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ABSTRACT 
 

The Pulaski fault is one of the master thrust faults in the Appalachian Alleghanian 

fold-thrust belt.  Detailed geologic mapping of Cambrian and Ordovician strata in 

northeastern Tennessee revealed key structural and stratigraphic characteristics for 

distinguishing the Pulaski thrust sheet from its footwall, the Saltville thrust sheet.  Unlike 

most thrust systems in the Valley and Ridge, the Pulaski records at least two deformation 

phases.  Geometric and crosscutting relationships along parts of the Pulaski thrust sheet 

in this study area and in southwestern Virginia suggest hanging wall and possibly some 

footwall deformation prior to the emplacement of the thrust sheet. 

The initial deformation in the Pulaski sheet, which consists of northwest-vergent, 

tight to overturned, pre-faulting macroscopic folds, may be a manifestation of the 

previously recognized late Mississippian to Pennsylvanian Lackawanna phase of the 

Alleghanian orogeny.  Transport of the earlier deformed strata, analogous to deformation 

sequences that occurred in the Pulaski sheet near the Roanoke recess, would therefore be 

associated with the main (Early Permian) phase of the Alleghanian orogeny.  In the study 

area, these two phases likely represent small changes in orientation during a single event 

of continued shortening.  Type 3 fold interference patterns in the Pulaski thrust sheet here 

further support this notion.   

Substantially different facies occur on opposite sides of the fault.  Upper 

Conasauga and Knox Group strata in the Pulaski thrust sheet consist predominantly of 

limestone and contain few identifiable stratigraphic markers suitable for subdividing the 

Knox northwest of the fault.  Lower Conasauga Group rocks in the thrust sheet are more 

dolomitic and are interbedded with thin shale units.  Geologic mapping during this study 
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has successfully subdivided Honaker Dolomite in parts of the Pulaski thrust sheet by the 

tracing of the Rogersville Shale. 

Data suggest that the Pulaski fault was overridden by the thin-skinned Great 

Smoky fault.  Kinematic and geometric interrelationships between the Pulaski and other 

Valley and Ridge faults provide useful insight into the processes of footwall/hanging wall 

deformation and thrust propagation in foreland fold-thrust belts.  Findings here could also 

improve our understanding of deformation sequences between the southern and central 

Appalachians. 
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CHAPTER I 
 

INTRODUCTION 
 

Present Investigation     

The somewhat unusual characteristics of the Pulaski fault, relative to other Valley 

and Ridge faults, have influenced many workers to structurally and stratigraphically 

analyze specific regions that contain this fault.  These characteristics include:  (1) its 

large extent [563 km (350 miles)]; (2) relatively low dip; (3) structurally lower 

detachment indicated by the presence of Lower Cambrian clastics (Chilhowee Group) in 

parts of the hanging wall; and (4) complex, likely polyphase deformation.  Most 

investigations, including Cooper and Cashion (1970), Rodgers (1970a), Bartholomew and 

Schultz (1980), and Bartholomew et al. (1980), have historically been in southwestern 

Virginia near the southern/central Appalachian transition.  Work on the Pulaski fault in 

parts of the southern Appalachians, specifically near its southwestern terminus in East 

Tennessee, is less detailed.  Rodgers (1953a, p. 160) suggested a possible future mapping 

project within this region: 

Pulaski and associated faults southwest of Nolichucky River . . . The S-shaped 

curve of the Pulaski fault shown on the present map is based on scattered 

observations and needs verification. 

The purpose of this study was to produce a detailed (1:24,000-scale) geologic 

map near the southwestern terminus of the Pulaski fault to:  (1) better define the location 

where the thin-skinned Great Smoky fault overlaps the Pulaski; (2) identify distinct facies 

changes that characterize the Pulaski and Saltville thrust sheets within the area; and (3) 
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attempt to determine a deformational history that occurred within this segment of the 

Pulaski sheet.  Rodgers’ (1953b) 1:125,000 geologic map of East Tennessee lacks 

sufficient detail to resolve these objectives.  Detailed 1:24,000 geologic mapping by 

Whitmer (2005), which was incorporated into this thesis with some remapping, contains 

the “S”-curve segment of the Pulaski fault, but does not include its terminus to the south 

in the Neddy Mountain quadrangle. 

Fieldwork was completed during the winter, spring, and summer of 2009 and 

2010.  Mapping was accomplished with the assistance of a hand-held Trimble GeoXT 

2005 Series GPS unit with data recorded in ArcPad, which permitted direct recording 

of data in ESRI ArcMap.  Over 1,100 structural data stations (including orientations of 

strike and dip of bedding surfaces, cleavage, joints, and mesoscale folds) were collected 

and measured using a Brunton compass.  The map was digitally compiled using 

ArcMap and Adobe Illustrator software. 

 

Study Area 

Research was conducted within an area encompassing parts of four 7.5-minute 

quadrangles:  Cedar Creek, Parrottsville, Neddy Mountain, and Paint Rock, located near 

the Greene/Cocke County line in East Tennessee (Fig. 1-1).  This study area is ~100 km 

east of Knoxville, Tennessee, and is located close to Newport, Tennessee (to the 

southwest), Greeneville, Tennessee (to the northeast), and the North Carolina state line 

(to the southeast; Fig. 1-1).  Main roads in the area include U.S. and State Routes 70 and 

321/411, permitting easy access via Interstate Highways 40 and 81.  The Nolichucky and 

French Broad Rivers transect the area.
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Figure 1-1.  Location of field area [green—this study; brown—Whitmer (2005)] overlain with 7.5-
minute quadrangle index (red).  BA-Baileyton.  CC-Cedar Creek.  DC-Davy Crockett Lake.  GR-
Greeneville.  MC-McCloud.  MK-Mohawk.  MO-Mosheim.  NM-Neddy Mountain.  NP-Newport.  
PA-Parrottsville.  PR-Paint Rock.   
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The majority of the mapped area is situated southeast of the Bays Mountain 

synclinorium within the Valley and Ridge province, with a very small portion lying in the 

Blue Ridge province.  In this region, the Blue Ridge can be distinguished from the Valley 

and Ridge by the exclusive appearance of Cambrian and Precambrian strata within its 

thrust sheets, as well as increasing metamorphic grade and complexity of deformation 

(Hatcher et al., 1989).  Overall, stratigraphy of the study area ranges from Lower 

Cambrian to Middle Ordovician and consists of Chilhowee, Shady, Rome, Conasauga, 

Knox, and Chickamauga units.  Elevations range from ~300 m (~1,000 ft) at the French 

Broad River to ~915 m (~3,000 ft) in the Meadow Creek Mountains in the Blue Ridge.  

Topography reflects the general northeast-southwest trend of the Valley and Ridge 

province and is heavily influenced by the great variation of lithologic units.  Several karst 

features were observed, mostly within Knox carbonates.  Alluvial, colluvial, and terrace 

deposits that are mostly related to the Quaternary Nolichucky River and the Blue Ridge 

topographic front were also mapped. 

 

Geologic Setting 

The Appalachian foreland fold-thrust belt in the Valley and Ridge province, 

which contains rock units ranging from Early Cambrian through early Pennsylvanian age, 

contains a wedge-shaped stack of mostly west-vergent, thin-skinned thrusts positioned 

above undeformed Mesoproterozoic basement (Hatcher et al., 2007a).  In eastern 

Tennessee and southwestern Virginia, the sedimentary strata represent a progression from 

a passive platform margin to the development of a foreland (Sevier) basin, which had a 

clastic source to the southeast during the Blountian phase of the Taconic orogeny (Drake 
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et al., 1989).  The late Mississippian-Early Permian Alleghanian orogeny is the youngest 

and most pervasive tectonic event to affect the southern and central Appalachians.  This 

event emplaced the Blue Ridge-Piedmont megathrust sheet indenter that drove foreland 

deformation in front of and beneath it (Hatcher et al., 1989, 2007a). 

Most major thrust faults in the Valley and Ridge propagate from a basal 

detachment in the mechanically weak Lower Cambrian Rome Formation (Rodgers, 

1970b).  These faults increase in stratigraphic throw and displacement southwestward 

along strike, with the most significant structural transition occurring within the Roanoke 

recess (Hatcher et al., 1989).  Here, Valley and Ridge structures undergo a gradual 

change in strike from ~N30E (central Appalachians) to ~N60E (southern Appalachians) 

over a broad displacement transfer zone (Rodgers, 1970b).  The deformation style also 

changes from the central Appalachians, which are primarily fold-dominated (i.e., 

décollement folds overlying blind thrusts), to the southern Appalachians, which are 

primarily fault-dominated (Gwinn, 1964).  These contrasting styles can be attributed to an 

oblique, and later head-on, rotational collision that initiated the zipper-like closing of the 

Paleozoic Theic ocean between Gondwana and Laurentia (including previously 

assembled Peri-Gondwanan and Gondwanan superterranes) during the Alleghanian 

orogeny (Hatcher, 2002).  The associated Early Permian head-on collision, which drove 

the Blue Ridge-Piedmont composite crystalline thrust sheet, is responsible for the 

foreland deformation and tectonic style observed in the southern Appalachians (Hatcher, 

2002). 
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Pulaski Fault 

The Pulaski-Staunton fault (herein called Pulaski) is one of the master 

Alleghanian thrust faults in the southern Appalachian Valley and Ridge foreland fold-

thrust belt (Fig. 1-2).  It contains many unique attributes, both structurally and 

stratigraphically, relative to other Appalachian Valley and Ridge faults (e.g., Saltville, 

Copper Creek, and St. Clair faults).  The Pulaski fault, for instance, is the only major 

fault that extends into the central Appalachians and can be traced entirely through the 

angular Roanoke recess in southwestern Virginia (Rodgers, 1970b).  All other major 

faults of the southern Appalachians terminate as surface features near the 30 bend at 

Roanoke (Fig. 1-2; Bartholomew, 1987; Couzens and Dunne, 1994).  The Pulaski fault’s 

northern terminus lies in Rockingham County, north of Staunton, Virginia.  The 

Greenwood and Seven Springs faults trace the main Pulaski fault to its southern terminus 

southwest of Greeneville in northeastern Tennessee (Cooper and Cashion, 1970). 

Unlike most major Valley and Ridge faults, which propagate from a décollement 

in the Rome Formation, the Pulaski has been interpreted to have rooted in a lower 

structural level, based on the presence of Lower Cambrian Shady Dolomite and 

Chilhowee Group rocks in the hanging wall (Butts, 1933; Rodgers, 1970b; Bartholomew 

et al., 1980).  The most prominent structural feature of the Pulaski fault in Tennessee is 

the Babbs Knobs flap, located in the southern Baileyton quadrangle and northwestern 

Greeneville quadrangle (Byerly, 1966; Bultman, 2005).  Here, the fault trace irregularly 

encircles an area of ~26 km2.  The irregularity results from low-dip angles and post-

emplacement folding of the Pulaski fault (Byerly, 1966).
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Figure 1-2.  Tectonic map showing the Pulaski fault (bold red), in relation to other major faults within the southern and central Appalachian 
Valley and Ridge, Plateau, and Blue Ridge provinces.  BRV-Brevard fault.  CLP-Clinchport fault.  CPC-Copper Creek fault.  DNM-Dunham 
Ridge fault.  DPV-Dumplin Valley fault.  GSF-Great Smoky fault.  LNM-Little North Mountain fault.  NAR-Narrows fault.  PMT-Pine 
Mountain thrust.  PUL-Pulaski fault.  RFV-Rockfish Valley fault.  SLT-Saltville fault.  STA-Staunton fault.  SPU-Spurgeon fault.  SSP-
Seven Springs fault.  STC-St. Clair fault.  Modified from Hatcher et al. (2007b). 
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Bartholomew (1987) defined the Pulaski thrust sheet as a complex, composite 

sheet in which various plates were juxtaposed during different stages of Alleghanian 

thrusting.  Near the Roanoke area, Bartholomew noted that a 300-500-m-thick “broken” 

formation, earlier identified by Schultz (1983), which contains the Max Meadows 

Breccia (Cooper and Haff, 1940), represents a lower-level décollement zone that formed 

earlier in the Alleghanian prior to ramping.  Early deformation and later passive transport 

of this unit suggest two-phase Alleghanian deformation is recorded in the Pulaski sheet.     

 

Previous Work 

Previously published maps that contain all or portions of the quadrangles in the 

research area include Keith (1895, 1905a, 1905b), Rodgers (1953b), Brokaw et al. 

(1966), and Hardeman et al. (1966).  Initially, the Pulaski fault was mapped from Marion 

to Blacksburg, Virginia, by Campbell (1925), who named the fault after exposures 

adjacent to the town of Pulaski in Pulaski County, Virginia.  The fault was later traced by 

Butts (1933) northeastward near Purgatory Mountain and into the central Appalachian 

part of the Valley and Ridge.  For years, the Seven Springs fault was misidentified as a 

separate and distinct fault from the Pulaski (Cooper, 1936).  Later work and improved 

mapping (Rodgers, 1953b; Hardeman et al., 1966; Cooper and Cashion, 1970) confirmed 

that both faults are one in the same.  This discovery sparked others to delineate 

previously suggested northern continuations of the Pulaski fault, such as the Staunton 

fault (Cooper, 1970; Harris, 1979), identified near Staunton, Virginia, where the Pulaski 

is believed to terminate (Fig. 1-2). 
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Rodgers (1953b; 1970a) further traced the Pulaski fault 120 km southwestward 

into Tennessee, where he and later Milici (1975) interpreted it to terminate and disappear 

beneath the Blue Ridge thrust sheet.  Byerly (1966) produced a detailed geologic map of 

the Baileyton and Greeneville 7.5-minute quadrangles ~50 km northeast of the Pulaski 

terminus, focusing on the peculiar Babbs Knobs flap in the Pulaski sheet.  Whitmer 

(2005) mapped the area within the Parrottsville and portion of the Cedar Creek 

quadrangles that contained the “S-curve” segment of the Pulaski fault, but did not map 

farther south to the terminus.  The possibility that the fault continues as far southwest as 

the Newport quadrangle was first raised by Lemiszki (2008) based on certain key 

structural and stratigraphic differences between the Saltville and Pulaski thrust sheets.  

However, newer detailed (1:24,000-scale) mapping of the Neddy Mountain quadrangle 

(this study) reconfirms the site of the terminus previously mapped by Rodgers (1953b; 

1970a). 

Rodgers (1953a) first recognized key facies changes within lithologic units 

(Chickamauga, Knox, and Conasauga Groups) of the the Pulaski and Saltville thrust  

sheets in northeastern Tennessee and southwestern Virginia.  The paucity of many 

stratigraphic markers did not permit Rodgers to successfully subdivide any of these 

groups within the Pulaski sheet.  With the exception of the Ocoee Supergroup, no other 

stratigraphic unit in the southern Appalachians has been debated as much as the 

Chickamauga Group (Rodgers, 1953a).  Successful subdivision of the Middle Ordovician 

Sevier Shale (Chickamauga Group) was accomplished for the first time by Lemiszki 

(2003), Bultman (2005), and Whitmer (2005).



 10

CHAPTER II 
 

STRATIGRAPHY 
 

General Overview 

Rock units of the study area range from the Lower Cambrian (Unicoi Formation) 

to the Middle Ordovician (Middle Sevier Shale), and occur in three major thrust sheets, 

the Saltville, Pulaski, and Blue Ridgefrom northwest to southeast (Fig. 2-1).  These 

strata include units from the Chilhowee, Conasauga, Knox, and Chickamauga Groups, 

along with Shady and Rome Formations.  However, the majority of rocks in the Pulaski 

thrust sheet belong to the Conasauga and Knox Groups, both of which consist of 

observable, distinct facies that contrast with those in the same units in thrust sheets 

farther northwest (Rodgers, 1953a).  For instance, limestone dominates the Knox Group 

in the Pulaski sheet, whereas dolomite and specific chert markers are more abundant in 

the Saltville sheet.  Conversely, the Conasauga Group contains more limestone and shale 

in the Saltville sheet, as compared to the more dolomitic strata in the Pulaski sheet (Fig. 

2-2).  Therefore, because of a change in specific rock unit characteristics between the 

Saltville and Pulaski thrust sheets, this segment of the Pulaski fault in the study area 

represents both a structural and facies break.  

Only the Knox and lower Chickamauga Groups are exposed on both sides of the 

Pulaski fault in the study area; thus Conasauga Group facies in the hanging wall were 

evaluated against previously described Conasauga rock units in the Saltville sheet (e.g., 

Rodgers, 1953a, Lemiszki, 2003; Bultman, 2005).  Mapping of the Chilhowee Group and 

other Lower Cambrian formations in the composite Great Smoky thrust sheet was not
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Figure 2-1 (Part A).  Generalized stratigraphic column of the study area. 
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Figure 2-1 (Part B).  Generalized stratigraphic column of the study area. 
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Figure 2-1 (Part C).  Generalized stratigraphic column of the study area. 
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Figure 2-2.  Simplified stratigraphic column showing distribution of formations and their rock types 
in relation to the two major faults located within the study area (i.e., Pulaski and Great Smoky faults).  
Colors correspond to geologic map units on Plate I.   
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extended further southward within the Neddy Mountain nor the Paint Rock quadrangles, 

because the stratigraphic focus of this study was principally confined to the Saltville and 

Pulaski thrust sheets. 

 

Lithologic and Geomorphologic Overview 

 Limestone in the study area is commonly ribboned with both siltstone and 

dolomite, and is simply referred to as ribbon limestone throughout this chapter.  Many 

formations in the Knox Group consist largely of ribbon limestone and interbedded 

massive dolomite.  Weathered surfaces on the massive dolomite in both Conasagua and 

Knox Groups characteristically exhibit a “stitching-wax” texture, which is caused by 

differential weathering of calcite-filled fractures in the more resistant massive dolomite 

(Bucher, 1956; Little, 1969). 

 Grain size (in diameter) for unit descriptions is classified as fine (<0.10 mm), 

medium-fine (0.10-0.25 mm), medium (0.25-0.50 mm), medium-coarse (0.50-0.75 mm), 

coarse (0.75-1 mm), and very coarse (>1 mm).  Bed thickness is classified as very thin 

(1-3 cm), thin (3-10 cm), medium (10-50 cm), thick (50 cm-1.5 m), and massive (>1.5 

m).   

 Topographic signatures of several rock formations in the study area, especially 

those in the Knox Group, were used to help delineate map contacts.  The Conococheague 

Limestone/Copper Ridge Dolomite, Longview Dolomite, and Mascot Dolomite are 

typically associated with prominent ridges, and the Chepultepec Dolomite and Kingsport 

Formation are underlain by valleys.  Knobby (nonlinear) hills and short ridges are 

commonly seen in silty to shaly units, most notably the lower Sevier Shale.  One of the 
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best locations to observe this contrast in topography and lithology is along U.S. 321, just 

northeast of Parrottsville, Tennessee.  The knobby hills of lower Sevier Shale can be seen 

looking to the northwest, whereas the “rolling hills” developed on Knox Group carbonate 

ridges are seen to the southeast. 

Soils in the study area are indicative to certain lithologies.  Carbonate-rich 

formations (e.g., Knox Group strata) are generally bright reddish-orange, cherty, and can 

be clay rich.  These soils contrast with those of shaly formations (e.g., Nolichucky Shale), 

which are typically brown to yellowish-brown chippy soils and are usually sparsely 

vegetated. 

 

Chilhowee Group 

The Lower Cambrian Chilhowee Sandstone (Group), named by Safford (1869) 

for exposures along Chilhowee Mountain in Blount County, Tennessee, can be 

distinguished from the underlying Ocoee Supergroup by increased quartz content and 

regularity of unit thickness (Rodgers, 1953a).  Keith (1903) subdivided the northeastern 

sequence of the Chilhowee Group into the Unicoi, Hampton, and Erwin Formations.  

These conformable and mostly clastic rocks were deposited on the eastern Laurentian 

margin during the rift-to-drift transition, comprising an upward-maturing succession of 

alternating sandstone and shale (Hatcher et al., 2007b). 

In the study area, Chilhowee Group strata are confined to the composite Great 

Smoky thrust sheet.  However, in parts of the Pulaski sheet between Pulaski and Marion, 

Virginia, both Shady Dolomite and Chilhowee Group rocks are mapped in stratigraphic 

continuity beneath the Rome Formation (Butts, 1933; Rankin et al., 1972).  Because 
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major faults west of the Pulaski propagated from basal detachments in the Rome 

Formation, the presence of rocks as old as the Chilhowee Group in the Pulaski sheet led 

Bartholomew et al. (1980) to suggest a structurally lower detachment (analogous to Blue 

Ridge faults) for the Pulaski fault in southwestern Virginia. 

  

Unicoi Formation 

The Unicoi and basal portion of the Hampton Formation (not exposed) represent 

the transition from the latest stages of Iapetan rifting to the onset of passive margin 

development (Simpson and Erikson, 1989).  First named for Unicoi County, Tennessee, 

by Campbell (1899), the Unicoi Formation in northeastern Tennessee ranges from 610-

1,524 m (2,000-5,000 ft) thick where top and base are present (Rodgers, 1953a).  The 

portion of Unicoi Formation mapped near the southern edge of the study area is bounded 

by two faults:  an unnamed Blue Ridge fault, which juxtaposes both Unicoi and Rome 

Formations, and the Great Smoky fault, which separates the Unicoi from Valley and 

Ridge rocks to the northwest.  With no base exposed, thickness estimates for the Unicoi 

here cannot be reliably determined and would require further mapping to the 

south/southeast.  Its southwestern equivalent, the Cochran Conglomerate, is well-exposed 

~70 km (~44 mi.) southwest of the Neddy Mountain quadrangle along the south side of 

English Mountain.  Although both the Cochran and Unicoi formations share similar 

lithologies, the Unicoi Formation contains more lithological variation and is generally 

thicker (maximum of ~1,500 m [~5,000 ft] in places) than the Cochran Conglomerate 

(Rodgers, 1953a).  
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 The lower Unicoi Formation, although not well-exposed, consists of 

predominantly silty shale and feldspathic siltstone interbedded with medium- to coarse-

grained feldspathic and conglomeratic sandstone.  Sporadic layers of dark green 

amygdaloidal basalt, representing lava flows associated with rifting, have been observed 

from the Virginia State Line to the Nolichucky River (Rodgers, 1953b; Rankin, 1975), 

yet none of these volcanic layers are exposed in the study area.  The upper Unicoi 

Formation (Fig. 2-3) contains tide- and wave-influenced, shallow-marine shelf deposits 

(Simpson and Eriksson, 1989).  These layers are mostly thick-bedded to massive, 

vitreous, feldspathic coarse-grained sandstone, quartz arenite, and clast-supported, quartz 

pebble conglomerate (Fig. 2-3B).  Frequent interbeds of dark greenish-brown siltstone 

and shale are also present. 

 

Erwin Formation       

Keith (1903) named the Erwin Formation after the town of Erwin in Unicoi 

County, Tennessee.  Like the Unicoi Formation, accurate thickness of the Erwin 

Formation was not obtained in the study area, but the complete section of the formation 

ranges from 240-460 m (800-1,500 ft) thick in northeastern Tennessee, with an average 

thickness of 244 m (800 ft) on English Mountain (Greene, 1959) and a thickness of 396 

m (1,300 ft) farther southwest on Chilhowee Mountain (Rodgers, 1953a).  It consists of 

shallow-marine deposits of mostly light gray to white, vitreous, quartz arenite and 

sandstone interbedded with shaly siltstone, making this formation an important ridge-

former in local Blue Ridge topography (Fig. 2-4).  The underlying Hampton Formation, 

which is not exposed in the study area, can be distinguished from the Erwin Formation by



 19

Figure 2-3.  Exposures of Unicoi Formation along Yellow Spring Branch Road west of Neddy 
Mountain.  (A) Thick-bedded and coarse-grained quartz arenite.  (Hammer is ~30 cm).  (B)  Quartz 
pebble conglomerate interbedded with coarse-grained feldspathic sandstone.  (Pen is ~14 cm).  

(A) 

(B) 
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the abundance of silty and sandy shale, abundant detrital mica, and interbeds of 

feldspathic sandstone (Rodgers, 1953a; Schwab, 1970).   

King et al. (1944) split the Erwin into four members based on grain size.  The 

most notable and thinnest member, the Helenmode, consists of mostly fine-grained, 

calcareous shale at the top of the Erwin Formation.  Its soils are marked by characteristic 

leaching that reflect the soluble carbonate Shady Dolomite above and more resistant 

quartz arenite below (Rodgers, 1953a).  Colluvial deposits of the Erwin Formation, 

however, obstruct the exposure of the Helenmode-Shady contact.  Abundant Scolithos 

tubes have been reported in previous studies from northeast Alabama to central Virginia 

(Rodgers, 1953a; Schwab, 1970; Mack, 1980) although none were observed in the study 

area. 

 

Shady Dolomite 

The Shady Dolomite, named by Keith (1903) for Shady Valley near Elizabethton 

in Johnson County, Tennessee, records the start of carbonate sedimentation on the Lower 

Cambrian passive margin (Barnaby and Read, 1990).  Like the overlying Rome 

Formation, it can be found in both the Valley and Ridge and Blue Ridge provinces 

(Rodgers, 1970b).  Thickness of the Shady Dolomite varies from ~610 m (~2,000 ft) in 

southwestern Virginia (Byrd et al., 1973; Pfiel and Read, 1980), to ~305 m (~1,000 ft) in 

northeastern Tennessee (Rodgers, 1953a).  The Shady Dolomite (Fig. 2-5) is mostly 

medium- to thick-bedded bluish-gray to white, silty dolomite with interbedded limestone.   

Although the mapped area contains an incomplete section of Shady Dolomite, it 

clearly reveals the upper part of the formation, where massive light gray dolomite 
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Figure 2-4.  Vitreous quartz arenite (float) of the Erwin Formation on the northeast slope of 
Neddy Mountain.  (Hammer is ~30 cm).  

Figure 2-5.  Typical outcrop of Shady Dolomite consisting of light bluish-gray, coarse-grained  and 
silty dolomite.  Located west of Neddy Mountain along Long Creek Road.  (Hammer is ~30 cm). 
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contains abundant chert and is overlain by shaly bluish-gray dolomite.  In the study area, 

the Shady Dolomite is observed to be in stratigraphic contact with the underlying Erwin 

Formation, but not the overlying Rome Formation, from which it is separated by an 

unnamed Blue Ridge fault. 

 

Rome Formation 

Hayes (1891) named the Rome Formation for Rome in Floyd County, Georgia. 

The Rome Formation is widely distributed throughout East Tennessee and acts as the 

weak basal layer through which the master décollement propagated across the Valley and 

Ridge (Rodgers, 1970b; Chapple, 1978).  The thickness of the Rome in northeast 

Tennessee averages 365 m (1,200 feet) and is estimated to be the same in the study area.  

However, incomplete sections are common due to:  (1) frequent appearance of Rome 

directly above major thrusts; (2) general lack of a base; and (3) relatively sparse fossil 

indicators (Rodgers, 1953a).  In the study area, the Rome Formation is located 

exclusively southeast of the Great Smoky fault and in the thin-skinned portion of the 

western Blue Ridge province.  It underlies a prominent knobby ridge just to the northeast 

of where the Great Smoky sheet overrides the Pulaski sheet in the Neddy Mountain 

quadrangle (Fig. 2-6).   

The lower Rome consists of variegated medium coarse-gained sandstone and 

siltstone with interbedded shale and occasional dolomite (“Watauga phase”) and 

limestone beds (Fig. 2-7).  Colors range from light to medium gray, brown, maroon, dark 

red, reddish purple, to olive green.  Brighter shades of green, red, purple, and yellowish-

brown are also present, all of which are commonly found within the lower Apison Shale
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Figure 2-6.  Knobby ridge of Rome Formation (looking south) along Happy Hollow Road.  Its 
location is 3 km northeast of the Pulaski fault’s southwestern terminus. 

Figure 2-7.  Typical red and green coarse-grained sandstone of the Rome Formation showing a 
strongly cleaved layer (parallel to bedding) above hammer head.  Location is on the east slope of 
the knobby ridge near Happy Hollow Road.  (Hammer is ~30cm long).  
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 Member (Rodgers, 1953a; Spigai, 1963; Samman, 1975).  Sedimentary structures 

include mud cracks, raindrop imprints, and ripple marks, likely indicating shallow 

intertidal to supratidal environments.  Rome soils are mostly dark reddish-brown, which 

starkly contrasts the yellowish-brown, shale chippy soils of the nearby lower Rutledge 

Limestone. 

 

Conasauga Group 

The Middle and Late Cambrian Conasauga Group, named by Hayes (1891) for 

the Conasauga River in Whitfield and Murray Counties, Georgia, has substantial 

lithologic variation throughout the Valley and Ridge, which led Rodgers (1953b) to 

divide the group into the northwestern, central, and southeastern phases (Fig. 2-8).  All 

Conasauga facies in the mapped area, which include the Rutledge Limestone, Rogersville 

Shale, Maryville Limestone, Honaker Dolomite (which incorporates the previous three), 

Nolichucky Shale, and Maynardville Limestone, represent the southeastern phase.    

Aside from certain exposures of Maynardville Limestone near the western 

boundary of the Neddy Mountain quadrangle, most Conasauga Group exposures in the 

study area are confined to southeast of the Pulaski fault.  The Pulaski sheet in the study 

area rests on the interfingering and undefined transition between the divisible Middle 

Cambrian units and the Honaker Dolomite of the southeastern phase (Fig. 2-8).  

Depositional environments recorded for each phase of the Conasauga Group range from 

shale-dominated clastic subtidal in the northwest phase to carbonate peritidal in the 

southeastern phase (Hasson and Haase, 1988).  The contact between the Maryville 

Limestone and Nolichucky Shale in this study area represents a sequence boundary on 
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Figure 2-8.  Facies relationships in the Conasauga Group in the East Tennessee Valley and Ridge.  
(Modified from Rodgers, 1953a). 
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the passive margin, marking a distinct shift from shallow-water carbonate deposition to 

deeper-water basinal siliciclastics (Foreman, 1991, Srinivasan, 1993, Srinivasan and 

Walker, 1993). 

 

Honaker Dolomite 

Originally named the Honaker Limestone by Campbell (1897) for Honaker in 

Russell County, Virginia, the Middle to Late Cambrian Honaker Dolomite (Butts, 1940) 

is equivalent to the Rutledge Limestone, Rogersville Shale, and Maryville Limestone.  Its 

estimated thickness is ~370 m (1,220 ft), and it is justifiably designated a map unit where 

the Rogersville Shale cannot be separated in the study area.  Prior to this study, the 

Honaker Dolomite, which is exposed in the Pulaski, Dunham Ridge, and Holston 

Mountain thrust sheets, had not been subdivided into its central phase equivalents 

southeast of the Pulaski fault (Rodgers, 1953b; Byerly, 1966; Hardeman et al., 1966; 

Little, 1969; Hasson and Haase, 1988; Whitmer, 2005).  Little (1969) was able to 

successfully subdivide the Honaker Dolomite into three unnamed members but did not 

map them separately.  On the presence of thin (<10-26 m) traceable Rogersville Shale, 

together with characteristic thin banded limestone of the Maryville Limestone in parts of 

the study area, the Honaker Dolomite was subdivided in the southwestern portion of the 

Pulaski sheet.  Where the Rogersville Shale is not exposed, the unit was mapped as 

Honaker Dolomite. 

The lower Honaker Dolomite, although incomplete, comprises dominantly dark 

bluish-gray, medium-bedded to massive, silty dolomite interbedded with some finely 

crystalline ribbon limestone and shaly dolomite.  This part of the Honaker Dolomite 
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contains abundant black and red massive and nodular chert, which is highly fractured.  In 

the Pulaski sheet, the Honaker is the oldest unit present in the cores of several tightly 

folded anticlines.  The base of the Honaker does not appear anywhere in the mapped area, 

but according to Rodgers (1953a) and Byerly (1966), the unit becomes thin-bedded and 

very shaly in the lower section, which may represent the southeastern phase equivalent of 

the Middle Cambrian Pumpkin Valley Shale.  Rodgers (1953a) was the first to suggest 

that one of the shaly units in the Lower Honaker may have acted as a local detachment 

for the Pulaski fault in this area.  Rodgers and Kent (1948) named the Pumpkin Valley 

Shale for exposures in Pumpkin Valley in Hawkins County, Tennessee.  Originally 

named the Rome Shale by Hayes (1894) and Keith (1895), it was later determined to 

belong in the Conasauga Group based on fossil data and gradationally overlie the red and 

green shale, siltstone, and sandstone of the Rome Formation (Rodgers and Kent, 1948). 

The upper Honaker Dolomite (Fig. 2-9) consists of mostly medium to dark bluish-

gray, thin-bedded to massive saccharoidal dolomite and limestone with thickly laminated 

to ribboned, evenly spaced alternations of dolomite and limestone, which is analogous to 

the Maryville Limestone.  Chert is less abundant in the upper Honaker Dolomite, but can 

still be found locally in generous quantities.  The unit weathers mostly tannish-brown 

where dolomite is abundant, contrasting the medium to dark gray weathering surface of 

most limestone beds.  Some of the fresher dark gray, saccharoidal layers of dolomite 

possess a distinctive fetid odor, likely due to sapropel residue formed by the decay of 

organic matter (Byerly, 1966).  Edgewise conglomerate, stromatolitic chert, and 

microbial mats occasionally appear in both the upper and lower sections of the formation.  

One anomalous conglomeratic layer (~6 m [~20 ft] thick) was observed in the southwest
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Figure 2-9.  Upper Honaker Dolomite outcrops.  (A) Closely spaced, silty, ribbon limestone.  Outcrop is 
located directly east of the W. Allens Bridge Road/Old Newport Highway intersection.  (Field book is 12 
x 19 cm). (B) Typical exposure of massive Honaker Dolomite exhibiting classic stitching wax texture.  
Located along the Nolichucky River within Linebaugh Bend.  (Brunton compass is ~8 cm in diameter).      

(A) 

(B) 
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corner of the Cedar Creek quadrangle near the Green-Cocke County line.  It is notably 

calcareous, containing limestone, dolomite, and chert clasts.  The upper contact with the 

Nolichucky Shale is typically gradational but is rarely exposed in the study area. 

 

Rutledge Limestone 

The Rutledge Limestone, named for exposures near Rutledge, Tennessee, by 

Campbell (1894) is the oldest formation (with the lower Honaker Dolomite) exposed in 

the Pulaski sheet in the study area, comprising a thickness of ~122 m (~400 ft).  Like 

most lower Conasauga Group formations in general, the Rutledge Limestone, due to the 

transition from the undivided Conasauga Shale to the west, becomes increasingly 

calcareous southeast of the Copper Creek/Narrows fault (Fig. 1-2) and increasingly 

dolomitic southeast of the Saltville fault (Hasson and Hasse, 1988). 

It consists of medium to dark bluish-gray, thin-bedded to massive dolomite and 

ribbon limestone interbedded with shaly dolomite.  Most of the massive limestone (Fig. 

2-10) is usually somewhat dolomitic and exhibits a thrombolitic texture.  Several slightly 

calcareous shaly dolomite and silty limestone beds, occur near the upper, gradational 

contact with the Rogersville Shale.  These beds are well-exposed at Meadow Creek Mill 

in the Cedar Creek quadrangle.  The base of the Rutledge is not exposed in the study 

area, due to faulting.    

 

Rogersville Shale 

The Rogersville Shale was named by Campbell (1894) for exposures near 

Rogersville, Tennessee.  It has a wide range of thicknesses before an easterly thinning
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Figure 2-10.  Rutledge Limestone exposure near the intersection of Long Creek Road and Sane 
Road exhibiting thick-bedded to massive, dolomitic and somewhat mottled limestone.  (Hammer is 
~30 cm long). 
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and eventual disappearance, ranging from 122 m (400 ft) in the Hunter Valley thrust 

sheet, to 61 m (200 ft) in the Dumplin Valley sheet, to 14 m (46 ft) in the Saltville sheet 

near the Tennessee-Virginia border (Hatcher, 1965; Oder and Milici, 1965; Neuman, 

1960; Helton, 1967; Bridge and Hatcher, 1973; Hasson and Haase, 1988).  Although thin 

to non-existent in the study area with a thickness of 0-26 m (0-85 ft) in places, the very 

presence of this formation in parts of the Pulaski thrust sheet allows subdivision of the 

Honaker possible.  However, the Rogersville Shale is not observed (exposed?) northwest 

of the Dunham Ridge fault in the Pulaski sheet, and equivalent southeastern facies that 

match the Maryville Limestone and Rutledge Limestone were mapped as Honaker 

Dolomite.   

The Rogersville Shale is a light bluish-gray to greenish-gray, fissile, slightly 

calcareous to dolomitic shale and siltstone, interbedded with bluish-gray, thin-bedded, 

silty dolomite with characteristic blocky weathering (Fig. 2-11).  A notably persistent 

middle member in the Rogersville of the central phase is the Craig Limestone Member 

(Rodgers and Kent, 1948).  This ribbon limestone unit does not appear anywhere in the 

mapped Rogersville of the Pulaski sheet, although a few locations contain chert float that 

is typical of the limestone.  The Craig Limestone Member may have pinched out before 

reaching here, or may have been included as the basal member of the overlying and 

lithologically similar Maryville Limestone, because of the absence of upper Rogersville 

shale exposures (Rankey, 1993).
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Figure 2-11.  Exposure of the Rogersville Shale consisting of dolomitic shale and siltstone 
with interbedded shaly dolomite.  Note the fissile to blocky weathering.  Located at Meadow 
Creek Mill along Birdwell Mill Rd.  (Field book is 12 x 19 cm). 



