormant buds in relation to the ground level 

and the protection of buds by the duff layer. The depth of the dormant buds in the duff layer and the 

thickness of the duff layer are more difficult to account for with naturally regenerated shortleaf pine (Will 

and others 2013).  Buds begin growth if the stem is severed (animal herbivory or human disturbance) or 

burned.  As many as eighty sprouts may be produced but typically one to three will become dominant 

over time (Mattoon 1915). 

The Decline of Shortleaf Pine 

Forest types containing shortleaf pine as a major component have been on the decline for many 

decades. In the early 1950s an estimated 16 to 17 million acres of forests dominated by shortleaf pine 

existed across its range and is considered the peak in the total amount of acreage in shortleaf pine forests 

(McWilliams and others 1986). Today the vast majority of shortleaf pine forest ecosystems are in mature, 

late-successional stages with little likelihood for regeneration to occur (Oswalt 2012). Many factors 

combined to create the present conditions.  Agricultural lands were being retired at a rate of 1.5 million 

acres per year from 1945 to 1965, which provided suitable seedbed conditions for natural regeneration of 

many pine species including shortleaf pine if a seed source was present nearby (Boyce and Knight 1979). 

Forest industry favored faster-growing loblolly pine and discriminated against slower-growing shortleaf 

pine even on areas that shortleaf pine used to occur during aforestation of abandoned agricultural fields. 

Laws forcing the cessation of free-range livestock grazing on private and public lands across most of the 

United States by the 1930s and 1940s also have contributed to the reduction in the amount of area with 

suitable conditions for shortleaf pine regeneration. Tennessee enacted such a law in 1947 for all counties 
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in the State (Todd 1980). The implementation of the Smokey Bear campaign by the United States Forest 

Service in 1944 became an effective tool for thwarting anthropogenic and naturally occurring wildfires 

across the Southeast. Prior to this campaign, areas of Arkansas where shortleaf pine is the dominant pine 

species had fire return intervals of two to twenty years, but after the campaign began this interval 

increased to fifty years or longer. A reduction in large-scale logging industries at about the same time also 

reduced favorable regeneration situations (Brose and others 2001, Elliot and Vose 2005, Engbring and 

others 2008, Guyette and others 2006).   

Other causes for reductions in forest dominated by shortleaf pine include urbanization, 

hybridization with loblolly pine, and the increased establishment of loblolly pine plantations (Lilly and 

others 2012a, McWilliams and others 1986). Urbanization of crop and forest lands and increases in 

human populations will remain important factors in the loss of shortleaf pine forests on private lands for 

years to come. Forest land in the southern United States decreased by 21 million acres during the 

twentieth century, and seventy percent of this decline was due to losses in southern pine forest types 

(Smith and others 2001). The percentage of developed land in the southern United States is expected to 

increase from 5.2 percent in 1997 to 9.2 percent by 2025. Seven of the ten states in the southern United 

States had the largest average annual additions of developed land between 1982 and 1997. Over the last 

forty years the southern United States has had the largest population growth increase of any region in the 

country (Alig and others 2004 

The possibility of natural hybridization of loblolly and shortleaf pine was first reported in the 

early 1950s by Zobel (1953). Since then, hybridization has been proven to occur in their sympatric and 

allopatric ranges (where loblolly pine plantations have been established outside of its natural range) of 

these two species. Areas west of the Mississippi River have been confirmed to have higher rates of 

hybridization than eastern areas of the two species’ ranges (Stewart and others 2010). Hybrid trees have 

intermediate traits of the two parent species including a less developed basal crook that does not sprout as 

prolifically as pure shortleaf pine. Hybrids also show intermediate fire tolerance. Increasing variability in 
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climate has resulted in overlapping pollen dissemination periods and strobili receptivity, which has helped 

increase the frequency of hybrids. In addition, fire suppression and planting loblolly with distant seed 

sources has favored and increased the establishment rates of hybrids where loblolly and shortleaf pine 

grow together (Lilly and others 2012a, Stewart and others 2013, Williams 1998). Hybrids are generalists 

between the two species and are intermediate in their ice and cold hardiness, resistance to fusiform rust, 

drought tolerance, growth rate, and morphology (Hicks 1973, Will and others 2013). Hybrids are 

undesirable in regions where shortleaf pine is the dominant pine species. The lack of predictability in 

natural hybrid traits and their moderate level of hardiness to harsh environmental factors such as ice and 

frequent fire make them less desirable compared to pure shortleaf pine.    

Loblolly pine has become the dominant southern yellow pine in the southern United States over 

the last sixty years. It is planted extensively across the region for pulpwood products and to a lesser extent 

sawtimber. In the 1970s, there were 2.7 million acres of loblolly pine plantations. By the late 1980’s that 

number had increased to 5.9 million acres (Shultz 1997). By 1990, over half of the 33.8 million acres of 

southern yellow pine timberland was loblolly pine. As of the late 1990s, over 37 million acres of natural 

and artificially regenerated loblolly pine existed in the South (Cost and others 1990, South and Buckner 

2003). Many areas of natural shortleaf-loblolly pine forests have been converted to loblolly plantations, 

and loblolly plantations have been created north of its native range where shortleaf pine was the 

predominant pine species thus altering shortleaf pine presence on the landscape (Stewart and others 

2013).  

The diminution of shortleaf pine across the landscape continues to occur. During the 1980’s, 

forests dominated by shortleaf pine covered approximately 12.6 million acres across its 22 state native 

range. By 2010 this acreage had shrunk to 6.1 million acres, a reduction of 52 percent. United States 

Forest Service Forest Inventory and Analysis data have shown a lack of young shortleaf pine forests. 

Large and medium size class forests (five inches DBH and larger at a 50 percent stocking level) make up 

93 percent of the shortleaf pine resource (Oswalt 2012). Moser and others (2007) indicate that only eight 
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percent of shortleaf pine timberland is in the seedling-sapling size classes, while thirteen percent can be 

classified as seedling-sapling in shortleaf pine-oak forest types. These statistics predict the continued 

diminishment of shortleaf pine forest types as older forests succeed into hardwoods or are converted to 

other uses.   

Renewed Interest in Shortleaf Pine 

 The first interest in restoring degraded shortleaf pine ecosystems began in the early 1990s in the 

Ouachita National Forest of Arkansas. Shortleaf pine ecosystems in this National Forest were beginning 

to experience declines in some endemic plant, insect, and animal species due to the dense forest 

conditions caused by fire suppression and limited timber thinning and harvesting. The presence of the 

endangered red-cockaded woodpecker on the National Forest forced changes in forest management 

practices. The inability of past management to create suitable habitat, which usually involved clearcutting 

on 80 year rotations and subsequent development of hardwood midstories, failed to create suitable habitat 

for the species. Application of thinnings in the pine component, cutting the midstory hardwood 

component, and regular, periodic burns were implemented on the forest to restore imperiled ecosystems in 

which shortleaf pine is a major component (Bukenhofer and others 1994, Bukenhofer and Hedrick 2013). 

The thinning treatments produce timber volume that is sold following guidelines of the U.S. Forest 

Service timber program, and some of these revenues can be retained under the Knutsen-Vandenberg Act 

of 1933for improvement of the sale area. These activities include hardwood midstory removal and 

prescribed fire application for improvement of red-cockaded woodpecker habitat (Guldin and others 

2004).   

Major improvements in species diversity and richness have occurred since disturbance treatments 

were applied. Major restoration efforts were limited to the western portions of the species’ range until 

2010 when the Shortleaf Pine Initiative began. This initiative brought together researchers, managers, and 

professionals from all facets of the forestry profession to address the needs and methods for restoring 

degraded shortleaf pine ecosystems across its range (Atkinson 2012). Advisory and planning committees 
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have been formed to plan and execute management actions and research needed to increase the acreage of 

shortleaf pine in its native range 

Management Implications 

A thorough understanding of the sprouting capability of young shortleaf pine will aid in its 

management and restoration. Knowledge of how vigorously shortleaf pine seedlings and saplings of 

different age and sizes sprout in response to disturbance, as well as when during the growing season to 

apply burns, may result in specific management practices designed to promote shortleaf pine over other 

less fire adapted species. Past research has suggested that regular, low intensity fires will maintain 

shortleaf pine on upland sites and hinder dominance of species less adapted to fire such as loblolly pine 

(Williams 1998). Loblolly pine does not sprout consistently, and typically stops any sprouting by age 

three thus limiting its ability to survive repeated fires while in the seedling and sapling stages (Shultz 

1997).  Thinnings combined with regular, periodic burns similar in intensity to Native American and 

European settlement activities prior to 1900 could reduce the abundance and the competitive influence of 

species such as red maple on certain site types in shortleaf pine’s range (Abrams 1998).  

Shortleaf pine is also a suitable species for areas that are maintained as early successional 

savannas and woodlands due to its silvical characteristics. Larger diameter shortleaf pine trees display rot 

resistance of fire scars; thick, insulating bark; drought resistance due to a large taproot; low amounts of 

flammable resins; great longevity (170 years or greater); and a longer available growing season than 

hardwoods. These characteristics make shortleaf pine suitable for these early successional plant 

communities (Guyette and others 2007, Mattoon 1915). In the past, these ecosystems were more prevalent 

in areas of the Cumberland Plateau and Southern Appalachian Mountains on sites with poor edaphic 

conditions and exposed aspects and often had shortleaf pine as a major vegetation component. Factors 

such as fire exclusion, drought, and southern pine beetle have depleted these systems over the past 

seventy-five years and excluded regeneration (Brose and others 2001, Coffey 2012, Fesenmeyer and 

Christensen 2010). In recent years there has been more interest in shortleaf pine, and steps being taken 
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toward restoring these ecosystems across the Southern Appalachian Mountains where it once was a major 

or minor stand component (Elliot and others 2012). 

In areas of the natural range of shortleaf pine where it is the only or dominant pine species, 

shortleaf pine is often a critical habitat component, along with open, grassy woodlands or savannas for 

some vulnerable and uncommon bird species (Masters 2007). Species such as red-cockaded woodpecker, 

red-headed woodpecker, Bachman’s sparrow, pine warbler, indigo bunting, and prairie warbler 

populations decline without open, pine savannas or woodland habitats of differing successional stages 

(Conner and others 2002). Frequent fire is associated with these ecosystems, resulting in a need for 

shortleaf pine regeneration over time as overstory trees succumb. Understanding when to apply fire 

(seasonality and return interval) to retain acceptable habitat components for these bird species, and 

obtaining shortleaf pine regeneration from seeds, sprouts, or both is necessary for retaining and expanding 

these habitats. 

 The diverse array of timber products that can be produced from shortleaf pine make it a unique 

species from a management perspective, especially in more northern and western areas of its range. The 

wood of shortleaf pine can be used for pulpwood (even though this is not common), yet it is denser and 

heavier than the wood of loblolly pine making it a better option for structural lumber (Lawson 1990, 

USDA 2007). Shortleaf pine’s wood is not as heavy and dense as longleaf pine (Pinus palustris Mill.), yet 

it has a much larger natural range than those species making more production acreage possible if sites 

allow it. Stands containing shortleaf pine in mixtures with other pines or hardwoods to a lesser degree are 

a feasible management option for landowners that desire to diversify their forest products and increase 

pest and disease resistance by not relying on single species monocultures (Nyland 2007, Tomczak 1994). 

In areas north of loblolly pine’s range, shortleaf pine is a much more suited species due to risks from ice 

and snow damage that can harm loblolly pine. Often, faster growing loblolly pine has been preferred, 

because greater volumes (fiber) are grown in shorter rotations. However, if slow grown, denser wood is 
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an objective, management favoring shortleaf pine could result in more diverse timber product options for 

landowners who are not focused on reducing rotation times for pulpwood or biomass production.     
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Chapter 2: Objectives 

Objectives 

1. To compare the effects of clipping and burning during the early growing season (March/April) on 

seedling survival rates, sprout production, and height growth for outplanted one, two, and three-

year-old shortleaf pine seedlings.  

2. To compare survival rates, sprout number, and sprout height among one, two, and three-year-old 

shortleaf pine seedlings that were burned in the early growing season (March/April), mid-

growing season (June/July), and late growing/early dormant season (November) with seedlings 

clipped during the early growing season and untreated controls. 

3. To determine the effects of burn duration and temperature on shortleaf pine seedling survival 

rates, sprout production, and height growth for one, two, and three-year-old shortleaf pine 

seedlings.    

4. To examine pre-and post-treatment survival and height growth rate differences for two and three-

year-old shortleaf pine seedlings.  

5. To determine if there is a correlation between pre-treatment height and the number of sprouts a 

seedling produces post-treatment for two and three-year-old shortleaf pine seedlings.     

6. To evaluate if post-treatment dominant sprout height and number are correlated for one, two, and 

three-year-old shortleaf pine seedlings. 

7. To determine if post-treatment dominant sprout height and number are correlated with the 

Keetch-Byram drought index (KBDI) for one, two, and three-year-old shortleaf pine seedlings. 
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Chapter 3: Methods 

Study Site 

 The study site is located at 36°02’57.35” N 84°28’46.56” W on Walden Ridge in south central 

Morgan County, Tennessee. The land is owned by the University of Tennessee’s Institute of Agriculture 

Forest Resources Research and Education Center. The study is within the Little Brushy Mountain Unit of 

the Cumberland Forest (Figures 1 and 2). Walden Ridge is a subregion of the middle Cumberland 

Plateau. This area is characterized by weakly dissected plateau surface with the bedrock consisting 

predominantly of shale, but some sandstone may be found (Smalley 1982). Lonewood silt loam is the 

major soil series and the site has slopes of 5-12% (National Cooperative Soil Survey 2007, USDA 2012). 

This soil is acidic and has moderately low fertility. Site indices range from 70 feet at base age 50 years for 

shortleaf pine, white oak (Quercus alba), and northern red oak (Quercus rubra ) to 90 feet for yellow-

poplar (USDA 2012, Smalley 1982).   

