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ABSTRACT

This investigation was undertaken to develop a numerical solution
for the transient response of linear, elastic structures based on the
matrix exponential solution for first order, linear, constant coeffi-
cient differential equations. The investigation was prompted by the
need for an economical technique that can be used to analyze multi-
degree of freedom systems exemplified by piping and structural compo-
nents associated with nuclear power plants.

A mathematical model characterizing the behavior of linear, elastic
structures was developed by using state variables of displacement and
velocity. The structure consists of beam elements of uniformly distrib-
uted mass, weightless springs, and rigid masses. The stiffness and mass
matrices for the beam elements and techniques for treating boundary con-
ditions were investigated. A digital computer program was written to
perform the transient solution. The transient response was determined
for three simple structures by using the computer program, and the
results obtained agree favorably with previously reported analytical and

experimental data.
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1. INTRODUCTION

Several areas in structural design confronting the nuclear
industry can generally be classified as transient or time varying.
Examples of these are aseismic design, emergency action such as blow-
down, or accidents involving the shipment of radioactive material.
Designers must consider the circumstances and consequences of the situa-
tion and take appropriate steps to insure safe operation of the system
involved. 1In doing so, the designer faces several difficulties: the
time available to obtain a solution is limited, the problems can gener-
ally be classified as complex, and the assumptions made to obtain a
model that can be readily analyzed may greatly affect the answers
obtained. Fortunately, large and fast digital computers have become
widely available, and this availability results in some reduction of
the difficulties caused by limited time.

Several methods are currently used to develop a model of the
physical system and to select a solution technique. Quite often, the
structure is modeled as a collection of rigid masses and weightless
springs. An alternate choice involves finite element methods to mini-
mize error. When selecting a solution technique, the designer must
decide what information is to be obtained as a result of the analysis.
This may be a complete time history of displacements or simply estimates
of the maximum relative displacements. If only estimates of maximum
relative displacement are required, the widely known modal superposition
methods in combination with a response spectrum may be used. If a com-
plete time history is required, some form of integration of the

1



equations of motion will be needed. If an economical, easy to use, and
accurate method for performing the direct integration were available,
this technique would appear to be the logical choice under all circum-
stances in that all the data of interest to the designer would be avail-
able in the results of the analysis.

One of the many possible numerical procedures is presented in
the following sections of this document. The findings of a literature
review relative to methods for determining the transient response of
multi-degree of freedom systems are discussed in Section 2. A mathemat-
ical model for a complete structure is developed in Section 3, and a
derivation of the stiffness and mass matrices which describe a single
beam element of the structure is presented in Section 4. The develop-
ment of a computer program for the matrix exponential solution is
described in Section 5, use of this computer program is demonstrated in
Section 6, and the conclusions and recommendations resulting from this

investigation are presented in Section 7.



2. REVIEW OF LITERATURE

Interest in the transient response of linear, elastic mechanical
systems occurs in many fields. However, the literature surveyed in the
course of this investigation was limited primarily to research documents
sponsored by the United States Atomic Energy Commission and the National
Aeronautics and Space Administration and to standard textbooks.

Most current methods for determining the transient response of
multi-degree of freedom systems may be separated into two categories.
The first is superposition of modal response patterns, and the second is
direct integration. The application of both of these methods is illus-
trated in a recent review of seismic design analysis methods (1)*
wherein a linear elastic structural model is formulated by either the
lumped parameter or finite element method and the modal analysis tech-
nique is recommended for computing both steady state and transient
dynamic responses.

The dynamic equations for linear, elastic mechanical structures
are characterized by constant coefficients and may be quite readily
expressed in matrix form. Since these equations are second order, the
solution algorithms generally found in textbooks do not fully exploit
the constant coefficient characteristic. The matrix exponential method
has been presented (2) as a means of solving a set of first order differ-

ential equations that are constant coefficient and linear. This method

*Numbers within parentheses in the text designate numbered
references given in the List of References.
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has recently received wide attention because of the availability of
digital computers. Numerical techniques used in the time domain and in
the frequency domain analyses of linear time-invariant systems have been
reported by M. L. Liou (3,4). A bound for round-off error involved in
digital computation of the transition matrix of a system of linear time-
invariant differential equations has been developed and a method of com-
puter selection of the step size and number of series terms in transition
matrices has been presented by J. B. Mankin, Jr., and J. C. Hung (5,6).

A technique for determining the transient response of structures
that is based on a Taylor series expansion for displacement and velocity
has been presented by A. Craggs (7,8). However, the solution presented
was developed only for simple mechanical systems, and the definite rela-
tion to the matrix exponential method was not presented. The dynamic
equations are rewritten as a coupled set of first order equations in
Section 3 of this thesis, and it is shown that the solution methods pre-
sented by Craggs (7,8) are simply an approximation to the matrix

exponential solution.



3. MATHEMATICAL MODEL FOR A COMPLETE STRUCTURE

In order to apply the matrix exponential solution method to the
problem of determining transient structural response, the equations of
motion for the structure must be written as a coupled set of first order,
linear differential equations. Since only linear elastic structures are
considered in this investigation, these equations will have constant
coefficients. The equations of motion for the structure are presented
in a form compatible with the matrix exponential method in this section,

and the matrix exponential solution for these equations is derived.

3.1 Dynamic Equations

The equations of motion for a multi-degree of freedom system may
be conveniently written in matrix equation form as
MX + Cx + Kx = £(¢t) , (3.1)
where
M is the structure mass matrix,
C is the structure damping matrix,
K is the structure stiffness matrix,
x is the structure displacement vector,
% is the structure velocity vector,
X is the structure acceleration vector, and
f(t) is the time varying vector of applied loads.
Unless noted otherwise, capital letters are used to denote matrices and

lower~case letters are used to denote vectors and scalars. Where
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necessary to improve clarity of presentation, brackets,[ ], and braces,

{ }, are also used to denote matrices and vectors.

3.2 Introduction of State Variables

To mathematically simplify the dynamic equations, it is desirable
to develop a set of coupled first order differential equations that is
equivalent to the set of second order differential equations. This may
be accomplished by solving explicitly for the acceleration vector in
Equation 3.1 and incorporating an identity relationship involving the

velocity vector. Solving Equation 3.1, the acceleration vector

® = -M1Ck - M Kx + M YE(r) , (3.2)

where the superscript -1 denotes inversion. The necessary identity is
=1k, (3.3)
where I is the identity matrix. By combining Equations 3.2 and 3.3, the
following set of first order coupled differential equations is obtained.

X ¢ 1 x ¢
(3.4)

[

+
¥ Mk M ic||x M 1£(t)

where ¢ and ¢ denote the null matrix and null vector, respectively.

3.3 Matrix Exponential Solution

For the free vibration case, f£(t) = ¢, the solution to Equation

3.4 is as follows. Let

A= . @3.5)



Integrating from time t to t + T yields

= |exp AT B (3.6)

t+ T t

K
x

where
t is time,
T is the time increment, and
[exp At] is the matrix exponential function of A.
The subscripts t and T are used to denote the point of evaluation in
time.
A complete development of this solution has been presented by
Zadeh and Desoer (2, Chapter 5). A less rigorous proof is as follows.
Let
Y = By (3.7
represent any linear, constant coefficient set of coupled differential

equations. Then

y = By
= B%y . (3.8)
Similarly,
By _ g3
=B Y (3-9)
de3
and
dm m
ae™

2 m .m
_ . T T dy
A D AR MR T T G + e (3.11)
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After substituting the appropriate derivatives, Equation 3.11 becomes

2 m
= I_g? I gt
Ye + 7= [I + TB + 57 BT + ... + . B + "’]yt ’ (3.12)

which is by definition

y = [exp B'r]yt . (3.13)

t+7T

The exponential matrix, [exp At], is also called the transition
matrix and is the same as that discussed by Craggs (7, page 2) and
labeled as T.

For time increments, T, such that the forcing function may be con-
sidered constant within the time step, the solution to the forced vibra-
tion problem is as follows. Consider the set of nonhomogeneous, linear,
constant coefficient differential equations

¥ = By + g(t) (3.14)
where g(t) denotes the vector of time-dependent forcing functions. The
solution is developed through a variation of parameters. Assume a solu-
tion of the form

y = [exp Bt]u (3.15)
where u is a yet undetermined vector. Substituting this into Equation
3.14 yields

[exp Bt]d + B[exp Bt]u = B[exp Bt]u + g(t) , (3.16)
or

U = [exp -Bt] g(t) . 3.17)

The solution to Equation 3.17 is as follows:

t
u, = u o+ [exp -Bt'] g(t'") dt' . (3.18)
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Equation 3.18 may be substituted into Equation 3.15 to yield

t
y = [exp Bt]uo + [exp Bt]| [exp -Bt'] g(t') dt' . 3.19)

(o]

The initial value of u, u,, may be determined by evaluating the assumed
behavior of y at time zero.

y =u_. (3.20)

Thus, t
Y, = [exp Bt]yo + [exp Bt]| [exp -Bt'] g(t') dt' . 3.21)

o
If g(t) is a constant vector, g, we may write

t
Y = [exp Bt]yo + [exp Bt]| [exp -Bt'] dt' g . (3.22)

o

The integral may be evaluated to yield

v, = lexp Bely, + [exp Be][-[B] *[exp -Be']] | 8

]

[exp Bt]yo + [exp Bt]B g - B™ g

[exp Bt]yo + [[exp Bt] - I]B-lg

2
[exp Bt]y_ + [1 +BE+ BT+ .. - I]B'lg

2,2
[Bt +Bz—§+ ]B‘lg

+

[exp Bt]yo

]

[exp Bt]yo +t| =

—_— g . (3.23)
k=1 k.

Applying the results of the solution given in Equation 3.23 to the

coupled equation of motion given in Equation 3.4 yields Equation 3.24.
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X X L k-2 k-1 | ¢
= |exp AT + 1| 2 .[_A.l_.k_"r_.__ - (3.24)
X t+T X t k=l * M £ (t) t

3.4 Boundary Conditions

All that remains to be done to develop a complete set of
algorithms is to present a method of treating prescribed zero displace-
ment, velocity, and acceleration boundary conditions as are found at
restrained node points in structures. In finite element programs for
static analysis, it is common practice to accommodate boundary condi-
tions by modifying the stiffness matrix and applied load vectors to
incorporate known nodal displacements. All that is required to accommo-
date a zero displacement is to delete all of the off-diagonal row and
column elements of the stiffness matrix, set the diagonal element equal
to unity, and set the applied load associated with that particular node
equal to zero.

A parallel procedure may be used to accommodate zero displacement
and velocity boundary conditions. For any degree of freedom of the
structure for which the prescribed displacement and velocity are zero,
the associated off-diagonal row and column elements of the A matrix are
deleted, the diagonal element is set equal to unity, and the proper

terms in the M 1f vector are deleted.