 33

Maryville Limestone 

Campbell (1894) named the Maryville Limestone for exposures in Maryville, 

Tennessee.  The Maryville contains more limestone than any of the other middle 

Conasauga formations.  Its thickness in the study area is 150 m (490 ft), whereas its 

maximum thickness in the neighboring Dumplin Valley sheet to the west (Fig. 1-2) is 

approximately 250 m (820 ft) (Neuman, 1960; Hatcher, 1965), reflecting an eastward 

thinning of the formation.  The thickness of the Maryville Limestone in the Dumplin 

Valley thrust sheet can likely also be attributed to the inclusion of the similar Craig 

Limestone Member in the Rodgersville Shale (Hatcher, 1965; Bridge and Hatcher, 1973; 

Rankey, 1993).   

The Maryville Limestone (Fig. 2-12) is a light to dark gray, thin- to thick-bedded, 

fine- to coarse-grained pelletic to micritic limestone containing layers of silty dolomite.  

Its evenly spaced “banded” appearance of medium to dark gray weathered limestone and 

light gray to brown weathered dolomite is a primary trait of this formation.  Massive 

dolomite is generally confined to the lower half.  Oölites and edgewise conglomerate are 

sparse, but common in areas to the northwest (Harris, 1965).  The Maryville Limestone 

grades upward into thin-bedded limestone and siltstone near the base of the overlying 

Nolichucky Shale in the southwest corner of the Cedar Creek quadrangle.  Due to lack of 

exposure, the nature of the contact with the Rogersville is uncertain, but appears to be 

abrupt.
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Figure 2-12.  Maryville Limestone consisting of closely spaced ribbon limestone (left) interbedded 
with silty brown-weathered dolomite (right).  Located near the Greene-Cocke County line, south of 
Long Creek Road.  (Hammer is ~30 cm long). 



 35

Nolichucky Shale 

Originally described by Campbell (1894) after lithologies observed near the same 

Nolichucky River that transects the study area, the Nolichucky Shale is the most frequent 

Conasauga shale to appear throughout the area.  Its thickness ranges from 45-61 m (150-

200 ft) here, which, like most Conasauga shales, is drastically thinner than reported in the 

westernmost parts of the Saltville sheet:  427 m (1,400 ft) near Knoxville, Tennessee 

(Cattermole, 1958), and 274 m (890 ft) near Cleveland, Tennessee (Swingle, 1959).  

Feder (1963) and Little (1969), however, reported an average of 120-150 m (400-500 ft) 

within the Saltville/Dumplin Valley sheets in Jefferson County, Tennessee (west of 

Pulaski fault) and the Dunham Ridge block in Greene and Washington Counties, 

Tennessee (part of Pulaski sheet to the northeast), respectively.  

The Nolichucky Shale consists of olive to light green, gray, and maroon 

argillaceous, fissile shale and siltstone that weathers bright yellow to yellowish-brown 

(Fig. 2-13).  Thin-bedded to massive microbial and oölitic limestone is common in the 

middle to upper part of the section.  At least three members [similar to those observed by 

Rodgers (1953b)] were recognized, although these were not mapped separately due to 

inconsistent thicknesses and exposure.  The lower member, which appears the most 

frequently in the study area, contains non-calcareous shale and siltstone.  The middle 

member, which is likely the equivalent to the Bradley Creek Member of Helton (1967), 

consists of massive microbial and oölitic limestone, similar in appearance to the 

Maynardville Limestone.  The upper member is more or less identical to the lower 

member, except for the increased abundance of thin-bedded calcareous siltstone with 

thickly laminated interbedded limestone (Fig. 2-14).  The best section of the upper



 36

Figure 2-13.  Typical exposure of the Nolichucky Shale with thin-bedded limestone interbedded 
(limestone is obscured by shale chips—note the reddish-brown soil, which is characteristic of 
carbonates in the region).  Located  along St. James Rd., just south of Meadow Creek.  (Brunton 
compass is ~8 cm in diameter).      
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Figure 2-14.  Exposure of the Nolichucky Shale located along Old Newport Highway, just off U.S. 321.  
(A) Well-cleaved, slightly calcareous, thin-bedded siltstone of the upper Nolichucky Shale.  (Brunton 
compass is ~8 cm in diameter).  (B) Tight fold with axial planar cleavage in the same rock type as (A).  
(Hammer handle is ~14 cm). 

(A) 

(B) 
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member is found just off U.S. 321 along Old Newport Highway in the Cedar Creek 

quadrangle. A good site to see the separate members in the same quadrangle is located 

along S. Allen Bridge Rd, just south of Meadow Creek.  Although many contacts are not 

exposed, the Nolichucky Shale generally shows gradational contacts with both the 

underlying Maryville Limestone and overlying Maynardville Limestone.  

Soils of the Nolichucky Shale contain abundant shale chips and have a dark 

yellow-brown color.  The Nolichucky has been noted to be fossiliferous in parts of the 

Greeneville quadrangle (Byerly, 1966), but fossils are rarely observed in the study area.  

This may be due to the development of strong cleavage and lack of well-exposed bedrock 

in the area, as well as in other parts of the Pulaski sheet to the northeast (Little, 1969; 

Harlow, 1987).  A single fragment of an agnostid trilobite was found along Shady Road, 

just off Old Newport Highway in the Cedar Creek quadrangle.  Even with the lack of 

fossil indicators here, the base of the Nolichucky Shale is still considered to be the 

Middle-Upper Cambrian boundary and marks a distinct shift in the pattern of 

sedimentation (Rodgers, 1953a; Srinivasan, 1993). 

 

Maynardville Limestone 

Oder (1934), who named the Maynardville Limestone after Maynardville, 

Tennessee, originally placed the unit in the basal (Cambrian) part of the Knox Group, 

based on its lithologic similarities to the Copper Ridge Dolomite and Conococheague 

Limestone.  Similarities in paleontological data to the Conasauga Group, first noted by 

Resser (1938), led Rodgers (1953a) to conclude that the Maynardville is a distinct unit in 

the upper Conasauga Group.  Its thickness in the study area averages 93 m (~300 ft).  The 
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Maynardville is mostly a light to medium bluish-gray, thick-bedded to massive, fine- to 

medium-grained limestone with interbedded silty dolomite that is more common in the 

upper part (Fig. 2-15).  Ribbon limestone with thin (1-3 cm) clay seams is common.  The 

formation contains sporadic edgewise conglomerate consisting of limestone and dolomite 

clasts, and it is also locally oölitic.  Characteristic microbial mats associated with the 

massive limestone dominate the lower portion of the Maynardville.   

The base of the Maynardville Limestone is usually gradational with the 

underlying Nolichucky Shale, yet some contacts, like the one in the hinge of the syncline 

just off U.S. 321 along Old Newport Highway in the Cedar Creek quadrangle, reveal a 

sharp contact.  Maynardville Limestone becomes very thin-bedded, silty limestone or 

dolomite at the top of the formation near the transition with the basal sandstone layer 

(when present) of the Conococheague Limestone/Copper Ridge Dolomite.  With the 

exception of microbial mats, fossils in the Maynardville Limestone are rare, although a 

mold of the trilobite Blountia was identified by Byerly (1966) in the Greeneville 

quadrangle, northwest of Walkertown. 

 

Knox Group 

Safford (1869) named the Knox Group for Knoxville and Knox County, 

Tennessee, and its type locality is along Second Creek near downtown Knoxville.  The 

Knox Group carbonates make up the majority of the sedimentary rock units in East 

Tennessee.  The entire group is 700-1,000 m (2,300-3,300 ft) thick in East Tennessee 

(Hardeman et al., 1966) and approximately 900 m thick (~3,000 ft) in the study area 

(Whitmer, 2005; this study).   Extensive mapping and subdivision of the group has been
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Figure 2-15.  Maynardville Limestone exposure showing typical massive, microbial limestone.  
Located along Old Newport Highway, just off U.S. 321 in the hinge of an overturned syncline.  
(Hammer is ~30 cm). 



 41

done over the years, because of its importance in the exploration/development of zinc ore 

(Rodgers, 1953a).  Its karst-dominated landscape and variably cherty units create the 

characteristic broad rolling hills and undulating topography across the Valley and Ridge.  

Fossils are rare in the Knox and are generally only found as molds in chert float 

(Rodgers, 1953a).  Both dolomite and limestone generally dominate the Knox in the 

northwestern phase, while mostly limestone dominates the southeastern phase, including 

this sector of the Pulaski thrust sheet.   

Five formations are mapped where the Knox is more easily divisible in the 

northwestern phase (in ascending order):  the Copper Ridge Dolomite, Chepultepec 

Dolomite, Longview Dolomite, Kingsport Formation, and Mascot Dolomite.  Aside from 

lithologies, subdivision of these formations in the field is based on certain characteristic 

chert and/or sandstone stratigraphic markers (Fig. 2-16).  In the southeastern phase, 

where the Knox Group is generally dominated by limestone and contains equally 

abundant yet not easily identifiable stratigraphic markers, only two formations are 

mapped:  the Conococheague Limestone and Jonesboro Limestone.  The Upper Cambrian 

Conococheague Limestone of the southeastern phase is the calcareous equivalent of the 

Copper Ridge Dolomite and is the only Knox Group formation not deposited during the 

Ordovician.  The Jonesboro Limestone accounts for the Ordovician Knox Group in the 

southeastern phase. 

Interestingly, the study area contains some of the southeastern-most exposures of 

the northwest phase of Knox Group, and many similarities exist between the two phases 

here.  The abundance of limestone in the Knox Group just to the northwest of the Pulaski 

fault may imply that these footwall units rest at or near the transition with the more 
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Figure 2-16.  Map location of characteristic sandstone and/or chert stratigraphic markers in the Knox 
Group of both the northwest and southeast facies.  Data from Whitmer (2005) are excluded.  Colors of 
map units correspond to those in Plate I and Figures 2-1 and 2-2.    
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limestone-dominant southeastern phase.   In the Mosheim anticline, Rodgers (1953b) and 

Lemiszki (2003) mapped Copper Ridge Dolomite stratigraphically and conformably 

below the Conococheague Limestone based on the amount of limestone present.  This 

further implies that the two facies are likely near laterally widespread transition. 

 

Conococheague Limestone 

The Upper Cambrian Conococheague Limestone, named by Stose (1908) for 

exposures near Conococheague Creek in Franklin County, Pennsylvania, is one of the 

most extensive formations exposed in the Pulaski thrust sheet of the study area.  It is the 

southeastern equivalent of the Copper Ridge Dolomite, and thus shares many similarities 

in lithology, stratigraphic markers, and topography with the Copper Ridge Dolomite in 

the area.  The Conococheague Limestone is approximately 300 m (1,000 ft) thick in the 

study area, but deceptively produces a wider outcrop appearance because of several tight 

folds within the formation.  It consists of mostly medium- to thick-bedded, light to dark 

bluish-gray, silty, ribbon limestone and interbedded dark bluish-gray dolomite (Fig. 2-

17).  Ribbons consist of lightly colored dolomite and are 2-5 cm thick.  Typically, fresh 

samples of the darker gray saccharoidal dolomite exhibit a fetid (asphaltic) odor. 

The lower half of the Conococheague Limestone contains more dolomite, as well 

as sporadic quartz arenite beds near the base.  Oöids, matrix-supported rip-up clasts, and 

abundant chert of all colors, but mostly black (in situ and float), are common in places.  

One diagnostic feature of the Conococheague is the presence of black, ellipsoidal to 

spherical oöids found in chert (Rodgers, 1953a), particularly near the base of the 

formation.  Stromatolitic chert is abundant in the Conococheague, and is useful for
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Figure 2-17.  Conococheague Limestone featuring (A) ribbon limestone located northwest of Ebenezer 
Church (hammer is ~30 cm) and (B) thinly ribboned (1 cm thick) limestone (light gray) interbedded with 
massive silty dolomite with a stitching-wax weathered surface texture.  (Field book is 12 x 19 cm). 

(A) 

(B) 
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identifying the formation where no bedrock is exposed.  Fractured and banded chert is 

also common.  Soils are bright reddish orange and particularly fertile. 

 

Copper Ridge Dolomite 

The Upper Cambrian Copper Ridge Dolomite was named by Ulrich (1911) for 

exposures on Copper Ridge in Grainger County, Tennessee.  Although a moderate 

quantity is contained near its upper boundary, limestone in this formation is rare in many 

parts of the eastern Tennessee Valley and Ridge, except at or near the southeast boundary 

of the central phase (i.e., the Pulaski fault of this study area) (Rodgers, 1953a).  

Thickness is estimated to be approximately 300 m (1,000 ft).  Keeping true to its name, 

the formation produces many of the tallest knobs and ridges within the study area.   

The Copper Ridge Dolomite (Fig. 2-18) consists of light to medium gray, 

medium-bedded to massive, coarse-grained, ribbon limestone with massive dark grayish- 

blue dolomite interbedded and occasional quartz arenite beds, commonly located near the 

Chepultepec Dolomite contact.  Fresh samples of darker gray saccharoidal dolomite 

exhibit a fetid (asphaltic) odor.  Oöids, matrix-supported rip-up clasts, and abundant 

dark-colored chert (in situ and float), are common in places.  One diagnostic feature of 

the Copper Ridge Dolomite is the black ellipsoidal to spherical oöids in beds replaced by 

chert (Lemiszki, 1994), which are consistently located near the lower half of the 

formation in the Parrottsville quadrangle (Whitmer, 2005).  Stromatolitic chert is another 

diagnostic feature of the Copper Ridge, as well as the Conococheague Limestone, which 

is used in identifying both formations where no bedrock is exposed.
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Figure 2-18.  (A) Typical exposure of Copper Ridge Dolomite in the study area consisting of thick-
bedded limestone with thick (2-7 cm) dolomite ribbons located northeast of Manning’s Chapel Road near 
Bridgeport, TN.  (Field book is 12 x 19 cm).  (B)  Characteristic chert markers of both Copper Ridge 
Dolomite and Conococheague Limestone showing black oöids in chert (left) and stromatolitic chert 
(right). 

(A) 

(B) 
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Jonesboro Limestone 

Ulrich (1911) named the Jonesboro Limestone for the city of Jonesboro in 

Washington County, Tennessee.  Unlike the Ordovician Knox Group of the northwest 

phase, the Jonesboro Limestone does not generally exhibit identifiable stratigraphic 

markers used in subdividing the group, such as chert matrix sandstone at the base of the 

Mascot.  Some markers, such as the coarse-grained sandstone (Fig. 2-19A) occasionally 

found exposed near its base, however, are likely equivalent to the sandstone at the base of 

the Chepultepec Dolomite.   

The Jonesboro Limestone (Fig. 2-19B) is approximately 580 m (1,900 ft) thick, 

and consists of light to dark bluish-gray, medium- to thick-bedded and massive, medium- 

to coarse-grained limestone, which is commonly ribboned and thrombolitic.  Interbedded 

medium- to dark-blue dolomite is found sporadically.  Light colored chert is seemingly 

confined to the lower portion of the Jonesboro, some of which contain white oöids.  

Some cherty beds do occur, along with scattered quartz arenite, but these are less 

abundant than those found in the Conococheague Limestone.  

 

Chepultepec Dolomite 

The Lower Ordovician Chepultepec Dolomite was named by Ulrich (1911) for 

the town of Chepultepec (now called Allgood) in Blount County, Alabama.  The 

formation, which ranges in thickness from 230-245 m (750-800 ft), conformably overlies 

the Copper Ridge Dolomite, and its base is roughly the Cambrian-Ordovician boundary.  

It is the oldest formation exposed in the Oven Creek anticline, and most exposures in the 

study area occur in the Parrottsville quadrangle (Whitmer, 2005).  Although valleys are
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Figure 2-19.  (A) Thin-bedded, coarse-grained sandstone, a characteristic of the base of the Jonesboro 
Limestone/Chepultepec Dolomite.   Location is northeast of Manning's Chapel Road near Bridgeport, 
Tennessee.  (Field book is 12 x 19 cm).  (B) Jonesboro Limestone outcrop located ~2 km southeast of 
Susong Memorial Church featuring medium-bedded thrombolitic limestone and interbedded dolomite 
(beneath hammer).  (Hammer is ~30 cm long).  

(A) 

(B) 
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most typical, ridges characterize Chepultepec topography in particular areas in the Neddy 

Mountain quadrangle, where the unit contains notably more abundant chert.  

The Chepultepec Dolomite (Fig. 2-20) is medium to dark bluish-gray, medium-

coarse grained, thin- to thick-bedded, cherty limestone with interbedded, massive light to 

medium gray dolomite and scattered carbonate-cemented quartz sandstone.  The base of 

the Chepultepec Dolomite is marked by several sandstone beds up to 0.5-1.5 m (1-5 ft) 

thick.  Chert here can be very porous and is typically light tan to white, contrasting the 

darker chert of the Copper Ridge Dolomite.  Oöids in the chert, if visible, are generally 

white and have been observed mostly in the middle of the unit (Whitmer, 2005).  Soils 

are light orange to tan and are clay rich.      

 

Longview Dolomite 

The Longview Dolomite was named by Butts (1926) for Longview in Shelby 

County, Alabama.  It is a little over 90 m (300 ft) thick and resembles the lithology of 

underlying Chepultepec Dolomite, but is more siliceous.  The Longview (Fig. 2-21) 

consists of light to medium gray, fine- to coarse-grained, medium- to thick-bedded, 

thrombolitic and ribbon limestone with interbedded massive silty dolomite.  In the 

Parrottsville quadrangle, Whitmer (2005) noted a dominance of dolomite in the formation 

when compared to the Chepultepec Dolomite.    

The Longview contains abundant massive chert, usually light gray to tan, as well 

as scattered 1-3 cm thick quartz arenite beds.  The upper third of the Longview has been 

reported to contain occasional matrix-supported dolomite rip-up clasts (Whitmer, 2005).
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Figure 2-20.  Bluish-gray limestone and ribbon dolomite of the Chepultepec Dolomite located near 
Manning Chapel School.  (Field book is 12 x 19 cm).  

Figure 2-21.  Slightly dolomitic limestone of the Longview Dolomite with a thrombolitic texture 
and interbedded silty dolomite.  Exposure is located southwest of Cochran Bend.  (Hammer is ~30 
cm long). 
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Fossils are rare, but the gastropod Lecanospira was observed in the nearby Greeneville 

quadrangle (Byerly, 1966). 

 

Kingsport Formation 

The type locality for the Kingsport Formation is located near Kingsport, 

Tennessee, and was first described by Oder and Miller (1945).  It contains more 

limestone than other Knox Group formations in the study area, which contrasts with the 

overlying and very dolomite-abundant Mascot Dolomite.  The Kingsport (Fig. 2-22) 

reaches a thickness of about 80 m (~265 ft) and consists of light to dark bluish-gray, 

medium-bedded to massive, mostly fine-grained, ribbon limestone with sporadic chert 

nodules.  Many of the massive limestones exhibit a thrombolitic texture, common in 

Ordovician Knox and equivalent Jonesboro formations.  Most of the massive dolomite 

within the Kingsport Formation is confined to the upper portion and can be oölitic.   

A few varieties of gastropods have been found in Kingsport chert in the 

Parrottsville quadrangle (Whitmer, 2005), among other northwestern belts (Lemiszki, 

1994).  Clay-rich soils here generally weather light orange to light brown.  Solubility 

differences between the Kingsport limestone and the dense overlying dolomite of the 

Mascot are thought to be a major factor in the regional dolomitization and collapse 

features at the contact (Harris, 1971). 

     

Mascot Dolomite 

The Mascot Dolomite, first named after exposures in Mascot, Tennessee, and 

described by Oder and Miller (1945), is the youngest formation in the Knox Group.  Its 
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thickness in the study area is approximately 230 m (750 ft), but it can vary dramatically 

from 120-245 m (400-800 ft), because of the regional Knox unconformity at the top of 

the formation (Rodgers, 1953a).   

The Mascot Dolomite (Fig. 2-23) is a light to medium gray, mostly thick-bedded 

to massive, fine-grained dolomite with light gray, interbedded and ribbon limestone.  The 

massive dolomite, which appears mainly in the lower half of the formation, tends to 

weather a very light gray to tan and may display a light pink color from a higher 

manganese content (Scholle and Ulmer-Scholle, 2003).  Chert is not abundant, but some 

cherty limestones were observed in the Parrottsville quadrangle, where ridges dominate 

the topography (Whitmer, 2005).  The base of the Mascot Dolomite is characteristically 

marked by a chert matrix sandstone or other sandstone (quartz arenite) bed, mostly 

observed as float in the study area.  Although no fossils were observed here, the 

gastropod Ceratopea has been reported near the top of the formation (Bridge, 1955).  

Soils are generally light reddish-orange. 

 

Chickamauga Group 

The Chickamauga Limestone was named by Hayes (1891) for Chickamauga 

Creek in southeastern Tennessee and northwestern Georgia, and was later elevated to 

group status by Swingle (1964); the stratigraphy of the Chickamauga Group has 

historically been debated concerning its divisions and correlations throughout Tennessee 

(Ulrich, 1911; Butts, 1933; Keith, 1895; Rodgers, 1953a).  It represents a package of 

shallow-water carbonate-platform deposits formed during a transgression of the extensive 

Middle Ordovician sea (Ruppel and Walker, 1995).  These carbonates grade into a
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Figure 2-22.  Exposure of Kingsport Formation showing bluish-gray fine-grained limestone with thinly 
ribboned (0.5-1 cm) dolomite.  Location is east of Bethel Church near the Pulaski fault trace.  (Field 
book is ~12 x 19 cm). 

Figure 2-23.  Mascot Dolomite near the Pulaski fault contact along Bright Hope Road.  Exposure 
consists of typical massive light gray and fresh, fine-grained dolomite.  (Hammer is ~30 cm long). 
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detrital wedge eastward in the Appalachian basin (McLaughlin, 1973).  The Sevier Shale, 

in particular, had a southeast clastic source during the Blountian phase of the Taconic 

orogeny (Drake et al., 1989).  The Lenoir Limestone, deposited along the forelandward 

stable carbonate bank of the Middle Ordovician Sevier basin, comprises the oldest 

formation of the Chickamauga in this area. 

 

Lenoir Limestone 

Safford and Killebrew (1876) named the Lenoir Limestone for Lenoir City, 

Tennessee, to describe the basal Chickamauga limestone.  The Lenoir rests 

disconformably on the underlying Mascot Dolomite and is approximately 45-60 m (150-

200 ft) thick, with variations in thickness attributed to the erosional nature of its contact.  

One of the best places to observe this contact in the study area is along Bright Hope 

Road, near the intersection with Poplar Springs Road in the Cedar Creek quadrangle.  

The formation (Fig. 2-24A) consists of a dark bluish-gray, medium-bedded to massive, 

nodular limestone with several 0.5-2 cm-thick clay seams.   

A distinctive facies of the Lenoir in the study area, the Mosheim Member (Fig. 2-

24B), consists of a massive, light gray, fine-grained limestone.  The Mosheim Member, 

named by Ulrich (1911) for Mosheim in Greene County, Tennessee, does not contain the 

characteristic nodular texture of the Lenoir facies.  Rip-up clasts of Mascot chert and 

dolomite from the Knox unconformity have been documented near the base of the 

Mosheim facies, along with bird’s-eye structures. (Whitmer, 2005).  The gastropod 

Maclurites magnus was identified in the study area and has also been reported in both
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Figure 2-24.  Exposures of Lenoir Limestone showing (A) wavy-bedded to fine-nodular limestone 
with several 0.5-2 cm thick clay seams located northwest of the Poplar Springs Road/Bright Hope 
Road intersection, and (B) the Mosheim Member consisting of massive fine-grained limestone near the 
Pulaski fault contact along Bright Hope Road.  (Hammer is ~30 cm long).  

(A) 

(B) 
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Lenoir and Mosheim facies in the Pulaski sheet in the adjacent Davy Crockett Lake 

quadrangle (Robertson et al., 2011). 

  

Sevier Shale 

The Sevier Shale was named by Campbell (1894), likely after Sevier County, 

Tennessee.  This formation was recently subdivided by Lemiszki (2003), Bultman 

(2005), and Whitmer (2005) into lower, middle, and upper Sevier Shale.  Only the lower 

and middle units are exposed in the mapped area, forming much of the knobby 

topography to the northwest along U.S. 321.  Total thickness (Upper Sevier included) has 

been estimated to approach over 2,100 m (7,000 ft) here, based on work in the 

neighboring Mosheim and Parrottsville quadrangles (Lemiszki, 2003; Whitmer, 2005).  

The Sevier Shale is a structurally weak unit and exhibits well-developed cleavage in most 

places. 

The lower Sevier Shale (~760 m [~2,500 ft] thick) is a dark gray to black, slightly 

calcareous, fissile and silty shale with thin lenses of medium-coarse-grained limestone 

(Fig. 2-25).  Its contact with the underlying Lenoir Limestone ranges from gradational to 

abrupt (Bultman, 2005; Whitmer, 2005; Robertson et al., 2011).  The lower Sevier is 

graptolite-rich and has been determined to be within the upper part of the Nemagraptus 

gracilis graptolite zone (Whitmer, 2005).  The shale weathers yellowish-brown to olive-

brown, which contrasts with the brighter yellow to yellowish-brown of the Upper 

Cambrian Nolichucky Shale.  A distinct eastward-directed facies change of the lower 

Sevier to a coarser-grained, calcareous sandstone occurs in the adjacent Davy Crockett 

Lake quadrangle (Robertson et al., 2011).
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Figure 2-25.  Dark bluish-gray, silty lower Sevier Shale, showing a great example of 
bedding/cleavage relationships (section is upright).  Located northeast of Pigeon Creek along 
Gibson Rd.  (Hammer is ~30 cm long).  
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   With the assistance of Dr. Gary Gill Bible, samples of the darkest lower Sevier 

Shale were collected and sent to Humble Geochemical to test for its thermal maturity.  

The Sevier Shale in the study area is in the upper condensate/lower peak gas phase.  One 

sample, collected just northeast of Pigeon Creek along Gibson Road, contains ~0.82 

percent organic matter, just below the 1 percent minimum considered for good source 

material. 

The middle Sevier Shale (Fig. 2-26) contains more sandstone than the lower 

Sevier Shale, and thus becomes coarser-grained, especially in the Mosheim quadrangle 

(Lemiszki, 2003).  Its thickness is approximately 760 m (2,500 ft), and consists of thin- to 

thick-bedded, calcareous sandstone with interbedded calcareous shale.  No graptolites 

were observed here. 

 

Quaternary Deposits 

Alluvial, terrace, and colluvial deposits make up the Quaternary units that were  

mapped.  Alluvium consists of mostly poorly sorted and unconsolidated clay, silt, sand, 

and gravel found along floodplains of the Nolichucky and French Broad Rivers and their 

branching channels.  Terrace deposits consist of rounded pebbles and cobbles composed 

of mostly quartzite or gneiss of non-local origin.  Extensive colluvium is found primarily 

in the high topography of the Blue Ridge, consisting of large chunks of mostly quartzite. 

 

Stratigraphy Discussion 

The different facies of Knox and Conasauga Groups observed on each side of the 

Pulaski fault imply that the fault is a tectonic boundary that separates distinct and major
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Figure 2-26.  Middle Sevier shale-sandstone outcrop along Union Hill Road in the Parrottsville 
quadrangle consisting of calcareous fine-grained sandstone and interbedded limestone.  (Hammer is 
~30 cm long).  
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facies.  Successful subdivision of Honaker Dolomite in parts of the Pulaski thrust sheet 

indicates that the Maryville Limestone, Rogersville Shale, and Rutledge Limestone, all 

originally exclusive to the central phase of the Conasauga Group, do not completely 

pinch out in this area of the southeastern phase as previously thought.   

The abundance of limestone in the typically dolomite-dominant northwest facies 

Knox Group in the Pulaski fault footwall may indicate its close lateral proximity to the 

southeastern phase (Conococheague Limestone and Jonesboro Limestone).  This implies 

that there is a relatively widespread facies transition in this portion of the Saltville thrust 

sheet.  The Pulaski fault, therefore, was emplaced over this transition, carrying farther 

southeastern phase Knox and Conasauga Group facies.
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CHAPTER III 
 

STRUCTURE 
 

Overview of Fold-Thrust Belts 

In the southern Appalachian Valley and Ridge foreland fold-thrust belt, the source 

of Mississippian to Permian Alleghanian deformation and the master décollement can be 

attributed to the emplacement of the Blue Ridge-Piedmont megathrust sheet and 

ultimately derived from the collision of Gondwana with Laurentia (Hatcher et al., 2007a).  

This event involved:  1) initiation by the propagation of a master detachment fault in the 

ductile-brittle transition zone in crystalline crust; 2) ramping of the fault from basement 

into the Neoproterozoic-Early Cambrian rift succession; and 3) propagating into a 

mechanically weak Early Cambrian clastic unit (i.e., Rome/Waynesboro Formation) 

beneath the carbonate platform (Hatcher, 1989). 

Foreland fold-thrust belts occur between the undeformed craton (platform) and the 

metamorphic cores of mountain chains.  Chapple (1978) characterized these thrust belts 

as:  (1) being thin-skinned, or involving no basement; (2) possessing a weak basal layer 

for the detachment to traverse; (3) having a wedge (Coulomb wedge) geometry that is 

maintained throughout deformation; and (4) exhibiting plastic behavior for the entire 

thrust belt.  The thin-skinned concept was applied to the Pine Mountain thrust sheet by 

Rich (1934), when he correctly interpreted the structure as one involving the thrust 

ramping from a lower (Rome Formation) to a higher (Chattanooga Shale) detachment.  

His interpretation was made well before the concept was proved in the Canadian Rockies 

and Foothills by Bally et al. (1966).  Bounding surfaces for the fold-thrust belt in the 
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Valley and Ridge province include the basement detachment, base of the indenter (Blue 

Ridge-Piedmont thrust sheet), and surface topography (Hatcher et al., 2007a).  Wedge 

geometry was recognized by Elliott (1976) as a major factor in the deformation of thrust 

belts and is preserved in foreland fold-thrust belts by accretion, basal layer weakening, 

out-of-sequence thrusting, and normal faulting/extension (Suppe, 1981; Davis et al., 

1983; Woodward, 1987).   

Thrust development in the Appalachian Valley and Ridge is generally considered to 

be older closer to the interior of the mountain chain, propagating toward the foreland 

(Perry, 1978).  Major faults contained in the belt generally rise from the décollement near 

the basement contact.  These faults will consequently ramp at higher angles through 

strong units (e.g., limestones, dolomites, and sandstones) versus flattening that occurs 

along weak units (e.g., shales, evaporites).  Therefore, the ramp-flat structures observed 

in the Valley and Ridge can be partially attributed to the varying rock type. 

Understanding the relationship of structure to stratigraphy is especially relevant in 

fold-thrust belts (Rodgers, 1970b).  Although not scale dependent, stratigraphic variations 

in this part of the Valley and Ridge may help explain deformation styles and structures 

evident in a given region or thrust sheet (Woodward et al., 1988).  Thrust development 

and folding styles, in particular, can be characterized by the notion of structural lithic 

units (Currie et al., 1962), which are mechanically similar stratigraphic sequences of 

contrasting mechanical properties (strong vs. weak).  Three sequences that are considered 

structural lithic units have been recognized in the study area:  the Rome-Conasauga 

interval, Knox Group interval, and the Middle Ordovician (Chickamauga Group) interval 

(Harris, 1976; Woodward et al., 1988).  The relatively low mechanical strength of the 
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Rome-Conasauga and Middle Ordovician intervals, when compared to the more 

competent Knox Group, typically controls thrust geometry and detachment location and 

also generates tighter and more complex folds under compression. 

 

Mesoscopic Structures 

Bedding 

In the study area, the average strike of bedding is N57E, typical of this part of the 

Valley and Ridge (Figs. 3-1A, 3-1B).  Although deformation style contrasts on both sides 

of the Pulaski fault, no distinct differences in bedding orientation could be recognized 

between the Pulaski and Saltville sheets here (Figs. 3-1C, 3-1D).  Because bedding is a 

primary planar structure, it may not have been substantially affected by the timing or 

complexity of deformation in the region.  Furthermore, horizontal compaction of strata 

from an early stage of Alleghanian deformation could have increased the overall strength 

of both thrust sheets, thus reducing the extent of subsequent deformation observed in 

bedding.  

 Variation in bed thickness throughout the area plays an important role in 

influencing mesoscopic structures, including the presence of cleavage, spacing of joints, 

and displacement of faults.  More competent rocks generally have thick to massive 

bedding, but mechanically weaker rocks (e.g., Nolichucky and Sevier shales) commonly 

exhibit with very thin to thin beds.  Frequently, beds observed in the Honaker Dolomite 

and its central phase equivalent formations have several thickness fluctuations.  This 

variation in thickness affects mesoscale fold geometry, most notably during the processes 

of flexural-slip and strain partitioning.
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Figure 3-1.  Lower hemisphere, equal-area projection of (A) 2,166 poles to bedding in the study area.  
Bedding data include measurements made by Whitmer (2005).  (B) Contoured data from (A).  (C) Only 
data points in the Pulaski thrust sheet (n=806) from (A).  (D) Only data points from the Saltville thrust 
sheet (n=1,360) in (A).  Fold axis orientations in the study area is not accurately represented from the 
beta angles (green) on these bedding plots, since many of the macroscopic folds are highly 
noncylindrical.  Plots made using GEOrient v. 9.2 by Rod Holcombe (University of Queensland). 

(A) 

(C) (D) 

(B) 
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Faults 

Few mesoscopic thrust faults with considerable displacement, ranging from 0.5 m 

in the Jonesboro Limestone near the Great Smoky fault and up to 3 m in parts of the 

Sevier Shale (Whitmer, 2005), were observed in the study area.  Several thrust and 

normal faults with minor displacement (< 0.5 m) were observed in the cores of folds, 

generally anticlines, which are probably accommodation structures.  The best location to 

see mesoscale faults in outcrop is along U.S. 70 near where the Great Smoky fault 

crosses the French Broad River (Fig. 3-2).  This array of thrust and normal faults, drag 

folds, and fault gouge is interpreted as footwall deformation from the adjacent overriding 

Blue Ridge-Piedmont megathrust sheet. 

 

Folds 

Buckle folds make up the majority of folds in the study area, largely in part 

related to the large amount of shortening that accompanied fold-thrust belt formation in 

close proximity to the megathrust sheet indentor.  Both flexural-slip and flexural-flow 

mechanisms are prevalent, depending on layer thickness and contrast in internal ductility.  

Flexural-slip folds here are commonly seen in the Sevier sandstones in the Parrottsville 

quadrangle and the thin- to medium-bedded carbonates of the Conasauga Group in the 

Pulaski sheet (Fig. 3-3).  Examples of fault-propagation folds were observed in the Sevier 

Shale (Whitmer, 2005). 

Fold types consist of both cylindrical and noncylindrical geometry, with the bulk 

of noncylindrical folds contained in the Pulaski sheet nearest to the map trace of the 

Pulaski fault.  Most folds are gently plunging and are characterized by axial surfaces,
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Figure 3-2.  Outcrop is along U.S. 70 near the Great Smoky fault-French Broad River intersection 
containing footwall deformation in Jonesboro Limestone.  (A)—uninterpreted.  (B)—interpreted.  Fault 
gouge, which is not clearly seen in the photo, is confined to the fault zone (yellow shaded polygon) in (B).  
Hammer is ~30 cm.  (Photo by Robert D. Hatcher, Jr.)   



 67

Figure 3-3.  Tight fold in the Rutledge Formation showing flexural-slip and flexural-flow, indicated 
by slickensides on the bedding planes (slip mechanism) and a thickened hinge (flow mechanism).  
Plunge is into photo.  This outcrop is located along Long Creek Road, just southwest of Peanut Road 
in the Neddy Mountain quadrangle.  Field book is 12 x 19 cm. 
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planar to cleavage, that are generally steep to near vertical (Fig. 3-4).   

Numerous disharmonic folds also formed here because of the rheological and/or 

thickness differences between layers.  This is most notably evident in the middle and 

upper Conasauga Group rocks that commonly comprise interbedded shaly units between 

more competent carbonates (Fig. 3-5A).  A relatively high concentration of strongly 

disharmonic folds can be observed ~1.6 km (~1 mile) northeast of the Long 

Creek/Kenyon Road intersection, adjacent to both the Pulaski and Dunham Ridge faults 

(Fig. 3-5B).  Here, the gradational and interfingering contact of Nolichucky Shale and 

thin-bedded Maryville Limestone in the core of an overturned syncline provides a weak 

and highly anisotropic zone for strain to accumulate. 

Mesoscopic fold hinges frequently display similar trends to map-scale folds (Fig. 

3-4; Plate I), echoing Pumpelly’s rule, which states that small-scale structures are 

generally congruent with large-scale structures that were formed at the same time 

(Pumpelly et al., 1894).  The discrepancies in orientations that exist between mesoscopic 

and macroscopic orientations may reflect multiple deformation phases, but the relatively 

few mesoscopic fold measurements collected in the Pulaski sheet cannot confirm this. 