 The climate in Morgan County is characterized by long, moderately hot summers and short, mild 

winters (Thornthwaite 1948). Historically, the area receives about 59 inches of precipitation that is fairly 

evenly distributed throughout the year. December through March is typically the wettest period of the 

year, while August-October is the driest period. The mean annual temperature for the region is 56 degrees 

(Smalley 1982).  Climate data from nearby Oak Ridge, Tennessee during the three years of this study are 

presented in Table 1.  
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Figure 1. Location of the University of Tennessee Forest Resources Research and Education Center in 

south-central Morgan County, Tennessee (Map courtesy of Martin Schubert). 
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Figure 2. Aerial image (1326 feet) of the shortleaf pine seedling sprout study site within the Little Brushy 

Mountain Unit of the University of Tennessee Forest Resources and Research Education Center. The 

orange square is the study area and the dark green adjacent squares are white pine plantations. The 

buildings to the northwest contain the forest headquarters (Image courtesy of Google Earth). 
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Table 1. Climate data from Oak Ridge, Tennessee for the three years of the shortleaf pine  

seedling sprout study. 

    Study Year   

Climate Variable 2011 2012 2013 

Average Temperature (°F) 60 61 58 

Maximum Temperature (°F) 99 105 95 

Minimum Temperature (°F) 12 17 19 

Precipitation Total (Inches) 66.9 48.4 66.2 
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Establishment 

 Prior to the establishment of the study, the site was mowed approximately every 2 to 3 weeks 

(Figure 4). The site was 84x69 feet with an area of 5,796 square feet. Forty-five experimental units were 

established in February 2011. Each plot measured 4 feet x 9 feet with 6 foot buffers separating 

experimental units on each side (Figure 3). Seedlings obtained from the Tennessee Division of Forestry 

Nursery at Delano, Tennessee were planted on a1x1 foot spacing (50 trees per experimental unit) on 

February 25, 2011.  Seedlings were 1-0 stock and were progeny of open-pollinated Tennessee mother 

trees. They averaged eleven inches tall at planting, and unusually small or unhealthy looking seedlings 

were culled from the planting. Three blocks were established with fifteen experimental units within each 

block. Blocks were arranged to account for slope and shading differences on the site.  

 The experiment was a randomized block design with five treatments by three years by three 

blocks. Individual treatments were assigned randomly to the fifteen experimental units  in each block. 

Treatments included three controls that received no treatment (one control per year in each block), 

burning in March 2011, March 2012, and March 2013; burning in July 2011, July 2012, and July 2013; 

burning in November 2011, November 2012, and November 2013; clipping in March 2011, March 2012, 

and March 2013. The arrangement of the treatments in each block is shown in Figure 4. Each 

experimental unit received a treatment once for the duration of the study.  
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Figure 3. The study site prior to planting in February 2011. 
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Figure 4. Schematic of the shortleaf pine seedling sprout study site showing blocks, treatment 

arrangement, and dimensions of the site. The abbreviations are as follows: BM was a March or April 

burn, BJ was a June or July burn, BN was a November burn, CL was a March stem clip, and CO was the 

control treatment. The numbers after the abbreviations correspond with the year a treatment was 

implemented.  

  N 
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Burn Methods 

 Methods designed to reduce the variability in burns among years and seasons were followed. 

Dried white pine needles from two adjacent plantations were used as a fuel source. Sticks larger than 

twigs were removed from the needles to promote a consistent fuel type. Needles were dried on a tarp in 

full sunlight for at least 2.5 hours prior to burning in order to obtain approximately equal fuel moisture 

values within the same burn season across years (although some variation was expected across years).  

Needles were also dispersed in approximately equal volumes within each experimental unit. Five gallon 

buckets were used to gather the needles. A full bucket of needles was spread evenly down each of the four 

planting rows in the long direction of an experimental unit, and two full buckets of needles were spread 

around the perimeter of an experimental unit to approximately nine inches from the outside-edge 

seedlings. A total of approximately 10 pounds of white pine needles were evenly distributed across the 36 

square feet of the burn experimental units, or about 6 tons of pine needles per acre. 

 Fire weather data including: ambient air temperature, relative humidity, and surface wind speed 

were monitored and recorded on the days of burns. Across the three years for the March/April burns, the 

average air temperature was 73 degrees Fahrenheit, the average relative humidity was 27 percent, and the 

average wind speed was 4 miles per hour. Figure 5 illustrates a March burn during the third growing 

season. Across the three years for the June/July burns, the average air temperature was 89 degrees 

Fahrenheit, the average relative humidity was 49 percent, and the average wind speed was 4 miles per 

hour. Across the three years for the November burns, the average air temperature was 59 degrees 

Fahrenheit, the average relative humidity was 30 percent, and the average wind speed was 3 miles per 

hour. Figure 6 illustrates a November burn during the second growing season. The KBDI was calculated 

using daily precipitation and maximum temperature data gathered from the remote automatic weather 

station (RAWS) in Crossville, Tennessee.  Calculation and interpretation of the index was completed 

following Keetch and Byram’s original manuscript (1968) and the Fire Family Plus version 4.1 (2013) 

computer program. 
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                   Figure 5. A photograph of one of the three March 2013 burns. 

 

 

       Figure 6. A photograph of one of the three November 2012 burns. 



24 

 

Experimental units were ignited in a ring pattern using a drip torch during the mid-afternoon 

hours. Burn duration and intensity data were measured and recorded for each burn plot. Elapsed time 

from ignition until complete flameout was noted. Burn temperatures were monitored and recorded every 

fifteen seconds using a Kintrex digital infrared thermometer. The Kintrex model used for the study had a 

maximum temperature rating of 932 degrees Fahrenheit, which made recording the actual maximum 

temperatures difficult on plots that reached hotter temperatures. The 932 degree reading was recorded as 

the maximum temperature if the heat exceeded the thermometer’s capabilities. The thermometer sat on a 

45.6 inch tall pole positioned 48 inches away from the center position of a plot, which was exactly the 

midpoint between the fifth and sixth trees in the third planting row of five. This location placed the 

thermometer reading approximately 70 inches away from the midpoint of a plot.    

 The burns conducted on blocks two and three in July 2011 had to be ignited a second time due to 

poor ignition caused by high relative humidity that day. Burning twice caused high mortality in those 

seedlings that received this treatment, and this is evident in the results. In addition, many of the seedlings 

burned during 2013 were not topkilled by the fires due the large sizes they attained.  Seedlings that were 

not topkilled were typically located around the experimental unit edges due to the convective nature of the 

burns. Accurate temperature readings were not obtained from the July 2013 burn in block one due to the 

high density of the stems in the plot.  

Clip Methods 

 The seedlings that received the clip treatment were clipped approximately 1 to 2 inches above 

ground level to avoid damaging any dormant buds at the root collar. Loblolly pine seedlings clipped 

above the cotyledons have shown much greater survival rates than those that are clipped below this point 

(Shelton and Cain 2002). Any sprouts initiating from the main stem were also clipped so that all seedlings 

started with a single above-ground stem. All clip treatments were completed in March of a given year. 
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Weed and Grass Control 

 Weed and grass control was completed two to three weeks prior to burn treatments to create more 

even fuel types and amounts for each burn treatment completed in 2012 and 2013. Thirty-six of forty-five 

experimental units that received treatments (excluding the controls) were clipped and treated with 

glyphosate by sponge wicking in May and June of 2012 to improve survival and competitive status. The 

nine control treatments were mulched with white pine straw. All twelve 2011 treatment experimental 

units were clipped and treated with herbicide again in September 2012 to facilitate measurements that 

were completed in the winter of 2013. During May 2013, the March burn and clip treatments were 

clipped and herbicide was applied to reduce the presence of competing vegetation. Weed and grass 

control was not necessary again during 2013 due to the heights attained by the seedlings and sprouts. 

Weed and grass control within experimental units was not performed during the growing season of 2011. 

Weeds and grass were clipped by hand around seedlings and sprouts, and followed up with a treatment of 

2 ounces per gallon solution of glyphosate (Cornerstone Plus®) in water. For woody plants, such as 

Japanese honeysuckle, triclopyr (Ortho Brush-B-Gone®) was applied as needed following label 

directions. Special care was taken to not apply herbicide to new pine growth. Herbicide was applied by 

hand with a sponge around individual seedlings.  

Data Collection and Measurements 

 Pre-burn and pre-clip survival counts and height measurements were completed in 2012 and 2013 

prior to treatments being implemented. All 2012 and 2013 control pre-treatment measurements used in 

pre-treatment analyses were made in March 2012. Height measurements and sprout number counts were 

completed for all fifteen first year treatment and control plots in January 2013, one full growing season 

after treatments were applied, and on all forty-five treatment and control plots in December 2013/January 

2014. Height measurements were made to the nearest quarter inch on the dominant sprout in a clump or 

on a stem that was not topkilled by flames. If a stem was partially killed (part of the stem was killed 

whereas one stem still had green foliage), then its height was measured at the top of the surviving stem or 
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branch. When the original stem was not killed, or was still present, as with the controls, then only new 

sprouts originating from the root collar were counted. 

 The one-year -old seedlings treated (burn and clip) in April, July, and November of 2011 were 

measured in January 2013, one complete growing season after treatments, and December/January of  

2013/2014, two complete growing seasons after treatments were applied. The two-year-old seedlings 

treated (burn and clip) in March, June, and November of 2012 were measured in December/January of 

2013/2014, one complete growing season after treatments were applied. The three-year-old seedlings 

treated (burn and clip) in March and July of 2013 were measured in December/January of 2013/2014, less 

than a complete growing season after treatments were applied. A timeline of measurements and data 

collection times is presented in Table 2.  

Data Analysis 

 Analysis of variance (ANOVA) was used to test for statistical differences among treatments for 

survival rate, sprout number, and sprout height. Data were analyzed as a randomized block design using 

PROC MIXED in SAS 9.3 (SAS Institute 2012). Pre-treatment and post treatment sprout survival rates 

were analyzed separately and displayed together to show differences in the two annual periods, and they 

were analyzed together to investigate time differences within a year. Pre- and post- treatment heights were 

compared to determine if differences in pre-treatment measurement periods affected heights. Least 

squares means were separated using Fisher’s protected least significant difference, with a significance 

level of P=0.05. The square root transformation was used on the sprout number and height variables to 

account primarily for a lack of equal variance in the ANOVA diagnostics. Untransformed means and 

standard errors are reported in the results.  

 Simple correlations of post-burn seedling height to post-burn sprout number, pre-burn seedling 

height to post-burn sprout number, and post-burn sprout number/height to the KBDI value of the days 

burns were completed were analyzed using the PROC CORR procedure in SAS 9.3 (SAS Institute 2012).  
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Table 2.  Dates of data collection for the shortleaf pine seedling sprout study in east Tennessee. All 

seedlings were planted in three blocks in February 2011 and treatments were conducted in one block per 

year in 2011, 2012, and 2013. 

Measurement 2011 Treatment Plots 2012 Treatment Plots 2013 Treatment Plots 

    

Controls 
a 

March 2012 March 2013 

Pre-Clip, Early Growing 

Season 

a b 
March 2013 

Pre-Burn, Early 

Growing Season 

a 
March 2012 March 2013 

Pre-Burn, Mid-Growing 

Season 

a 
June 2012 July 2013 

Pre-Burn, Late Growing 

Season/Early Dormant 

Season 

a 
Nov. 2012 Nov. 2013 

Post-Treatment Annual, 

All Treatments 

Jan. 2013, 

Dec./Jan. 2013/14 

Dec./Jan. 2013/14 Dec./Jan. 2013/14
c 

 
a 
No measurements were taken in 2011 

b 
No pre-clip measurements were taken in 2012 

c 
Excludes late growing season/early growing season measurement conducted in November. Measurement 

of early and mid-growing season treatments do not constitute an entire growing season 
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Correlations (r) in absolute value from 0 to 0.39 were considered weak, 0.4 to 0.7 were considered 

moderate, and 0.7 to 1.0 correlations were considered strong. 
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Chapter 4: Results 

Survival 

There were statistically significant differences in survival rates among treatments (p=0.04) one 

complete growing season following treatment application in one-year-old seedlings. Survival rates were 

greatest with the control (CO1) and clip (CL1) treatments, which both had viability rates of 75.3 percent 

(Table 3). There were no significant differences between the early (BA1) and mid-growing (BJ1) season 

burns, whereas the late growing season/early dormant season (BN1) burn was statistically similar to the 

clip and control rather than the other two burn treatments. Numerically, the mid-growing season burn had 

the lowest survival rate among treatments (38.7 percent). 

 After two complete growing seasons following treatment application there were statistically 

significant differences among treatments (p=0.03) in one-year-old seedlings. The 75.3 percent survival 

rate for the control treatment remained unchanged from the year before and had the highest survival rate 

among treatments (Table 3). The early growing season burn treatment survival rate did not change 

between the two years either. The other three treatments all had slightly lower survival rates two years 

after treatment application than they did one year after treatment application. Again, the mid-growing 

season burn had the lowest survival rate among treatments and was significantly different from the other 

treatments (Table 3). 

Two-year-old seedlings treated during 2012 and assessed one complete growing season following 

treatments did not show overall significant differences in survival rate (p=0.06). According to the 

ANOVA letter groupings, there were no statistical differences among the three burn treatments, which 

had very similar survival rates and ranged from 49.3 to 58.7 percent (Table 4). The clip (67.3 percent) and 

control (82 percent) treatments had the highest survival rates. 
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Table 3. Mean survival (percentage), standard error, and letter grouping are presented for one and two years  

following treatments on one year outplanted shortleaf pine seedlings completed in 2011 for the shortleaf pine  

seedling sprout study in east Tennessee.   