3.5 Formation of Structure Matrices

The stiffness matrix for the structure may be readily determined
by using the principle of superposition commonly relied upon in elemen-

tary mechanics. If a point within the structure is designated as a node
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point and all the structural elements connected to that node point are
considered in sequence, the stiffness associated with this node point
may be determined by linear superposition (addition) of the appropriate
portions of the stiffness matrices of each individual element for all
connected elements.

The mass matrix for the structure may be determined by using a
procedure identical to that used to determine the stiffness matrix. 1In
the case of the stiffness matrix, the potential energy of the structure
is related to the node point displacements. The stiffness matrix and
the node point displacement may be used to compute the potential energy
of the structure. In a similar manner, the velocity of the structure
node points and the mass matrix of the structure determine the kinetic
energy of the structure. Thus, linear superposition of the appropriate
inertial properties of all elements connected to a given node may be
used to determine the mass matrix of the structure.

Because of the general lack of knowledge about the exact velocity
dependence of energy dissipative processes in structures, it is common
practice to assume that the damping in the structure is a linear function
of node point velocities. This may be readily incorporated into the
mathematical model of the structure when modal analysis procedures are
used. The same procedure used in modal analysis could be used with the
matrix exponential solution, but that course was not followed in this
investigation. An approximate representation of damping may be incorpo-
rated into the structure by considering two sets of dampers: one asso-
ciated with the node point inertial characteristics and the other

associated with the node point stiffness characteristics, as suggested
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by Biggs (9, pages 140-147). The magnitude of the inertial associated
damping coefficient matrix, Cr’ is

C.=cM, (3.25)

where c. is a scalar constant defined explicitly later. The magnitude
of the stiffness associated damping coefficient matrix, Cg’ is

= 3.26
Cg ch s ( )

where cg is a scalar constant defined explicitly later. Biggs (9, pages
140-147) presents a method for determining these two sets of coefficients

by substitution into the following equation.
2 =
cgw +c = naw , (3.27)

where n is the ratio of actual to critical damping at the circular fre-
quency w. Thus, the damping ratio, n, may be set at any desired level
at two separated frequencies. This determines the damping ratio at all
other frequencies. The total structure damping matrix is therefore
determined by

C = Cr + Cg

c M+ ch . (3.28)

An example of the use of this approximate method of representing struc-
tural damping is presented in the third example problem in Section 6 of

this document.



4. MATHEMATICAL MODEL OF STRUCTURE ELEMENTS

As discussed in Section 3, the relationship between applied
forces, displacements, velocities, and accelerations of node points of
a structure may be expressed in matrix form. The matrices used were
the structure stiffness matrix and the structure mass matrix. The
structure stiffness matrix and the structure mass matrix are completely
determined by the properties of the elements which make up the structure
and by the boundary conditions of the structure. Boundary conditions
were considered in Section 3. A derivation of the stiffness and mass
matrices which describe a single beam element of the structure is pre-
sented in this section.

The stiffness and mass matrices derived are neither original nor
the most general possible for the particular element considered. They
were derived and included in this document to insure completeness for
the reader unacquainted with finite element techniques. Several authors
have derived beam element stiffness and mass matrices under assumptions
similar to those made herein, and the reader is directed to the work
reported by Archer (10), McCalley (11), Kapur (12), and Gallagher and
Lee (13) for comparison. Under similar assumptions, the derived
matrices agree with those given in the cited references in all cases.

The beam element matrices may best be developed if the axial and
transverse portions of the motion of the beam are considered separately.
The incorporation of rigid masses and weightless springs into the mass
and stiffness matrices of the structure is not presented in this docu-

ment because of its simplicity.

13
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4.1 Stiffness and Mass Matrices for Axial Motion

Consider the beam element illustrated in Figure 4.1. Assume that
the axial displacement, w(z), of any point on the beam may be represented
by

w(z) =m+ nz , 4.1)
where m and n are arbitrary constants and z is the position on the beam,
as illustrated in Figure 4.1. Substituting for the axial displacement
of Ends 1 and 2 of the beam results in the equation

W =-Ww

2 1
w(z) = v +r—1— 2, 4.2

where w, and w, are the axial displacements of Ends 1 and 2 of the beam,

respectively. Equation 4.2 may be rewritten in matrix form as follows.
z z
w(z) = |-1 -2 i_l hE %.3)

From the strain-displacement relations, the axial strain, e(z), at
any point in the beam is obtained by differentiating the displacement
with respect to z. The result of this operation is given in Equation

4.4,

+2,4W

END 1 END 2

W N

Figure 4.1. Beam Element for Axial Motion.




e(z) = l_-% %J wl . (4.4)
2

The strain energy, U,, absorbed within the beam element may be expressed

as

= % e€(z) o(z) dv , 4.5)

volume

Up

where 0(z) is the axial stress at any point on the beam and dV is the
increment of volume. Within the linear elastic region, Equation 4.5

may be rewritten as

= %. €(2)E e(z) dv , (4.6)

volume

Up

where E is Young's modulus for the beam material. Substituting for

€(z) from Equation 4.4 into Equation 4.6 yields

L -l w
U, = x| Elv w Bl ozl) e d 4.7
AT 72 [1 a_l (LT T aad, (4.7)
o - wg
L

where dV has been replaced by "a dz'" and the integration ranges over the
beam length L. The cross-sectional area of the beam is represented by

"a'" and dz is an increment of beam length. Upon integration, Equation

4.7 yields
(aE  aE]
1 L L 1
U, = —Lw w’_| » (4.8)
A 2[ 2 )| aE akE w
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where the modulus of elasticity and the cross-sectional area have been
assumed to be constant over the length of the beam. By definition, the
stiffness matrix for axial displacement of the beam element is

1 -1

aE
K = — . 4.9
a L -1 1

The axial velocity, w(z), of any point on the beam may be determined by

differentiating with respect to time.

(2 =|_ -2 %_l 1 4.10)

where &1 and &2 are the axial velocities at Ends 1 and 2 of the beam,
respectively. The kinetic energy, T,, brought about by the axial veloc-

ity is

-3 pw(z) 2 av (4.11)

volume

Ty

where p is the density of the beam material. Substituting for velocity
and rewriting Equation 4.11 in matrix form,
z .
L 1 - I W

1 . . zZ z
TA =3 pa|_w1 we-l l_ -1 i_l . dz . (4.12)
[o] 2

N

After integrating and substituting limits in Equation 4.12, the kinetic

energy

e

(4.13)

O

<[, o
(o
s.
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The mass matrix, My, for axial velocity of the beam element is

11
3 6
Ma = pal . (4.14)
L1
6 3

4.2 Stiffness and Mass Matrices for Transverse Motion

Shear deformation will be neglected but the effect of rotary
inertia will be included in the derivation»of the element stiffness and
mass matrices. Consider the transversely displaced beam element illus-
trated in Figure 4.2. The slope of the neutral axis of the beam, dy/dx,
is represented by 6 in Figure 4.2. Assume that the transverse displace-
ment, v(z), may be represented by

v(z) = m + nz + 0z + p22 , (4.15)
where m, n, o, and p are arbitrary constants. Substituting the trans-
verse displacements, v, and v, and rotations, 6l and 62, at Ends 1 and

2 of the beam, respectively, we may write Equation 4.16.

END 2

-+

Figure 4.2. Beam Element for Transverse Motion.
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v 6 v e
v(z) =v + 6.z + [-3 2. 2 2 +3 -2 =2 22
1 1 2 L 2 L
L L
v 2] v e
+(2—1+—1-2—3+-—2-)23 .
L2 12 3 12

Equation 4.16 may be written in matrix form as

Differentiating Equation 4.17 with respect to z yields

v
1
e
wv(z) |62 6z, 3z° 4z 1: 62° . 6z. 3z 2z J 1>
= - Ty T = T y = _ = - T
oz ¢ 12 12 L 2 . 12 L v,
e
v 2)
Differentiating Equation 4.18 with respect to z yields
[ v
1
2 e
ov(z) _ |12z 6 6z 4 122+6__2_g<1
322 T R T T R A ¢
2
e
\2;

Equation 4.19 may be rewritten as

v (z) _
.2 [fl(z) fe(z) fa(z) f4(zi' {5} ’

oz

where

6
£2) =222 .5,

L4 1.2

(4.16)
v_)
6
%..17)
v2
6
24
. (4.18)
. (4.19)
(4.20)
(4.21)
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4
fe(z) = :2- -1 4.22)
£ (2) = 222,58, (4.23)
3 La L2
£ (2) = gz |2 » and (4.24)
4 L L
v
1
6
{5} PRI (4.25)
v
2
6
\ 2

If the shear deformation is neglected, the strain energy, Up,

absorbed in the beam because of bending is

[~ -]
N —

2 2
I Z"%) dz , (4.26)
z

where I is the second moment of area of the cross section of the beam.

Substituting d°v(z)/dz2 into the bending energy equation (Equation &.26)

yields

'f (z)\

1
L fz(Z)

ug = 2| EL[STIS ¢ b |5 @ £ @ £ (@) fs(zﬂ {o} @, .27

o 3
f (2)

4

\ /
where LbT] is the transpose of -{6} . If the moment of inertia, I, and
Young's modulus, E, are independent of position, the resulting equation

upon integration and substitution of limits is given in Equation 4.28.



N
o

12 6 12 6]
L3 12 1@ 12
4 6 2
1 l T L "2 L
Uy = 5 EI 5J L {5} (4.28)
12 6
2 12
‘Symmetric %d

The beam element stiffness matrix, KB) for transverse displacements may

be written as

- o

12 6L -12 6L
2 2
L3
12 -6L
Symmetric 412

If the shear deformation is neglected, the kinetic energy, Tp, asso-
ciated with transverse motion of the beam element is

L L . 2
TB = % pa{ﬁ(z)}e dz + %Jf pl(%géfl} dz ,
o

o

(4.30)

where v(z) is the transverse velocity at any point on the beam and may

be found by differentiating the transverse displacement with respect to

time.
v
1
2 3 2 3 2 3 2 3 é
S = 1. B, B el B p 10 (4.31)
L L3 2 12 L3 L7 |V,
)
P-4

where 01 and 62 are the transverse velocities and 61 and 92 are the

angular velocities at Ends 1 and 2 of the beam.
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The first integral in Equation 4.30 is associated with
translational inertia and the second integral is associated with rota-

tory inertia. To evaluate the first integral, let

v(z) = |_f () £ (2) £ (2) £ (z)J {8} (4.32)
S 6 7 8
where
2 3
£ () =1 -32 .22 (.33)
S L2 La
2 3
£ () =2 - .,z (4.34)
L
2 3
£ (2) = 32 .22 (4.35)
J
7 L2 L3
2 3
£ (z2) = -2 +2, and (4.36)
8 L L2
!v. 3
h
. 6
{5} = ¢ .lL . (4.37)
v
2
6
[ 2]

The expression for the first integral may be written as follows.

