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Abstract 

 

Combinatorial methods, which include high efficiency and high throughput methods to 

create a large compositional range of materials, have proven to be highly effective and 

efficient in research and development in the chemical and pharmaceutical industries. In 

this thesis, similar methods for the development and optimization of metals and alloy 

systems are explored.  Combinatorial Ni-Cr alloy samples were developed by physical 

vapor deposition (PVD) of a wedged film on a bulk material, and then locally melting the 

two by electron beam welding (EBW).  A combinatorial alloy gradient was thus created 

along the length of the weld.  The samples were rapidly characterized for chemical 

properties by energy dispersive x-ray spectrometry (EDS) and for mechanical properties, 

namely modulus and hardness, by nanoindentation.  All measurements were compared 

with similar tests on melted and cast Ni-Cr alloy standards, and the microstructures were 

compared by scanning electron microscopy (SEM). 

 

The entire Ni-Cr composition range was established and reproduced with several welded 

samples of both nickel films on chromium substrates and chromium films on nickel 

substrates.  There were no strong tendencies in the elastic modulus measurements 

compared to composition, though all values were within reasonable deviation of the 

modulus of the cast standards.  On the other hand, there were strong trends in the 

hardness measurements that followed similar tendencies of the standard cast Ni-Cr alloys.  

The hardness values also showed trends that coincided with the composition and phases 

associated with the Ni-Cr phase diagram.  The hardness results obeyed a more definite 

trend in the nickel rich γ-phase, where the hardness increased linearly from 1.2 GPa at 

pure nickel to about 3.5 GPa at 40 at% Cr.  The hardness of the chromium rich α-phase 

approached nearly 13 GPa when the alloy was between 70 and 85 at% Cr, and then 

dropped toward the hardness of pure chromium at 3.7 GPa. 
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Chapter 1:  Introduction 

 

Combinatorial methods include high efficiency and high throughput methods to create a 

large compositional range of materials, or “composition libraries” [4].  These continuous 

compositional samples are then tested systematically for rapid characterization of the 

properties of interest.  Combinatorial science “is an approach to the discovery and study 

of new materials that combines rapid chemical synthesis, high throughput screening, and 

high-capacity information processing to rapidly create, analyze, and interpret enormous 

numbers of new and diverse material compositions” [2].  This method is far more 

efficient and effective than the time consuming conventional process of testing one 

composition at a time.   

 

In principle, the methodology of combinatorial chemistry is quite simple: two or more 

chemical species are systematically combined in various proportions, and the properties 

of each of the resulting combinations are assessed to identify those with unique or 

desirable characteristics.  Recent advances in the field have been made possible by the 

development of automated processes for producing large numbers of chemical 

compounds in convenient miniature arrays and techniques for rapidly assessing their 

properties.   

 

The high-throughput screening for new drugs and biomolecules that is now possible with 

the help of combinatorial chemistry has already revolutionized the pharmaceutical and 

biotechnology industries [1-3].  In fact, all major pharmaceutical companies are now 

using combinatorial methods to accelerate the discovery and optimization of new drugs 

[5].  While these examples of the successful use of combinatorial techniques are all 

limited to organic and inorganic chemistry, there is increasing interest in applying the 

basic principles of high-throughput and combinatorial techniques in the search for, and 

optimization of, new materials in other fields.   
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In the 1990's, materials scientists adopted these combinatorial methods to search for and 

optimize new engineering materials for a wide variety of applications [1-2].  Although 

still in its infancy, combinatorial materials science has been successfully employed to 

discover a host of new materials for photoluminescence, catalysis, and superconductivity, 

as well as for applications as dielectric, magnetic, and ferroelectric materials [1-3].   

 

According to a recent “Research News” article in the journal Science [12], further 

advances in this area will benefit a whole host of U.S. industries.  In this context, it is 

notable that the Materials Research Society held its first ever symposium in this area at 

the Fall 1998 meeting and followed it up with a second symposium at the Fall 2001 

meeting. As pointed out in the symposium announcements, combinatorial approaches, 

artificial intelligence methods, and other high-throughput techniques are emerging that 

will increase the efficiency with which new materials and processes are discovered and 

improved.     

 

 Combinatorial Methods for Alloy Design 

 

The basic principles of combinatorial chemistry have much to offer in the field of alloy 

design.  For example, current techniques for preparing metallic alloys unavoidably 

restrict us to narrow ranges of alloy composition.  Combinatorial methods promise to 

enhance significantly the composition range that can be explored, thereby leading to the 

discovery of important new materials.  Combinatorial methods will also be useful in 

optimizing existing alloys.  Because of the time and expense of qualifying engineering 

materials, the industrial approach often is to tweak existing alloys to improve their 

properties rather than to develop new alloys from scratch.   

 

An example of a conventional industrial approach to alloy optimization at the Oak Ridge 

National Laboratory (ORNL) is work with Teledyne Allvac on phosphorous and boron 

additions in alloy 718 and Waspaloy to improve creep-rupture properties [7].  Another 

example is of ORNL’s work with Siemens-Westinghouse on control of zirconium, boron, 
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and sulfur in Inconel-939 to improve its weldability for use in land-based gas turbines.  

ORNL also has ongoing work with Ford and Wescast to modify the composition of 

ductile cast iron so that it can be used at higher temperatures in next-generation exhaust 

manifolds.  In all of these alloy optimization projects, the combinatorial approach would 

be an invaluable screening tool that could dramatically shorten the time necessary to 

investigate the various alloy compositions.  Also, a wider range of composition space 

could be explored, possibly leading to better alloys. 

 

To realize its full potential as a materials research tool, the combinatorial methodology 

has to address not just chemical composition but also processing issues.  In many 

engineering applications the microstructure produced by a specific processing method has 

just as much of an influence on properties, if not more, than the chemical composition.  

Therefore, it is necessary to produce combinatorial samples that retain a microstructure 

equivalent to that produced from conventional processes.  In this regard, there is a critical 

difference between combinatorial materials science and combinatorial chemistry.  

 

There are numerous scientific advances that must be made in each of these areas before 

the potential of combinatorial alloy design can be fully realized.  Clearly, the first step in 

this process is the production of suitable samples that can be rapidly and inexpensively 

produced in convenient forms for rapid testing.  What is needed to apply combinatorial 

methods to alloy design and optimization are simple methods for making alloys in a 

variety of compositions, and equally simple methods for rapidly assessing the structure 

and the properties of the large number of combinations which must be explored.   

 

Economic Advantages 

 

Advancements in combinatorial methods will provide an economic advantage to 

industries involved with alloy design.  Present combinatorial successes in the chemical 

and pharmaceutical industries have proven how these methods can reduce time, energy, 

and costs in the development and discovery of new materials.  Compared to the 
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conventional one at a time approach of alloy design, combinatorial methods offer a 

reduction in material cost and supply, reduced development and processing time, less 

energy and cost associated with melting material, and fewer man hours required of 

technical personnel. 

 

In an interview of thirty experts from the plastic industry, it was estimated that 

combinatorial methods would shorten the time in research and development by one year 

and shorten the time spent in pilot production by another year.  It was also estimated that 

this would allow for a 15% price premium due to the product being introduced to the 

market so much earlier [5]. 

 

In a collaborative study of chemical industries, it was estimated that combinatorial 

methods could potentially shorten the discovery phase of chemical and materials research 

from the current two to three years to the possible three to six months.  These methods 

could also possibly reduce the development phase from the current two to five years to 

the potential six to twelve months [6]. 

 

Competition in the global market drives the need for cheaper and more efficient 

manufacturing technology and development.  Products must have the highest quality and 

performance, and yet reach the market faster.  There is also a desire to miniaturize parts 

and create multifunctional materials.  As better equipment is established to produce and 

characterize combinatorial materials, and improved technology is integrated to analyze 

large quantities of data faster, companies will recognize combinatorial science as the 

driving force to improving productivity [6]. 

 

Contributions in Combinatorial Materials Design 

 

There are numerous techniques for creating combinatorial material libraries.  Ainissa 

Ramirez, at Agere Systems in New Jersey, used co-sputtering to simultaneously deposit 

two metals to create a combinatorial library in order to search for the optimal material for 
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switches in microelectromechanical devices.  She used gold to provide the desired 

electrical properties and cobalt or antimony to strengthen the weak gold.  She annealed 

the samples and tested for conductivity, as well as for mechanical properties by 

nanoindentation [8]. 

 

Xiao-Dong Xiang at Lawrence Berkeley Laboratory conducted research in 

superconducting materials by combinatorial methods.  He sputtered layers of thin films 

using radio frequency magnetron sputtering through multiple physical masks to create 

thousands of combinations of metal oxides, and then diffused the layers by sintering in 

air.  He found superconductivity in BiSrCaCuO and YBaCuO films at temperatures of 80 

to 90 K, with surface areas as small as 200 µm by 200 µm and library densities of 10,000 

sites per square inch [9]. 

 

Xiang has also used this technique, as well as another technique involving co-sputtering 

of multiple targets at once, to create continuous combinatorial libraries for mapping the 

electrical and magnetic properties of doped manganese oxides.  After post annealing, he 

discovered several promising electronic characteristics in La1-xCaxMnO3 and Nd1-

xSrxMnO3 materials.  He noted that the synthesis and discrete characterization of the 

phase diagrams of these materials by conventional methods would have taken years due 

to the complicated growth of the single crystals used [10].  