 

Cleavage 

Slaty and fracture cleavage are non-pervasive throughout the study area and are 

generally associated with meso- and macroscopic folds and faults in weaker units of the 

region (Yust, 1975; Whitmer, 2005).  Because of the abundance of calcareous units and 

their relative solubility, pressure solution is the dominant cleavage-forming mechanism in 

the Pulaski and Saltville thrust sheets.  The majority of cleavage in both sheets has an

(A) 

(B) 
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Figure 3-4.  Lower hemisphere, equal-area projection of 38 poles to axial surfaces (stars) and hinge 
lines (black dots).  The mean principal orientation for axial surfaces is 048/61SE and 067/17NE (trend 
and plunge) for hinge lines.   
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Figure 3-5.  (A) Disharmonic folding, with a component of flexural slip (and flexural flow?) in 
Nolichucky Shale.  (Hammer head is ~18.5 cm).  (B) Strongly disharmonic folds in thin-bedded 
Maryville Limestone.  (Brunton compass is ~8 cm in diameter).  Both (A) and (B) are located in the 
southwest corner of the Cedar Creek quadrangle. 

(A) 

(B) 



 71

axial planar orientation (058/89SE; Fig. 3-6) and typically found well-developed near 

fold hinges in fine-grained rocks (e.g., lower Sevier Shale and Nolichucky Shale) and less 

frequently found in the thick carbonate units of the Knox Group. 

 Figure 3-6 shows a distribution of cleavage that is fanned and spread over the 

study area.  This implies that cleavage was developing during folding here.  A second 

distribution of steeply dipping (northeast and southwest) cleavage sets may represent a 

later folding stage, supporting the argument for polyphase deformation in the Pulaski 

thrust sheet.  Troensegaard (1965) also interpreted cleavage in this area to have formed 

during or in late stages of folding, since cleavage is commonly not displaced by slip 

along bedding.  Aside from overturned stratigraphic sequences, the angular relationships 

between cleavage and bedding were used in determining whether a fold limb is upright or 

overturned (Fig. 3-7).  Bedding is often obscured in the lower Sevier Shale and 

Nolichucky Shale where cleavage is dominant.  However, pencil cleavage from bedding-

cleavage intersections is common in both formations and parallels adjacent fold axial 

traces (Fig. 3-8). 

Lemiszki (2008) noted that cleavage in the Knox Group is rare to nonexistent in 

the Valley and Ridge of Tennessee, except within the Pulaski thrust sheet.  The 

abundance of limestone in the southeastern Knox facies of the Pulaski sheet, versus more 

dolomite in thrust sheets to the west, could have contributed to the higher frequency of 

cleavage formation, since dolomite is more resistant than calcite at shallow crustal levels 

(Hugman and Friedman, 1979).  Cleavage development in the Knox Group in the 

Newport quadrangle contributed to Lemiszki’s suggestion for the continuation of the 

Pulaski fault farther southwest than the terminus shown in Hardeman et al. (1966).
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Figure 3-6.  (A) Lower hemisphere, equal-area projection of 113 poles to cleavage planes.  (B) 
Contoured data from (A).    Mean principal direction is 058/89SE.  Data include measurements from 
Whitmer (2005).  Plots made using GEOrient v. 9.2 by Rod Holcombe (University of Queensland). 

(A) (B) 
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Figure 3-7.  Outcrop of middle Sevier Shale near Trentham Hollow Road in the Parrottsville 
quadrangle showing cleavage (green lines) and bedding (orange lines) relationships.  The dip of 
cleavage is steeper (~80º) than bedding (~55º), indicating that this section is upright.  Field book is 
12 x 19 cm. 
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Figure 3-8.  Outcrop of lower Sevier Shale southeast of Whittenburg Church in the Cedar Creek 
quadrangle exhibiting pencil cleavage.  Brunton compass is ~8 cm in diameter. 
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However, he acknowledged that Knox Group cleavage is also present in the footwall of 

his projected Pulaski fault, and therefore the presence of cleavage could not be a deciding 

factor for the location of the fault. 

 

Joints 

Although not a major focus of this study, joints are well-developed in all rock 

units and most exhibit irregular surfaces; they can be filled with calcite.  As noted by 

Byerly (1966) in the Greeneville quadrangle, jointing, like cleavage, is most evident in 

both Nolichucky Shale and Sevier Shale where closely spaced joint sets produce blocky 

shale chips.  Joint spacing of many of the carbonate rock units is relatively wide and 

more difficult to accurately determine in the field than in less competent units.  

 

Stylolites 

Diagenetic and tectonic stylolites are sparingly present in all carbonate units of 

the study area and are most frequently seen in the Knox Group (Fig. 3-9).  Diagenetic 

stylolites are generally bedding-parallel, indicating that 1 was vertical, while tectonic 

stylolites are generally transverse or at a high angle to bedding (Hatcher, 1995).  Andrews 

and Railsback (1997) analyzed both types of stylolites in the southern Appalachians and 

determined that bedding-parallel stylolites could have formed in both pre-tectonic and 

post-tectonic settings, with the latter reflecting loading by overthrust burden and/or the 

shedding of sediment from the hinterland.
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Figure 3-9.  Possible tectonic stylolite located northwest of Cottage Road in the Neddy Mountain 
quadrangle.  Stylolite is dipping at a higher angle (~65º) than bedding here (50º; not shown in photo).  
Amplitudes of teeth (normal to 1) average 0.5-1.5 cm.   Diameter of formerly lost golf ball is ~4 cm.    
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Regional Structures  

 
Pulaski Fault 

The Pulaski fault (i.e., thrust system) stands out among other faults in the Valley 

and Ridge.  One aspect is its overall large extent, some 563 km (350 miles) from  

Rockingham County, Virginia, to its southwestern terminus in this study area south of 

Parrottsville, Tennessee (Fig. 1-2).  Here the Pulaski is overridden by the thin-skinned 

Great Smoky fault in the Neddy Mountain quadrangle.  Strangely, this is the only 

southern Appalachian Valley and Ridge fault to continue into the central Appalachians 

around the 30º bend of the Roanoke recess in southwestern Virginia (Rodgers, 1970b).  

Southern Appalachian faults, including the Saltville, Copper Creek/Narrows, and St. 

Clair faults terminate as anticlines in the Roanoke bend (Butts, 1933; Rodgers, 1970b; 

Couzens and Dunne, 1994).  Near the recess, dominant folding trends change upwards of 

55º from the central to the southern Appalachians (Bartholomew, 1987; Evans and 

Dunne, 1991).  The Pulaski fault becomes a series of thrusts here, including the Catawba, 

Salem, and Christiansburg faults (Fig. 3-10).  At its northern terminus near Staunton and 

Harrisonburg, Virginia, the Pulaski fault dies into a northeast-plunging anticline, similar 

to other southern Valley and Ridge faults (Rodgers, 1970b).  This occurs adjacent to the 

northeast terminations of the Blue Ridge thrust system and Rockfish Valley fault near 

Front Royal, Virginia (Bartholomew and Lewis, 2010).  

As indicated by its sinuous trace in the study area, the Pulaski fault has a very low 

dip, ranging from subhorizontal to 20º near the surface and becomes steeper near its 

junction with the Dunham Ridge fault (Fig. 3-11).  The “S”-curve trace of the Pulaski
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Figure 3-10.  Generalized tectonic map of the Pulaski thrust sheet and adjacent structures near the Roanoke recess.  Lined area is the 
complexly folded and faulted plate that contains the “broken formation” of Schultz (1986) to which the Max Meadows breccia is confined.  
Bluish-green polygons are orphans and horses within the Pulaski sheet.  Royal blue-Blue Ridge province; bold red line-Pulaski fault; CAT-
Catawba fault; CHT-Christiansburg fault; DMA-Draper Mountain allochthon; ERA-Eagle Rock allochthon; GCW-Goose Creek window; 
PMW-Price Mountain window; SLT-Salem thrust; F-Fincastle; P-Pulaski; RO-Roanoke/Roanoke recess.  Modified from Bartholomew (1987) 
and Bartholomew and Lewis (2010). 

V

V

V
V

V

V

V

V

V

V

V

V

V

V

V

V

V V

V V

V

V

V

V

V

V
V

V

V

V

V

V
V

V

V

V

V

V

V

V

V
V

V

V

V

V

V

V

V

V

V

V

V

V

V
V

V

V

V

V

V

V

V

V

V

V
V

V

V

V

V
V

VV

V

V

0 10 km

N

PMW

ST CLAIR THRUST

NARROWS THRUST

SALTVILLE THRUST

DMA

ERA

GCW

SALEM SYNCLINORIUM
SLT

P

FINCASTLE

SYNCLINORIUM

WV

VA

RO

F

V

V

B L U E R I D G E S H E E T

P U L A S K I S H E E T

CHT

CAT

V

V

V

V

V

V
V

V

V

V

V



 79

Figure 3-11.  Structure contour map of the main Pulaski fault (PUL) near its terminus in the study area.  
Contour lines (green) are expressed in feet above and below sea-level.  Contour interval for solid 
contours is 1,000 ft.  Dashed contours (C.I. = 250 feet) are added to provide more detail in the flattest 
area.  Note steeper dips in proximity to the Dunham Ridge (DNM) and Great Smoky (GS) faults.  Cross 
sections from lines A-A’ and B-B’ are found on Plate II.   
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here is also prevalent in other areas along the fault, such as the Babbs Knobs flap near 

Greeneville, Tennessee, which exhibits a similar but more complex “S” and “Z” pattern 

(Keith, 1905a; Rodgers, 1953b; Byerly, 1966; Roper, 1977; Bultman, 2005), and near 

Marion and Staunton, Virginia (Butts, 1933).  Byerly not only attributed the irregularity 

of the fault trace in the Babbs Knobs flap and the rest of northeast Tennessee to a shallow 

dip (10º to 20º), but also to post-emplacement folding.  His interpretation of the flap is 

based on its strong similarities to geometry and drill data of the Rocky Valley fault near 

New Market, Tennessee (Bumgarner et al., 1964).  As shown in Figure 3-11, the Pulaski 

fault in the study area has also been folded. 

Stratigraphic displacement changes considerably in the study area, with relatively 

progressive displacement increasing southward along the Pulaski trace.  Approximately 

853 m (2,800 ft) of vertical displacement exists near the core of the Bright Hope 

anticline.  Stratigraphic displacement is at least 1.4 km (4,500 ft) where the Rutledge 

Limestone and Mascot Dolomite are contiguous adjacent to the Pulaski fault terminus.  

However, this extreme and southwesterly progressive vertical displacement change is 

mostly likely apparent and not true displacement, caused by the sinuous trace/low dip of 

the Pulaski fault and the lateral change in lithofacies (e.g., Knox Group) between thrust 

sheets (Fig. 3-12). 

Based on restored and balanced cross sections through the study area, horizontal 

displacement of the Pulaski fault (not factoring in structurally lower thrust sheets) is at 

least 23.8 km (14.8 mi) with approximately 30% shortening within the enclosed Pulaski 

thrust sheet.  Near Roanoke, Virginia, the Draper half window exposes the Pulaski sheet, 

indicating horizontal displacement of the fault to be at least 15 km (9.3 miles) (Hatcher et



 81

Figure 3-12.  Pulaski fault along Whittenburg Road in the northern Cedar Creek quadrangle, 
shown thrusting the southeastern phase Jonesboro Limestone over lower Sevier Shale.  
Northwestern phase Knox Group is immediately northwest of the fault. 
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al., 1989).  Palinspastic restoration of the entire Pulaski thrust sheet in the Roanoke recess 

places the origin of the leading edge of the thrust sheet 100-110 km to the southeast 

(Bartholomew, 1987).  This is roughly 5-6 times greater than the combined displacement 

along the Saltville, Copper Creek/Narrows, and St. Clair faults near the recess 

(Bartholomew and Whitaker, 2010).  

Based on the presence of Shady Dolomite and Chilhowee Group rocks in the 

Pulaski thrust sheet (Glade Mountain and Lick Mountain anticlinoria) between Pulaski 

and Marion, Virginia, the Pulaski fault most likely originated in a structurally lower 

detachment than the Rome Formation at this latitude (Butts, 1933; Rankin et al., 1972; 

Bartholomew et al., 1980).  This aspect is surprisingly similar to faults of the Blue Ridge, 

such as the Miller Cove fault, which carries pre-deformed strata unlike the thin-skinned 

Great Smoky fault (Hatcher et al., 2007b).  That raises questions as to whether or not the 

Pulaski fault represents a dismembered thin-skinned segment of the Blue Ridge frontal 

thrust complex or is a true Valley and Ridge thrust that happens to contain Lower 

Cambrian rocks from a more easterly drift basin (Hatcher et al., 1989).  However, the fact 

that the Pulaski sheet contains relatively unmetamorphosed rocks in stratigraphic 

continuity with ages as young as Middle Ordovician in northeastern Tennessee (Rodgers, 

1953a) and lower Mississippian in southwestern Virginia (Butts, 1933) suggests Valley 

and Ridge affinity. 

Interestingly, Middle Cambrian formations (i.e., Honaker Dolomite and 

equivalent central facies; Fig. 2-8) are the oldest rocks exposed in the Pulaski fault 

hanging wall in this study area and all of northeast Tennessee (Rodgers, 1953b; 

Hardeman et al., 1966).  Based on this relationship and lack of the Lower Cambrian 
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Rome Formation in the thrust sheet, Rodgers (1953a) and Byerly (1966) suggested that a 

weak lower shaly unit in the Honaker Dolomite, or probably the Rutledge 

Limestone/Pumpkin Valley Shale transition, served as a local detachment for the Pulaski 

fault here.  In the footwall, the structurally weak basal part of the lower Sevier Shale 

likely acted as a glide zone for the Pulaski fault, subsequent to ramping from its lower 

detachment.  Although Knox Group rocks adjacent to the fault trace are most prevalent 

toward the southwest portion of the study area, the Sevier Shale comprises most of the 

adjacent footwall to the northern region, and to most of the nearly 48 km (30 mile) 

segment of the Pulaski fault in the Mosheim and Greeneville quadrangles (Byerly, 1966; 

Lemiszki, 2003). 

Another diagnostic feature of the Pulaski fault system is its association with the 

massive Max Meadows tectonic breccia, named for Max Meadows, Virginia.  It occurs 

most frequently near the Max Meadows fault, sequentially located a few hundred meters 

above the basal Pulaski fault in southwestern Virginia (Cooper, 1938; Cooper and Haff, 

1940).  This breccia was first concluded to have a tectonic origin by Cooper (1938), but 

was previously thought to be a sedimentary conglomerate or cave breccia (Campbell, 

1925).  Rodgers (1970a) further postulated that the Max Meadows breccia was derived 

from a tectonically deformed Cambrian evaporite sequence.  Specific occurrences of the 

breccia are along faults, in the cores of folds, and as breccia “dikes” in an undeformed 

wall rock (Cooper, 1939; Cooper and Haff, 1940; Bartholomew and Schultz, 1980; 

Bartholomew, 1987).  

Unfortunately, no tectonic breccia observed in the study area matches the 

thickness or character of the Max Meadows breccia, but a few contained in the Pulaski 
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thrust sheet may be correlative.  An isolated tectonic breccia “dike” with large clasts up 

to 5 cm in diameter was observed near the Long Creek Road/Peanut Road intersection in 

the Neddy Mountain quadrangle (Fig. 3-13A).  This and other tectonic breccias in the 

study area (Figs. 3-13B, 3-13C) are positioned close to major faults, although none are 

directly associated with the main Pulaski trace.  Only one of these breccias, located 

immediately southwest of St. James Church in the Cedar Creek quadrangle, is positioned 

in a major fault zone of the area (i.e., the Dunham Ridge fault). 

 

Pulaski Thrust Sheet Characteristics 

The Pulaski thrust sheet is bounded in the study area by two major faults, the 

Pulaski and Great Smoky (Plate I), and is positioned on the easternmost boundary of the 

Tennessee Valley and Ridge province, underlying the adjacent Great Smoky and 

Holston-Iron Mountain thrust sheets.  Bartholomew (1987) defined the Pulaski thrust 

sheet as a complex, composite sheet in which various “plates” were juxtaposed during 

different stages of Alleghanian thrusting.  The Pulaski sheet has been interpreted to be 

part of an extensive duplex thrust system, with the Pulaski fault serving as the floor thrust 

in most cases and the Great Smoky-Holston Mountain fault being the roof thrust (Boyer 

and Elliott, 1982; Woodward and Gray, 1985; Bartholomew, 1987; Harlow, 1987).   

The style of folding between the Pulaski and adjacent Saltville thrust sheets 

differs in both geometry and complexity.  Several macroscopic folds in the Pulaski sheet 

are tight to isoclinal and overturned.  At least four major folds, some highly 

noncylindrical, shallow their axial surfaces and change from upright to overturned along 

strike (Fig. 3-14).  Therefore, I interpret a majority of these folds to exhibit a type 3
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Figure 3-13.  (A) Tectonic breccia “dike” with clasts as large as 5 cm in diameter, located just north of the 
Long Creek Road/Peanut Road intersection.  Hammer head is ~18.5 cm.  (B) Photomicrograph (crossed 
nicols) of breccia found in the Dunham Ridge fault zone near St. James Church.  Large clasts are mostly 
dolomite and siltstone in a calcite-cemented matrix.  (C) Photomicrograph (crossed nicols) of breccia found 
near the Great Smoky fault along Happy Hollow Road in the Neddy Mountain quadrangle.  This breccia is 
more matrix-supported than (B), and contains mostly limestone and some dolomite clasts in a sparry calcite-
cemented matrix.  Field of view for (B) and (C) is ~10 mm.

(A) 

(B) (C) 
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Figure 3-14.  Structural trend map of the northeast Tennessee study area, which includes data from 
Whitmer (2005).  Light tan—Pulaski thrust sheet; light purple—Blue Ridge province.  Note the several 
tightly spaced and overturned folds within the Pulaski thrust sheet (shown in blue), versus the broad open 
folds of the Saltville sheet (shown in green).  The horse at the leading edge of the Pulaski sheet is 
designated by the orange lined area.  Fault and fold symbols correspond to those in Plate I.  Cross 
sections for lines A-A’ and B-B’ are found on Plate II. 
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interference pattern, caused by a minor reorientation of shortening direction as a 

continuation of the same folding process that affected the rocks previously (Ramsay, 

1962; Hatcher, 1995).  The change of Knox Group facies in the Pulaski hanging wall,  

including more limestone and thinner beds, also likely played an important role in the 

style and degree of deformation observed. 

Macroscopically, the only types of faults observed in the Pulaski thrust sheet are 

thrusts, which are more abundant than in the adjacent Saltville sheet (Fig. 3-14).  These 

faults, which tend to vary in orientation, exhibit much steeper dips than the Pulaski floor 

fault and emerge along the northwest limbs of several folds.  The Nolichucky Shale and 

Honaker Dolomite act as the weak detachment layer for many faults in the Pulaski thrust 

sheet.  Aside from the Dunham Ridge fault, most possess relatively small displacements.     

In the north-central portion of the study area, a horse of northwestern facies Knox 

Group is contained in the Pulaski thrust sheet.  As the Pulaski fault propagated through 

the massive Knox carbonates of the underlying Saltville thrust sheet, this slice of the 

footwall was transported within the Pulaski thrust sheet at its leading edge.  The horse 

may be part of a cutoff syncline.  Bartholomew and Lewis (2010) worked out fold and 

fault geometry in the Pulaski thrust sheet of southwestern Virginia by suggesting the term 

orphan, which is a variety of horse.  Orphans are commonly considered far-traveled 

(upwards of 100 km) horses or duplexes and consist of strata that are unrelated to nearby 

rocks of the hanging wall or footwall (Bartholomew and Lewis, 2010).  Based on cross 

sections, the horse in the study area could have originated from Knox Group strata at the 

Pulaski fault transition of ramp-to-flat geometry, which is approximately located beneath 

the Dunham Ridge fault.  Transport distance of the horse, and thus the thrust sheet from 
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this point, would be ~2.9 km (1.8 mi).  Therefore, I do not consider this structure in the 

study area to qualify as an orphan, and the sequential ramping history of the Pulaski fault 

derived from reconfiguration of orphans in the southwestern Virginia area cannot be 

reproduced here. 

Crosscutting relationships in the study area suggest that the Pulaski fault may be 

an out-of-sequence thrust, emplaced after many of the underlying thrusts in the footwall 

(Plate II).  In contrast, the occurrence of higher conodont alteration index (CAI) values in 

the Pulaski thrust sheet than those in the Saltville thrust sheet, suggests that the Pulaski 

sheet was emplaced first (Epstein et al., 1977; Harris, 1979; Lewis and Hower, 1990).  

Based on these data and the Pulaski’s large transport distance, Lewis and Hower (1990) 

speculated that the “thermal event” affecting the Pulaski thrust sheet could be a different 

phase than other sheets in the Valley and Ridge. 

 

Major Footwall Structures 

One major regional structure in the Pulaski footwall is the doubly plunging Bays 

Mountain synclinorium (Fig. 3-15), which occupies ~1,425 km2 (550 mi2) of the Valley 

and Ridge province and extends ~145 km from Kingsport, Tennessee, southwest to 

Etowah, Tennessee (Cummings, 1962, 1965; Bultman, 2005; Whisner, 2005).  The area 

is characterized by relatively large and open, doubly plunging folds, which are typical in 

the thick Cambro-Ordovician carbonate sequence.  These map-scale folds are outlined by 

the Bays Formation (not seen in the study area) and the Sevier Shale (Rodgers, 1953a, 

1953b; Cummings, 1962).  At this latitude, the Bays Mountain synclinorium is ~26 km 

wide (perpendicular to strike) and is flanked by the Saltville and Dumplin Valley faults to
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Figure 3-15.  Extent of the Bays Mountain synclinorium in relation to the study area and the rest of the Tennessee Valley and 
Ridge province.  Study area includes mapped Parrottsville and portion of the Cedar Creek quadrangles from Whitmer (2005).  
K-Knoxville; N-Newport; BK-Babbs Knobs flap; QK-Quaker Knobs flap.  Modified from Hatcher et al. (1990) and Whitmer 
(2005). 
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the northwest and the Pulaski and Great Smoky faults to the southeast (Rodgers, 1953b, 

Whitmer, 2005).  On a regional scale, the majority of the mesoscopic folds are generally 

disharmonic from the varying mechanical strengths of units (Bultman, 2005).  The Sevier 

Shale absorbed most of the deformation/strain, based on the majority of observed 

mesoscopic structures being confined to this formation (Troensegaard, 1965). 

In the study area, the footwall block of the Pulaski fault is the Saltville thrust 

sheet.  The Saltville fault, named by Stevenson (1885) for exposures near Saltville, 

Virginia, is the largest fault system in the Appalachian Valley and Ridge.  It extends from 

south of Dalton, Georgia, where it is interpreted to transfer displacement to the Rome 

fault (Munyan, 1951; Rodgers, 1953b), to its northeastern terminus near the central-

southern Appalachian transition northwest of Roanoke, Virginia (Fig. 1-2).  Locally, the 

most dominant macroscale structures in the Saltville thrust sheet are the Oven Creek 

anticline and the Stillhouse fault (Plate I).  Fold geometry is characteristically broad and 

open here (Fig. 3-14), typical of folding in the thick and competent Knox Group 

contained in the Bays Mountain synclinorium.  While Sevier Shale dominates the 

northern portion of the Saltville sheet, both facies of Knox Group rocks, along with 

Maynardville Limestone, make up the southern half.  This area is highly faulted and 

perhaps associated with its proximity to the Pulaski fault terminus and/or the overriding 

Great Smoky fault. 

   

Great Smoky Fault 

The thin-skinned Great Smoky fault, previously referred to as the Meadow Creek 

Mountain-Holston Mountain thrust fault in the study area (Rodgers, 1953b; Hardeman et 
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al., 1966), serves as the local boundary between the Valley and Ridge and Blue Ridge 

provinces.  The entire Great Smoky fault system (including the Miller Cove fault to the 

southwest) is the only thrust system of the Blue Ridge to exhibit thin-skinned behavior 

(Hatcher et al., 2007b).  Its upper detachment is likely in the weak, subchlorite-grade 

Walden Creek shales (Sandsuck Formation), while its lowest detachment is along the 

ductile-brittle transition in Paleozoic basement to the southeast (Hatcher et al., 2007b).   

The Great Smoky is not well exposed in most of the study area, because of the 

abundance of colluvial/alluvial cover obscuring its trace.  Mostly unmetamorphosed 

Lower Cambrian rocks are exposed in its hanging wall, including the Rome Formation, 

Shady Dolomite, and Chilhowee Group.  Although not depicted in cross sections 

constructed in the study area, the Great Smoky is likely a shallow-dipping fault, based on 

nearby seismic reflection lines (Hatcher et al., 2007b).   

 

Map-Scale Structures 

Several of the most prominent map-scale structures delineated from detailed 

mapping in this study have been assigned locally relevant names for referral purposes.  

Names for most of the macroscopic faults that transect the Parrottsville quadrangle were 

suggested by Lemiszki (2003) and Whitmer (2005).  Although some of the same 

structures of this study area were previously mapped by Rodgers (1953b), no names were 

assigned to any of the major folds in the Pulaski sheet.  For additional information 

regarding map-scale structures in the Parrottsville quadrangle portion of the study area, 

see Whitmer (2005). 
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Oven Creek anticline 

The Oven Creek anticline (~18 km in length), which crosses parts of three 

quadrangles (Parrottsville, Cedar Creek, and Mosheim), trends northeast-southwest and is 

doubly plunging.  A complete section of the Ordovician Knox Group, with Chepultepec 

Dolomite exposed in its core, can be observed via a transect in the northwestern corner of 

the Cedar Creek quadrangle.  On the southeast limb, dip measurements average 55ºSE, 

whereas dips average 60ºNW on the northwestern limb with numerous steeply overturned 

(~70º) southeast dips.  Based on bedding data collected in the portion of the Oven Creek 

anticline in the study area, its axial trend is N58ºE with a plunge of 3ºSW (Whitmer, 

2005).  The Pulaski and Brookside Mill faults serve as the southernmost margin of the 

southeast limb.  Industry seismic reflection data (Fig. 3-16) from a profile in the 

Parrottsville quadrangle were used to assist in interpreting depths and geometry of the 

anticline.  Imbricates from the Stillhouse fault were placed in the core of the Oven Creek 

anticline based on the seismic data and room problems. 

 

Bright Hope anticline 

Immediately southeast of the Oven Creek anticline in the Cedar Creek quadrangle 

lies the Bright Hope anticline, named in this study for a main road transecting the fold 

(Plate I; Fig. 3-14).  It is located just to the northwest of the Pulaski fault trace.  On 

average, the anticline (at least 6.4 km in length) trends 058 and possesses steeper dips on 

its southeastern limb (~72º) than its northwestern limb (~59º).  It appears that the Pulaski 

fault may have obliquely truncated part of the Bright Hope anticline.  However, the 

occurrence of different Knox Group facies on each side of the Pulaski fault here implies
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Figure 3-16.  Seismic profile from the Amoco 5CM-1 line in the Parrottsville quadrangle (Plate I) 
showing uninterpreted (A) and interpreted (B) data.  Red—faults; Yellow—unit bedding contacts.  
One second in T.W.T. equals ~2.85 km.  For explanation of abbreviations, see Plate I.  Interpretations 
modified from Whitmer (2005). 

Osv

Osv

Osv

Osv

O_k

O_k O_k

O_k

O_k

_c + _r

_c + _r

_c + _r

_c + _r

O_k

_r
_r

_c + _r

p_b p_b

Stillhouse fault Oven Creek anticline

O_k

_c + _r



 94

an unusually large displacement within the anticline.  Therefore, I interpret that the 

adjacent rocks on the southeastern side of the Pulaski fault are likely not a cutoff part of 

the Bright Hope anticline, but instead are associated with other hanging wall structures. 

      

Stillhouse fault 

The northwest-verging Stillhouse fault is located northwest of the Oven Creek 

anticline and serves as the main detachment for the Goodwater Branch and Askew faults.  

This fault was originally recognized by Hatcher (unpublished data) in several seismic 

reflection profiles (Fig. 3-16) and was subsequently mapped on the surface by Whitmer 

(2005).  In cross section view, it is the only fault present that is exposed on the surface 

and also joins the underlying Saltville fault.  Its horizontal displacement is up to 4.7 km 

(2.9 miles).  Like the Pulaski fault, displacement increases progressively southwestward 

along strike, where lower Sevier Shale is thrust over middle Sevier Shale. 

 

Askew fault and Goodwater Branch backthrust 

The two major imbricates of the Stillhouse fault that crop out at the surface are 

the Askew and Goodwater Branch faults located on the southeast and northwest flanks of 

the Oven Creek anticline, respectively.  Both have very small displacements, with only 

the Askew fault clearly showing displacement in map view (Mascot Dolomite over lower 

Sevier Shale).  The Goodwater Branch backthrust is a southeast-verging fault and may 

continue to the northeast for up to 7 km in the Mosheim quadrangle (Lemiszki, 2003).  

Both faults have been interpreted to form via accommodation during emplacement of the 

Stillhouse fault (Whitmer, 2005).  Remapping of these faults in this study (Plate I) was 
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based on changes in topography, bedding data, and locations in the seismic reflection 

profile (Fig. 3-16).       

 

Brookside Mill fault 

The northwest-verging Brookside Mill fault is positioned in the southernmost part 

of the Parrottsville quadrangle and appears to be truncated by the shallow-dipping Pulaski 

fault.  Unlike the Pulaski and Stillhouse faults, it increases stratigraphic displacement to 

the northeast.  Projection of the Brookside Mill fault and apparent deformation in its 

hanging wall observed beneath the Pulaski fault in cross section might suggest 

deformation in the Pulaski footwall prior to its emplacement.  However, I agree with both 

Bartholomew (1987) and Woodward and Beets (1988) that regionally speaking, the 

Pulaski fault ramped across a relatively undeformed footwall.   

 

Evans Valley and Seven Springs Valley synclines 

The two longest macroscopic folds in the study area are the Evans Valley syncline 

(14.5 km, trending 059) and the Seven Springs Valley syncline (10.5 km, trending 062), 

both of which are named for prominent topographic lows.  They are gently northeast-

plunging and noncylindrical along their axes.  Both contain at least one overturned limb 

and are gradually positioned upright down plunge.  The Seven Springs Valley syncline 

contains rocks as young as Jonesboro Limestone, whereas the Evans Valley syncline 

exposes units as young as lower Sevier Shale in its core.  Several tight folds are 

positioned along the northwest limb of the Evans Valley syncline, denoting the large 

amount of shortening that occurred in the Pulaski sheet, especially near the leading edge. 
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Linebaugh Bend anticline 

The Linebaugh Bend anticline, named for the nearby bend in the Nolichucky 

River, trends 058 and is positioned within the interior of the Pulaski’s “S”-curve trace.  It 

shares the northwest limb with the Evans Valley syncline, and like its neighbor, the 

Linebaugh Bend anticline changes from upright to overturned northeastward along strike.  

Dips on the overturned northwest limb of the fold average 74º SE and average 46º SE on 

the southeastern limb.  Honaker Dolomite is the oldest unit exposed in the core, which is 

abruptly cut off by the Pulaski fault.  A splay from the underlying Pulaski fault also 

truncates the southeastern limb.  

 

Pilot Knob synclinorium 

Located in the Pulaski thrust sheet and adjacent to the sinuous leading edge, the 

Pilot Knob synclinorium, named for a prominent ridge at the core, contains at least four 

major fold axial traces (two of them being nearly isoclinal with overturned northwest 

limbs) and is bounded on all sides by faults.  The oldest unit exposed here is the Honaker 

Dolomite, while the youngest unit is the Conococheague Limestone, exposed in the 

synclinorium core.  Previous mapping by Rodgers (1953b) did not recognize this 

structure, likely because of poor stratigraphic and structural control in this area (Fig. 3-

17).  The Pilot Knob synclinorium may be considered a type 3 hook pattern (Ramsay, 

1962), resulting from continued folding during the same event.   

I further interpret these folds in the synclinorium were likely not folded coeval 

with the propagating Pulaski fault, based on geometric and crosscutting relationships 

between the synclinorium and the Pulaski fault trace.  The Pulaski’s trace is oblique to
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Figure 3-17.  Comparison of work in (A) by Rodgers (1953b) with the results of this study (B) 
related to the Pilot Knob synclinorium in the Cedar Creek quadrangle.  Note that Rodgers mainly 
mapped roadside outcrops here and was not focused on mapping to the level of detail shown in 
this study. 

(A) 

(B) 

0 1 km 
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the cores of each overturned anticline and even truncates the limb of an upright syncline.  

These relationships suggest that the synclinorium, and perhaps other folds in the Pulaski 

thrust sheet, were not directly shortened by the emplacement of the Pulaski and may have 

been formed earlier and later passively transported.  

 

Dunham Ridge fault 

The Dunham Ridge fault, one of the major thrusts in the Pulaski thrust system, is 

traceable ~75 km from its northeastern terminus near the Tennessee/Virginia border to its 

southwestern terminus in the Neddy Mountain quadrangle (Figs. 1-2, 3-15) (Rodgers, 

1953b; Hardeman et al., 1966).  Like the Pulaski fault, it too is truncated by the Great 

Smoky fault, likely merging with the Pulaski immediately beneath the Blue Ridge sheet.  

Perhaps coincidentally, the majority of subdivided Honaker Dolomite is located in its 

hanging wall.  A relatively large fault zone localized in Nolichucky Shale exists along the 

Dunham Ridge fault near St. James Church.  This is an intensely brecciated zone with 

calcite-cemented tectonic breccias containing mostly dolomite/siltstone clasts (Fig. 3-

13B).   

Little (1969) estimated the minimum horizontal displacement of the Dunham 

Ridge fault to be at least 2.6 km (8,500 ft), with stratigraphic displacement averaging 1.7 

km (5,500 ft).  Horizontal displacement could not be determined in the study area, but it 

likely represents a large portion of the overall displacement in the Pulaski thrust sheet 

here.  This is probably due to the shallow exposure and eroded portions of the frontal 

Pulaski thrust sheet.  The Dunham Ridge fault contains the Quaker Knobs flap, similar to 

the Babbs Knobs flap along the main Pulaski fault, which is also attributed to post-fault 
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folding and shallow dips of 10-20º (Little, 1969).  Tight folds were observed in the 

Dunham Ridge thrust sheet in Little’s study area, as well as in mine. 

 

Cross Sections 

Two balanced cross sections with no vertical exaggeration were created at 

1:24,000 scale perpendicular to the average strike in the study area (Figs. 3-18, 3-19).  

Some of the basic principles that should be assumed when constructing cross sections in a 

foreland fold-thrust belt include:  (1) no significant change in volume can occur during 

deformation; (2) plane strain (all deformation is parallel to the section line); (3) thickness 

of the units must remain constant throughout the cross section; and (4) no internal strain 

is involved in the units.  Room problems, which exist when a void is created between 

units during the construction of a section, mainly arose in the cores of anticlines (e.g., 

Oven Creek anticline) at depth.  These were resolved by the use of specific fault 

geometries, most of which occur as listric splays from larger floor thrusts.   

Faults in the study area tend to propagate at higher angles through Knox Group 

formations and occasionally the Sevier Shale, although flats are also recognized at the 

base of the Sevier.  The thinly bedded Lenoir Limestone and Rome Formation constitute 

the other units where flattening occurs in the cross sections.  Reflecting its peculiarity, the 

Pulaski fault ramps through Knox carbonates, flattens across a footwall syncline and 

anticline of the same upper Knox units, and then ramps through mechanically weaker 

middle and lower Sevier Shale.  The footwall here exhibits a duplex-like geometry with 

possible floor and roof (Pulaski fault) thrusts, and was drawn as such in A-A’ to project 

the exposed footwall beneath the Pulaski thrust sheet.
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Figure 3-18.  Balanced cross section along A-A’ in the study area with no vertical exaggeration (in feet).  See Plate I for explanation of 
unit colors and abbreviations.  See Plate II to view the retrodeformed section.  
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Figure 3-19.  Balanced cross section along B-B’ in the study area with no vertical exaggeration (in feet).  See Plate I for explanation of 
unit colors and abbreviations.  See Plate II to view the retrodeformed section. 
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Cross sections were drawn in Adobe Illustrator CS3 and CS4.  The topographic 

surface for each section was extracted from the four 7.5-minute topographic quadrangles 

of the study area using the 3D analyst tool in ArcMap.  Stratigraphic/fault contacts, 

fold axial traces, and bedding dips were then added from the detailed geologic map (Plate 

I) to interpret subsurface structures and interpolate contacts at depth.  The circle or 

“bubble” method was utilized during construction, which aids in maintaining consistent 

thickness of units throughout the cross section, especially in folds.  It involves drawing a 

perfect circle in Illustrator for each unit contained in the section with a diameter that 

equals to the unit thickness.  These circles are then distributed in correct stratigraphic 

sequence and contacts are drawn between them.  Depth to basement for the cross sections 

was extracted from Hatcher et al. (2007a), and refined using seismic reflection data from 

the Amoco 5CM-1 line in the Parrottsville quadrangle (Fig. 3-16). 

Balancing cross sections was accomplished through line-length and area methods 

by measuring the length of the deformed layers and restoring this length to an 

undeformed state.  The original area of the section should not have changed during 

deformation.  The telegraphics filter tool in Illustrator, which measures the path length 

of a curved line and/or the total area of a polygon, was used to maintain consistency in 

the original deformed section.  A balanced cross section can be a useful device for 

obtaining accurate results, although it has been well stated that if the cross section does 

not balance then it cannot be acceptable, yet if the cross section does balance, then the 

section could possibly be correct (Dahlstrom, 1969).   