L
2
% pa(é(z)] dz
(o]
f (2)
S
_ 1 ’ a[éTJ< f‘5(z)> £ (2) £ (2) £ (2) £ (2) {é} dz (4.38)
=2 P £ (2) [ 5 6 7 8 J ) '
0 7
Lfa(z)
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By assuming constant cross-sectional area and constant density after

integrating Equation 4.38, the first integral becomes

156 2212

pa(é(z))a dz = %lé?]ei_ 4L®

|Symmetric

S4L
1312

156L

-1312

2312

-22L

413

{é} . (4.39)

Thus, the mass matrix associated with the translational portion of the

transverse motion is

13 1, 9
35 210 70
1.2 13
105" Z20"
= palL
My s
35
| Symmetric

11
10"

1l .2
TO5% _

(4.40)

To evaluate the second integral, which is associated with rotatory

inertia, in Equation 4.30; it is necessary to differentiate Equation

4.18 with respect to time.

Equation 4.41 may be rewritten as

%%L) = Lfg(z) £o@ £, fle(Z)_, {6} ’

> . (4.41)

(4.42)
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where
2
f (z) =§—z——-2’
9 13 12
2
f (z) =3i-4—z,
10 1.2 L
2
£ _(2) = Eg— + Sz , and
11 L 12
322 2z
£ e L

The second integral in Equation 4.30 may be written as

L . 2
-;—J’ pI(T—aviz) ) dz
o

- 3 iﬂﬁﬂ{

o

After integration and substitution of limits in Equation 4.47, the

second integral

'3

£f (2)
9
flo(Z)

fll(z)

£
‘ l2(:)1

L 2
LS
o

, I-fg(z) FRONINO fla(z)J {é} dz .

6 L
5L 10
2
EL
1|2T
= 587
Symmetric

wit [ Ll
al™ ol

sl

n—lIN

7

(4.43)

(4.44)

(4.45)

(4.46)

(4.47)

(4.48)
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Thus, the mass matrix associated with the rotational portion of the

transverse motion is

6 1L 6 1]
5L 10 SL 10
2L 1 L
15 710 30
My =PI . (4.49)
6 1
5L 10
2L
_Symmetric 1—5_

4.3 Stiffness and Mass Matrices for Single Beam Element

The stiffness matrices derived in Subsections 4.1 and 4.2 (Equa-
tions 4.9 and 4.29) may be combined to form a single element stiffness
matrix by superposition. The resulting stiffness matrix for the beam

element is given in Equation 4.50.

aE akE
i 0 0 T 0 0
12E1 6EI 0 12E1 6EI
L3 L2 L3 L2
4EI 0 6E1 2EI
L 2 L
L
l(E = . (4 . 50)
aE
T 0 0
12EI _QEL
e 12
Symmetric &%l

The appropriate displacement vector is formed from Wy Vo, 61, we, v

and 92 in this order.
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The mass matrices derived in Subsections 4.1 and 4.2 (Equations
4.14 and 4.49) may be combined to form a single element mass matrix by

superposition. The resulting mass matrix for the beam element is given

in Equation 4.51.

paL paL
3 0 0 3 0 0
2 2
13pal + 6pI llpaL . pl 0 9pal - 6p1 13pal + pl
35 5L 210 10 70 5L 420 10
pal? , 2pIL 0 13pals _pl pal3 , PIL
105 15 420 10 140 30
k pal
3 0 0
13pal , 6pI 1lpal® pI
35 5L 210 1
S eri pal3 . 2pIL
| Pymmetrie 105 15_
(4.51)

The appropriate velocity vector is formed from &1, 61, él, &2, 02, and

é2 in this order.




5. DEVELOPMENT OF COMPUTER PROGRAM

The mathematical form of the matrix exponential solution method
makes it necessary that all but the simplest of solutions be performed
by computer methods. A high-speed digital computer is well suited for
this purpose. With this thought in mind, a computer program was devel-
oped to implement the solution of the transient dynamics of plane
structures composed of beam elements of uniformly distributed mass,
weightless springs, and rigid masses.

The logical flow of the computer program is given in flow-chart
form in Appendix A, and the major steps in the program are as follows.
Data describing the geometric and structural characteristics are input
for the program, which in turn formulates the structure stiffness and
mass matrices. The structure stiffness and mass matrices are modified
for boundary conditions, as discussed in Subsection 3.4. The mass matrix
is inverted and post multiplied by the structure stiffness matrix. The
coupling matrix, A, is then formed, and the effect of damping is incor-
porated by using input damping coefficients c, and Cg- For a given time
increment and number of terms in the series approximation, the matrix
exponential, [exp AT], and the forcing function transition matrix,

Ak'ltk'l
k! ’

k=1

are next formed. This completes the preliminary steps directed toward
problem solution. The solution is then developed incrementally, as

indicated by Equation 3.24 which is repeated here for convenience.

26
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X X c0 Ak'lrk'l o
= [exp AT] + T — N ) (3.24)
Ly P X, k=21 M “£f(t) ¢

where approximations have been made for the matrix functions indicated.

It should be noted that the number of terms in the matrix exponen-
tial approximation must be limited, as is the case with all series
approximations. 1In this case, an upper limit on the number of terms or
lower limit on the time increment exists because of the possibility of
exceeding the capability of the digital computer to represent very small
floating point numbers. An estimate of the maximum number of terms per-
missible may be obtained from Equation 5.1.

E<NIn<T- In (N!) , (5.1)
where £ is the exponent associated with the smallest number that may be
represented within the machine and N is the number of terms used in the
approximation. In turn, T should be chosen to insure accuracy; that is,
it should be small enough to permit the necessary transient response
details to be represented. For most problems for which this computer
program was developed, N will be less than 10 and 7 will be chosen to
be one-twentieth of the smallest significant structure period. A solu-

tion so limited will be in error by less than

dN+lx
N+a1
N+1 N+1 de
A T ¢ > (5 2)
N+ 1)! dN+2x . *
N+2
dt t

\ /
for free vibration analysis. This error may be made as small as may be

represented within the machine by the argument previously presented.
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After this investigation was completed, the error criteria reported by
Liou (3, 4) and by Mankin and Hung (5, 6) were examined but were not
incorporated into this study because of time limitations.

The matrix inversion used was a version of the Gauss-Jordan algo-
rithm as presented by Wang (14). The matrix function approximations:
and step-by-step solution were re-programmed from programs presented by
Ball and Adams (15). The limitations of the computer program are pre-
sented in Appendix B, the input data format is presented in Appendix C,
the output data format is presented in Appendix D, and the computer pro-

gram listing is presented in Appendix E.



6. TRANSIENT RESPONSE OF SIMPLE STRUCTURES

To demonstrate the use of the computer program developed in this
investigation, three example problems are presented and compared with

known solutions.

6.1 First Example Problem

The first example problem involves the determination of the time
history of displacements for the three-degrees-of-freedom problem illu-
strated in Figure 6.1. The displacements indicated in Figure 6.1 are
measured from the static equilibrium position of the node points indi-
cated as circled numerals. The time relationship and magnitudes of the

applied loads fa(t)’ fa(t), and £ (t) are indicated in Figure 6.2.
4

X STIFFNESS = 6, 000 POUNDS PER INCH
f, (1) |x WEIGHT =772.8 POUNDS
2

STIFFNESS =U,000 POUNDS PER INCH

fy (t)

| Xy

f, (t
ol T

Figure 6.1. Three-Degrees-of-Freedom Model With Weightless
Springs and Lumped Masses for First Example Problem.

STIFFNESS =2,000 POUNDS PER INCH

WEIGHT =386.4 POUNDS

@
:
()| wEIGAT =386.u POUNDS
2
®

29
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f, (0)=3,000 POUNDS
f, (o)=4,000 POUNDS
f, (c)=2,000 POUNDS

0 0.1
TIME (SECONDS)

Figure 6.2. Applied Loads for the Three-Degrees-of-Freedom Model
of the First Example Program.

The data from this problem were supplied to the computer program
and used to write a forcing function subroutine DISTURB, which is the
version of DISTURB presented in Appendix E. The time increment used in
the solution of the problem was 0.005 second, and the number of terms in
the series approximation of the matrix exponential was ten. The dis-
placement of node point 3 as determined with the computer program is
plotted in Figure 6.3 and may be compared with the solution developed
through the use of modal methods reported by Biggs (9, pages 121-123).
The solution for this example problem was plotted by using the computer
program XYPLOT presented by Tobias and Jung (16). The smooth line in
Figure 6.3 represents the theoretical solution and the symbols '"X" rep-

resent the approximate solution as output from the computer program.

6.2 Second Example Problem

The distributed mass beam elements developed in Section 4 of this
document are used in the second example problem. In this problem, the

response of the point of dynamic load application for a simply supported
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= MODAL SOLUTION
X MATRIX EXPONENTIAL SOLUTION

-loml

0.0 0.0 0.08 0.12 0.16
TIME IN SECONDS

Figure 6.3. Example One Response of Three-Degree System.
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beam, as illustrated in Figure 6.4, is to be determined. The beam is a
wide-flange steel section 14 inches deep that weighs 142 pounds per
lineal foot. The dynamic load, f(t), is initially 50,000 pounds,
decreases linearly to zero at 0.0l second, and remains zero for all

later time.

f(t)
T—10 FEET 6 FEET —

+ ! 14 WF 142

Figure 6.4. Simply Supported Beam of Second Example Problem.

The response of this beam was determined by using two combinations
of beam elements connected in series. The time increment used in the
solution of the problem was 0.0001 second, and eight terms were used in
the series approximation. A comparison of the predicted response and
that determined through modal analysis methods is illustrated in Figure
6.5. The smooth line represents the theoretical solution obtained by
superposition of the first three modes. The computer solutions for two-
and four-beam elements are plotted with the symbols X and A,

respectively.
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0.17

OISALACDENT IN INODES

-0.09} = MODAL SOLUTION
X TWO BEAM ELEMENT MODEL
A FOUR BEAM ELEMENT MODEL

-0.17
0.0 4.000E-03 8.000E-03 0.01 0.02 0.02

TIE [IN SECONDS

Figure 6.5. Response at Point of Loading for a Simply Supported Beam.
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6.3 Third Example Problem

The third example problem is an attempt to predict the transient
response of a concrete and steel tower for which experimental data were
reported by Takahashi, Gates, and Benuska (l17). This tower is diagram-
matically illustrated in Figure 6.6, and the model used in the computer
analysis is illustrated in Figure 6.7. The data on the structural prop-
erties of the tower were taken from that reported by Takahashi, Gates,
and Benuska (17). The node points used in modeling the structure are
indicated by the circled numerals in Figure 6.7. The small tower was
subjected to a base motion acceleration that is a pseudo half sine wave
pulse. A multi-linear approximation of this pulse is illustrated in
Figure 6.8. The data resulting from tests of this structure indicate
a first mode frequency of 125 cycles per second and a fourth mode fre-
quency of 1,300 cycles per second (17).