 

Combinatorial research at Symyx Technologies in California led to the discovery and 

optimization of several key luminescent materials.  In 1998, the work produced a “bona 

fide” discovery of an unusual luminescent blue phosphor, Sr2CeO4.  This material was 

found after making a combinatorial array by electron beam evaporation with multiple 

targets and moving masks.  The properties of these thin films were equivalent to those 

achieved by bulk materials produced by conventional means [11-12]. 

 

There has been much research in applying combinatorial methods in materials design to 

characterize electrical and magnetic properties, but there has been little published 
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research aimed at characterizing mechanical properties of alloys by combinatorial 

methods.  Some have tried using multiple thin films to incorporate composition gradients 

in specific materials.  The two largest contributors to combinatorial alloy design have 

been from France and the United States. 

 

A group in France proposed a combinatorial method for alloy design by a melting zone 

technique.  They created a compositional gradient of aluminum and cobalt between 16 

and 50 at% Co over a length of 7 cm.  They began with a feed rod consisting of two parts 

with tilted interfaces as shown in Figure 1.  Rod “A” had a composition of 50 at% Co, 

and rod “B” had a composition of 16 at% Co.  The molten zone was created by induction 

heating at a speed of 7.5 cm per hour.  They successfully observed all the different 

structures suggested by the phase diagram, and were also able to test mechanical 

properties by microhardness.  They noted that this method can be used for any system 

over different compositional ranges, with the possibility of miniaturizing the sample size 

[13-14]. 

 

Ji-Cheng Zhao, of General Electric Company, has developed the most significant 

research program in combinatorial alloy design.  He created a “diffusion multiple” that 

established diffusion gradients between four different bulk metals.  These methods not 

only create a binary alloy system, but also ternary and quaternary systems [8,15-17].  He 

has proven this method for several different alloy systems, two of which are described 

below. 

 

Figure 2 shows an example of Zhao’s “diffusion multiple” of nickel, iron, molybdenum, 

and Inconel-706, with an outer diameter of 25 mm [15].  Zhao’s diffusion multiple was 

created by machining pie-shaped and round shell-shaped high purity metals by electrical 

discharge machining (EDM).  The five pieces were then joined together by hot isostatic 

pressing (HIP).  This sample was annealed in vacuum at 1100ºC for 1500 hours to 

achieve suitable interdiffusion for analysis.   
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Figure 1: Combinatorial design by the molten zone technique. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

Figure 2:  Zhao’s “diffusion multiple” of Ni, Fe, Mo, and Inconel-706 

[15]. 
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He also produced a diffusion multiple of niobium, titanium, silicon, and chromium by the 

same methods as described above, with annealing in vacuum at 1000ºC for 4000 hours 

[17].  He used analytical tools such as the electron backscatter diffraction (EBSD) to 

determine crystal structure, electron probe microanalysis (EPMA) to determine 

composition profiles, and nanoindentation to establish mechanical properties. 

 

Zhao’s research has successfully led to the better understanding of several key ternary 

phase diagrams.  He was able to create and prove that there are fourteen equilibrium 

phases within the Nb-Cr-Si ternary diagram [17].  His diffusion approach created the 

equilibrium conditions necessary for phase diagram development.   Though this has 

proven an invaluable technique for determining the equilibrium phase diagrams, most 

industrial applications do not produce materials that reach complete equilibrium due to 

melting, casting, and annealing effects.   

 

 Objectives of This Project 

 

The purpose of this project is to develop a methodology for designing and optimizing 

metallic alloys by combinatorial principles.  The specific objectives of the research are: 

(1) to devise a simple means by which a test specimen with a library of alloy 

compositions spanning the range interest can be produced; (2) to assess how well the 

properties of the combinatorial specimen reproduce those of conventionally processed 

alloys; and (3) to devise screening tools which can be used to rapidly assess important 

alloy properties and identify optimum alloy compositions.   

 

A new technique in combinatorial alloy design is developed that will produce alloys 

similar to those in industrial cast alloys.  The methods do not use high temperature 

diffusion for alloying, and produce alloys that are in a non-equilibrium state similar to 

cast alloys.  The methods have the potential to take far less time to produce a sample than 

those produced by diffusion.  The samples will be useful in rapid characterization of an 
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alloy library where designers can narrow the compositional region search for the required 

mechanical properties of the desired alloy system.   

 

As shown in Figure 3, the alloy libraries are made by vapor depositing thin wedged films 

of metal “A” on a substrate of metal “B”, and then alloying by localized melting with a 

focused electron-beam welding (EBW) system.  The e-beam welds run the length of the 

wedge to create a compositional gradient.  The EBW technique creates melted and 

solidified alloys similar to those produced by conventional methods.  The composition 

and properties of the specimens are assessed using EDS and nanoindentation.   

 

Advantages of These Methods 

 

Many researches believe that developing combinatorial alloys with thin films will not 

correlate well with similar alloys created by conventional means due to the inability to 

produce the desired microstructures [15].  This project uses thin films deposited on bulk 

material, and the melting of the two metals to create a microstructure similar to alloys 

created by conventional casting methods.  By using a thin film as one of the alloy 

constituents, less material is needed to create a combinatorial sample than those samples 

using only bulk materials.  This decrease provides reduced costs for sample preparation. 

 

The samples produced by EBW techniques can be made in a very short amount of time.  

After a substrate is polished, it only takes about a day to deposit the necessary wedged 

film and only a few hours to make several e-beam welds across the length of the sample.  

In contrast, it can sometimes take months to establish suitable diffusion between bulk 

samples in order to create the necessary “alloy library” [15-17].   

 

To date, most techniques for producing combinatorial alloy libraries have been based on 

diffusion multiples that give equilibrium structures.  Alloys produced in industry are 

frequently not in the equilibrium state.  Therefore, there are distinct advantages to 

samples made by welding that resemble cast alloys. 
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Figure 3: Schematic of a combinatorial sample produced by EBW; A) the 

e-beam welds run the length of the wedge to create a compositional gradient 

along the length of the weld; B) cross-section of the sample showing the constant 

depth of the welds to establish the different compositions. 
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Material System  

 

While we expect that combinatorial methods will be applicable to a wide variety of 

materials systems, technique development in this project will focus on the model binary 

alloy system Ni-Cr, which is a subset of the important Fe-Ni-Cr ternary system.  This 

binary alloy system was chosen for three reasons.  First, the Fe-Ni-Cr ternary system 

forms the basis of many technologically important structural materials including, for 

example, the H-series and C-series casting alloys used in a wide variety of applications 

where heat and/or corrosion resistance are required [18].  A partial list of applications in 

which the H-series alloys are used includes: furnace fixtures; parts for cement/lime kilns 

and roaster furnaces; coke oven exhausts; gas turbines; and heat treatment fixtures.  

Clearly, these materials have crosscutting impacts in the chemical processing, heat 

treatment, metal casting, and steel industries.   

 

Second, since this ternary system has been studied extensively by conventional 

techniques, its structure, properties, and phase equilibria are readily available for 

comparison to results obtained by the new combinatorial methods.  Producing cast alloy 

standards for comparison was relatively easy and inexpensive compared to other potential 

systems. 

 

Third, the Ni-Cr binary system is much easier to produce by vapor deposition than the 

Fe-Ni and Fe-Cr systems, and its phase behavior is relatively simple.  Once developed for 

this binary alloy system, the techniques could be expanded to the Fe-Cr and Fe-Ni binary 

systems.  It could also be expanded to the Fe-Ni-Cr ternary alloy system by depositing 

triangular wedges of the two elements onto a substrate of the third element.  Alloying of 

such a specimen could produce a sample that has within it all the individual compositions 

represented in the ternary Fe-Ni-Cr phase diagram. 

 

As shown in the Ni-Cr phase diagram in Figure 4 [19], nickel and chromium do not 

exhibit complete solid solubility.  Looking at the isotherm at 900ºC, chromium is soluble  
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  Figure 4: Ni-Cr phase diagram [19]. 
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in nickel up to about 42 at% Cr.  This nickel rich phase maintains the face centered cubic 

(FCC) crystal structure of nickel and is referred as the gamma phase (γ-phase).  Nickel is 

soluble in chromium only between 95 and 100 at% Cr at this same isotherm.  This 

chromium rich phase maintains the body centered cubic (BCC) crystal structure of 

chromium and is referred to as the alpha phase (α-phase).  Between 42 and 95 at% Cr, 

both the γ-phase and α-phase coexist in a two-phase region, where both phases are 

saturated solutions [20].   
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Chapter 2:  Procedures 

 

A high-vacuum physical vapor deposition (PVD) system available at ORNL was used to 

prepare our alloy library specimens.  Electron beam heating was used to evaporate high-

purity nickel or chromium, and a film was deposited onto a substrate of the other metal.  

The deposition system was modified to incorporate a moveable shutter placed in the line-

of-sight between the targets and the substrate.  By translating the shutter parallel to the 

substrate as the target was vaporized, a wedge shaped film of element “A” was deposited 

onto substrate “B”.     

