University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange

12-1970

Transient Response of Linear Elastic Structures Determined by the Matrix Exponential Method

William Christopher Terrill Stoddart
University of Tennessee - Knoxville

Follow this and additional works at: https://trace.tennessee.edu/utk_gradthes
Part of the Mechanical Engineering Commons

Recommended Citation

Stoddart, William Christopher Terrill, "Transient Response of Linear Elastic Structures Determined by the Matrix Exponential Method. " Master's Thesis, University of Tennessee, 1970.
https://trace.tennessee.edu/utk_gradthes/1356

This Thesis is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Masters Theses by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact trace@utk.edu.

To the Graduate Council:
I am submitting herewith a thesis written by William Christopher Terrill Stoddart entitled "Transient Response of Linear Elastic Structures Determined by the Matrix Exponential Method." I have examined the final electronic copy of this thesis for form and content and recommend that it be accepted in partial fulfillment of the requirements for the degree of Master of Science, with a major in Mechanical Engineering.

John E. Akin, Major Professor

We have read this thesis and recommend its acceptance:
L. Raymon Shobe, Paul Nelson, Jr.

Accepted for the Council:
Carolyn R. Hodges
Vice Provost and Dean of the Graduate School
(Original signatures are on file with official student records.)

To the Graduate Council:
I am submitting herewith a thesis written by William Christopher Terrill Stoddart entitled "Transient Response of Linear Elastic Structares Determined by the Matrix Exponential Method." I recommend that it be accepted for nine quarter hours of credit in partial fulfillment of the requirements for the degree of Master of Science, with a major in Engineering Mechanics.

We have read this thesis and recommend its acceptance:

Accepted for the Council:

Vice Chancellor for Graduate Studies and Research

TRANSIENT RESPONSE OF LINEAR ELASTIC STRUCTURES DETERMINED BY THE MATRIX EXPONENTIAL METHOD

A Thesis
Presented to the Graduate Council of The University of Tennessee

In Partial Fulfillment
of the Requirements for the Degree Master of Science
by
William Christopher Terrill Stoddart
December 1970

ABSTRACT

This investigation was undertaken to develop a numerical solution for the transient response of linear, elastic structures based on the matrix exponential solution for first order, linear, constant coefficient differential equations. The investigation was prompted by the need for an economical technique that can be used to analyze multidegree of freedom systems exemplified by piping and structural components associated with nuclear power plants.

A mathematical model characterizing the behavior of linear, elastic structures was developed by using state variables of displacement and velocity. The structure consists of beam elements of uniformly distributed mass, weightless springs, and rigid masses. The stiffness and mass matrices for the beam elements and techniques for treating boundary conditions were investigated. A digital computer program was written to perform the transient solution. The transient response was determined for three simple structures by using the computer program, and the results obtained agree favorably with previously reported analytical and experimental data.

TABLE OF CONTENTS

SECTION PAGE

1. INTRODUCTION 1
2. REVIEW OF LITERATURE 3
3. MATHEMATICAL MODEL FOR A COMPLETE STRUCTURE 5
Dynamic Equations 5
Introduction of State Variables 6
Matrix Exponential Solution. 6
Boundary Conditions 10
Formation of Structure Matrices. 10
4. MATHEMATICAL MODEL OF STRUCTURE ELEMENTS 13
Stiffness and Mass Matrices for Axial Motion 14
Stiffness and Mass Matrices for Transverse Motion. 17
Stiffness and Mass Matrices for Single Beam Element. 24
5. DEVELOPMENT OF COMPUTER PROGRAM. 26
6. TRANSIENT RESPONSE OF SIMPLE STRUCTURES 29
First Example Problem 29
Second Example Problem 30
Third Example Problem 34
7. CONCLUSIONS AND RECOMMENDATIONS 39
Conclusions 39
Recommendations 40
LIST OF REFERENCES 42
SECTION PAGE
APPENDIXES 45
A. FLOW CHART FOR COMPUTER PROGRAM. 46
B. PROGRAM LIMITATIONS 51
C. INPUT DATA FORMAT. 52
D. COMPUTER PROGRAM OUTPUT. 55
E. COMPUTER PROGRAM LISTING 56
VITA 68

