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ABSTRACT 

This investigation was undertaken to develop a numerical solution 

for the transient response of linear, elastic structures based on the 

matrix exponential solution for first order, linear, constant coeffi-

cient differential equations. The investigation was prompted by the 

need for an economical technique that can be used to analyze multi-

degree of freedom systems exemplified by piping and structural compo-

nents associated with nuclear power plants. 

A mathematical model characterizing the behavior of linear, elastic 

structures was developed by using state variables of displacement and 

velocity. The structure consists of beam elements of uniformly distrib-

uted mass, weightless springs, and rigid masses. The stiffness and mass 

matrices for the beam elements and techniques for treating boundary con-

ditions were investigated. A digital computer program was written to 

perform the transient solution. The transient response was determined 

for three simple structures by using the computer program, and the 

results obtained agree favorably with previously reported analytical and 

experimental data. 
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1 .  INTRODUCTION 

Several areas in structural design confronting the nuclear 

industry can generally be classified as transient or time varying . 

Examples of these are aseismic design, emergency action such as blow­

down, or accidents involving the shipment of radioactive material . 

Designers must consider the circumstances and consequences of the situa­

tion and take appropriate steps to insure safe operation of the system 

involved . In doing so, the designer faces several difficulties: the 

time available to obtain a solution is limited, the problems can gener­

ally be classified as complex, and the assumptions made to obtain a 

model that can be readily analyzed may greatly affect the answers 

obtained . Fortunately, large and fast digital computers have become 

widely available, and this availability results in some reduction of 

the difficulties caused by limited time. 

Several methods are currently used to develop a model of the 

physical system and to select a solution technique . Quite often, the 

structure is modeled as a collection of rigid masses and weightless 

springs . An alternate choice involves finite element methods to mini­

mize error. When selecting a solution technique, the designer must 

decide what information is to be obtained as a result of the analysis. 

This may be a complete time history of displacements or simply estimates 

of the maximum relative displacements . If only estimates of maximum 

relative displacement are required, the widely known modal superposition 

methods in combination with a response spectrum may be used. If a com­

plete time history is required, some form of integration of the 

1 
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equations of motion will be needed. If an economical, easy to use, and 

accurate method for performing the direct integration were available, 

this technique would appear to be the logical choice under all circum­

stances in that all the data of interest to the designer would be avail­

able in the results of the analysis. 

One of the many possible numerical procedures is presented in 

the following sections of this document. The findings of a literature 

review relative to methods for determining the transient response of 

multi-degree of freedom systems are discussed in Section 2. A mathemat­

ical model for a complete structure is developed in Section 3, and a 

derivation of the stiffness and mass matrices which describe a single 

beam element of the structure is presented in Section 4. The develop­

ment of a computer program for the matrix exponential solution is 

described in Section 5, use of this computer program is demonstrated in 

Section 6, and the conclusions and recommendations resulting from this 

investigation are presented in Section 7. 



2. REVIEW OF LITERATURE 

Interest in the transient response of linear, elastic mechanical 

systems occurs in many fields. However, the literature surveyed in the 

course of this investigation was limited primarily to research documents 

sponsored by the United States Atomic Energy Commission and the National 

Aeronautics and Space Administration and to standard textbooks. 

Most current methods for determining the transient response of 

multi-degree of freedom systems may be separated into two categories. 

The first is superposition of modal response patterns, and the second is 

direct integration. The application of both of these methods is illus-

trated in a recent review of seismic design analysis methods (1) * 

wherein a linear elastic structural model is formulated by either the 

lumped parameter or finite element method and the modal analysis tech-

nique is recommended for computing both steady state and transient 

dynamic responses. 

The dynamic equations for linear, elastic mechanical structures 

are characterized by constant coefficients and may be quite readily 

expressed in matrix form. Since these equations are second order, the 

solution algorithms generally found in textbooks do not fully exploit 

the constant coefficient characteristic . The matrix exponential method 

has been presented (2) as a means of solving a set of first order differ-

ential equations that are constant coefficient and linear. This method 

*Numbers within parentheses in the text designate numbered 
references given in the List of References. 
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has recently received wide attention because of t�e availability of 

digital computers. Numerical techniques used in the time domain and in 

the frequency domain analyses of linear time-invariant systems have been 

reported by M. L. Liou (3, 4). A bound for round-off error involved in 

digital computation of the transition matrix of a system of linear time­

invariant differential equations has been developed and a method of com­

puter selection of the step size and number of series terms in transition 

matrices has been presented by J. B. Mankin, Jr., and J. C. Hung (516) . 

A technique for determining the transient response of structures 

that is based on a Taylor series expansion for displacement and velocity 

has been presented by A. Craggs (7, 8) . However, the solution presented 

was developed only for simple mechanical systems, and the definite rela­

tion to the matrix exponential method was not presented. The dynamic 

equations are rewritten as a coupled set of first order equations in 

Section 3 of this thesis, and it is shown that the solution methods pre­

sented by Craggs (7, 8) are simply an approximation to the matrix 

exponential solution. 



3. MATHEMATICAL MODEL FOR A COMPLETE STRUCTURE 

In order to apply the matrix exponential solution method to the 

problem of determining transient structural response, the equations of 

motion for the structure must be written as a coupled set of first order, 

linear differential equations. Since only linear elastic structures are 

considered in this investigation, these equations will have constant 

coefficients. The equations of motion for the structure are presented 

in a form compatible with the matrix exponential method in this section, 

and the matrix exponential solution for these equations is derived. 

3.1 Qynamic Equations 

The equations of motion for a multi-degree of freedom system may 

be conveniently written in matrix equation form as 

where 

MX + ex + Kx = f (t) , 

M is the structure mass matrix, 

C is the structure damping matrix, 

K is the structure stiffness matrix, 

x is the structure displacement vector, 

x is the structure velocity vector, 

x is the structure acceleration vector, and 

f (t) is the time varying vector of applied loads. 

(3 .1) 

Unless noted otherwise, capital letters are used to denote matrices and 

lower-case letters are used to denote vectors and scalars. Where 

5 
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necessary to improve clarity of presentation, brackets, [ ] , and braces, 

{ }, are also used to denote matrices and vectors. 

3. 2 Introduction of State Variables 

To mathematically simplify the dynamic equations, it is desirable 

to develop a set of coupled first order differential equations that is 

equivalent to the set of second order differential equations. This may 

be accomplished by solving explicitly for the acceleration vector in 

Equation 3.1 and incorporating an identity relationship involving the 

velocity vector. Solving Equation 3. 1, the acceleration vector 

(3 0 2) 

where the superscript -1 denotes inversion. The necessary identity is 

x = Ix , (3 .3) 

where I is the identity matrix. By combining Equations 3. 2 and 3.3, the 

following set of first order coupled differential equations is obtained. 

(3 . 4) 

where � and � denote the null matrix and null vector, respectively. 

3. 3 Matrix Exponential Solution 

For the free vibration case, f (t) = �, the solution to Equation 

3. 4 is as follows. Let 

(3 .5) 
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Integrating from time t to t + T yields 

(3 . 6) 

where 

t is time, 

T is the time increment, and 

[exp AT] is the matrix exponential function of A. 

The subscripts t and T are used to denote the point of evaluation in 

time. 

A complete development of this solution has been presented by 

Zadeh and Desoer (2, Chapter 5).  A less rigorous proof is as follows. 

Let 

y = By (3. 7) 

represent any linear, constant coefficient set of coupled differential 

equations. Then 

Similarly, 

and 

m 

�

-
Bm - y • 

dtm 

Let y be expanded in a Taylor series at time t + T. 

T2 • •  m dm 
= y t + Ty t + 2! y t + • • . + :! � 

(3 . 8) 

(3. 9) 

(3 .10) 

+ .. • (3 . 11) 

t 
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After s ubs t ituting the appropriate deriva t ives, Eq ua tion 3 .11 becomes 

(3 .12) 

which is by defin i t ion 

(3 . 13) 

The exponential ma trix, [exp AT] , is also  ca l led the transi tion 

matrix and is the same as tha t  discus sed by Craggs (7, page 2) and 

labe led as T .  

For t ime increments, T, such tha t  the forcing funct ion may be con-

s idered cons tant within the time s tep, the solution to the forced vibra-

t ion prob lem is as fol lows . Consider the set of nonhomogeneous, l inear, 

cons tant coefficient differen t ia l  equations 

j = By + g (t)  (3.14) 

where g (t)  denotes the vector of t ime-dependent forcing functions . The 

so lution is developed through a variat ion of parame ters . Assume a solu-

tion of the form 

y = ( exp B t]u (3 .15) 

where u is a yet unde termined vector. Subs t i tuting this into Equat ion 

3.14 yie lds 

[exp B t] u + B[exp Bt] u = B ( exp B t]u + g (t)  , 

or 

u = [exp -Bt] g (t)  • 

The solution to Equation 3.17 is as fol lows: 

u = u + l \ exp -B t ' ] g ( t ' ) d t ' • t 0 
0 

(3 .16) 

(3 .17) 

(3 . 18) 
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Equation 3.18 may be substituted into Equation 3.15 to yield 

y = [exp Bt]u0 + [exp Bt]j[t

[exp -Bt'] g(t') dt' . (3 .19) 

The initial value of u, u01 may be determined by evaluating the assumed 

behavior of y at time zero. 

Thus, 

y :: u • 0 0 

Yt = [exp Bt]y0 + [exp Bt]J(t

[exp -Bt'] g(t') dt' . 

If g(t) is a constant vector, g, we may write 

y = [exp Bt]y + [exp Bt]lt

[exp -Bt'] dt' g. t 0 
0 

The integral may be evaluated to yield 

yt = [exp Bt]y0 + [exp BtJ[-(s]-1[exp -Bt'J] I! g 
:: 

:: 

:: 

:: 

= 

[exp Bt]y + 0 [ ] -1 -1 exp Bt B g - B g 

[exp Bt]y0 + [[exp Bt] - I]B-1g 

[exp Bt]y0 + 

[exp Bt]y + 0 

[exp Bt]y + 0 

[I + Bt + 2 t2 B 2! + .
• . - I B g ] -1 

[ B2t2 ] -1 Bt + 2! + . • . B g [ m Bk->tk-1] t I: k' g • 
k=1 

• 

Applying the results of the solution given in Equation 3. 23 to the 

(3. 20) 

(3. 21) 

(3. 22) 

(3. 23) 

coupled equation of motion given in Equation 3.4 yields Equation 3.24. 
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(3. 24) 

3.4 Boundary Conditions 

All that remains to be done to develop a complete set of 

algorithms is to present a method of treating prescribed zero displace-

ment, velocity, and acceleration boundary conditions as are found at 

restrained node points in structures. In finite element programs for 

static analysis, it is common practice to accommodate boundary condi-

tions by modifying the stiffness matrix and applied load vectors to 

incorporate known nodal displacements. All that is required to accommo-

date a zero displacement is to delete all of the off-diagonal row and 

column elements of the stiffness matrix, set the diagonal element equal 

to unity, and set the applied load associated with that particular node 

equal to zero. 

A parallel procedure may be used to accommodate zero displacement 

and velocity boundary conditions. For any degree of freedom of the 

structure for which the prescribed displacement and velocity are zero, 

the associated off-diagonal row and column elements of the A matrix are 

deleted, the diagonal element is set equal to unity, and the proper 

terms in the M-�f vector are deleted. 

3. 5 Formation of Structure Matrices 

The stiffness matrix for the structure may be readily determined 

by using the principle of superposition commonly relied upon in elemen-

tary mechanics. If a point within the structure is designated as a node 
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point and all the structural elements connected to that node point are 

considered in sequence, the stiffness associated with this node point 

may be determined by linear superposition (addition) of the appropriate 

portions of the stiffness matrices of each individual element for all 

connected elements. 

The mass matrix for the structure may be determined by using a 

procedure identical to that used to determine the stiffness matrix. In 

the case of the stiffness matrix, the potential energy of the structure 

is related to the node point displacements. The stiffness matrix and 

the node point displacement may be used to compute the potential energy 

of the structure. In a similar manner, the velocity of the structure 

node points and the mass matrix of the structure determine the kinetic 

energy of the structure. Thus, linear superposition of the appropriate 

inertial properties of all elements connected to a given node may be 

used to determine the mass matrix of the structure. 

Because of the general lack of knowledge about the exact velocity 

dependence of energy dissipative processes in structures, it is common 

practice to assume that the damping in the structure is a linear function 

of node point velocities. This may be readily incorporated into the 

mathematical model of the structure when modal analysis procedures are 

used. The same procedure used in modal analysis could be used with the 

matrix exponential solution, but that course was not followed in this 

investigation. An approximate representation of damping may be incorpo­

rated into the structure by considering two sets of dampers: one asso­

ciated with the node point inertial characteristics and the other 

associated with the node point stiffness characteristics, as suggested 
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by Biggs (9, pages 140-147). The magnitude of the inertial associated 

damping coefficient matrix, Cr' is 

where c is a scalar constant defined explicitly later. The magnitude r 

of the stiffness associated damping coefficient matrix, C , is g 

(3. 26) 

where c is a scalar constant defined explicitly later. Biggs (9, pages g 

140-147) presents a method for determining these two sets of coefficients 

by substitution into the following equation. 

c al + c = '12w , g r (3. 27) 

where '1 is the ratio of actual to critical damping at the circular fre-

quency m. Thus, the damping ratio, '1' may be set at any desired level 

at two separated frequencies. This determines the damping ratio at all 

other frequencies. The total structure damping matrix is therefore 

determined by 

(3 . 28) 

An example of the use of this approximate method of representing struc-

tural damping is presented in the third example problem in Section 6 of 

this document. 