To analyze the behavior of a system for which a specified base
motion is prescribed, a transformation of the basic equations of motion
is useful. Let x represent the structure displacement vector relative
to its foundation displacement, and let u represent the vector of foun-
.dation displacement. The equations of motion may then be written as
follows:

M{Sc'+ ’d}+ C{:’c}-*-l({x}:O, (6.1)
where the damping matrix C is assumed to be associated with relative

motion only and U is the foundation acceleration vector. Transposition

of the base motion terms to the right-hand side of Equation 6.1 yields

MX + Cx + Kx = -Md . (6.2)
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CAP RING
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COMPRESSION RING
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Figure 6.6. Elevation and Plan Views of Small Tower of Third
Example Problem.
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STRUCTURAL PROPERTIES OF SMALL TOWER

CROSS- MOMENT MODULUS
SECTIONAL OF OF UNIT
AREA INERTIA | ELASTICITY| WEIGHT
(IN.?) (IN.4) | (LB./IN.2)|(LB./IN.)
_O_
4. 375 INCHES 30.3 706 2.5 x 10¢ 2.85
a fg\ i
~ \2/
11.66 INCHES 30.3 706 2.5 x 108 2.85
fot®
11.66 INCHES 30.3 706 |2.5 x 108 | 2.85
-_0__@
11.66 INCHES 30.3 706 |2.5 x 106 | 2.85
.._.O_
12 INCHES 32.0 4000 30 x 10¢ 57.17
;;;77)¢9 /

Figure 6.7. Model for Small Tower of Third Example Problem.
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Figure 6.8. Base Motion Accelogram for Small Tower of Third Example Problem.
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From a comparison of Equation 6.2 with Equation 3.1, it is apparent that
the procedure presented in Section 3 may be used to solve Equation 6.2
if -Mu 1is substituted for f(t).

To model the behavior of the structure, the time increment for
solution was chosen as 50 microseconds and six terms were used in the
series representation of the matrix functions. The structure damping
determined in experiments was approximately 2% of critical in all modes.

An approximate representation of this damping is provided by using

cg = 4.75 x 10~® seconds.

Using these values as constants in Equation 3.27, the maximum damping is
27% of critical and the minimum damping is 0.2% of critical in the fre-
quency range of interest.

The output data from the computer indicate a dominant frequency of
124 cycles per second, which is a very good agreement with the experi-
mental data. The maximum relative displacement between the base and
the top of the tower given by the experimental data (17) is 0.0028 inch,
and the maximum relative displacement predicted by the computer program

is 0.0024 inch.



7. CONCLUSIONS AND RECOMMENDATIONS

It has been shown in this investigation that the dynamic equations
for a linear, elastic structure may be written as a set of coupled first
order differential equations with constant coefficients. The matrix
exponential solution method was developed to show the close similarity
between it and the solution of a single first order constant coefficient
differential equation.

The coefficients of the dynamic equations were shown to be related
to the stiffness and inertial characteristics of the structure. That
these coefficients may be determined by a process of linear superposition
was demonstrated. A technique for the incorporation of structural damp-
ing was also presented. The stiffness and inertial characteristics of
individual beam elements were derived by assuming a compatible deforma-
tion pattern for the beam and then determining the strain energy and
kinetic energy in the beam. This then defined the stiffness and mass
matrices for the beam element.

A computer program based on the equations derived in this document
was developed, and the transient response of three simple structures was
determined through the use of this program. The transient responses
determined in this manner were compared with previously reported analyt-

ical and experimental data.

7.1 Conclusions

The objective of this investigation was to develop a numerical
solution for the transient response of linear, elastic mechanical

39
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systems by using the matrix exponential method. With regard to this
objective, the following conclusions may be drawn.

1. The matrix exponential solution method was applied success-
fully to determine the structural response of linear, elastic mechanical
systems.

2. The computer program developed in this investigation provided
accurate solutions to the response of simple mechanical systems.

3. This computer program was used and modified with little diffi-
culty, requiring only that one subroutine be rewritten for each system

analyzed.

7.2 Recommendations

A comparison was made in this investigation between computer solu-
tions and experimental data to evaluate the ease of program use and
modification under realistic circumstances. This effort was severely
limited by a lack of sufficient experimental data. Therefore, it is
recommended that a minor experimental program be initiated to obtain
transient response data for linear, elastic mechanical structures.

It is well known that shear deformation effects can become quite
important as the ratio of beam length to depth decreases. It is there-
fore recommended that the beam element stiffness and mass matrices be
modified to include the effect of shear deformation. This could be
accomplished by using the modified Timoshenko beam theory presented by
Egle (18).

In view of the need to analyze mechanical systems with up to 1,000

degrees of freedom, it is further recommended that the sparse matrix
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characteristics of the transition matrix be fully utilized by rewriting
the computer program in the computer language MATLAN (19). The MATLAN
language is a flexible problem-oriented language designed to carry out
matrix and scalar operations. Storage management is accomplished auto-
matically in that MATLAN may control both core and direct access

devices. Routines for sparse matrix operations are built into MATLAN.
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APPENDIX A
FLOW CHART FOR COMPUTER PROGRAM

As discussed in Section 5 of this document, a computer program was
developed to implement solution of the transient dynamics of plane
structures composed of beam elements of uniformly distributed mass,
weightless springs, and rigid masses. The logical flow of this computer

program is presented in flow-chart form in this appendix. The symbols

used in the flow chart are illustrated and defined in Figure A.1l, and

the flow chart is presented in Figure A.2.
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OPERATION FLOW CNART SYNBOL
¥
INPUT (
: v
¥
PROCESS
v
' T
CONDITIONAL CONTROL >j
: » : r
ITERAT IVE CONTROL < >
v
¥
SUBROUT INE / \
Y
¥
TERMINATION C )

OFF-PAGE CONNECTOR

Figure A.1. Symbols Used in Flow Chart for Computer Program.
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INITIALI2E
VARIABLES
ACCEPT GENERAL
INPUT DATA
R F ARE ANY BEAMS USED
< )' IN PROBLEM?

>T_
e DO LOOP TO FORM STIFFNESS
AND MASS MATRICES

N

'

FORM BEAM ELEMENT
STIFFNESS MATRIX

l

PERFORM COORDINATE TRANSFORMATION
FOR BEAM ELEMENT STIFFNESS MATRIX

l

ADD ELEMENT STIFFNESS MATRIX TO
STRUCTURE STIFFNESS MATRIX

|

//// FORM BEAM ELEMENT MASS MATRIX

'

PERFORM COORDINATE TRANSFORMATION FOR
ELEMENT BEAM ELEMENT MASS MATRIX

Figure A.2. Flow Chart for Computer Program Developed to Implement
Solution of Transient Dynamics of Plane Structures.
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ADD ELEMENT MASS MATRIX
TO STRUCTURE MASS MATRIX

- ®
>y
/ READ DATA FOR WEIGHTLESS SPRINGS

'

BLANK CARD 3T—
Fy

ADD SPRING STIFFNESS TO

STRUCTURE STIFFNESS

r//, READ DATA FOR RIGID MASSES

: T
BLANK CARD
y

ADD MASS TO STRUCTURE

MASS MATRIX

l

MODIFY STRUCTURE STIFFNESS AND
MASS MATRICES FOR BOUNDARY CONDITION

Figure A.2 (continued).
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INVERT MASS MATRIX

!

POST MULTIPLY INVERSE OF MASS
MATRIX BY STIFFNESS MATRIX

{

FORM COUPLING COEFFICIENT MATRIX
INCLUDING DAMPING EFFECTS

!

FORM MATRIX EXPONENTIAL AND FORCING
FUNCTION TRANSITION MATRIX

WRITE OUT INITIAL
DISPLACEMENTS AND VELOCITY

CALCULATE FORCING FUNCTION VECTOR

!

CALCULATE DISPLACEMENTS AND
VELOCITIES AT NEXT TIME INCREMENT

1
!
| !
l F_| HAS TIME INCREMENT BETWEEN T
OUTPUT EXPIRED?
|
WRITE OUT DISPLACEMENTS
AND VELOCITIES

F IS TIME GREATER THAN T
INPUT DATA TIME LIMIT

Figure A.2 (continued).
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APPENDIX B

PROGRAM LIMITATIONS

The limitations of the computer program developed to implement
solution of the transient dynamics of plane structures composed of beam
elements of uniformly distributed mass, weightless springs, and rigid
masses are as follows.

Maximum number of node points: ten.

Maximum number of beam elements: nine.

Maximum number of data points for plotted output: one.

The number of node points may be increased by changing the dimen-
sion statements in blank common and common block /MATEXP/. 1If the num-

ber of node points is N, the common blocks would appear as follows.

COMMON TITLE(18), NUMNP, NUMEL, XNP(N), YNP(N), IRX(N), IRY(N),

1 IRT(N), EE(N-1), EA(N-1), EEI(N-1), ESW(N-1), INP(N-1), JNP(N-1),
2 R(6,6), ESM(6,6), ESG(6,6), SSG(3N,3N), EMM(6,6), EMG(6,6),
3 SMG(3N,3N), SMSG(3N,3N), L, EL, E, ECA, EI, U, RG, CR, CG

COMMON /MATEXP/ C(6N,6N), HP(6N,6N), A(6N,6N), QPT(6N,6N), X(6N),

1 F(3N), Z(6N), Y(6N), XIC(6N), TQP(6N), ITMAX, KK, LL, MM,
2 JJFLAG, NI, TIME, TMAX, TZERO, NE, T, I1Z, ICONTR,
3 PLTINC, MATYES, ICCS, JFLAG, PLT, IONODE
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APPENDIX C
INPUT DATA FORMAT

The type designation, contents, and format of the input data cards
for the computer program developed to implement solution of transient
dynamics of plane structures composed of beam elements of uniformly

distributed mass, weightless springs, and rigid masses are given in

Table C.1.
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Table C.1. Type, Contents, and Format of Input Data Cards
for Computer Program

Card
Type Contents Format
I Title 18a4
I1 Number of node points I5
Number of beam elements I5
Number of node for which x displacement is to be I5
plotted; zero if no plotted output is desired
III Coefficient for damping proportional to mass E10.3
matrices (sec.”?)
Coefficient for damping proportional to stiffness E10.3
matrices (sec.)
Iv Initial time for problem (sec.) F10.0
Final time for problem (sec.) F10.0
Time increment to be used in solution (sec.) F10.0
Time increment between printed/plotted output (sec.) F10.0
Number of terms to be used in series approximation I10
of matrix exponential
v2 Node number I5
X coordinate of node (in.) F10.0
Y coordinate of node (in.) F10.0
X restraint flag I5
Y restraint flag I5
Theta restraint flag I5
VIb Beam number I5
Young's modulus (p.s.i,) F10.0
Beam cross-sectional area (in.e) F10.0
Beam moment of inertia (in.4) F10.0
Beam weight per unit of length (lb./in.) F10.0
Node point number at first end I5
Node point number at opposite end I5
viI© Node point number at first end of weightless spring I5
Node point number at opposite end of weightless I5
spring
Spring modulus associated with the X direction F10.0
(1b./in.)
Spring modulus associated with the Y direction F10.0
(1b./in.)
Spring modulus associated with angular displacement F10.0

(in.-1b./radian)
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Table C.l1 (continued)

Card

Type Contents Format

VIIId Node point number for location of rigid mass I5
Weight of rigid mass (1lb.) F10.0
Mass moment of inertia of rigid mass (1lb./in.Z®) F10.0

8Node is restrained if restraint flag is not zero. The number of
Type V cards is equal to the number of node points given on card Type II.

bThe number of Type VI cards is equal to the number of beam elements
given on card Type II. If no beam elements are used, no Type VI cards
appear in the input data.