 

After film deposition, a precision, fully automated EBW system at ORNL was used to 

alloy the films by local e-beam melting.  The beam can melt up to several millimeters 

deep, and the diameter of the molten zone can be constrained to less than 1 mm, thus 

minimizing lateral spreading of the alloying components.  After alloying of the 

component species is accomplished, a specimen that is pure “A” at one end and pure “B” 

at the other is produced, with compositions varying systematically in between 

corresponding to the entire binary composition range.  By controlling the scanning speed 

and the e-beam power, the heating and cooling rates can be varied, and their effects on 

film microstructure can be investigated.   

 

Moreover, as shown schematically in Figure 5, several compositional ranges can be 

produced on the same sample, because the melt depth can be varied up to several 

millimeters by controlling the e-beam power.  This provides an additional degree of 

freedom in the alloy compositions, since controlling the melt depth can vary the amount 

of the substrate material incorporated into the alloy.  For example, one weld may have a 

concentration gradient ranging from 0 to 30 at% Cr, while another weld with higher 

EBW power settings may have a gradient ranging from 20 to 50 at% Cr.   

 

It was initially hoped that one weld of a chromium film on a nickel substrate would 

establish the full compositional spectrum.  However, the compositional ranges along the  
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Figure 5: Schematic of a combinatorial sample by EBW showing several 

compositional ranges. 
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length of the weld only covered ranges of 30%, and a maximum chromium concentration 

of 70 at% was achieved.  Thicker chromium films were deposited in attempt to overcome 

this obstacle, but there were limitations related to evaporation, crucible size, and 

deposition rate measurements.  Moreover, when thicker films were deposited, they were 

unsuccessful due to the films poorly adhering to the substrates.  Therefore, EBW of 

nickel films deposited on chromium substrates was used to achieve the chromium-rich 

ranges of the alloy system. 

 

Substrate Preparation 

 

To prepare the nickel substrates, a small batch of 99.99% pure nickel was melted and cast 

into a mold with dimensions of 1” x 0.5” x 6”.  This cast was warm rolled at 400ºC to a 

thickness of 0.125” and then cold rolled to 0.060”.  The finished nickel strip was about 1” 

wide.  The strip was then cut into 1.5” sections and mounted in epoxy with the 1” x 1.5” 

face down.  Likewise, a small batch of 99.99% pure chromium was melted and cast into a 

similar mold to prepare the chromium substrates.  Chromium cannot be rolled, so the 

casting was cut into 1” x 1.25” sections with a thickness of 0.15”.  These sections were 

also mounted in epoxy with the large face down. 

 

The mounts were hand polished to maintain uniform polishing thickness through 600 grit, 

and then polished using a Struers RotoForce automated polisher with a 6, 3, and 1 µm 

diamond suspension according to Table 1.  The mounted substrates were then soaked 

methylene chloride overnight to dissolve the epoxy and release the substrates.  Ethanol 

was used to clean the substrates and remove any excess epoxy or methylene chloride.  

The final thickness of the nickel substrates was approximately 0.058”, and the final 

thickness of the chromium substrates was approximately 0.12”. 

 

To ensure cleanliness and avoid contamination, latex gloves were worn each time the 

substrates were subsequently handled.  The substrates were placed polished side up in a 

beaker of acetone, and the beaker was placed in an ultrasonic bath for five minutes.  The  
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Table 1: Grinding and polishing schedule for Ni-Cr samples. 

MATERIAL Nickel & Chromium Specimens 

          

GRINDING PG FG1 FG2 FG3 

BASE PIANO PIANO PIANO PIANO 

ABRASIVE DIAMOND DIAMOND DIAMOND DIAMOND 

GRAIN SIZE #120 #220 #600 #1200 

ROTATION 
    

LUBRICANT WATER WATER WATER WATER 

SPEED RPM 300 300 300 300 

FORCE 30N 30N 30N 30N 

MINUTES UNTIL PLANE 1:30 MIN 2:30 MIN 2:30 MIN 
          

POLISHING DP DP1 DP2 DP3 

CLOTH ALLEGRO LARGO DP-DAC DP-NAP 

ABRASIVE DIAMOND DIAMOND DIAMOND DIAMOND 

GRAIN SIZE 6 MICRON 6 MICRON 3 MICRON 1 MICRON 

ROTATION 
    

LUBRICANT DP - LUB DP - LUB DP - LUB DP - LUB 

SPEED RPM 150 150 150 150 

FORCE 30N 30N 30N 30N 

MINUTES 8:00 MINS 8:00 MINS 8:00 MINS 5:00 MINS 

COMMENTS:  GRINDING TIMES MAY VARY DUE TO THICKNESS OF MATERIAL 
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substrates were then rinsed with deionized water.  The substrates were placed polished 

side up in a beaker of ethanol, and the beaker was placed in an ultrasonic bath for five 

minutes.  The substrates were again rinsed with deionized water.  Compressed air was 

used to dry the substrates.  Sample holders were used to carry and protect the substrates 

while being transported between labs. 

 

Physical Vapor Deposition 

 

A CVC physical vapor deposition (PVD) chamber was used to deposit films (see Figures 

6 and 7).  This system used a Telemark-271 electron beam gun to heat the source material 

for vaporization.  The samples were inverted directly above the source material and were 

attached to a mounting stage.  A moveable shutter directly below the mounting stage 

moved continuously during deposition to create a wedged film on the substrate.   

 

The mounting stage was removed from the chamber and set upside down on a table 

before the substrates were mounted.  The substrates were mounted onto the mounting 

stage with screws, where the heads of the screws held the substrates to the stage.  Only 

two or three screws were required, enabling the substrates to be held with minimal 

surface covered.  The mounting stage was reinstalled into the PVD chamber with the 

mounting bolts.  The stage was then rotated so that the desired wedge direction was 

parallel to the travel direction of the shutter.  Clearance between the substrate holding 

screws had to be checked to ensure that the shutter could freely move without hitting the 

tops of the screws.  If there was insufficient clearance, washers were added under the 

mounting stage in line of the mounting bolts.  The wires were connected from the 

computer to the shutter motor and the stage rotating motor.   

 

The source crucibles were filled with pure metal of the intended film metal.  If a 

chromium film was to be deposited on a nickel substrate, then pure chromium pellets 

were added to the source crucible.  However, if a nickel film was to be deposited on a 

chromium substrate, then it was best to use a cast nickel button at the bottom of the  
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Figure 6: Inside of the PVD chamber; A) sample holder; B) motor that 

drives the shutter to create the wedged film; C) moveable shutter; D) quartz 

microbalance; and E) heater lamp.  

 

 

 

 

 

 

 

 

 

 

   

 

  Figure 7: Sample holder with two Ni substrates attached to it. 
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source crucible.  A new quartz crystal microbalance was inserted so that the deposition 

rate and the film thickness could be measured.  The computer that controls the crystal 

microbalance was checked to ensure that the crystal could be recognized.  If the computer 

didn’t properly identify the microbalance, the microbalance was removed and reinstalled.  

Vacuum grease was added to the chamber seal gasket if needed, and then the chamber 

was closed.  Both the roughing pump and the turbo pump were turned on, and the system 

was left over night to establish the best vacuum.   

 

After the chamber had reached a vacuum of less than 1.0x10-7 Torr, the heater lamp near 

the stage was turned on and the lamp power was increased to 20 volts and 6 amps.  The 

samples were heated for about 90 minutes to raise the temperature of the substrates to 

approximately 90ºC.  This higher temperature aided in the adhesion of the metal vapor to 

the substrates.  The appropriate density and z-ratio (acoustic impedance ratio) of the 

source metal was programmed into the computer controlling the crystal microbalance to 

provide accurate measurements.  The density and z-ratio of nickel are 8.91 g/cm3 and 

0.331, and the density and z-ratio of chromium are 7.20 g/cm3 and 0.305, respectively.   

 

The computer that controlled the moveable shutter was turned on, and set so that the 

shutter used the “wedge” program, with the sample size of 1.5”, shutter time of 120 

seconds, and open dwell time of 0 seconds.  The power settings to the e-beam source 

were turned on and allowed to warm up a few minutes before proceeding.  The 

accelerating potential and current controls were turned on, and the accelerating potential 

was slowly increased to 10 kV at a rate of 1 kV every 10 seconds.  The current was 

increased slowly until the crystal microbalance began to detect some deposition.  This 

usually happened around 30 mA for chromium and 80 mA for nickel.  The beam position 

and amplitude was adjusted to optimize the deposition rate, while trying to maintain a 

rate of 12-16 Å/sec for chromium and a rate of 3-6 Å/sec for nickel.  The “begin cycle” 

button was pushed on the computer that controlled the shutter, and the “start” button was 

pushed on the computer that monitored the crystal microbalance.   
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Chromium has a faster deposition rate than nickel due to its higher vapor pressure.  The 

deposition rate of chromium could be increased beyond 16 Å/sec, but it was kept lower to 

increase adherence to the substrate and to establish a uniform wedged film.  For 

chromium films, it was best to use a lower amplitude setting and move the e-beam often 

to maintain a uniform deposition rate.  Due to its high vapor pressure, the chromium 

would sublime into a vapor state without melting first.  For nickel films, it was best to use 

a higher amplitude setting that covered the majority of the cast nickel button.  High 

current was needed to first melt a large pool on the button, allowing a large area of 

molten nickel to then vaporize. 