4. MATHEMATICAL MODEL OF STRUCTURE ELEMENTS 

As discussed in Section 3, the relationship between applied 

forces, displacements, velocities, and accelerations of node points of 

a structure may be expressed in matrix form. The matrices used were 

the structure stiffness matrix and the structure mass matrix. The 

structure stiffness matrix and the structure mass matrix are completely 

determined by the properties of the elements which make up the structure 

and by the boundary conditions of the structure. Boundary conditions 

were considered in Section 3. A derivation of the stiffness and mass 

matrices which describe a single beam element of the structure is pre­

sented in this section. 

The stiffness and mass matrices derived are neither original nor 

the most general possible for the particular element considered. They 

were derived and included in this document to insure completeness for 

the reader unacquainted with finite element techniques. Several authors 

have derived beam element stiffness and mass matrices under assumptions 

similar to those made herein, and the reader is directed to the work 

reported by Archer (10) , McCalley (11) , Kapur (12) , and Gallagher and 

Lee (13) for comparison. Under similar assumptions, the derived 

matrices agree with those given in the cited references in all cases. 

The beam element matrices may best be developed if the axial and 

transverse portions of the motion of the beam are considered separately. 

The incorporation of rigid masses and weightless springs into the mass 

and stiffness matrices of the structure is not presented in this docu­

ment because of its simplicity. 

13 
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4. 1 Stiffness and Mass Matrices for Axial Motion 

Consider the beam element illustrated in Figure 4. 1 .  Assume that 

the axial displacement, w(z), of any point on the beam may be represented 

by 

w(z) = m + nz , (4.1) 

where m and n are arbitrary constants and z is the position on the beam, 

as illustrated in Figure 4. 1. Substituting for the axial displacement 

of Ends 1 and 2 of the beam results in the equation 

w(z) = w 1 

w - w 

+ _;;;2�L_;;.l z ' (4. 2) 

where w1 and w2 are the axial displacements of Ends 1 and 2 of the beam, 

respectively. Equation 4. 2 may be rewritten in matrix form as follows. 

(4.3) 

From the strain-displacement relations, the axial strain, €(z), at 

any point in the beam is obtained by differentiating the displacement 

with respect to z. The result of this operation is given in Equation 

.4 .4. 

END 1 
.,.1•��--------- L 

END 2 

-I 
Figure 4.1. Beam Element for Axial Motion. 
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E(z) = l-i � { ::} (4.4) 

The strain energy, UA, absorbed within the beam element may be expressed 

as 

UA = jl € (Z) cr(z) dV 1 

volume 

(4.5) 

where cr(z) is the axial stress at any point on the beam and dV is the 

increment of volume. Within the linear elastic region, Equation 4.5 

may be rewritten as 

UA = �1 €(Z)E € (Z) dV 1 

volume 

where E is Young's modulus for the beam material. Substituting for 

€(Z) from Equation 4. 4 into Equation 4.6 yields 

1 
-r 
1 
L 

l-f tJ{::} a dz , 

(4. 6) 

(4. 7) 

where dV has been replaced by "a dz11 and the integration ranges over the 

beam length L. The cross-sectional area of the beam is represented by 

11a11 and dz is an increment of beam length. Upon integration, Equation 

4. 7 yields 

1 U = -lw w _I A 2 L l. 
� 

aE 
L 

aE 
T 
aE 
L { ::} ' (4.8) 
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where the modulus of elasticity and the cross-sectional area have been 

assumed to be constant over the length of the beam. By definition, the 

stiffness matrix for axial displacement of the beam element is 

K = 
aE � 1 

a L tl 

-:] . (4. 9) 

The axial velocity, w (z) J of any point on the beam may be determined by 

differentiating with respect to time. 

J (4.10) 

where w1 and w2 are the axial velocities at Ends 1 and 2 of the beam, 

respectively. The kinetic energyJ TAJ brought about by the axial veloc-

ity is 

11 '( a TA = 2 p w z) dV J 

volume 
(4. 11) 

where p is the density of the beam material. Substituting for velocity 

and rewriting Equation 4. 11 in matrix formJ 

(4. 12) 

After integrating and substituting limits in Equation 4. 12J the kinetic 

energy 

paL paL 

{ ::} 1�. -3- 6 
TA = 2 wl w� (4. 13) 

paL paL 
6 -3-
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The mass matrix, M81 for axial velocity of the beam element is 

paL 

1 1 
3 6 
1 
6 

1 
3 

4.2 Stiffness and Mass Matrices for Transverse Motion 

Shear deformation will be neglected but the effect of rotary 

(4 .14) 

inertia will be included in the derivation of the element stiffness and 

mass matrices. Consider the transversely displaced beam element illus-

trated in Figure 4.2. The slope of the neutral axis of the beam, dy/dx, 

is represented by e in Figure 4 .2 .  Assume that the transverse displace-

ment, v(z), may be represented by 

v(z) = m + nz + oz2 + pz3 , (4. 15) 

where m, n, o, and p are arbitrary constants. Substituting the trans-

verse displacements, v and v , and rotations, e and e , at Ends 1 and � 2 � 2 
2 of the beam, respectively, we may write Equation 4 .16 . 

+v 

END 2 

�----------------------+! 

Figure 4 .2 .  Beam Element for Transverse Motion. 



18 

Equation 4.16 may be written in matrix form as 

v(z) = � 3z2 2z3 
- -- + -; 

L2 L4 
2z3 

-· ' 
L3 

-� + z3� 
L 12 

Differentiating Equation 4.17 with respect to z yields 

Differentiating Equation 4.18 with respect to z yields 

'd2v(z) = 
d z2 

ll2z _ !__; 
L4 L2 

6z 4 
L2 - 'L; 

Equation 4. 19 may be rewritten as 

where 

f (z) 1 
12z = --

12z 6 
- + -; 

Ls L2 
6z 

� 
- -

L2 

v 

e 

v 

e 

v 1 
e 

1 
v 2 
e 

2 

1 

1 

2 

2 

(4.16) 

v1 

e 
1 .(4. 17) 

v2 

e 
2 

(4.18) 

(4 . 19) 

(4. 20) 

(4. 21) 



f (z) 
2 

f (z) 
3 

f (z) 
4 

{o} 

6z 4 
=-- I' 

= 

= 

= 

L2 

12z 6 --- + - 1 
L3 L2 

6z 2 and - 1 
L2 L 

v l 
e 

1 

v 2 
e 

2 
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(4. 22) 

(4. 23) 

(4. 24) 

(4. 25) 

If the shear deformation is neglected, the strain energy, UB, 

absorbed in the beam because of bending is 

dz , (4. 26) 

where I is the second moment of area of the cross section of the beam. 

Subst1.tuting 'd2v(z) /oz2 into the bending energy equation (Equation 4. 26) 

yields 
f (z) 

1 
f (z) 2 
f (z) 

3 
f (z) 

4 

(4.27) 

where l o TJ is the transpose of { o} . If the moment of inertia, I, and 

Young's modulus, E1 are independent of position, the resulting equation 

upon integration and substitution of limits is given in Equation 4. 28. 
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12 6 12 6 

13 12 13 12 

4 6 2 
1 

UB = 2 Ell BTj 1 12 1 {t>} (4. 28) 

12 6 

13 12 

Symmetric 4 
L 

The beam element stiffness matrix, KBI for transverse displacements may 

be written as 

12 61 -12 61 

� 
EI 412 -61 212 

(4. 29) = -

13 12 -61 

Symmetric 412 

If the shear deformation is neglected, the kinetic energy, T8, asso-

ciated with transverse motion of the beam element is 

dz 1 (4.30) 

where v(z) is the transverse velocity at any point on the beam and may 

be found by differentiating the transverse displacement with respect to 

time. 
. v l. 

v(z) = 

l
l -

3z2 2z3 
-- + -- ; 
12 13 

2z2 z3 z - --+-· 
1 12' 

3z2 2z3 -z2 + z� e 
l. (4.31) -- - -- ; 

12 13 1 12 . v 2 

. 
where v and v are the transverse velocities and e l. 2 l. 

angular velocities at Ends 1 and 2 of the beam. 

e 
2 

. 
and e are the 

2 
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The first integral in Equation 4.30 is associated with 

translational inertia and the second integral is associated with rota-

tory inertia. To evaluate the first integral, let 

v(z) = lf5
(z) f

6
(z) f

7
(z) f

a(z� {e} 
where 

f (z) 
5 

f (z) 
6 

f (z) 
7 

f (z) a 

{e} 

= 

= 

3za 2z3 
1 - -- + - , 

La L3 

2za z3 z - - + - , L La 

3za 2z3 
=- --' 

La L3 

za z3 and = - - + - ' L La 

v l 
. 
e 

l = 
. v2 
. 
e 

2 

The expression for the first integral may be written as follows. 

f (z) 
5 

f (z) 
6 

f (z) 
7 

f (z) a 

(4. 32) 

(4.33) 

(4.34) 

(4.35) 

(4.36) 

(4 .37) 

(4.38) 
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By assuming constant cross-sectional area and constant density after 

integrating Equation 4. 381 the first integral becomes 

1561 2212 54L -1312 

f 1 • 2 1 ·T pa 413 1312 
-312 { 5} . (4. 39) 2 

o 

pa (v<zl ) dz =2la ] 420 
1561 -221 

Symmetric 413 

Thus, the mass matrix associated with the translational portion of the 

transverse motion is 

13 11 9 13 
35 2101 70 -4201 

1 2 
1051 13 

4201 
1 2 -1401 

�T = paL (4. 40) 
13 11 
35 -2101 

1 2 
Symmetric 1051 

To evaluate the second integral, which is associated with rotatory 

inertia, in Equation 4.30; it is necessary to differentiate Equation 

4. 18 with respect to time. 

C:lv(z) 
az 

Equation 4.41 may be rewritten as 

(W(z) = lf (z) f (z) f (z) £ (z)l {a} , dz 9 l.O ll. J.2 J 

. v J. 

. 
e J. 

. 
e 
2 

. (4. 41) 

(4.42) 



where 

f (z) 
9 

f (z) 
lO 

6z - - , 

L2 

4z 
- L ' 

6z2 6z f (z) = - + - , and 
l1 L3 L2 

3z2 2z f (z) = ---, 12 L2 L 
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The second integral in Equation 4.30 may be written as 

f (z) 
9 

f (z) 
l.O 

f (z) 
l.l. 

f (z) 
l2 

lf (z) f (z) f (z) f (z)l {5} dz • 
9 lO ll. l2 j 

After integration and substitution of limits in Equation 4.47, the 

second integral 

6 1 6 1 l 
5L 10 -5L 10 

2 1 L 

f 2 15L -10 30 � 
0 

pr(1�•> ) dz = �WJ pr {5} 6 1 . 

5L -10 

Symmetric 2 
15L 

(4.43) 

(4.44) 

(4 .45) 

(4.46) 

(4.47) 

(4.48) 
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Thus, the mass matrix associated with the rotational portion of the 

transverse motion is 

6 1 6 1 
SL 10 5L 10 

2L 1 L 
T5 -10 30 

MaR = pi (4. 49) 
6 1 
SL -10 

Symmetric 2L 
IT 

4. 3 Stiffness and Mass Matrices for Single Beam Element 

The stiffness matrices derived in Subsections 4.1 and 4. 2 (Equa-

tions 4.9 and 4.29) may be combined to form a single element stiffness 

matrix by superposition. The resulting stiffness matrix for the beam 

element is given in Equation 4. 50. 

aE 0 0 aE 
L -1 0 0 

12EI 6EI 0 12EI 6EI 

L3 L2 Ls L2 

4EI 0 L 
6EI 2EI 
L2 L 

� 
= 

aE 
1 

(4. 50) 
0 0 

12EI 6EI - --

L3 L2 

Symmetric 4EI 
T 

The appropriate displacement vector is formed from w1, v1, e
1

, w
2

, v2
, 

and e in this order. 2 
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The mass matrices derived in Subsections 4.1 and 4.2 (Equations 

4.14 and 4.49) may be combined to form a single element mass matrix by 

superposition. The resulting mass matrix for the beam element is given 

in Equation 4.51. 

Z\ = 

paL 
3 0 

13paL 6pi 
35 + 51 

Symmetric 

0 

llpaL2 .e! 
210 + 10 

paL2 2piL 
105 + 15 

paL 
6 

0 

0 

paL 
3 

0 

9paL 6pi 
70 - 51 

13paL3 pi 
420 - 10 

0 

13paL 6pi 
35 + 51 

. 

0 

13paL2 £!. 
- 420 + 10 

paL3 piL 
140 + 30 

0 

11paL2 pi 
210 - 10 

paL3 2p!L 
105 + 15 

(4. 51) 

The appropriate velocity vector is formed from w , v , e , w , v , and 1 1 1 2 2 
. 
e in this order. 