“Terminate entry of Type VII cards with a blank card.

dTerminate entry of Type VIII cards with a blank card.



APPENDIX D
COMPUTER PROGRAM OUTPUT

The computer program developed to implement solution of the
transient dynamics of plane structures composed of beam elements of
' uniformly distributed mass, weightless springs, and rigid masses prints
out all input data, The element stiffness and mass matrices, the assem-
bled coupling matrix (A), and the series approximations to the matrix
functions are printed. The major output of the program is the printout
of the node point displacements and velocities at each point in time, as
specified on the input cards. The x displacement for the specified node

point is punched on cards for computer plotting.
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APPENDIX E

COMPUTER PROGRAM LISTING

The listing for the computer program developed to implement
solution of the transient dynamics of plane structures composed of beam
elements of uniformly distributed mass, weightless springs, and rigid

masses is given on the following pages of this appendix.
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(2 X3X3]

(2 X3 X2}

[a X3 Xa)

1001
1002
1003
1004
1005

57

MAIN PRCCRAM

COMMON TITLE(18)¢NUMNP, AUMBL ¢ XNP(10),YNP(10), IRX(10),IRY(10),
IRT(10)oFE(S) sEA(G)GEETI(D),ESHIO) yINP(9)yJNP(9),
R(696) sESM(6+6)ESGLE,6) 9 S€5(30030) yEMM(696) yEMG(696)
SMG(30¢30)ySMSG(30y30)¢LEL+EIECAVETHUyR54CRYCG
COMMCN /MATEXP/ C(60460),HP(60960)9A(60960) +0OPT (60460) 4X (€0
F(20)92(60)9Y(60)sXIC(G0Y yTOP(6O0) o TTMAX9KKyLL oMM,y
JJFLAGyNI,TIME, TPAX ¢y TZEROyNE,T9112, ICONTR,
PLT INCyMATYES,ICCSy JFLAG,PLT, IONODE

W= W=

COMMCN /PLOT/ TPLCT(96),XPLOT(99)
REAL & 4 MXY,MM]

INITIALIZE ARRAYS

oCc 1 I=1,10
XNP(1)=0,0
YNP(1}=0.0
IRX (1)=0
IRY(1)=C
IRT(1)=0

00 2 1=1,9
EE(1)=0.0
EA(1)=0,0
EEI(1)=C,0
ESW(1)=0.0
INP(I)=C
JNP(1)=C

00 3 I=1,46
00 3 J=1,6
R(1yJ)=Ce0
ESM(14J120,0
ESCG(1,J1=0,0
EMM([4J)=0,0
EMG(1¢J)=0,0
DO 4 1=1,30
F(1) = C.0
DO 4 J=1,30
S§SCG(14J)=0.0
SMC(1,J)=0,0
SMSG(1,J)=0,0
00 5 1=1,60
D0 5 J=1,60
C(1,J1=C,0
HP(14J)=Ce0
A(IyJ7=20.0
QPT(1,J1=20,0
D0 6 1=1,60
X(1)=0,C
2(1)=0.C
¥Y(1)=0,0
X1C(1)=0,0
TOP(1)=0,0

REAC ANC PRINT INPUT DATA

REAC (5,2001) (TITLE(I),1=1,18)

FCRMAT (18A4)

WRITE (£+1002) (TITLE(I),I=1,18)

FORMAT (1H1,18A4)

REAC(5+1003) NUMNP, NUMEL,ICNODE

FORMAT (315)

WRITE (£,41004) NUMNP

FOPVAT(1HOy 22HNUMBER OF NODE PCINTS +14)
WRITE (6+41005) AUMEL

FOFMAT ( 1HO. 24HNUMBER CF BEAM ELEMULNTS +14)

10

30
40
41
42
43
%0
51

53

60

70

80

90
100
110
120
130
140
1%0
160
170
180
190
200
210
220
230
240
2%0
260
270
280
290
300
310
320
330
340
350
360
270
380
390
400
410
420
430
440
450
460
470
480
490
800
510
520
%30
540
$%0
$60
€70
580
%590
600
610



[aXaXs]

(2 X ¥g)

(aXaXa]

1006
1007
1008

3001
2000
2001
2002
2003
2004
1009

1010
8

1011
1012

1013
9
1014

1015
1016

10

58

WRITE (6+1006) IONODE

FORMAT (1H0O¢32HX DISPLACEMENT PLCTTED FOR NODE ,18%

READ (5,1007) CR,4CG

FCPPMAT (2€Ei10.3)

WRITE (&,1008) CR,CG

FORMAT (1HO, 30HABSOLUTE OAMPING COEBFFICENT = ,E11.492X,
130FRELATIVE CAMPING CCOEFFICENT = (El1.6)

READ (5,3001) TZERQsTMAXeToPLTINC,ITMAX

FORMAT (4F104095X+15)

WRITE(642000) TZERN

FORMAT(1HO+22HINITIAL ORCBLEM TIME = 4Fl0.4)
MRITE(€42001) TMAX

FORMAT(1H0y 23HF INAL PROBLEM TINE a ,Fl0.4)

WRITE(6,2002) T

FORMAT(1HOy34HTIME INCREMENT USED SCP EXP(AT) = 4Fl0s%)
WRITE(64+2002) PLTINC

FORMAT(1FO, 3¢HTIME INCPEMENT FOR PRINTED QUTPUT = ,Fl10.4)
WRITE(€,2004) ITMAX

FOPMAT(1HO+4IHNUMBER OF TERMS IN SERIES APPROXIMATION = ,13)
WRITE (€&,1005)

FOPMAT(S54HONOCE NUMBER X-CCNORDINZTE Y=COORD INATE X=RESTRAINT ,
127+HY=RESTRAINT THETA=-RESTRAINT)

D0 8 I = 1,NUMNP

REAL(591010) ToXNPCI)oYNP(TIDgIRX(I) IRY(IDLIRT(Y)

FORMAT (15,2F10.,0,315)
WRITE(6+1011)1ToXNP(T)oYNP(TI)oIRX(1)oIRY(I),IRT(Y)

FORMAT (1HOsS X915 10XoFTe39TXeFTa293XeT1 910X911y14X,11)

STAPT LCOP YO DRETERMINE STRUCTURE PROPERTIFS

IF (NUMEL .ECe O) G0 TO 12

WRITE (6,1012)

FOFRMAT( 1H0y 44 HREAM NUMBER ELASTIC MOOULUS AREA INERTIA ,
125HWEIGFT/INCH I=NDDE J=NODE)

00 9 1 = 1,MUMEL

READ(5,1012) T 4EE(I)sEA(TI}FEI(T)LESWITINILTNP(T),INP(])
FORMAT (15,4F10.0,215)

WRITE (£91014)1,EE(T)4EA(T)ZEETI(T)oESWIT)INP(ID,IND(T)
FORMAT(4X 14 ¢8X9E126493X9F5¢0¢F9e2+1FLl06294X91294X,13)

00 11 L=1,NUMEL

1 = INP(L)

J = JNP(L)
X1 = XNP(1)
Y1l = YNPI(I)
X2 = XNP(J}
Y2 = YNP(J)
EL=SORT((X2=X1)%%24 (Y2=-Y]1)%**2)
£ = EE(L)
ECA = EA(L)
E1l = EEI(L)
U = ESW(L)/ 20664
RG = SQRT(E1/ECA)

OETERMINE STIFFNESS MATRIX

CALL ELSTIF

WRITE (&,1015)

FORMAT (40H1ELEMENT STIFFNESS MATPIX IN MEMBER AXIS)
WRITE (64101€&) ((ESMI{IT4JJ)y JJIs1y6 )y TI=],6)
FORMAT (1H 4¢&(5X9F10e4))

DETERMINE ROTATION TRANSFORMATICN MATPIX

CSANG=(Xx2-X1)/EL
SNANG=(Y2=Y3)/EL
R(1s1) = CSANG

P(1+2) = =SNANG

620
630
640
650
660
670
671

680
690
691
700
710
T20
720
740
750
760
770
780
790
200
801
g0
820
230
840
850
850
870
880
890
900
910
020
030
940
e50
960
970
980
290

1000

1010

1020

1030

1040

1050

1060

1070

1080

1090

2100

1110

1120

1120



OO0

[ X3Xa)

1017
1018

R(2+1) = SNANG
R(242) = CSANG

R{3,3) = 1,

0

R(4:4) = CSANG
R(495) = =SNANG
R(S:4) = SNANG
R(S548) = CSANG

Rt646)= 1,0
TRANSFORM STIFFNESS MATRIX FRCM ELEMENT TO STRUCTURE AXIS

CALL MMULT(R+ESMyESGy6)
CALL MTMUL(ESMyRyESG16)

ACC ELEMTNT STIFFNESS

281 -2
3*] -1
3*]
Jl Iry =2
J2 23y =)
J3 = 2%y
SSG(Ily11)
SSCG(1I1,12)
SSCG(11,413)
SSC(12+11)
SSG(12412)
S§SSC(12,13)
SSG(13,11)
SSG(12,12)
SSG(13,13)
SSCG(11, 41}
SSCG(11,J42)
S$SG(11,43)
S$SSCG(12,J1)
SSG(12,J2)
SSG(12,443)
S$SCG(12,J41)
S$SCG(13,J42)
S$SC(12,J3)
S$SSCG(J1,11)
SSCG(J1,12)
SSCG(J1,13)
$SC(J2,11)
SSCG(J2y12)
S$SSCG(J2,13)
SSCG(J3,11)
S$SC(J3,12)
$SCG(J3,.13)
SSCG(J1,J1)
SSCG(JI1442)
SSCG(J1,93)
SSCG(J2,J1)
S$SC(J2+J2)
S$SC(J2+J3)
SSC(J2,J1)
SSCG(J3,42)
$SC(J3,J3)