  2013 One Year Survival 2014 Two Year Survival 

2011 Treatment Mean Standard Error Letter Group Mean Standard Error Letter Group 

April Burn 42.7
a 

4.1  B
b 

42.7
c 

4.1  BC
 

July Burn 38.7 4.0 B 38 4.0 C 

November Burn  48.7 4.1 AB 48 4.1 BC 

March Clip 75.3 3.5 A 66.7 3.9 AB 

Control 75.3 3.5 A 75.3 3.5 A 
   a 

One full year following treatments p=0.04.
 

b 
Different letters within the same column indicate significant differences at the p=0.05 level. 

c 
Two full years following treatments p=0.03. 
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  Table 4. Mean survival percentage, standard error, and letter 

  grouping are presented for two-year-old shortleaf pine 

  seedlings that received treatments during 2012. Assessments  

  were made one year after treatments were applied. 

2012 Treatment Mean 
Standard 

Error 

Letter 

Grouping 

March Burn  58.7
a 

4.0  A
b 

June Burn 49.3 4.1 A 

November Burn 52.7 4.1 A 

March Clip 67.3 3.8 A 

Control 82 3.1 A 
  a 

One full year following treatments p=0.06 
  b 

Different letters within the same column indicate significant  

  differences at the p=0.05 level. 
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Three-year-old seedlings treated during 2013 and assessed at the end of 2013 following 

treatments did not show overall significant differences in survival rate (p=0.252). The late growing 

season/early dormant season November burn treatment was not included in the analysis because 

determination of survival without new sprouts so soon after burning was impractical. Survival rates 

ranged from a low of 46.7 percent with the early growing season burn to 76 percent with the control 

(Table 5). 

 Pre and post-treatment survival differences for two and three-year-old seedlings are presented in 

Figure 7, excluding the two-year-old clip treatment and the three-year-old late growing/early dormant 

season burn treatment. There were no significant survival differences among pre-treatment heights 

(p=0.2435), yet there were treatment differences after treatments were applied (p=0.011). When analyzed 

together, there were pre- versus post-treatment height differences with the treatment x time interaction 

(p<0.0001).   

Sprout Production 

 The maximum temperature covariate affected sprout production one year following treatment 

application with one-year-old seedlings, and there were significant differences in sprout production 

among the five treatments (p=0.0118). Out of the six covariates tested, the maximum temperature 

covariate was the only significant one (p=0.0089) among the three burn treatments. Table 6 shows the 

means, standard errors, and letter groupings of all five treatments without the covariate and the means, 

standard errors, and letter groupings of the three burns with the covariate included. The control treatment 

produced the fewest sprouts, whereas the November burn produced the most sprouts of any treatment. 

Clipping and the early growing season burn produced statistically similar numbers of sprouts. 
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  Table 5. Mean survival percentage, standard error, and letter 

  groupings are presented for three-year-old shortleaf pine seedlings  

  that received treatments during 2013 and were assessed at the end  

  of 2013.  

2013 Treatment Mean 
Standard 

Error 

Letter 

Grouping 

March Burn  69.3
a 

4.1  A
b 

July Burn 46.7 3.8 A 

March Clip 52 4.1 A 

Control 76 3.5 A 
  a 

At the end of the year treatments were applied p=0.252. 
  b 

Different letters within the same column indicate significant 

  differences at the p=0.05 level. 
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Figure 7. Pre- and post-treatment survival rates for two-year-old and three-year-old shortleaf pine seedlings are presented, excluding the two-year-

old clip treatment (missing pre-treatment data) and the three-year-old late growing/early dormant season burn treatment for the shortleaf pine 

seedling sprout study in east Tennessee. There were no significant differences in the pre-treatment means (p=0.2435), but there were among the 

post-treatment means (p=0.011). The standard error for all pre-and post-treatment means was 0.1 percent. Means with different letters within the 

same treatment differ at p=0.05.
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Table 6. Mean number of sprouts, standard error, and letter grouping are presented for surviving shortleaf 

pine seedlings one and two years following treatments completed in 2011 for the shortleaf pine seedling 

sprout study in east Tennessee. The maximum burn temperature covariate was significant one year 

following treatments. Adjusted means, standard errors, and letter groupings are presented.  

  2013 One Year Sprout Production 2014 Second Year Sprout Production 

2011 Treatment Mean Standard Error Letter Group Mean Standard Error Letter Group 

No Covariate     

April Burn  4.8
a 

0.7  B
c 

 2.6
d 

0.5  B
c 

July Burn 7.5 0.7 AB 5 0.5 A 

November Burn 10.1 0.6 A 2.8 0.4 B 

March Clip 6.1 0.6 B 2.1 0.4 B 

Control 1.3 0.6 C 0.9 0.4 C 

Covariate     

April Burn  4.3
b 

0.7 B   

July Burn 7 0.7 C   

November Burn 11.1 0.7 A       
a 
One full year after treatments were applied with the covariate excluded p<0.001. 

b 
One full year after treatments (p=0.00118) were applied with a significant maximum temperature 

covariate p=0.0089  
c 
Different letters within the same column indicate significant differences at the p=0.05 level. 

d 
Two full years after treatments were applied with no significant covariates p<0.001. 
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No covariates affected sprout production of one-year-old seedlings two years after treatments 

were applied. However, there were still significant differences among treatments though (p<0.001). The 

average number of living sprouts decreased for each treatment (Table 6). The control treatment had the 

fewest number of sprouts (0.9), whereas the mid-growing season burn had the greatest average number of 

sprouts instead of the late growing season/early dormant season burn. The late growing season/early 

dormant season treatment experienced the greatest decrease in average sprout number over the course of 

the year between assessments. 

 Sprout number in two-year-old seedlings assessed one year following treatments showed 

significant differences among treatments (p=0.0003). The burn duration covariate was significant among 

treatments (p=0.0002). Table 7 displays the mean number of sprouts, standard errors, and letter groupings 

for sprout number with and without the covariate. Without the covariate, the most sprouts were produced 

by the mid-growing season burn treatment (10.9), which was closely followed by the late growing/early 

dormant season burn (9.6). Clipping produced fewer sprouts than the early growing season burn, while 

the control produced the fewest number of sprouts (0.3). With the covariate included in the analysis the 

early and mid-growing season burns produced more sprouts, whereas the late growing/early dormant 

season burn produced fewer sprouts on average. 

 The three-year-old seedlings assessed at the end of the 2013 growing season displayed significant 

differences (p=0.0011) among treatments in the number of sprouts produced. The late growing/early 

dormant season burn treatment was not included in the analysis. The mean burn temperature covariate 

significantly affected the number of sprouts (P<0.0001) produced in the early growing season and mid-

growing season burns and resulted in treatment differences (p=0.0043). Without the covariate included in 

the analysis, the mid-growing season burn (4.5 sprouts) and the control treatment (0.5 sprouts) were 

statistically the same and produced the fewest sprouts (Table 8). The clip treatment produced a staggering 

28.6 sprouts per seedling average, yet was statistically the same as the early growing season burn (16.5 

sprouts). The mean burn temperature covariate resulted in 14.8 sprouts per seedling for the early growing  
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    Table 7. Mean number of sprouts per seedling, standard errors, and 

    letter groupings are presented for surviving two-year-old shortleaf  

    pine seedlings one year following treatment completion in 2012  

    for the shortleaf pine seedling sprout study in east Tennessee.  

2012 Treatment Mean Standard Error Letter Group 

No Covariate 

March Burn  5
a 

1.5  A
c 

July Burn 10.9 1.5 B 

November Burn 9.6 1.5 AB 

March Clip 4.8 1.4 A 

Control 0.3 1.4 C 

Covariate 

March Burn  6.5
b 

1.2 B 

July Burn  14.5 1.6 A 

November Burn 5.6 1.7 B 
       a 

One full year after treatments were applied p=0.0003. 

     
b 
One full year after treatments (p=0.04) were applied the burn duration  

     covariate was significant (p=0.0002). 
       c 

Different letters within the same column indicate significant 

     differences at the p=0.05 level. 
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Table 8. Mean number of sprouts per seedling, standard errors, and 

letter groupings are presented for three-year-old surviving seedlings  

for the shortleaf pine seedling sprout study in east Tennessee.  

Counts were made at the end of the 2013 growing season.  The  

mean burn temperature affected the number of sprouts produced and  

was significant. The November treatment was not included due to  

survival not being able to be ascertained so soon after the burns  

were applied. 

2013 Treatment Mean Standard Error Letter Group 

No Covariate 

March Burn 16.5
a 

3.9 A
c 

July Burn 4.5 3.8 B 

March Clip 28.6 3.8 A 

Control 0.5 3.8 B 

Covariate 

March Burn 14.8
b 

1.2 A 

July Burn 5.4 1 B 
a 
Measurements were made at the end of the 2013 growing season, 

and there were significant difference among treatments (p=0.0011). 
b 
The mean burn temperature covariate was significant (p<0.0001) as 

were differences among treatments (p=0.0343). 
c 
Different letters within the same column indicate significant 

differences at the p=0.05 level. 
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season burn and 5.4 sprouts per seedling average in the mid-growing season burn (Table 8). The early 

growing season burns averaged 242.3 degrees Fahrenheit, whereas the mid-growing season burns 

averaged 175.7 degrees Fahrenheit, a difference of 66.7 degrees.  

Sprout Height 

 One-year-old seedlings treated during 2011 showed significant differences in height one year 

after treatments were applied (p<0.0001). No tested covariates significantly affected the seedling heights. 

There were no height differences among the three burn treatments (Table 9). The controls were the tallest 

at 48.6 inches, while the clip seedlings were the next tallest at 26.1 inches. Seedlings in the mid-growing 

season burn plot in block one showed signs of browsing when seedlings were measured in January 2013.  

The one-year-old seedlings displayed overall significant differences (p<0.0001) among 

treatments when measured two years after treatments were applied. No tested covariates significantly 

affected seedling heights. Seedlings in most treatments had approximately doubled in height over the 

2013 growing season (Table 9).  Seedlings in the mid-growing season burn treatment still had the shortest 

average height (30.7 inches), while the average height of the early growing season burn were similar to 

the late growing/early dormant season burn. Average seedling height of the clip treatment averaged nearly 

a foot taller than that found in the tallest burn treatment, while the average height in the controls were the 

tallest, averaging just less than seven feet tall after three growing seasons. 

 The two-year-old seedlings displayed overall significant differences in seedling height when 

measured one full year after treatments were applied (p=0.0007). The duration of the burn was a 

significant covariate (p<0.0001) that affected the burn treatment means, which had significant differences 

with the covariate in the analysis (p=0.0066). Without the covariate included, average seedling height in 

the early growing season burn, the late growing/early dormant season burn, and the clip treatment were 

statistically the same (Table 10).  
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Table 9. Mean height (inches), standard error, and letter grouping are presented for surviving shortleaf 

pine seedlings one and two years following treatments completed in 2011 for the shortleaf pine seedling 

sprout study in east Tennessee.  

2013 First Year Height Growth 2014 Second Year Height Growth 

2011 Treatment Mean Standard Error Letter Group Mean Standard Error Letter Group 

April Burn 19.2
a 

2.4 C
b 

40.5
c 

5.6 D
 

July Burn 15.5 2.5 C 30.7 5.7 C 

November Burn 19.7 2.4 C 39.1 5.5 CD 

March Clip 26.1 2.4 B 51.1 5.5 B 

Control 48.6 2.4 A 83.6 5.4 A 
a 
One full year after treatments were applied p<0.001. 

b 
Different letters within the same column indicate significant differences at the p=0.05 level. 

c 
Two full years after treatments were applied p<0.001. 
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The average seedling height for the mid-growing season burn was significantly shorter than that found in 

the other burn treatments, whereas the seedlings in the control were significantly taller than those in all 

other treatments. The analysis with the covariate included resulted in the late growing/early dormant 

season burn seedlings being taller numerically (63.8 versus 42.3 inches) than the early growing season 

burn, but there were no significant differences. The mid-growing season burn was statistically different 

and only averaged 8.2 inches tall. The mid-growing season burns only averaged two minutes and fifty 

seconds long, whereas the late growing/early dormant season burns averaged twelve minutes and fifty 

seconds long. The early growing season burn average (ten minutes thirty seconds) was much longer than 

the mid-growing season burn on average as well. 

 The three-year-old seedlings (excluding the late growing/early dormant season burn treatment) 

displayed overall significant differences in average seedling height among treatments (p=0.0048). There 

were no significant covariates in this analysis. The average height of seedlings in the early growing 

season and mid-growing season burns were statistically similar but still displayed some differences (Table 

11). The clip treatment seedlings had the shortest average height (22.2 inches), whereas the controls had 

the tallest average height (73.2 inches). 

Pre-and post-treatment heights for the two and three-year-old seedlings, when analyzed together, 

displayed significant differences for the treatment x time interaction. The two control treatments showed 

the greatest differences between pre and post treatment height (Figure 8). The late growing/early dormant 

growing season burn displayed the smallest difference between pre and post height as they were 

statistically the same.   
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   Table 10. Mean height (inches), standard error, and letter groupings 

   are presented for treatments completed in 2012 for the shortleaf  

   pine seedling sprout study in east Tennessee. Measurements were 

   made one year after treatments were completed on two-year-old  

   seedlings. The burn duration covariate was significant.  

2012 Treatment Mean Standard Error Letter Group 

No Covariate 

March Burn 47.8
a 

5.3  B
c 

June Burn 21.3 5.3 C 

November Burn 49.1 5.3 B 

March Clip 47 5.2 B 

Control 80.2 5.2 A 

Covariate 

   March Burn 42.3
b 

6 A 

June Burn 8.2 6.6 B 

November Burn 63.8 6.8 A 
a 
One full year after treatments were applied p=0.0007. 

b 
Treatment differences with the burn duration covariate (p<0.0001) 

were significant (p=0.0066). 
c 
Different letters within the same column indicate significant  

differences at the p=0.05 level. 
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   Table 11.  Mean height (inches), standard error, and letter groupings 

are presented for shortleaf pine treatments completed in 2013 for the  

shortleaf pine seedling sprout study in east Tennessee. Measurements 

 were made one year after treatments were completed on three-year- 

old seedlings. The November treatment was not included due  

to survival not being able to be ascertained so soon after the burns 

were applied. 