Calculated minimum percent shortening from the retrodeformed sections is 74% 

for A-A’ and 72% for B-B’.  The slightly lower value for B-B’ can be attributed to the 
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eroded portion of the Pulaski thrust sheet not factored into the restorations.  Total 

shortening includes both the foreshortened and retrodeformed Pulaski sheet to account 

for shortening prior to the emplacement of the Pulaski fault.  The retrodeformed section 

for Stillhouse thrust sheet does not appear to balance since displacement along the 

Stillhouse fault increases downdip.  However, the Oven Creek anticline likely accounts 

for much of its missing displacement. 

For a comparison of regional shortening and the nature of faults at depth, a cross 

section was constructed across the entire Valley and Ridge (Fig. 3-20), from the 

southeastern edge of the Cumberland Plateau in the Pine Mountain block to the Great 

Smoky fault and westernmost portion of the Blue Ridge.  Like the study area, major 

faults have ramp/flat geometries and originate from a basal décollement in the Rome 

Formation.  Shortening of the entire section is close to 50%, which is typical in the 

Valley and Ridge foreland fold-thrust belt (compare with sections in Hatcher, 1989; 

Hatcher et al., 2007a; and Hatcher and Geiser, 2010).
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Figure 3-20.  (A) Balanced cross section through the southern Appalachian Valley and Ridge from the Pine Mountain block to the 
Great Smoky fault and westernmost portion of the Blue Ridge province.  Section does not include the Pulaski fault.  (B) 
Retrodeformation of (A), split into three segments.  Light tan-Pennsylvanian sandstones; Dark blue-Mississippian carbonates and 
Pennington formation; Light purple-Silurian, Devonian, and Mississippian undivided; Light green-Chickamauga Group and Upper 
Ordovician undivided; Yellow-Knox Group; Light blue-Conasauga Group; Reddish brown-Rome Formation; Dark green-Ocoee 
Supergroup; Salmon-Middle Proterozoic basement.  Faults (green lines) are labeled:  PM-Pine Mountain thrust; CP-Clinchport fault; 
CC-Copper Creek fault; S-Saltville fault; DV-Dumplin Valley fault; GS-Great Smoky fault. 

(A) 
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CP CC S DV GS

GSDV
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CHAPTER IV 
 

INTERPRETATION OF DEFORMATIONAL HISTORY 
 

Overview of Pulaski Thrust Sheet Deformation 

Several unique characteristics of the Pulaski thrust sheet in northeastern 

Tennessee and southwestern Virginia promote interpretations of deformational history 

that are atypical to other Valley and Ridge thrust sheets.  Because of the great extent and 

displacement of the Pulaski sheet, these interpretations are significant regarding the 

timing and emplacement of large thrust sheets in the central and southern Appalachian 

fold-thrust belt.  When comparing the Pulaski thrust sheet at its southwestern terminus 

with other areas to the immediate northeast and into Virginia, a common argument for 

distinct phases of deformation exist within a single Alleghanian event.  Stratigraphic 

relationships, especially in the study area, may play an important role in recording these 

different phases. 

In particular, a change in the nature and orientation of folds on both sides of the 

Pulaski fault in the study area may indicate at least two phases of deformation/folding.  

One of the best methods in determining multiple folding phases involves examining the 

fold geometry of outcrop patterns on geologic maps and/or at the mesoscopic scale 

(Hatcher, 1995).  Because superposed folds in the field are rarely observed in this study 

area, separate and distinct fold orientations and folding styles can be used to suggest, but 

not confirm, multiple deformation episodes.  Roeder and Witherspoon (1978) observed 

and interpreted uncommonly “warped,” or refolded thrust sheets and folded fault 

structures near the Cumberland Escarpment in the western Valley and Ridge.  They 
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defined this specific type of polyphase deformation, which strongly parallels deformation 

observed in the Pulaski thrust sheet, as movement during kinematically and/or 

geologically distinct time intervals with westward advancing tectonic activity. 

 

Deformation in the Study Area and Northeast Tennessee 

Major folds in the study area, specifically the Evans Valley syncline, Seven 

Springs syncline, and Linebaugh Bend anticline, exhibit a highly asymmetrical and 

shallowing axial surface along strike (Fig. 3-14), comparable to observations by Roeder 

and Witherspoon (1978).  The most noteworthy structure in the area however, regarding 

interpretations for Pulaski deformation, is the Pilot Knob synclinorium in the Cedar 

Creek quadrangle (Fig. 3-17; Plate I).  As discussed in Chapter III, this structure is 

interpreted as a refold and possibly a type 3 hook pattern, based on map patterns and 

cross sections (Fig. 3-17).   

In map view, the shallow Pulaski fault trace transects the Pilot Knob 

synclinorium, oblique to the core of each overturned anticline, and also truncates the limb 

of an upright syncline.  Qualitatively, these occurrences imply that folding, at least in my 

area, was not generated during propagation of the Pulaski fault.  Thus, earlier stages of 

folding were likely overprinted by another stage, creating the numerous asymmetrical 

tight and overturned folds, complex folding patterns, thrust faults that misleadingly 

display younger strata on older strata, and axial-planar cleavage documented in the study 

area.  The geometric relationships of the Pulaski fault and the characteristics of the Pilot 

Knob synclinorium may suggest evidence for a lateral/oblique ramp in the southwestern 

portion of the Cedar Creek quadrangle.  At fault-related fold terminations, lateral/oblique 
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ramps are exemplified by steeply plunging folds and hanging wall cutoff lines trending at 

high angles to fault strike (Wilkerson et al., 2002). 

Both Byerly (1966) and Little (1969) also noted the contrast in folding styles on 

each side of the Pulaski fault, which was originally documented by Rodgers (1953b) and 

Hardeman et al. (1966) in the study area.  Byerly interpreted the discrepancy to represent 

foreshortening by the Pulaski fault, with the folds in the hanging wall having been 

palinspastically closer to the stress source.  Little (1969) mapped several very tight to 

isoclinal folds in the Dunham Ridge (Pulaski) thrust sheet, most averaging only ~1-2 km 

in width.  He interpreted some of these folds to represent pre-fault folding.  Most folds, 

he concluded, occurred contemporaneously with faulting and were later tightened by 

post-fault folding.  The shallow-dipping Babbs Knobs flap near Greeneville, Tennessee, 

and the Quaker Knobs flap, near Rheatown, Tennessee, are both interpreted to have 

formed by post-emplacement folding of the Pulaski fault.  Likewise, irregularities of the 

Pulaski fault trace in the study area are clearly attributed to low dip and post-

emplacement folding. 

Footwall deformation beneath the Pulaski thrust sheet is most evident near the 

“S”-curve trace.  In cross sections through the area (Figs. 3-18, 3-19), a portion of the 

footwall, with the Brookside Mill fault serving as a local detachment, exhibits a duplex-

like geometry with possible floor and roof (Pulaski fault) thrusts.  Woodward and Gray 

(1985) constructed cross sections that showed the Pulaski fault being folded by footwall 

duplex horses.  Although eroded, the Pulaski fault shown in B-B’ (Fig. 3-19) may exhibit 

a slight but similar behavior.  Whether or not some of the deformation observed in the 
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footwall formed prior to emplacement of the Pulaski cannot be determined here and has 

been debated in other parts of the thrust sheet as well (Bartholomew et al., 1989).    

  

Comparisons with Southwestern Virginia 

Although no chronology of multiple deformation episodes has been established 

thus far in the Pulaski thrust sheet in northeastern Tennessee, this process has been 

recognized in parts of southwestern Virginia, particularly in the Roanoke recess.  

Bartholomew (1987) recognized at least five distinctive stages of the Pulaski thrust sheet 

deformation here based on crosscutting relationships: (1) deformation occurring before 

ramping out of the Rome Formation and lower detachments; (2) deformation as the 

Pulaski thrust sheet ramped across Cambrian-Ordovician strata to décollements in Mid-

to-Upper Ordovician shales; (3) deformation as the sheet ramped to flats in the Devonian 

shales; (4) deformation as the sheet ramped across uppermost Devonian to Mississippian 

rocks to reach flats in the Price Formation (along the Catawba fault in the fault system) 

and Maccrady Formation (along the main Pulaski fault); and (5) deformation of the 

coupled Pulaski/Saltville sheet.  The ramp zone had to cut across the entire stratigraphic 

section to expose older units, such as in the Price Mountain window (Fig. 3-10).   

Bartholomew (1987) referred to a large region of the Pulaski sheet that displays 

highly deformed folds and tectonic breccias as the “complexly deformed plate” (Fig. 3-

10).  This region is more or less equivalent to the complex folds and faults of the Pulaski 

sheet observed in the study area.  High values of percent shortening (85-90%) were 

calculated by Bartholomew (1987) for the Pulaski thrust sheet in the recess, similar to 

high values (~73%) from northeast Tennessee (Roeder and Witherspoon, 1978; this 
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study).  This value from the study area, although identical to that of Roeder and 

Witherspoon, encompasses parts of the Saltville thrust sheet, because the Pulaski sheet is 

less extensive near the terminus. 

One useful means by which Bartholomew’s deformation sequence was 

established involves the 300-500 m-thick “broken formation” of Schultz (1983), a zone 

of intense deformation in the complexly deformed plate that contains the Max Meadows 

tectonic breccia.  Broken formations frequently develop beneath a detachment, possibly 

under high pore fluid pressure (Hatcher, 1995).  The complexly deformed folds, faults, 

and breccias observed in the formation were interpreted by Schultz (1983, 1986) and 

Gibson and Gray (1985) to have developed continuously along with ramping of the 

Pulaski fault.  This was supported by similar fold orientations measured in both footwall 

and hanging-wall carbonates, as well as the incorporated broken formation (Schultz, 

1983).  In contrast, Bartholomew (1987) interpreted the broken formation as a lower-

level décollement zone that largely formed during an earlier Alleghanian stage, prior to 

ramping of the Pulaski fault.  It was then passively transported and affected by 

subsequent Alleghanian deformation, similar to other stratigraphic units carried in the 

thrust sheet.  Bartholomew further asserted that footwall deformation took place after the 

Pulaski reached upper detachments/flats in Mississippian strata, insinuating that similar 

fold orientations in footwall/hanging wall rocks and the broken formation (Schultz, 1983) 

reflect later Alleghanian deformation post-ramping of the Pulaski. 

Prior to work by Bartholomew and Schultz (1980) and Bartholomew (1987), Reks 

and Gray (1983) determined a deformation sequence for folds and cleavage in the Pulaski 

sheet near Abingdon and Marion, Virginia, by calculating the amount of time and strain 
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needed to form these structures.  They concluded that cleavage and folding here must 

have formed at different stages of the same event.  Like the Pulaski thrust sheet in 

northeastern Tennessee, Reks and Gray noted that the most well-developed cleavage 

occurs adjacent to thrust faults and the cores of regional folds.  Curiously, a portion of the 

Pulaski sheet contains relatively lower average strains, although compared to other parts 

of the thrust sheet, its folds are tighter and many are overturned.  Pronounced tightness of 

folds, anomalously low strain values, and dissimilar mechanical behavior of rocks 

suggest that this portion of the thrust sheet formed earlier and possibly deeper.  

Conditions of high pore fluid pressure could have reduced frictional strength and caused 

these early stages of shortening (Davis et al., 1983; Reks and Gray, 1983).  Reks and 

Gray also stated that cleavage must have been superposed onto the axial surfaces of 

previously formed Class 3 buckle folds.  Timing of fault propagation, along with 

cleavage/penetrative strain development, would therefore be later than folding in certain 

parts of the Pulaski thrust sheet. 

Bartholomew and Whitaker (2010) developed a model for the Alleghanian 

deformational sequence in the Roanoke recess and projected the orientation of the Pulaski 

thrust sheet at different stages on a regional scale (Fig. 4-1).  Five distinct orientations 

were determined by structural measurements in southwestern Virginia from joint sets, 

clastic dikes, and layer-parallel shortening (LPS)/total strain.  Timing of each stage was 

supported by relating the fracture sets to specific southern and central Appalachian 

macroscopic structures, with the general assumption that central Appalachian structures 

formed prior to southern Appalachian structures (Whitaker and Bartholomew, 1999; 

Bartholomew and Whitaker, 2010).    The Appalachian-wide stress field is presented in
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Figure 4-1.  Regional map depicting 
Alleghanian deformational sequence (A1-
A5), using the Pulaski thrust sheet (green) 
to show general orientation.  See text for 
detailed description of each stage.  General 
orientation—blue arrow; Joint sets—red 
rose diagrams; clastic dikes—orange rose 
diagrams; layer-parallel shortening strain—
pink ellipses; total strain—gray ellipse.  
Modified from Bartholomew and Whitaker 
(2010). 

A1 A2 A3

A4 A5
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the A1 stage, shown by early east-west-directed shortening, probably during the late 

Mississippian or early Pennsylvanian (Bartholomew and Whitaker, 2010).  At this time, 

movement of the Pulaski thrust sheet had not yet begun.  A2 exhibits a dominant 

northwest-southeast trend and began the movement of the Pulaski thrust sheet.  

Bartholomew and Whitaker assigned this set of orientations to the “Princeton event” 

(similar to ages of A1 and A2), which preceded both the central and southern 

Appalachian structural trends in the Valley and Ridge.  The more easterly directed 

shortening in A3 formed most central Appalachian structures, while the clockwise 

rotation of shortening in A4 (now north-northwest) produced most southern Appalachian 

structures.  The Princeton event in A2, and possibly part of A3, may be correlative with 

the late Mississippian to Pennsylvanian Lackawanna phase of Geiser and Engelder 

(1983).  A4 then signifies the final emplacement of the Pulaski thrust sheet.  Both this 

stage and A2/A3 (Lackawanna phase equivalent) also coincides with the zipper tectonic 

model (Hatcher, 2002), in which clockwise rotation and head-on collision of Gondwana 

with Laurentia occurred in the southern Appalachians.  The last set of orientations, A5, 

may be related to deformation during emplacement of the Pine Mountain thrust sheet and 

is not expressed in the Pulaski thrust sheet (Bartholomew and Whitaker, 2010). 

   

Lackawanna and Main Phases 

In part of the central and New England Appalachian foreland, Geiser and 

Engelder (1983) recognized two discrete, but likely diachronous, non-coaxial phases (or 

pulses) of Alleghanian deformation—the late Mississippian to Pennsylvanian 

Lackawanna phase and the late Pennsylvanian to Early Permian main phase (Fig. 4-2). 
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Figure 4-2.  Generalized tectonic sketch of the (A) Lackawanna (Pennsylvanian) and (B) Main (Permian) 
phases of the Alleghanian orogeny showing relative displacement directions (white arrows) for the African 
plate and Taconic/Avalon terranes.  Foreland shortening directions (black arrows) were derived from 
fold/fault data and LPS fabrics.  Green star-NE TN study area; Orange star-Roanoke recess; Yellow star-
Lackawanna synclinorium; MCT-main crystalline thrust.  Early left-lateral motion depicted on the western 
margin of the Avalon platform was derived from McMaster et al. (1980).  Modified from Geiser and 
Engelder (1983).  
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The Lackawanna phase is considered to have involved a significant strike-slip 

component, while the main phase, which caused the bulk of southern Appalachian 

foreland deformation, represents the final collision of Gondwanan terranes with 

Laurentia.  Geiser and Engelder documented these phases with evidence for tectonic 

overprinting in the Lackawanna synclinorium of the Pennsylvania Valley and Ridge and 

Plateau.  A distinct set of structural trends from mostly LPS fabrics (detachment faults, 

pressure solution cleavage, joints), interpreted as the Lackawanna phase, are crossed by a 

later (main) phase of the Alleghanian orogeny. 

Early deformation recorded by the Pulaski thrust sheet in the study area and other 

parts in northeast Tennessee and southwestern Virginia may be a manifestation the 

Lackawanna phase.  Several folds in the thrust sheet (e.g., Pilot Knob synclinorium) 

could have been initially deformed prior to emplacement of the Pulaski fault during this 

phase.  Later propagation of the fault and dominant northwestward-directed folding of the 

thrust sheet during the main phase could have produced the tight to overturned and highly 

noncylindrical folding observed here.  Although these phases were recognized a 

considerable distance away, the deformational history of the study area seems to coincide 

with the timeframe documented by Geiser and Engelder (1983). 

A similar succession of deformation phases was documented by Dean et al. 

(1988) in southeastern West Virginia, where an early “structural event” with distinct 

orientations was superposed by a later set of orientations.  This led them to agree with 

Rodgers’ (1970b) assessment that, generally speaking, central Appalachian structures 

postdate southern Appalachian structures.  However, this view was countered by 

Whitaker and Bartholomew (1999) and Bartholomew and Whitaker (2010) from work in 
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the Glen Lyn syncline, a southern Appalachian fold, near the central/southern 

Appalachian transition.  From overprinting LPS fabric data, they concluded that the more 

likely scenario was the initiation of central Appalachian deformation prior to formation of 

the Glen Lyn syncline.  This scenario agrees with the zipper tectonic model for the 

Alleghanian orogeny (Hatcher, 2002), which involves progressively southward 

Alleghanian deformation.     

In contrast to Geiser and Engelder’s (1983) conclusions about the Lackawanna 

synclinorium and the phases observed, Harrison et al. (2004) interpreted part of the 

synclinorium to be a collapse structure, nullifying any crosscutting relationships of 

structural trends there.  This implies that at least the northwestern trend of the upper half 

of the synclinorium (the collapse structure) does not represent a discrete east-west 

shortening event observed by Geiser and Engelder (1983).  However, the matching 

symmetry of the upper portion to other structures outside of the synclinorium seems to 

still suggest an earlier deformation episode.   

Nevertheless, the Lackawanna synclinorium was likely not affected by discrete 

phases, but rather by pulses of deformation combined with overburden collapse during a 

continuous event (Harrison, 2006).  All deformation in the fold-thrust belt of the Valley 

and Ridge should still be attributed to a single event (Hatcher, 1989).  I agree with the 

conclusion by Harrison (2006) that the Lackawanna and main phases are simply pulses of 

shortening during the Alleghanian orogeny with a change in shortening direction through 

time.  Although this conclusion does not fully contradict previous work from Geiser and 

Engelder (1983), shortening caused by distinct changes in orientation during a continuous 

event is more probable. 
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Deformation Discussion 

Perhaps the most logical explanation for the style of folding in the Pulaski thrust 

sheet of northeast Tennessee, also considered by Byerly (1966), is that these folds, 

formed prior to faulting, were palinspastically closer to the stress source (i.e., Blue 

Ridge-Piedmont megathrust sheet) than folds of the adjacent Saltville thrust sheet.  Thus, 

the tight folds observed here are expected in strata positioned nearest to the source.  

However, geometric and crosscutting relationships along parts of the Pulaski thrust sheet 

in this area and in southwestern Virginia suggest some hanging wall, and possibly 

footwall, deformation prior to emplacement of the thrust sheet.  The relatively high 

values of the percent shortening in the Roanoke recess (85-90%) and the study area 

(74%) reflect this first stage deformation, and both values are strongly similar when 

evaluated against the entire Valley and Ridge (~50%).  This implies that the 

shortening/deformation affecting the Pulaski sheet in my study area in northeast 

Tennessee is reasonably comparable to the Pulaski sheet of the Roanoke recess.  

Deformation observed in the Pulaski thrust sheet in my study area, particularly 

type 3 interference patterns, likely represent small changes in orientation of continued 

shortening, similar to those in Figure 4-1.  The initial deformation may be a manifestation 

of the late Mississippian to Pennsylvanian Lackawanna phase.  Stages A2 and possibly 

A3 correspond well with this phase, while A4 likely represents the late Pennsylvanian to 

Early Permian main phase of the Alleghanian orogeny.  Even if the Lackawanna phase, 

as suggested by Harrison (2006), is not considered a discrete episode of Alleghanian 

orogenesis, early deformation in my study area could still be a manifestation of this 

phase.  However, orientations at different stages of deformation from work done in the 
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Roanoke recess and northern Pennsylvania/New York may not have a direct correlation 

to the Pulaski thrust sheet in my study area, since shortening direction and location of 

continental margins were probably a factor over the duration of the Alleghanian orogeny.  

Multistage deformation observed in one portion of the Pulaski thrust sheet cannot be 

assumed to be applicable to the entire thrust sheet. 

Stratigraphic relationships in my study area may have aided in the recording for 

much of the alleged early deformation in the Pulaski sheet, because the thrust sheet here 

contains predominantly weak Conasauga shales and carbonates sandwiched between 

more competent Knox carbonates.  As discussed in Chapter III, structural styles can be 

largely controlled by stratigraphic variations (Woodward et al., 1988).  This concoction 

of rheologically different rocks made it possible to more clearly view and interpret the 

complex folding.  Had the entire thrust sheet consisted of entirely thick carbonates or 

incompetent shales, folding styles and/or polyphase deformation would not be as readily 

distinguished.  In a similar fashion, stratigraphy largely aided interpretations of the 

deformational history of the complexly deformed plate in the Roanoke recess (Schultz, 

personal comm.).   

A complete picture of the displacement and hanging wall/footwall deformation 

are obscured by the shallow dip of the Pulaski fault and the proximity to its terminus.  

Although polyphase deformation occurring here is very likely, a large amount of folding 

that occurred coevally with the emplacement of the Pulaski fault clearly took place, as 

indicated by mesoscopic bedding, cleavage, and available folding measurements from the 

study area. 
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CHAPTER V 
 

CONCLUSIONS 
 
 
1)  At its southwestern terminus, the Pulaski fault is overridden by the thin-skinned Great 

Smoky fault in the Neddy Mountain 7.5-minute quadrangle, ~5 km (3 miles) south of 

Parrottsville, Tennessee.  The location of the terminus delineated in this study is close to 

the terminus mapped by Rodgers (1953b; 1970a) and compiled by Hardeman et al. 

(1966). 

 

2)  The Pulaski thrust sheet acts as a stratigraphic break and contains distinct facies of 

Conasauga and Knox Groups that contrast with the same units in other Valley and Ridge 

thrust sheets to the northwest (Rodgers, 1953a).  Limestone dominates the Knox Group in 

the Pulaski sheet, whereas dolomite and more clearly identifiable chert and sandstone 

stratigraphic markers are more abundant in the Saltville sheet.  In contrast, Conasauga 

Group rocks consist of more dolomite in the Pulaski sheet versus more limestone and 

shale in the Saltville sheet.  An abundance of limestone in the Knox Group immediately 

northwest of the Pulaski fault may imply that these units in the footwall rest on or near 

the transition between northwestern and southeastern facies. 

 

3)  Honaker Dolomite was successfully subdivided in parts of the Pulaski thrust sheet in 

the study area.  This is based on identification of the thin to a featheredge of Rogersville 

Shale, which varies from 0-26 m (0-85 ft) in the study area.  Where no Rogersville was 

observed, the unit was mapped as Honaker Dolomite. 
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4)  The Pulaski fault has a very low dip, ranging from subhorizontal to 20° near the 

surface, and steepens near its junction with the Dunham Ridge fault.  Stratigraphic 

displacement progressively increases southward along the Pulaski trace and reaches up to 

at least 1.4 km (4,500 ft) in the study area.  Horizontal displacement is at least 23.8 km 

(14.8 mi) with approximately 30% shortening within the Pulaski thrust sheet.  When 

comparing percent shortening to the entire Valley and Ridge (~50%), the relatively high 

values calculated in the study area (72-74%) and the Roanoke recess (85-90%; 

Bartholomew, 1987) are very similar.   

 

5)  The nature and orientation of macroscopic folds in the Pulaski thrust sheet strongly 

contrast with those in the adjacent Saltville thrust sheet.  Complex tight to overturned and 

highly noncylindrical folds are present in the Pulaski sheet, many of them exhibiting a 

type 3 interference pattern.  The Saltville sheet contains broad and mostly open folds, 

typical of buckle folding in thick Knox Group carbonates.  These folds formed prior to 

faulting and palinspastically closer to the source of deformation (i.e., Blue Ridge-

Piedmont megathrust sheet).  The close proximity could have created several of the tight 

folds observed here. 

 

6)  At least two phases of Alleghanian deformation/folding may have been recorded here 

in the Pulaski thrust sheet, similar to interpretations of the Pulaski sheet in southwestern 

Virginia (Bartholomew and Schultz, 1980; Bartholomew, 1987; Reks and Gray, 1983; 

Bartholomew and Lewis, 2010; Bartholomew and Whitaker, 2010).  In the study area, 

geometric and crosscutting relationships of certain structures (e.g., Pilot Knob 
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synclinorium) imply that folding was not generated during propagation of the Pulaski 

fault.  An earlier stage of folding, possibly equivalent to the late Mississippian to 

Pennsylvanian Lackawanna phase (Geiser and Engelder, 1983), was likely overprinted by 

the main phase of Alleghanian deformation, creating the complex fold patterns seen in 

the study area.  Parallel comparisons to the “complexly deformed plate” in the Roanoke 

recess further support an argument for at least two distinct phases of deformation within a 

single Alleghanian event. 

 

Outstanding Issues 

 Complex fold patterns and fault-fold relationships near the Pilot Knob 

synclinorium in the Cedar Creek quadrangle could be attributed to a lateral/oblique ramp 

underlying this area.  This type of ramp is briefly discussed in Chapter IV, but may be 

significant towards the kinematic interpretation and deformational history of the Pulaski 

fault in the study area.  Cross sections from this study show the Pulaski fault cutting 

downsection in the Knox Group and Sevier Shale, violating conventional rules for cross 

section construction in fold-thrust belts.  Out-of-sequence thrusting of the Pulaski fault or 

the possibility of a lateral/oblique ramp in the study area may have contributed to its 

atypical geometry.



 121

 

 

 

 

 

 

 

 

 

 
 

REFERENCES CITED 



 122

Andrews, L.M., and Railsback, L.B., 1997, Controls on stylolite development: 

morphologic, lithologic, and temporal evidence from bedding-parallel and 

transverse stylolites from the U.S. Appalachians:  The Journal of Geology, v. 105, 

p. 59-73. 

Bally, A.W., Gordy, P.L., and Stewart, G.A., 1966, Structure, seismic data, and orogenic 

evolution of southern Canadian Rocky Mountains:  Bulletin of Canadian Petroleum 

Geology, v. 14, p. 337-381.  

Barnaby, R.J., and Read, J.F., 1990, Carbonate ramp to rimmed shelf evolution: Lower to 

Middle Cambrian continental margin, Virginia Appalachians:  Geological Society 

of America Bulletin, v. 102, p. 391-404. 

Bartholomew, M.J., 1987, Structural evolution of the Pulaski thrust system, southwestern 

Virginia:  Geological Society of America Bulletin, v. 99, p. 491-510. 

Bartholomew, M.J., and Lewis, S.E., 2010, Orphans of the far-traveled Pulaski thrust 

sheet: Exotic detached duplexes and their implications for original fold-and-thrust 

geometry, in Tollo, R.P., Bartholomew, M.J., Hibbard, J.P., and Karabinos, P.M., 

eds., From Rodinia to Pangea: the lithotectonic record of the Appalachian region:  

Geological Society of America Memoir 206, p. 417-430. 

Bartholomew, M.J., and Schultz, A.P., 1980, Deformation in the hanging wall of the 

Pulaski thrust sheet near Ironto, Montgomery County, Virginia, in Geologic 

structure and hydrocarbon potential along the Saltville and Pulaski thrusts in 

southwestern Virginia and northeastern Tennessee:  Virginia Division of Mineral 

Resources Publication 23, part B, sheet 3. 



 123

Bartholomew, M.J., and Whitaker, A.E., 2010, The Alleghanian deformational sequence 

at the foreland junction of the central and southern Appalachians, in Tollo, R.P., 

Bartholomew, M.J., Hibbard, J.P., and Karabinos, P.M., eds., From Rodinia to 

Pangea: the lithotectonic record of the Appalachian region:  Geological Society of 

America Memoir 206, p. 431-454. 

Bartholomew, M.J., Milici, R.C., and Schultz, A.P., 1980, Regional structure and 

hydrocarbon potential, in Geologic structure and hydrocarbon potential along the 

Saltville and Pulaski thrusts in southwestern Virginia and northeastern Tennessee:  

Virginia Division of Mineral Resources Publication 23, part A, sheet 1. 

Bartholomew, M.J., Schultz, A.P., Woodward, N.B., and Beets, J.W., 1989, Critical 

evidence for southern Appalachian Valley and Ridge thrust sequence: Discussion 

and reply:  Geological Society of America Bulletin, v. 101, p. 1103-1104. 

Boyer, S.E., and Elliott, D., 1982, Thrust systems:  American Association of Petroleum 

Geologists Bulletin, v. 66, p. 1196-1230. 

Bridge, J., 1955, Disconformity between the Lower and Middle Ordovician series at 

Douglas Lake, Tennessee:  Geological Society of America Bulletin, v. 66, p. 725-

730. 

Bridge, J., and Hatcher, R.D., Jr., 1973, Geologic map of the New Market quadrangle, 

Tennessee: Tennessee Division of Geology Geologic Map GM-155-SE, scale 

1:24,000. 

Brokaw, A.L., Dunlap, J.C., and Rodgers, J., 1966, Geology and mineral deposits of the 

Mosheim and Johnson anticlines, Greene County, Tennessee:  U.S. Geological 

Survey Bulletin v. 1222-A, p. A1-A21. 



 124

Bucher, W.H., 1956, Role of gravity in orogenesis: Geological Society of America 

Bulletin, v. 67, p. 1295-1318. 

Bultman, J.G., 2005, Stratigraphic, structural, and tectonic analysis of a portion of the 

Sevier-Blountian and Martinsburg basins, Bays Mountain synclinorium, northeast 

Tennessee [M.S. thesis]:  Knoxville, University of Tennessee, 176 p. 

Bumgarner, J.G., Houston, P.K., Ricketts, J.E., and Wedow, H., Jr., 1964, Habit of the 

Rocky Valley thrust fault in the west New Market area, Mascot-Jefferson City zinc 

district, Tennessee:  U.S. Geological Survey Professional Paper 501-B, p. 112-115. 

Butts, C., 1926, The Paleozoic rocks, in Adams, G.I., Butts, C., Stephenson, L.W., and 

Cooke, W., eds., Geology of Alabama:  Alabama Geological Survey Special Report 

No. 14, p. 41-230. 

Butts, C., 1940, Geology of the Appalachian Valley in Virginia, part 1, Geologic text and 

illustrations:  Virginia Geological Survey Bulletin 52, part 1, 568 p. 

Butts, C.W., 1933, Geologic map of the Appalachian Valley of Virginia with explanatory 

text:  Virginia Geological Survey Bulletin, v. 42, scale 1:62,500. 

Byerly, D.W., 1966, Structural geology along a segment of the Pulaski fault, Greene 

County, Tennessee [Ph.D. dissert.]:  Knoxville, University of Tennessee, 94 p. 

Byrd, W.J., Weinberg, E.L., and Yochelson, E.L., 1973, Salterella in the Lower 

Cambrian Shady Dolomite of southwestern Virginia:  American Journal of Science, 

v. 273A, p. 252-260. 

Campbell, M. R., 1925, The Valley coal fields of Virginia: Virginia Geological Survey 

Bulletin 25, 322 p. 



 125

Campbell, M.R., 1894, Estillville folio:  U.S. Geological Survey Geologic Atlas, no. 12, 

scale 1:125,000. 

Campbell, M.R., 1897, Tazewell folio:  U.S. Geological Survey Geologic Atlas, no. 44, 

scale 1:125,000. 

Campbell, M.R., 1899, Bristol folio:  U.S. Geological Survey Geologic Atlas, no. 59, 

scale 1:125,000. 

Cattermole, J.M., 1958, Geologic map of the Knoxville quadrangle, Tennessee:  U.S. 

Geological Survey Geological Quadrangle Map GQ-115. 

Chapple, W. M., 1978, Mechanics of thin-skinned fold-and-thrust belts:  Geological 

Society of America Bulletin, v. 89, p. 1189-1198. 

Cooper, B. N., 1938, Duality of the Pulaski fault in the type locality (abs.): Proceedings 

of the Geological Society of America for 1938, p. 74. 

Cooper, B.N., 1936, Stratigraphy and structure of the Marion area, Virginia:  Virginia 

Geological Survey Bulletin, v. 46, p. 133-163. 

Cooper, B.N., 1939, Geology of the Draper Mountain area, Virginia:  Virginia Division 

of Mineral Resources Bulletin, v. 25, 98 p. 

Cooper, B.N., 1970, The Max Meadows breccias: A reply, in Fisher, G.W., Pettijohn, 

F.J., Reed, J.C., Jr., and Weaver, K.N., eds., Studies of Appalachian geology: 

Central and southern:  New York, Interscience Publishers, p. 179-191. 

Cooper, B.N., and Cashion, W.W., 1970, Relation of the Pulaski and Seven Springs faults 

in southwestern Virginia:  American Journal of Science, v. 268, p. 385-396. 

Cooper, B.N., and Haff, J.C., 1940, Max Meadows fault breccia:  Journal of Geology, v. 

48, p. 945-974. 



 126

Couzens, B.A., and Dunne, W.M., 1994, Displacement transfer at thrust terminations: the 

Saltville thrust and Sinking Creek anticline, Virginia, U.S.A.:  Journal of Structural 

Geology, v. 16, p. 781-793.  

Cummings, D., 1962, Geology of the Bays Mountain synclinorium, northeast Tennessee 

[Ph.D. dissert.]:  East Lansing, Michigan State University, 152 p. 

Cummings, D., 1965, Stratigraphy and heavy minerals of the Bays Formation, Bays 

Mountain synclinorium, northeast Tennessee:  Geological Society of America 

Bulletin, v. 76, p. 591-600. 

Currie, J. B., Patnode, H. W., and Trump, R. P., 1962, Development of folds in 

sedimentary strata:  Geological Society of America Bulletin, v. 73, p. 655-674. 

Dahlstrom, C.D.A., 1969, Balanced cross sections:  Canadian Journal of Earth Sciences, 

v. 6, p. 743-757. 

Davis, D., Suppe, J., and Dahlen, F.A., 1983, Mechanics of fold-and-thrust belts and 

accretionary wedges:  Journal of Geophysical Research, v. 88, p. 1153-1172. 

Dean, S.L., Kulander, B.R., and Skinner, J.M., 1988, Structural chronology of the 

Alleghanian orogeny in southeastern West Virginia:  Geological Society of 

America Bulletin, v. 100, p. 299-310. 

Drake, A.A., Jr., Sinha, A.K., Laird, J., and Guy, R.E., 1989, The Taconic orogen, in 

Hatcher, R.D., Jr., Thomas, W.A., and Viele, G.W., eds., The Appalachian-

Ouachita Orogen in the United States:  Boulder, Colorado, Geological Society of 

America, The Geology of North America, v. F-2, p. 107-177. 

Elliott, D., 1976, The motion of thrust sheets: Journal of Geophysical Research, v. 81, p. 

949-963. 



 127

Epstein, A.G., Epstein, J.B., and Harris, L.D., 1977, Conodont color alteration: an index 

to organic metamorphism:  U.S. Geologic Survey Professional Paper 995, 27 p. 

Evans, M.A., and Dunne, W.M., 1991, Strain factorization and partitioning in the North 

Mountain thrust sheet, central Appalachians, U.S.A.:  Journal of Structural 

Geology, v. 13, p. 21-35. 

Feder, G., 1963, The geology of the Oak Grove area, Jefferson County, Tennessee [M.S. 

thesis]:  Knoxville, University of Tennessee, 30 p. 

Foreman, J.L., 1991, Petrologic and geochemical evidence for water-rock interaction in 

the mixed carbonate-siliciclastic Nolichucky Shale (Upper Cambrian) in East 

Tennessee [Ph.D. dissert.]:  Knoxville, University of Tennessee, 228 p. 

Geiser, P.A., and Engelder, T., 1983, The distribution of layer parallel shortening fabrics 

in the Appalachian foreland of New York and Pennsylvania: Evidence for two non-

coaxial phases of the Alleghanian orogeny:  Geological Society of America 

Memoir 158, p. 161-175. 

Gibson, R.G., and Gray, D.R., 1985, Ductile-to-brittle transition in shear during thrust 

sheet emplacement, southern Appalachian thrust belt:  Journal of Structural 

Geology, v. 7, p. 513-525. 

Greene, R.C., 1959, The geology of English Mountain and vicinity, Cocke, Jefferson and 

Sevier Counties, Tennessee [M.S. thesis]:  Knoxville, University of Tennessee, 54 

p. 

Gwinn, V.E., 1964, Thin-skinned tectonics in Plateau and northwestern Valley and Ridge 

provinces of the central Appalachians:  Geological Society of America Bulletin, v. 

75, p. 863-900. 



 128

Hardeman, W.D., Swingle, G.D., and Miller, R.A., 1966, Geologic map of Tennessee:  

Tennessee Division of Geology, scale 1:250,000. 

Harlow, G.E., 1987, The structural geology of a part of the Pulaski thrust sheet near 

Boone Dam: Sullivan and Washington Counties, Tennessee [M.S. thesis]:  

Knoxville, University of Tennessee, 103 p.  

Harris, L.D., 1965, Geologic map of the Tazewell quadrangle, Claiborne County, 

Tennessee:  U.S. Geological Survey Geological Quadrangle Map GQ-465.  