 

When the desired thickness was achieved by observing the measurements from the quartz 

microbalance, the “end cycle” button was pushed on the computer that controlled the 

shutter.  When the shutter was closed fully, the computer indicated that the cycle was 

over.  Then the e-beam current was reduced to zero, and then the accelerating potential 

was slowly reduced to zero.  Both the current and the accelerating potential were turned 

off, and then the main power to the system was also turned off.  The heater lamp next to 

the stage was then turned off, and the system was left over night to allow the chamber to 

cool before opening.  The next morning the chamber was vented and the samples were 

removed.  The samples were placed in sample holders until they could be e-beam melted.   

 

Electron Beam Melting 

 

A Leybold-Heraeus electron beam welder was used to create the welds that alloyed the 

nickel with the chromium.  The samples were loaded such that the direction of the wedge 

ran parallel to the x-direction of the welder.  This simplified the later process of 

programming the welding direction.  The samples were clamped down well to ensure that 

any vibrations caused within the welder would not move the samples.  This also helped to 

prevent a wavy weld line.   
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The welder could not be used until the vacuum had reached a pressure of less than 

3.2x10-4 Torr.  The accelerating potential, current, and travel speed were adjusted, and the 

welder was positioned near the sample at one end of the film’s wedge (most often the 

side with the small end of the wedge).  The computer was programmed to specify the 

direction and travel distance of the weld. 

 

The welder started about 1cm from the edge of the sample, then traveled at a constant 

speed over the sample in parallel to the direction of the wedged film.  The welder did not 

stop until it was about 1cm off the edge of the sample.  This helped to create a weld of 

uniform size and depth.  A table of successful weld parameters used for the samples is 

shown in Table 2. 

 

Ni-Cr Alloy Standards 

 

Standards of pure nickel and chromium were arc melted in a water-chilled copper mold, 

as were seven Ni-Cr alloys with chromium concentrations of 20, 30, 40, 50, 56.14, 70, 

and 85 at%.  The chromium and nickel starting materials were greater than 99.995% 

purity.  The pure metals were carefully weighed and then mixed by arc melting, with the 

buttons flipped and re-melted five times to ensure good mixing.  Total weight losses after 

melting and casting were less than 0.2%, which led to negligible changes in alloy 

composition after melting.  All chromium concentrations of samples and cast standards 

are measured as atomic percent (at%).   

 

The standards were cross-sectioned, mounted in epoxy, and polished through a 1 µm 

diamond suspension according to Table 1.  The standards were examined by optical 

microscopy, SEM, EDS, and nanoindentation, and this data was used as a comparison for 

all of the welded combinatorial samples. 

 

 

 



 23

Table 2: EBW parameters for Ni-Cr samples. 

  Sample Weld Voltage (kV) Current (mA) Speed (ipm) 
  EB2 2 150 1.0 50 
  no 3 150 0.9 50 
  wedge 4 150 0.8 50 
Cr film   5 150 0.7 50 
on Ni EB3 1 100 1.1 20 
substrate EB6 2 100 1.1 10 
    5 120 0.9 10 
    8 130 0.8 10 
  EB7 2 100 1.1 20 
    4 150 1.0 50 
    5 150 0.9 50 
    6 150 0.8 50 
  EB8 2 100 1.1 10 
    4 120 0.9 10 
    7 130 0.8 10 
    8 130 0.9 10 

            
  EB9 4 120 0.9 10 
   5 120 1.0 10 

Ni film  6 120 1.1 10 
on Cr   7 120 1.2 10 
substrate   8 120 1.3 10 
  EB10 5 100 1.3 10 

    6 100 1.4 10 
    7 100 1.5 10 
    8 100 1.6 10 
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Specimen Characterization 

 

The scientific challenge with respect to specimen characterization is to develop sensitive 

probing techniques that can be applied rapidly at small scales.  A few techniques were 

already available that could be relatively easily adapted with adequate spatial resolution 

to the characterization of the combinatorial alloy libraries.  The focus was on these 

techniques to demonstrate proof-of-principle as described below. 

 

Though not capable of determining crystal structure and orientation, the scanning 

electron microscope (SEM) was used to visually identify phases within the welded 

sample.  The backscattered electron (BSE) detector was used to enhance the contrast 

between the phases of the binary system.  The magnification capabilities of the SEM also 

enabled visualization of grain boundaries, voids, microsegregation, and the interaction 

between the deposited film and the weld pool.   

 

The elemental compositions were determined by EDS, which works in conjunction with 

the SEM.  The EDS detects secondary electrons from a region as small as 1 µm by 1µm, 

and a maximum detection depth of about 1 µm.  This provided composition details for 

the small regions of secondary phases, as well as covering large regions such as the weld 

surface.  The EDS is computer interfaced, and uses a software package called Revolution.  

This software provides a quantitative measurement showing the composition of each 

element within the combinatorial array with a standard deviation of less than 3% [21].   

 

In conjunction with the above chemical and structural characterizations, nanoindentation 

was used to investigate the fundamental mechanical properties of the combinatorial 

specimens.  The goal was to correlate mechanical properties with chemical composition 

and microstructure.  There is a great deal of experience in this area, and several fully 

automated, state-of-the-art nanoindentation systems were available for use.  The two 

mechanical properties that can be most easily probed are elastic modulus and hardness 

[22], both of which can be measured with spatial resolutions greater than 1 µm.   



 25

The nanoindenters were set up to make a series of indentations at specified locations on 

the alloy library surface and automatically collect and store all the data needed to obtain 

hardness and modulus as a function of position on the combinatorial sample surface.  

Approximately 50 to 100 indentations could be made during an overnight run, depending 

upon the set-up parameters.  Thus mechanical properties could be obtained over a fairly 

wide range of chemical composition in a relatively short time.  

 

The quality of the specimens was assessed by preparing a select set of Ni-Cr binary 

alloys by conventional melting and casting and comparing their mechanical properties 

measured by nanoindentation with those of the combinatorial specimens. 

 

 Metallography 

 

Samples for cross-sectional examination were cut with a slow-speed diamond saw to 

ensure that the film did not peel off of the substrate.  Before cutting, the samples were 

wrapped with a paper towel to prevent scratches on their surface.  The arc melted 

standard alloys were cut with electrical discharge machining (EDM).  Additional grinding 

was necessary to pass through the heat affected region caused by the EDM.  The samples 

were set in epoxy mounts for examination. 

 

The metallographical procedures were performed using Struers polishing equipment, 

which included a RotoForce-4 polishing arm, Lupo lubricant drip regulator, and a 

Rotopol-25 polishing wheel.  The final polishing stages used Wendt Dunningham 

diamond suspensions of 6, 3, and 1 µm.  Polishing procedures followed those outlined in 

Table 1.  Sometimes the samples were placed on a vibrating silica bowl with 0.5 µm 

silica for several hours to produce a better finish. 
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SEM and EDS 

 

Samples that were evaluated from the surface often did not need carbon coating, but there 

were several instances when a coating was necessary to enhance the imaging and 

detection capabilities.  All cross sections required carbon coating due to the 

nonconductive nature of the epoxy mounts. 

 

A Hitachi S4100 SEM at the High Temperature Materials Laboratory (HTML) at ORNL 

was used.  To produce high quality images, lower voltages were often used to minimize 

charging.  Most commonly the accelerating voltage was 5-10 kV, the condenser lens was 

set at 11, and the stage distance was 15 mm.  A Gresham Sirius detector system was used 

for the EDS measurements.  To excite all chromium and nickel peaks, the accelerating 

voltage was increased to 20 kV, the condenser lens was reduced to 9, and the stage 

distance was increased to 20 mm.   

 

The analysis software for the EDS system was Revolution from 4pi Analysis, Inc.  

Revolution uses ZAF corrections based on the relation: 

 
 

where C is concentration, I is x-ray line intensity, and F is the ZAF matrix correction. 

The subscript SD refers to the same quantities for the standard element in use for the 

analysis.  If standardless analysis is used, a mathematical model for the standard is 

substituted [21]. 

 

The EDS system and analysis software were tested using a Ni-70Cr alloy standard to 

determine their accuracy.  A large section of the alloy was selected, because a point 

measurement could isolate on a single phase in the two-phase alloy.  The standard alloy 

was measured three times, and each measurement was within 0.5% of the expected value.  

Figure 8 shows an EDS spectrum of the Ni-70Cr alloy standard with the measured 

quantitative composition values. 
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Figure 8: EDS spectrum and quantitative measurement of Ni-70Cr cast 

standard. 
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Nanoindentation 

 

A NanoII nanoindenter from MTS with a Berkovich indenter was used for mechanical 

property measurements.  The continuous stiffness mode was used with the frequency set 

to 45 Hz.  The surface search distance was 9000 nm, and the maximum drift rate prior to 

tests was 0.1 nm/sec.  The loading rate was 0.05 nm/sec and the unloading rate was 300 

nm/sec.  Indents were made to a maximum depth of 1000-1200 nm for weld surface tests, 

and to a maximum depth of 400-600 nm for weld cross-section tests.  Indents were made 

to a maximum depth of 200-400 nm for all polished cast standards. 