LIST OF FIGURES

FIGURE PAGE
4.1 Beam Element for Axial Motion. 14
4.2 Beam Element for Transverse Motion 17
6.1 Three-Degrees-of-Freedom Model With Weightless Springs and Lumped Masses for First Example Problem 29
6.2 Applied Loads for the Three-Degrees-of-Freedom Model of the First Example Problem 30
6.3 Example One Response of Three-Degree System. 31
6.4 Simply Supported Beam of Second Example Problem. 32
6.5 Response at Point of Loading for a Simply Supported Beam 33
6.6 Elevation and Plan Views of Small Tower of Third Example Problem 35
6.7 Model for Small Tower of Third Example Problem 36
6.8 Base Motion Accelogram for Small Tower of Third Example Problem 37
A. 1 Symbols Used in Flow Chart for Computer Program. 47
A. 2 Flow Chart for Computer Program Developed to Implement Solution of Transient Dynamics of Plane Structures 48

1. INTRODUCTION

Several areas in structural design confronting the nuclear industry can generally be classified as transient or time varying. Examples of these are aseismic design, emergency action such as blowdown, or accidents involving the shipment of radioactive material. Designers must consider the circumstances and consequences of the situation and take appropriate steps to insure safe operation of the system involved. In doing so, the designer faces several difficulties: the time available to obtain a solution is limited, the problems can generally be classified as complex, and the assumptions made to obtain a model that can be readily analyzed may greatly affect the answers obtained. Fortunately, large and fast digital computers have become widely available, and this availability results in some reduction of the difficulties caused by limited time.

Several methods are currently used to develop a model of the physical system and to select a solution technique. Quite often, the structure is modeled as a collection of rigid masses and weightless springs. An alternate choice involves finite element methods to minimize error. When selecting a solution technique, the designer must decide what information is to be obtained as a result of the analysis. This may be a complete time history of displacements or simply estimates of the maximum relative displacements. If only estimates of maximum relative displacement are required, the widely known modal superposition methods in combination with a response spectrum may be used. If a complete time history is required, some form of integration of the
equations of motion will be needed. If an economical, easy to use, and accurate method for performing the direct integration were available, this technique would appear to be the logical choice under all circumstances in that all the data of interest to the designer would be available in the results of the analysis.

One of the many possible numerical procedures is presented in the following sections of this document. The findings of a literature review relative to methods for determining the transient response of multi-degree of freedom systems are discussed in Section 2. A mathematical model for a complete structure is developed in Section 3, and a derivation of the stiffness and mass matrices which describe a single beam element of the structure is presented in Section 4. The development of a computer program for the matrix exponential solution is described in Section 5, use of this computer program is demonstrated in Section 6, and the conclusions and recommendations resulting from this investigation are presented in Section 7.

2. REVIEW OF LITERATURE

Interest in the transient response of linear, elastic mechanical systems occurs in many fields. However, the literature surveyed in the course of this investigation was limited primarily to research documents sponsored by the United States Atomic Energy Commission and the National Aeronautics and Space Administration and to standard textbooks.

Most current methods for determining the transient response of multi-degree of freedom systems may be separated into two categories. The first is superposition of modal response patterns, and the second is direct integration. The application of both of these methods is illustrated in a recent review of seismic design analysis methods (1)* wherein a linear elastic structural model is formulated by either the lumped parameter or finite element method and the modal analysis technique is recommended for computing both steady state and transient dynamic responses.