2 



5. DEVELOPMENT OF COMPUTER PROGRAM 

The mathematical form of the matrix exponential solution method 

makes it necessary that all but the simplest of solutions be performed 

by computer methods. A high-speed digital computer is well suited for 

this purpose. With this thought in mind, a computer program was devel-

oped to implement the solution of the transient dynamics of plane 

structures composed of beam elements of uniformly distributed mass, 

weightless springs, and rigid masses. 

The logical flow of the computer program is given in flow-chart 

form in Appendix A, and the major steps in the program are as follows. 

Data describing the geometric and structural characteristics are input 

for the program, which in turn formulates the structure stiffness and 

mass matrices. The structure stiffness and mass matrices are modified 

for boundary conditions, as discussed in Subsection 3.4. The mass matrix 

is inverted and post multiplied by the structure stiffness matrix. The 

coupling matrix, A, is then formed, and the effect of damping is incor-

porated by using input damping coefficients cr and cg. For a given time 

increment and number of terms in the series approximation, the matrix 

exponential, [exp A�], and the forcing function transition matrix, 

are next formed. This completes the preliminary steps directed toward 

problem solution. The solution is then developed incrementally, as 

indicated by Equation 3. 24 which is repeated here for convenience. 
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• 
= [exp A�] 

• + T E A 
k� _ 1 

{X} {X} �oo k-lk-lj { $ } X t +� X t k=l M 1f (t) t 
(3. 24) 

where approximations have been made for the matrix functions indica ted . 

I t  should  be noted tha t the number of terms in the matrix exponen-

tial  approxima t ion mus t be l imited, as is the case w i th a l l  s eries 

approxima t ions . In this case, an upper limit on the number of terms or 

lower l imit on the t ime increment exis ts because o f  the pos s ib i l i ty of 

exceeding the capab i l i ty of the dig i tal  computer to represent very sma l l  

f loat ing point numbers . An es t imate of the maximum number of terms per-

mis s ib le may be obtained from Equat ion 5.1. 

E 5 N ln T - ln (N!) 1 (5 .1) 

where E is t he exponen t associated wi th the sma l le s t  number that may be 

represented w ithin t he machine and N is the number of terms used in the 

approximation .  In turn, T should be chosen to insure accuracy ; t hat  is, 

it should be sma l l  enough to permi t the necessary trans ient response 

details  to be rep�esented. For mos t problems for which this computer 

program was developed, N wi l l  be less than 10 and T wi l l  be chosen to 

be one- twentieth of the sma l les t s ignificant s truc t ure per iod. A so lu-

t ion so  l imi ted w i l l  be in error by less than 

dN+lx 

[AN+1,N+d dtN+l 

(5. 2) (N + 1) ! dN+2x 
dtN+2 

t 

for free vibration ana lys is . This error may be made as sma l l  as may be 

represented wi thin the mac hine by the argument previous ly presented. 
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After this inves t igation was completed, the error cri teria repor ted by 

Liou (3, 4) and by Mankin and Hung (5, 6) were examined but were not 

incorpora ted in to this s tudy because of t ime l imitations . 

The matrix invers ion used was a vers ion of the Gauss -Jordan a lgo­

r i thm as presented by Wang (14). The matrix funct ion approxima tions 

and s tep-by-s tep solution were re-programmed from programs presented by 

Bal l  and Adams (15) . The l imitat ions of the computer program are pre ­

sented in Appendix B, the input data format is  presented i n  Appendix C, 

the output da ta format is presented in Appendix D, and the computer pro­

gram l is t ing is presen ted in Appendix E. 



6. TRANSIENT RESPONSE OF S IMPLE STRUCTURES 

To demons trate the use of the computer program developed in this 

inves tigat ion, three example prob lems are presented and compared with 

known solutions . 

6.1 Firs t Example Prob l em 

The firs t example prob lem involves the determina t ion of the time 

history o f  displacements for the three-degrees -of-freedom prob l em i l lu-

s trated in Figure 6.1. The displacements indica ted in F i gure 6.1 are 

measured from the s ta tic eq ui librium pos i t ion of the node points indi-

cated as c irc led numerals . The t i me re lationship and magni tudes of the 

app l ied loads f ( t) , f (t) , and f (t) are indica ted in Figure 6. 2. 
2 3 4 

STIFFNESS= 6, 000 POUNDS PER INCH 

lElGHT = 772. 8 POUNDS 

STIFFNESS =1.1,000 POUNDS PER INCH 

f, (t)! T. lElGHT = 386. 1.1 POUNDS 

STIFFNESS= 2, 000 POUNDS PER INCH 

® lElGHT = 386. 1.1 POUNDS 

Figure 6 .1. Three-Degrees-of-Freedom Model  Wi th Wei ght less 
Springs and Lumped Masses for Firs t Exampl e  Prob lem. 
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f2 (o)=J,OOO POUNDS 

f3 (o)=�.OOO POUNDS 

f4 (o)=2,000 POUNDS 

0 

30 

TIME (SECONDS) 

Figure 6 . 2 . Appl ied Loads for the Three-Degrees -of-Freedom Model 
of the First Example  Program . 

The data from this prob lem were supp l ied to the computer program 

and used to wri te a forcing function subroutine DISTURB, which is the 

vers ion of DISTURB presen ted in Appendix E. The t ime increment used in 

the solution of the prob lem was 0. 005 second, and the number of terms in 

the ser ies approxima t ion of the ma trix exponent i a l  was ten. The dis-

p lacement of node point 3 as determined with the computer program is  

plotted in Figure 6 . 3  and may be compared with the solution developed 

through the use of modal methods reported by Biggs (9, pages 121 - 1 23) . 

The solution for this example prob lem was plot ted by us ing the computer 

program XYPLOT presented by Tob ias and Jung (16) . The smooth l i ne in 

Figure 6 .3 repres ents the theoretical solut ion and the symbols "X" rep-

resent the approximate  solut ion as o utput from the computer program.  

6.2 Second Example Prob lem 

The dis tributed mass beam elements developed in Section 4 of this 

document are used in the second example prob lem.  In this prob lem, the 

response of the point of dynamic load app lication for a s imp ly supported 



i -
z -

i -c 

3 1  

··�'�----------------------------------------------� 

0.70 

0.0 

-o. 70 
- MODAL SOLUTIQN 

X lATRIX EXPONENTIAL SOLUTION 

-·.��----------------------------------------------� 0.0 O.Oil 0.08 0.12 0.16 0.20 
TIME IN SECtNJS 

Figure 6. 3 .  Example One Response o f  Three-Degree Sys tem. 
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beam, as il lus trated in Figure 6.4, is to be determined. The beam is a 

wide- flange s teel  section 14 inches deep that weighs 142 pounds per 

l ineal  foot.  The dynamic load, f (t) , is initia l ly 50,000 pounds, 

decreases linear ly to zero at 0.0 1 second, and remains zero for a l l  

later time. 

�10 F E ET 
f( t) 

6 F E ETl 

Figure 6. 4 .  S imply Supported Beam of Second Examp le Prob lem. 

The response of this beam was determined by using two combinations 

of beam elements connected in series. The time increment used in the 

solution of the prob lem was 0.0001 second, and eight terms were used in 

the series approximation. A comparison of the predicted response and 

that determined through modal analysis methods is illus trated in Figure 

6 .5 .  The smooth line represents the theoretica l solution obtained by 

superposition of the first three modes . The computer s olutions for two­

and four-beam e lements are p lotted with the symbo l s  X and 6, 

respectively. 
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0.17,-------------------------, 

0.09 

0.0 

-0.09 --- MODAL SOLUTION 

X TWO BEAM ELEMENT MODEL 

� FOUR BEAM ELEMENT MODEL 

-0.17�------------------------' 
0.0 q.OOQE-Q3 8.0DOE-o3 O.Ol 0.02 0.02 

TU£ IN SECOIIJS 

Figure 6.5. Response a t  Point of Loading for a S imply Supported Beam. 
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6.3 Third Example Prob lem 

The third exampl e  probl em is an a t t empt to predic t the trans ient 

response of a concrete and s teel tower for which experimental  da ta were 

reported oy Takahashi, Gates, and Benuska (1 7) . This tower is diagram­

ma t ica l ly i l lus tra ted in Figure 6.6, and the mode l used in the computer 

analys is is i l lus trated in Figure 6 . 7 .  The data on the s tr uc t ura l prop­

er t ies of the tower were taken from that reported by Takahashi, Ga tes, 

and Benuska (17) . The node points used in modeling the s truc ture are 

indica ted by the circ led numera ls in Figure 6. 7 .  The sma l l  tower was 

s ubjec ted to a base motion accelerat ion that is a pseudo hal f  s ine wave 

pulse . A mult i-linear approximat ion of this pulse is i l l us trated in 

Figure 6. 8. The data res u l t ing from tes ts o f  this s truc ture indicate 

a f irs t mode freq uency of 125 cycles per second and a fourt h  mode fre­

q uency of 1, 300 cyc les per second (1 7) . 

To analyze the behavior of a system for which a speci fied base 

mot ion is prescribed, a transformation of the bas ic equations of motion 

is useful . Let x represent  the s tructure displacement vect or re lative 

to i ts foundation displacement, and let u represent the vector of foun­

da tion displacement .  The equations of mot ion may then be written as 

fol lows : 

(6 . 1) 

where the damping matrix C is  assumed to be assoc iated w i th relative 

mot ion only and u is  the founda tion accelerat ion vec tor . Transpos i tion 

of the base motion terms to the r ight-hand s ide of Equa tion 6 . 1  yie lds 

MX + ex + Kx = -�u . (6. 2) 
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5/8-INCH COVER PLATE ---­

'----....!-- 00 = 12. LIOO INCHES 

'-----+...,....-- I D = 10. 628 INCHES 

CAP RING -----.....irQim�ZllllZ� ------............ -----r-

0. 105-INCH-DIAMETER NELSON STUDS 

MICROCONCRETE 

COM PRESSION 

3/8-INCH WEB PLATES 

1-INCH STEEL PLATE 
II 
II 
II 
II 

39 3/8 I NCHESI 
51 3/8 INCHES 

12 INCHES 

SIDE ELEVATION · PARTIAL CUT-AWAY OF SHAFT 

...,.�·�------ 36 INCHES ---•--ll 
1-INCH TOP PLATE 5/8-INCH PLATE COVER 

1-INCH BOT TOM PLATE 

3/8-INCH WEB PLATE 

I I 

PLAN - PARTIAL CUT-AWAY OF BASE 

21.1 INCHES 

Figure 6.6. E l evat ion and Plan Views of Sma l l  Tower of Third 
Example Prob lem. 
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STRUCTURAL PROPERTIES OF SMALL TOlER 

CROSS- MOMENT MODULUS 
SECTIONAL OF OF UNIT 

AREA INERT! A ELASTICITY WEIGHT 

-®------i-
1J.375 INCHES 

(IN. I) ( IN. 4 ) (LB./IN.1) (LB./IN.) 

30.3 706 2.5 X 108 2.85 

+--<'-�-+-{ 5 1-----r-

30.3 706 2.5 X 101 2.85 

30.3 706 2.5 X 101 2.85 

30.3 706 2.5 X 101 2.85 

12 INCHES 32.0 �000 30 X 101 57.1 

/ 

Figure 6.7. Model for Small Tower of Third Example Problem. 
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From a compar ison of Equation 6.2 with Equation 3 . 1, it is apparent that 

the procedure presented in Section 3 may be used to solve Equation 6. 2 

i f  -Mu is substituted for f (t) . 

To model the behavior of the s tructure, the time increment for 

solution was chosen as 50 microseconds and s ix terms were used in the 

series representation of the matrix functions . The s tructure damping 

determined in exper iments was approximately 2% of critica l in a l l  modes . 

An approximate representation of this damping is provided by us ing 

c g = 4.75 x 10-6 seconds . 

Us ing these values as cons tants in Equation 3 .27, the maximum damping is 

2% of critical and the minimum damping is 0 . 2% of critica l in the fre­

q uency range of interest. 

The output data from the computer indicate a dominant frequency of 

1 24 cyc les per s econd, which is a very good agreement with the experi­

menta l data . The maximum relative displacement between the base and 

the top of the tower given by the exper imental data ( 1 7) is 0 . 0028 inch, 

and the maximum r e lative displacement predicted by the computer program 

is 0. 0024 inch. 



7. CONCLUSIONS AND RECOMMENDATIONS 

I t  has been shown in this inves tigation that the dynamic equations 

for a l inear, elas tic s truc ture may be writ ten as a set  o f  coup led firs t 

order differentia l equa tions with cons tant  coefficients . The ma trix 

exponentia l  so lution method was developed to show the c lose similarity 

be tween it and the so lution of a s ingle firs t order cons tant coef ficient 

dif ferentia l  equa t ion . 

The coefficients of the dynamic equa t ions were shown to be related 

to the s tiffness and inertia l  characteris tics of the s tr uc ture . That 

these coefficien ts may be determined by a process of linear superposition 

was demons tra ted . A technique for the incorporation of s truc tura l damp­

ing was a lso  presen ted . The s tiffness and inertia l  charac teris t ics of 

individual beam elements were derived by assuming a compatib le deforma­

tion pat tern for the beam and then determining the s train energy and 

kine tic energy in t he beam. This then defined the s tiffness and mas s  

matrices for the beam elemen t .  