2013 Treatment Mean Standard Error Letter Group 

March Burn  39.9
a 

9.1  BC
b 

July Burn 50.2 8.9 B 

March Clip 22.2 9 C 

Control 73.2 8.9 A 
a 
At the end of the 2013 growing season there were significant 

differences among treatments (p=0.0048). 
b 
Different letters within the same column indicate significant 

differences at the p=0.05 level. 
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Figure 8. Pre- and post-treatment dominant sprout heights are presented for two and three-year-old 

shortleaf pine seedlings treated during 2012 and 2013, excluding the clip treatment for the two-year-old 

seedlings (missing pre-treatment data) and the three-year-old late growing/early dormant season burn 

treatment for the shortleaf pine seedling sprout study in east Tennessee. There were significant 

differences in the treatment x time interaction (p<0.0001) meaning that height differences caused by other 

factors than the timing of when pre-treatment height measurements were taken were evident. The 

standard error for all treatments was either 4.6 or 4.7 inches. Treatments with different letters differ at the 

p=0.05 level.

0

10

20

30

40

50

60

70

80

90

BJ2 BJ3 BM2 BM3 BN2 CL3 CO2 CO3

H
ei

g
h

t 
(I

n
ch

es
)

Treatment

Pre Post

EF

G

B

CD

G

CD

C
DE

CD
CD

CD

FG
G

A

G

A



45 

 

Sprout Height to Sprout Number Correlations 

 The one-year-old treatments displayed a statistically significant negative correlation between 

sprout height and number one and two years after treatments were applied. One year after treatments were 

applied, dominant sprout height and number had a moderately negative -0.4388, p<0.0001 correlation. 

Two years after treatments were applied, dominant sprout height and number had a weaker -0.29, 

p<0.0001 correlation. The two-year-old seedlings, when assessed one year following treatments, had a 

moderately negative (-0.47, p<0.0001) correlation. Three-year-old seedlings, when assessed at the end of 

the growing season in which treatments were applied, had a weak, negative (-0.25, p<0.0001) correlation. 

The correlation of pre-treatment height to post-treatment sprout number for two and three year-old-

seedlings (excluding the two-year-old clip treatment and the three-year-old late growing/early dormant 

season burn treatment) displayed a weak, negative correlation (-0.02, p=0.59).  

Sprout Height and Number to KBDI Correlations 

 The KBDI values across the growing season periods and years of the study ranged from a low of 

2 on the March 14, 2013 burns to a high of 432 on the November 19, 2011 burns. The correlation of 

sprout production to KBDI value ranged from a weak, positive (0.05, p=0.0005) correlation in the one-

year-old seedlings measured one complete year following treatments to a moderate, positive (0.367, 

p<0.0001) correlation in the two-year-old seedlings measured one complete growing season later. Three-

year-old seedlings, when assessed at the end of the growing season in which treatments were applied, had 

a moderate, negative (-0.541, p<0.0001) correlation.  The correlation of sprout height to KBDI value 

ranged from a weak, negative (-0.245, p=0.0005) correlation in the one-year-old seedlings measured one 

complete year following treatments to a moderate, positive (0.367, p<0.0001) correlation for the two-

year-old seedlings measured one complete growing season following treatments. 
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Chapter 5: Discussion 

Survival 

 Survival rates of one-year-old seedlings were the same or shared similarities among the three 

burn treatments one year after treatments were applied. The mid-growing season burn’s low survival rate 

was likely affected by two of the three blocks being burned twice, yet another study that focused on the 

effects of burning on oak and shortleaf pine seedlings in the coastal plain of Arkansas found that mid-

growing season burns in one-year-old seedlings produced even poorer survival rates (zero percent) than 

this study (Cain and Shelton 2000). Differences in the two studies could have been a result of climate 

differences before or after the burn and burn intensity or duration, but another prescribed fire study in 

Texas found poorer survival rates in loblolly and shortleaf pine after burns conducted in August compared 

to burns conducted in December (Ferguson 1957).  

The early growing season burn survival rate for the one-year-old seedlings in this study (42.7 

percent) was nearly identical to results found in another study (43 percent) in Arkansas conducted with 

six-year-old, naturally regenerated seedlings that were burned in April (Lilly and others 2012b). The late 

growing season/early dormant season burn treatment in this study had a much lower survival rate 

compared to one-year-old seedlings burned in January in Arkansas (48.7 to greater than 95 percent) 

indicating that seedlings may respond even more favorably to burns completed later on in the dormant 

season (Shelton and Cain 2002). The clip and control treatments in this study had the same survival rate 

(75.3 percent) one year after treatments were applied indicating that seedlings can readily recover from 

heavy browse and other disturbances that do not involve heating of the seedlings. The survival rate of the 

control seedlings was somewhat lower than the 80 percent survival standard for seedlings planted on 

National Forests in Arkansas (Mexal 1992). 

The late growing season/early dormant season burn treatment is hypothesized to have had a 

slightly higher survival rate than the other burn treatments due to longer seedling establishment times and 
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translocation of sugars to the roots in preparation for the dormant season even though the late 

growing/early dormant season burns were more intense and longer than the other first year burns on 

average. Lower survival rates with the early growing season and mid-growing season burn treatments 

may have been affected by poor root/soil contact with the root hairs and solum (early growing season 

directly after planting), the combination of burning two plots twice, and poor root/soil contact in the mid-

growing season burn treatment during the first growing season (Grossnickle 2005, Rietveld 1989). In 

addition, bareroot seedlings lose as much as 75 percent of their total root length when they are lifted from 

the nursery, making new root growth and mass imperative (Brissette and Chambers 1992). A previous 

study observed translocation patterns throughout an entire year in three-year-old eastern white pine (Pinus 

strobus L.) seedlings and found that total sugar content is highest in the roots in November (late growing 

season/early dormant season burn), lowest in July (mid-growing season burn), and moderate in late March 

throughout April (early growing season burn) (Shiroya and others 1966). Translocation of carbohydrates 

in other species of pine seedlings is limited in seedlings with poorly developed root systems as compared 

to those with larger root systems (Shiroya and others 1962). These translocation patterns, if similar in 

shortleaf pine, could help explain why the November burn had the highest survival rate among the burn 

treatments.  

Two years after treatments were applied, few reductions in survival were seen in the one-year-old 

seedlings. The early growing season burn and the control treatments did not suffer any attrition, while the 

mid-growing season burn and the late growing/early dormant season burn treatments lost less than one 

percent of their surviving seedlings from the year before. The clip treatment was the only treatment to 

lose an appreciable percentage of seedlings, which amounted to 8.7 percent. This illustrates that seedlings 

will not easily succumb to insects and diseases for at least two-years after burning or clipping is applied. 

Density-dependent mortality from intraspecific competition once the stem exclusion stage begins would 

likely be the first phenomenon to cause major mortality in seedlings planted at such narrow spacings 

(Smith and others 1997). 
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Survival rates among two-year-old seedlings assessed one year after treatments were greater than 

one-year-old seedlings among every treatment except the clip treatment. There were no differences 

among the burn treatments in the two-year-old seedlings, and again the clip and control treatments had 

higher survival rates than the burn treatments. The difference between the survival rates of one and two-

year-old seedlings was the early growing season burn replacing the late growing/early growing season 

burn as the burn treatment with the highest survival rate by one percent. Aside from possible differences 

in weather for those burn treatments across the two years, the burn treatments in the early growing season 

of 2012 were much shorter and more intense on average than the late growing/early dormant season burns 

that year (Appendix 1). Better root establishment and larger seedling sizes may have helped the seedlings 

survive the early growing season burns more effectively. Also, breaking of dormancy may have not 

occurred yet in the seedlings, which can greatly influence sprouting capacity. Burning prior to bud break 

usually results in greater sprouting capacity (Kozlowski and others 1991). The early growing season burn 

of the two-year-old seedlings was conducted 25 days earlier in the year than the one-year-old early 

growing season burn, which may have made a major difference in sprouting capability based on 

seedlings’ break from dormancy.    

Two reasons that may explain the greater survival rates in two-year-old seedlings than one-year-

old seedlings are more established ectomycorrhizae in older seedlings and increased seedling sizes 

enabling them to tolerate higher temperatures. Shortleaf pine does not have endomycorrhizae that are 

common in the roots of many hardwood species (Pope 1993). At least one past study has shown that two-

year-old bareroot shortleaf pine seedlings achieve greater survival rates and sizes with increasing 

presence of ectomycorrhizae fungal species such as Pisolithus tinctorius and Thelephora terrestris along 

with natural ectomycorrhizae that develop over time after the seedlings have been planted (Ruehle and 

others 1981). Natural ectomycorrhizae may not always be present in nurseries where bareroot seedlings 

are grown due to soil sterilization. The seedlings used in this study were not inoculated prior to planting. 

The development of natural ectomycorrhizae along with root size could likely be a major contributor to 
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increased survival rates of two-year-old seedlings over one-year-old seedlings. Larger seedlings typically 

have thicker bark, larger basal crooks, and larger root collars, which all contribute to better survival 

potential following a burn (Little and Somes 1956). 

Three-year-old seedlings showed a decline in survival for the mid-growing season burn, clip, and 

control treatments, whereas the early growing season burn treatment survival rate increased compared to 

the two-year-old seedlings. Some seedlings treated during this year may not have had time to recover 

fully and produce sprouts after treatments were applied (especially the mid-growing season burn) before 

assessments were made at the end of the 2013 growing season. Other observations indicated that 

sprouting occurs less frequently after midsummer disturbances and that sprouting may not initiate until 

the next spring after such disturbances depending on weather conditions in the remainder of the growing 

season following the disturbance (Mattoon 1915). The declining survival rate for clipped seedlings each 

successive year after they are planted may be a universal trend and not limited to this study. A study in 

Arkansas by Campbell (1985) on four-year-old seedlings clipped two inches above ground level in 

February found a fifteen percent survival rate one year after the clipping. These results may indicate that 

shortleaf pine seedlings that are clipped in the early growing season do not recover vigorously as age 

increases. In addition, in this study many of the three-year-old seedlings attained large enough sizes so 

that they were not killed by the burns. The convective nature of the burns, due to the ring ignition pattern, 

left many of the seedlings on the outside edges of the plots alive and relatively undamaged. Flame heights 

were much taller in the center of the plots than they were around the edges. Some seedlings along the 

edges did not produce sprouts at the time of the assessment conducted at the end of the 2013 growing 

season.  

The pre-treatment and post-treatment survival rates show that treatment timing and seedling age 

may have a significant impact on two and three-year-old seedling survival. The control treatments for 

both age classes displayed little mortality from the initial pre-treatment assessment until post-treatment 

assessments indicating that the seedlings were vigorous and hardy and that mortality could mostly be 
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attributed to the treatments. Early growing season burns resulted in less post-treatment mortality than 

mid-growing season burns in both ages. Actively growing seedlings (mid-growing season) have active 

plant tissue that is less tolerant of high burning temperatures than plant tissue in paradormancy (early 

growing season burn treatment timing) or ecodormancy (late growing /early dormant season burn 

treatment timing) (Kayll 1968).    

Sprout Number 

  The maximum burn temperature covariate affected the number of sprouts produced one year after 

treatments were applied. The covariate resulted in the early growing season and mid-growing season 

burns to produce more sprouts on average, whereas the late growing/early dormant season burn had more 

sprouts as compared to the analysis without the covariate. The tendency for the late growing season 

treatment to have more sprouts was likely a result of the seedlings being better established after the burn. 

The early growing season burn seedlings in this study produced fewer sprouts (4.8+/-0.7) compared to the 

study by Lilly and others (2012b) conducted on six-year-old seedlings where they found 9.6+/-0.8 sprouts 

per seedling. The fewer number of sprouts produced in the mid-growing season burn than the late 

growing/early dormant season burn would typically be attributed to high lethal burn temperatures in the 

summer season, but the mid-growing season burn treatment had lower average burn temperatures and 

durations compared to the other two burn treatments confounding this reasoning. Similar results were 

reported by Cain and Shelton (2000) where higher burn intensities and lower relative humidities during 

the burn yielded greater growth than dormant season burning. Kayll (1968) suggests that dormant 

seedlings of conifer tree species can survive higher temperatures than actively growing seedlings when 

both are exposed to high temperatures for the same amount of time. The lower temperatures in the mid-

growing season treatment may not have been enough to overcome the physiological differences between 

dormant and active tissue and resultant growth and survival.   
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 The average number of sprouts per seedling declined in each of the five treatments in one-year-

old seedlings when they were reassessed two years after treatment application. This finding agrees with 

reports by Lawson (1990) and Mattoon (1915) who each stated that the majority of sprouts that are 

produced after a disturbance will decrease over time as one to three sprouts establish themselves as the 

terminal leaders. Further sprout thinning is possible in these seedlings as they age, especially the mid-

growing season and late growing/early dormant season treatments.  

 The two-year-old seedlings followed the same sprout production trends as the one-year-old 

seedlings, except that the mid-growing season burn produced the greatest number of sprouts instead of the 

late growing season/early dormant season burn. Burn conditions on the day of the mid-growing season 

burn are most likely the main factor contributing to change in sprout production from one-year-old 

seedlings to two-year-old seedlings. The mid-growing season burn in late June 2012 was much flashier 

and more intense than the burn done the previous year. Weather during the summer of 2012 was drier and 

hotter than summer 2011. The 2012 mid-growing season burns had an average temperature of 416.3 

degrees Fahrenheit and an average duration of four minutes and fifty seconds, whereas the 2011 mid-

growing season burns had an average temperature of 273.9 degrees Fahrenheit and an average duration of 

six minutes. The fugacious nature of the 2012 burns was just long enough to topkill the stems, and many 

stems around the edges of the burn plots most likely did not receive enough heating for a long enough 

period of time to decrease the subsequent sprouting response. In southern pines, exposure to 147 degrees 

Fahrenheit for three seconds is enough time to kill needles, while for loblolly pine stems 129 degrees 

Fahrenheit for a minimum of five minutes is usually considered lethal (Hare 1961). Hotter temperatures 

for longer time periods would be necessary to kill roots that are protected by varying soil depths. 