The dynamic equations for linear, elastic mechanical structures are characterized by constant coefficients and may be quite readily expressed in matrix form. Since these equations are second order, the solution algorithms generally found in textbooks do not fully exploit the constant coefficient characteristic. The matrix exponential method has been presented (2) as a means of solving a set of first order differential equations that are constant coefficient and linear. This method

[^0]has recently received wide attention because of the availability of digital computers. Numerical techniques used in the time domain and in the frequency domain analyses of linear time-invariant systems have been reported by M. L. Liou (3,4). A bound for round-off error involved in digital computation of the transition matrix of a system of linear timeinvariant differential equations has been developed and a method of computer selection of the step size and number of series terms in transition matrices has been presented by J. B. Mankin, Jr., and J. C. Hung (5, 6).

A technique for determining the transient response of structures that is based on a Taylor series expansion for displacement and velocity has been presented by A. Craggs (7,8). However, the solution presented was developed only for simple mechanical systems, and the definite relation to the matrix exponential method was not presented. The dynamic equations are rewritten as a coupled set of first order equations in Section 3 of this thesis, and it is shown that the solution methods presented by Craggs $(7,8)$ are simply an approximation to the matrix exponential solution.
3. MATHEMATICAL MODEL FOR A COMPLETE STRUCTURE

In order to apply the matrix exponential solution method to the problem of determining transient structural response, the equations of motion for the structure must be written as a coupled set of first order, linear differential equations. Since only linear elastic structures are considered in this investigation, these equations will have constant coefficients. The equations of motion for the structure are presented in a form compatible with the matrix exponential method in this section, and the matrix exponential solution for these equations is derived.

3.1 Dynamic Equations

The equations of motion for a multi-degree of freedom system may be conveniently written in matrix equation form as

$$
\begin{equation*}
M \ddot{x}+C \dot{x}+K x=f(t), \tag{3.1}
\end{equation*}
$$

where

```
        M is the structure mass matrix,
            C is the structure damping matrix,
            K is the structure stiffness matrix,
            x is the structure displacement vector,
            \dot{x}}\mathrm{ is the structure velocity vector,
            \ddot{x}}\mathrm{ is the structure acceleration vector, and
f(t) is the time varying vector of applied loads.
Unless noted otherwise, capital letters are used to denote matrices and
lower-case letters are used to denote vectors and scalars. Where
```

necessary to improve clarity of presentation, brackets, [] , and braces, $\}$, are also used to denote matrices and vectors.

3.2 Introduction of State Variables

To mathematically simplify the dynamic equations, it is desirable to develop a set of coupled first order differential equations that is equivalent to the set of second order differential equations. This may be accomplished by solving explicitly for the acceleration vector in Equation 3.1 and incorporating an identity relationship involving the velocity vector. Solving Equation 3.1, the acceleration vector

$$
\begin{equation*}
\ddot{x}=-M^{-1} C \dot{x}-M^{-1} K x+M^{-1} f(t), \tag{3.2}
\end{equation*}
$$

where the superscript -1 denotes inversion. The necessary identity is

$$
\begin{equation*}
\dot{x}=I \dot{x}, \tag{3.3}
\end{equation*}
$$

where I is the identity matrix. By combining Equations 3.2 and 3.3, the following set of first order coupled differential equations is obtained.

$$
\left\{\begin{array}{l}
\dot{x} \tag{3.4}\\
\ddot{x}
\end{array}\right\}=\left[\begin{array}{ll}
\Phi & I \\
-M^{-1} K & -M^{-1} c
\end{array}\right]\left\{\begin{array}{l}
x \\
\dot{x}
\end{array}\right\}+\left\{\begin{array}{l}
\phi \\
M^{-1} f(t)
\end{array}\right\},
$$

where Φ and Φ denote the null matrix and null vector, respectively.

3.3 Matrix Exponential Solution

For the free vibration case, $f(t)=\Phi$, the solution to Equation 3.4 is as follows. Let

$$
A=\left[\begin{array}{cc}
\Phi & I \tag{3.5}\\
-M^{-1} K & -M^{-1} C
\end{array}\right]
$$

Integrating from time t to $t+\tau$ yields

$$
\left\{\begin{array}{l}
x \tag{3.6}\\
\dot{x}
\end{array}\right\}_{t+\tau}=[\exp A \tau]\left\{\begin{array}{l}
x \\
\dot{x}
\end{array}\right\}_{t},
$$

where
t is time,
τ is the time increment, and
$[\exp A \tau]$ is the matrix exponential function of A.