A computer program based on the equa t ions derived in this document 

was deve loped, and the transient response of three s imp le s truc tures was 

determined through the use of this program. The trans ient responses 

determined in this manner were compared with previous ly reported ana lyt­

ica l  and experimenta l data . 

7.1 Conclusions 

The objec tive of this inves tigation was t o  develop a numerical  

solution for the transient response of linear, elas tic mechanica l 
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sys tems by using the matrix exponentia l me thod . With regard to this 

objective, the following conc lusions may be drawn . 

1. The matrix exponentia l  solution me thod was applied succes s­

ful ly to de termine the s truc tura l response of linear, elastic mechanica l 

sys tems. 

2. The computer program developed in this inves tigation provided 

accurate so lutions to the response of simple  mechanica l sys tems . 

3 .  This computer program was used and modified with lit t le diffi­

culty, requiring only tha t one subroutine be rewri t ten for each sys tem 

ana lyzed . 

7. 2 Recommendations 

A comparison was made in this inves tigation between computer solu­

tions and experimental data to evalua te the ease of program use and 

modification under rea lis tic circums tances . This effor t was severe ly 

limited by a lack of s uffic ien t experimenta l data . Therefore, it is 

recommended that a minor experimental program be ini t ia ted to obtain 

transient response data for linear, e las tic mechanica l s truc tures . 

I t  is we l l  known tha t shear deforma t ion effects can become quite 

impor tan t  as the ra tio of beam length to depth decreases . I t  is  there­

fore recommended tha t the beam e lement s tiffness and mass matrices be 

modif ied to inc lude the effec t of shear deformation . This could be 

accomp l ished by using the modified Timoshenko beam theory presented by 

Egle (18) . 

In view of the need to ana lyze mechanical sys tems with  up to 1, 000 

degrees of freedom, it is further recommended tha t  the sparse matrix 
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characteris tics of the trans i t ion matrix be fully utilized b y  rewriting 

the computer program in the computer language MATLAN (19). The MATLAN 

language is a flexible problem-oriented language designed to carry out 

matrix and scalar opera tions . S torage management is accomplished auto­

ma tically in that MATLAN may control bo th core and direc t access 

devices. Routines for sparse matrix operations are built into MATLAN. 
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APPENDIX A 

FLOW CHART FOR COMPUTER PROGRAM 

As discussed in Sec tion 5 of this document, a c omputer program was 

deve loped to implement solution of the trans ient  dynamics of p lane 

s truc tures composed of beam e lements of uni formly dis t r ibuted mass,  

weight less springs, and rigid masses. The logica l f low of this computer 

program is presented in f l ow-chart form in this appendix . The symbols 

used in the f low chart are i l lus trated and defined in F igure A . l,  and 

the f low chart is  presented in Figure A. 2. 
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OPERAT I ON FLOI CHAIT SYIIOL 

I NPUT L : 
P ROCESS : 
COND I T I ONAL CONTROL 

F 

I T ERAT I VE CONTROL < : > 
SUB ROUT I N E  I : \ 

t 
TERM I NAT I ON ( ) 
OFF-PAGE CONNECTOR ¢ 

F igure A . l .  Symbols Used in Flow Chart for Computer Program. 



F 

48 

I N I T I AL I ZE 

VAR I ABL ES 

ACCEPT GEN ERA L 

I N PUT DATA 

ARE ANY BEAMS USED 

I N  P ROBLEM? 

DO LOOP TO FORM ST I F FNESS 

AND MASS MAT R I CES 

FORM BEAM E L EMENT 

ST I F FN ESS MAT R I X 

P E R FORM COORDI N AT E  TRANSFORMAT I ON 

FOR BEAM EL EMENT ST I F FN E SS MAT R I X  

ADD E L EMENT ST I FFNESS MAT R I X TO 

ST RUCTURE ST I F FN ESS MATR I X  

FORM BEAM E L EMENT MASS MATR I X  

P E R FORM COORDI NATE TRANSFORMAT I ON FOR 

E L EMENT BEAM E L EMENT MASS MATR I X  

T 

Figure A . 2. F low Char t for Computer Program Deve loped to Implement 
Solut ion of Trans ient Dynamics of Plane Struc tures . 



c -

E 

4 9  

cp 
ADO ELEMENT MASS MATR I X 

TO STRUCTURE MASS MATR I X  

--
r READ DATA FO R WE I GHTL ESS SPRI NGS 

B LANK CARD 
T 

F 

ADO SPR I NG ST I FFNESS TO 

STRUCTURE ST I FFNESS -
... -. 

( READ DATA FOR R I G I D MASSES 

BLANK CARD 
T 

F 

ADD MASS TO STRUCTURE 

MASS MAT R I X 

� 
MOD I FY STRUCTURE ST I F FNESS AND 

'

"" 
MASS MATR I CES FOR BOUNDARY CON D I T I ON 

cb 
Figure A . 2  (continued) . 
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I NVERT MASS MATR I X  

POST MULT I PLY I NVERSE O F  MASS 

MAT R I X  BY ST I FFNESS MATR I X  

FORM COUPL I NG COE F F I C I ENT MAT R I X 

I NCLUD I NG DAMP I NG EF FECTS 

FORM MAT R I X EXPONENT I AL AND FORC I NG 

FUNCT I ON TRANS I T I ON MATR I X  

WR I TE OUT I N I T I AL 

D I SPLACEMENTS AND VELOC I T Y  

CALCULATE FORC I NG FUNCT I ON V ECTOR 

CALCULATE D I SPLACEMENTS AND 

VELOC I T I ES AT NEXT T I ME I NC REMENT 

HAS T I ME I NCREM ENT BETWEEN 

OUTPUT EXP I RED? 

WR I TE OUT D I SPLACEMENTS 

AND VELOC I T I ES 

I S  T I ME GREATER THAN 

I NPUT DATA T I M E  l i M I T  

Figure A . 2 (continued) . 



APPENDIX B 

PROGRAM LIMITATIONS 

The l imitat ions of the computer program devel oped to implement 

solution of the trans ien t dynamics of p lane s truc tures composed of beam 

elements of un iformly distributed mas s,  weight less springs, and r igid 

masses are as fol lows . 

Maximum number of node points : ten . 

Maximum number of beam elemen ts : nine . 

Maximum number of data points for plot ted output : one . 

The number of node points may be increased by changing the dimen-

s ion s ta tements in b lank common and common b l ock /MATEXP/ . If the num-

ber of node po ints is N, the common b locks would  appear as fol lows . 

COMMON TITLE ( l8) , NUMNP, NUMEL, XNP (N) , YNP (N) , IRX(N) , IRY(N) , 
1 IRT (N) , EE (N- 1) , EA(N- 1 ) ,  EEI (N- 1) , ESW(N- 1) , INP (N- 1 ) ,  JNP (N- 1) , 
2 R (6, 6) , ESM(6, 6) , ESG(6, 6) , SSG (3N, 3N) , EMM(6, 6) , EMG (6, 6) , 
3 SMG(3N, 3N) , SMSG (3N, 3N) , L, EL, E, ECA, EI, U, RG, CR, CG 

COMMON /MATEXP/ C (6N, 6N) , HP(6N, 6N) , A(6N, 6N) , QPT (6N, 6N) , X(6N) , 
1 F (3N) , Z {6N) , Y (6N) , XIC (6N) , TQP(6N) , ITMAX, KK, LL, MM, 
2 JJFLAG, NI, TIME, TMAX, TZERO, NE, T, I lZ, ICONTR, 
3 PLTINC, MATYES, ICCS, JFLAG, PLT, IONODE 

5 1  



APPENDIX C 

INPUT DATA FORMAT 

The type designation, contents, and format of the input data cards 

for the computer program developed to implement solution of transient 

dynamics of plane structures composed of beam elements of uniformly 

distributed mass, weightless springs, and rigid masses are given in 

Table C . l .  
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Card 
Type 

I 

II 

III 

IV 
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Tabl e  C . l .  Type, Contents, and Format o f  Input Da ta Cards 
for Computer Program 

Ti t le 

Number of node points 
Number of beam elements 

Conten ts 

Number of node for which x disp lacement is to be 
plotted ; zero if  no plot ted output is des ired 

Coefficient for damping propor tional to mass 
ma trices (sec . - 1) 

Coefficien t  for damping proport iona l to s ti ffness 
matrices (sec . )  

Ini t i a l  t ime for problem (sec . )  
Fina l time for prob l em (sec.)  
Time increment to be used in solution (sec . )  
Time increment between printed/plot ted output (sec . )  
Number o f  terms to be used in ser ies approxima tion 

of ma trix exponen tial  

Node number 
X coordinate of node ( in . )  
Y coordinate of node (in . )  
X res traint f lag 
Y res traint f lag 
Theta res traint f lag 

Beam number 
Young ' s  modulus (p . s . i . )  
Beam cross-sec t iona l area (in. 2) 
Beam moment of iner tia (in.4) 
Beam weight per uni t  of length ( lb . / in . )  
Node point number a t  f irs t end 
Node point number a t  oppos i te end 

Node point number a t  firs t end of weight less spr ing 
Node point number at oppos ite end of weight less 

spring 
Spring modulus associated with the X direc tion 

( lb . / in . )  
Spring modulus associa ted with the Y direc tion 

( lb . / in. ) 
Spr ing modulus associated wi th angular displacemen t 

( in. - lb . /rad ian) 

Forma t 

18A4 

IS 
IS 
IS 

El0 . 3  

El0 . 3  

FlO . O  
FlO . O  
F lO . O  
F lO . O  
I lO 

IS 
F lO . O  
F lO . O  
IS 
IS 
IS 

IS 
F lO . O  
F lO . O  
F lO.O 
F lO . O  
IS 
IS 

IS 
IS 

F lO.O 

F lO . O  

F lO.O 



Card 
Type 

a 
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Tab le C.l (cont inued) 

Contents 

Node point number for loca tion of rigid mas s  
Wei ght of rigid mass (lb . )  
Mass momen t o f  inert ia o f  rigid mass ( lb . / in.2) 

Forma t 

IS 
F lO.O 
F lO. O 

Node is res tra ined i f  res tra int f lag is not zero . The number of 
Type V cards is equa l to the number of node points given on card Type II . 

b The number of Type VI cards is equa l to the number o f  beam elements 
g iven on card Type II. I f  no beam elements are used, no Type VI cards 
appear in the input data . 

c Terminate entry of Type VII cards with a b lank card . 
d Terminate entry of Type VIII cards with a blank car d .  



APPENDIX D 

COMPUTER PROGRAM OUTPUT 

The computer program developed to implement solution of the 

trans ient dynamics of plane s tructures composed of beam elements of 

uniformly dis tributed mass, weightless springs, and rigid masses prints 

out a l l  input data . The e lement s t iffness and mass  ma trices, the assem­

b led coupl ing matrix (A) , and the series approximat ions to the matrix 

func t ions are printed . The major output of the program is the printout 

of the node point disp lacements and ve loc i t ies at each point in t ime, as 

spec ified on the input cards . The x displacement for the spec ified node 

po int is punched on cards for computer p lot t ing . 
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APPENDIX E 

COMPUTER PROGRAM LISTING 

The l is ting for the computer program deve loped to imp lement 

s olution o f  the trans ient dynamics o f  plane s truc tures composed of beam 

e lements o f  uni formly dis tributed mass ,  weight les s  springs , and rigid 

masses is given on the following pages of this appendix . 
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c 
c 
c 

c 
c 
c 

1 

2 

3 

5 

6 
c 
c 
c 

1 
1 001 

1 002 

1003 

1004 

1 005 
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MA IN PR CGM M 

CO"MON TJTL E C 11 1 t NUMNP , �UM!L t XNP C 10 i t YN P C 10 1 t 1R XC l O i t 1 RV C 1 0 1 ,  
1 I RT C1 0 1 t f E C 9 1 t EA C 9 1 t f E I C 9 1 , [ SW f q i , J NP C9 1 t JN P C9 1 t 
2 lt C 6 t  6 I t  ESM C6 t 6  I t  E SG U t 6 1  t !!� C30t 1 0 1  tEM .. C 6t 6 1 tF.MGC 6 t6 1 t 
3 S �GC30 t !O i t SM SG C 3 C t 3 0 1 t l t E L t � tECA t E i t U t Pr. t C R t CG 

CO .. MCN / .. AT E X P /  C C 6 0 t 60 1 tHP C 60 , 60 1 t AC 60 t 60 1 t O PT C60 t 60 1 tX C 60 1 t  
1 F C ! O i t Z C 60 1 t Y C 60 J , XI C C 60J ,TOP f 60 1 t i TMAX , KK t L L t MM t  
2 J J F LA G t Mi t T I �!� T�AX tT lERO , NE , T t l l l t i C ONTRt 
3 P LT I NC t  14AT YESt I C C !. ,  JFLAG , PL T ,  IONODE 