Harris, L.D., 1971, A lower Paleozoic paleoaquifer—the Kingsport Formation and 

Mascot Dolomite of Tennessee and southwest Virginia:  Economic Geology, v. 66, 

p. 735-743. 

Harris, L.D., 1976, Thin-skinned tectonics and potential hydrocarbon traps—Illustrated 

by a seismic profile in the Valley and Ridge province of Tennessee:  U.S. 

Geological Survey Professional Paper 1018, 40 p. 

Harris, L.D., 1979, Similarities between the thick-skinned Blue Ridge anticlinorium and 

the thin-skinned Powell Valley anticline:  Geological Society of America Bulletin, 

v. 90, p. 525-539. 

Harrison, M.J., 2006, Fold-thrust belt structures of the Lackawanna synclinorium, 

Pennsylvania: Insight into the tectonic evolution of the central Appalachians:  

Northeastern Geology & Environmental Sciences, v. 28, p. 358-367. 

Harrison, M.J., Marshak, S., and McBride, J.H., 2004, The Lackawanna synclinorium, 

Pennsylvania: A salt-collapse structure, partially modified by thin-skinned folding:  

Geological Society of America Bulletin, v. 116, p. 1499-1514.  



 129

Hasson, K.O., and Haase, C.S., 1988, Lithofacies and paleogeography of the Conasauga 

Group (Middle and Late Cambrian) in the Valley and Ridge province of East 

Tennessee:  Geological Society of America Bulletin, v. 100, p. 234-246. 

Hatcher, R.D., Jr., 1965, Structure of the northern portion of the Dumplin Valley fault 

zone in east Tennessee [Ph.D. dissertation]: Knoxville, University of Tennessee, 

168 p. 

Hatcher, R.D., Jr., 1989, Tectonic synthesis of the U.S. Appalachians, in Hatcher, R.D., 

Jr., Thomas, W.A., and Viele, G.W., eds., The Appalachian-Ouachita orogen in the 

United States:  Boulder, Colorado, Geological Society of America, The Geology of 

North America, v. F-2, p. 511-535. 

Hatcher, R.D., Jr., 1995, Structural geology principles, concepts, and problems (second 

edition):  Upper Saddle River, New Jersey, Prentice Hall, 525 p. 

Hatcher, R.D., Jr., 2002, The Alleghanian (Appalachian) orogeny, a product of zipper 

tectonics: rotational transpressive continent-continent collision and closing of 

ancient oceans along irregular margins, in Martínez Catalán, J.R., Hatcher, R.D., 

Jr., Arenas, R., and Garcia, F.D., eds., Variscan-Appalachian dynamics:  The 

building of the Late Paleozoic basement:  Geological Society of America Special 

Paper 394, p. 199-208. 

Hatcher, R.D., Jr., and Geiser, P.A., 2010, Toward a solution of the 3D balancing 

problem in curved segments of orogens in Law, R.D., Butler, R.W., Holdsworth, 

R.E., Krabbendam, M, and Strachan, R.A., eds., Continental tectonics and 

mountain building: The legacy of Peach and Horne:  Geological Society of London 

Special Publication 335, p. 405-428.  



 130

Hatcher, R.D., Jr., Lemiszki, P.J., and Whisner, J.B., 2007a, Character of rigid 

boundaries and internal deformation of the southern Appalachian foreland fold-

thrust belt, in Sears, J.W., Harms, T.A., and Evenchick, C.A., eds., Whence the 

Mountains?  Inquiries into the Evolution of Orogenic Systems: A Volume in Honor 

of Raymond A. Price:  Geological Society of America Special Paper 433, p. 243-

276. 

Hatcher, R.D., Jr., Bream, B.R., and Merschat, A.J., 2007b, Tectonic map of the southern 

and central Appalachians: A tale of three orogens and a complete Wilson cycle, in 

Hatcher, R.D., Jr., Carlson, M.P., McBride, J.H., and Martínez Catalán, J.R., eds., 

4-D Framework of Continental Crust:  Geological Society of America Memoir 200, 

p. 595-632. 

Hatcher, R.D., Jr., Osberg, P.H., Drake, A.A., Jr., Robinson, P., and Thomas, W.A., 

1990, Tectonic map of U.S. Appalachians, in Hatcher, R.D., Jr., Thomas, W.A., 

and Viele, G.W., eds., The Appalachian-Ouachita Orogen in the United States:  

Boulder, Geological Society of America, The Geology of North America, v. F-2, 

Plate 1, scale 1:2,500,000. 

Hatcher, R.D., Jr., Thomas, W.A., Geiser, P.A., Snoke, A.W., Mosher, S., and Wiltschko, 

D.V., 1989, Alleghanian orogen, in Hatcher, R.D., Jr., Thomas, W.A., and Viele, 

G.W., eds., The Appalachian-Ouachita Orogen in the United States:  Boulder, 

Colorado, Geological Society of America, The Geology of North America, v. F-2, 

p. 233-318. 

Hayes, C.W., 1891, The overthrust faults of the southern Appalachians:  Geological 

Society of America Bulletin, v. 2, p. 141-152. 



 131

Helton, W.L., 1967, Lithostratigraphy of the Conasauga Group between Rogersville and 

Kingsport, Tennessee [Ph.D. dissert.]:  Knoxville, University of Tennessee, 96 p. 

Hugman, R.H.H., III, and Friedman, M., 1979, Effects of texture and composition on 

mechanical behavior of experimentally deformed carbonate rocks:  American 

Association of Petroleum Geologists Bulletin, v. 63, p. 1478-1489. 

Keith, A., 1895, Description of the Knoxville folio (Tennessee-North Carolina):  U.S. 

Geological Survey Geologic Atlas, Folio 16, 6 p. 

Keith, A., 1903, Description of the Cranberry folio (Tennessee-North Carolina):  U.S. 

Geological Survey Geologic Atlas, Folio 90, 9 p. 

Keith, A., 1905a, Description of the Greeneville Folio (Tennessee-North Carolina):  U.S. 

Geological Survey Geologic Atlas, Folio 118, 12 p. 

Keith, A., 1905b, Description of the Morristown Folio (Tennessee-North Carolina):  U.S. 

Geological Survey Geologic Atlas, Folio 27, 13 p. 

King, P.B., Ferguson, H.W., Craig, L.C., and Rodgers, J., 1944, Geology and manganese 

deposits of northeastern Tennessee:  Tennessee Division of Geology Bulletin 52, 

275 p. 

Lemiszki, P.J., 1994, Geological mapping of the Oak Ridge K-25 Site, Oak Ridge, 

Tennessee:  Environmental Sciences Division, Oak Ridge K-25 Site, Martin 

Marietta Energy Systems, Inc., Oak Ridge, Tennessee, 51 p. 

Lemiszki, P.J., 2003, Geologic map of the Mosheim quadrangle, Tennessee:  Tennessee 

Division of Geology, open file map scale 1:24,000. 



 132

Lemiszki, P.J., 2008, Geologic mapping of the Newport quadrangle, Tennessee: Making 

a case for the southwest continuation of the Pulaski fault:  Geological Society of 

America Abstracts with Programs, v. 40, no. 4, p. 13.   

Lewis, S.E., and Hower, J.C., 1990, Implications of thermal events on thrust 

emplacement sequence in the Appalachian fold and thrust belt: some new vitrinite 

reflectance data:  The Journal of Geology, v. 98, p. 927-942. 

Little, R.L., 1969, Lithostratigraphy and structural geology of a portion of the Dunham 

Ridge thrust block, Greene and Washington Counties, Tennessee [Ph.D. dissert.]:  

Knoxville, University of Tennessee, 130 p. 

Mack, G.H., 1980, Stratigraphy and depositional environments of the Chilhowee Group 

(Cambrian) in Georgia and Alabama: American Journal of Science, v. 280, p. 497-

517. 

McLaughlin, R.E., 1973, Observations on the biostratigraphy and stratigraphy of Knox 

County, Tennessee and vicinity:  Tennessee Division of Geology Bulletin 70, p. 25-

62. 

McMaster, R.L., de Boer, J., and Collins, B.P., 1980, Tectonic development of southern 

Narragansett Bay and offshore Rhode Island:  Geology, v. 8, p. 496-500. 

Milici, R.C., 1975, Structural patterns in the southern Appalachians—Evidence for a 

gravity slide mechanism for Alleghanian deformation:  Geological Society of 

America Bulletin, v. 86, p. 1315-1320. 

Munyan, A.C., 1951, Geology and mineral resources of the Dalton quadrangle, Georgia-

Tennessee:  Georgia Geological Survey Bulletin, v. 57, p. 100-101. 



 133

Neuman, R.B., 1955, Middle Ordovician rocks of the Tellico-Sevier belt, eastern 

Tennessee:  U.S. Geological Survey Professional Paper 274-F, 178 p. 

Neuman, R.B., 1960, Geologic map of the Wildwood quadrangle, Tennessee:  U.S. 

Geological Survey, Geological Quadrangle Map GQ-130, scale 1:24,000. 

Oder, C.R.L., 1934, Preliminary subdivision of the Knox Dolomite in East Tennessee:  

Journal of Geology, v. 42, p. 469-497. 

Oder, C.R.L., and Milici, R.C., 1965, Geologic map of the Morristown quadrangle, 

Tennessee:  Tennessee Division of Geology Geologic Map GM-163-NE, scale 

1:24,000.  

Oder, C.R.L., and Miller, H.W., 1945, Stratigraphy of the Mascot-Jefferson City zinc 

district:  American Institute of Mining, Metallurgical, and Petroleum Engineers 

Institute Publication 1818, p. 223-231. 

Perry, W.J., Jr., 1978, Sequential deformation in the central Appalachians:  American 

Journal of Science, v. 278, p. 518-542. 

Pfeil, R.W., and Read, J.F., 1980, Cambrian carbonate platform margin facies, Shady 

Dolomite, southwestern Virginia, U.S.A:  Journal of Sedimentary Petrology, v. 50, 

p. 91-116. 

Pumpelly, R., Wolff, J.E., and Dale, T.N., 1894, Geology of the Green Mountains Part 

III, Mount Greylock: its areal and structural geology: U.S. Geologic Survey 

Monograph 23, p. 1-206. 

Ramsay, J.G., 1962, The geometry and mechanics of formation of “similar” type folds:  

The Journal of Geology, v. 70, p. 309-327. 



 134

Rankey, E.C., 1993, Carbonate platform response to tectonism and eustasy: The Middle 

Cambrian carbonates of the lower and middle Conasauga Group, east Tennessee 

[M.S. thesis]:  Knoxville, University of Tennessee, 191 p. 

Rankin, D.W., 1975, The continental margin of eastern North America in the southern 

Appalachians: The opening and closing of the proto-Atlantic Ocean:  American 

Journal of Science, v. 275, p. 298-336. 

Rankin, D.W., Espenshade, G.H., and Neuman, R.B., 1972, Geologic map of the west 

half of the Winston-Salem quadrangle, North Carolina, Virginia, and Tennessee:  

U.S. Geological Survey Miscellaneous Geologic Investigations Map 1-709-A, scale 

1:250,000. 

Reks, I.J., and Gray, D.R., 1983, Strain patterns and shortening in a folded thrust sheet: 

an example from the southern Appalachians:  Tectonophysics, v. 93, p. 99-128. 

Resser, C.E., 1938, Cambrian system (restricted) of the southern Appalachians:  

Geological Society of America Special Paper 15, 140 p. 

Rich, J. L., 1934, Mechanics of low-angle overthrust faulting illustrated by the 

Cumberland thrust block, Virginia, Kentucky, and Tennessee:  American 

Association of Petroleum Geologists Bulletin, v. 18, p. 1584-1596. 

Robertson, P.B., Hatcher, R.D., Jr., and Derryberry, P.M., 2011, Structural and 

stratigraphic/sedimentological analysis of part of the Middle Ordovician Sevier 

foredeep basin, southeastern Greene County, Tennessee:  Geological Society of 

America Abstracts with Programs, v. 42, no. 2, p. 54. 

Rodgers, J., 1953a, Geologic map of East Tennessee with explanatory text:  Tennessee 

Division of Geology Bulletin 58, part 2, 168 p. 



 135

Rodgers, J., 1953b, Geologic map of East Tennessee with explanatory text:  Tennessee 

Division of Geology Bulletin 58, part 2, scale 1:125,000. 

Rodgers, J., 1970a, The Pulaski fault, and the extent of Cambrian evaporites in the central 

and southern Appalachians, in Fisher, G.W., Pettijohn, F.J., Reed, J.C., Jr., and 

Weaver, K.N., eds., Studies of Appalachian geology: Central and southern:  New 

York, Interscience Publishers, p. 175-178. 

Rodgers, J., 1970b, The tectonics of the Appalachians:  New York, Interscience 

Publishers, 271 p. 

Rodgers, J., and Kent, D.F., 1948, Stratigraphic section at Lee Valley, Hawkins County, 

Tennessee:  Tennessee Division of Geology Bulletin 55, 47 p. 

Roeder, D., and Witherspoon, W.D., 1978, Palinspastic map of east Tennessee:  

American Journal of Science, v. 278, p. 543-550. 

Roper, D.C., 1977, Mesoscopic fabric of Babbs Knobs area: (Pulaski thrust, East 

Tennessee) [M.S. thesis]:  Knoxville, University of Tennessee, 83 p.  

Ruppel, S.C., and Walker, K.R., 1995, Petrology and depositional history of a Middle 

Ordovician carbonate platform: Chickamauga Group, northeastern Tennessee:  

Geological Society of America Bulletin, v. 95, p. 568-583. 

Safford, J.M., 1869, Geology of Tennessee, State of Tennessee:  Nashville, Mercer, 550 

p. 

Safford, J.M., and Killebrew, J.B., 1876, The elementary geology of Tennessee, 

Nashville, 550 p. 

Samman, N.F., 1975, Sedimentation and stratigraphy of the Rome Formation in East 

Tennessee [Ph.D. dissert.]:  Knoxville, University of Tennessee, 337 p. 



 136

Scholle, P.A., and Ulmer-Scholle, D.S., 2003, A color guide to the petrology of carbonate 

rocks: Grains, textures, porosity, diagenesis:  American Association of Petroleum 

Geologists Memoir 77, 474 p. 

Schultz, A.P., 1983, Broken formations of the Pulaski thrust sheet near Pulaski, Virginia 

[Ph.D. dissert.]:  Blacksburg, Virginia Polytechnic Institute and State University, 

99 p. 

Schultz, A.P., 1986, Broken formations of the Pulaski thrust sheet near Pulaski, Virginia, 

in McDowell, R.C., and Glover, L., III, eds., the Lowry Volume: Studies in 

Appalachian geology:  Virginia Polytechnic Institute and State University Dept. of 

Geological Sciences Memoir 3, p. 13-26. 

Schwab, F.L., 1970, Origin of the Antietam Formation (Late Precambrian?—Lower 

Cambrian), central Virginia:  Journal of Sedimentary Petrology, v. 40, p. 354-366. 

Simpson, E.L., and Eriksson, K.A., 1989, Sedimentology of the Unicoi Formation in 

southern and central Virginia: Evidence for Late Proterozoic to Early Cambrian 

rift-to-passive margin transition:  Geological Society of America Bulletin, v. 101, 

p.42-54. 

Spigai, J.J., 1963, A study of the Rome Formation in the Valley and Ridge Province of 

East Tennessee [M.S. thesis]:  Knoxville, University of Tennessee, 179 p. 

Srinivasan, K., 1993, Depositional history, sequence stratigraphy and diagenesis of 

Maryville Limestone (Middle Cambrian), southern Appalachians [Ph.D. dissert.]:  

Knoxville, University of Tennessee, 166 p. 

Srinivasan, K., and Walker, K.R., 1993, Sequence stratigraphy of an intrashelf basin 

carbonate ramp to rimmed platform transition: Maryville Limestone (Middle 



 137

Cambrian), southern Appalachians:  Geological Society of America Bulletin, v. 

105, p. 883-896. 

Stevenson, J.J., 1885, Notes on the geological structure of Tazewell, Russell, Wise, 

Smyth, and Washington Counties, Virginia:  Proceedings of the American 

Philosophical Society, v. 22., p. 114-161. 

Stose, G.W., 1908, The Cambro-Ordovician limestones of the Appalachian Valley in 

southern Pennsylvania:  Journal of Geology, v. 16, p. 698-714. 

Suppe, J., 1981, Mechanics of mountain building and metamorphism in Taiwan:  

Geologic Society of China Memoir 4, p. 67-89. 

Swingle, G.D., 1959, Geology, mineral resources, and groundwater of the Cleveland 

area, Tennessee:  Tennessee Division of Geology Bulletin 61, 125 p. 

Swingle, G.D., 1964, Elevation of the Chickamauga Limestone to group status in East 

Tennessee [abs]:  Tennessee Academy of Science Journal, v. 39, no. 2, p. 66. 

Troensegaard, K.W., II, 1965, Development of cleavage in a portion of the Bays 

Mountain synclinorium, Greene, Cocke, Hamblen, and Jefferson Counties, 

Tennessee [M.S. thesis]: Knoxville, University of Tennessee, 39 p. 

Ulrich, E.O., 1911, Revision of the Paleozoic systems:  Geological Society of America 

Bulletin, v. 22, p. 281-681. 

Whisner, C.W., 2005, The Middle Ordovician Tellico-Sevier syncline: A stratigraphic, 

structural, and paleoseismic investigation [Ph.D. dissert.]:  Knoxville, University of 

Tennessee, 230 p. 



 138

Whitaker, A.E., and Bartholomew, M.J., 1999, Layer parallel shortening: A mechanism 

for determining deformation timing at the junction of the central and southern 

Appalachians:  American Journal of Science, v. 299, p. 238-254. 

Whitmer, N.E., 2005, Structural and stratigraphic investigations of the Bays Mountain 

synclinorium, Parrottsville and a portion of Cedar Creek 7.5-minute quadrangles, 

east Tennessee [M.S. thesis]:  Knoxville, University of Tennessee, 129 p. 

Wilkerson, M.S., Apotria, T., and Farid, T., 2002, Interpreting the geologic map 

expression of contractional fault-related fold terminations: lateral/oblique ramps 

versus displacement gradients:  Journal of Structural Geology, v. 24, p. 593-607. 

Woodward, N.B., 1987, Geological applicability of critical-wedge thrust-belt models:  

Geological Society of America Bulletin, v. 99, p. 827-832. 

Woodward, N.B., and Beets, J.W., 1988, Critical evidence for southern Appalachian 

Valley and Ridge thrust sequence, in Mitra, G., and Wojtal, S. eds., Geometries and 

mechanisms of thrusting with special reference to the Appalachians:  Geological 

Society of America Special Paper 222, p. 165-178. 

Woodward, N.B., and Gray, D.R., 1985, Four southwestern Virginia-northeast Tennessee 

balanced cross sections, in Woodward, N.B., ed., Valley and Ridge thrust belt; 

Balanced structural sections, Pennsylvania to Alabama:  Knoxville, University of 

Tennessee, Department of Geological Sciences Studies in Geology, v. 12, p. 40-43. 

Woodward, N.B., Walker, K.R., and Lutz, C.T., 1988, Relationships between early 

Paleozoic facies patterns and structural trends in the Saltville thrust family, 

Tennessee Valley and Ridge, southern Appalachians:  Geological Society of 

America Bulletin, v. 100, p. 1758-1769. 



 139

Yust, W.W., 1975, A mesoscopic fabric analysis of a portion of the Tellico-Sevier belt of 

East Tennessee [M.S. thesis]:  Knoxville, University of Tennessee, 106 p. 



 140

 

 
 
 
 
 
 
 
 
 
 
 

APPENDIX 
 

Structure and Lithology Data for the Study Area 
[Does not include data from Whitmer (2005)] 

 
 

 

Explanation: 

CC—Cedar Creek 
NM—Neddy Mountain 

PR—Paint Rock 
PV—Parrottsville 

 
Note:  UTM coordinates (17N, North American Datum 1983) included 

only in data from Cedar Creek quadrangle  
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QUAD UTM Easting UTM Northing STATION STRIKE DIP FEATURE DOMINANT LITHOLOGY/UNIT DESCRIPTION 1 DESCRIPTION 2 OTHER LITHOLOGY/UNIT 1 OTHER LITHOLOGY/UNIT 2    

CC 3996014E 322580N 1 55 67 bedding Conococheague Limestone Massive Ribboned Dolomite     

CC 3995974E 322562N 2 58 51 bedding Conococheague Limestone Massive       

CC 3992680E 323060N 3 40 50 bedding Limestone        

CC 3998404E 323321N 4 59 81 bedding Limestone Ribboned  Dolomite     

CC 3995806E 321572N 5 61 65 bedding Shale Fissile Shaly Lower Sevier Shale     

CC 3995557E 322179N 6 60 39 bedding Limestone Massive       

CC 3997787E 322092N 7 0 0 float Conococheague Limestone Cherty       

CC 3998324E 325352N 8 59 82 bedding Jonesboro Limestone Massive Thrombolitic      

CC 3998277E 325213N 9 58 70 bedding Limestone Cherty Sandy Sandstone     

CC 3994128E 323401N 10 67 79 bedding Limestone   Sandstone     

CC 3994800E 322929N 11 248 79 bedding Limestone   Sandstone     

CC 3994754E 322942N 13 245 83 bedding Limestone Massive  Dolomite     

CC 3994066E 322593N 14 58 47 bedding Limestone Cherty  Siltstone     

CC 3994017E 322605N 15 0 0 float  Cherty       

CC 3994075E 322513N 16 58 25 bedding Limestone        

CC 3994163E 322433N 17 252 63 bedding Limestone Ribboned  Dolomite     

CC 3994337E 323100N 18 65 69 bedding Limestone Sandy Ribboned Dolomite Jonesboro Limestone?    

CC 3998628E 325557N 19 55 55 bedding Limestone Shaly Sandy Dolomite Conococheague Limestone    

CC 3995300E 322358N 20 79 26 bedding Limestone        

CC 3992391E 323336N 21 60 72 bedding Limestone        

CC 3992378E 323260N 22 55 50 bedding Dolomite        

CC 3994475E 320477N 23 80 47 bedding Limestone Massive Ribboned Dolomite Conococheague Limestone    

CC 3994828E 320381N 24 0 0 float Dolomite Massive  Limestone     

CC 3994971E 320544N 25 76 51 bedding Shale Fissile Shaly      

CC 3994884E 320522N 26 75 60 bedding Shale        

CC 3993034E 320886N 27 56 56 bedding         

CC 3992616E 320994N 28 56 72 overturned bedding Shale        

CC 3992340E 321664N 29 52 15 bedding         

CC 3993474E 321028N 30 75 30 bedding Limestone Massive       

CC 3993549E 320997N 31 70 35 bedding Limestone Massive       

CC 3993640E 321095N 32 58 65 bedding Limestone Oolitic Massive      

CC 3993504E 321101N 33 59 34 bedding Limestone Thrombolitic  Dolomite     

CC 3992742E 321025N 34 66 70 bedding Limestone Massive  Dolomite     

CC 3991537E 321279N 35 55 41 bedding Limestone Banded  Dolomite     

CC 3992418E 321616N 36 280 67 bedding Dolomite        
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QUAD UTM Easting UTM Northing STATION STRIKE DIP FEATURE DOMINANT LITHOLOGY/UNIT DESCRIPTION 1 DESCRIPTION 2 OTHER LITHOLOGY/UNIT 1 OTHER LITHOLOGY/UNIT 2    

CC 3996808E 322274N 37 245 43 bedding Limestone        

CC 3995402E 322377N 39 86 15 bedding Dolomite        

CC 3995374E 322489N 40 155 35 bedding Limestone        

CC 3995554E 322461N 41 304 28 bedding Limestone        

CC 3992488E 323104N 42 55 39 bedding Limestone   Dolomite     

CC 3991686E 322355N 43 54 75 bedding Limestone Ribboned Interbedded Dolomite     

CC 3991712E 322390N 44 54 35 bedding Limestone Ribboned Interbedded Dolomite     

CC 3991523E 322178N 45 325 35 bedding Limestone   Dolomite     

CC 3990845E 321405N 46 36 25 bedding Limestone Banded Ribboned Dolomite     

CC 3990786E 321352N 47 59 31 bedding         

CC 3992162E 322145N 50 51 45 bedding Limestone Massive Laminated      

CC 3992063E 322204N 54 310 50 bedding Limestone        

CC 3995348E 322092N 56 33 26 bedding Dolomite Thrombolitic  Limestone     

CC 3995392E 321999N 58 65 62 bedding Dolomite Thrombolitic  Limestone     

CC 3995368E 321837N 62 65 67 bedding Dolomite Thrombolitic  Limestone     

CC 3995403E 321807N 64 213 11 bedding         

CC 3995461E 321782N 66 65 69 bedding Dolomite   Limestone     

CC 3995472E 321888N 67 69 69 bedding Dolomite   Limestone     

CC 3995205E 322128N 69 313 22 bedding Dolomite   Limestone     

CC 3995165E 322006N 70 58 14 bedding Dolomite   Limestone     

CC 3994944E 321803N 71 62 76 bedding Dolomite   Limestone     

CC 3995284E 321998N 72 99 22 bedding Dolomite   Limestone     

CC 3991040E 321538N 73 48 30 bedding Dolomite Massive       

CC 3991022E 321500N 74 49 30 bedding Limestone Interbedded Massive Dolomite     

CC 3990905E 321409N 78 45 35 bedding Limestone Massive Interbedded Dolomite     

CC 3991419E 322027N 79 278 62 bedding Dolomite Massive  Limestone     

CC 3995457E 324535N 80 250 69 bedding Limestone Oolitic Shaly Dolomite     

CC 3996215E 325801N 81 56 77 bedding Limestone Massive  Dolomite     

CC 3995525E 321383N 82 232 90 bedding Limestone Massive Ribboned      

CC 3995567E 321374N 83 65 70 bedding Shale Calcareous Fissile      

CC 3995556E 321430N 84 55 79 bedding Limestone Massive Ribboned      

CC 3995280E 321102N 85 46 74 bedding Shale Fissile Calcareous      

CC 3995339E 321293N 86 45 90 bedding Limestone Massive Interbedded Dolomite     

CC 3995236E 321222N 88 230 68 bedding Limestone Massive Interbedded Dolomite     

CC 3995102E 321030N 90 203 51 bedding Limestone Massive Oolitic Dolomite     
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QUAD UTM Easting UTM Northing STATION STRIKE DIP FEATURE DOMINANT LITHOLOGY/UNIT DESCRIPTION 1 DESCRIPTION 2 OTHER LITHOLOGY/UNIT 1 OTHER LITHOLOGY/UNIT 2    

CC 3995378E 321159N 94 46 90 bedding Shale Fissile Calcareous      

CC 3995219E 320962N 95 64 54 bedding Shale Fissile Calcareous      

CC 3995331E 320926N 96 59 32 bedding Siltstone Silty Calcareous Shale     

CC 3995425E 320921N 97 59 64 bedding Shale Fissile Silty Siltstone     

CC 3995512E 320915N 98 59 74 bedding Shale Fissile Silty Siltstone     

CC 3995652E 320952N 99 59 50 bedding Shale Fissile Silty Siltstone     

CC 3995708E 321079N 100 0 0 float Sandstone Sandy Calcareous Siltstone     

CC 3995747E 320948N 101 64 45 bedding Siltstone Silty Calcareous      

CC 3995609E 320827N 102 58 66 bedding Shale Fissile Silty Siltstone     

CC 3995749E 320645N 103 0 0 float Sandstone Sandy Calcareous Siltstone     

CC 3995670E 320768N 104 66 62 bedding Shale Fissile Silty Siltstone     

CC 3995934E 321746N 106 326 74 bedding Limestone Massive Interbedded Dolomite     

CC 3995919E 321689N 107 305 41 bedding Limestone Massive Interbedded Dolomite     

CC 3991550E 322155N 108 29 34 bedding Limestone Banded Shaly      

CC 3991458E 322338N 109 101 68 overturned bedding Shale Calcareous Fissile Siltstone Nolichucky Shale    

CC 3991471E 322391N 110 109 57 overturned bedding Shale Calcareous Fissile Siltstone Nolichucky Shale    

CC 3991469E 322478N 112 80 81 overturned bedding Shale Calcareous Fissile Siltstone Nolichucky Shale    

CC 3991581E 322668N 114 246 17 bedding Limestone Massive Interbedded Maynardville Limestone Dolomite    

CC 3991550E 322673N 115 74 69 overturned bedding Shale Fissile Calcareous Siltstone Nolichucky Shale    

CC 3991539E 322719N 116 55 29 overturned bedding Shale Fissile Calcareous Siltstone Nolichucky Shale    

CC 3991427E 322565N 118 69 64 bedding Dolomite Massive  Limestone     

CC 3990261E 322703N 119 206 46 bedding Shale Fissile Calcareous Siltstone Nolichucky Shale    

CC 3995842E 323086N 120 0 0 float Dolomite Massive  Limestone     

CC 3995993E 322831N 121 56 51 bedding Dolomite   Limestone     

CC 3995951E 322930N 122 52 61 bedding Dolomite Interbedded Massive Limestone     

CC 3996074E 325481N 123 55 60 bedding Limestone Massive Interbedded Dolomite     

CC 3995499E 325040N 124 72 48 bedding Limestone Massive       

CC 3995436E 324975N 125 79 75 bedding Limestone Massive       

CC 3995351E 324881N 126 56 44 bedding Limestone Massive       

CC 3995197E 324707N 127 57 48 bedding Dolomite Massive  Limestone     

CC 3995150E 324655N 128 0 0 float Sandstone Sandy Siliceous      

CC 3995106E 324606N 129 51 61 bedding Limestone Massive Fissile Dolomite     

CC 3994999E 324465N 130 45 50 bedding Limestone Massive  Dolomite     

CC 3994942E 324379N 131 43 56 bedding Limestone Massive  Dolomite     

CC 3994862E 324265N 132 55 56 bedding Limestone Massive  Dolomite     
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QUAD UTM Easting UTM Northing STATION STRIKE DIP FEATURE DOMINANT LITHOLOGY/UNIT DESCRIPTION 1 DESCRIPTION 2 OTHER LITHOLOGY/UNIT 1 OTHER LITHOLOGY/UNIT 2    

CC 3994861E 324217N 133 44 53 bedding Sandstone Sandy Siliceous      

CC 3994864E 324118N 134 49 62 bedding Limestone Massive Interbedded Dolomite     

CC 3994825E 323911N 135 51 59 bedding Limestone Massive Interbedded Dolomite     

CC 3994818E 323848N 136 51 51 bedding Limestone Massive Interbedded Dolomite     

CC 3994848E 323768N 137 245 52 bedding Limestone Banded Interbedded Dolomite     

CC 3994914E 323758N 139 245 82 bedding Limestone Massive Ribboned Dolomite     

CC 3995007E 323934N 140 245 85 bedding Limestone Massive Ribboned Dolomite     

CC 3994958E 324003N 142 61 41 bedding Limestone Massive Ribboned Dolomite     

CC 3994886E 323872N 144 60 39 bedding Limestone Massive Ribboned Dolomite     

CC 3994851E 323649N 145 81 90 bedding Limestone Massive Ribboned Dolomite     

CC 3994914E 323589N 146 247 51 bedding Limestone Massive Ribboned Dolomite     

CC 3994266E 325337N 147 64 52 bedding Limestone Interbedded Ribboned Dolomite     

CC 3994195E 325347N 148 65 60 bedding Dolomite Massive       

CC 3994165E 325291N 149 65 57 bedding Dolomite Massive       

CC 3994113E 325207N 150 56 60 bedding Dolomite Massive       

CC 3994075E 325134N 151 53 56 bedding Dolomite Massive       

CC 3994047E 324932N 153 65 55 bedding Limestone Massive Ribboned Dolomite     

CC 3993968E 325033N 154 58 58 bedding Limestone Massive Ribboned Dolomite     

CC 3994141E 325120N 155 60 54 bedding Limestone Interbedded Ribboned Dolomite     

CC 3993765E 325354N 157 68 75 bedding Dolomite Massive Silty Dolomite     

CC 3993788E 325408N 158 95 76 bedding Limestone Ribboned  Dolomite     

CC 3993892E 325549N 159 31 54 bedding Limestone Ribboned Silty Dolomite     

CC 3994034E 325650N 160 49 71 bedding Dolomite   Chepultepec Dolomite     

CC 3994164E 325397N 161 55 62 bedding Limestone Ribboned Massive Dolomite     

CC 3994276E 325518N 162 56 58 bedding Dolomite        

CC 3994300E 325567N 163 56 60 bedding Dolomite        

CC 3994336E 325657N 164 56 60 bedding Dolomite        

CC 3992127E 323992N 165 338 51 bedding Dolomite   Limestone     

CC 3992147E 324100N 166 101 74 bedding Limestone Ribboned Massive Dolomite     

CC 3992200E 324197N 167 75 69 bedding Limestone Ribboned Massive Dolomite     

CC 3992190E 324088N 168 105 75 bedding Limestone Interbedded Ribboned Dolomite     

CC 3992088E 323895N 169 332 70 bedding Dolomite Massive  Limestone     

CC 3992055E 323823N 170 284 70 bedding Limestone Interbedded Ribboned Dolomite     

CC 3991996E 323859N 171 313 67 bedding Dolomite Massive       

CC 3991930E 323864N 172 336 67 bedding Limestone Interbedded Ribboned Dolomite     
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QUAD UTM Easting UTM Northing STATION STRIKE DIP FEATURE DOMINANT LITHOLOGY/UNIT DESCRIPTION 1 DESCRIPTION 2 OTHER LITHOLOGY/UNIT 1 OTHER LITHOLOGY/UNIT 2    

CC 3991796E 323890N 173 75 63 bedding Shale Fissile Calcareous Siltstone Nolichucky Shale    

CC 3991795E 323841N 174 315 74 bedding Siltstone Fissile Calcareous Shale Nolichucky Shale    

CC 3991884E 323801N 175 343 57 bedding Shale Fissile Calcareous Siltstone Nolichucky Shale    

CC 3992316E 324418N 176 81 90 bedding Dolomite Ribboned Massive Limestone     

CC 3997034E 326925N 177 55 71 bedding Limestone Interbedded Ribboned Dolomite     

CC 3997233E 327168N 178 55 51 bedding Limestone Interbedded Ribboned Dolomite     

CC 3997305E 327236N 179 55 70 bedding Limestone Interbedded Ribboned Dolomite     

CC 3991740E 322502N 180 62 44 bedding Limestone Ribboned Interbedded Dolomite Maynardville Limestone    

CC 3991777E 322544N 181 312 81 joint Limestone Ribboned Interbedded Dolomite Maynardville Limestone    

CC 3991769E 322660N 183 49 27 bedding Limestone Ribboned Interbedded Dolomite Maynardville Limestone    

CC 3991763E 322697N 184 49 39 bedding Limestone Interbedded  Dolomite     

CC 3991819E 322778N 185 55 31 bedding Dolomite Interbedded Ribboned Limestone     

CC 3991916E 322609N 186 62 59 bedding Dolomite Fissile Sandy      

CC 3991895E 322590N 187 0 0 float Shale Fissile Calcareous Nolichucky Shale     

CC 3991835E 322517N 188 48 38 bedding Shale Fissile Calcareous Nolichucky Shale Dolomite    

CC 3991791E 322418N 189 0 0 float Shale Fissile Calcareous Nolichucky Shale Shale    

CC 3991755E 322373N 190 58 30 bedding Shale Fissile Calcareous Nolichucky Shale Siltstone    

CC 3992573E 322472N 191 46 38 bedding Limestone Ribboned Laminated Dolomite     

CC 3992597E 322566N 192 49 44 bedding Limestone Ribboned Massive Dolomite     

CC 3992672E 322563N 193 49 44 bedding Limestone Ribboned Laminated Dolomite     

CC 3992755E 322655N 195 43 40 bedding Limestone Ribboned Interbedded Dolomite     

CC 3992836E 322750N 196 44 41 bedding Limestone Ribboned Interbedded Dolomite     

CC 3993399E 322461N 197 60 85 bedding Limestone Ribboned Variegated Dolomite     

CC 3993467E 322464N 198 60 86 bedding Limestone Ribboned Variegated Dolomite     

CC 3993558E 322415N 199 60 86 bedding Limestone Ribboned Variegated Dolomite     

CC 3993695E 322551N 200 60 84 bedding Limestone Ribboned Variegated Dolomite     

CC 3993315E 322472N 201 45 69 bedding Limestone Ribboned Variegated Dolomite     

CC 3993096E 322589N 202 0 0 float Shale Fissile  Nolichucky Shale     

CC 3994245E 323022N 203 55 44 bedding Dolomite Massive Thrombolitic Copper Ridge Dolomite     

CC 3994189E 322902N 205 61 54 bedding Limestone Massive Ribboned Dolomite     

CC 3994173E 322803N 206 0 0 float Limestone Ribboned Interbedded Dolomite     

CC 3994091E 322805N 207 0 0 float Dolomite Cherty  Limestone     

CC 3994087E 322900N 208 55 57 bedding Limestone Massive Ribboned Dolomite     

CC 3994169E 322978N 209 60 39 bedding Limestone Massive Ribboned Dolomite     

CC 3994156E 323136N 210 64 41 bedding Limestone Massive Ribboned Dolomite Copper Ridge Dolomite    
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QUAD UTM Easting UTM Northing STATION STRIKE DIP FEATURE DOMINANT LITHOLOGY/UNIT DESCRIPTION 1 DESCRIPTION 2 OTHER LITHOLOGY/UNIT 1 OTHER LITHOLOGY/UNIT 2    