The subscripts t and τ are used to denote the point of evaluation in time.

A complete development of this solution has been presented by Zadeh and Desoer (2, Chapter 5). A less rigorous proof is as follows. Let

$$
\begin{equation*}
\dot{y}=B y \tag{3.7}
\end{equation*}
$$

represent any linear, constant coefficient set of coupled differential equations. Then

$$
\begin{align*}
\dddot{y} & =B \dot{y} \\
& =B^{2} y . \tag{3.8}
\end{align*}
$$

Similarly,

$$
\begin{equation*}
\frac{d^{3} y}{d t^{3}}=B^{3} y \tag{3.9}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{d^{m} y}{d t^{m}}=B^{m} y \tag{3.10}
\end{equation*}
$$

Let y be expanded in a Taylor series at time $t+\tau$.

$$
\begin{equation*}
y_{t+\tau}=y_{t}+\tau \dot{y}_{t}+\frac{\tau^{2}}{2!} \ddot{y}_{t}+\ldots+\left.\frac{\tau^{m}}{m!} \frac{d^{m} y}{d t^{m}}\right|_{t}+\ldots \tag{3.11}
\end{equation*}
$$

After substituting the appropriate derivatives, Equation 3.11 becomes

$$
\begin{equation*}
y_{t+\tau}=\left[I+\tau B+\frac{\tau^{2}}{2!} B^{2}+\ldots+\frac{\tau^{m}}{m!} B^{m}+\ldots\right] y_{t} \tag{3.12}
\end{equation*}
$$

which is by definition

$$
\begin{equation*}
y_{t+\tau}=[\exp B \tau] y_{t} . \tag{3.13}
\end{equation*}
$$

The exponential matrix, $[\exp A \tau]$, is also called the transition matrix and is the same as that discussed by Craggs (7, page 2) and labeled as T.

For time increments, τ, such that the forcing function may be considered constant within the time step, the solution to the forced vibration problem is as follows. Consider the set of nonhomogeneous, linear, constant coefficient differential equations

$$
\begin{equation*}
\dot{y}=B y+g(t) \tag{3.14}
\end{equation*}
$$

where $g(t)$ denotes the vector of time-dependent forcing functions. The solution is developed through a variation of parameters. Assume a solution of the form

$$
\begin{equation*}
y=[\exp B t] u \tag{3.15}
\end{equation*}
$$

where u is a yet undetermined vector. Substituting this into Equation 3.14 yields

$$
\begin{equation*}
[\exp B t] \dot{u}+B[\exp B t] u=B[\exp B t] u+g(t), \tag{3.16}
\end{equation*}
$$

or

$$
\begin{equation*}
\dot{\mathrm{u}}=[\exp -B t] g(t) \tag{3.17}
\end{equation*}
$$

The solution to Equation 3.17 is as follows:

$$
\begin{equation*}
u_{t}=u_{0}+\int_{0}^{t}\left[\exp -B t^{\prime}\right] g\left(t^{\prime}\right) d t^{\prime} \tag{3.18}
\end{equation*}
$$

Equation 3.18 may be substituted into Equation 3.15 to yield

$$
\begin{equation*}
y=[\exp B t] u_{0}+[\exp B t] \int_{0}^{t}\left[\exp -B t^{\prime}\right] g\left(t^{\prime}\right) d t^{\prime} \tag{3.19}
\end{equation*}
$$

The initial value of u, u_{o}, may be determined by evaluating the assumed behavior of y at time zero.

$$
\begin{equation*}
y_{0}=u_{0} . \tag{3.20}
\end{equation*}
$$

Thus,

$$
\begin{equation*}
y_{t}=[\exp B t] y_{0}+[\exp B t] \int_{0}^{t}\left[\exp -B t^{\prime}\right] g\left(t^{\prime}\right) d t^{\prime} . \tag{3.21}
\end{equation*}
$$