Shortleaf pine is typically considered more fire tolerant than loblolly pine in mature trees and seedlings, 

so a higher maximum temperature and longer burn duration would likely have to occur to kill the stem 

and upper roots or reduce sprouting response from dormant bud death in shortleaf pine (Chapman 1944, 

Williams 1998). 
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 Sprout number in three-year-old seedlings was affected by the mean burn temperature covariate. 

The average burn temperatures between the two burn treatments were widely divergent (242.3 degrees 

Fahrenheit early growing season versus 175.6 degrees Fahrenheit mid-growing season). The mid-growing 

season burn did not ignite and spread satisfactorily due to the combined effects of the seedlings attaining 

large sizes prior to treatment and having very high survival rates resulting in few areas for sunlight to 

reach and desiccate the ground. Together, these two factors caused the surface to be much more shaded, 

humid, and damp (even though needles were dried and applied in the same amounts) resulting in lower 

temperature readings. Other contributing factors that probably resulted in reductions in survival are the 

temperature recording, infrared laser being blocked by the thick needle conditions and the long, 

smoldering burn conditions. Thus, the effects of the covariate might have been insignificant if accurate 

temperature readings could have been attained during the mid-growing season burn.  

The large average number of sprouts produced by the clip treatment was likely a result of not 

enough elapsed time to significantly reduce the number of sprouts between the time the clip took place 

and the assessment for the number of sprouts. The trend in sprout numbers produced by three-year-old 

seedlings in this study were similar to results reported by Grossmann and Kuser (1988), of greater sprout 

numbers in early growing season clip seedlings (11.9+/-3.6) were observed than early growing season 

burn seedlings (6.8+/-4.0) in eight to ten-year-old saplings. They also reported that sprout survival 

decreased with increasing basal diameter size of the parent tree. This study and the research by 

Grossmann and Kuser (1988) indicate that seedlings may produce more sprouts from clipping once they 

reach older ages, but long-term survival rates of the sprouts may decrease at the same time.       

Sprout Height    

 The timing of the three burn treatments did not cause significant differences in height growth in 

one-year-old seedlings. Average dominant sprout heights in the early growing season and late 

growing/early dormant season treatments of this study one year after treatment application were very 
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similar to heights attained by one-year-old seedlings (19.7 inches) burned in January in Arkansas (Cain 

and Shelton 2000). The clip seedlings grew taller than the burn seedlings most likely due to the lack of 

heat damage to the dormant buds of the clip seedlings and a quicker growth response following treatment 

application (especially between the early growing season burn and clip). Past studies have shown that 

sprouting following a burn will only occur below areas exhibiting char (Little and Somes 1956). 

Seedlings grew within the expected one to three foot range common for vigorous, young seedlings 

(Williston 1972). Browsing was limited to seedlings in the mid-growing season burn plot in block one, 

indicating that the numerically shorter average heights, compared to the other two burn treatments, could 

have been a result of browsing.  

 When the one-year-old seedlings in this study were measured two years following treatments 

differences in the burn treatments were evident. No known information is available in the literature that 

assesses height growth of shortleaf pine more than one year following treatment applications. Seedlings in 

each treatment nearly doubled in height except for the control treatment even though the controls grew the 

most out of any treatment during the second year (35 inches). Differences that were diminutive after one 

growing season became more pronounced after two growing seasons resulting in treatment differences. 

Above average precipitation amounts during the most favorable months (April-June) for shortleaf pine 

growth in 2013 likely resulted in these increased growth rates (Fowells 1965).  

 Two-year-old seedlings were significantly affected by the burn duration covariate. The late 

growing/early dormant season burns averaged twelve minutes and fifty seconds, nearly six minutes longer 

than the next longest treatment average. The late growing/early dormant season burn was also the only 

treatment where height growth increased with the covariate included. Less intense and longer burns seem 

to result in less topkill thus producing greater average heights. There were 79 living seedlings before 

burns in the late growing/early dormant season treatment when measurements were made, and 34 of those 

seedlings did not receive topkill as a result of the burns. Many of these seedlings were again located 

around the perimeter of plots. All of the seedlings that survived the burns had smaller basal diameters 
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than the four to six inch threshold reported in other studies, and no trees were taller than the 

approximately 98 inch minimum height threshold reported as necessary for survival (Dey and Hartman 

2005, Lilly and others 2012b).  The likely reason seedlings survived these burns is the convective nature 

of the burns. Most that did not receive topkill were located around the plot edges where flame heights and 

flame exposure times were shorter. The mid-growing season burn had a much shorter average seedling 

height after treatment than the other four treatments. All three mid-growing season plots in the study 

received some browsing in the 1.5 years between burn application and measurements. 

  Few three-year-old seedlings in either burn treatment were topkilled, but for the few seedlings 

that were, their height growth was so small in the amount of time between treatment and measurement 

that the means of the two treatments were probably skewed. Twenty-six of the 70 early growing season 

burn seedlings did not experience topkill, while 71 of the surviving 104 mid-growing season burn 

seedlings did not experience topkill. No seedlings in either treatment were larger than the recommended 

size thresholds to survive early growing season burns reported by Dey and Hartman (2005) and Lilly and 

others (2012b), but many seedlings that survived the early growing season burn were around the plot 

edges. In addition, the mid-growing season burns completed on July 12, 2013 had a low average burn 

temperature of 175.6 degrees Fahrenheit, however, the temperature readings from block one were 

probably inaccurate because of needle obstructions in the path of the laser and the burns were relatively 

short in duration (six minutes and ten second average). The larger seedlings in this treatment were likely 

not exposed long enough to lethal temperatures to experience significant topkill. A study by Phares and 

Crosby (1962) on sprout production of three-year-old seedlings found that taller seedlings that are 

topkilled produce taller dominant sprouts post-burn if they survive. A similar trend was seen in this study. 

 The three-year-old clip seedlings were on pace to exceed the heights attained by one-and two-

year-old seedlings for a full growing season of growth. The three-year-old seedlings were averaging 2.4 

inches of height growth per month, whereas the two-year-old and one-year-old seedlings experienced 2.2 

and 1.2 inches per month growth averages. Well above average precipitation amounts in 2013 likely 
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contributed to the increased growth rates, yet this finding also supports information from Lawson (1990) 

who reported that height growth increases after one to two years in seedlings after the taproot becomes 

established. 

  The expected differences in the pre-treatment and post-treatment heights also show that there are 

differences in the individual treatment x time interaction across the two year intervals of the study (2012 

and 2013). The statistical significance of this interaction indicates that seedlings in different treatments 

had different growth rates based on some other factor(s) such as burn intensities, browsing influence, 

and/or lack of topkill than the elapsed time differences that would be expected to cause differences in 

height growth from treatment implementation to post treatment measurement. The differences due to 

elapsed time since pre-treatment measurements were expected. Precipitation amounts increased from 48.4 

inches in 2012 to 66.2 inches in 2013, which may have influenced annual height growth rates.    

Sprout Height to Sprout Number Correlations 

 Sprout height to sprout number correlations across all three ages were negative, indicating that as 

dominant sprout height increases, sprout number tends to decrease. As seedlings aged, the correlation 

increased slightly from one-to two-year-old seedlings measured one year after treatments, but the 

correlation became weaker in three-year-old seedlings. The decline in the three-year-old seedlings may be 

due to some of those seedlings not producing sprouts during the same growing season they were burned 

or the exclusion of the late growing/early dormant season burn treatment. Other studies with shortleaf 

pine sprouts have shown that sprouting does typically initiate during the growing season a disturbance 

was applied if available moisture is adequate (Little and Somes 1956). Three-year-old seedlings in 

Missouri were burned during April in a study by Phares and Crosby (1962) where they examined 

mortality, number of basal sprouts, and height of the tallest sprout. Their seedlings were similar on 

average (42 inches) with the seedlings in this study at the same age (42.9 inch average), but contrary to 
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this study, dominant sprout height did not appear to be affected by the number of sprouts. Their findings 

also may partially explain the weaker correlation found with the three-year-old seedlings in this study. 

Sprout Height and Number to KBDI Correlations 

 Sprout height and number post-treatment likely showed weak or moderate relationships (negative 

or positive) with the KBDI values on burn days because fuel types and amounts were controlled 

throughout the experiment. Fuels were primarily placed on exposed mineral soil with virtually no natural 

duff or vegetation layer present because of the herbicide and clip treatments applied to burn experimental 

units prior to treatment. The KBDI value uses climatic variables such as maximum temperature and daily 

precipitation amounts to account for the drought level in the duff or predominantly upper organic layer(s) 

of the soil (Keetch and Byram 1968). The drying of fuels for this study, as well as the utilization of 

similar fuel amounts, likely mitigated the effects of natural drought or moisture surpluses during the 

duration of this study. The effects of the KBDI on the burns in this study would likely be dissimilar to 

studies conducted with natural, unmodified duff and upper soil layers. 

Management Implications  

 Shortleaf pine can be regenerated naturally or artificially using a number of silvicultural systems. 

Even-aged systems such as the clearcut, shelterwood, and seed tree regeneration methods have long been 

used because of shortleaf pine’s shade intolerance. Natural disturbances, such as wildfires and insect 

damage that often emulate these regeneration methods are often how shortleaf pine stands originate and 

develop (Guldin 1986, Lilly 2011). Regeneration methods in the uneven-aged system have also proven to 

be viable, although small reductions in growth rate and total merchantable cubic volume will occur based 

on residual overstory density levels. The ability of shortleaf pine to respond favorably following release 

has made single tree and group selection regeneration methods practical alternatives in the species’ 

western range where they have been tested (Baker and others 1996, Guldin and others 2004, Kabrick and 

others 2011, Williston 1978).  With any natural regeneration method intended to favor shortleaf pine, 
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establishment of advanced regeneration and control of the hardwood component once regeneration is 

present are necessary. Prescribed burning is the least intensive and most economical method to achieve 

either of these objectives over mechanical or herbicide treatments (Yocom and Lawson 1977). In 

combination with one of the regeneration methods above, a dormant season prescribed burn to reduce fuel 

volumes prior to a hot, growing season burn typically results in seedbed conditions suitable for natural 

regeneration for up to four years following the growing season burn (Cain 1987, Stambaugh and others 

2007).   

 When adequate shortleaf pine regeneration is obtained either naturally or artificially, promoting it 

over competing hardwood species becomes necessary if shortleaf pine dominance is desired. Artificially 

regenerated shortleaf pine, based on results from this study, will suffer complete topkill from burns 

applied during its first year with greater mortality after early growing season and mid-growing season 

burns. Two-year-old seedlings may reach sizes large enough by the end of the growing season to survive 

low intensity burns.  This study has shown that survival increases each year with burning regardless of 

timing except with mid-growing season burns. Sprout numbers increase with increasing age and height as 

well, which bodes well for the success of regeneration establishment even if a burn does manage to topkill 

larger-sized seedlings. 

 Artificial regeneration of shortleaf pine will likely be necessary on many areas of the Cumberland 

Plateau in Tennessee and Kentucky due to a lack of consistent seed sources. Forests with varying amounts 

of shortleaf pine mixed with hardwoods were more prevalent prior to fire exclusion initiated in the early 

1950s and recent southern pine beetle outbreaks in this region (Coffey 2012, Coffey 2013).  On poorer 

sites of the Cumberland Plateau, without a shortleaf pine seed source, underplanting shortleaf pine in 

shelterwood areas or areas with at least fifty percent overstory light available among residual overstory 

trees could be a viable method to initiate pine-hardwood mixtures (Baker and others 1996). If undesirable 

species begin to overtake the shortleaf pine component, intermediate treatments such as periodic 

prescribed burning may be used to take advantage of the sprouting ability shortleaf pine to favor it over 
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other species. Burn conditions in a more variable shelterwood situation with logging slash, understory 

vegetation, etc. would be different in regard to fuel type, moisture content, and amount than the controlled 

conditions in this study. Minimum seedling size thresholds may differ based on fuels, weather conditions, 

and season of burning. Planting widely spaced shortleaf pine seedlings in clearcut areas (300 per acre or 

less) with adequate site preparation (burning) would also likely be a viable even-aged regeneration option 

in this region to form pine-hardwood mixtures. This procedure has been effective for establishing loblolly 

pine-hardwood mixtures on moderately productive sites in Tennessee and South Carolina (Mullins and 

others 1998, Waldrop 1997).      

 More options exist for regeneration of shortleaf pine when seed trees exist on the site. Even-aged 

regeneration methods, such as the shelterwood, have been successful in western areas of the shortleaf pine 

range to initiate pure or mixed shortleaf pine or mixed pine-hardwood stands when  shortleaf pine was 

already a major component of the overstory and a natural seed source was present (Shelton and Baker 

1992). Shortleaf pine seedlings could be planted in areas that received a first cut for a shelterwood or seed 

tree harvest to compensate for a poor seed fall year. A burn prior to planting to scarify the seedbed and 

reduce any unwanted competition allows natural regeneration from seed to accumulate with the planted 

seedlings in subsequent years. Once both natural and planted seedlings reach adequate size to survive 

burning, the final shelterwood overstory cut is made and advanced seedling reproduction is released 

(Guldin 2007).   