1
12
13

[ I T T T O TN T - OO < T O T I OO IO - O O I BN |

SEG(I1,11)
S$SG(11,12)
SSG(11,13)
S$SG(I12,11)
§5G(12,12)
SSG(12,12)
§SG(13,11)
SSG(13,12)
SSG(13,13)
§SG(11,J1)
SSG(11,J2)
S§SG(I1,J43)
SSG(124J41)
$SG(12,92)
SSG(124+43)
SSG(13,41)
§SG(13,42)
SSG(13,J43)
SSE(JIl,11)
SSG(J1412)
SSG(J1.13)
$SG(J2,11)
§SG(J2,12)
SSG(Jc 12
SSE(J3,11)
§SG(J3,12)
SSG(J3,13)
SS6(J1,J1)
SSC(J1+J2)
SSEE(J14+J3)
§SG(J2,J1)
SSC(J2,42)
$5G(J2,J3)
SSG(J3,J41)
$SG(J3,42)
SSG(J2,93)

DETERMINE MASS MATRIX

CALL FELMAS

s

WRITE (£,1017)

FORMAT (35HOELEMENT MASS MATRIX I, MEMBER AXIS)

WRITE (€+1018) ((EMM(IT,JJ)y JJ=796 )y I1Im1,6)

FORMAT(IH 46(5X+E1044))

TPANSFOFRV MASS MATRIX FRCM ELEMENT TO STRUCTURE AXIS

MATRIX TC STRUCTURE STIFFNESS MATRIX

L 2 B SR BE R B R IR X NE BE U BE R SRR IR SR B BE BE IE B IR B IR R A IR K IR IR IR B 3

59

ESG(1l,1)
ESG(1,2)
ESG(1,2)
ESG(2,1)
ESG( 2,21
ESG(2,3)
ESG(3,1)
ESG{3,2)
ESG(3,2)
£SG(1,4)
ESH(1,5!
£SG(1.¢6!
ES5(244)
ESG(2,5)
ESG(2,¢€)
ESG(3,4,
ESG(3,5:
ESG(3,¢!
ESG(4,1"
£ESG(4,2)
ESG(4,2)
€SG(S+1,
ESG(5,42:
ESG(S5,3*
ESG(6,41)
ESG(6,2)
ESG(642)
ESG(&y4:
ESG(4¢5.
ESG(4,¢"
ESG(5,4)
ESG(5,5)
ESG(5,6)
€SG(644,
ESG(6,5.
€SG(646°

1140
1150
1160
1170
1180
1190
1200
1210
1220
1230
1240
1250
1260
1270
1280
1290
1300
1310
1320
1330
1240
1350
1360
1270
1380
1290
1400
1610
1420
1430
1440.
1450
1460
1470
1480
1490
1500
1510
1520
1530
1840
1550
1560
1570

1580

1590
1600
1610
1620
1630
1640
1650
1660
1670
1680
1690
1700
1710
1720

1740
1750
1760
1770
1780
1790
1800



11
c

12
1019

1020 FORMAT (31HOACCED SPPINGS CCNNECTiING NODE 415, BHAND NCDE, IS,

60

CALL MFULT (R EMMEMG,6)
CALL MTMUL(EMM,R,EMG,6)

ACD ELEMENT MASS MATR IX

SMG(I1,I1) = S¥G(11,11)
SMG(11, 120 SMG(1I1,12)
SMG(11,13) SMG(11,13)

SPG(J3,13)

SMG(J3,12)

s
SMG(12y11) = SMG(12,11)
SMG(12,72) = SMG(12,12)
SMG(12y13) = SMG(12,13)
SMG(I2,11) = SMG(13,11)
SMG(13,12) = SMG(13,12)
SMG(12,13) = SMG(13,13)
SMG(I1,4J1) = SMG(I1,41)
SMGEI1,J2) = SMG(I1,J2)
SMG(114J3) = SMG(T1,J2)
SMG(12,4J1) = SMG(12,J1)
SNG(12,J2) = SMG(12,42)
SMG(124J3) = SMG(12,J3)
SMG(13,J1) = SMG(13,J1)
SMG(130J2) = SMG(13,J2)
SMG(13,J3) = SMG(13,J3)
SMGtJ1y11) = SMG(J1,11)
SMG(J1,12) = SMG(JL1,12)
SMG(J1412) = SMG(J1,412)
SMG(J2+11) = SMG(JI2,11)
SMG(J2912) = SMG(J2+12)
SMG(J2413) = SMG(J2,13)
SMG(J3,yI1) = SMG(J3,11)
SMGtJ3,12) = SMG(J2.12)
s

SMG(J1,J1) SMG(J1,4J1)
SMG(J1,42) SVC(J1,4J42)
SMG(J14J3) SMC(JL1,J2)
SFG(J2,41) SME(J2441)
SMG(J2,J2) SMG(J24J42)
SMG(J2,J2) SMG(J2,4J43)
SMG(J3,J1) SMG(J2,4J1)
SMG(J3,42) SMG(J3,J2}
SMG(J3,J3) SMG( J3,J3}
CCATINUVE

REAC ANC PF INT INPUT DATA

REAC (5,10'S) TNOCE 4 J
FCR¥AT ( 215,3F10.0)

1F(INCDEL.EN,O) GO TO 13
WRITE (£+1020) INODE ¢ JNCOE+SXy SY9STHETA

EMG(1,1)
EMG(1,2)
EMG(1,2)
EMG(2,1)
EMG(2,2)
ENMG(2,3)
FMG(3,1)
EMG(3,2)
EMG(3,2)
EMG(1,4)
EMG(1,5)
EMG(1,¢6)
EMG(2,4)
EMG(2,5)
SMG(2,¢)
FMG(3,4)
EMG(3,5)
EMG(3,6)
‘EMG(4,.])
EMG(4,2)
EMG(4,2)
EMG(5,1)
EMG(5.2)
ENG(5,2)
EMG(6&,41)
EMG(&,2)
EMG(¢€42)
ENG(4&4)
EMG(4,%)
EMG(4,¢)
EMG (544
EMG(S,5]
EMG(5,¢)
EMG(644)
EMG(645)
EMG(66)

L R I R P N R 2R IR R B BRI BRI R R IR R K R B K R B R BE B R B B

NOCE 4 SX .

FOR LINEAR SPRINGS
SY 4 STHFTA

TC STRUC/URE MASS MATRIX

1 11¥X=DIPECTIONyE10e4911HY-DIRECTION+E10e &y
2 8HRCTATIONF10.4)
INCOE = 39YNODE - 2
JNCDE = 3#JNCDF - 2
SSCG( INOCE,INCDE} = SSGI(

+
SSG(INOCE,JNODE} = SSG(YNODE,JNOCL) - SX
SSCG(JINOCEL JMCDE) = SSG(JINODE, JNODLC) +
SSG(JNOCE,INCOE) = SSG(JNODE, INOCF)

SSCG(INOCE+Ll s INOFE+])
SSCG(INOCE+1,JNOCE+]1)
SSG(JINOCE+1 4 INOCE+1)
SSG(JINOCE+1, INCCE+1)
SSC(INOCE+Z + INDCE42)
SSG(INOCE+2 4 JNOCE+2)
SSG(JINOLCE+2 4 JNCCE+2)
SSCG(JNOCE+2+ INCCE+2)
GO 7C 12

CGATINUE

READ ANC PeTMNT INPUT
PEAC (5,1021) IMOCE,

INODE, INOCE) + SX
X

X

SSG (INODE+) , INODE+1)
SSG(INIDE+14 JNODE+1)
SSG( JNODE+1 y JNODE +] )
SSG ( JINODE+1 , INODE+1)
SSG (INNDE~+Z, INODE+2)
SSG(INIDE+>, JNODE+2)
SSR(JNINE+?, JNODE+Z)
SSG(JINOCE+2, INONE+2)

DATA FCR LUNTEL MASSESC
MXY o MMI

I ¢+ 010+ +

Sy
Sy
Sy
SYy
STHETA
STHETA
STHETA
STHETA

1810
1820
1830
1840
18%0
1860
1870
1880
1890
1900
1610
1920
19320
1940
1950
1960
1970
1580
1990
2000
2010
2020
2030
2040
2050
2060
2070
2080
2090
2100
110
2120
2130
2140
2150
2160
2170
2180
2190
2200
2210
2220
2230
2240
2250
2260
2261
2262
2270
2290
22¢0
2200
2210
2320
2230
2340
2250
2360
2370
2380
2390
2400
2610
2420
<430
2440
2450



c

o O 0000

1021

1022

15

16
1023

1024

17
18

102%

19
20

61

FORMAT (15,2F10,0)

1F(INODE.EO.C) GO TO 15

WRITE (£41022) INODE, MXY,MM]

FORMAT (28HOADCED LUMPEC MASSES TC NIDE15+12HTRANSLATION
1 Ei0eé+ BHROTATIGN,E10.4)

MXY = MXY/38¢&04

MM] = MNY/2864.4

INCDE = 2@INODE - 2

SMG( INOTE)INDDE) = SMG( INODE, INODE) ¢ MXY

SMG( INOCE+l 4 INCCE+1) = SMG(INDDE+1l,INODE+l) ¢ MXY
SMG(INCCE+2,+INCCE+2) = SMG(INJODE+Z,INOCE+2) + MM?
GO YC 14

COATINUE

M™MODIFY STRUCTURE STIFFNESS AND MASS MATRICELS FO® CONSTRAINTS
DC 1¢ 1 = ) NUMNP

Ml = 37 - 2

M2 = 3% - ]

M3 = 3%l

IF(IRX(1)eNF.0) CALL MOCIFY(M1)

IF(IRY(1)eNE.O) CALL MNOCIFY(M2)

IF(IRT(1)eNEsO) CALL MCCIFY(M3)

CONTINUE

WRITE (£41023)

FORMAT (27TH1STRLCTURE STIFFNESS MATRIX)

NC = 10

DO 27 NCM = 1,21,10

WRITE (£491024) ((SSG(I14J)yJIusNCMyNC) o=l ,yM3)
FORMAT(1H ,1P10E11.3)

1F(M2=NC) 18€,18,17

NC = NC ¢ 10

NC = 10

WRITE (€,1025)

FORMAT (22H1STRUCTURE MASS MATRIX)

DC 1€ NCM = 1,21,10

WRITE (£€91024) ((SMG{TyJ)9yJ=NCVNC) y1=] ,M3)
IF(M2=-NC) 20,2Ce19

NC = NC ¢+ 10

CONTINUE

INVERT STRUCTURE MASS MATRIX AND I0ST MULTIPLY AY
STRUCTURE STIFFMESS MATRIX
CALL M1V (SMG,SMSG,M23,3(C)

CALL MMLLT(SMGySSGySMSG,30)

CALL MTXP
sTCP
ENC

SUBRCUTINE MODIFY (M)

COMMCK TITLE(18)yNUMNPy NUMEL ¢ XNP (10)sYNP(10)y IRX(1C)IRY(10)},
1 IRT(10)+CE(9) sEA(D)HIFEYT(9) +ESWI(O) oINP (O ), INP(S)
2 R(696)1ESM(696)9ESG(696)9S56(20030) EMM(646) EMG(696)
3 S¥G(20+30)¢SMSG(2C930)9L+EL:E +ECAVETsU4RG