CO .. MCN /PLOT/ T PLCT C �� I t XPLOT C 99 1  
R EAL • � "X Y , M  .. I 

I N IT IAL I ZE A A R-VS 

D O  1 I• l t lO 
XNPC t 1 •0.0 
Y N P (  t I•OeO 
I RJC C  t i • O  
I lt Y C  I I • C  
I R TC J 1 • 0  
DO 2 I • 1 t 9  
E E C I  I •O eO 
f A  C I  J • O e O  
E E t c t i • CeO 
E S W C  I I •OeO 
I � P C I I •.C 
J N P C  I I•C 
00 3 I • l t6 
00 3 J• l t 6  
R C J , J I •C e O  
f S f'  I I , J J ao. 0 
F S G (  I , J  J•Oe 0 
E M f' f l , J  1 •0. 0 
E � G c t , J t=o. o 
DO 4 1 • 1 , 30 
F ( I I • C . O  
D O  4 J• 1 , 30 
S S G ( I , J I aO. 0 
S 14 G C t , J  1 •0• 0 
S M SG C  I t  J J •O . O  
D O  5 1 • 1 , 60 
00 5 Ja l t60 
C C J , J J • C . O  
HP U , J t ac.o 
A C t , J J a o . o  
OPTC  I , J  J =O. 0 
DO 6 1 ,. 1 ,60 
X f J J ao. c 
l ( 1  1 •0. c 
V C I I •O e O  
X J C C I I • C.o 
T O P (  I I • O e O  

R E A C  A N t  PR I NT INPUT DATA 

REAC f 5 t 1 001 1 C T I T LE C I 1 t l • l t l 8 1  
FCP�AT f 1 8A4 1 
WR ITE ( 6 , 1002 1 CT tTLE C t i , I •l t l 8 1 
�QPMA� f 1�t , 1 8A4 1 
� f AC C 5 , 1 003 J NUf'NPt NU.,E L , t CNODE 
FOPMAT ( 3 1 5  I 
WD JTf C � t 10 04 1 �UM�P 
FOP�AT ( lHOt 22�NU� BER OF NODE P O I NTS , t4 1  
W P JTE C 6 t l005 1 �UMF.L 
F O P��T C 1HOt 24�NUM eER CF 8E4M E LE f'��T S t l4 1  

10 
20 
so 
40 
41 
42 
43 
!JO 
!J1 
52 
53 
60 
'70 
eo 
90 

1 00 
1 1 0  
1 2 G  
1 30 
140 
1 50 
1 60 
no 
1 80 
1 90 
2 00 
2 1 0  
220 
230 
240 
2 50 
260 
2'70 
2 80 
290 
3 00 
3 10 
320 
330 
340 
350 
3 60 
:!'70 
380 
390 
��t OO 
410 
420 
430 
440 
450 
460 
4'70 
410 
490 
!J OO 
510 
5 20 
530 
540 
5�0 
! 60 
!70 
5 80 
590 
600 
610 



c 
c 
c 

c 
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WR ITE ( 6 , 10 06 1 tONDDE 
1 006 FO�MIT ( 1 H0 t !2HX DI S P LACEME NT PLCrTED F OR NODE t l 5 t  

R E ID ( 5 , 1001 1 C R , CG 
lOOT F C P�-T C 2E1 0 . 3 t 

W P !T £ C 6 t lO O e l CP , C G  
1 008 F OP� AT C 1H0, 30HA BSOL UTE DAMP ING COtF F tCENT • t E1 1e 4t 2X t 

l30�A ELAT !VE �AM P t NG C�E FF I CENT • ti 1 1 .4 1 
P E 'D (5 , 30�1 1 T 7F.RO , TMAX , T , PLT J NC t i TMAX 

3001 �O ��AT C 4FI Oe O t 5X , I 5 1  
W R tTf C 6 , 2�00 1 T Zf RO 

2000 F O P�AT ( 1HO t 2 3 H I N I TI A L  DROBLFM T I �E 2 , F l 0e4 1 
WP !TE C 6 t 2001 1 T� X 

2001 F O PMAT C 1�0, 2 1 HF INAL PRO !LE � Tt � E • , Fl0. 4 1 
WR J H C 6 , 200 2 1  T 

2002 F O P� AT ( 1�0 t 3� HT 1� f  J NCP E�E NT U SE O  � CP E XP C AT I • t F1 0e4 1 
W R tTE C 6 t 2 00 3 1 P LT INC 

2003 � O P�A� I 1 �0, 3 � HT I MC t NC P E ME NT �OP P R I NTED r.UTPUT • t F 1 0.4 1 
WR IT £ ( 6 , 2004 1 ITMAX 

2004 F Q P M AT C l �0 , 4 l HNU� BEP OF TE PMS IN �ER I ES APPPOXI MAT J ON • t l 3 1  
W P. tT E  ( t: , JOOt; I 

1 009 F O PMAT C 54HO NOC� NU� B ER X-CC�� D I NITf Y-COORD INATE X-PESTRAI NT , 

1010 
8 
1 01 1  

127 �Y-�E STRA I N T  THET A-RE STR A INT ) 
or 8 1 a l , NUM�P 
R E ,C C 5 , 1010 1 l t XN P C I I t Y�P I I I t i R X C I I t i RY I I I t iR TC ! I 
FOP�AT I I 5 , 2F l 0 . 0 , 3 1 5 1 
WR JTE C 6 , 10l l i i t XN P I I I t Y � P C I I t i R X I l l t i R Y ( I I t i� T( ! I  
F O PMA• C t H0, 5 X , J 5 , 10 X , F7 e 3 t 7X t �7 . ! t a X , Tl t 1 0X t l l t l4X t l l 1 

S T A P T  L COP TO DF.TER M I NE STRUCTURE P RO P�RT I F S  

I F  C �U�EL o E Ce 0 1  G O  T O  12 
WR ITF ( f: t 10 H  I 

1 01 2  F O F M,T C 1�0, 44 ��EA" NU"BER E L A ST I C  MO�UL US AR EA I NE P T I A , 
12 5�WF. I G �T/I NC H 1-NO�E J •NO�E t 

00 9 T a 1 t �U�fl 
P E .ID C 5 , 10l! l I t EE C I I , EA i t l t F E I C ! I t E SW ! I t , TN P ( I t , J N P C i t  

1013 FQP�.IT C ! S, 4 F 10.0 , 2 1 5 1 
9 �R I T E C f 9 l0 1 £ t i ,� E ! I I t E A C I I , EE i f i i t ES W ! I I t i NP C ! t , JN P ( J I  
1014 F OR � .IT C 4 X , t 4 , B X t E 1 2 o 4 t 3 X tF � o O , F 9. Z , F! Oo 2 t 4X t i �t 4X , J 3 1  

DO 1 1 L ., l , NUMF.l 
I a tN P C L I 

J a JN P ( U 
X 1  = XN P (  l l  
Y 1  = YN P ( I I  
X 2  = XN P C J t  

Y 2  "' YN P !  J l  
E L • SORT C C X2- X l 1 **2+ C Y�-Y1 1 **2 1 
� ., EE C U  
E C A  ,. U I L I 
E I  "' EE I C L I  
U • E SW C L I / ! f 6e 4 
R G  c S OPT ! f ! / E CA I 

C D E TE R � J NE S T I F FN E S S  M ATR I X 
c 

C A L L  HST I F  
W R  JTE C f: t 1 0 1 5  I 

1 01 5  F O P �AT C40H l E L E �E NT S T I FFNE S S  �ATP J X  IN MEMBE R AX I S J  
W R ITE ( 6 , 10 1 � 1 f C E S M C I I , J J i t  J Ja1 , 6  I t  I I • 1 t 61 

1 016 F O PMAT C lH , � C 5 X t F.1 0.4 1 1 
c 
C D£TEPM I �F. P. QT AT I ON TR AN SFORMAT t C N �ATP I X 
c 

C S .ING• C �2-X l i /E L  
S N.ING• ( Y2-Y l t / F. L 

1 0  R l l t l l  • C S A N G  
P C 1 t 2 1 • -S NANt; 

620 
no 
640 
650 
660 
6'70 
6T1 · 

6 80 
6 90 
691 
7 00  
7 1 0  
'720 
730 
740 
TSO 
760 
7TO 
7 80 
790 
e oo 
801 
8! 0 
8 20 
e 3o 
840 
8 50 
BM 
8TO 
f! 80 
890 
900 
910 
9 20 
930 
940 
9�0 
960 
970 
9 80 
990 

1 000 
1 0 1 0  
1 020 
1 030 
1 040 
1 050 
1 060 
1 0'70 
1 080 
1 090 
u oo 
1 1 1 0 
1 1 20 
1 1 !0 



c 

R U t l t  • SNANG 
R U t 2 1  • C� ANG 
ct n , s t  • 1. o 
.- C � t � l  • CSANG 
R C 4 t !5 1  • -SNANG 
R U , It t • SN 4NG 
P. U , !5 1  • CS ANG 
R C 6 , 6 1 •  1 .0 
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C T .- ANSFOPM S T I F FNESS MAT R I X  FR�M EL� �ENT TO STRUC�URE AXI S 
c 

c 

C A l l  MMUlTC R , E S� t fS G , 6 1 
CAlL MTMULC f S � , R , ES G , 6 1  

C AtC E l E� NT STI FFNE S S  MATR I X  T� STRUC TURE S TI FFNE S S  �ATR I X  
cc 

c 

n • !* I -2 
1 2  • 3* 1 -1 
I 3 • 3* 1 

J l  • :! * J  -2 
J 2  • ! * J  _, 
J 3  .. ! * J  
S � G C l l t l l l  • S! G C 11 t l 1 1 + esr,c 1 , 1 1  
S S G C I 1 , J2 1 • S SG C I 1 t 1 2 1 + ESG C 1 , 2 1 
S SG C I 1 t 13 1 a S S G C 1l t l 3 1  + E SG i l t ! l 
S S G I I 2 t 1 1 1 • S S G I J2 , I l l  + E SG C 2 t l l 
S SG C I 2 t 1 2 1  a S SG l !2 t i 2 1 + E SG C 2 t 2 1 
S S G C J 2 , !3 1  a SSGC J 2 , t � l  + E SG C 2 , 3 1  
S SG C l 3 t 11 1 a S S G C I 3 , 1 1 1  + e sr, t 3 , 1 t 
S S G C I ! t 1 2 1  g S S G l t3 , I 2 1  + E SG I 3 t 2 1 
S S G C I 3 t l 3 1 a SSG C I 3 , I 3 1 + E SG C 3 , ! 1 
S S G C J l , Jl l  = S SG C i l , J l l + � SG C 1 , 4 1  
S S G l t l , J2 1  = SS G C I 1 , J 2 1 + E S� C 1 , 5 1  
S S G C I 1 t J3 1  a SSG 1 I l , J 3 1 + � sr, c 1 , � :  
S S G C I 2 t J 1 1 • SSG I I 2 t J l l + E S� C 2 t 4 ,  
S S G C t 2 , J 2 1  = S S G C I2 , J 2 1  + � SG C Z , S I 

S S G l 1 2 t J3 t = S S G C I 2 , J 3 t  + E SG C 2 , E t 
S S G C I ! , J1 1  = S S G I J 3 , J l l  + E SG C 3 , 4 1  

S S G C I 3 , J2 1  ; S S G C J 3 , J 2 1  + E SG C 3 , S : 
S S G C I ! t J3 1  = SS G C J 3 , J 3 1 + E SG C 3 , E � 
S S G C J1 t l 1 1  = s s r: C J1 , t l l  + E SG C 4 , 1 '  
S S G C Jl t i 2 1  = SS G C Jl , t 2 1  + E SG C 4 , 2 1  
S S G I J1 , t3 1  = S S G C J l , J ! t  + E SG C 4 , ! 1 
S S G I J2 , ! 1 J = S S G C J2 , t l l  + E SG C S , t ,  
S S G I J2 t l 2 1 = S S G C J2 , 1 2 1  + e sr. c s , z :  
S S G C J2 t l3 1  = SS G C J, , t ! l + E SG I S , 3 '  
S S G C J3 , t l l = S S G C J3 , J 1 1  + E SG C 6 , 1 ,  
S S G C J 3 , I 2 1 = S S G C J3 , J 2 1  + E SG C 6 , 2 1 
S S G C J3 t 1 3 1 = S S G C J3 , I 3 1  + E SG C 6 , ! t  
S S G C Jl , J1 1  a S S G C Jl , J 1 1  + E SG C 4 , 4 •  
� S G C J1 t J2 1  • S SG C J1 , J2 1 + E S G C 4 r 5 .  