 Natural regeneration of shortleaf pine can be achieved through a variety of site preparation 

methods (e.g. burning, foliar herbicide, hack-n-squirt, mowing, and disking or economical combinations 

thereof) to adequately stock canopy gaps and areas adjacent to mixed hardwood-loblolly-shortleaf pine 

forests. In even-aged stands, natural regeneration of shortleaf pine is considered successful when at least 

300 to 415 free-to-grow seedlings per acre are present after the third year following site preparation 

treatment(s) (Cain 1987, Cain 1991, Phillips and Abercrombie Jr. 1987).  When using artificial 

regeneration, a commercial clearcut followed by a summer burn and planting of approximately 415 
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shortleaf pine seedlings per acre can create productive mixed-shortleaf pine stands (Phillips and 

Abercrombie Jr. 1987). Whether using artificial or natural regeneration methods, if species composition is 

undesirable after site preparation and seedling establishment, burning is typically the most economical 

way to increase shortleaf pine prevalence and decrease densities of less fire tolerant species (Wade and 

others 2000, Yocom and Lawson 1977). This study indicates that shortleaf pine growing on upland areas 

of east Tennessee with average site indices in the 60 to 75 feet range at 50 years, can survive late 

growing/early dormant season burns at an acceptable level (40 to 50 percent) once they reach large 

enough sizes at approximately three years of age. The size of three-year-old seedlings in this study falls 

within the two to six year old range where seedlings reach fire resistant size reported by Walker and 

Wiant (1966). They report that seedlings over five feet tall and greater than 0.5 inches in basal diameter 

can survive crown scorch induced mortality if less than 70 percent of a sapling’s crown is singed. 

Reaching these sizes at three-years-old is somewhat earlier than the age reported for areas in the western 

areas of the species’ range where shortleaf pine seedlings can outcompete hardwood species on a site in 

five to seven years if they are of equal sizes and have similar growth rates (Cain 1991). Greater 

precipitation in the Eastern range of shortleaf pine may shorten or alter these response times.  

Research in mixed pine-oak forests of the Missouri and Arkansas Ozarks indicates that if one-

year-old shortleaf pine seedlings survive a first burn, they suffer the least damage (percent mortality and 

percent shoot dieback) of any regenerating species after a series of three or more periodic burns 

(Stambaugh and others 2007). Another study in the Missouri Ozarks showed that if large enough shortleaf 

pine advanced regeneration is present on a site, it will maintain its competitive position with competing 

species with repeated dormant season prescribed burns (Fan and others 2012). Given that sprouts and 

germinants are the same age, the growth rate of sprout origin shortleaf pine is also greater than seed origin 

seedlings until at least the fifth year when growth rates may become more similar (Mattoon 1915). If 

shortleaf pine seedlings of multiple ages are present on a site, repeated burning to promote sprouting may 

improve shortleaf pine competitive status as well. The sprouting ability of shortleaf pine has the potential 
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to be used silviculturally by managers to establish and perpetuate the species on upland, average 

productivity areas (site index of 60 to 75 feet at 50 years for shortleaf pine) of east Tennessee.   

 Adequate site preparation outlined by Cain (1987) prior to outplanting of 1-0 stock seedlings may 

improve shortleaf pine survival and size advantages over other species increasing its likelihood of 

reaching the overstory at canopy closure. Once shortleaf pine seedlings are established, a waiting period 

of two to three years follows for seedlings to achieve adequate sizes to withstand an initial burn. Then 

repeated burns can be conducted every three to four years to retard competition and allow shortleaf pine 

to develop. This process should favor shortleaf pine on landscapes in east Tennessee where it once was 

prevalent. 

Conclusions 

 Clipping produced greater survival, number of sprouts, and taller sprouts in one- and two-year-

old shortleaf pine seedlings than burning. The opposite occurred with three-year-old seedlings;  burning 

resulted in greater survival and sprout heights than clipped seedlings. Seedlings achieved large enough 

root collar diameters, stem heights, and bark thickness to survive the burns conducted during the third 

year of the study (Objective 1). 

 Shortleaf pine sprout survival, sprout production, and height growth was not affected by times of 

seasonal burning. Data analyses suggest no distinction in sprouting response for the three seasonal burns 

across years. Therefore, timing of burning (within seasons and across years) was not a major factor in 

sprouting of shortleaf pine seedlings (Objective 2). 

  Burn duration and temperature covariates affected the shortleaf pine sprouting response when 

there were major differences in temperature or duration among the experimental units in a treatment. 

Survival was not affected. Burning during the mid-growing season is hypothesized to damage seedlings 

more than early or late growing season burns, because of hotter burn and air temperatures as well as 

shorter burn durations inflict more damage on actively growing plant tissue. However, the variable 
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weather conditions (particularly cooler than normal ambient temperatures) of the mid-growing season 

burn can result in more sprout production as exhibited in the two-year-old seedlings in this study 

(Objective 3). 

 Pre-and post-treatment survival rates for two- and three-year-old shortleaf pine seedlings did not 

show a definitive trend for any burning or clipping treatments or seedling age (Objective 4). 

Shortleaf pine seedling height of two- and three-year-old seedlings prior to burning or clipping 

had a weak, insignificant correlation to seedling sprout production post-treatment, indicating that size 

prior to burning or clipping does not affect sprout production in surviving seedlings after these 

disturbances (Objective 5). 

 A significant, but weak negative (e.g. three-year-old seedlings) to moderate negative relationship 

(e.g. two-year-old seedlings) was observed for post treatment sprout height to sprout number correlations 

for all seedling ages. This relationship suggests that taller dominant seedlings have fewer total sprouts 

than shorter seedlings of any age that has been burned or clipped (Objective 6). 

 The KBDI value had weak to moderate relationships with sprout height growth and sprout 

production for one, two, and three-year-old seedlings. The KBDI would likely be a much more telling 

variable of shortleaf pine sprouting responses for seedlings burned with natural fuel conditions present 

(Objective 7).  

      



62 

 

References 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



63 

 

Abrams, M.D. 1998. The red maple paradox. Bioscience. 48(5): 355-364. 

Alig, R.J., J.D. Kline, M. Lichenstein. 2004. Urbanization on the US landscape: looking ahead in the 21
st
 

century. Landscape and Urban Planning. 69: 219-234. 

Atkinson, K.L. 2012. The shortleaf pine intiative. In: Symposium on Shortleaf Pine Research: Past, 

Present, and Future.  2010 December 10. Stillwater, OK: Department of Natural Resource Ecology and 

Management (NREM), Oklahoma State University. pp 16-17.  

Baker, J.B. 1992. Natural regeneration of shortleaf pine. In: Brissette, J.C., Barnett, J.P, eds. Proceedings 

of the Shortleaf Pine Regeneration Workshop; 1991 October 29-31; Little Rock, AR. Gen. Tech. Rep. 

SO-90. New Orleans, LA: U.S. Department of Agriculture, Forest Service, Southern Forest Experiment 

Station: 102-112. 

Baker, J.B., M.D. Cain, J.M. Guldin, P.A. Murphy, and M.G. Shelton. 1996. Uneven-aged silviculture for 

the loblolly and shortleaf pine forest cover types. Gen. Tech. Rep. SRS-118. Asheville, NC: U.S. 

Department of Agriculture, Forest Service. Southern Research Station. 65 p. 

Barnes, B.V., D.R. Zak, S.R. Denton, and S.H. Spurr. 1998. Forest Ecology: 4
th
 Edition. John Wiley and 

Sons, Inc., New York. 774 p. 

Bond, W.J., J.J. Midgley. 2001. Ecology of sprouting in woody plants: The persistence niche. Trends in 

Ecology and Evolution. 16(1): 45-51.  

Boyce, S.G., H.A. Knight. 1979. Prospective ingrowth of southern pine beyond 1980. Res. Pap. SE-200. 

Asheville, NC: Department of Agriculture, Forest Service. Southeast Forest Experiment Station. p. 52.  

 Brissette, J.C., J.L Chambers. 1992.  Root zone environment, root growth, and water relations during 

seedling establishment. In: Brissette, J.C., Barnett, J.P, eds. Proceedings of the Shortleaf Pine 

Regeneration Workshop; 1991 October 29-31; Little Rock, AR. Gen. Tech. Rep. SO-90. New Orleans, 

LA: U.S. Department of Agriculture, Forest Service, Southern Forest Experiment Station: 67-76. 

Brose, P., T. Schuler, D. Van Lear, J. Berst. 2001. Bringing fire back: The changing regimes of the 

Appalachian mixed-oak forests. Journal of Forestry. 99(11): 30-35.  

Bukenhofer, G.A., L.D. Hedrick, 2013. Shortleaf pine/bluestem renewal. U.S. Department Agriculture, 

Forest Service, Ouachita National Forest Arkansas. 

<http://www.fs.usda.gov/detailfull/ouachita/home/?cid=fsm9_039689&width=full>. [Date accessed: 

March 18, 2013].  

Bukenhofer, G.A., J.C. Neal, and W.G. Montague. 1994. Renewal and recovery: Shortleaf pine/bluestem 

grass ecosystem and red-cockaded woodpeckers. In: Trauth, S. ed. Proceedings of the Arkansas Academy 

of Science 1994 April 8-9; Jonesboro, AR. Monticello, AR: Arkansas Academy of Science, Vol. 48: 243-

245. 

Cain, M.D. 1987. Site preparation techniques for establishing natural pine regeneration on small forest 

properties. Southern Journal of Applied Forestry 11: 41-45. 

Cain M.D. 1991. Hardwoods on pine sites: Competition or antagonistic symbiosis? Forest Ecology and 

Management. 44: 147-160. 



64 

 

Cain, M.D., M.G. Shelton. 2000. Survival and growth of Pinu echinata and Quercus seedlings in 

response to simulated summer and winter prescribed burns. Canadian Journal of Forest Research. 30: 

1830-1836. 

Campbell, T.E. 1985. Sprouting of slash, loblolly, and shortleaf pines following a simulated 

precommercial thinning. Res. Not. SO-320. New Orleans, LA: U.S. Department of Agriculture, Forest 

Service. Southern Forest Experiment Station. p 3.  

Chapman, H.H. 1944. Fire and pines. American Forests. 50: 62-64 and 91-93. 

Chavasse, C.G.R. (Ed.). 1977. New Zealand Institute of Foresters (Inc.) Forestry Handbook. New Zealand 

Institute of Foresters (Inc.). Tokoroa, N.Z. 224 p.  

Coffey, C. 2012. The history of shortleaf pine on the Cumberland Plateau. In: Kush, J.; Barlow, R.J.; 

Gilbert, J.C, eds. Proceedings of the shortleaf pine conference: East meets west, bridging the gap with 

research and education across the range. 2011 September 20-22; Huntsville, AL. Auburn, AL: Alabama 

Agricultural Experiment Station Special Report No. 11: 2-6. 

Coffey, C. 2013. Catoosa WMA. In: Shortleaf pine initiative: Stakeholder workshop-central region. 2013 

June 27-28; Knoxville, TN. University of Tennessee, Knoxville, TN. 8 p. 

Conner, R.N., C.E. Shackelford, R.R. Schaefer, D. Saenz, D.C. Rudolf. 2002. Avian community response 

to southern pine ecosystem restoration for red-cockaded woodpeckers. Wilson Bulletin. 114(3): 324-332. 

Cost, N.D., J.O. Howard, B. Mead, W.H. McWilliam, B.W. Smith, D.D. Van Hooser, E.H. Wharton. 

1990. The forest biomass resource of the United States. Gen. Tech. Rep. WO-57. Washington, DC: U.S. 

Department of Agriculture, Forest Service. p. 21. 

Del Tredici, P. 2001. Sprouting in temperate trees: a morphological and ecological review. The Botanical 

Review. 67 (2): 121-140.  

Dennington, R.W. 1992. Making natural regeneration work with shortleaf pine. In: Brissette, J.C.;Barnett, 

J.P, eds. Proceedings of the Shortleaf Pine Regeneration Workshop; 1991 October 29-31; Little Rock, 

AR. Gen. Tech. Rep. SO-90. New Orleans, LA: U.S. Department of Agriculture, Forest Service, Southern 

Forest Experiment Station: 167-171. 

Dey, D.C., G. Hartman. 2005. Returning fire to Ozark Highland forest ecosystems: Effects on advance 

regeneration. Forest Ecology and Management. 217:37-53. 

Elliot, K.J., J.M. Vose. 2005. Effects of understory prescribed burning on shortleaf pine (Pinus echinata 

Mill.)/mixed-hardwood forests. Journal of the Torrey Botanical Society. 132(2): 236-251. 

Elliot, K.J., J.W. Vose, J.D. Knoepp, B.D. Clinton. 2012. Restoration of shortleaf pine (Pinus echinata)-

hardwood ecosystems severely impacted by the southern pine beetle (Dendroctonus frontalis). Forest 

Ecology and Management. 274: 181-200. 

Engbring, B.L., E. Heitzman, M.A. Spetich. 2008. Ridgetop fire history of an oak-pine forest in the Ozark 

Mountains of Arkansas. Southeastern Naturalist. 7(1): 49-60. 



65 

 

Eyre, F.H. ed. 1980. Forest Cover Types of the United States and Canada. Washington, DC: Society of 

American Foresters. pp. 148. 

Fan, Z., Z. Ma, D.C. Dey, S.D. Roberts. 2012. Response of advance reproduction of oaks and associated 

species to prescribed fires in upland oak-hickory forests, Missouri. Forest Ecology and Management. 266: 

160-169. 

Ferguson, E.R. 1957. Stem-kill and sprouting following a prescribed fire in Texas. Journal of Forestry. 

55: 426-429. 

Fesenmyer, K.A., N.L. Christensen Jr. 2010. Reconstructing holocene fire history in a southern 

Appalachian forest using soil charcoal. Ecology. 91(3): 662-670. 

Fire Family Plus, Version 4.1, Build 1520. 2013. Support Contact: Bradshaw, L.S. Fort Collins, CO. U.S. 

Department of Agriculture, Forest Service, Rocky Mountain Research Station. 

Fowells, H.A., ed. 1965. Silvics of forest trees of the United States. Agricultural Handbook No. 271. 

Washington, D.C: U.S. Department of Agriculture, Forest Service p. 451-457. 

Grossmann, M.N., J.E. Kuser. 1988. Rooting primary-leaved sprouts of pitch and shortleaf pine. Northern 

Journal of Applied Forestry. 5:158-159. 