CC 3994286E 323373N 211 58 47 bedding Limestone Shaly Ribboned Dolomite     

CC 3996843E 322916N 211 59 86 bedding Jonesboro Limestone Thrombolitic Ribboned Mascot Dolomite     

CC 3992474E 323598N 212 35 46 bedding Dolomite Interbedded Sandy      

CC 3992398E 323634N 213 55 65 bedding Limestone Ribboned Fossiliferous Dolomite Sandstone    

CC 3992332E 323727N 214 280 76 bedding Limestone Ribboned  Dolomite Breccia    

CC 3992348E 323819N 215 62 46 bedding Limestone Ribboned Interbedded Dolomite     

CC 3991969E 323236N 217 51 55 bedding Limestone Ribboned Interbedded Dolomite     

CC 3991417E 320463N 218 54 38 bedding Limestone Cherty       

CC 3991597E 320595N 219 54 48 bedding Limestone Cherty       

CC 3991698E 320656N 220 44 40 bedding Limestone Cherty       

CC 3991886E 320705N 221 40 32 overturned bedding Limestone Cherty       

CC 3991892E 320557N 222 40 53 overturned bedding Dolomite Massive Cherty Limestone     

CC 3991933E 320471N 223 56 73 overturned bedding Dolomite Massive Cherty Limestone     

CC 3991922E 320327N 224 54 77 overturned bedding Limestone Ribboned Massive Dolomite     

CC 3991876E 320170N 225 44 45 bedding Limestone Ribboned Massive Dolomite     

CC 3991969E 320036N 226 54 24 bedding Limestone Cherty       

CC 3991741E 320067N 227 60 43 overturned bedding Dolomite Massive       

CC 3991166E 320429N 228 0 0 float Other Cherty       

CC 3991217E 320248N 229 0 0 float Other Cherty       

CC 3992791E 320455N 230 50 46 bedding Limestone Ribboned Interbedded Dolomite     

CC 3997428E 324282N 231 54 75 bedding Limestone Interbedded Ribboned Dolomite Chepultepec Dolomite    

CC 3997515E 324232N 232 0 0 float Dolomite Massive       

CC 3997523E 324324N 233 53 74 bedding Dolomite Massive       

CC 3997362E 324072N 234 56 74 bedding Limestone Massive Interbedded Dolomite     

CC 3997298E 324124N 235 57 83 bedding Limestone Massive Interbedded Dolomite     

CC 3997184E 324327N 236 54 54 bedding Shale Fissile Silty Nolichucky Shale     

CC 3997025E 323869N 237 240 70 cleavage Shale Fissile Silty Nolichucky Shale     

CC 3996735E 323191N 238 220 74 cleavage Shale Fissile Silty Nolichucky Shale Coal    

CC 3996316E 322796N 239 56 58 bedding Shale Fissile Silty Nolichucky Shale Siltstone    

CC 3996142E 322558N 240 65 65 bedding Shale Fissile Silty Nolichucky Shale Siltstone    

CC 3996144E 322450N 241 239 69 cleavage Shale Fissile Silty Nolichucky Shale Siltstone    

CC 3996144E 322450N 241 239 69 bedding Shale Fissile Silty Nolichucky Shale Siltstone    

CC 3996197E 322376N 242 66 70 bedding Limestone Interbedded Massive Dolomite     

CC 3996200E 329584N 243 53 73 bedding Limestone Ribboned Massive Dolomite Sandstone    

CC 3996140E 329468N 244 46 70 bedding Limestone Ribboned Massive Dolomite Sandstone    
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QUAD UTM Easting UTM Northing STATION STRIKE DIP FEATURE DOMINANT LITHOLOGY/UNIT DESCRIPTION 1 DESCRIPTION 2 OTHER LITHOLOGY/UNIT 1 OTHER LITHOLOGY/UNIT 2    

CC 3993233E 329395N 245 57 62 bedding Shale Fissile  Nolichucky Shale     

CC 3994285E 329731N 246 53 55 bedding Limestone Interbedded Ribboned Dolomite     

CC 3994163E 329713N 247 56 63 bedding Limestone Interbedded Ribboned Dolomite     

CC 3994025E 329605N 248 82 90 bedding Limestone Interbedded Ribboned Dolomite Maynardville Limestone    

CC 3994047E 329542N 249 250 64 bedding Limestone Interbedded Ribboned Dolomite Maynardville Limestone    

CC 3993977E 329645N 250 69 85 bedding Limestone Interbedded Ribboned Dolomite Maynardville Limestone    

CC 3991225E 326644N 252 106 64 bedding Dolomite Massive  Limestone     

CC 3993909E 329682N 253 71 74 bedding Limestone Ribboned Massive Dolomite Sandstone    

CC 3993626E 329787N 254 0 0 float Other Cherty  Copper Ridge Dolomite     

CC 3993821E 329788N 255 0 0 float Other Cherty       

CC 3994044E 329809N 256 72 69 bedding Limestone Ribboned Interbedded Dolomite Maynardville Limestone    

CC 3994457E 329782N 257 58 56 bedding Limestone Ribboned Interbedded Dolomite Maynardville Limestone    

CC 3994464E 329704N 258 60 41 bedding Limestone Ribboned Interbedded Dolomite Maynardville Limestone    

CC 3996399E 329351N 259 60 46 bedding Dolomite Shaly Silty Shale     

CC 3994330E 324663N 260 55 90 bedding Limestone Ribboned Massive Dolomite Copper Ridge Dolomite    

CC 3994538E 324593N 261 55 60 bedding Limestone Ribboned Interbedded Dolomite     

CC 3996936E 329962N 262 0 0 float Shale Fissile  Nolichucky Shale     

CC 3995578E 327393N 263 46 90 bedding Limestone Massive Ribboned Dolomite Copper Ridge Dolomite    

CC 3995609E 327324N 264 46 90 bedding Limestone Massive Ribboned Dolomite Copper Ridge Dolomite    

CC 3995130E 327217N 265 76 60 bedding Limestone Massive Ribboned Dolomite Copper Ridge Dolomite    

CC 3995306E 327335N 266 65 60 bedding Limestone Massive Ribboned Dolomite Copper Ridge Dolomite    

CC 3994006E 330019N 267 62 90 bedding Limestone Massive Ribboned Dolomite Copper Ridge Dolomite    

CC 3993436E 329937N 268 248 41 bedding Shale Fissile Silty Dolomite Siltstone    

CC 3993525E 330170N 269 0 0 float Shale Fissile Silty Dolomite Siltstone    

CC 3997045E 325604N 270 245 73 bedding Dolomite Banded Massive Limestone     

CC 3997182E 325487N 271 0 0 float Other Cherty Sandy      

CC 3997011E 325669N 272 234 72 bedding Limestone Ribboned Massive Dolomite     

CC 3996976E 325725N 273 49 64 bedding Limestone Ribboned Massive Dolomite     

CC 3997523E 325493N 274 0 0 float Limestone Ribboned Massive Dolomite     

CC 3994120E 323557N 275 58 68 bedding Limestone Interbedded Massive Dolomite     

CC 3994046E 323608N 276 60 65 bedding Limestone Interbedded Massive Dolomite     

CC 3988060E 325177N 277 265 42 bedding Dolomite Sandy Calcareous Other     

CC 3988129E 325249N 278 255 60 bedding Dolomite Sandy Calcareous Other     

CC 3988155E 325351N 279 255 60 bedding Dolomite Shaly Silty Shale     

CC 3988186E 325429N 280 252 50 bedding Dolomite Shaly Silty Shale     
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CC 3988252E 325587N 281 244 51 bedding Dolomite Shaly Silty Shale     

CC 3988259E 325676N 282 256 59 bedding Dolomite Shaly Silty Shale     

CC 3988253E 325739N 283 270 31 bedding Dolomite Shaly Silty Shale     

CC 3988020E 325060N 284 265 40 bedding Dolomite Sandy Silty      

CC 3987823E 325216N 285 49 40 bedding Limestone Laminated Massive      

CC 3987473E 325370N 286 44 60 bedding Shale Fissile  Nolichucky Shale     

CC 3987473E 325370N 286 44 52 bedding Shale Fissile  Nolichucky Shale     

CC 3987473E 325370N 286 44 21 bedding Shale Fissile  Nolichucky Shale     

CC 3987473E 325370N 286 44 38 bedding Shale Fissile  Nolichucky Shale     

CC 3987488E 325355N 287 45 36 bedding Dolomite Massive Ribboned      

CC 3987343E 325429N 288 0 0 float Limestone Ribboned Massive Dolomite     

CC 3994796E 327222N 289 66 66 bedding Limestone Interbedded Ribboned Dolomite     

CC 3994762E 327130N 290 70 59 bedding Dolomite Interbedded Ribboned Limestone     

CC 3994635E 327084N 291 56 55 bedding Limestone Banded Interbedded Dolomite     

CC 3995081E 328215N 292 59 66 bedding Limestone Ribboned  Dolomite     

CC 3995207E 328111N 293 62 67 bedding Limestone Ribboned Cherty Dolomite     

CC 3995100E 327973N 294 60 52 bedding Limestone Ribboned Cherty Dolomite     

CC 3993973E 328073N 295 64 58 bedding Limestone Ribboned  Dolomite     

CC 3997063E 328118N 296 259 41 bedding Shale Fissile Calcareous Lower Sevier Shale     

CC 3996990E 328074N 297 240 72 bedding Shale Fissile Calcareous Lower Sevier Shale     

CC 3996822E 328036N 298 58 72 bedding Limestone Massive  Dolomite     

CC 3996752E 327985N 300 59 90 bedding Limestone Interbedded Massive Dolomite     

CC 3995969E 327676N 301 62 74 bedding Limestone Ribboned Interbedded Dolomite     

CC 3991988E 327721N 302 65 63 bedding Limestone Massive Interbedded Dolomite     

CC 3991936E 327621N 303 0 0 float Dolomite Massive Interbedded Limestone     

CC 3998108E 329518N 304 62 90 bedding Limestone Massive Ribboned Dolomite     

CC 3998171E 329495N 305 62 90 bedding Sandstone Sandy Massive Limestone Dolomite    

CC 3998240E 329491N 306 62 90 bedding Dolomite Cherty Interbedded Limestone     

CC 3998216E 329395N 307 62 90 bedding Limestone Ribboned Massive Dolomite     

CC 3998172E 329706N 308 62 90 bedding Limestone Ribboned Interbedded Dolomite     

CC 3998301E 329714N 309 0 0 float Sandstone Sandy       

CC 3998325E 329682N 310 0 0 float Dolomite Cherty  Other     

CC 3998315E 329578N 311 60 90 bedding Limestone Ribboned Massive Dolomite     

CC 3998396E 329464N 312 0 0 float Sandstone Sandy  Dolomite     

CC 3998300E 329314N 313 231 67 bedding Limestone Ribboned Massive Dolomite     
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CC 3998269E 329366N 314 244 72 bedding Limestone Ribboned Massive Dolomite     

CC 3986559E 319842N 314 0 0 float Nolichucky Shale Fissile       

CC 3998966E 330327N 315 239 67 bedding Shale Fissile Shaly Sandstone Lower Sevier Shale    

CC 3986525E 319782N 315 0 0 float Nolichucky Shale Fissile       

CC 3998846E 330503N 316 57 90 bedding Limestone Ribboned Massive Dolomite     

CC 3998857E 330540N 317 60 90 bedding Limestone Ribboned Massive Dolomite Sandstone    

CC 3998891E 330607N 318 61 81 bedding Limestone Ribboned Massive Dolomite Sandstone    

CC 3998947E 330698N 319 65 76 bedding Limestone Ribboned Massive Dolomite     

CC 3998900E 330781N 320 61 90 bedding Dolomite Interbedded Massive Limestone     

CC 3998854E 330850N 321 57 81 bedding Limestone Ribboned Interbedded Dolomite     

CC 3998831E 328208N 322 66 28 bedding Limestone Interbedded Cherty Dolomite     

CC 3998915E 328296N 324 51 83 bedding Limestone Interbedded Cherty Dolomite     

CC 3998914E 328378N 325 57 36 bedding Limestone Interbedded Cherty Dolomite     

CC 3998951E 328389N 326 50 58 bedding Limestone Banded Cherty Dolomite     

CC 3999135E 328540N 327 56 56 bedding Limestone Banded Cherty Dolomite     

CC 3999192E 328487N 328 60 72 bedding Limestone Banded Cherty Dolomite     

CC 3999218E 328463N 329 216 75 bedding Limestone Ribboned Interbedded Dolomite     

CC 3999259E 328415N 331 216 82 bedding Limestone Ribboned Massive Dolomite     

CC 3999134E 328360N 332 222 70 bedding Limestone Ribboned Cherty Dolomite Other    

CC 3999063E 328343N 333 241 46 bedding Limestone Ribboned Cherty Dolomite Other    

CC 3999040E 330305N 334 59 64 bedding Shale Fissile  Lower Sevier Shale     

CC 3999108E 330335N 335 86 48 bedding Shale Fissile  Lower Sevier Shale     

CC 3999163E 330333N 336 216 66 bedding Shale Fissile  Lower Sevier Shale     

CC 3998928E 330385N 339 246 66 bedding Shale Fissile  Lower Sevier Shale     

CC 3998910E 330446N 340 240 70 bedding Shale Fissile  Lower Sevier Shale     

CC 3999003E 330265N 341 229 61 bedding Shale Fissile  Lower Sevier Shale     

CC 3999035E 330211N 343 56 90 bedding Shale Fissile  Lower Sevier Shale     

CC 3999080E 330178N 344 44 56 bedding Shale Fissile  Lower Sevier Shale     

CC 3995989E 330709N 345 56 71 bedding Limestone Ribboned Interbedded Dolomite     

CC 3995931E 330662N 346 48 79 bedding Limestone Ribboned Interbedded Dolomite     

CC 3991378E 321261N 347 55 49 bedding Limestone Massive Calcareous      

CC 3991335E 321188N 348 59 51 bedding Limestone Massive Calcareous      

CC 3991269E 321181N 349 56 44 bedding Limestone Massive Calcareous      

CC 3991235E 321089N 350 64 52 bedding Limestone Massive Calcareous      

CC 3991210E 321029N 351 66 60 bedding Limestone Ribboned Massive Dolomite     
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CC 3991333E 321311N 352 55 49 bedding Limestone Massive Calcareous      

CC 3991299E 321336N 353 0 0 float Limestone Massive Calcareous      

CC 3991222E 321446N 354 274 61 bedding Limestone Ribboned Massive Dolomite     

CC 3991169E 321429N 355 0 0 float Limestone Ribboned Massive Dolomite     

CC 3991289E 321423N 356 0 0 float Limestone Ribboned Massive Dolomite     

CC 3991467E 321383N 357 59 54 bedding Limestone Ribboned Massive Dolomite     

CC 3991471E 321439N 358 59 45 bedding Limestone Ribboned Massive Dolomite     

CC 3991461E 321234N 359 0 0 float Shale Shaly Fissile Nolichucky Shale     

CC 3991382E 321144N 360 0 0 float Shale Shaly Fissile Nolichucky Shale     

CC 3994056E 323894N 361 43 51 bedding Limestone Ribboned Interbedded Dolomite Alluvium    

CC 3993603E 324080N 362 50 75 bedding Limestone Massive Oolitic Maynardville Limestone     

CC 3993691E 324079N 363 44 43 bedding Limestone Ribboned Oolitic Maynardville Limestone Dolomite    

CC 3993687E 324116N 364 49 71 bedding Limestone Ribboned Oolitic Maynardville Limestone Dolomite    

CC 3993792E 323996N 365 0 0 float Alluvium Unconsolidated       

CC 3993460E 324084N 366 49 70 bedding Shale Shaly Calcareous Siltstone     

CC 3993485E 324132N 367 51 66 bedding Shale Shaly Calcareous Siltstone     

CC 3993535E 324161N 368 48 51 bedding Dolomite Shaly Interbedded Shale Limestone    

CC 3993513E 324206N 369 49 64 bedding Limestone Ribboned Massive Dolomite     

CC 3993386E 324425N 370 50 36 bedding Limestone Massive Silty      

CC 3993116E 324254N 371 53 47 bedding Limestone Massive Silty Dolomite     

CC 3993457E 324301N 372 300 52 joint Limestone Massive Oolitic Dolomite     

CC 3993362E 324010N 373 50 66 bedding Limestone Ribboned Massive Dolomite     

CC 3994118E 324910N 374 0 0 float Shale Fissile  Nolichucky Shale     

CC 3994154E 324978N 375 0 0 float Shale Fissile  Nolichucky Shale     

CC 3994185E 325037N 376 0 0 float Shale Fissile  Nolichucky Shale     

CC 3991783E 322035N 378 46 45 bedding Dolomite Ribboned Silty Honaker Dolomite     

CC 3991726E 322054N 379 58 50 bedding Dolomite Ribboned Massive Honaker Dolomite     

CC 3991899E 322118N 380 70 56 bedding Dolomite Ribboned Interbedded Limestone     

CC 3992001E 322077N 382 348 28 bedding Limestone Ribboned Interbedded Dolomite     

CC 3991933E 322046N 383 68 46 bedding Limestone Ribboned Interbedded Dolomite     

CC 3996410E 326742N 384 42 55 bedding Limestone Ribboned Calcareous Dolomite     

CC 3988549E 326420N 385 0 0 float Shale Fissile  Nolichucky Shale     

CC 3988568E 326391N 386 0 0 float Limestone Massive  Maynardville Limestone     

CC 3991930E 327965N 387 37 62 bedding Limestone Massive       

CC 3991955E 327933N 388 39 60 bedding Limestone Massive       
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CC 3992562E 325706N 389 0 0 float Limestone Ribboned  Dolomite     

CC 3992628E 325647N 390 266 72 bedding Limestone Massive       

CC 3992747E 325746N 391 273 64 bedding Limestone Massive Oolitic      

CC 3992688E 325678N 392 262 84 bedding Limestone Ribboned Massive Dolomite     

CC 3988115E 324386N 393 301 15 bedding Limestone Ribboned Interbedded Dolomite Maryville Limestone    

CC 3988077E 324281N 394 325 7 bedding Limestone Ribboned Interbedded Dolomite Maryville Limestone    

CC 3988178E 324488N 396 8 16 bedding Limestone Ribboned Interbedded Dolomite Maryville Limestone    

CC 3988292E 324305N 397 44 28 bedding Limestone Ribboned Interbedded Dolomite Maryville Limestone    

CC 3988198E 324254N 398 75 27 bedding Limestone Ribboned Interbedded Dolomite Maryville Limestone    

CC 3986588E 322226N 399 69 25 bedding Limestone Ribboned Interbedded Dolomite Maryville Limestone    

CC 3986587E 322367N 400 71 26 bedding Limestone Ribboned Shaly Dolomite Maryville Limestone    

CC 3986990E 325358N 401 68 66 bedding Limestone Ribboned Banded Dolomite Maryville Limestone    

CC 3986764E 324656N 402 0 0 float Shale Fissile  Nolichucky Shale     

CC 3991054E 328251N 403 57 67 bedding Limestone Interbedded  Dolomite     

CC 3988814E 323019N 404 0 0 float Other Cherty Siliceous      

CC 3988832E 323184N 405 0 0 float Other Cherty Unconsolidated      

CC 3989169E 322712N 406 218 65 bedding Shale Fissile  Nolichucky Shale     

CC 3989144E 322738N 407 38 64 overturned bedding Dolomite Shaly Silty Limestone     

CC 3989527E 326412N 408 38 64 bedding Shale Fissile  Nolichucky Shale     

CC 3987262E 326347N 410 323 90 joint Dolomite Massive       

CC 3987214E 326322N 411 52 50 bedding Dolomite Massive       

CC 3987415E 326393N 412 55 42 bedding Dolomite Ribboned Massive      

CC 3987567E 326456N 413 52 36 bedding Limestone Ribboned Cherty Dolomite     

CC 3987661E 326476N 414 52 43 bedding Limestone Ribboned Massive Dolomite     

CC 3987735E 326506N 415 76 90 bedding Limestone Ribboned Cherty Dolomite Copper Ridge Dolomite    

CC 3987732E 326337N 417 0 0 float Sandstone Sandy  Middle Sevier Shale     

CC 3987797E 326443N 418 45 29 bedding Limestone Cherty Ribboned Dolomite     

CC 3987821E 326529N 419 49 22 bedding Limestone Cherty Ribboned Dolomite     

CC 3997414E 327848N 420 57 61 bedding Limestone Ribboned Interbedded Dolomite     

CC 3997188E 327901N 421 0 0 float Other Cherty  Copper Ridge Dolomite     

CC 3989459E 322819N 422 43 57 overturned bedding Dolomite Shaly       

CC 3989485E 322855N 423 0 0 float Shale Fissile  Nolichucky Shale     

CC 3989556E 322669N 424 0 0 float Siltstone Silty Shaly Dolomite     

CC 3989823E 322958N 425 50 25 bedding Shale Fissile  Nolichucky Shale     

CC 3989901E 323003N 426 0 0 float Shale Fissile Shaly Dolomite     
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CC 3989737E 322967N 428 0 0 float Dolomite Massive       

CC 3995718E 327314N 429 51 90 bedding Dolomite Massive       

CC 3995793E 327383N 431 57 90 bedding Limestone Ribboned  Dolomite     

CC 3995845E 327449N 432 56 90 bedding Limestone Ribboned  Dolomite     

CC 3995891E 327110N 433 0 0 float Other Cherty       

CC 3992012E 322249N 437 55 34 bedding Limestone Ribboned Massive Dolomite     

CC 3991908E 322231N 438 32 81 bedding Dolomite Massive       

CC 3992502E 322932N 440 40 75 bedding Shale Fissile  Nolichucky Shale     

CC 3993270E 320962N 442 54 39 bedding Maryville Limestone Ribboned Banded Limestone Dolomite    

CC 3993180E 321018N 443 49 26 bedding Maryville Limestone Ribboned Banded Limestone Dolomite    

CC 3993138E 320919N 445 53 35 bedding Dolomite Massive       

CC 3992667E 321267N 446 0 0 float Dolomite Massive       

CC 3992526E 321479N 447 169 58 bedding Dolomite Massive  Copper Ridge Dolomite     

CC 3992543E 321449N 448 274 90 bedding Dolomite Massive  Copper Ridge Dolomite     

CC 3992632E 321361N 449 0 0 float Dolomite Massive  Copper Ridge Dolomite     

CC 3993312E 320877N 450 0 0 float Dolomite Massive  Sandstone     

CC 3993395E 320929N 451 61 51 bedding Dolomite Massive Massive      

CC 3993477E 320931N 453 178 52 joint Limestone Interbedded Ribboned Dolomite     

CC 3993530E 320879N 456 183 65 joint Limestone Interbedded Ribboned Dolomite     

CC 3993597E 320865N 457 75 75 bedding Limestone Interbedded Ribboned Dolomite     

CC 3993634E 320827N 458 75 90 bedding Limestone Interbedded Ribboned Dolomite     

CC 3993594E 320773N 459 76 90 bedding Limestone Interbedded Ribboned Dolomite     

CC 3993383E 320725N 463 59 29 bedding Limestone Interbedded Ribboned Dolomite     

CC 3993428E 320798N 464 59 32 bedding Limestone Interbedded Ribboned Dolomite     

CC 3993181E 320089N 465 0 0 float Shale Fissile  Nolichucky Shale     

CC 3993220E 320132N 466 0 0 float Shale Fissile  Nolichucky Shale     

CC 3993387E 320217N 467 0 0 float Limestone Massive Ribboned Dolomite     

CC 3993343E 320225N 468 246 45 bedding Shale Fissile Silty Nolichucky Shale     

CC 3993312E 320263N 469 0 0 float Shale Fissile  Nolichucky Shale     

CC 3993349E 320310N 470 46 26 bedding Shale Fissile  Nolichucky Shale     

CC 3993385E 320357N 471 0 0 float Shale Fissile  Nolichucky Shale     

CC 3993411E 320576N 472 57 40 bedding Limestone Massive Ribboned Dolomite Maynardville Limestone    

CC 3993389E 320600N 473 55 36 bedding Limestone Massive Ribboned Dolomite Maynardville Limestone    

CC 3993542E 320610N 474 60 69 bedding Limestone Massive Ribboned Dolomite Maynardville Limestone    

CC 3993543E 320611N 475 266 90 cleavage Shale   Nolichucky Shale     
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CC 3993459E 320744N 476 60 62 bedding Limestone Interbedded Ribboned Dolomite Sandstone    

CC 3993568E 320702N 477 77 84 bedding Limestone Massive  Dolomite Maynardville Limestone    

CC 3993369E 320541N 478 358 76 cleavage Limestone Massive  Dolomite Maynardville Limestone    

CC 3993347E 320501N 479 60 43 bedding Limestone Massive  Dolomite Maynardville Limestone    

CC 3993273E 320544N 480 49 42 bedding Limestone Massive  Dolomite     

CC 3993186E 320599N 481 0 0 float Sandstone Sandy       

CC 3993269E 320709N 482 49 36 bedding Dolomite Massive Interbedded Limestone Sandstone    

CC 3993146E 320512N 483 0 0 float Sandstone        

CC 3993299E 320433N 484 55 39 bedding Limestone Massive Ribboned Dolomite     

CC 3993353E 320391N 485 55 34 bedding Dolomite Shaly Fissile Shale Nolichucky Shale    

CC 3993447E 320503N 486 56 65 bedding Shale Fissile  Nolichucky Shale     

CC 3993884E 320700N 487 102 61 bedding Limestone Silty Calcareous      

CC 3993864E 320645N 488 0 0 float Sandstone Sandy Siliceous      

CC 3993763E 320582N 489 0 0 float Limestone Silty Calcareous      

CC 3993734E 320440N 490 82 49 bedding Dolomite Shaly Silty Limestone     

CC 3993544E 320517N 491 0 0 float Dolomite Massive       

CC 3993617E 320451N 492 101 34 bedding Limestone Massive       

CC 3993686E 320407N 493 0 0 float Other Cherty       

CC 3993727E 320338N 494 100 33 bedding Limestone Shaly  Dolomite     

CC 3993831E 320306N 495 87 38 bedding Limestone Shaly  Dolomite     

CC 3990012E 321731N 496 0 0 float Shale Fissile  Lower Sevier Shale     

CC 3989897E 321723N 497 0 0 float Limestone Massive       

CC 3989658E 321645N 498 290 51 bedding Dolomite Ribboned Ribboned Dolomite     

CC 3989654E 321744N 499 301 24 bedding Dolomite Ribboned Ribboned Dolomite     

CC 3989531E 321997N 500 318 44 bedding Shale Fissile  Nolichucky Shale     

CC 3989286E 322074N 501 0 0 float Dolomite Massive       

CC 3989371E 322035N 502 0 0 float         

CC 3989450E 322023N 503 63 41 bedding Shale Fissile  Nolichucky Shale     

CC 3989754E 321943N 504 0 0 float Other Cherty       

CC 3990082E 321678N 505 75 31 bedding Shale Fissile  Lower Sevier Shale     

CC 3990164E 321622N 506 0 0 float Shale Fissile  Lower Sevier Shale     

CC 3989978E 321233N 507 101 65 bedding Dolomite Shaly       

CC 3990025E 320983N 509 0 0 float Shale Fissile  Lower Sevier Shale     

CC 3989995E 321061N 510 0 0 float Shale Fissile  Lower Sevier Shale     

CC 3993730E 328448N 512 64 55 bedding Limestone Ribboned Massive Dolomite     
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CC 3993739E 328493N 513 66 66 bedding Limestone Ribboned Massive Dolomite     

CC 3993775E 328383N 514 0 0 float Dolomite Massive       

CC 3993806E 322001N 515 62 50 bedding Limestone Ribboned Interbedded Dolomite Conococheague Limestone    

CC 3993803E 321871N 516 172 68 cleavage Limestone Ribboned Interbedded Dolomite Conococheague Limestone    

CC 3993725E 321863N 517 59 46 bedding Limestone Ribboned Interbedded Dolomite Conococheague Limestone    

CC 3993809E 321613N 520 0 0 float Alluvium Sandy Siliceous      

CC 3993914E 321705N 521 0 0 float Alluvium Sandy Siliceous      

CC 3993934E 321748N 522 65 65 bedding Limestone Ribboned Interbedded Dolomite Conococheague Limestone    

CC 3993937E 321846N 523 57 69 bedding Limestone Ribboned Interbedded Dolomite Conococheague Limestone    

CC 3993885E 321900N 524 62 51 bedding Dolomite Massive       

CC 3993898E 322053N 525 0 0 float Limestone Massive Ribboned Dolomite Conococheague Limestone    

CC 3993261E 321515N 526 0 0 float Alluvium        

CC 3992996E 321339N 527 0 0 float Alluvium        

CC 3992960E 321399N 528 56 64 bedding Dolomite Ribboned Interbedded Limestone Conococheague Limestone    

CC 3992861E 321894N 529 0 0 float Alluvium        

CC 3992928E 321705N 530 0 0 float Alluvium        

CC 3993168E 321646N 531 0 0 float Alluvium        

CC 3993224E 321848N 532 72 70 bedding Dolomite Massive       

CC 3993428E 321788N 533 80 43 bedding Limestone Oolitic Silty Dolomite     

CC 3994075E 321674N 535 0 0 float Alluvium        

CC 3994356E 321658N 536 0 0 float Alluvium        

CC 3994364E 321696N 537 68 72 bedding Limestone Ribboned  Dolomite     

CC 3994085E 321939N 538 0 0 float Limestone Laminated  Conococheague Limestone     

CC 3994148E 322034N 539 69 90 bedding Limestone Ribboned Interbedded Conococheague Limestone Dolomite    

CC 3994277E 322142N 540 56 75 bedding Limestone Ribboned Interbedded Conococheague Limestone Dolomite    

CC 3994302E 322264N 541 240 68 bedding Limestone Ribboned Interbedded Conococheague Limestone Dolomite    

CC 3990798E 322113N 542 79 70 bedding Limestone Ribboned  Dolomite Conococheague Limestone    

CC 3990798E 322113N 542 79 70 overturned bedding Limestone Ribboned  Dolomite Conococheague Limestone    

CC 3990988E 321941N 543 39 33 bedding Limestone Ribboned Interbedded Dolomite Jonesboro Limestone    

CC 3991150E 322008N 544 41 42 bedding Limestone Ribboned Interbedded Dolomite Jonesboro Limestone    

CC 3991096E 321938N 545 352 90 joint Limestone Ribboned Interbedded Dolomite Jonesboro Limestone    

CC 3991042E 321928N 546 79 55 bedding Limestone Ribboned Interbedded Dolomite Jonesboro Limestone    

CC 3996855E 320278N 548 55 42 bedding Dolomite Massive  Limestone Mascot Dolomite    

CC 3996779E 320253N 549 55 50 bedding Limestone Massive  Limestone Lenoir Limestone    

CC 3996713E 320258N 551 67 59 cleavage Shale Fissile  Lower Sevier Shale     
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CC 3988605E 321473N 552 0 0 float Shale Fissile  Nolichucky Shale     

CC 3988672E 321001N 553 0 0 bedding Limestone Ribboned Laminated Dolomite Shale    

CC 3988820E 320656N 554 44 31 bedding Limestone Ribboned Massive Dolomite Conococheague Limestone    

CC 3989518E 320282N 555 91 90 bedding Limestone Interbedded Ribboned Dolomite Jonesboro Limestone    

CC 3989526E 320338N 556 21 35 joint Limestone Interbedded Ribboned Dolomite Jonesboro Limestone    

CC 3989400E 320428N 557 76 84 bedding Limestone Interbedded Ribboned Dolomite Sandstone    

CC 3989362E 320460N 558 72 72 bedding Limestone Interbedded Ribboned Dolomite Sandstone    

CC 3989310E 320469N 559 75 74 bedding Limestone Interbedded Ribboned Dolomite Other    

CC 3988091E 321112N 560 0 0 float Conococheague Limestone Ribboned  Limestone     

CC 3987963E 321106N 561 76 74 bedding Shale Interbedded Calcareous Lower Sevier Shale Limestone    

CC 3988027E 321117N 562 286 43 bedding Shale Interbedded Calcareous Lower Sevier Shale Limestone    

CC 3986777E 320699N 564 33 90 bedding Shale Silty Fissile Lower Sevier Shale Nolichucky Shale    

CC 3986868E 320643N 565 0 0 float Shale Fissile  Lower Sevier Shale     

CC 3986956E 320646N 566 0 0 float Shale Fissile  Lower Sevier Shale     

CC 3990833E 319914N 568 0 0 float Other Cherty       

CC 3990755E 319929N 569 0 0 float Other Cherty       

CC 3990787E 319841N 570 72 73 bedding Shale Fissile Sandy Nolichucky Shale Sandstone    

CC 3990756E 320463N 571 0 0 float Conococheague Limestone Cherty  Other     

CC 3995144E 325642N 572 60 62 bedding Limestone Massive Calcareous      

CC 3995235E 325530N 573 0 0 float Dolomite Cherty  Other     

CC 3995427E 325626N 574 65 72 bedding Limestone Massive Ribboned Conococheague Limestone Dolomite    

CC 3995494E 325632N 575 0 0 float Other Cherty       

CC 3995685E 325480N 576 60 58 bedding Limestone Ribboned Massive Dolomite Conococheague Limestone    

CC 3996244E 325668N 577 50 56 bedding Limestone Ribboned Massive Dolomite     

CC 3996356E 325659N 578 54 42 bedding Limestone Ribboned Massive Dolomite     

CC 3996507E 325549N 580 0 0 float Limestone Ribboned Massive Dolomite     

CC 3996216E 325733N 581 52 45 bedding Limestone Ribboned Massive Dolomite     

CC 3996370E 325561N 582 50 42 bedding Limestone Ribboned Massive Dolomite     

CC 3996413E 325623N 584 315 58 joint Limestone Ribboned Interbedded Dolomite     

CC 3996592E 325520N 585 58 70 bedding Limestone Ribboned Silty Dolomite     

CC 3996631E 325501N 586 61 57 bedding Limestone Ribboned Silty Dolomite     

CC 3996836E 325356N 587 0 0 float Limestone Ribboned Silty Dolomite     

CC 3996855E 325431N 588 69 90 bedding Limestone Ribboned Silty Dolomite     

CC 3996869E 325621N 589 241 49 bedding Limestone Ribboned Silty Dolomite     

CC 3996783E 325667N 590 56 59 bedding Limestone Ribboned Silty Dolomite     
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CC 3996396E 326428N 591 246 54 bedding Limestone Ribboned Cherty Dolomite     

CC 3996359E 326365N 592 246 46 bedding Limestone Ribboned Cherty Dolomite     

CC 3991786E 322272N 593 68 50 bedding Dolomite Massive       

CC 3991718E 322257N 594 70 46 bedding Shale   Nolichucky Shale     

CC 3996390E 325997N 597 48 54 bedding Limestone Ribboned Interbedded Dolomite     

CC 3996477E 326070N 599 50 55 bedding Limestone Ribboned Interbedded Dolomite     

CC 3996419E 325936N 600 52 58 bedding Dolomite Ribboned Interbedded Limestone     

CC 3996417E 325865N 601 58 40 bedding Dolomite Ribboned Massive Limestone     

CC 3996533E 325868N 602 0 0 float Dolomite Interbedded Massive Limestone     

CC 3996322E 325921N 603 55 57 bedding Limestone Ribboned Massive Dolomite     

CC 3992264E 323191N 605 39 51 bedding Limestone Ribboned Massive Dolomite     

CC 3992182E 323197N 607 41 53 bedding Siltstone Shaly Laminated Limestone Dolomite    

CC 3992188E 323123N 608 48 53 bedding Dolomite Interbedded Ribboned Limestone     

CC 3992186E 323047N 610 41 50 bedding Limestone Ribboned Calcareous Dolomite     

CC 3992211E 322999N 612 0 0 float Shale Fissile  Nolichucky Shale     

CC 3992122E 322993N 613 39 46 bedding Limestone Massive Ribboned Maynardville Limestone     

CC 3992030E 323000N 614 50 50 bedding Limestone Ribboned Massive Dolomite     

CC 3992114E 323180N 618 45 59 bedding Limestone Ribboned Massive Dolomite     

CC 3992081E 323210N 619 40 50 bedding Dolomite Shaly       

CC 3992182E 323296N 620 42 33 bedding Dolomite Shaly       

CC 3992543E 323740N 621 52 40 bedding Limestone Ribboned Interbedded Dolomite Conococheague Limestone    

CC 3992578E 323793N 622 51 60 bedding Limestone Interbedded Ribboned Dolomite Conococheague Limestone    

CC 3992630E 323858N 623 55 49 bedding Limestone Interbedded Ribboned Dolomite Conococheague Limestone    

CC 3992701E 324030N 624 57 52 bedding Dolomite Interbedded Ribboned Limestone Conococheague Limestone    

CC 3992746E 324139N 625 55 50 bedding Dolomite Interbedded Ribboned Limestone Conococheague Limestone    

CC 3992660E 324072N 626 50 47 bedding Dolomite Interbedded Shaly Limestone Conococheague Limestone    

CC 3992547E 323586N 627 70 53 bedding Dolomite Ribboned Massive Limestone Conococheague Limestone    