 

As shown in Figure 9, surface indents were positioned down the centerline in an array 

from one end of the weld to the other with indent spacing around 800-1000 nm.  Most 

positions were set-up in an array, although some indents had to be individually positioned 

to avoid the surface cracks, especially in the welds at higher chromium concentration.  

Indents on the cross sections of the weld were individually positioned to ensure that they 

were within the alloyed region.  Figure 10 shows an SEM image of a typical indent made 

in the weld surface.   

 

Poisson ratios of 0.31 and 0.21 were used for the nickel and chromium standards, 

respectively.  A Poisson ratio of 0.25 was used for all other alloy standards, and for all 

welded samples.  Results were obtained from data taken at depths of 800 nm for all 

indents taken from the weld surface and of 400 nm for all indents taken from the weld 

cross sections.  Results of the cast standards were measured from the data taken at a 

depth of 200 nm.   

 

The accuracy of the NanoII modulus data is usually expected to be within 10% of the 

literature values.  The data for the combinatorial EB welds was compared with the data 

from the cast standards to validate the precision of the EB weld hardness and modulus. 
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Figure 9: Schematic showing nanoindentation indent positions along the 

length of the EB weld. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  Figure 10: SEM image of typical indent made in the EB weld surface. 
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Chapter 3:  Results and Discussion 

 

Results will be discussed for Ni-Cr standards, samples made with chromium films on 

nickel substrates, and samples made with nickel films on chromium substrates.  The 

results from the welded samples are compared with the results from the alloy standards to 

determine if the combinatorial welds will have similar properties to those of cast 

structures. 

  

Cast Ni-Cr Standards 

 

Cross sections of the Ni-Cr cast standards were made to examine the microstructure at 

different compositions.  Two-phase microstructures were not observed in the cast 

standards of 20, 30, or 40 at% Cr, but were seen in the standards of higher chromium 

concentrations.  Figures 11 shows a micrograph of the Ni-30Cr cast standard, which 

shows evidence of microsegregation within the solid solution.  Figure 12 shows a 

micrograph of the Ni-70Cr cast standard.  The light regions are the chromium rich α-

phase, and the dark regions are the nickel rich γ-phase.  The casting shows a dendritic 

structure, with the dendritic direction toward the center of the cast button, as expected.  

There was more cracking and voids in the standards as the chromium concentration 

increased due to the large solidification temperature range. 

 

The standards were tested by nanoindentation to evaluate the mechanical properties of 

hardness and modulus.  The surfaces were polished through 1 µm diamond suspension 

prior to testing.  The polishing reduced the data scatter and yielded results with low 

deviation.  For the standards with one phase, indents were made in a regular 3x4 pattern 

to obtain enough data to determine uniformity.  For the standards within the binary phase 

region, several indents were made individually on the γ-phases and the α-phases, and 

indents were also made in a regular 3x4 pattern to examine both phases and regions near 

phase boundaries.  More indents were made in the Ni-70Cr cast standards to ensure that 

both phases were sampled to obtain the full hardness spectrum of the phases. 
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Figure 11: Optical image of the Ni-30Cr cast standard at 100x 

magnification. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 12: Optical image of the Ni-70Cr cast standard at 100x 

magnification. 



 32

According to the Ni-Cr phase diagram in Figure 4, there are three regions of interest: the 

nickel rich solid solution (γ-phase), the chromium rich solid solution (α-phase), and a 

dual phase region.  The elastic modulus of alloys is strongly dependent upon elemental 

composition, and other characteristics such as phases, heat-treatments, or surface 

conditions exert a negligible influence [20].  For the sake of discussion, it is useful to 

compare the measured moduli to those predicted by a simple linear rule of mixing.  In 

this case, the modulus should show a linear tendency between the modulus of pure nickel 

(200 GPa) and the modulus of pure chromium (279 GPa) [20].   

 

Hardness on the other hand, is dependent on many factors besides just alloy composition.  

Phase distribution, grain size, and surface conditions can have a great effect on the 

measured hardness of the alloy.  Therefore, a linear “law of mixing” is not necessarily 

useful, except in single-phase regions where solid solution strengthening may be 

important. 

 

Figure 13 shows the nanoindentation elastic modulus results for the Ni-Cr alloy 

standards.  The modulus of the pure nickel standard averaged 194.7 GPa, and the 

modulus of the pure chromium standard averaged 277.1 GPa, both of which are very 

similar to the literature values of 200 and 279 GPa, respectively.  The “law of mixing” 

line shown in the figure represents the linear expectancy of the modulus between 200 and 

279 GPa.   

 

The data points for the Ni-Cr cast alloys were all within the general tendency of the “law 

of mixing”, though there were several points for the higher chromium alloys that were 

higher than expected.  The standards up to 40 at% Cr all had data points within 10% of 

the “law of mixing” line, but the standards of 50 and 56.14 at% Cr had several modulus 

measurements that fell as much as 17% below the “law of mixing” line.  The cast 

standards of 70 and 85 at% Cr were on the other end of the spectrum, with some of the 

modulus measurements reaching more than 30% higher than the “law of mixing” line.   
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Modulus of Cast Ni-Cr Standards
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 Figure 13: Modulus of cast Ni-Cr standards. 
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Although the modulus should be primarily dependent only on the total composition, it 

should be noted that the indents were so small that they often hit parts of or all of only 

one phase within the alloy.  This explains the scatter in the two-phase regions.  Assuming 

the 900ºC isotherm of the Ni-Cr phase diagram, the saturated γ-phase should have a 

chromium concentration near 40 at%, and the saturated α-phase should have a chromium 

concentration near 95 at%.  This would cause the individual phases to have moduli 

varying between approximately 232 and 275 GPa, respectively.  The actual scatter in the 

data is somewhat greater.   

 

The hardness values for the cast Ni-Cr alloy standards are shown in Figure 14.  The 

hardness values up to 40 at% Cr show very little deviation and an upward tendency with 

a generally constant slope.  This is consistent with the expectations of the single-phase 

region as it reaches its solid solution solubility limit.  The hardness of pure nickel was 

about 1.2 GPa, and the hardness of the Ni-40Cr alloy was about 3.1 GPa.  There were no 

dual phases observed in the cast alloys less than 40 at% Cr.  At 50 at% Cr, the hardness 

data begins to increase at a much steeper slope and the scatter becomes greater.  The 

hardness values of the Ni-70Cr and Ni-85Cr standards extend from 7 and 8 GPa to nearly 

13 GPa.   

 

Figure 15 shows an image of thirty indents made in a 6x5 pattern spaced 6 µm apart in 

the Ni-70Cr cast standard.  The indents resided in both the γ-phase and the α-phase, and 

make a clear distinction between the hardness of the two phases.  Figure 16 shows a 

contour plot of the hardness values resulting from these indents.  The measurements from 

the indents that struck clearly in only one phase were used to estimate the hardness of the 

two phases, and it was found that the hardness of the γ-phase was 4.25 GPa and the 

hardness of the α-phase was 11.57 GPa. 

 

The hardness of the γ-phase at the solubility limit is in the range of 3-4 GPa.  However, 

alloys with greater than 54 at% Cr will have α-phase regions and γ/α eutectic regions.   

Therefore it is difficult to isolate the γ-phase for nanoindentation because it is finely  
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Hardness of Cast Ni-Cr Standards
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Figure 14: Hardness of cast Ni-Cr standards. 
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Figure 15: Optical image of an indent pattern covering both phases within 

the Ni-70Cr cast standard. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 16: Hardness contour plot of indent pattern covering both phases 

within the Ni-70Cr cast standard. 

αααα-phase 

γγγγ-phase 

γγγγ-phase 

αααα-phase 



 37

intermixed in a eutectic.  This eutectic can be seen in the Ni-85Cr standard shown in 

Figure 17, where the light regions are the nickel rich γ-phase and the dark regions are the 

chromium rich α-phase. 

 

The large deviation is primarily due to the binary phase region that occurs above 50 at% 

Cr, although it was also observed that the alloys with higher chromium concentration had 

a higher tendency for cracks and voids.  These cracks and voids were also visible in the 

cast pure chromium, which explains why the scatter of hardness for chromium was so 

much higher than for nickel.  The hardness of pure chromium was about 3.8 GPa. 

 

The hardness values obtained by nanoindentation were verified by Vickers microhardness 

as well.  Figure 18 shows the hardness results obtained from the VH200 microhardness 

tests using a load of 200 g.  The same tendencies are shown by microhardness as by 

nanoindentation.  The absolute hardness values cannot be directly compared due to 

differences in the definitions of Vickers and Berkovich hardness, as well as differences in 

loads used to make the measurements. 

 

Chromium Films on Nickel Substrates 

 

The chromium films adhered well to the nickel substrates, and alloy libraries were made 

very easily compared to the samples of nickel films on chromium substrates.  Figure 19 

shows an example of the welded samples with wedged chromium films on nickel 

substrates.  The sample had to be cut in half due to the size limitations of the SEM and 

nanoindenter.   