 

Grossnickle, S.C. 2005. Importance of root growth in overcoming planting stress. New Forests. 30: 273-

294. 

 

Guldin, J.M. 1986. Ecology of shortleaf pine. In: Murphy, P.A. ed. Symposium on the shortleaf pine 

ecosystem; 1986 March 31-April 2; Little Rock, AR. Arkansas Cooperative Extension Service, 

Monticello, AR: 25-40. 

Guldin, J.M. 2007. Restoration and management of shortleaf pine in pure and mixed stands—Science, 

empirical observation, and the wishful application of generalities. In: Kabrick, J.M., D.C. Dey, D. Gwaze 

eds. Shortleaf Pine Restoration and Ecology in the Ozarks: Proceedings of a Symposium.  2006 

November 7-9; Springfield, MO. Gen. Tech. Rep. NRS-P-15. Newtown Square, PA: Department of 

Agriculture, Forest Service, Northern Research Station.  Missouri Department of Conservation.  47-58. 

Guldin, J.M., J.B. Baker, M.G. Shelton. 2004. Regeneration development across a range of reproduction 

cutting methods in shortleaf pine and pine-hardwood stands in the Interior Highlands. In: J.M. Guldin 

tech. comp. Ouachita and Ozark Mountains symposium: ecosystem management research. 1999 October 

26-28: Hot Springs, AR. Gen. Tech. Rep. SRS-74. Asheville, NC: U.S. Department of Agriculture, Forest 

Service, Southern Research Station. 15-20. 

Guldin, J.M. J. Strom, W. Montague, L.D. Hedrick. 2004. Shortleaf pine-bluestem habitat restoration in 

the interior highlands: Implications for stand growth and regeneration. In: Shepperd, W.D., L.G. Eskew. 

Compilers. Silviculture in special places: Proceedings of the national silviculture workshop. 2003 

September 8-11: Granby, CO. Proceedings RMRS-P-34. Fort Collins, CO: U.S. Department of 

Agriculture, Forest Service, Rocky Mountain Research Station. 182-190. 



66 

 

Guyette, R.P., R.M. Muzika, S.L. Voelker. 2007. The historical ecology of fire, climate, and the decline 

of shortleaf pine in the Missouri Ozarks. In: Kabrick, J.M., D.C. Dey, D. Gwaze eds. Shortleaf Pine 

Restoration and Ecology in the Ozarks: Proceedings of a Symposium.  2006 November 7-November 9; 

Springfield, MO. Gen. Tech. Rep. NRS-P-15. Newtown Square, PA. Department of Agriculture, Forest 

Service, Northern Research Station.  Missouri Department of Conservation. 8-18.     

Guyette, R.P., M.A. Spetich, M.C. Stambaugh. 2006. Historic fire regime dynamics and forcing factors in 

the Boston Mountains, Arkansas. USA. Forest Ecology and Management. 234: 293-304. 

Haney, G.P. 1962. Seedbed scarification aids regeneration of shortleaf pine. Journal of Forestry. 60: 400-

402. 

Hardin, J.W., D.J. Leopold, F.M. White. 2001. Shortleaf pine. Harlow and Harrar’s Textbook of 

Dendrology. McGraw-Hill. New York. p. 146-148. 

Hare, R.C. 1961. Heat effects on living plants. Occasional Paper 183. New Orleans, LA: U.S. Department 

of Agriculture, Forest Service. Southern Forest Experiment Station. p. 34.    

Hicks, R.R. Jr. 1973. Evaluation of morphological characters for use in identifying loblolly pine, shortleaf 

pine, and loblolly x shortleaf hybrids. Castanea. 38:182-189. 

Kabrick, J.M., D.C. Dey, S.R. Shifley, J.L. Villwock. 2011. Early survival and growth of planted 

shortleaf pine seedlings as a function of initial size and overstory stocking. In: Fei, Songlin, J.M. Lhotka, 

J.W. Springer, K.W. Gottschalk, G.W. Miller eds. Proceedings of the 17
th
 Central Hardwood Forest 

Conference. 2010, April 5-7. Lexington, KY. Gen. Tech. Rep. NRS-P-78. Newtown Square, PA: U.S. 

Department of Agriculture, Forest Service, Northern Research Station. 277-287.  

Kayll, A.J. 1968. Heat tolerance of tree seedlings. In: Komarek, E.V. ed. Proceedings of the Annual Tall 

Timbers Fire Ecology Conference. 1968 March 14-15. Tallahassee, FL.Tallahassee, FL: Tall Timbers 

Research Station, Number 8: 89-105. 

Keetch, J.J., G.M. Byram. 1968. A drought index for forest fire control. Res. Pap. SE-38. Asheville, NC: 

U.S. Department of Agriculture, Forest Service, Southeastern Forest Experiment Station. 35 p. 

Kozlowski, T.T. 1971. Growth and Development of Trees: Volume I. Academic Press, New York. p. 443.  

Kozlowski, T.T., Kramer, P.J., Pallardy, S.G. 1991. The Physiological Ecology of Woody Plants. 

Academic Press, New York. p. 657. 

Lawson, E.R. 1986. Natural regeneration of shortleaf pine. In: Murphy, P.A. ed. Symposium on the 

Shortleaf Pine Ecosystem.  Monticello, AR: Arkansas Cooperative Extension Service, 53-63. 

Lawson, E.R. 1990. Pinus echinata Mill. shortleaf pine. In: Burns, R.M.; Honkala, B.H. (tech. cords.). 

Silvics of North America: Vol. 1. Conifers. Agriculture Handbook 654, Washington, DC: U.S. 

Department of Agriculture, Forest Service: 316-326. 

Lilly, C.J. 2011. Shortleaf pine: The basal crook adaptations and the traits it infers to its hybrid with 

loblolly pine. Master’s Thesis. Oklahoma State University, Stillwater, OK. 174 p.  



67 

 

Lilly, C.J., R.E. Will, C.G. Tauer, J.M. Guldin, M.A. Spetich. 2010. Factors influencing shortleaf pine 

sprouting after fire. In: Symposium on Shortleaf Pine Research: Past, Present, and Future. 2010 

December 10. Stillwater, OK: Department of Natural Resource Ecology and Management (NREM), 

Oklahoma State University, 8-9. 

Lilly, C.J., R.E. Will, C.G. Tauer. 2012a. Physiological and morphological attributes of shortleaf x 

loblolly pine F1 hybrid seedlings: Is there an advantage to being a hybrid? Canadian Journal of Forest 

Research. 42: 238-246.  

Lilly, C.J.; Will, R.E.; Tauer, C.G.; Guldin, J.M.; Spetich, M.A.; 2012b. Factors affecting the sprouting of 

shortleaf pine rootstock following prescribed fire. Forest Ecology and Management. 265: 13-19. 

Little, S., F. Mergen. 1966. External and internal changes associated with basal-crook formation in pitch 

and shortleaf pines. Forest Science. 12(3): 268-275. 

Little, S., and H.A. Somes. 1956. Buds enable pitch and shortleaf pines to recover from injury. Station 

Paper NE-81. Upper Darby, PA: U.S. Department of Agriculture, Forest Service, Northeastern Forest 

Experiment Station. p. 14. 

Master, R.E. 2007. The importance of shortleaf pine for wildlife and diversity in mixed oak-pine forests 

and pine-grassland woodlands. In: Kabrick, J.M., D.C. Dey, D. Gwaze eds. Shortleaf Pine Restoration 

and Ecology in the Ozarks: Proceedings of a Symposium.  2006 November 7-November 9; Springfield, 

MO. Gen. Tech. Rep. NRS-P-15. Newtown Square, PA: Department of Agriculture, Forest Service, 

Northern Research Station.  pp 35-43.     

Mattoon, W.R. 1915. Life history of shortleaf pine. Bulletin 244, Washington, DC: U.S. Department of 

Agriculture, Forest Service. p. 46.  

McGee, C.E. 1978. Size and age of tree affect white oak stump sprouting. Gen. Tech. Rep. SO-239. New 

Orleans, LA: U.S. Department of Agriculture. Forest Service, Southern Forest Experiment Station. p. 2. 

McWilliams W.H., R.M. Sheffield, M.H. Hansen, T.W. Birch. 1986. The shortleaf resource. In: Murphy, 

P.A. ed. Symposium on the shortleaf pine ecosystem; 1986 March 31-April 2; Little Rock, AR. 

Monticello, AR: Arkansas Cooperative Extension Service. 9-24. 

Menes, P.A., G.H. Mohammed. 1995. Identifying the root collar on forest tree seedlings. The Forestry 

Chronicle. 71(3): 304-310.  

Mexal, J.G. 1992. Artificial regeneration of shortleaf pine: put it all together for success. In: Brissette, 

J.C., Barnett, J.P, eds. Proceedings of the Shortleaf Pine Regeneration Workshop; 1991 October 29-31; 

Little Rock, AR. Gen. Tech. Rep. SO-90. New Orleans, LA: U.S. Department of Agriculture, Forest 

Service, Southern Forest Experiment Station: 172-186. 

Moser, K.W., M. Hansen, W.H. McWilliams, R.M. Sheffield. 2007. The importance of shortleaf pine for 

wildlife diversity in mixed oak-pine forests and in pine-grassland woodlands. In: Kabrick, J.M., D.C. 

Dey, D. Gwaze eds. Shortleaf Pine Restoration and Ecology in the Ozarks: Proceedings of a Symposium.  

2006 November 7-9; Springfield, MO. Gen. Tech. Rep. NRS-P-15. Newtown Square, PA: Department of 

Agriculture, Forest Service, Northern Research Station.  Missouri Department of Conservation.  19-27.   



68 

 

Mullins, J.A., E.R. Buckner, T.A. Waldrop, R.M. Evans. 1998. Site preparation techniques for 

establishing mixed pine-hardwood stands in the southern Appalachians. In: T.A. Waldrop ed. Proceedings 

of the Ninth Biennial Southern Silvicultural Research Conference. 1997 February 25-27: Clemson, SC. 

Gen. Tech. Rep. Gen. Tech. Rep. SRS-20. Asheville, NC: Department of Agriculture, Forest Service, 

Southern Research Station. 22-25. 

National Cooperative Soil Survey. 2007. Lonewood Series. 

https://soilseries.sc.egov.usda.gov/OSD_Docs/L/LONEWOOD.html. [Date accessed: January 27, 2014]. 

Nyland, R.D. 2007. Silviculture Concepts and Applications, Second Edition. Waveland Press.  Long 

Grove, Illinois. 682 p. 

Oliver, C.D. and B.C. Larson. 1996. Forest Stand Dynamics: Update Edition. John Wiley & Sons, Inc., 

New York. 520 p. 

Oswalt, C.M. 2012. Spatial and temporal trends of the shortleaf pine resource in the eastern United States. 

In: Kush, J.; Barlow, R.J.; Gilbert, J.C, eds. Proceedings of the shortleaf pine conference: east meets west, 

bridging the gap with research and education across the range. 2011 September 20-22; Huntsville, AL. 

Auburn, AL: Alabama Agricultural Experiment Station Special Report No. 11: 33-37. 

Pallardy, S.G. 2008. Physiology of Woody Plants: 3
rd

 Edition. Academic Press, Burlington, MA. 454 p. 

Phares, R.E., J.S. Crosby. 1962. Basal sprouting of fire injured shortleaf pine trees. Journal of Forestry. 

60(3): 204-205. 

Phillips, D.R., J.A. Abercrombie, Jr. 1987. Pine-hardwood mixtures—A new concept in regeneration. 

Southern Journal of Applied Forestry. 11(4): 192-197. 

Pope, P.E. 1993. Some soil fungi are beneficial to tree seedling growth. Woodland Management 

Cooperative Extension Service. FNR-104. West Lafayette, IN: Purdue University, 

http://www.extension.purdue.edu/extmedia/FNR/FNR-104.html. [Date Accessed: March 6, 2014]. 

Rietveld, W.J. 1989. Transplanting stress in bareroot conifer seedlings: Its development and progression 

to establishment. Northern Journal of Applied Forestry. 6: 99-107. 

Ruehle, J.L., D.H. Marx, J.P. Barnett, W.H. Pawuk. 1981. Survival and growth of container-grown and 

bare-root shortleaf pine seedlings with Pisolithus and Thelephora ectomycorrhizae. Southern Journal of 

Applied Forestry. 5(1): 20-24. 

SAS Institute. 2012. SAS version 9.3. SAS Institute, Cary, North Carolina. 

Shelton, M.G. 1995. Effects of seed production, seedbed condition, and overstory basal area on the 

establishment of shortleaf pine seedlings in the Ouachita mountains. Res. Pap. SO-293. New Orleans, LA: 

Department of Agriculture, Forest Service, Southern Forest Experiment Station. p. 13. 

Shelton, M.G., J.B. Baker. 1992. Establishing even-aged pine and pine-hardwood mixtures in the 

Ouachita Mountains using the shelterwood method. In: Brissette, J.C., Barnett, J.P, eds. Proceedings of 

the Shortleaf Pine Regeneration Workshop; 1991 October 29-31; Little Rock, AR. Gen. Tech. Rep. SO-



69 

 

90. New Orleans, LA: U.S. Department of Agriculture, Forest Service, Southern Forest Experiment 

Station: 225-231. 

Shelton, M.G., M.D. Cain. 2002. The sprouting potential of shortleaf pines: implications for seedling 

recovery from top damage. In: Proceedings of the 2002 Arkansas Forest Resources Center Arkansas 

Forestry Symposium; 2002 May 23; Little Rock, AR: 55-60. 

Shiroya, T. G.R. Lister, V. Slankis, G. Krotkov, and C.D. Nelson. 1962. Translocation of the products of 

photosynthesis to roots of pine seedlings. Canadian Journal of Botany. 40: 1125-1135. 