CC 3992779E 322962N 628 53 72 bedding Dolomite Massive Massive Honaker Dolomite     

CC 3993120E 323000N 632 47 34 bedding Limestone Banded Ribboned Dolomite     

CC 3992977E 322997N 634 40 51 bedding Dolomite Massive  Honaker Dolomite     

CC 3992798E 323199N 636 56 61 bedding Shale Silty Fissile Siltstone Nolichucky Shale    

CC 3990305E 320721N 639 0 0 float Other Cherty  Conococheague Limestone     

CC 3990259E 320610N 640 0 0 float Other Cherty  Jonesboro Limestone     

CC 3990045E 320850N 641 75 22 bedding Shale   Dolomite Lower Sevier Shale    

CC 3990037E 320933N 642 0 0 float Shale Cherty Fissile Other     
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CC 3990762E 321973N 643 83 66 overturned bedding Dolomite Banded Cherty Limestone Honaker Dolomite    

CC 3990760E 321273N 644 50 41 bedding Dolomite Massive Banded Limestone Honaker Dolomite    

CC 3986868E 320211N 645 243 68 bedding Siltstone Silty Silty Limestone     

CC 3986897E 320057N 647 89 71 bedding Dolomite Shaly Massive Siltstone Mascot Dolomite    

CC 3987020E 319993N 648 95 79 bedding Limestone Calcareous Shaly      

CC 3987052E 320117N 649 0 0 float Lenoir Limestone Cherty  Other     

CC 3987337E 319983N 651 2 25 bedding Siltstone Shaly Silty Shale     

CC 3987333E 319955N 652 66 40 bedding Limestone Massive Thrombolitic      

CC 3987293E 320305N 653 66 74 bedding Limestone Massive       

CC 3987291E 320212N 654 89 31 bedding Limestone Massive  Dolomite     

CC 3987410E 320935N 655 0 0 float Shale Fissile  Lower Sevier Shale     

CC 3987503E 320962N 656 0 0 float Siltstone Silty  Other     

CC 3985675E 320512N 657 53 60 bedding Limestone Massive Ribboned Dolomite Maynardville Limestone    

CC 3985658E 319737N 658 55 90 bedding Dolomite Shaly  Siltstone Honaker Dolomite    

CC 3985640E 319812N 659 144 65 bedding Dolomite Shaly Silty Honaker Dolomite     

CC 3985682E 319897N 660 27 51 overturned bedding Dolomite Shaly  Siltstone Honaker Dolomite    

CC 3985719E 319877N 661 295 79 bedding Siltstone Silty  Shale Dolomite    

CC 3985723E 319957N 664 31 79 overturned bedding Dolomite        

CC 3985611E 320105N 666 0 0 float Other Cherty       

CC 3985659E 320428N 667 55 51 bedding Shale   Nolichucky Shale Honaker Dolomite    

CC 3985699E 320199N 669 0 0 float Other Cherty       

CC 3985762E 320112N 670 96 0 fold hinge Dolomite Massive Silty Honaker Dolomite     

CC 3985722E 320068N 671 39 54 overturned bedding Dolomite Massive Silty Honaker Dolomite     

CC 3985819E 320048N 672 229 85 bedding Dolomite Massive Silty Honaker Dolomite     

CC 3985861E 319975N 674 60 78 bedding Shale Fissile Interbedded Dolomite Nolichucky Shale    

CC 3985885E 319949N 675 312 73 bedding Shale   Siltstone Nolichucky Shale    

CC 3985784E 319797N 677 0 0 float Shale Fissile  Siltstone Nolichucky Shale    

CC 3985819E 319781N 678 58 90 bedding Shale Fissile  Siltstone Nolichucky Shale    

CC 3985923E 319787N 679 61 54 bedding Shale Fissile Interbedded Siltstone Limestone    

CC 3986058E 319841N 680 0 0 float  Cherty       

CC 3986255E 320397N 681 0 0 float Colluvium Cherty  Other     

CC 3986126E 320348N 682 0 0 float Shale Silty  Nolichucky Shale     

CC 3986093E 320305N 683 0 0 float Shale Silty  Nolichucky Shale     

CC 3986412E 320626N 684 64 70 bedding Shale Fissile Interbedded Nolichucky Shale Limestone    

CC 3986439E 320833N 687 236 62 bedding Dolomite Laminated Silty Honaker Dolomite     
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CC 3986623E 320779N 688 0 0 float Shale Fissile  Nolichucky Shale     

CC 3986305E 320832N 689 53 41 bedding Dolomite Silty  Honaker Dolomite     

CC 3987046E 319956N 691 97 40 bedding Conglomerate Shaly Interbedded Dolomite     

CC 3986181E 321102N 692 68 48 bedding Dolomite Banded Interbedded Limestone Honaker Dolomite    

CC 3986135E 321171N 694 61 38 bedding Siltstone Fissile  Shale Rogersville Shale    

CC 3986052E 321139N 695 69 34 bedding Dolomite Banded Interbedded Limestone Honaker Dolomite    

CC 3986033E 321095N 696 71 44 bedding Dolomite Banded Interbedded Limestone Honaker Dolomite    

CC 3985753E 321623N 697 86 60 bedding Limestone Massive Calcareous Conococheague Limestone Other    

CC 3985759E 321678N 698 90 55 bedding Limestone Massive Calcareous Conococheague Limestone     

CC 3985778E 321799N 699 88 69 bedding  Ribboned Banded      

CC 3985584E 321760N 700 82 66 bedding Limestone Ribboned Interbedded Dolomite Conococheague Limestone    

CC 3986581E 322589N 701 85 32 bedding Dolomite Shaly Silty Siltstone     

CC 3986549E 322053N 702 65 37 bedding Dolomite Massive  Limestone Honaker Dolomite    

CC 3986495E 321966N 704 65 43 bedding Limestone Banded Interbedded Dolomite Honaker Dolomite    

CC 3986464E 322022N 705 65 46 bedding Siltstone Silty  Dolomite     

CC 3986428E 322079N 706 65 38 bedding Limestone Ribboned Calcareous Dolomite     

CC 3986195E 321999N 707 67 21 bedding Dolomite Silty       

CC 3985856E 321906N 708 0 0 float Shale Fissile  Nolichucky Shale     

CC 3985827E 321831N 709 0 0 float Shale Fissile  Nolichucky Shale     

CC 3985906E 321914N 710 0 0 float Dolomite Massive  Honaker Dolomite     

CC 3986191E 321808N 711 50 31 bedding Dolomite Silty Massive Limestone Honaker Dolomite    

CC 3985797E 321548N 712 0 0 float Shale Fissile  Nolichucky Shale     

CC 3990029E 325382N 713 0 0 float Shale Fissile Fissile      

CC 3989964E 325387N 714 0 0 float Other Cherty       

CC 3988832E 324009N 715 0 0 float Shale Fissile Cherty      

CC 3989209E 324112N 716 219 41 bedding Dolomite Cherty Massive Limestone Honaker Dolomite    

CC 3989192E 324166N 717 69 39 bedding Shale Fissile Silty Nolichucky Shale     

CC 3989276E 323957N 718 0 0 float Breccia Interbedded Massive Dolomite Limestone    

CC 3988502E 325951N 720 252 35 bedding Dolomite Massive  Shale Honaker Dolomite    

CC 3988604E 325997N 722 253 37 bedding Limestone Ribboned Massive Dolomite     

CC 3988725E 326044N 723 237 38 bedding Limestone Ribboned Cherty Dolomite Maynardville Limestone    

CC 3988782E 326076N 725 255 40 bedding Limestone Massive Ribboned Dolomite     

CC 3988431E 326032N 726 0 0 float Dolomite Massive  Honaker Dolomite     

CC 3989569E 326313N 727 0 0 float Dolomite Massive  Honaker Dolomite     

CC 3988160E 326062N 728 0 0 float Dolomite Massive  Honaker Dolomite     
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CC 3988136E 326111N 730 34 49 bedding Shale Fissile Interbedded Nolichucky Shale Siltstone    

CC 3987924E 326123N 731 0 0 float Conococheague Limestone        

CC 3988074E 325993N 732 22 35 bedding Dolomite Massive  Honaker Dolomite     

CC 3988676E 322122N 733 46 53 bedding Limestone Massive Fissile Nolichucky Shale Shale    

CC 3988652E 322300N 734 0 0 float Limestone Massive Fissile Nolichucky Shale Shale    

CC 3987880E 321373N 736 0 0 float Shale Fissile  Nolichucky Shale     

CC 3987398E 320270N 737 87 39 bedding Limestone Massive Cherty Breccia     

CC 3987441E 320221N 739 84 83 bedding Limestone Massive Fissile Dolomite Shale    

CC 3987326E 320304N 740 229 61 bedding Limestone Massive Calcareous Dolomite     

CC 3987758E 321046N 741 288 59 bedding Siltstone Silty Shaly Shale     

CC 3987585E 320654N 742 314 46 bedding Limestone Massive  Dolomite Rutledge Limestone    

CC 3987598E 320680N 743 22 25 bedding Dolomite Massive  Limestone Honaker Dolomite    

CC 3987528E 320525N 744 85 90 bedding Limestone Massive  Breccia     

CC 3987504E 320493N 745 0 0 float Sandstone Sandy       

CC 3986649E 320359N 746 15 79 bedding Dolomite Laminated  Honaker Dolomite     

CC 3986630E 320310N 747 95 90 cleavage Siltstone Silty  Dolomite     

CC 3986554E 320275N 748 0 0 float Dolomite Silty       

CC 3986532E 320213N 749 9 70 bedding Dolomite Silty       

CC 3986471E 320322N 750 11 90 bedding Dolomite Silty       

CC 3986140E 320156N 751 0 0 float Other Cherty       

CC 3986471E 320173N 752 21 68 bedding Dolomite Laminated       

CC 3992277E 331043N 753 82 69 bedding Limestone Interbedded  Dolomite Conococheague Limestone    

CC 3992344E 330762N 754 52 69 bedding Dolomite   Honaker Dolomite     

CC 3992673E 330330N 755 82 0 fold hinge Dolomite Interbedded Massive Limestone     

CC 3992575E 330063N 756 0 0 float         

CC 3992413E 329973N 757 63 47 bedding Dolomite Interbedded  Limestone     

CC 3992186E 329800N 758 67 78 bedding Limestone Shaly  Shale     

CC 3991867E 329839N 759 67 77 bedding Limestone Interbedded Silty Limestone Maryville Limestone    

CC 3991831E 329858N 760 61 73 bedding Limestone Interbedded Silty Limestone Maryville Limestone    

CC 3991836E 329948N 761 53 83 bedding Limestone Interbedded Massive Dolomite Honaker Dolomite    

CC 3991744E 329979N 762 59 81 bedding Limestone Interbedded Massive Dolomite Honaker Dolomite    

CC 3991583E 329847N 763 52 83 bedding Limestone Interbedded Massive Dolomite Honaker Dolomite    

CC 3991604E 329771N 764 56 74 bedding Limestone Interbedded Massive Dolomite Honaker Dolomite    

CC 3991588E 329662N 765 68 76 bedding Limestone Interbedded Massive Dolomite Honaker Dolomite    

CC 3991620E 329527N 766 67 73 bedding Dolomite Interbedded Massive Limestone Honaker Dolomite    
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CC 3991625E 329350N 767 68 77 bedding Dolomite Interbedded  Honaker Dolomite Limestone    

CC 3991564E 329245N 768 63 73 bedding Dolomite Interbedded  Honaker Dolomite Limestone    

CC 3991403E 329095N 769 63 62 bedding Dolomite Interbedded  Honaker Dolomite Limestone    

CC 3991188E 329130N 770 58 62 bedding Dolomite Shaly Interbedded Shale Honaker Dolomite    

CC 3991054E 328755N 771 68 51 bedding Dolomite Interbedded Interbedded Limestone Honaker Dolomite    

CC 3991275E 328603N 772 57 57 bedding Dolomite Interbedded  Limestone     

CC 3991619E 328385N 773 296 84 bedding Dolomite Interbedded  Limestone     

CC 3996839E 321471N 774 75 75 bedding Limestone Thrombolitic Massive Dolomite Jonesboro Limestone    

CC 3996863E 321336N 775 69 55 bedding Limestone Thrombolitic Massive Dolomite Jonesboro Limestone    

CC 3996851E 321199N 776 0 0 float Shale Fissile Shaly Lower Sevier Shale     

CC 3996822E 321161N 777 235 51 bedding Limestone   Lenoir Limestone Lower Sevier Shale    

CC 3996799E 321131N 778 91 69 bedding Limestone   Lenoir Limestone Lower Sevier Shale    

CC 3996858E 320994N 779 0 0 float Lower Sevier Shale        

CC 3996945E 320936N 780 0 0 float Lower Sevier Shale        

CC 3997005E 320864N 781 56 75 cleavage Lower Sevier Shale        

CC 3996995E 320845N 782 56 75 bedding Lower Sevier Shale Interbedded  Lenoir Limestone     

CC 3997046E 320898N 783 242 56 bedding Lenoir Limestone Massive       

CC 3997039E 320948N 784 0 0 float Lower Sevier Shale        

CC 3996953E 321064N 785 54 60 bedding Lower Sevier Shale        

CC 3996953E 321064N 785 255 68 cleavage Lower Sevier Shale        

CC 3996921E 321140N 786 0 0 float Lower Sevier Shale        

CC 3996909E 321197N 787 100 31 bedding Lenoir Limestone        

CC 3996881E 321395N 788 81 65 bedding Jonesboro Limestone Massive Thrombolitic      

CC 3997924E 322599N 789 0 0 float Shale   Lower Sevier Shale     

CC 3996229E 321711N 790 88 55 bedding Limestone   Jonesboro Limestone     

CC 3996229E 321711N 790 234 29 cleavage Limestone   Jonesboro Limestone     

CC 3996269E 321820N 791 78 56 bedding Jonesboro Limestone Massive       

CC 3996363E 321659N 792 152 19 bedding Limestone   Dolomite Jonesboro Limestone    

CC 3996399E 321583N 793 171 29 bedding Limestone Interbedded Thrombolitic Dolomite Jonesboro Limestone    

CC 3996366E 321638N 794 303 72 cleavage Limestone Interbedded Thrombolitic Dolomite Jonesboro Limestone    

CC 3996559E 321336N 795 49 61 bedding Dolomite   Limestone     

CC 3996514E 321640N 796 0 0 float Sandstone   Dolomite     

CC 3995198E 321925N 797 85 65 cleavage Limestone        

CC 3998141E 322974N 798 71 90 cleavage Lower Sevier Shale Fissile       

CC 3997896E 322906N 799 54 41 bedding Dolomite Massive  Mascot Dolomite     
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CC 3998204E 323072N 800 0 0 float Lower Sevier Shale Fissile       

CC 3998757E 324024N 801 0 0 float Lower Sevier Shale Fissile       

CC 3998763E 324106N 802 135 55 bedding Lower Sevier Shale Fissile       

CC 3998763E 324106N 802 292 82 cleavage Lower Sevier Shale Fissile       

CC 3998895E 323967N 803 0 0 float Lower Sevier Shale Fissile       

CC 3998916E 323817N 804 0 0 float Limestone Massive  Lenoir Limestone     

CC 3998847E 323824N 805 0 0 float Lower Sevier Shale Fissile       

CC 3998620E 323738N 806 0 0 float Other Cherty       

CC 3996261E 322282N 807 0 0 float Lower Sevier Shale Fissile       

CC 3996103E 321733N 808 0 0 float Lower Sevier Shale Fissile       

CC 3996731E 323212N 809 81 45 bedding Lower Sevier Shale Fissile  Shale     

CC 3996144E 321181N 810 51 75 bedding Shale Fissile  Lower Sevier Shale     

CC 3996144E 321181N 810 174 74 cleavage Shale Fissile  Lower Sevier Shale     

CC 3996064E 320927N 811 89 55 bedding Jonesboro Limestone Cherty       

CC 3996028E 320911N 812 0 0 float Shale   Lower Sevier Shale     

CC 3995980E 320907N 813 89 50 bedding         

CC 3995980E 320907N 813 109 76 cleavage         

CC 3996078E 320896N 814 0 0 float Jonesboro Limestone        

CC 3996115E 320950N 815 85 50 bedding Jonesboro Limestone   Dolomite     

CC 3996177E 321058N 816 70 48 bedding Jonesboro Limestone Thrombolitic Ribboned Dolomite     

CC 3996238E 320791N 817 48 90 cleavage Lower Sevier Shale Fissile       

CC 3996278E 320640N 818 0 0 float Jonesboro Limestone        

CC 3996714E 320353N 819 240 54 bedding Lower Sevier Shale Fissile       

CC 3996725E 322005N 820 256 39 bedding Lenoir Limestone Massive Calcareous Limestone     

CC 3996626E 322046N 821 0 0 float Dolomite   Jonesboro Limestone     

CC 3997054E 324971N 822 59 66 bedding Conococheague Limestone Ribboned  Limestone Dolomite    

CC 3997094E 324912N 823 82 57 bedding Conococheague Limestone Ribboned  Limestone Dolomite    

CC 3997196E 324816N 824 59 66 bedding Conococheague Limestone Massive  Limestone Dolomite    

CC 3997437E 324825N 825 54 75 bedding Limestone Thrombolitic Massive Dolomite Jonesboro Limestone    

CC 3997500E 324834N 826 0 0 float Lower Sevier Shale        

CC 3997739E 324930N 827 0 0 float Lower Sevier Shale        

CC 3997930E 325073N 828 0 0 float Lower Sevier Shale        

CC 3999371E 324550N 829 0 0 float Lower Sevier Shale        

CC 3999246E 324732N 830 242 72 bedding Lower Sevier Shale Fissile       

CC 3996764E 322539N 833 239 56 bedding Limestone Massive Massive Conococheague Limestone     



 162

QUAD UTM Easting UTM Northing STATION STRIKE DIP FEATURE DOMINANT LITHOLOGY/UNIT DESCRIPTION 1 DESCRIPTION 2 OTHER LITHOLOGY/UNIT 1 OTHER LITHOLOGY/UNIT 2    

CC 3996195E 322516N 834 0 0 float Lower Sevier Shale        

CC 3996281E 322531N 835 51 50 bedding Lenoir Limestone Massive Thrombolitic Jonesboro Limestone     

CC 3996510E 322380N 836 59 79 bedding Limestone Ribboned Massive Jonesboro Limestone     

CC 3996856E 322918N 837 59 86 bedding Jonesboro Limestone Thrombolitic Ribboned Mascot Dolomite     

CC 3996939E 322825N 838 61 71 bedding Limestone Interbedded Thrombolitic Jonesboro Limestone     

CC 3996949E 322711N 839 235 52 bedding Limestone Thrombolitic Cherty Jonesboro Limestone     

CC 3996869E 322717N 840 0 0 float Dolomite Massive       

CC 3997136E 323021N 841 245 75 bedding Jonesboro Limestone Ribboned       

CC 3995778E 323146N 842 59 62 bedding Conococheague Limestone Massive Cherty Dolomite Sandstone    

CC 3995042E 323070N 843 240 75 bedding Limestone Thrombolitic Ribboned Dolomite Jonesboro Limestone    

CC 3995065E 322856N 844 242 82 bedding Limestone Thrombolitic Ribboned Dolomite Jonesboro Limestone    

CC 3994550E 323074N 845 80 53 bedding Jonesboro Limestone Cherty  Limestone Dolomite    

CC 3995612E 323952N 846 0 0 float Limestone Massive Thrombolitic Dolomite Jonesboro Limestone    

CC 3995481E 323767N 847 55 41 bedding Limestone Interbedded  Dolomite     

CC 3995183E 324048N 848 59 69 bedding Limestone   Dolomite     

CC 3995158E 324267N 849 65 81 bedding Limestone Massive       

CC 3995357E 324539N 850 259 52 bedding Limestone Massive Interbedded Dolomite     

CC 3995615E 324244N 851 57 45 bedding Limestone Interbedded Ribboned Dolomite     

CC 3997605E 326494N 852 74 46 bedding Dolomite Silty  Conococheague Limestone     

CC 3997794E 326569N 853 74 35 bedding Conococheague Limestone Cherty  Limestone     

CC 3997720E 326567N 854 254 66 bedding Conococheague Limestone Cherty  Limestone     

CC 3998009E 326136N 855 35 51 bedding Conococheague Limestone Cherty  Dolomite Limestone    

CC 3998311E 325528N 856 60 86 bedding Dolomite Thrombolitic Ribboned Limestone     

CC 3998213E 325528N 857 60 70 bedding Dolomite Massive Interbedded Conococheague Limestone Limestone    

CC 3998284E 325644N 858 0 0 float Shale   Lower Sevier Shale     

CC 3998462E 325537N 860 60 86 bedding Dolomite Massive Interbedded      

CC 3997822E 326307N 861 60 40 bedding Limestone Interbedded Cherty Dolomite     

CC 3989285E 322690N 862 0 0 float Nolichucky Shale        

CC 3989038E 322231N 863 0 0 float Nolichucky Shale Cherty       

CC 3988931E 322250N 864 0 0 float Nolichucky Shale Shaly       

CC 3988018E 321278N 865 0 0 float Shale Fissile  Nolichucky Shale     

CC 3987789E 320726N 866 0 0 float Siltstone   Shale     

CC 3987592E 323670N 867 51 28 bedding Limestone Ribboned Banded Honaker Dolomite Dolomite    

CC 3988637E 323983N 868 49 59 bedding Shale Calcareous Fissile      

CC 3988685E 323947N 869 0 0 float Limestone Cherty       
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CC 3988544E 323858N 870 0 0 float Limestone   Shale     

CC 3986589E 323311N 871 61 60 bedding Dolomite Silty  Honaker Dolomite     

CC 3986615E 323367N 872 0 0 float Limestone Interbedded Massive Dolomite     

CC 3986473E 323346N 873 0 0 float Shale Fissile       

CC 3986435E 323338N 874 0 0 float Shale Fissile Cherty      

CC 3986286E 323351N 875 48 77 bedding Limestone Interbedded Ribboned Conococheague Limestone Maynardville Limestone    

CC 3986411E 323346N 876 50 82 bedding Maynardville Limestone Massive  Limestone     

CC 3986271E 323354N 877 59 64 bedding Limestone Silty       

CC 3986183E 323371N 878 56 67 bedding Conococheague Limestone Ribboned Massive Limestone Dolomite    

CC 3986142E 323407N 879 58 42 bedding Limestone Interbedded  Dolomite     

CC 3985958E 323488N 880 0 0 float Shale Fissile  Nolichucky Shale     

CC 3985705E 323531N 881 0 0 float Conococheague Limestone Cherty       

CC 3985968E 323428N 882 0 0 float Limestone Massive       

CC 3986478E 323383N 883 0 0 float Shale Fissile  Nolichucky Shale     

CC 3989471E 326861N 884 335 10 bedding Limestone Ribboned  Dolomite     

CC 3989471E 326861N 884 256 67 cleavage Limestone Ribboned  Dolomite     

CC 3986725E 324494N 885 52 65 bedding Limestone Ribboned Interbedded Dolomite Conococheague Limestone    

CC 3986992E 325498N 886 50 43 bedding Nolichucky Shale Fissile       

CC 3987029E 325564N 887 51 40 bedding Nolichucky Shale        

CC 3987029E 325564N 887 34 68 cleavage Nolichucky Shale        

CC 3987029E 325564N 887 147 82 joint Nolichucky Shale        

CC 3987079E 325563N 888 0 0 float Limestone Ribboned  Dolomite     

CC 3987093E 325541N 889 0 0 float Shale        

CC 3986941E 325573N 890 0 0 float Shale Fissile  Nolichucky Shale     

CC 3986914E 325562N 891 0 0 float Shale Fissile Cherty      

CC 3986813E 325729N 892 51 59 bedding Limestone Ribboned  Dolomite Conococheague Limestone    

CC 3986718E 325724N 893 49 35 bedding Dolomite        

CC 3986698E 325855N 894 51 65 bedding Limestone Ribboned  Dolomite     

CC 3987156E 324549N 895 61 54 bedding Dolomite Massive  Honaker Dolomite     

CC 3987459E 324653N 896 57 46 bedding Dolomite Laminated Silty      

CC 3987405E 324588N 897 61 48 bedding Dolomite Massive  Honaker Dolomite     

CC 3987332E 324819N 898 61 46 bedding Dolomite Massive  Honaker Dolomite     

CC 3987339E 322727N 899 0 0 float Other   Conococheague Limestone     

CC 3987776E 322533N 900 0 0 float Shale Fissile Cherty Nolichucky Shale     

CC 3988312E 323496N 901 0 0 float Shale Fissile       
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CC 3988200E 323520N 902 0 0 float Breccia Calcareous Cherty Shale Nolichucky Shale    

CC 3988421E 323595N 903 0 0 float Shale Fissile  Breccia Dolomite    

CC 3988445E 323640N 904 55 49 bedding Shale Fissile       

CC 3988467E 323706N 905 15 29 bedding Shale Shaly  Dolomite Breccia    

CC 3988525E 323889N 906 32 72 bedding Shale Massive Shaly Dolomite     

CC 3987931E 323621N 907 35 40 bedding Dolomite Shaly  Shale     

CC 3991401E 325708N 908 265 63 bedding Dolomite   Shale Rogersville Shale    

CC 3991434E 325761N 909 254 78 bedding Rogersville Shale Laminated  Dolomite     

CC 3991394E 325792N 910 63 29 bedding Rogersville Shale Laminated  Dolomite     

CC 3991405E 325798N 911 0 0 float Limestone Ribboned  Dolomite     

CC 3991431E 325799N 912 77 5 fold hinge Dolomite Laminated       

CC 3991431E 325799N 912 79 74 axial surface Dolomite Laminated       

CC 3991396E 325740N 913 65 35 bedding Limestone Ribboned  Dolomite     

CC 3991485E 325652N 914 0 0 float Other        

CC 3991354E 325502N 915 250 66 bedding Limestone   Limestone Conococheague Limestone    

CC 3991252E 325572N 916 0 0 float Limestone Thrombolitic  Dolomite     

CC 3991306E 325905N 917 0 0 float Other        

CC 3991050E 325727N 918 0 0 float Copper Ridge Dolomite        

CC 3991124E 325720N 919 80 90 bedding Limestone Ribboned  Dolomite     

CC 3991124E 325720N 919 348 77 cleavage         

CC 3991168E 325467N 920 342 22 bedding Limestone Ribboned Massive Dolomite     

CC 3991168E 325467N 920 122 82 cleavage Limestone Ribboned Massive Dolomite     

CC 3991107E 325449N 921 300 22 bedding Dolomite        

CC 3991266E 325646N 922 64 41 bedding Dolomite Ribboned  Limestone     

CC 3991270E 325698N 923 31 32 bedding Rogersville Shale   Dolomite     

CC 3991270E 325698N 923 288 72 cleavage Rogersville Shale   Dolomite     

CC 3991270E 325698N 923 203 69 joint Rogersville Shale   Dolomite     

CC 3989339E 324896N 924 0 0 float Shale Fissile  Rogersville Shale Nolichucky Shale    

CC 3989451E 325039N 925 27 53 bedding Nolichucky Shale Fissile Laminated      

CC 3989338E 325088N 926 42 46 bedding Limestone Cherty Laminated Dolomite     

CC 3989266E 325285N 927 0 0 float Other        

CC 3989726E 326860N 928 59 71 bedding Limestone Ribboned  Dolomite     

CC 3989739E 326821N 929 212 40 bedding Limestone Ribboned  Dolomite     

CC 3989900E 326925N 930 76 42 bedding Limestone Calcareous  Shale     

CC 3989892E 326859N 931 0 0 float Nolichucky Shale        
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CC 3989882E 326852N 932 0 0 float Nolichucky Shale        

CC 3989878E 326854N 933 62 59 bedding Nolichucky Shale Fissile       

CC 3989919E 326840N 934 0 0 float Nolichucky Shale Fissile       

CC 3989931E 326894N 935 0 0 float Nolichucky Shale Fissile       

CC 3989861E 327086N 936 53 45 bedding Limestone   Dolomite Sandstone    

CC 3989719E 327033N 937 0 0 float Limestone Massive       

CC 3991164E 328136N 938 60 60 bedding Limestone Laminated Massive Dolomite     

CC 3991140E 328145N 939 162 86 joint Limestone Ribboned Massive Dolomite     

CC 3991083E 328150N 940 60 59 bedding Limestone Ribboned Massive Dolomite     

CC 3990998E 328171N 941 59 65 bedding Maryville Limestone Banded Ribboned Limestone Dolomite    

CC 3991018E 328057N 942 59 71 bedding Maryville Limestone Interbedded Ribboned Limestone Dolomite    

CC 3990923E 327947N 943 61 70 bedding Maryville Limestone Banded Massive Dolomite     

CC 3991200E 328100N 944 240 71 bedding Rogersville Shale Laminated Cherty Limestone Dolomite    

CC 3991200E 328100N 944 328 82 cleavage Rogersville Shale Laminated Cherty Limestone Dolomite    

CC 3991257E 328125N 945 59 82 bedding Rogersville Shale Calcareous Fissile Limestone     

CC 3991257E 328125N 945 328 58 cleavage Rogersville Shale Calcareous Fissile Limestone     

CC 3991299E 328067N 946 59 76 bedding Rogersville Shale Calcareous Shaly Limestone     

CC 3991517E 327999N 947 0 0 float Shale Fissile       

CC 3991428E 328030N 948 304 82 cleavage         

CC 3991428E 328030N 948 59 71 bedding         

CC 3991389E 328043N 949 238 80 bedding Limestone   Rogersville Shale     

CC 3990831E 328295N 950 0 0 float Nolichucky Shale Fissile       

CC 3990875E 328273N 951 0 0 float Nolichucky Shale Fissile       

CC 3990910E 328276N 952 0 0 float Nolichucky Shale Fissile  Limestone     

CC 3990859E 328393N 953 54 66 bedding Limestone Massive  Maynardville Limestone     

CC 3990790E 328359N 954 0 0 float Nolichucky Shale Fissile Interbedded      

CC 3992214E 328310N 955 44 48 bedding Dolomite   Honaker Dolomite     

CC 3992172E 328327N 956 279 54 cleavage Dolomite Laminated  Honaker Dolomite     

CC 3992228E 328334N 957 0 0 float Alluvium        

CC 3992358E 328339N 958 0 0 float Alluvium        

CC 3989579E 321132N 959 268 54 bedding Limestone Ribboned  Dolomite     

CC 3989635E 321182N 960 272 49 bedding Limestone Ribboned  Dolomite Kingsport Formation    

CC 3989677E 321064N 961 275 40 bedding Limestone Ribboned  Dolomite Kingsport Formation    

CC 3989450E 321109N 962 324 55 bedding Limestone Thrombolitic  Dolomite     

CC 3989313E 321174N 963 166 79 cleavage Limestone Massive       
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CC 3989230E 321157N 964 50 18 bedding Limestone Massive       

CC 3989230E 321157N 964 30 90 cleavage Limestone Massive       

CC 3989230E 321157N 964 331 90 joint Limestone Massive       

CC 3989099E 321243N 965 61 26 bedding Limestone Massive       

CC 3989232E 320910N 966 29 90 cleavage Limestone Massive Thrombolitic      

CC 3989191E 320926N 967 50 0 bedding Limestone Massive Thrombolitic      

CC 3989412E 321230N 968 5 33 bedding Limestone Massive Silty      

CC 3989412E 321230N 968 59 90 cleavage Limestone Massive Silty      

CC 3989555E 321291N 969 265 53 bedding Limestone Massive  Lenoir Limestone     

CC 3991223E 326646N 970 104 64 bedding Dolomite Massive  Limestone     

CC 3988750E 327515N 971 204 46 bedding Limestone Ribboned Massive Dolomite     

CC 3988729E 327542N 972 58 48 bedding Limestone Ribboned Massive Dolomite     

CC 3988618E 327902N 973 44 0 bedding Limestone Ribboned  Dolomite     

CC 3988726E 327952N 974 46 9 bedding Limestone Ribboned  Dolomite     

CC 3988639E 327990N 975 44 32 bedding Limestone Ribboned  Dolomite     

CC 3991218E 324582N 976 24 35 bedding Dolomite Laminated Interbedded Conococheague Limestone Limestone    

CC 3991123E 324558N 977 25 36 bedding Dolomite Massive Interbedded Limestone Mascot Dolomite    

CC 3991202E 324409N 978 31 45 bedding Dolomite Massive       

CC 3991332E 324550N 979 24 49 bedding Dolomite Massive       

CC 3991327E 324625N 980 26 50 bedding Dolomite Massive       

CC 3991151E 324746N 981 0 0 float Other Cherty       

CC 3991191E 324852N 982 50 78 bedding Sandstone Sandy Cherty      

CC 3991258E 324697N 983 22 39 bedding Dolomite Laminated Massive      

CC 3991095E 324686N 984 25 35 bedding Limestone Massive       

CC 3991678E 324626N 985 251 63 bedding Limestone Interbedded Ribboned Dolomite Conococheague Limestone    

CC 3991650E 324549N 986 263 73 bedding Dolomite Laminated       

CC 3991650E 324549N 986 5 82 fold hinge Dolomite Laminated       

CC 3991650E 324549N 986 4 78 axial surface Dolomite Laminated       

CC 3991650E 324549N 986 226 71 cleavage Dolomite Laminated       

CC 3991711E 324526N 987 34 41 bedding Dolomite Massive       

CC 3991700E 324395N 988 0 0 float Dolomite Massive       

CC 3991626E 324285N 989 74 40 bedding Shale   Nolichucky Shale     

CC 3991626E 324285N 989 173 75 cleavage Shale   Nolichucky Shale     

CC 3991657E 324214N 990 321 46 bedding Nolichucky Shale Banded Calcareous Limestone     

CC 3991625E 324231N 991 281 70 bedding Nolichucky Shale Banded Calcareous Limestone     
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CC 3991623E 324247N 992 49 40 cleavage         

CC 3991594E 324242N 993 278 65 bedding Limestone Massive  Honaker Dolomite Dolomite    

CC 3991700E 324274N 994 0 0 float Shale   Limestone     

CC 3991735E 324268N 995 45 43 bedding Shale Banded Massive Limestone     

CC 3991838E 324521N 996 291 47 bedding Limestone Ribboned Massive Dolomite     

CC 3991684E 324764N 997 55 69 bedding Limestone Ribboned Massive Dolomite     

CC 3991676E 324954N 998 55 56 bedding Limestone Laminated Massive Dolomite Conococheague Limestone    

CC 3991721E 324871N 999 0 0 float Alluvium        

CC 3991595E 325125N 1000 0 0 float Sandstone Cherty Sandy Other Copper Ridge Dolomite    

CC 3991762E 325487N 1001 52 50 bedding Limestone Ribboned  Dolomite     

CC 3991664E 325422N 1002 50 47 bedding Dolomite Ribboned Massive Limestone     

CC 3991672E 325487N 1003 59 58 bedding Dolomite Ribboned Massive Limestone     

CC 3991744E 325677N 1004 51 56 bedding Dolomite Ribboned Massive Limestone     

CC 3991754E 327363N 1005 48 48 bedding Dolomite Massive Laminated Honaker Dolomite     

CC 3991701E 327351N 1006 51 59 bedding Dolomite Massive Laminated Honaker Dolomite     

CC 3992436E 327703N 1007 0 0 float Alluvium        

CC 3992403E 327731N 1008 16 25 bedding Limestone Ribboned Laminated Dolomite     

CC 3992377E 327641N 1009 17 33 bedding Limestone Ribboned Interbedded Dolomite Conococheague Limestone    

CC 3992345E 327580N 1010 240 69 bedding Limestone Laminated  Alluvium     

CC 3992355E 327556N 1011 252 77 bedding Limestone Laminated  Alluvium     

CC 3992321E 327458N 1012 0 0 float Other Cherty       

CC 3992317E 327392N 1013 63 81 bedding Limestone Ribboned Massive Dolomite Conococheague Limestone    

CC 3992255E 327122N 1014 80 82 bedding Limestone Ribboned Massive Dolomite Conococheague Limestone    

CC 3992400E 326751N 1015 0 0 float         

CC 3992385E 327007N 1016 0 0 float Sandstone   Alluvium     

CC 3991993E 326909N 1017 71 56 bedding Limestone Ribboned Thrombolitic Dolomite Conococheague Limestone    

CC 3991905E 326998N 1018 269 35 bedding Limestone Ribboned Massive Dolomite Conococheague Limestone    

CC 3991841E 326999N 1019 55 10 bedding Limestone Ribboned Massive Dolomite Conococheague Limestone    

CC 3991908E 326819N 1020 266 32 bedding Limestone Ribboned Massive Dolomite Conococheague Limestone    

CC 3992041E 326964N 1021 226 43 cleavage Limestone Ribboned Massive Dolomite Conococheague Limestone    

CC 3992314E 327846N 1022 28 51 bedding Limestone Interbedded Cherty Dolomite     

CC 3992276E 327878N 1023 0 0 float Alluvium        

CC 3992154E 327826N 1024 0 0 float Alluvium        

CC 3992109E 327790N 1025 52 55 bedding Limestone Ribboned Massive Dolomite Conococheague Limestone    

CC 3992589E 328084N 1026 32 18 bedding Limestone Ribboned Massive Dolomite     
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CC 3993273E 328336N 1027 82 90 bedding Limestone Ribboned Massive Dolomite Conococheague Limestone    

CC 3990164E 325752N 1028 0 0 float Other Cherty  Conococheague Limestone     

CC 3990239E 325828N 1029 0 0 float Limestone Massive  Conococheague Limestone     

CC 3990343E 325597N 1030 0 0 float Shale Fissile Massive Limestone Nolichucky Shale    