S S G C J1 , J3 1 a SS f. C J1 , J3 1  + E SG C 4 , t '  
S S G C J2 , Jl l = S SG I J2 , J 1 1 + E SG ( 5 , 4 1  

S S G C J 2 , J 2 1 a S S G C J2 , J 2 1  + e sr. c 5 , 5 1 
S S G C J 2 , J3 1  • S S G C J 2 , J3 1  + E SG C 5 , 6 1 
S S G C J! , Jl l  • SSG C J3 , J l l  + E SG C 6 ,4 , 
S S G C J3 , J2 1  • S SG I J3 , J 2 1  + E SG C 6 , s ;  
S SG C J3 , J3 1  a SSG I J! , J 3 1  + E SG C 6 , 6 ' 

C DETE � � � �E M A S S  �ATR I X  

c 

C A L L  f LMAS S 
W� IT F. C � t 10 17 1  

1 017 FO��AT C 35HOHEMF. NT MAS S  MAT�t X t : . MEMBER AXI S l  

WR tT E C � t 10 1 8 1 ( ( f MM C ! I , J J I , JJ•� , 6 I t  J J a 1 , 61  
1018 F C P�AT C l� t 6 1 5 X , E l 0 .4 1 1  

C T P -NSFO I' Jt  "4AS S �AT� J X  F R CM EL'= �F. NT TO STRUC "'IJRE A X J  S 

1 1�0 
1 UO 
1 1 60 
1 1 10 
1 1 80 
1 1 90 
1 200 
1 2 1 0  
1 220 
1 230 
1 240 
J 2 !50 
1 260 
1 21 0  
1 2 80 
1 290 
1 3 00 
1 310 
1 3 20 
1 3 30 
1?40 
1 3 50 
1 360 
1 !10 
1 380 
H 90 
1 400 
1 � 1 0  
1 420 
1 4 30 
1 440 · 
1 4 !50 
1460 
1 470 
1 480 
1 490 
1 500 
1 5 10 
1 5 20 
1 5 30 
: �40 
1 5 50 
1 560 
1 570 
1 5 80 
1 !190 
1 600 
1 6 10 
1 620 
1 l- 3 0  
1 640 
1 6 50 
1 660 
1670 
1 6 80 
1 6 90 
1 700 
1 710 
1 7 20 

2 740 
1 7!50 
1 760 
1 770 
1 780 
1790 
1 800 



CALL " �ULT C R t E�M ,E"G , 6 1 
c • LL �T�ULC E�M , � t E MG t 6 1  

60 

C A CO ELErot=N,. MAS S "'ATP tX T(! S T R lJC r' IJRE MA S S  MATR I X  
S MG C ! l t ll l • s�G C t l , t l l  + FMG f l t l l  
S MG C ! l , t 2 l • S � G C !l t l 2 1  + EMGC 1 t 2 1  
� M G C t l , t3 1 • S � G C l l t i 3 1  + EMG C 1 t ! l  
S M G C I 2 t l l l • S�GC I 2 , J l l + �M�C 2 , 1 1  
S M G f i 2 t Y 2 1  • S �G C I 2 t l 2 1  + EMG C 2 t 2 1  
S M G C ! 2 t !3 1 • S M G C I 2 t l 3 1  + E�G C 2 t 3 1  
S MG C I! t l 1 1  • S � G C ! 3 o l l l  + F�GC 3 , 1 1  
S �G C I 3 , t 2 1  • S � G C I 3 o l 2 1  + E MG C 3 , 2 1  
S MG C I ! t l 3 1 • S MG C I 3 , t 3 1  + E M� C 3 , ! 1  
S MG C ll t J1 1  • S � G C t l , J l l + E M G C 1 , � 1  

S MG l t l , J2 1  •·  S M G ( t l , J 2 1  + E Mt; C l , 5 1  
S MG ( l l t J3 1  = � � G C T l t J! I  + �MG C l , � l  
S M G C t 2 , J1 1  • S�G I J 2 , Jl l + E MG C 2 , � 1  
S N G C ! 2 , J2 1  a S � G C t 2 , J 2 1  + E MG I 2 t 5 1  
S MG C I 2 , J3 1 = S �G C I7. , J 3 1  + �MGC 2 , � 1  
S M G ( J ] , Jl l = S �G I ! 3 , J l l + � MG ( 3 , 4 1  
S M G C I 3 t J2 1 • S �G ( I3 , J 2 1 + EMGC 3 o 5 1  
S M G f t 3 , J3 1 • S �G I I3 r J 3 1  + E MG C 3 , 6 1  
S M G C Jl , I l l  a SHr. C Jl , t l l  • - � �G C 4 o l l  
S M G ( Jl t Y 2 1  a S �G C Jl r i 2 1  + E M G C 4 , 2 1  
S M G C Jl t l ! l = SMG C Jl r i ! I  + ��G C 4 , ! 1  
S � G C J 2 , I l l = S � G C J2 , t l l  + F. MG C 5 , 1 1  
S � G I J2 t l 2 1 • S MG C Ji t i 2 1  + � M G C 5 o 2 1  
S "' G C J2 t l 3 1  = S MG C J2 , I 3 1  + F. "'� C 5 , ! 1  
S M G C J l t i l l  a S � G C J3 , J l  + :MG C � t l l  
S M G I J3 , t 2 1  = S "'G C J! o l 2 + E M G ( 6 , 2 1  
S � G C J3 t l 3 1 = SMG C J3 , 1 !  + E Mr, ( � t ! l  
S M G C Jl , Jl l  a S"'G C J! , J l  + EMr. C 4 , 4 1  
S M G C J1 , J2 1  a S �G C J1 , J 2 + EMr. C 4 , � 1  
S MG C J1 , J3 1 = S �G C Jl , J !  + E MG C 4 , � 1  
S �G I J2 t J1 1  • SMr,( J2 , J l  + E MG ( � , 4 1  
� M G C J2 , J2 1  = S�G C J2 , J 2 + E MG C S , � I  
S M G C J2 , J! I  = S � G ( J2 , J 3 + 5 M G ( 5 , � 1  
S M G C J3 , J1 1  = S�G C J! , J 1 + 5 MG ( 6 ,� 1  
S N G C J3 , J2 1  = S�G C J3 , J 2 + � M G C 6 , 5 1  
S M G C J3 , J3 1  = S M G ( J3 , J 3 + E MG I 6 , 6 1  

1 1  C C IIT J � U F.  
C R E '� .tNC PP 1 11/ T  I N PUT D A T A  F O �  L I II[AR SPR I NG S  

1 2  R E A C  1 5 t 1 0! � 1  T NOC� , J NOrE t S X  · S Y  t STHF � A  
1 019 F C P�AT ( 2t 5 , 3 F 10.0 I 

t F C I �COE.E� . O I GO T O  1 3  
W P JTf ( � , 10 20 1  INOO E , JNCOE t SX , S Y , STHETA 

1 02 0  F O RMAT 1 31HO�CC�O S P P I N G S  C C � � EC T l NG NODE t l 5 t  RHAND NOD E t lS t  
1 l l��- D !PE CT I ON t E1 0 e4 t l l HY- � J RECTI ON , E 10 e 4 t  
2 8HP C�AT ! ON , f l 0 . 4 1  

I NCO E � � • T NODE - 2 
J NCOE � 3*J NCDF - 2 
S S G C I NOCE , t NCDE I S S G C J NODE , I NOCE I + S X  
S SG C I NOCE , J NODE I  = S S G l l NODE , J NOC� I - S X  
S S G C  JNO�E , J t-1C'D£ I "' S S G C JNODE , JNOOC I + S X  
S S G C JNOCE , I NC'DF. t a S S G C J NO�E , t NOCF I - S X  
� S G C l NO Cf.+l t i N�rE +l l = SSG C INOOE+l , J NOOE+ l l + S Y  
S S G C I NO CE+l , J NOCE +l l = SSG C I N�DE +l r J�OOE+ 1 1 - S Y  
S S G C JNO CE +l , J N0�� + 1 1  • SS� C JNOOE+l t JNOOE +2 1 + S Y  
S S G C JNO CE+t , I NI:!CE+l l = SSG C JNQO�+l , I NOOE+ 1 1 - S Y  
S S G C I NOCE+Z t ! NOCE+2 1 a SSG C I N�O� � , I�OCE + 2 1 + S THETA 
S S G C I Norr+� , JNOrE + 2 1  a s sr. c t �10E + � , JNDOE + 2 1  - ST��TA 
S S G C  JNO CE+2 , J NOCE +2 I ., s s r. c JN:I I'J E + , ,  J"'ODE • �- )  + S"'Ht::TA 
S S G (  JNO C F. +2 . t NCCE +2 I " SSG C JNOCE + .? . !NOI)E + 2 1  - S THE'!A 
GO TC 1 2  

1 3  C O H J N U F.  
c 
C � E'D � N C  PC t NT I N PUT OA T '  FC� LU� RE C M� S � � �  

1 4  P E �C C S , l OH I l �'O I:'E , � X V , '-' "' t  

1 8 1 0  
1 820 
1 830 
1 840 
1 8 '50 
1 860 
1 8 70 
1 8 80 
1 890 
1 900 
1 «11 0  
1 9 20 
1 930 
1 940 
1 9 50 
1 960 
1 9 70 
t UO 
1 990 
2 000 
2 0 1 0  
2 0 20 
2 030 
2040 
2 0 50 
2 060 
2 0 70 
2 0 80 
2 090 
2 1 00 
H lO 
2 1 20 
2 1 30 
2 1 40 
2 1 50 
2 1 60 
2 1 70 
2 1 80 
L l 90 
2 2 00 
2 2 ::. 0  
2 2 20 
2 2 30 
2 240 
a so 
2 2 60 
Z 2 61 
2 262 
2270 
2280 
22C:O 
2 ! 00 
2 ! 1 0  
2 3 20 
2 ! 30 
2 340 
2 ! 50 
2 3 60 
2 370 
2 3 80 
2 390 
2400 
24 ! 0  
2420 
4430 
2440 
zt� �o 



1021 FOP�AT C I 5t 2F l0e0 1 
t F C JNOD E e tO e O I GO TO 1 5  
WP JTE C e t l0 2 2 t  JNOO E t �X V ,MM t 

61 

1 022 F O PMAT C 28HOA DCED L UM PF C  MA S�E S �t N��E t l 5 t 1 2 HrRANSLAT tON • 
1 E:.0. 4 ,  8HitO'!'AT J Ci N t f l 0. 4 1  

14 X V  • M liV /! e t . 4  

M M J  • �� � ! /! 8l! e4 

l NCDE • �•J NODE - 2 
S M G C I NOrE , ! NQDE t • SM� C INODE t i NODE t + M XY 
S M G C INO tE+l , J NOCE+l l • SMG C t�DDE + l , t NODE+l l + M XV 
S M G ( I N�CE+2 t i NOCE +2 1 • SMG C t �ODE+ 2 , t NOCE+ 2 1  + 14 M! 
G O "' C  1 4  

1 5  C O t.T I I'\U �  
C tt40C ! FV STitUCTUAE ST I F FNESS A'IIO MASS MAT!t t C r S  FOil C ONST AUNTS 

c 

DC 1� I • J , NUMN P 
M l  "' 3* ! - 2 
142 .. 3* ! - 1 
143 a 3* 1 
J F ( t A X ( J I .NF . O I  CALL �OC J F V ( Ml l 
J F C t A V C t i . NE . O I  C A L L  MQC t F V C M2 1 
I F C I AT ( I I eN E e O I  CALL �OCI F V C 143 1  

1 6  C N iT I NUE 
W R  tTE C E t 10 2 3 1 

1 023 F O RMAT C 27H 1 S TP LCTURE S T I F FNE S S  N�TR J X t 
NC = 1 0  
CO 1 7  N C M  a l t 2 1 t l0 
WA ITF C � t 1024 1 C C SS G C J , J I , J•NC M t NL i t l •l t M3 1  

1 024 F O P14AT C 1H , t P\OE1 1 . 3 1  

J F ( M!-NC t 1 e , 1 e , 1 7  
17 NC = NC + 1 0  
1 8  N C  ., 10 

WR l"'E C E , l0 2 S  I 
1 02� F O PNAT C Z 2� 1 S TRL�"'UitE MASS MlTR i ll l  

D O  1 �  NC� = 1 , 2 1 , 1 0 
W A J"'E l t t l024 1 C C S � G I ! , J t , J•NC � , kr i , I •1 t M3 ) 
I F C M �-NC t 2 0 , 2 C t 1 9  

1 9  N C  = N C  + 1 0  
2 0  C O N'! J NU F  

C I N �EIIT S"!'RUCTUQ E MA S S  �HR t X  A ND I CI ST loltJLTI PL V AV 
C SUUCTUPF. S T I F F"IE SS MAT P I X  

CA LL � � �  f S �� . ��SG, M3 ,3 C I  

c 

c 

1 

C A L L  MMLLTC S � G , SS G , SMSG t 30 1  

C A L L  �T XP 
STCP 
E N  I: 

S U eRCUT t NE MOD I FY ( M )  
C O � MCN T tTL E C 1 8 ) , NUMNP, NUME L , XNP C lO i t YN P C 10 1 t l R X ( l 0 t t l PV ( l0 1 t  

1 l �T C 1 0 t , � E I 9 1 t EA C 9 J , F E ! C 9 1 , � SW C 9 1 , t NP C � ) , JN P I 9 1 t 
2 A C 6, 6 1 t E SM C 6 t 6 1 t E SG C 6 , 6 1 t S �G ( g o , 3 0 t , E M �C 6 t 6 t , E MG C 6 , 6 t ,  
3 S "G ( ! 0 , 30 t . SM S G C ! C , 3 0 1 t L t EL d.:  t E CA tE i t ll t RG 

1>.1 • 3*kt!-..NP 
D O  1 ta 1 , N  
S S G C 1 , M I  • 0. 0 
S S G ( W ,  I J • 0 . 0  
S III G ( t , M t • 0. 0 
S M G C , , t l • O e O  
C O �T I NU E  
S S G C ,.. , M t  • 1 . 0  
SMG C "' • "' I  • 1 . 0  
P E TUDN 
r.�c 