 

Figure 20 shows some typical top views of the EB welds.  The picture on the left shows 

the weld at the thin end of the chromium film wedge, and the picture on the right shows 

the weld at the thick end of the chromium film wedge.  It was apparent that the welds had 

a much rougher surface on the end of the sample with the thicker chromium film.   
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Figure 17: SEM image of the cast Ni-85Cr standard showing eutectic 

regions at 1000x magnification. 

 

 

 

 

 

 

 

 

αααα-phase 

α/γα/γα/γα/γ eutectic 



 39

Vickers Microhardness of Cast Ni-Cr Standards
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Figure 18: Vickers microhardness of cast Ni-Cr standards. 
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Figure 19: A finished Ni substrate sample with eight combinatorial EB 

welds across the length of the wedged Cr film. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 20: Optical micrographs of typical of EB weld surfaces for Cr films 

on Ni substrates. 
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Several EBW parameters were found to greatly affect the characteristics of the weld.  As 

expected, increases in current and accelerating potential increased the depth of the weld, 

with the accelerating potential having the greatest affect.  The travel speed of the weld 

played a factor in the surface characteristics of the weld, which can have a great affect on 

the nanoindentation results.  Figure 21 compares a weld made at a travel speed of 50 ipm  

with a weld made at 10 ipm.  The weld with the faster travel speed has a wave-like 

appearance with non-uniform edges, and the surface appears very rough. The weld with 

the slower travel speed appears much smoother and more uniform.  Higher accelerating 

potentials also caused the welds to be rougher.  

 

The EBW accelerating potentials that created a suitable weld were between 100 kV and 

130 kV, although several welds were also created at potentials of 150 kV with faster 

travel speeds.  The current depended on the potential used; the best welds were created 

when the power (current x potential) was near 100 W.  The better welds used a travel 

speed of 10 ipm. 

 

Figure 22 shows a backscattered electron (BSE) image of a cross-section taken at the 

thick end of the film.  The EBW parameters were 130 kV, 0.8 mA, and 10 ipm.  The 

chromium film can be seen on both sides of the weld, and the weld pool can be 

distinguished from the nickel substrate.  Chromium has a much higher melting point than 

nickel (1875ºC and 1453ºC, respectively), which can explain why the weld pool begins 

slightly under the still intact chromium film.  At the surface of the weld pool near the 

edges are darker regions within the lighter weld pool.  These darker regions are either 

unmelted pieces of the chromium film or regions of α-phase, but there was not enough 

evidence to reach a definitive conclusion.  The surface of this weld was examined by 

EDS and determined to have a chromium concentration of 44 at%, which is around the 

concentration where the α-phase may form in the γ-phase matrix. 

 

Figures 23 and 24 show more cross-sectional images taken with an optical microscope 

after the samples were etched with glyceregia to reveal the microstructure.  The EBW  
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Figure 21: Optical micrographs of weld surface comparing weld speeds of 

A) 50 ipm, and B) 10 ipm. 
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Figure 22: BSE images of a weld cross section; A) full weld pool,  

and B) edge of same weld at higher resolution (concentration of about 44 at% Cr). 
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Figure 23: Cross section of EB weld (130kV, 0.8 mA, 10 ipm) at 500x 

magnification (concentration of about 22 at% Cr). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 24: Cross section of EB weld (130kV, 0.7 mA, 10 ipm) at 500x 

magnification (concentration of about 10 at% Cr). 
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parameters were a potential of 130 kV, current of 0.7 and 0.8 mA, and travel speed of 10 

ipm.  Several lines can be seen in the welds that were caused by the movement of the 

electron beam.  The small black spots are voids within the weld that were caused by 

shrinkage during solidification.   

 

Upon examining the weld closer, as shown in Figure 25, wavy directional lines are 

observed within the weld pool.  These lines indicate microsegregation of chromium-rich 

and nickel-rich regions.  Examination by EDS determined that the average composition 

of the weld was 10 at% Cr, implying that the alloyed region is within the solid solution 

limits and well below the chromium concentration where the α-phase should form.  An 

SEM image of the same weld is shown in Figure 26, which shows a clearer image of the 

microstructure.  The presence of microsegregation revealed by polishing with no etching 

shows that the welds are not in an equilibrium state. 

 

One single weld that contained the full library of compositions from pure nickel to pure 

chromium was desired, but examination by EDS determined that this was not possible 

with our equipment and procedures.  Each weld was checked by EDS across the surface 

to determine the composition range.  The samples had to be cut in half in order to fit into 

the SEM, and each half of the sample was examined in at least three places.  In each of 

these examinations, at least three measurements were made and the average concentration 

was recorded, as shown schematically in Figure 27.   

 

The concentration change showed a linear tendency, as expected, and an example of the 

concentration gradient is shown in Figure 28.  As described above, the full composition 

range was not obtained, and these three welds only had ranges from 18 to 50 at% Cr.  

There is significantly more scatter in the data at the thick end of the wedge at 

concentrations greater than 40 at% Cr, which could be caused by the rougher surface of 

the weld or by the introduction of a secondary phase.  According to the Ni-Cr phase 

diagram at the 900ºC isotherm, the dual phase region appears around 40 at% Cr.  There 

could also be regions of unmelted chromium film at the thick ends of the wedged film.   
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Figure 25: Cross section of EB weld (130kV, 0.7 mA, 10 ipm) at 1000x 

magnification (concentration of about 10 at% Cr). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 26: SEM image of EB weld (130kV, 0.7 mA, 10 ipm) at 1500x 

magnification (concentration of about 10 at% Cr). 
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Figure 27: Schematic showing EDS measurements for samples with Cr 

films on Ni substrates. 
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Chromium Concentration Along EB Weld 
Wedged Cr Film on Ni Substrate
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Figure 28: Concentration gradient along length of weld for Cr films on Ni 

substrates. 
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Verification of Alloy Uniformity 

 

Though the surface details appeared to show strong tendencies that indicated a true 

combinatorial alloy library, several tests were performed to verify that these alloys were 

uniform throughout the weld.  First, cross sections were made and the welds were 

examined by EDS to evaluate the depth of the chromium concentration.  Figure 29 shows 

the concentration profile of a typical EB weld.  The top of the cross section had a 

concentration that was only 2 at% lower than the concentration evaluated from the 

surface of the weld, indicating that the EDS examinations from the surface were accurate.   

 

The concentration held fairly constant at 26-28 at% Cr to a depth of about 18 µm, which 

is half of the total weld depth of 37 µm.  The weld still had above 20 at% Cr at a depth of 

28 µm, and the chromium concentration dropped to 10 at% at the weld pool boundary.  

The inset in Figure 29 shows the cross section of the weld with the white marks 

indicating the points of the EDS evaluation.     

 

In addition to the EDS verification, several nanoindentation tests were also performed to 

examine the uniformity of the welds.  Indents were made on the cross section of the weld 

to determine how the mechanical properties varied through the depth.  Figure 30 indicates 

that the hardness remained fairly constant through most of the depth.  Unfortunately, 

more indents could not be made through the depth in a single weld because the indents 

must be a certain distance apart to prevent the data from being affected by the 

deformation caused by the neighboring indent.  The cross section shown in the figure had 

a chromium concentration of 43 at% near the surface of the weld, which was only 2 at% 

less than the concentration measured at the surface. 

 

More indents were made on the cross-sections to prove that the indentations made on the 

rough surface would agree with data from the indents on the polished cross sections.  

Cross sections were made at the ends of a sample, and three welds were examined.  Four 

or five indents were made in each cross-sectional weld, and the hardness values obtained  
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 EBW Concentration Profile
Cr Film on Ni Substrate
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  Figure 29: Concentration profile through the depth of EB weld; Cr film on  

Ni substrate. 
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Hardness of Cross Section of Weld Pool 
at Different Depths from the Surface
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Figure 30: Hardness profile through the depth of EB weld; Cr film on Ni 

substrate. 

 

 

 

 

 

 

 

 

 



 51

were compared to the hardness results taken from the surface.  Figure 31 shows the 

results of the hardness of the cross-sections at each end (blue) compared with the 

hardness from the surface (red).  The inset shows images of the indents taken in the 

cross-section of the weld pool.  The hardness results from the surface compared well with 

the results from the polished cross-section, showing that the results from the surface 

adequately represent the true hardness of the weld.  This also showed that the surface 

roughness did not have a significant effect on the results obtained by nanoindentation. 

 

Another type of test was conducted to determine the effect of the surface roughness on 

the results obtained by nanoindentation.  Three different welds with rough surfaces were 

evaluated by nanoindentation, and then the surfaces were hand polished through 4000-

grit silicon paper to reduce the extremely rough surface.  Nanoindentation was again 

performed at the same regions of these three welds, and these hardness results are 

compared with the original hardness results in Figure 32.  The blue points indicate 

measurements made from the rough surface, and the red points indicate measurements 

made from the polished surface of the cross section.  It can be seen that polishing the 

surface did little to reduce the scatter of hardness data obtained from the three welds.   