CC 3990280E 325666N 1031 47 90 cleavage Nolichucky Shale Fissile       

CC 3987923E 328557N 1032 51 66 bedding Limestone Interbedded  Jonesboro Limestone     

CC 3987939E 328647N 1033 50 66 bedding Limestone Ribboned Massive Dolomite     

CC 3987881E 328678N 1034 51 66 bedding Limestone Ribboned Massive Dolomite     

CC 3987848E 328731N 1035 48 62 bedding Limestone Massive Sandy Dolomite Sandstone    

CC 3987303E 328593N 1036 248 56 bedding Limestone Massive Calcareous      

CC 3986742E 328038N 1037 240 59 bedding Limestone Banded Silty Limestone     

CC 3986804E 328036N 1038 245 65 bedding Limestone Banded Silty Limestone     

CC 3986702E 327917N 1039 246 68 bedding Limestone Banded Silty Limestone     

CC 3986521E 328909N 1040 64 46 bedding Conococheague Limestone Massive Interbedded Limestone Dolomite    

CC 3986637E 328970N 1041 64 52 bedding Limestone Ribboned  Dolomite     

CC 3986648E 329083N 1042 145 59 cleavage Limestone Ribboned  Dolomite     

CC 3986769E 328959N 1043 63 53 bedding Limestone Cherty       

CC 3986919E 329053N 1044 62 63 bedding Limestone        

CC 3987164E 329148N 1045 258 55 bedding Limestone Ribboned  Dolomite     

CC 3987045E 329002N 1046 69 45 bedding Limestone Ribboned  Dolomite     

CC 3986928E 328884N 1047 275 90 cleavage Limestone Ribboned  Dolomite     

CC 3986412E 329167N 1048 52 48 bedding Limestone Massive       

CC 3986513E 329262N 1049 0 0 float Colluvium        

CC 3986209E 329685N 1050 80 53 bedding Limestone Massive Thrombolitic Jonesboro Limestone     

CC 3986457E 330197N 1051 0 0 float Colluvium        

CC 3986484E 330060N 1052 65 54 bedding Jonesboro Limestone Ribboned Massive Limestone Dolomite    

CC 3986933E 329973N 1053 0 0 float Limestone   Colluvium     

CC 3987249E 329872N 1054 291 30 bedding Limestone Ribboned Massive Dolomite     

CC 3987283E 329779N 1055 0 0 float Sandstone        

CC 3987537E 329588N 1056 280 38 bedding Limestone Ribboned Massive Dolomite     

CC 3987336E 329228N 1057 290 53 bedding Limestone Ribboned Massive Dolomite Colluvium    

CC 3987517E 329050N 1058 254 50 bedding Limestone Massive  Jonesboro Limestone     

CC 3987320E 328942N 1059 254 49 bedding Limestone Massive  Jonesboro Limestone     

CC 3989006E 329710N 1060 50 76 bedding Jonesboro Limestone Ribboned Thrombolitic Dolomite     

CC 3988903E 329446N 1061 51 80 bedding Jonesboro Limestone Ribboned Thrombolitic Dolomite     
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CC 3988830E 329742N 1062 49 65 bedding Jonesboro Limestone Ribboned Thrombolitic Dolomite     

CC 3990470E 329825N 1063 249 19 bedding Limestone Massive       

CC 3988938E 328525N 1064 57 66 bedding Limestone Ribboned Thrombolitic Dolomite     

CC 3990776E 329750N 1065 213 23 bedding Limestone Cherty Sandy Dolomite Sandstone    

CC 3990776E 329750N 1065 53 83 joint Limestone Cherty Sandy Dolomite Sandstone    

CC 3992030E 330595N 1066 51 70 bedding Sandstone Sandy Shaly Shale Conococheague Limestone    

CC 3992074E 330581N 1067 0 0 float Alluvium        

CC 3992253E 330430N 1068 0 0 float Alluvium        

CC 3990363E 324763N 1069 34 50 bedding Dolomite Massive  Honaker Dolomite     

CC 3990002E 324766N 1070 3 60 bedding Dolomite Shaly  Shale Honaker Dolomite    

CC 3990075E 324786N 1071 347 51 bedding Shale Shaly  Dolomite     

CC 3990113E 324908N 1072 0 0 float Shale Shaly Cherty Other     

CC 3990180E 324820N 1073 341 76 bedding Dolomite Shaly  Shale Breccia    

CC 3990488E 324674N 1074 128 24 bedding Dolomite Laminated Massive Honaker Dolomite     

CC 3990478E 324743N 1075 348 45 bedding Limestone Interbedded  Dolomite Honaker Dolomite    

CC 3987071E 328527N 1076 240 53 bedding Limestone Ribboned Massive Dolomite Jonesboro Limestone    

CC 3986076E 327698N 1077 252 50 bedding Limestone Ribboned Thrombolitic Dolomite Jonesboro Limestone    

CC 3985973E 325464N 1078 62 68 bedding Limestone Laminated Banded Dolomite Conococheague Limestone    

 
 
 
 
 

(End of Cedar Creek quadrangle data) 
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NM 1 50 56 bedding Limestone  Interbedded Dolomite  

NM 2 52 51 bedding Limestone  Interbedded Dolomite  

NM 3 0 0 float Nolichucky Shale     

NM 4 290 55 bedding Limestone Silty Cherty Dolomite  

NM 5 60 60 bedding Dolomite   Honaker Dolomite  

NM 6a 31 0 fold hinge Dolomite   Honaker Dolomite  

NM 6b 23 62 axial surface Dolomite   Honaker Dolomite  

NM 6c 23 85 cleavage Dolomite   Honaker Dolomite  

NM 7 124 70 bedding Dolomite Massive  Honaker Dolomite  

NM 8 81 90 bedding Dolomite Cherty  Honaker Dolomite  

NM 9 55 67 bedding Dolomite Cherty  Honaker Dolomite  

NM 10a 221 51 bedding Dolomite Cherty  Honaker Dolomite Siltstone 

NM 10b 0 0 float Dolomite   Honaker Dolomite  

NM 11 0 0 float Dolomite   Honaker Dolomite  

NM 12 56 55 bedding Dolomite Interbedded  Limestone  

NM 13 44 51 bedding Siltstone Silty  Dolomite Shale 

NM 14 46 55 bedding Shale Massive  Nolichucky Shale Dolomite 

NM 15 0 0 float Shale   Dolomite  

NM 16 58 54 bedding Dolomite   Siltstone  

NM 17 73 76 bedding Nolichucky Shale Fissile    

NM 18 190 28 cleavage Dolomite     

NM 19 49 74 overturned bedding Dolomite     

NM 20 55 71 overturned bedding Dolomite     

NM 21 0 0 float Breccia     

NM 22a 88 40 bedding Limestone Ribboned    

NM 22b 210 66 cleavage Limestone Thrombolitic    

NM 23 59 49 bedding Limestone   Sandstone  

NM 24 0 0 float  Shaly    

NM 25 85 66 bedding Dolomite Shaly    

NM 26 55 50 bedding Nolichucky Shale Fissile    

NM 27 0 0 float Nolichucky Shale Fissile    

NM 28 30 14 bedding Nolichucky Shale     

NM 29 56 45 bedding Dolomite Interbedded  Limestone  

NM 30 45 43 bedding Dolomite Cherty    

NM 31 56 56 bedding Limestone     
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NM 32 48 57 bedding Dolomite Calcareous  Rogersville Shale  

NM 33 54 55 bedding Limestone     

NM 34 48 49 bedding Rogersville Shale Interbedded  Dolomite  

NM 35 50 63 bedding Maryville Limestone Interbedded  Dolomite  

NM 36 50 62 bedding Maryville Limestone Interbedded  Dolomite  

NM 37 51 55 bedding Dolomite Massive  Sandstone  

NM 38 221 26 cleavage Dolomite     

NM 39 292 41 fold hinge Limestone     

NM 40 46 58 bedding Limestone   Dolomite  

NM 41 45 51 bedding Siltstone   Dolomite  

NM 42 50 58 bedding Dolomite     

NM 43 46 60 bedding Limestone Ribboned  Dolomite  

NM 44 49 55 bedding Dolomite     

NM 45 0 0 float Limestone Massive  Dolomite  

NM 46 46 52 bedding Limestone Thrombolitic  Dolomite Jonesboro Limestone 

NM 47 45 69 bedding Limestone Thrombolitic  Dolomite Jonesboro Limestone 

NM 48 0 0 float Dolomite     

NM 49 0 0 float Dolomite     

NM 50 48 65 bedding Dolomite     

NM 51 44 28 bedding Limestone Calcareous  Dolomite Breccia 

NM 52 0 0 float Limestone     

NM 53 85 50 bedding Dolomite     

NM 54 62 64 bedding Limestone   Dolomite  

NM 55 59 64 bedding Dolomite     

NM 56 324 69 bedding Dolomite   Jonesboro Limestone  

NM 57 347 65 bedding Dolomite     

NM 58 59 46 bedding Dolomite     

NM 59 59 43 bedding Limestone   Dolomite  

NM 60 61 36 bedding Limestone   Dolomtie  

NM 61 53 53 bedding Limestone Interbedded  Dolomite  

NM 62 49 52 bedding Limestone   Dolomite  

NM 63 51 28 bedding Limestone   Dolomite  

NM 64 0 0 float Limestone     

NM 65 0 0 float Limestone Cherty    

NM 66 40 41 bedding Limestone Thrombolitic    
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NM 67 0 0 float Limestone Thrombolitic    

NM 68 43 21 bedding Limestone Thrombolitic    

NM 69 50 47 bedding Limestone     

NM 70 47 41 bedding Limestone Cherty    

NM 71 43 45 bedding Limestone   Dolomite  

NM 72 0 0 float Limestone Cherty  Dolomite  

NM 73 37 35 bedding Dolomite Calcareous  Limestone  

NM 74 50 35 bedding Limestone   Dolomite  

NM 75 48 33 bedding Dolomite   Limestone  

NM 76 37 35 bedding Limestone Thrombolitic  Dolomite  

NM 77 0 0 float Rogersville Shale Silty    

NM 78 177 78 bedding Dolomite Silty  Rogersville Shale  

NM 79 355 66 overturned bedding Rogersville Shale   Dolomite  

NM 79 214 50 cleavage Rogersville Shale     

NM 80 22 45 bedding Dolomite Cherty  Maryville Limestone  

NM 81 35 57 bedding Limestone Interbedded  Maryville Limestone  

NM 82 16 56 bedding Limestone Ribboned  Maryville Limestone  

NM 83 0 0 float Honaker Dolomite     

NM 84 140 81 bedding Dolomite Shaly    

NM 85 0 0 float Shale Fissile  Rogersville Shale  

NM 86 10 68 overturned bedding Rogersville Shale Fissile    

NM 87 0 0 float Rogersville Shale Fissile    

NM 88 46 35 bedding Limestone Massive  Mascot Dolomite Dolomite 

NM 89 0 0 float Mascot Dolomite Massive    

NM 90 44 39 bedding Mascot Dolomite Massive  Dolomite Limestone 

NM 91 44 38 bedding Mascot Dolomite Massive  Dolomite  

NM 92 31 34 bedding Limestone Ribboned  Dolomite  

NM 93 36 51 bedding Mascot Dolomite   Kingsport Formation  

NM 94 28 38 bedding Dolomite     

NM 95a 356 68 bedding Siltstone Silty  Dolomite Rogersville Shale 

NM 95b 250 45 cleavage Siltstone   Rogersville Shale  

NM 96 0 0 float Dolomite     

NM 97 156 57 bedding Rogersville Shale Siltstone    

NM 98 30 25 bedding Limestone Massive  Dolomite  

NM 99 29 40 bedding Limestone Ribboned  Dolomite  
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NM 100 29 35 bedding Dolomite Interbedded  Limestone  

NM 102 0 0 float Rogersville Shale     

NM 103 8 53 bedding Dolomite Fissile  Shale  

NM 104 50 35 bedding Rogersville Shale Silty  Dolomite Siltstone 

NM 105 349 43 bedding Dolomite   Honaker Dolomite  

NM 106a 348 37 bedding Rome Formation   Dolomite  

NM 106b 223 28 fold hinge      

NM 106c 249 60 cleavage      

NM 107 317 17 bedding Shady Dolomite     

NM 108 64 64 bedding Rome Formation   Sandstone  

NM 109 286 82 bedding Rome Formation     

NM 110 41 46 bedding Limestone   Dolomite  

NM 111 130 56 bedding Limestone Thrombolitic  Dolomite  

NM 112 137 30 bedding Limestone Thrombolitic  Dolomite  

NM 113 0 0 float Dolomite     

NM 118 0 0 float  Cherty    

NM 119 114 47 bedding Limestone Calcareous  Dolomite Nolichucky Shale 

NM 120 74 39 bedding Limestone Siliceous  Siltstone Nolichucky Shale 

NM 121 58 52 bedding Limestone     

NM 122 63 63 bedding Dolomite Cherty  Limestone  

NM 123 57 59 bedding Limestone   Dolomite  

NM 124 66 50 bedding Limestone Interbedded  Dolomite  

NM 125 0 0 float Shale Fissile  Rogersville Shale  

NM 126a 120 61 bedding Sandstone Sandy  Shale Rome Formation 

NM 126b 16 49 joint Sandstone Sandy  Shale Rome Formation 

NM 127c 0 0 float Dolomite Massive    

NM 128 324 68 bedding Limestone Banded  Dolomite Maryville Limestone 

NM 129 315 73 bedding Limestone Ribboned  Dolomite  

NM 130 319 66 bedding Limestone Ribboned  Dolomite  

NM 131 0 0 float Shale Fissile  Rogersville Shale  

NM 132 331 68 bedding Dolomite Cherty    

NM 133 0 0 float Shale Fissile  Siltstone Rogersville Shale 

NM 134 350 50 bedding Siltstone Silty  Shale Rogersville Shale 

NM 135 355 59 bedding Limestone Interbedded  Dolomite  

NM 136 28 44 bedding Limestone Ribboned  Dolomite  
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NM 137 0 0 float Dolomite     

NM 138 0 0 float Shale Fissile    

NM 139 51 46 bedding Limestone Interbedded  Dolomite Maryville Limestone 

NM 140 65 46 bedding Limestone Ribboned  Dolomite Maryville Limestone 

NM 141 57 42 bedding Siltstone Fissile  Shale Limestone 

NM 142 29 46 bedding Limestone Banded  Dolomite Maryville Limestone 

NM 143 322 66 bedding Limestone Banded  Dolomite Maryville Limestone 

NM 144 331 60 bedding Dolomite     

NM 145 0 0 float Shale Fissile    

NM 146 29 49 bedding Dolomite     

NM 147 0 0 float Dolomite Massive    

NM 148 0 0 float Limestone Ribboned  Dolomite Maryville Limestone 

NM 149 64 61 bedding Dolomite     

NM 150a 75 20 fold hinge      

NM 150b 66 79 axial surface      

NM 151 55 51 bedding Dolomite Laminated    

NM 152 56 69 bedding Dolomite Siliceous  Limestone  

NM 153 44 62 bedding Dolomite Shaly    

NM 154 92 90 bedding Dolomite Laminated  Honaker Dolomite  

NM 155 0 0 float Limestone Calcareous    

NM 156 114 90 bedding Dolomite Laminated    

NM 157 0 0 float Sandstone Sandy  Limestone  

NM 158 0 0 float Sandstone Silty  Shale Rome Formation 

NM 159 0 0 float Shale Shaly  Rome Formation Pumpkin Valley Shale? 

NM 160 0 0 float Dolomite     

NM 161 23 67 bedding Dolomite     

NM 162 37 60 bedding Dolomite     

NM 163 12 69 bedding Dolomite Silty    

NM 164 39 65 bedding Limestone Ribboned  Dolomite  

NM 165 0 0 float Shale Fissile    

NM 166 0 0 float Shale Fissile  Pumpkin Valley Shale?  

NM 167 148 45 bedding Limestone Calcareous  Dolomite  

NM 168 0 0 float Sandstone Sandy  Colluvium Alluvium 

NM 169 47 36 bedding Dolomite     

NM 170 0 0 float Sandstone   Colluvium  
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NM 171 0 0 float Sandstone   Rome Formation  

NM 172 0 0 float Shale Fissile  Pumpkin Valley Shale?  

NM 173 72 52 bedding Sandstone Sandy  Dolomite Rome Formation 

NM 174 39 51 bedding Limestone Calcareous  Rome Formation Breccia 

NM 175 39 65 bedding Limestone Calcareous  Breccia  

NM 176 0 0 float Dolomite Cherty  Limestone  

NM 177 30 67 bedding Limestone Cherty  Dolomite  

NM 178 0 0 float Rome Formation Sandy    

NM 179 31 70 bedding Sandstone   Rome Formation  

NM 180 0 0 float Shale Fissile  Rome Formation  

NM 181 73 63 bedding Rome Formation   Sandstone  

NM 182 0 0 float Shale Fissile    

NM 183 0 0 float Rome Formation     

NM 184 0 0 float Other Sandy    

NM 185 0 0 float Limestone Sandy  Breccia Colluvium 

NM 186 0 0 float Siltstone   Sandstone Rome Formation 

NM 187 0 0 float Colluvium     

NM 188 8 72 bedding Limestone Calcareous    

NM 189 1 50 bedding Rome Formation Sandy    

NM 190 49 45 bedding Limestone Calcareous  Kingsport Formation  

NM 191 45 46 bedding Limestone Ribboned  Dolomite  

NM 192 39 46 bedding Limestone Calcareous  Dolomite  

NM 193 50 41 bedding Limestone   Kingsport Formation  

NM 194 48 38 bedding Limestone Calcareous  Dolomite  

NM 195 48 48 bedding Limestone Calcareous  Dolomite  

NM 196 0 0 float Sandstone Sandy    

NM 197 0 0 float Colluvium   Other  

NM 198 31 56 bedding Limestone     

NM 199 0 0 float Limestone Variegated  Dolomite Breccia 

NM 200 0 0 float Shale Sandy  Siltstone  

NM 201 0 0 float Shale Sandy  Siltstone  

NM 202 0 0 float Shale Sandy  Siltstone Rome Formation 

NM 203 0 0 float Other Cherty    

NM 204 0 0 float Limestone Massive  Kingsport Formation  

NM 205 0 0 float Breccia Siliceous  Other  
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NM 206 27 67 bedding Limestone Calcareous    

NM 207 0 0 float Shale Shaly  Pumpkin Valley Shale?  

NM 208 61 38 bedding Limestone Calcareous    

NM 209 53 53 bedding Limestone Ribboned  Dolomite  

NM 210 54 46 bedding Limestone Ribboned  Dolomite  

NM 213 58 90 bedding Limestone Oolitic  Sandstone Jonesboro Limestone 

NM 214a 41 42 bedding Limestone Thrombolitic  Dolomite  

NM 214b 260 14 fold hinge Sandstone     

NM 215 51 49 bedding Limestone   Dolomite Sandstone 

NM 216 35 55 bedding Limestone Cherty  Breccia Dolomite 

NM 217 0 0 float Limestone   Dolomite  

NM 218 76 78 bedding Limestone Massive  Dolomite  

NM 219 102 76 bedding Limestone Silty  Siltstone  

NM 220 106 72 bedding Limestone Massive    

NM 221 41 62 bedding Limestone Massive    

NM 222 305 66 bedding Limestone Thrombolitic  Dolomite  

NM 223 346 55 bedding Limestone Thrombolitic  Dolomite  

NM 224 296 90 bedding Limestone Massive  Dolomite  

NM 225a 12 52 bedding Limestone Interbedded  Dolomite Sandstone 

NM 225b 358 85 cleavage      

NM 226 329 53 bedding Shale Shaly  Siltstone  

NM 227 71 63 bedding Sandstone   Conglomerate  

NM 228 169 67 bedding Sandstone   Conglomerate  

NM 229 0 0 float Shale Shaly    

NM 230 0 0 float Quartzite   Colluvium  

NM 231 42 45 bedding Sandstone   Conglomerate  

NM 232 79 59 bedding Sandstone     

NM 233 76 53 bedding Shale Fissile    

NM 234 0 0 float Shale     

NM 235 62 59 bedding Shale   Siltstone  

NM 253 34 40 bedding Limestone Ribboned  Kingsport Formation Dolomite 

NM 254 0 0 float Sandstone Sandy    

NM 255 34 40 bedding Limestone Massive  Kingsport Formation  

NM 256 0 0 float Sandstone     

NM 257 20 24 bedding Limestone Calcareous  Copper Ridge Dolomite  
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NM 258 19 12 bedding Limestone Massive    

NM 259 33 15 bedding Limestone Interbedded  Dolomite  

NM 260 35 0 bedding Limestone Ribboned  Dolomite  

NM 261 60 52 bedding Limestone Ribboned  Dolomite  

NM 262 250 22 bedding Limestone Thrombolitic  Limestone  

NM 263 41 33 bedding Limestone Interbedded  Dolomite Copper Ridge Dolomite 

NM 264 45 52 bedding Limestone Massive  Dolomite Copper Ridge Dolomite 

NM 265 43 53 bedding Limestone Ribboned  Dolomite  

NM 266a 250 52 bedding Limestone Massive    

NM 266b 61 52 cleavage Limestone Massive    

NM 267 255 65 bedding Limestone Massive    

NM 268a 255 52 overturned bedding Limestone Massive    

NM 268b 60 43 cleavage Limestone Massive    

NM 269 250 77 bedding Dolomite Interbedded  Limestone  

NM 270 55 19 bedding Limestone Thrombolitic  Dolomite  

NM 271 41 71 bedding Limestone Thrombolitic  Dolomite  

NM 272 52 90 bedding Limestone Ribboned  Dolomite  

NM 273 229 85 bedding Limestone Sandy  Dolomite Other 

NM 274 20 15 bedding Limestone Cherty  Dolomite  

NM 275 300 12 bedding Limestone Laminated    

NM 276 235 12 bedding Limestone Laminated  Dolomite  

NM 277 30 45 bedding Limestone Ribboned  Dolomite  

NM 278 30 37 bedding Limestone Ribboned  Dolomite  

NM 279 41 36 bedding Limestone Ribboned  Dolomite  

NM 280 35 35 bedding Limestone Massive    

NM 281 40 47 bedding Limestone Interbedded  Dolomite  

NM 282 20 28 bedding Limestone Interbedded  Dolomite  

NM 283 29 36 bedding Limestone Interbedded  Dolomite  

NM 284 38 47 bedding Limestone Interbedded  Dolomite  

NM 285 34 32 bedding Limestone Ribboned  Dolomite  

NM 286 34 37 bedding Limestone Ribboned  Dolomite  

NM 287 31 35 bedding Limestone Ribboned  Dolomite  

NM 288 30 40 bedding Limestone   Dolomite  

NM 289 14 28 bedding Limestone Ribboned  Dolomite  

NM 290 14 16 bedding Limestone Ribboned  Dolomite  
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NM 291 20 20 bedding Limestone Ribboned  Dolomite  

NM 292 25 35 bedding Limestone Ribboned  Dolomite  

NM 293 25 0 bedding Limestone Ribboned  Dolomite  

NM 294 47 47 bedding Limestone Ribboned  Dolomite  

NM 295 40 45 bedding Limestone Ribboned  Dolomite  

NM 296 47 51 bedding Limestone Ribboned  Dolomite  

NM 297 246 35 bedding Limestone Ribboned  Dolomite  

NM 298 248 35 bedding Limestone Ribboned  Dolomite  

NM 299 249 59 bedding Limestone Interbedded  Limestone  

NM 300 245 68 bedding Limestone Massive  Limestone  

NM 301 262 59 bedding Limestone Massive  Dolomite  

NM 302 262 35 bedding      

NM 303 0 0 float      

NM 304 45 43 bedding Limestone Ribboned  Dolomite  

NM 305 25 60 cleavage Nolichucky Shale Fissile  Limestone Shale 

NM 316 50 45 bedding Dolomite Massive    

NM 317 41 60 bedding Limestone Ribboned  Dolomite  

NM 318a 213 37 joint Limestone Ribboned  Dolomite  

NM 318b 45 59 bedding Limestone Ribboned  Dolomite  

NM 319 50 50 bedding Limestone Ribboned  Dolomite  

NM 320 54 61 bedding Limestone Thrombolitic  Dolomite  

NM 321 55 59 bedding Limestone Cherty  Limestone  

NM 322 45 50 bedding Limestone Massive  Dolomite  

NM 323 38 49 bedding Limestone Massive  Dolomite  

NM 324 35 55 bedding Limestone Massive  Sandstone  

NM 326 37 49 bedding Conococheague     

NM 328 33 50 bedding Conococheague     

NM 329 0 0 float  Cherty    

NM 330 40 31 bedding Limestone Ribboned  Dolomite  

NM 332 38 44 bedding Limestone Ribboned  Dolomite  

NM 333 59 42 bedding Limestone Ribboned  Conococheague  

NM 334 0 0 float  Cherty  Conococheague  

NM 335 35 42 bedding Conococheague     

NM 337 36 65 bedding Limestone   Dolomite  

NM 338 78 55 bedding Limestone     
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NM 339a 54 60 bedding Limestone     

NM 339b 52 55 bedding Limestone     

NM 340 328 21 bedding Conococheague     

NM 341 0 0 float Dolomite     

NM 342 0 0 float Sandstone     

NM 343 335 40 bedding Dolomite     

NM 344 0 0 float Sandstone     

NM 345a 6 37 bedding Limestone Ribboned  Dolomite  

NM 345b 45 64 cleavage Limestone     

NM 346 315 20 bedding Limestone Massive  Maynardville Limestone  

NM 347 0 0 float Sandstone     

NM 348 32 38 bedding Limestone     

NM 349 26 39 bedding Maynardville Massive  Dolomite  

NM 350 45 39 bedding Maynardville Fossiliferous  Limestone  

NM 351 61 42 bedding Maynardville   Limestone  

NM 352 22 37 bedding Maynardville     

NM 353a 13 26 bedding Maynardville     

NM 353b 46 74 cleavage Maynardville     

NM 354 50 36 bedding Maynardville     

NM 357a 293 31 bedding Maynardville     

NM 357b 60 74 cleavage Limestone     

NM 358 253 47 bedding      

NM 359 0 0 float Sandstone     

NM 362 241 87 bedding Jonesboro?     

NM 364 247 55 bedding Maynardville?     

NM 366 74 57 bedding Limestone   Dolomite  

NM 367 55 60 bedding Limestone Ribboned  Dolomite  

NM 368 0 0 float Sandstone Cherty    

NM 369 0 0 float Sandstone     

NM 370 41 39 bedding Limestone     

NM 371 42 39 bedding Limestone   Jonesboro  

NM 372 0 0 float Sandstone     

NM 373 0 0 float  Cherty    

NM 374 0 0 float  Cherty    

NM 375 36 45 bedding Limestone Cherty  Longview Jonesboro 
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NM 376 37 43 bedding Chepultepec     

NM 377 38 43 bedding Chepultepec Massive  Limestone  

NM 378 44 90 bedding Chepultepec     

NM 379 38 45 bedding      

NM 380 49 70 bedding      

NM 391 0 0 float      

NM 392 46 64 bedding Limestone Massive    

NM 393 0 0 float Sandstone     

NM 394 47 65 bedding Limestone Cherty    

NM 400 48 75 bedding Limestone   Dolomite Jonesboro 

NM 401 48 65 bedding Limestone     

NM 402 73 85 bedding Limestone Ribboned    

NM 403 246 73 bedding Conococheague     

NM 404 50 63 bedding Conococheague     

NM 406 55 75 bedding      

NM 407 72 80 bedding Limestone Massive    

NM 408 248 55 bedding Limestone Ribboned  Dolomite  

NM 409 75 90 bedding  Cherty    

NM 410 291 35 bedding      

NM 411 279 65 bedding Limestone Ribboned    

NM 412 279 30 bedding Dolomite   Limestone Sandstone 

NM 413 0 0 float Sandstone     

NM 414 239 53 bedding Dolomite Massive    

NM 415 240 60 bedding Dolomite     

NM 416 241 63 bedding Dolomite     

NM 417 267 62 bedding Dolomite Laminated    

NM 419 265 75 bedding      

NM 420a 240 55 bedding      

NM 420b 262 70 bedding Dolomite     

NM 421 35 24 bedding Jonesboro?     

NM 422 34 26 bedding Limestone     

NM 423 60 16 bedding Dolomite   Limestone  

NM 424 59 7 bedding      

NM 425 35 42 bedding      

NM 426 39 40 bedding      
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NM 427 36 55 bedding Limestone     

NM 428 38 43 bedding      

NM 429a 38 40 bedding      

NM 429b 39 66 bedding      

NM 430 263 40 bedding      

NM 431 75 60 cleavage      

NM 432 255 55 bedding      

NM 433 245 50 bedding      

NM 434 215 50 bedding      

NM 435a 65 65 bedding Sandstone   Limestone  

NM 435b 60 55 bedding Limestone   Dolomite  

NM 435c 61 58 bedding Limestone     

NM 435d 60 60 bedding Copper Ridge Dolomite     

NM 436 55 50 bedding Limestone   Sandstone  

NM 437 61 62 bedding Limestone   Dolomite  

NM 438 50 82 bedding      

NM 439 52 72 bedding      

NM 440 55 55 bedding Jonesboro Limestone     

NM 441 60 65 bedding Jonesboro Limestone     

NM 442 47 50 bedding      

NM 443 50 60 bedding Limestone   Jonesboro Limestone  

NM 444 65 45 bedding Limestone Ribboned  Dolomite  

NM 445 59 24 bedding Limestone     

NM 446 0 0 float Sandstone     

NM 447a 56 68 bedding Sandstone     

NM 447b 52 66 bedding Limestone     

NM 447c 50 55 bedding      

NM 448a 48 55 bedding Sandstone   Limestone  

NM 448b 50 55 bedding Limestone   Sandstone  

NM 448c 50 62 bedding Limestone   Dolomite  

NM 449d 49 39 bedding Limestone   Dolomite Jonesboro Limestone 

NM 449 49 40 bedding Limestone   Dolomite  

NM 450a 42 58 bedding Limestone Thrombolitic  Dolomite  

NM 450b 48 40 bedding      

NM 451 42 58 bedding Limestone Ribboned  Dolomite  
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NM 452 52 47 bedding Limestone Laminated    

NM 453 56 72 bedding      

NM 454 50 57 bedding Limestone   Jonesboro Limestone?  

NM 455 0 0 float Sandstone     

NM 456 235 76 bedding Limestone Massive    

NM 457 56 68 bedding Limestone   Dolomite  

NM 458a 49 80 bedding Limestone   Dolomite  

NM 458b 49 75 bedding      

NM 459 0 0 float Sandstone     

NM 460 240 85 bedding Limestone   Dolomite  

NM 461 240 86 bedding Limestone     

NM 462 0 0 float Sandstone     

NM 463 66 41 bedding Limestone     

NM 464 148 23 bedding Sandstone     

NM 465a 55 90 bedding Limestone     

NM 465b 57 90 bedding Limestone     

NM 466 41 72 bedding Limestone   Dolomite  

NM 467a 35 59 bedding Limestone     

NM 467b 41 61 bedding Limestone     

NM 468 0 0 float Sandstone     

NM 469 0 0 float Sandstone   Conglomerate  

NM 470a 51 64 bedding Limestone     

NM 470b 48 65 bedding Limestone     

NM 471 45 62 bedding Limestone   Sandstone  

NM 472 303 64 bedding Limestone Cherty Massive   

PR 1 69 65 bedding Dolomite Massive Calcareous Limestone Honaker Dolomite 

PR 2 75 54 bedding Dolomite Laminated  Honaker Dolomite  

PR 3 62 56 bedding Dolomite Laminated  Honaker Dolomite Maryville Limestone 

PR 4 325 87 cleavage Dolomite Laminated  Honaker Dolomite Maryville Limestone 

PR 5 49 52 bedding Nolichucky Shale Fissile Massive Maynardville Limestone  

PR 6 49 55 bedding Maynardville Limestone Massive    

PR 7 64 50 bedding Limestone Interbedded  Dolomite  

PR 8 58 58 bedding Maynardville Limestone Massive    

PR 9 61 54 bedding Limestone     

PR 10 62 58 bedding Honaker dolomite Laminated  Dolomite  
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PR 11 55 60 bedding Limestone Massive  Dolomite  

PR 12 70 46 bedding Rogersville Shale Laminated Fissile Dolomite  

PR 13 210 52 cleavage Rogersville Shale Laminated Fissile Dolomite  

PR 14 0 0 float Nolichucky Shale Fissile  Shale  

PR 15 55 50 bedding Conococheague Limestone Ribboned Interbedded Limestone Dolomite 

PV 1 295 60 bedding Limestone Ribboned Massive Dolomite Conococheague Limestone 

PV 2 295 54 bedding Limestone Massive  Dolomite  

PV 3 272 30 bedding Limestone Laminated Massive Dolomite Sandstone 

PV 4 81 42 bedding Limestone  Calcareous Breccia  

PV 5 43 61 bedding Limestone Fissile Massive Shale Nolichucky Shale 

PV 6 0 0 float Shale Fissile  Nolichucky Shale  

PV 7 0 0 float Shale  Fissile Nolichucky Shale  

PV 8 31 28 bedding Limestone Massive Ribboned Dolomite  

PV 9 80 64 bedding Limestone Ribboned Shaly Dolomite  

PV 10 35 37 bedding Dolomite Interbedded  Limestone  



 184

VITA 
 

  Phillip Michael Derryberry was born in Nashville, Tennessee, on September 12, 

1986, to Gary and Virginia Derryberry.  He was raised in Hendersonville, Tennessee, and 

graduated from Hendersonville High School in May 2004.  In August 2005, just like his 

sister Jennifer Derryberry before him, he enrolled at Tennessee Technological University 

with plans on becoming a history major.  He quickly changed his career path after 

discovering a passion for geology (a different kind of history).  In his first year, he won 

the “Freshman of the Year Award in Geology” and went on to meet great success and 

opportunities in the remaining years, receiving his Bachelor of Science degree in 

Geosciences in May 2008.  That following August, he entered the University of 

Tennessee, Knoxville, and started working toward his Master of Science Degree in 

Geology under Dr. Hatcher.  A fascination with Valley and Ridge geology led him to stay 

in northeast Tennessee for his research. 

 


	University of Tennessee, Knoxville
	Trace: Tennessee Research and Creative Exchange
	12-2011

	STRUCTURAL AND STRATIGRAPHIC RELATIONSHIPS NEAR THE SOUTHERN TERMINUS OF THE PULASKI FAULT, NORTHEAST TENNESSEE
	Phillip Michael Derryberry
	Recommended Citation


	DEDICATION
	This thesis is dedicated to my amazing parents, Ginny and Gary Derryberry, for their love, encouragement, and friendship

	ACKNOWLEDGMENTS
	First and foremost, I sincerely thank Dr. Robert D. Hatcher, Jr., for all his support and guidance throughout this process and for helping me toward becoming a well-rounded and skilled field geologist/scientist.  Special thanks to Dr. Peter J. Lemiszki for his valuable help in the field, critiques of my map, and thought-provoking discussions.  I am also grateful to Dr. Linda C. Kah and Dr. Micah J. Jessup for providing me with great advice and for being excellent teachers.

	ABSTRACT
	TABLE OF CONTENTS
	CHAPTER I
	INTRODUCTION
	Present Investigation    
	Study Area
	Geologic Setting
	Pulaski Fault
	Previous Work

	CHAPTER II
	STRATIGRAPHY
	General Overview
	Lithologic and Geomorphologic Overview
	Chilhowee Group
	Unicoi Formation
	Erwin Formation      
	Shady Dolomite
	Rome Formation

	Conasauga Group
	Honaker Dolomite
	Rutledge Limestone
	Rogersville Shale
	Maryville Limestone
	Nolichucky Shale
	Maynardville Limestone

	Knox Group
	Conococheague Limestone
	Copper Ridge Dolomite
	Jonesboro Limestone
	Chepultepec Dolomite
	Longview Dolomite
	Kingsport Formation
	Mascot Dolomite

	Chickamauga Group
	Lenoir Limestone
	Sevier Shale

	Quaternary Deposits
	Stratigraphy Discussion

	CHAPTER III
	STRUCTURE
	Overview of Fold-Thrust Belts
	Mesoscopic Structures
	Bedding
	Folds
	Cleavage
	Joints
	Stylolites

	Regional Structures 
	Pulaski Fault
	Pulaski Thrust Sheet Characteristics
	Major Footwall Structures
	Great Smoky Fault

	Map-Scale Structures
	Oven Creek anticline
	Bright Hope anticline
	Stillhouse fault
	Askew fault and Goodwater Branch backthrust
	Brookside Mill fault
	Evans Valley and Seven Springs Valley synclines
	Linebaugh Bend anticline
	Pilot Knob synclinorium
	Dunham Ridge fault

	Cross Sections

	CHAPTER IV
	INTERPRETATION OF DEFORMATIONAL HISTORY
	Overview of Pulaski Thrust Sheet Deformation
	Deformation in the Study Area and Northeast Tennessee
	Comparisons with Southwestern Virginia
	Lackawanna and Main Phases
	Deformation Discussion

	CHAPTER V
	CONCLUSIONS
	Outstanding Issues

	REFERENCES CITED
	APPENDIX
	Structure and Lithology Data for the Study Area

	VITA