2460 
24TO 
2410 
2490 
2491 

2 5 00 
2 5 1 0  
2 !20 
2 53 0  
2 540 
2 550 
2 �70 
2 5 80 
2 590 
2600 
2 6 1 0  
2620 
2 6 3 0  
2640 
2650 
2l:60 
2 670 
26 80 
2690 
0:7 00 
2710 
2720 
2 730 
27'0 
2 750 
2760 
2770 
2780 
2790 
2 8 00 
2 81 0  
2 8 20 
2 8 � 0  
ze�to 
2 8 50 
2 8 60 
2f70 
2 8 8 0  
2 890 
2 � 00  
2910 

MODIF 10 
fiiOCtF 20 
MOD t F  21 

MOCJ F 22 
MOC I F  23 
MOCI F 30 
MOC ' F  ItO 
MODtF 50 
'40CtF 60 
14C'IC t F  TO 
MOD J F  80 
MC'C!.F 90 
14001 1 00 
MQCJ 1 1 0 
IICCI 120 
Mt'Dt 130 
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sue•cuT tNE EL 5T t �  
CO,�CN T I�l E t 1 8 t , NUMNP, �UMEl t XNP t1� 1 t VN P i lO i t iR X C 10 1 t l �V C 1 0 1 t  

1 t RT t l O i t EE C 9 1 t E l C 9 1 t F F.t t 9 1 t f SW I 9 1 t t NP t 9 1 t JN P t 9 1 t 
2 A C 6t 6 1 t ES� C6 t 6 1 t E SG C 6 t 6 1 t SSr. t 30, 3 0 t , F M �C 6 t 6 1 t E �G C 6 t6 1 t  
3 S �G t ! O t 30 I , SM S� C 3 C , 3 0 1 t l t E L ti tECA ,E t , u , � ,CR , CG 

DO 1 I • 1 t 6  
0 0  1 J • lt f: 

1 E S Mc t , J I • o. o 
E SM C l t l l  • EC A*E/EL 
E S M U , �  I • -F S�' U t l l 
E S M C 4 t 1 t • -F Siol l 1 t l l 
E S MI 4 t� t • i: SM U  , 1 1 
E S MC 2 , 2 t • 1 2 e *E* E I /EL* *3 
E S MC S , S t • E �M C 2 t 2 1  
F S M C 2 t 5 1 .- E S "' C 2 , 2 1  
E SM C 5 , 2 1 a- E S " I 2 t 2 1 
E S MC 2 , 3 1 • 6 . •E•E t / C E L*EL I 
E S MC 2 t 6 1 • r s u c 2 , ! 1  
E S M C ! t 2 t D E � M C 2 t ! l  
E S MC 6 , 2 1 • E S"' f 2 , 3 1  
E S M C ! t 5 1 •- E S "' f 2 t � l 
E S M C 5 , 3 1 a- E S ioi C 2 , :! t  
E S M C 5 t f:  I •- E S ioi C 2 t 3 1  
E S MC 6 , !  I •- E S 114 ( 2 , 3 1  
E � M C 3 , 3 1 D E � M C 2 t 2 1 *E L• ELI3 . 
E S � C � t E I • � S 114 C ! , 3 1 
E S HC ! t 6 1  a E S H C 3 t 3 1 /2 e  
E S M C 6 , 3 1 a f S "4 C 3 t f: l  
P E T  URN 
F N D  

S U !�OUT INE E LYAS S 
C O ,MCN 1 tTL f C l 8 1 , �UMN P , �UMEL , X NP ( l0 1 t � P ( l O I , JR X C 1 0 1 t l �V C 1 0 1 t  

1 I PT C 1 0 t , r.E C � I , EA t 9 1 , E E I C q t , E S WC 9 1 t l NP C 9 1 , JNP C 9 1 ,  
2 D f 6t 6 1 t E SM C6 , 6 1 t ESG C 6 , 6 1 t � �r, ( 3 0 , 3 0 1 , E114 Mf f: t 6 1 t F MG C 6 , 6 1 t  
3 S ltG «:! O t  30 ) ,  S"4 S G t 3 C , 3 0 1 t l t E L , E  , EtA , E I , u, PG ,c� , CG 

DO 1 Y "' 1 , 6  
DO 1 J • l t 6  

1 E M MC I , J I " 0. 0  
E MM C 1 , 1 1 = U* EL /3 
E M M C 4 t 4 1 a f Miol f 1 t l l  

E loi MC l t 4 1  " F. "' M I 1 t 1 1 12 e  
E M M f 4 t 1 1 a E M!o1 C l t 4 1  
E M M C 2 t 2 1 a U* E L• C 13 e / 3� .  + f f R G IEL 1 * *2 • 1 * 6 e /5e I 
E M M C 5 , 5 1 " EMM ( 2 , 2 1  
E M M C 2 t 5 1 a U• E L* C �. I7Ce - C C R G / E L 1 • •2 . 1 •6 . 1�. I 
E M M C 5 t 2 I a F. �M C 2 t 5 1 
E M MC 2 , ! 1 a U*EL• C ! 1 . 1 2 1 C.•EL + C C Ru i EL I * *2 • 1 *F L/ lO . t 
E M M C 3 t 2 1 g f. �N C 2 t 3 1 
E II' M C 5 t 6 1 "' -E ioi , C 2 t 3 1 
EM M C 6 , 5 1 c - F M N C 2 t 3 1 
E MMC 2 t 6 1 a U•E L• C -! � e *F l/420e + C C RG / EL I * *2 1 * EL /1 0. 1 
E loi M C 6 , ? 1 a C M!ol ( 2 , � 1 

E M MC ! , 3 1 a U*E l• C � L *E l / 1 05 . + C C P G /F. L I ** Z I *F. L * tl * Z e l l 5 e l 
E MMC 6 , 6 1 • F M M C 3 t � l 

f M MC 3 t 5 1 c - F. � "' I 2 , 6 t  
E M �·H 5 , � 1 "' - f M M C2 t 6 1 
E M MC 3 , 6 t a U*E L • C -E L*EL / 14 0 .  - C C R G / E L I **2 • *E L *E L/ 30e l 
E MMC 6 t 3 1 s E �M C 3 t 6 1 
RETU RN 
UD 

E LST! 10 
ELSTJ 20 
! I.ST! 21 
E L ST! 22 
E LST I 2 3  

E L STI 3 0  
E L STJ 40 
E L ST !  50 
E LSTI 60 
E LSTY TO 
IE L ST I  80 
e un 90 
E L ST 1 00 
E L ST 1 10 
HST 1 20 
F LST 1 30 
E L ST l itO 
EL �T 1 50 
HST 1 60 
ELST 1 70 
f L ST 1 80 
e L ST 1 90 
E L ST 2 00 
F. L ST 2 10 

E LST 2 20 
H ST 2 30 
F. L S'P 2�0 

E L MAS 10 
E lMAS 20 

F. L MAS 21 
E LMAS 22 
E L MAS 23 

E LMAS 30 
� LMAS 40 
F. LMAS !SO 
E LMAS 60 
E L MAS 70 
E LMAS 80 
� L MAS 90 
ELMA 1 00 
E L MA 1 10 
HMA 1 20 
f l "4A 1 30 
E L MA 1 40 
F. LMA 1 !SO 
E L !otl 1 60 
E L MA 170 
FllotA 1 80 
E L MA 1 90 
E LM .. 2 00 
E L MA 2 1 0  
E L"'A 2 20 
HMA 2 30 
'=LMl 240 
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SU !ROUT t�E M I V  C A , U , N� , � � M t V 1 0  
c �AT� J X  INVE-S tCN ev GAUS S•JOROA� li'E TttOD .. ! V  2 0  

D I �E NS I CN A C � , M J , U C M , M J  M ! V 30 
DC 1 1 • 1 t M  -. y y  40 
00 1 J• l · "  "4 I V  !0 
U I ! , J J • C. 14 I Y  60 
I F C i e E O e J J  U C i t J I •l e O  M t Y  70 

1 C O �T Jt\U E "' I V  80 
E P S • C e O COOO O l  "4 1 V  90 
DO 1 1  T •1 ,NM .. !V 1 00 
K• 1 M t V  1 10 
! F U•NM I2 t6 t 2  " I V  1 20 

2 I F C A C i t i i•F PS I ! t4 t6 "4 1 V  1 30 

3 I F C•A ( I , I J• E P S I� t 4 t 6  M t V  11.0 

4 K ., K+ l "1 1 V  1 50 

DO 5 J•1 , NM "'' t V  1 � 0  
U C I , J I • � C i t J I +U CK t J I  ..- t v 1 70 

5 A C J , J I • A C t , J I +A C K , J I � ! V  l P.O 
GO TO 2 "' I V  190 

6 D J 'VaA C i t l l  loA ! V  z oo 
f)C 7 J• l 9 NM M ! V  210 

U C t , J J = � C I , J J /O IV M t V 220 

7 A C J , J I • A I ! , J J /C I V  14 ! V  2'30 

D O  1 1  llol l'= l t N., M I V  240 

D E lT•A C fl ll , l  I M J V 250 

I F C A !S C CEL� I - E PS i ll t l l t B  M t V  260 

8 J F ( I4 ll'• l  1 9 t 1 l t 9 M t V  270 

9 DO 1 0  J • l , N M  .. I V 2SO 

U ( fiM , J I •U I "'� • J I -U C I , J J • CELT M t V  290 

1 0  A ( ll'lloi , J I =A ( M M , J I -A C J , J I * CELT M tV 3 00 

1 1  C Of\T INUE "' I V  3 1 0  
D O  12 I •l t N M  lol l Y  320 
DO 1 2  J • l t N fi4  14 1 V  3 30 

1 2  A C I , J J a \: C i , J I  14 1 V 340 

RE TURN M ! V  350 

ENC � t V 3 1-0 

S U !POUT INE Mfi4ULT u , e , c , N t  14MULT 1 0  
O l li'E � S I CN A I N t N I , B C N , N i t C C N , N I  "'MULT 20 

c MATP ! X  li'ULT ! P L I CAT I O N  �CTS "4MULT 30 
1)0 1 t • l t N  "4MUL"' 40 
DO 1 J • l t  N 14MUl"' 50 

c ( t ' J )  .. o. 0 MMULT 60 
DO 1 K • 1 t N "4MlJlT 70 

1 C c t , J J • Cl t , J J  + A C I , IC I *fi ( K , J J  MMULT 80 

0 0  2 t • 1 t N  MMUL! 90 
DC! 2 J., l , N  14MUL 1 00 

2 flf t , J I  • C I I t J I  MMUL 1 10 

R ETUPN � MUL 1 20 

f N C  14MUL 1 30 

S U !ROUT 1Nf- 14TMUL C A , B , C , N I  MT IIiiUL 1 0  

O t i'F. � S J CN A C N , N I , B C N , N i t C C N , N J  14nUL 20 

c T PAhSP CSE �ULT I P L I CAT I ON J4TMUL 30 

Q[j 1 t • 1 ,  N MTfiiUL 40 

00 1 J • l , N  MT ,.Ul 50 

r. 1 1  ' J , • o. 0 ,_TMUL 60 

DCI 1 K • 1 t N  �o�• II.UL 70 

1 C C t ,  J I • CC t ,  J I + A C I ,I< I * B C J , I( J  14T II'UL 80 

RETUPN 14TMUL 90 

E N C  ,...,. .,u 1 00 



c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

2 

3 
' 

c 

6 

T 
c 
c 
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SU!Jt CUT INF. MT X P  
C C .,MCN TITL E C 1 8 1 , NUMN P , �UMF.L t XNP C 1 0 i t YNP C 10 1 t iR XC 1 0 1 e l RY C 1 0 1 •  

1 I RT C l O J , EE C 9 1 t EA C 9 1 ,E E t C 9 1 tf S W C 9 1 e t NP C � I t JNP C 9 1 , 
2 P C6 , 6 1 t ESM C6 t 6 1 e ESG C 6 t6 1 t S�G C 3 0 , 30 t , E14.,( f: , 6 1 r E M G C 6 t 6 1 e  
3 S .,G C ! O e 30 1 e SMSG C 3 C t 3 0 1 t L r E L t £ e ECA , E J , U , RG ,C R ,CG 

C Dt'MQN /MAT fXPI C 1 6 0 , 60 I tHP C 60 e6C I ,  A C .60 t60 J ,OP1' ( 60 , 60 I e X  1 60 I ,  

1 F ( 30 1 t Z C 6 0 J e V C 60 1 t X ! E C � O t ,TOP C 60 1 t i T14AX , KK t L L t MM t  
2 JJFLA G t  NJ t 'T I ME ,  TM. U ,  T 7ERD ,�!E , T, I l l ,  J CONTR, 
3 P L  T t NC ,  MAT YE S ,  I C C  !I, J F LAG t P L  T ,  IONODE 

COt'MCN /PLOT/ TPLOT C 9 9 1 e XP L OT C 9 9 1  

.. TXP 1 0  
M•XP 20 
�TXP 21 
NTXP 22 
MTXP 23 
MTXP 30 
MTXP 31 
MTXP 32 
14TX P  33 
MTXP 40 
MTXP !SO 
MTXP 60 

T H I S  PRCGRA �  CALCULATE� THf SO LUT IO N QF A �AT PI X OF F I RST M!XP 70 
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VAPUI!LE (T I F P. CM T ZE RO THIIOIJGH T"'A X 

CCt'PUTE S M�TR I C ES C • E XP C A *T I A�t 
�p • C C• I I*A t NV£ RSF. 