N = 3%NUMNP

D0 1 I=1,N

SSG(14M) = 0,0

SSG(¥,1) = 0,0
SNG(IyM) = 0,0
SMG(My1) = 0,0
CONTINUE
SSG(MyM) = 1,0
SHG(MyV) = 1,0
PETUBN

ENC

2460
2470
2480
2490
2491

2500
2510
2520
2530
2540
2550
2870
2580
2590
2600
2610
2620
2630
2640
2650
2¢60
2670
2680
2690
<700
2710
2720
2730
2740
2750
2760
2770
2780
2790
2800
2810
2820
2820
2840
2850
2860
2870
2880
2890
2900
2910

MODIF
MOCIF
MODIF
MOCIF
MOC1F
MOCIF
MDD YF
MOOIF
MOCIF
MODIF
MODIF
MOOYF

10
20
a1
22
23
30
40
50
60
70
80
90

MODI 100
“0CI 110
~eCl 120
MCOI 130



62

SUBRCUTINE ELSTIF
COMMON TITLE(18)y NUMNPy NUMELXNP (199 yYNP(20)IRX(10)4IRY(10),

1 IRT(IODVJEECO) sEACOI+ERTILG) sESH(O) oINP(9) INP(9),
2 R(696)1ESM(696)+ESG(696) ¢SSG(30030) EMM(696) ¢EMG(606)
3 SMG(20930)ySMSGR(3Ce30)9L4ELsEIECAVET, U,RG,CR,C6
0011 =1,6

001 J = ),¢

ESM(I¢J) = 0,0

ESM(1+2) = ECA*E/EL

ESM(1,4) = =FESM(],]1)

ESM(441) = =ESN(1,1)

ESM(4e4) = ESM(1,1)

ESM(2,2) = 12,%E*E]/EL**3

ESM(Sy5) = ESM(2,2)

ESM(2+45) =—ESM(2,2)

ESM(5,2) ==ESM™(2,2)

ESM(293) = 6,*E*E1/(EL*EL)

ESM(2¢6) = FSM(2,2)

ESM(292) = ESM(2,2)

ESM(6,2) = ESM(2,3)

ESM(2,5) ==ESM(2,2)

ESM(5,3) ==ESM(2,2)

ESM(5,&) ==ESM(2,3)

ESM(645) ==ESM(2,3)

ESM(2,3) = ESM(2,2)%EL*EL/3,

ESM(Ee€) = ESM(2,3)

ESM(2,6) = ESM(342)/2e

ESM(6+3) = ESM(3,6)

PETURN

FND

SUBROUTINE ELVASS
COMMCN TITLE(18)sNUMNP, AUMEL s XNP(10) ¢ YNP(10),IRX(10)+IRY(10),

1 IRT(10)4FE(S) +EA(S)EET(9) yESWIO) yINP(9)yINP(9F),
2 0(696)1ESM(696)9ESG(696)9S36(30930)EMM(E46) 1EMG(646)
3 SHG130430)ySMSG(3Cy30)9LyEL.ELECAHET,UyRG4CR4CG
D01 1 = 1,46

D01 J = 146

E""(I'J' 2z 0.0

EMM(1+1) = U®EL/3

EMM(4¢4) = EMM(1,1)

EMM(144) = EMM(1,41)72,

EMM(491) = EMM(1,4)

EMM(292) = UREL*(136/35¢ ¢+ ((RG/EL'*%2,)%64/56)
EMM(5,5) = EMM(2,2)

EMM(245) = U*EL#(Se/7Ce = ((RG/EL)*9%2,)%6e/%0 )
EMM(542) = EVM(2,5)

EMM(292) = UEL*(11.721Co=EL +((Ru/ELI=%2,)2FL/10.)
EMM(342) = EMN(2,3)

ENMM(5,6) = =EMN(2,2)

EMM(645) = =FMM(Z2,3)

EMM(296) = UPEL*(~12,%FL/420e4 ((RG/EL)*%2)=EL/10.)
EMM(642) = CMM(2¢)

EMM(2,3) = USEL?*(EL*EL/205¢ +((RCG/ELI**2)3EL$EL#2,/15,)
EMM(6+£) = FMM(3,2)

EMM(3¢58) = =FMN(2,6)

EMM(543) = =EMM(2,46)

EMM(3+6) = USEL*(-EL*EL/140, ~((RG/EL)*#2,%EL9EL/30.)
EMM(643) = EMM(3,6)

RETURN

EnC

ELST!
ELSTI
ELST!
ELST!
ELSTI

ELSTI
ELST]
ELSTI
ELSTI
ELSTI
ELSTI
ELSTI
ELST
ELST
ELST
ELST
ELST
ELST
ELST
ELST
ELST
ELST
ELST
ELST
ELST
ELST
FLS”

ELMAS
ELMAS
ELMAS
ELMAS
ELMAS

ELMAS
ELMAS
ELMAS
ELMAS
ELMAS
ELMAS
SLMAS
ELMA
ELMA
ELMA
ELMA
ELMA
FLMA
ELMA
ELMA
FLMA
ELMA
ELMA
ELMA
ELMA
ELMA
€LMA

30
40
S0
60
70
80
90
100
110
120
130
140
150
160
170
180
190
200
210
220
230
240

10
20
21
22
23

30
40
50
60
70
80
90
100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
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10
11

12
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SUBROUT INE MIV (AyUyNM,V)
MATRIX INVERSICN BY GAUSS=JQROAN VETHOD
DINMENSICN A(MyM)yU(MyM)
0C 1 1=1,M

00 1 J=1,¥

UllyJi=C,

IF(1eEQed) U(T,4J)=1,0
COATINUE

EPS=C,0C00001

0C 11 T=1l,NM

K=1

TF(I=NM)246,2
IF(A(I,1)=FPS)2,4,6
IF(=A{1,1)=EPS)4y4,46
K=Ke]

D0 5 J=l,NM
UlTydi=l(19J14U(KRJ)
All:JIsA(T,J)+A(K,J)

GO TC 2

DIv=A(I,1)

NC 7 J=]l,NM

Ul Jdi=L(l,Jd)/01V
All,J)=A(1,J)/01V

DO 11 MM=],NM
DELT=A(VNM,])
IF(ARS(CELT)-EPS)1l,11,8
1F(MM=T)6G,11,9

0C 10 J=1,NM

UMM ) =U(MM, J)=U(],J)*CELT
A(MM,J)sA(MM, J)=A(T,JI*CELT
CONT INUE

D0 12 1=]l,NM

D0 12 J=1,yNM
A(T,J)sL(1.J)

RETURN

ENC

SUBROUT INE MMULT (A,8,CeN)}
OIMENSTICN A(NgNDIoB(NyN) yCINyN?
MATRIX MULTIPLICATION WCTS

D0 1 1 = 1,N

00 1 J = 14N

Cl14Jd) = 0.0

D0 1 K = 14N

CCIeJd) = ClT19J) ¢ ALLoKkI®R(K,J)
00 2 1=],N

DC 2 J=1,N

B(1,J) = C(1,yJ)

RETURN

ENC

SUBROUTINF MTMUL (A,B8,C,N)
DIMENSICN A(NGNIB(NyN) yC(NyN)
TRANSPCSE MULTIPLICATION

DG 1 1 = 1N

DO 1 J = 1,N

C(1sJ) = 0.0

00 1 K = 1yN

ClI,J) = ClTleJ) ¢ A(I, K)I*B(JyK)
RETURN

ENC

M1V
Mty
miy
M1y
MIV
MIiv
M1V
M1V
Mlv
My
MlV
uiv
M1V
MIV
M1V
M1V
“lv
MYy
viv
34"
M1V
M1V
Mlv
M1V
M1V
M1V
M1V
ulv
M1V
M1v
M1V
Miv
MIvV
M1V
MIV
MV

MMULT
MMULT
MMULT
YMULT
MMULT
MMULT
MMULT
MMULT
MMULT
vMUL
MMUL
MMUL
MMUL

MTMUL
MTMUL
MTMUL
MTMUL
MTMUL
MTMUL
MTNUL
MTMUL
MTMUL
MTHY

10

20

30

40

%0

60

70

80

90
100
110
120
139
140
150
160
170
if0
190
200
210
220
230
240
250
260
270
280
290
300
310
320
330
340
350
360

10
20
30
40
50
60
70
80
90
100
110
120
130

10
20
30
40
50
60
70
80
90
100
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SUBRCUT INE MTXP
CCMMCN TITLE(18)oNUMNP o NUMEL ¢ XNP(10) 9 YNP(10) IRX(10),IRY(10),
IRT(10)4EE(9)yEALD)EET(9) yFSH(T) yINP(O),yINP(9),
R(69&)1ESM(616)91ESG(696)9STG(30030),EMM(E,6)4EMG(696)
SMG(20930)9ySMSG(3C9y30)9L +EL+E +ECAIELyUyRGHCRHCG
COMMCN /MATEXP/ C(60960)¢HP(60+6C)4A(60960) +OPT (60,60) ¢X(60),
F{30)92(60),Y(60) yXIE(E0) yTOP(60) o1 TMAX KK oL L oMM,
JJFLAGyNI g TIMZ , TMAXyT?EROWMEy Ty 1129 ICONTR,
PLTINC,MATYES, 1CCSy JFLAG4PLT, IONODE
COMMCN /PLOT/ TPLOT(99) oXPLOT(99)

W W

THIS PRCGRAM CALCULATES THE SOLUTION NF A MATRIX OF FIRST

“TXP
MTXP
MTXP
MTXP
MTXP
MTXP
MTXP
MTXP
NTXP
MTXP
MTXP
MTXP
MYXP

ORCERy STMULTANEOUS DIFFERENTIAL EOUATIONS W/ CONSTANT COEFFICIENTMTXP

OF T+E FORM DX/0T = AX ¢ Z,
THE METHCO 1S PAVNTER-S MATRIX EXFONENTIAL METHQOD

THE SOLUTION IS GIVEN FCR INCREMENTS CF THE INDEPENDENT
VARTABLE (T) FRCM TZERO THROUGH TMAX

CCMPUTES MATRICES C = EXP(A*T) ANC
HP = (C=1)%A INVERSE
SOLUTION XIN®T) = C*X((N=1)%T)+HP#Z ((N-1)»T)

OUTPUT FRCM THE PROGRAM IS PRINTED AT INTERVALS PLTINC.
THE PROGRAM USES SUBROUTINES DISTR8 AND OUTPUT

NI=0 ON 1=-ST PASSe SET TO 1 ON 1-ST CALL OF CUTPUT,

N1=0

NE = §3AUMNP

M3 = ISANUMNP

00 21 = 1,M3

J =14+ M3

AllyJ) = 1,0

00 3 1 = 1,M3

IMN2 = 1 ¢ M3

A(IN3,1IPM3) = <CR

00 2 J = LyM2

JM3 = J 4 M3

ALIM2,JM2) = A(IM3,JM3) = CG*SNSG(I,J)
A(IN2,J) = =SMSG(T1,J)

JJFLAG=C

CALCULATICN OF MATRIX EXPONENTIALS C AND HP
00 & 1I=],NF

C(%1i=],

00 7 sl NE

HP (19 1)aT

00 9 I=]yNE
00 9 J=1,NE
QPT(14J)=C(1,4J)

FORM THE MAT®IX EXPONENTIALS C=EXP{A»T) AND HP=((C=I)#A INVERSE)
AL=1.0

DC 18 KL=1, ITMAX

KL¥sKL

ALL=T/AL

AL=AL+1,.0
TALLL=T/AL

MTXP
MTXP
MTXP
MTXP
MTXP
MTXP
MTXP
MTXP
MTXP
MT XP
MTXP
MTXP
MTXP
MTXP
MTXP
MTXP
MTXP
MTXP
MTXP
MTXP
MTXP
MTXP
aTXP
MTXP
MTXP
MTXP
MTXP
MTXP
MTXP
MTXP
MTXP
MTXP
MTXP
MT XP
MTXP
MTXP
MTXP
MTXP
MTXP
MTXP
MTXP
MTXP
MTXP
MTXP
MTXP
MTXP
MTXP
MTXP
MTXP
MTXP
MTXP
MTXP
MTXP



11

12

[a NaXg!