 

These results indicate that the majority of the data scatter cannot be attributed to surface 

roughness.  Another possible contributing factor to the scatter could be voids within the 

weld caused by the rapid cooling of the weld pool before completely settling from the 

turbulence of the welding process.  The existence of two discreet phases could explain 

scatter in regions greater than 40 at% Cr, which would also explain why the scatter 

appears to increase when the chromium concentration is greater than 35-40 at%.   

 

To evaluate the scatter in the data taken from the surface of the welds, a group of six 

indents was made every 3 mm across the length of the weld, with typical indents made 

every 800-1000 nm.  The group of six indents was made in a 3x2 pattern with 30 µm 

between indents.  The hardness data shown in Figure 33 compares the grouped indents 

with the typical indents, and the insert shows an image of the 3x2 pattern of indents in  
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Hardness of Surface vs Cross Sections
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Figure 31: Hardness values for indents taken at surface compared to those 

taken from polished cross sections at either end. 
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Hardness of EB Weld Surface
Before and After Polishing 

0

2

4

6

8

10

12

20 30 40 50 60 70 80 90
Chromium Concentration (at%)

H
ar

dn
es

s (
G

Pa
)

As Welded 

Polished

 
Figure 32: Hardness of EB weld surface before and after polishing. 
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Hardness Comparison For Grouped Indents 
With Typical Indent Pattern
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Figure 33: Hardness comparison for grouped indents relative to typical 

surface measurements. 
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relation to the surface of the weld.  The hardness values for all indents followed the same 

general tendency.  The deviation in each group of six indents shows the typical deviation 

at any point along the weld.  The low hardness deviation of less than 0.4 GPa shows that 

the welds are uniformly mixed and the indents do not have to be exactly positioned to 

provide acceptable results. 

 

A series of indents was made perpendicularly across the surface of the weld to examine 

lateral variations in the hardness measurements.  Figure 34 shows a picture of the indents 

made with the resulting plot of hardness against position.  All of the hardness values 

within the weld pool varied only by 0.5 GPa.  The hardness values of 2.5-3.0 GPa within 

the weld are consistent with the results obtained from other nanoindentations made in 

regions with concentrations of about 24 at% Cr.  The hardness of the chromium film is 7-

8 GPa, which is much higher than the 3.8 GPa hardness of the pure chromium cast 

standard.  This higher hardness is explained by microstructure and grain size differences 

associated with thin films. 

 

Mechanical Properties 

 

Most samples were made with wedged chromium films, but a few were made with flat 

chromium films.  In both cases, adjusting the EBW power parameters had an affect on 

the resulting concentrations of the weld-produced alloys.  The samples with flat films had 

a uniform concentration through the length of the weld, but those with the wedged film 

had a concentration gradient through the length of the weld.  

 

Figure 35 compares the weld hardness of a sample with a flat film to welds on a wedged 

film.  The data shows similar tendencies of increasing hardness with increasing 

chromium concentration.  The hardness of the weld on a flat film was higher than the 

represented weld on a wedged film at 26 at% Cr; however, it was not higher than other 

welds with wedged films.  
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Figure 34: Hardness profile across width of EB weld surface. 
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Hardness Comparing Flat and Wedged Films
Cr Films on Ni Substrates
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Figure 35: Hardness comparing flat and wedged Cr films on Ni substrates. 
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Figure 36 compares the elastic modulus of all samples with chromium films on nickel 

substrates to the Ni-Cr cast standards.  Each color of data points represents a different 

sample with its own series of welds and weld parameters.  Most of the modulus values 

are around 200 GPa, but there is scatter between 150 and 250 GPa.   

 

Figure 37 shows the hardness values of welds with chromium films on nickel substrates.  

Each color of data points represents a different series weld parameters.  The hardness 

increased with chromium concentration with the same tendency as the cast standards.  

The initial slope is constant until about 40 at% Cr, where it levels slightly and then 

increases at a steeper slope than before.  This concentration is when a two-phase structure 

was apparent in the Ni-Cr cast standards.  The slight leveling off in slope could be 

attributed to the low probability of hitting the α-phase at 45 at% Cr.  For example, if an 

isotherm of 900ºC is assumed, then the dual phase region exists between 40 and 95 at% 

Cr, and there is only 9% α-phase in a Ni-45Cr alloy.  The increase in slope after this 

point is attributed to the greater chance of hitting the α-phase with the indent.   

 

Figure 38 shows the hardness of a sample with a wedged film of chromium ranging in 

thickness from 2 to 12 µm.  The film did not reach a zero thickness due to misalignment 

of the substrate and shutter during deposition.  The sample shows that different EBW 

parameters can be used to obtain similar results.  The welds were able to cover a 

combinatorial range of 18-52 at% Cr.   

 

Figure 39 shows the hardness of another sample with a wedged film of chromium, but 

this one with a thickness ranging from 0 to 10 µm.  The EBW parameters are similar to 

those shown in Figure 36, but the ability to reach a zero thickness enabled the missing 

range of 0 to 18 at% Cr.  The reduced total thickness of the film prevented higher 

chromium concentrations from being obtained, and this sample only covered the 

combinatorial range of 0 to 28 at% Cr.  If this film had been as thick as other specimens, 

the sample would have covered the whole range between 0 and 52 at% Cr. 
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Figure 36: Modulus of all samples with Cr films on Ni substrates. 
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Hardness of Combinatorial EB Welds
Cr Films on Ni Substrates
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Figure 37: Hardness of all samples with Cr films on Ni substrates. 
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Hardness of EB Weld
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Figure 38: Hardness of EB weld with a wedged Cr film of 2-12 µm on a 

Ni substrate. 
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Hardness of EB Weld
Wedged Cr Film (0-10 µµµµm) on Ni Substrate 
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Figure 39: Hardness of EB weld with a wedged Cr film of 0-10 µm on a 

Ni substrate. 
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Nickel Films on Chromium Substrates 

 

Only two samples were made, with the successful EBW parameters from the samples 

with the nickel substrates used in their synthesis.  One sample used an accelerating 

potential of 100 kV, and the other sample used an accelerating potential of 120 kV.  Both 

samples employed a constant travel speed of 10 ipm, and only the current of the EB weld 

was varied to create the different compositional ranges. 

 

The nickel films did not adhere well to the chromium substrates, especially at the end of 

the wedge where the thickness was greatest.  Since the substrates were made with smaller 

dimensions, the samples did not have to be cut in half in order to be examined in the 

SEM or nanoindenter.  Figure 40 shows an example of a completed weld sample.   

 

Figure 41 shows a typical top view of the EB welds created from the samples with 

chromium substrates.  Figure 42 shows similar images taken with the SEM.  Almost all 

of the welds made on the chromium substrates had large cracks visible on the surface.  

Figure 43 shows a cross-section of a weld that shows the depth of one of the cracks 

through the center of the weld.  The large dark spots in the weld are voids, and between 

the voids can be seen a distinct segregation of phases throughout the weld.   

 

The samples were cross-sectioned at the ends of the welds, and Figure 44 shows an 

optical image of a cross-section at the thick end of the wedged nickel film after it was 

etched with glyceregia.  It was again observed that the welds with the higher currents 

were deeper than those with the lower currents, and the deeper welds had a higher 

chromium concentration.  The glyceregia attacked these welded samples much more 

rapidly than the samples with chromium films on nickel substrates, and the voids in the 

welds were very apparent.  The SEM images shown in Figure 45 show another weld, and 

the two phases are more easily distinguished in the image on the right.  The dark regions 

are the chromium rich α-phase, and the light regions are the nickel rich γ-phase.  The two 

phases are apparent throughout the weld, from the surface to the bottom of the weld pool.   
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Figure 40: A finished Cr substrate sample with eight combinatorial EB 

welds across the length of the wedged Ni film. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 41: Optical micrograph of surface of EB weld for sample with Ni 

film on Cr substrate (100 kV, 1.6 mA, 10 ipm). 
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Figure 42: SEM images of the surface of EB welds of samples with Ni 

films on Cr substrates; A) 100 kV, 1.3 mA, 10 ipm; B) 100 kV, 1.5 mA, 10 ipm. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 43: SEM image showing the cross section of a weld with a crack 

through the center (120 kV, 1.3 mA, 10 ipm; concentration of about 85 at% Cr). 
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Figure 44: Optical image of a cross-section of an EB weld on a sample of 

a Ni film on Cr substrate (120 kV, 0.9 mA, 10 ipm; concentration of about  

52 at% Cr). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 45: SEM images of cross sections of EB welds (concentration of 

about 65 at% Cr). 

γγγγ-phase 

αααα-phase void 
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Each weld was checked by EDS across the surface to determine the composition changes 

due to the nickel wedged film.  Each weld was examined in at least five places, and in 

each of these examinations at least three measurements were made and the average 

concentration was recorded, as shown schematically in Figure 46. 

 

The concentration gradient of three welds is shown in Figure 47.  The welds were all 

made on the sample with 100 kV accelerating potential and travel speed of 10 ipm.  

Overall, the chromium concentration did not vary much with position along the weld.  

The weld produced with a current of 1.4 mA showed the largest changes.  The weld 

produced with a current of 1.3 mA showed a very low chromium concentration at the 7 

mm mark.  It is uncertain if this region had a high concentration of γ-phase or if there 

were regions of unmelted nickel film.  Overall, this series of welds captured only the 

combinatorial range from about 70 to 95 at% Cr. 