Shiroya, T., G.R. Lister, V. Slankis, G. Krotkov, C.D. Nelson. 1966. Seasonal changes in respiration, 

photosynthesis, and translocation of the 
14

C labeled products of photosynthesis in young Pinus strobus L. 

plants. Annals of Botany. 30(1): 81-91. 

Shultz, R.P. 1997. Loblolly pine: The ecology and culture of loblolly pine (Pinus taeda L.). Agricultural 

Handbook 713. Washington, DC: U.S. Department of Agriculture, Forest Service. p. 514. 

Smalley, G.W. 1982. Classification and evaluation of forest sites on the Mid-Cumberland Plateau. Gen. 

Tech. Rep. SO-38. New Orleans, LA: U.S. Department of Agriculture, Forest Service, Southern Forest 

Experiment Station. p. 58. 

Smith, D.M., B.C. Larson, M.J. Kelty, P. Mark, S. Ashton. 1997. The Practice of Silviculture: Applied 

Forest Ecology. John Wiley & Sons, Inc. 537 p. 

Smith, B.W., J.S. Vissage, D.R. Darr, R.M. Sheffield. 2001. Forest resources of the United States, 1997. 

Gen. Tech. Rep. NC-219. St. Paul, MN: U.S. Department of Agriculture, Forest Service, North Central 

Experiment Station. p. 190. 

Stambaugh, M.C., R.P. Guyette, and D.C. Dey. 2007. What fire frequency is appropriate for shortleaf 

pine regeneration and survival? In: Kabrick, J.M., D.C. Dey, D. Gwaze eds. Shortleaf Pine Restoration 

and Ecology in the Ozarks: Proceedings of a Symposium.  2006 November 7-November 9; Springfield, 

MO. Gen. Tech. Rep. NRS-P-15. Newtown Square, PA: Department of Agriculture, Forest Service, 

Northern Research Station. 121-128.     

Stewart, J.F., Y. Liu, C.G. Tauer, and C.D. Nelson. 2010. Microsatellite versus AFLP analyses of pre-

management introgression levels in loblolly pine (Pinus taeda L.) and shortleaf pine (Pinus echinata 

Mill.). Tree Genetics & Genomes. 6:853-862. 

Stewart, J.F., C.G. Tauer, J.M. Guldin, C.D. Nelson. 2013. Hybridization in naturally regenerated 

shortleaf pine as affected by the distance to nearby artificially regenerated stands of loblolly pine. 

Southern Journal of Applied Forestry. 37(2): 102-107. 

Stone, Jr. E.L. and Stone, M.H. 1954. Root collar sprouts in pine. Journal of Forestry. 52(7): 487-491. 

Sutton, R.F. and R.W. Tinus. 1983. Root and root system terminology. Forest Science Monographs. 24 

145 p.  



70 

 

Thornthwaite, C.W. 1948. An approach toward a rational classification of climate. American 

Geographical Society. 38(1): 55-94. 

Todd, R.W. 1980. Tennessee fencing and animal restraint laws. Research Report nn 80-81. Knoxville, 

TN: University of Tennessee Agricultural Experiment Station. p. 5. 

Tomczak, D.J. 1994. The mixed stand alternative. Forest  Farmer. 53(2): 15-17.  

United States Department of Agriculture, Forest Service. 2007. The Encyclopedia of Wood. Skyhorse 

Publishing. Washington, DC.  p. 496.  

United States Department of Agriculture, Natural Resources Conservation Service. 2012. Web Soil 

Survey.  http://websoilsurvey.nrcs.usda.gov/app/WebSoilSurvey.aspx. [Date accessed:  March 21, 2012].  

Wade, D.D., B.L. Brock, P.H. Brose, J.B. Grace, G.A. Hoch, W.A. Patterson III. 2000. Fire in eastern 

ecosystems. In: Brown, J.K., J.K. Smith, eds. Wildland Fire in Ecosystems: Effects of Fire on Flora. Gen. 

Tech. Rep. RMRS-42, vol. 2, Ogden, UT: U.S. Department of Agriculture, Forest Service, Rocky 

Mountain research Station. pp. 72. 

Waldrop, T.A. 1997. Four site preparation techniques for regenerating pine-hardwood mixtures in the 

Piedmont. Southern Journal of Applied Forestry. 21(3): 116-122. 

Walker, L.C., H.V. Wiant. 1966. Silviculture of shortleaf pine. Bulletin 9. Nacogdoches, Texas: Stephen 

F. Austin State College School of Forestry. p. 60. 

Will, R.E., C.J. Lilly, J. Stewart, S. Huff, C.G. Tauer. 2013. Recovery from topkill of shortleaf pine x 

loblolly pine hybrids to their parent populations. Trees. 27: 1167-1174. 

Williams, R.A. 1998. Effects of fire on shortleaf and loblolly pine reproduction and its potential use in 

shortleaf/oak/hickory ecosystem restoration. In: Waldrop, T.A. ed. Proceedings of the Ninth Biennial 

Southern Silvicultural Research Conference; 1997 February 25-27; Clemson, SC. Gen. Tech. Rep. SRS-

20. Asheville, NC: U.S. Department of Agriculture, Forest Service, Southern Research Station. 321-325. 

Williston, H.L. 1972. Shortleaf and loblolly pine growth in the mid-south. Journal of Forestry. 70(5): 290-

91. 

Williston, H.L. 1978. Uneven-aged management in the loblolly-shortleaf pine type. Southern Journal of 

Applied Forestry. 2: 78-82. 

Wittwer, R.F., M.G. Shelton. 1992. Seed production in natural shortleaf pine stands. In: Brissette, 

J.C.;Barnett, J.P, eds. Proceedings of the Shortleaf Pine Regeneration Workshop; 1991 October 29-31; 

Little Rock, AR. Gen. Tech. Rep. SO-90. New Orleans, LA: U.S. Department of Agriculture, Forest 

Service, Southern Forest Experiment Station: 113-123. 

Yocom, H.A., E.R. Lawson. 1977. Tree percent mortality from naturally regenerated shortleaf pine. 

Southern Journal of Applied Forestry. 1(2): 10-11. 

Zobel, B.J. 1953. Are there natural loblolly-shortleaf pine hybrids? Journal of Forestry. 51:494-495. 



71 

 

Appendices 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



72 

 

 

 

 

 

 

 

Appendix 1. 

Burn covariates and values used for each analysis of height and sprout production during 2011 for the shortleaf pine seedling sprout study in east 

Tennessee. 

 

 

 

Treatment Date Block 

Mean Burn 

Temperature 

(°F) 

Median Burn 

Temperature 

(°F) 

Maximum 

Burn 

Temperature 

(°F) 

Burn 

Duration 

(Secs.) 

Burn 

Temperature 

Standard 

Deviation (°F) 

Sum of all 

Temperature 

Recordings (°F) 

Keetch-

Byram 

Drought 

Index 

April Burn 4/14/2011 1 258.1 180.7 770 360 193.74 4130.3       25 

April Burn 4/14/2011 2 270.2 177.6 736 360 210.8 4323.9       25 

April Burn 4/14/2011 3 281.6 196.3 512 360 208.7 4505.4       25 

July Burn 7/14/2011 1 325.8 327 595 360 162.9 8146      230 

July Burn 7/14/2011 2 266.6 236 720 360 150.6 6663.9      230 

July Burn 7/14/2011 3 229.2 147.6 833 360 192.4 5730.4      230 

November Burn 11/10/2011 1 388.6 376 762 870 146.7 22928.2       44 

November Burn 11/10/2011 2 347.1 312 849 660 201.2 15620.6       44 

November Burn 11/10/2011 3 301 238 932 660 176.2 13547       44 
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Appendix 1. (Continued) 

Burn covariates and values used for each analysis of height and sprout production during 2012 and 2013 for the shortleaf pine seedling sprout 

study in east Tennessee. 

 

 

 

Treatment Date Block 

Mean Burn 

Temperature 

(°F) 

Median Burn 

Temperature 

(°F) 

Maximum 

Burn 

Temperature 

(°F) 

Burn 

Duration 

(Secs.) 

Burn 

Temperature 

Standard 

Deviation (°F) 

Sum of all 

Temperature 

Recordings (°F) 

Keetch-

Byram 

Drought 

Index 

March Burn 3/20/2012 1 269.9 174 849 300 193.8 5668      57 

March Burn 3/20/2012 2 406.3 394 728 540 152 15034      57 

March Burn 3/20/2012 3 459.4 449 932 420 192.9 13323      57 

June Burn 6/26/2012 1 365.1 329 932 240 214.1 6206.7     381 

June Burn 6/26/2012 2 479.3 435 932 390 190.9 12722.5     381 

June Burn 6/26/2012 3 404.5 346 785 240 191.8 6876     381 

November Burn 11/19/2012 1 191.2 75 932 1050 215.1 13379     432 

November Burn 11/19/2012 2 201.8 178 932 720 131.5 9886     432 

November Burn 11/19/2012 3 160.7 127 581 540 120 5946     432 

March Burn 3/14/2013 1 337.8 293 932 480 227.5 10472       2 

March Burn 3/14/2013 2 184.6 120 566 690 134.6 8677       2 

March Burn 3/14/2013 3 204.6 102.5 802 1020 186.5 12273       2 

July Burn* 7/12/2013 1 93.8 92 122 390 11.09 2533      34 

July Burn 7/12/2013 2 220.1 140 716 300 157.9 4623      34 

July Burn 7/12/2013 3 213 155 653 420 154.9 6178      34 

November Burn 11/11/2013 1 186.9 108 820 660 171.8 8412     278 

November Burn 11/11/2013 2 350.6 324 932 660 146.3 15778     278 

November Burn 11/11/2013 3 125.8 68 681 1020 126.8 8683     278 
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Appendix 2. 
Covariate means and standard deviations for each season and year of the shortleaf pine seedling sprout study in east Tennessee.  

Treatment Period and Year 

Mean Burn 

Temperature 

(°F) 

Median 

Burn 

Temperature 

(°F) 

Maximum 

Burn 

Temperature 

(°F) 

Burn 

Duration 

(Secs.) 

Burn 

Temperature 

Standard 

Deviation 

(°F) 

Sum of all 

Temperature 

Recordings 

(°F) 

2011 April Burns 
Mean 269.9 184.9 672.7 360 204.4 4319.9 

Standard Deviation 11.8 10 140.2 0 9.3 187.6 

2011 July Burns 
Mean 273.9 236.9 716 360 168.6 6846.8 

Standard Deviation 48.7 89.7 119.1 0 21.5 1218.1 

2011 November Burns 
Mean 345.6 308.7 847.7 730 174.7 17365.3 

Standard Deviation 43.8 69.1 85 121.2 27.3 4927.9 

2012 March Burns 
Mean 378.5 339 836.3 420 179.6 11341.7 

Standard Deviation 97.8 145.5 102.6 120 23.9 4987.5 

2012 June Burns 
Mean 416.3 370 883 290 198.9 8601.7 

Standard Deviation 58 56.9 84.9 86.6 13.1 3584.3 

2012 November Burns 
Mean 184.6 126.7 815 770 155.5 9737 

Standard Deviation 21.3 51.5 202.6 258.7 51.9 3718.7 

2013 March Burns 
Mean 242.3 171.8 766.7 730 182.9 10474 

Standard Deviation 83.3 105.3 185.5 272.2 46.6 1798 

2013 July Burns 
Mean 175.6 129 497 370 108 4444.7 

Standard Deviation 70.9 32.9 326.3 62.4 83.9 1829 

2013 November Burns 
Mean 221.1 166.7 811 780 148.3 10957.7 

Standard Deviation 116.2 137.7 125.7 207.8 22.6 4176.7 
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Appendix 3. 
All six covariate slope estimates, standard errors, and p-values are presented for the sprout number and height growth variables for each of the 

three years of the shortleaf pine seedling sprout study in east Tennessee. Bolded values indicate a statistically significant treatment factor and a 

significant covariate.  

Variable 

Year 
Parameter 

Mean Burn 

Temperature (°F) 

Standard Deviation 

Burn Temperature 

(°F) 

Burn 

Duration 

(Seconds) 

Sum of Burn 

Temperatures 

(°F) 

Median 

Temperature 

(°F) 

Maximum Burn 

Temperature (°F) 

Height 2011 

Slope 

Estimate 0.0019 0.00000052 0.002 0.00002 0.0017 -0.0005 

Standard Error 0.0029 0.000042 0.0014 0.00004 0.0016 0.0009 

P-value 0.51 0.99 0.16 0.55 0.31 0.62 

Number 

2011 

Slope 

Estimate 0.0062 0.000064 0.0006 0.000062 0.004 -0.0017 

Standard Error 0.0019 0.000039 0.0015 0.000029 0.0012 0.0006 

P-value 0.002 0.1 0.67 0.03 0.002 0.009 

Height 2012 

Slope 

Estimate -0.0107 -0.031 -0.0043 -0.00018 -0.0025 -0.0028 

Standard Error 0.0043 0.0055 0.0001 0.00005 0.0042 0.0024 

P-value 0.0152 <0.0001 <0.0001 0.0006 0.56 0.25 

Number 

2012 

Slope 

Estimate 0.0082 0.0187 0.003 0.00011 0.002 0.0036 

Standard Error 0.0019 0.004 0.0008 0.00003 0.0007 0.0012 

P-value <0.0001 <0.0001 0.0002 0.0002 0.006 0.0025 

Height 2013 

Slope 

Estimate -0.0098 -0.0121 -0.002 -0.0007 -0.01 -0.0031 

Standard Error 0.0027 0.0032 0.0038 0.00017 0.003 0.0008 

P-value 0.0005 0.0002 0.0002 <0.0001 0.001 0.0002 

Number 

2013 

Slope 

Estimate 0.0082 0.0098 0.0098 0.00029 0.009 0.0024 

Standard Error 0.0018 0.002 0.002 0.00015 0.0021 0.0005 

P-value <0.0001 <0.0001 <0.0001 0.07 <0.0001 <0.0001 
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