13
14
15
16

18

AOOOOO

22

o 000 O
4
o
<

23
24
25
26

27
28
29

c
C ONE
C NOwW

30

3l
32

34
1002

1003
40
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DC 12 ts],NE

00 11 J=14NF

TOP(J)=0,0

00 11 Kx=1,NE -
TOR(JInTOP(I)OCPT (T oKX IZA(KX,J)

00 12 Js1.NE
OPT(1+J)=TOP(J)*ALL

QP T=MATRIX TERM IN SERIES APPROXe =((A*T)##K) /K FACTORIAL

00 13 I=1,NE

00 13 J=1,NE
ClIyJ)=C(1,J)¢QPT(1,4J)
TF(ITMAX=KL)17,417.18

D0 16 1=1+NE

00 1€ J=1,yNE

HP (19J)sHP( 19J)40PT(1,J08TALLL
CONTINUE

CONTINUE

C(1yJ) IS THE MATRIX EXPONENTIAL C=EXP(AsY)
ANC EP(19J) ¥S THE ((C=1)®A INVERSE) MATRIX
WE READ (OFR CALL SUBRCUTINE FOR} CISTUREANCE VECTOR

TIVMEsTZ2ERD
PLT=0.
CALL CISTRB

" ON 1-ST CALL OF OUTPUT NI SET TO 1

CALL CuTpPUT

COVMES THE FOQUATION SOLUTION BASED ON
XCKT )=MaX{NT=1)4((M=1)A INVe)*Z(NT=1)
CONTINUE

1F(JJFLAG)24+25+24

CALL CISTRB

COATINUE

DO 27 1s=1,NE
Y(I)sC(Is10®X(104HP(141)%2(1)

D0 27 J=2:NE
YAI)=Y(ID4C(ToJ)eX(J)4HP (T, J)22(J)
DN 29 1=1,NE

X(1)=y(1)

TIFE INCREMENT CF THE SCLUTICN HAS JuST BEEN FOUND
PLCT ANC PRINT IF PLTINC INTERVAL HAS ELAPSED

JJIFLAG=]

TINERTINEST

PLY=PLTT
IF(PLT=PLTINC)31,30,30
CALL CUTPUT

PLT=0,
IF(TINE=-TMAX ) 22,3232
PLT=C.0

N1 = NI -1

WRITE (7,1002) Nt

FOPMAT (12)
IF(ICNOCELFO.0) GC TO 4C
WRITE (7,1003) ((TPLOT(I)eXPLOT(I)) 1m1,NT)
FOFMAT (8E10,3/(8F1063))
RETURN

ENC

MTXP 860
MTXP 670
MTXP 680
MTXP 890
MTXP 900
MTXP 910
MTXP 920
MTXP 930
MTXP 940
MTXP 950
MTXP 960
MTXP 970

MT XP

980

MTXP 990

uTX
MT X
MY X
MTX
MTX
MTX
MTX
MT X
MTX
MTX
MTX
MTX
MTX
MTX
uTX
MT X
MTX
MT X
MTX
MTX
MTX
MTX
MTX
MTX
MTX
MTX
MTX
mTX
MTX
MTX
MTX
nTX
MT X
MTX
MTX
MTX
MTX
MTX
MTX
MTX
MTX
MTX
MTX
MTX
MY X
MTX

MT X
MTX

NTX
MTX

MTX

1000
1010

-1020

1030
1040
1050
1060
1070
1080
1090
1100
1110
1120
1130
1140
1150
1160
1170
1190
1190
1200
1210
1220
1230
1240
1250
1260
1270
1280
1290
1200
1310
1320
1330
1240
1350
1360
1370
1380
12900
1400
1410
1420
1430
1440
1480

1490
1500

1510
1520

1540
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1001

w

1002

1004 FORMAT(1H1y EHTIME =41PE10e3+1X+29:1X=DTISPLACEMENT Y-DISPLACEMENT,
16X+8FROTATICON 95X 91 CHX=VELOCITY »5X:10HY=VELOC ITY ySX910HT=VELOCITY)

8
1005
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SUBRQUT INE CUTPUT
COWMMCN TITLE(18)¢NUMNPyNUMELyXNP(1D0)1oYNP(10)IRX(107,1IRY(10),
IRT(10)+EE(9) sEA(I)FET(9) ,ESW(S),INP(O),JINP(9),
P69 &) sESM(696)9ESGIEyE) ¢SSG(30930)9FMM(6+6) yEMG(6,46),
SMG(20¢30)ySMSG(3C930) 9L +FLyF +ECA+ET¢U+RG,CRHCG
COMMCN /MATEXP/ C(60¢£0)yHP(60+6C),A(60,960) yOPT (60+60) 9X(60),
F(20)42(60),Y(60) ¢yXIC(6GC) sTOP(60) 9T TMAX KKy LL MM,
JUFLAGoANT+TIME, TM/ X e T?EROINEy Ty 1129 ICONTR,
PLYINCyMATYES,y ICCSy JFLAG4PLT, TONODE
COMMCN /PLOT/ TPLDT(99) (XPLAT(<G)

W WA -

TF(NTIT,41,7

NI=)

NC=10

DO 2 NCF=1,51,10

WRITE(6,1001} (CLA(T9J)eJsNCMyNC) 4121 ,NE)
FORMAT (2H1 A /(14 21P10E11.3))

IF(NE=NC) 23,3,2

NC=NC+lC

NC=1C

DO 4 NCv=1,51,10

WRITE(E 410021 ((C(TyJ1yJ=NCMgNC) 3=y NE)
FORMAT (2HOC/ (1M ,1P10E11.3))

IF(NE=NC) 54594

NC=NCelC

NCs=lC

00 6 NCV=]1,51,410

WRITE (6 41002) ((HP(14J)¢J=NCMyNC),]=]1,NE)
FORNMAT (2KCHO/(1H ,1P10E11.2))

TF(NE=NC) 7+¢7+6

NC=NC+1C

WRITE (£41004) TIME

DO 8 1 = 1,NUYNP
Ké = NF/2 + 31
XS Ké ~1
K4 KS =1
K3 = 3»]
K2 = K3 -1
Kl = K2 =1
IF(ICNOCE.EQ0.0) GO TO 8
TPLOT(NI) = TIME
XPLOT(NTI) = X(3*ICNODE - 2)
WPITE (€41005) JToaX(K1)gX(K2)yX(K2;9X{K&HY oXI(KS)yX(KE)
FORMAT (1H »11+-NODE NUMEER,15,6(5%91PE10s3})
M? a KY ¢
RF TURK
ENC

OUTPU 10
OUTPU 20
ouTPU 21
OUTPU 22
ouUTPU 23
OuTPU 30
OuUTPU 31
OUTPU 32
ouTPU 33
OUTPU 40
OUTPU 50
OUTPU 60
OUTPU 70
ouTPU 80
OUTPU 90
nUTP 100
ouTP 110
OuUTP 120
CUTP 130
OUTP 140
ouTP 150
nuTP 160
ouTP 170
OUTP 180
ouTP 190
OuTP 200
auTP 210
ouTP 220
oUTP 230
OUTP 240
OuUTP 250
OUTP 260
ouTP 270
ouUTP 280
ouTP 200
OUTP 300
ouTP 310
ouTP 320
ouTP 321
OuUTP 330
QUTP 240’
ouTP 350
ouTP 360
ouTP 370
OUTP 380
ouUTP 390

OuTP 400
OUTP 410
oUTP 420
OUTP 430
OUTP 48C
OUTP 490
ocuTP 500



WA= WA -

SUBRCUT INE DISTRS

COMMCN TITLE(18)yNUMNPy NUMELsXNP(10)¢YNP(10)y IRX(10),1IRY(20),
IPT(10)4EE(9) yEA(S)IHVEEI(9),ESW(9) ,INP (O ), UJNP(9),
R(696)1ESM(E96)9ESGL6+16)9SSG(30+030)EMM(6,6)EMG(E46),
SMG(20930)9ySMSG(3Cy30) oL +ELIEIECAVET14UyRGHCRHCG
COMMCN /MATEXP/ C(60+60)yHP(60+60),A(60,60) yOPT (60960) 9X(60)
F(20)+2(60)9Y(60) s XICCEC) ¢yTCP(60) oI TMAX KK oL L yMM,
JIFLAGoNIyTIME,TVAX 3 T2EROsNEy T+ 11 2,ICONTR,
PLTINC,MATYES,1CCSyJFLAGyPLT,y IONODE

M3 = 2%AUMNP

FT = 1o = 10.*(TIME + T/2,)
IF(TIVELCTe0.1) FT = 0,C
Fl = 2000,*FT

F2 = 40C0e*FT

F3 = =2000,*FT

F(4) = F1

F(?7) = F2

F(10) = F3

DN11s=1,M2

J =1 ¢ M3

2(J) = 0.0

D0 1 K = 1,M2

ZCJ) = 2(J) ¢ SMGLI, KISF(K)
RFTURN

ENC
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D1ISTR
DISTR
OISTR
DISTR
DISTR
DISTR
DISTR
DISTR
o1sTe
DISTR
D1STe
01STR
DISTR
DISTR
DISTP
D1IST
D1ST
DIST
D1ST
DIST
DIST
CIST
D1ST
oISTY
DIST
DIST

10
20
21
22
23
30
3
32
23
40
50
60
70
80
90
100
110
120
130
140
150
160
170
180
190
200
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