 

  Verification of Alloy Uniformity 

 

Many of the tests to verify uniformity of the samples with nickel substrates could not be 

used for the samples with chromium substrates because of the presence of dual phases.  

As can be seen in Figure 45, the welds created on the chromium substrates had finely 

intermixed regions of γ-phases and α-phases, each with distinctly different properties.   

 

As with the samples on the nickel substrates, cross-sections of the welds were examined 

by EDS to evaluate the depth dependence of the chromium concentration.  Figure 48 

shows a typical concentration profile.  The top of the cross section had a concentration 

that was only 5 at% lower than that evaluated on the surface of the weld, indicating that 

the EDS examinations from the surface were accurate.  However, the concentration did 

not vary smoothly through the depth of the weld due to the separation of the two phases.   
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Figure 46: Schematic showing EDS measurements for samples of Ni films 

on Cr substrates. 
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Chromium Concentration Along EB Weld For 
Wedged Ni Films on Cr Substrates
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Figure 47: Concentration gradient along length of weld for Ni films on Cr 

substrates. 
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EBW Concentration Profile
Ni Film on Cr Substrate
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Figure 48: Concentration profile through depth of EB weld; Ni film on Cr 

substrate. 
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Mechanical Properties 

 

The modulus and hardness of the samples were evaluated for both samples made with Ni 

films on Cr substrates.  Due to the cracks produced in many of the welds, several of the 

indents made by the standard tests described earlier produced no data.  This was 

particularly prominent for the sample made with an accelerating potential of 100 kV.  In 

order to establish measurable data from the welds, individual indents were made at 

specific points along the weld, being careful to avoid the fine cracks and rough surface.  

Before indentation, the NanoII system was calibrated twice to ensure accuracy and 

precision of the indent positions. 

 

The modulus results for both samples are shown in Figure 49.  The samples made with an 

accelerating potential of 120 kV are shown in blue and the samples made with an 

accelerating potential of 100 kV are shown in magenta.  There is a large scatter in this 

data, which can be explained by the high frequency of cracking as well as the dual phases 

observed in the welds.  Some of the modulus values were above 279 GPa (modulus of 

pure chromium), though most were within the 10% deviation allowed by the 

nanoindentation results, and all were lower than the upper constraint provided by the     

Ni-70Cr and Ni-85Cr cast standards.  Most of the modulus results were below the “law of 

mixing” line, but most of these data points were above the lower limit provided by the 

Ni-50Cr and Ni-56.14 cast standards.    

 

The hardness values are shown in Figure 50.  The hardness data showed trends similar to 

the data from the cast standards, but because of the large scatter of data due to the dual 

phases and the high occurrence of cracking, it is difficult to make specific trend 

distinctions.  The hardness values between 70 and 85 at% Cr are almost all between the 

hardness values of the Ni-70Cr and Ni-85Cr cast standards.  There are a few hardness 

values less than those for the standards, but these are still higher than the hardness values 

for the Ni-50Cr standard, where the nickel rich γ-phase is assumed to be a fully saturated 

solution. 
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  Figure 49: Modulus of combinatorial EB welds for Ni films on Cr  

substrates. 
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Hardness of Combinatorial EB Welds 
Ni Films on Cr Substrates
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Figure 50: Hardness of combinatorial EB welds for Ni films on Cr 

substrates. 
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It was difficult to obtain results from the end of the weld with greater than 90 at% Cr, and 

the compositional range above 95 at% Cr was not achieved.  Therefore, there is not a 

clear understanding of trends greater than 90 at% Cr, and hence there is no specific 

evidence to what happens at the solution saturation point of the α-phase.  Of the few data 

points acquired in this region, all fall below a hardness value of 9 GPa.  Since the 

saturated α-phase is assumed to have the highest hardness values measured (nearly 13 

GPa), it is assumed that the saturation point of the α-phase is between 80 and 90 at% Cr 

where only a few hardness values reached 11 GPa.  According to the phase diagram, it 

would then be assumed that temperatures reached at least 1100ºC before rapidly cooling 

to retain that microstructure. 

 

Combined Ni-Cr Combinatorial Samples 
 

Considering all the samples that were made with chromium films on nickel substrates and 

the samples that with nickel films on chromium substrates, the EB welds were able to 

produce a combinatorial alloy range of 1 to 95 at% Cr.  There were only a few gaps in the 

composition range that were not covered, although it was much more difficult to produce 

a complete compositional gradient on the samples with the chromium substrates.   

 

The combined results for the modulus of the Ni-Cr combinatorial alloys are shown in 

Figure 51.  The results coincide with the “law of mixing” line until almost 40 at% Cr, and 

then the modulus values are lower than the “law of mixing” for chromium concentrations 

between 40 and 80 at%.  However, the modulus values from the Ni-50Cr and Ni-56.14Cr 

cast standards were also lower than the “law of mixing” values.   

 

The hardness values for all of the Ni-Cr combinatorial alloys are shown in Figure 52, 

along with an insert of the Ni-Cr phase diagram.  The hardness results generally coincide 

well with the hardness of the cast Ni-Cr standards.  As with the cast standards, the 

hardness of the combinatorial welds increased linearly from 1.2 to 3.5 GPa with little 

deviation from 0 to 40 at% Cr.  From 40 to 50 at% Cr the hardness remained steady at  
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  Figure 51: Modulus of all combinatorial EB welds. 
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Hardness of Combinatorial EB Welds
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  Figure 52: Hardness of all combinatorial EB welds. 
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about 3.5 GPa, and then greatly increased to values between 6 and 13 GPa from 70 to 85 

at% Cr.  This high hardness is attributed to the chromium rich α-phase, and the large 

scatter at this composition is due to the difference in hardness between the γ-phase and  

α-phase in this dual phase region.  Although there is not enough data to make a 

conclusive argument, it appears that the hardness values begin to decrease after about 85 

at% Cr toward the hardness value of pure chromium, which was about 3.8 GPa. 

 

For the samples of chromium films on nickel substrates, there was only one weld that 

produced adequate results above 60 at% Cr.  This weld had chromium concentrations 

between 71 and 80 at%.  All of the values from this weld fell between the hardness values 

of the Ni-70Cr and Ni-85Cr cast standards, and they are presumed to be just as accurate 

as the data obtained from the welds on chromium substrates at these compositions. 
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Chapter 4:  Conclusions 

 

The combinatorial method of vapor deposited films alloyed with bulk substrates by EB 

welding showed promise for the nickel-chromium binary alloy system.  There was a 

linear gradient of composition along the length of the welds that could be easily measured 

from the surface.  The mechanical properties of hardness and modulus obtained by 

nanoindentation could also easily be characterized from the surface of the rough welds.  

Both the mechanical and compositional measurements were representative of the 

measurements taken from the more polished and uniform cross sections. 

 

The cross sections of the EB welds showed segregation and phase transformation 

comparable to those exhibited by the cast Ni-Cr standards.  The compositions of the 

alloyed weld pools remained relatively constant through at least half the weld depth, 

which was more than thirty times the depth of the nanoindentation taken from the 

surface.   

 

There were no strong tendencies shown in the modulus measurements, and the scattering 

of modulus results limited any conclusive correlations about various composition 

changes. However, all of the modulus values were within reasonable deviation from the 

standards set by cast Ni-Cr alloys, though most fell below the linear “law of mixing” 

value.   

 

There were strong trends in the hardness measurements that followed similar tendencies 

of the standard Ni-Cr alloys prepared by melting and casting.  The hardness values also 

showed trends that coincided with the composition changes associated with the Ni-Cr 

phase diagram.  The hardness results obeyed a clear trend in the nickel rich γ-phase, 

where the single-phase compositional range between 0 and 40 at% produced only limited 

scatter in the data.   
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It is concluded that the method of producing combinatorial Ni-Cr alloy libraries by 

physical vapor deposition and electron beam welding, and then rapidly characterizing the 

chemical and mechanical properties with EDS and nanoindentation is a suitable screening 

method for rapid assessment for alloy design.  One sample of a nickel substrate with a 

chromium wedged film, one sample of a chromium substrate with a nickel wedged film, 

and as few as two or three welds per sample are sufficient to establish the entire 

composition range.   If a composition range could be narrowed, then more welds could be 

used to produce more accurate results for alloy design or optimization. 

 

These methods have proven successful for the combinatorial alloy design of Ni-Cr alloys, 

and it is assumed that similar concepts could be used in other alloy systems.  Because the 

hardness results of the Ni-Cr system showed conclusive trends in the single-phase region, 

it is suggested that alloys with complete solid solutions through the entire composition be 

tested.  An example of a suggested single solution alloy systems is Cu-Ni, where both 

metals have the FCC crystal structure. 

 

The Ni-Cr alloy system was chosen because it was part of the commercially important 

ternary Fe-Ni-Cr alloy system.  It is also suggested that the Fe-Ni and Fe-Cr binary 

systems are examined by these methods.  Methods to establish a ternary Fe-Ni-Cr 

combinatorial library by similar methods should also be established.  Due to the 

complicated phases that occur in this system, compositions closely resembling specific 

steels should be the focus of the work. 
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