S O LUT IO� X C N*T I • C *X C C N-l i *T I +HP•Z C C N-l t *T I 

OUTPUT FRCM THE PROGRA� I S  PR I NTED AT I NTEP VA LS PLT I �C . 
T He PROGRAM USES SUBROUTIN E S  D I Sr�R AND OUTPUT 

N I •O ON l·ST PASSe 

N I •O 
NE • 6* �UMN P 
"43 • 3*�U "'N P  
DO 2 I • 1 , M3 
J • r • 11113 
A C I ,  J I • 1. 0 
DO 3 I • J , M:; 
I M! • I + M 3 
A C I � 3 t i ,3 1  a •CJt 
DQ � J • l t  M! 
J J1113 • J • "43 

S ET TO 1 ON 1-ST CALL OF OUTPU'Te 

A I IM! , J �! t  c A C I M3 , JM3 1 • CG* S�SG C i t J I  
A C IM! , J I  • - � M S G C t , J t  
J J FUG• C  
CA LCULAT !CN O F  IIIIATR I X  f XPONE�T I Al! C AND HP 
DO 6 I • l t NF  
C f ! t l l a l e  
D O  1 ! • 1 , �  
H P  ( J  t t t  •T 

DO 9 I • l t NE 
00 9 J •l t NE 
OP T C I , J I •C C I , J I  

MT X P  1 00 
MTXP 1 10 
M•XP 1 20 
MTXP 1 30 
14TXP 1�0 
MTXP 1 50 
MTXP ! 60 
MTXP 170 
"'T XP 180 
MTXP 1�0 
MT XP 200 
"'TXP 2 10 
MT XP 2 20 
MTXP 3 50 
MTXP 3 60 
MTXP 380 
MTXP 410 
MTXP 400 
"lTXP 420 
14�XP 510 
MTXP 5 20 
"'TXP 530 
MTXP 540 
MTXP 5 50 
14T XP !60 
MTXP 570 
14TXP 5 80 
14T XP 590 
MTXP 600 
MTXP 6 1 0  
M T X P  6 30 
MTXP 640 
!14T XP � 50 
MTXP 660 
14TXP �70 
M'T XP 6 (10 
MTX P  f: 90 
MTXP 110 

9 

c 
C NOW FOPM THE .... TD J X  E XPONENT IAL S C •E X P C � *T !  AND H P• C C C•I I *A I NV ER S E ) 

MTXP 720 
NTXP 730 
14TXP 740 
M'TXP 750 
MTXP 760 
14'TXP 710 
14TXP 780 
MTXP 790 
MTXP 800 
MTXP 8 1 0  
MT XP 8 20 
MTXP 8!0 
MTXP 1140 
MTXP !50 

c 

c 
1 0  

c 
I( LI"•ICL 
A l l•T/A l  
A L •AL+ l eO 
• A LL L•T /AL 



c 

C· 
c 

DO 1 1  J •1 tNF 
T OP C J t • Oe O 
Dfl 1 1  U•1 , NE 

11 T O P C J I •TOPC J t +QPT C t , KX I *A C K X, J t  

c 
00 U J • l ,NE 

12 OP T C t , J t•TO P C J t •A LL 
c 
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C O P T • �AT � t x  TERM I N  S E�I E S  APPROX. • C C A*T t ••K t � FACTOR I AL 

c 

c 

13 
14 
1 5  

1 6  
1 1  
1 8  

00 l 3  I • 1 tNF. 
00 13 J •l ,N E  
C C I , J t •C ( J , J t +QPT C I , J t  
t F C IT�A ,-KL t 1 7 , 17 t 1 5 
00 1 6  I • l t N E  
D O  1 E  J • 1 ,NF. 
HP C t , J t •HPC t , J t +O PT C J , J I•TALL L 

C ONT lNUf 
COT\T I�U f 

C C C I , J t  I S  THE MAT R I X  EX PON�NT I A L  C•EXP C A•T t 
C A N t  �P( J , J t  ! S  THE C C C- t t• A  tNVER SE t MATR ! X  
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c 
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20 
c 
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21 

c 
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c 
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23 
24 
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26 

1 F C J J F L AG t 24 , 25 ,24 
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c 

27 
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29 
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X f 1 1 •Y ( ! l  
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c 
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c 
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P L Ta PLT+� 
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30 C A L L  CUTPUT 
PLl•Oe 

31 I F (T J �E-TMA X I 2 2 r 32 r 32 
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1 002 F O PiolAT ( ! 2 1  

I F C I C�O CE.FO. O t  GO TO 4 C  
W P tT E  ( 1 , 1003 1 ( f TPLOTC I J t XPLOT f t l l t l •l t N f l 
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40 P E TURN 

E � C  

MTXP 160 
14TXP 810 
MTXP 880 
.. TXP 890 
MTXP 900 
MTXP 910 
MTXP 920 
14TXP 930 
NTXP 940 
14TXP 9!50 
MTXP 960 
MTXP 970 
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NTXP 990 
'ITX 1 000 
MT X 1 010 
MT)( •1 020 
N'!X 1 030 
"'TX 1 040 
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MTX 1 060 
MT X 1 070 
MTX 1 080 
14TX 1 090 
"4TX 1 1 00 
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MTX 1 1 20 
MTX 1 1 30 
14TX 1 1 40 
MT X  1 1 50 
MT X 1 1 60 
MT X 1 1 70 
MTX 1 1 130 
MT X 1 1 90 
MTX 1 200 
MTX 1 2 10 
MTX 1 2 20 
MTX 1 230 
MTX 1 240 
MTX 1 2 50 
MTX 1 260 
"'!X 1 270 
MTX 1 2 80 
MTX 1 290 
MT X 1 3 00 
MTX 1 3 10 
MT X  1 3 20 
MTX 1 330 
MTX 1 !40 
MTX 1 3 50 
MTX 1 360 
MTX 1 370 
MTX 1 3 80 
MTX 1 ! �0 
MT)C 1�00 
MT X 1410 
MTX 1420 
MTX 1�30 
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MTX 1 480 
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MTX 1 !500 

14TX 1 !5 10 
MTX 1 !5 10 

t4TX ! 540 
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c 
c 

c 
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S U !R OUT tNE �UT PUT 
C O,�CN T JTlE C 18 1 t NUMN P , �UMF.Lt XNP C lO i t YN P C 10 1 t iR X C 10 J , J RV C 1 0 1 t  

1 ! PT C 1 0 1 t E E C 9 1 t E A C 9 1 t F. f t C 9 1 ,F S W f � t , t NP f9 l t JNP C 9 1 , 
2 P C 6t 6 1 t F.S� C6 t 6 ) , E SG C 6 , f l t ! �G C 3 0 , 30 ) , F. M �C 6 t 6 1 , E MG ( 6 , 6 1 t  
3 S �G C? O t 30 t , S� S G C ! C t 3 0 1 t L t F. L tf tECA t E f t U t RG ,C R , CG 

C O�MCN /�AT E X P /  C C 6 0 t 6 0 t ,HP C 60 ,6C I , A C 60 , 60t , O PT C60 t60 t , X C 60 t ,  
1 F C ! O t , l C 6 0 t , V C 60 t , X t C C 6t t ,T�O C 60 1 t Y TMAX , KK , L L t MM ,  
2 J J F L A G ,  1\ t t T J MF. ,  Til'/ X t T l'! RO , NE ,  T, !1 7. ,  I C C'NTR ,  
3 PL '"' t lllt: , f'.-TVES , I C C � ,  JFUG , P LT ,  tONODE 

C O �MCN /PLOT/ TPL r.T f 99 t , XPLOT ( C q J
· 
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1 001 F O P�n C 2Hl A / UH t lP lOE 1 1 . 3 ) )  
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1 002 
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1 003 

N C • l C  
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F O P�AT C 2HOC / C l� t 1 P l OE 1 l. 3 1 1  
I F CNE-�C I 5 , � , -4  
N C •NC+ l C  

N C •l C  
DO 6 I\C III= l t 5 ! t 1 0 
W R !TE (6 ,100 �  I ( ( H P  ( I ,  J I , Ja NCM , I\IC J ,  I •1 tNE ) 
F O P�AT C ! HC HD / ( 1H , 1 P10E1 1 . ! 1 1 
! F C NE-N C I 7 , 7 , 6  

6 
c 

N C •NC+ l C  

7 W R I T E  ( 6 , 1004 1 Tt "E 
1 00� F O RMAT ( 1  .. 1, 6HT I Mf = ,  1 PE 10. 3 t l X  , 2 9:1X-D ! S  PLAC EMEN T  Y-OI S PLACEMENT t 

l 6 X t8 �ROTATJ ON , ,X , l OHX-V ELOC I TY , 5 X � 1 0HY-V5LOC t TV ,� X , 1 0�T-VELOC tT V I  
0 0  8 t • 1 t NUMNP 
K6 a NF /2 + 3 • 1  
K 5  a IC 6  - 1  

"Kit .. 1< 5  - 1 
K 3  10 3 • t  

1( 2  .. 1< 3  - 1 
IC 1 ., IC2 - 1 
J F C IONO CE. E O. O I  GO TO 8 
· P LCT C N I I  = T J li'E 
X P LOT C N I I  = X C 3• t ONODF. - 2 t  

8 W P tTE C 6 , 10 0� l l t X I K 1 J , X C I(2 f t X C K3 ; , X ( IC� t , X f l(5 l t X C K6 1  
1 0� F O PHAT f lH t l l �NODE NUM fER , I 5 t 6 f 5 � t l PE 1 0. 3 1 1 

�� T ,. II: !  + ! 
9 II. F TUPII: 

E � C  

OUTPU 1 0  
OUTPU �0 
O UTPU 21 
OUTPU 22 
OUTPU 23 
OUTPU 30 
OUTPU 31 
OUTPU 32 
OUTPU 33 
OUTPU 40 
OUTPU 50 
OUTPU 60 
OUTPU 70 
OUTPU 80 
OUTPU 90 
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OUTP 1�0 
OUTP 1 50 
llUTP 1 60 
OUTP 170 
OUTP 1 80 
OUTP 1 90 
OUTP 200 
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OUTP 2�0 
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OUTP zoo 
OUTP 3 00 
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OUTP 320 
OUTP 321 
OUTP 330 
OUTP !40> 
OUTP 3 50 
OUTP 360 
OUTP 370 
OUTP 380 
OUTP 390 

OUTP � 00 
OUTP lt! O 
OUTP 420 
OUTP �30 
OUTP �8� 
OUTP �90 
C'IUTP 5 00 
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� U !R CUT JNf D J STR8 

C O�MCN T JTL E C 1 8 1 r �UMNP, �UMF. L r XNP C 1 0 1 r VN P 1 10 1 r iR X C 10 1 r J RV I 1 0 1 t  
1 I PT 1 1 0 1 r E E C 9 1 r EA C 9 1 r EE I C 9 t r ESW C 9 1 r i NP C � t , J� P C 9 1 r  
2 P C 6, 6 1 r E SM I � r 6 1 r ESG 1 6 r 6 1 r S SG C30 r 30 t , fM �( 6 , 6 1 rE �r: C 6 , 6 t ,  
.3 S �GC 3 0 r 30 l r S14 SG I 3 C , 3 0 1  t l t E L r E  rECA , !! I  , u, RG ,C R , CG 

C O ��CN /�AT E X P /  C l6 0 t 60 1 r H P I 60 , 60I , A C 60 , 6 0 1 t O PT ( 6 0 r �O t , X I 6 0 1 t 
1 F C : O t , Z C 6 0 1 r Y C 60 1 r X J C C E C i tTCP C 601 t i TM A X , K� t L L t MM , 
2 J JF L A G t  N I ,  T I ME , Tf'U , T lE RO r NEr T, !1 z ,  I C ONT R r  
3 P LT I �C , ,..ATVES , I C C S , JFLA G r PLT r  IONODE 

M3 • ! * �UMNP 
FT • l e - l O. * I TI ME + T /2. 1 
J F ( T J � E . GT. O. l l  FT = o. c 
F l  • !OOO . • F T  
F 2  ., 4000e*FT 
F 3  • -2 000. * F T  
F 1 4 1  .. Fl 
F ( 7 J  ., F2 
F 1 10 I = F3 
on 1 1 .. 1, M! 
J • l + l43 
Z C J I ., o . o  
DO 1 IC • l , M! 

1 Z C J I • Z f J I + S IIIG U , K I • F ( K I 
R FTUPN 
E � t  

D I STP 1 0  
D I STR 20 
O I  STP. 21 
O J STR 22 
D t sTR 23 
O l STR 30 
D I STR 31 
D I STR 32 
O l STD ll3 
D ! STR 40 
D I STD 50 
D I ST� 60 
D J STR 70 
[I J ST R  80 
D I STP 90 
D I ST 1 00 
D l ST 1 1 0  
0 1 �  1 20 
D I ST 130 
O I ST 140 
D I ST 1 51) 
t' I ST 1 60 
D I ST 170 
O I S'r 1 80 
D I ST 1 �0 
D I ST 200 
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