If $g(t)$ is a constant vector, g, we may write

$$
\begin{equation*}
y_{t}=[\exp B t] y_{0}+[\exp B t] \int_{0}^{t}\left[\exp -B t^{\prime}\right] d t^{\prime} g \tag{3.22}
\end{equation*}
$$

The integral may be evaluated to yield

$$
\begin{align*}
y_{t} & =\left[\begin{array}{ll}
\exp B t
\end{array}\right] y_{0}+\left.[\exp B t]\left[-[B]^{-1}\left[\exp -B t^{\prime}\right]\right]\right|_{0} ^{t} g \\
& =\left[\begin{array}{ll}
\exp B t
\end{array}\right] y_{0}+[\exp B t] B^{-1} g-B^{-1} g \\
& =[\exp B t] y_{0}+[[\exp B t]-I] B^{-1} g \\
& =\left[\begin{array}{ll}
\exp B t
\end{array}\right] y_{0}+\left[I+B t+B^{2} \frac{t^{2}}{2!}+\ldots-I\right] B^{-1} g \\
& =\left[\begin{array}{ll}
\exp B t
\end{array}\right] y_{0}+\left[B t+\frac{B^{2} t^{2}}{2!}+\cdots\right] B^{-1} g \\
& =\left[\begin{array}{ll}
\exp B t
\end{array}\right] y_{0}+t\left[\sum_{k=1}^{\infty} \frac{B^{k-1} t^{k-1}}{k!}\right] g . \tag{3.23}
\end{align*}
$$

Applying the results of the solution given in Equation 3.23 to the coupled equation of motion given in Equation 3.4 yields Equation 3.24.

$$
\left\{\begin{array}{l}
x \tag{3.24}\\
\dot{x}
\end{array}\right\}_{t+\tau}=[\exp A \tau]\left\{\begin{array}{l}
x \\
\dot{x}
\end{array}\right\}_{t}+\tau\left[\sum_{k=1}^{\infty} \frac{[A]^{k-1} \tau^{k-1}}{k!}\right]\left\{\begin{array}{l}
\phi \\
M^{-1} f(t)
\end{array}\right\}_{t}
$$

3.4 Boundary Conditions

All that remains to be done to develop a complete set of algorithms is to present a method of treating prescribed zero displacement, velocity, and acceleration boundary conditions as are found at restrained node points in structures. In finite element programs for static analysis, it is common practice to accommodate boundary conditions by modifying the stiffness matrix and applied load vectors to incorporate known nodal displacements. All that is required to accommodate a zero displacement is to delete all of the off-diagonal row and column elements of the stiffness matrix, set the diagonal element equal to unity, and set the applied load associated with that particular node equal to zero.

A parallel procedure may be used to accommodate zero displacement and velocity boundary conditions. For any degree of freedom of the structure for which the prescribed displacement and velocity are zero, the associated off-diagonal row and column elements of the A matrix are deleted, the diagonal element is set equal to unity, and the proper terms in the $M^{-1} f$ vector are deleted.

3.5 Formation of Structure Matrices

The stiffness matrix for the structure may be readily determined by using the principle of superposition commonly relied upon in elementary mechanics. If a point within the structure is designated as a node
point and all the structural elements connected to that node point are considered in sequence, the stiffness associated with this node point may be determined by linear superposition (addition) of the appropriate portions of the stiffness matrices of each individual element for all connected elements.

The mass matrix for the structure may be determined by using a procedure identical to that used to determine the stiffness matrix. In the case of the stiffness matrix, the potential energy of the structure is related to the node point displacements. The stiffness matrix and the node point displacement may be used to compute the potential energy of the structure. In a similar manner, the velocity of the structure node points and the mass matrix of the structure determine the kinetic energy of the structure. Thus, linear superposition of the appropriate inertial properties of all elements connected to a given node may be used to determine the mass matrix of the structure.

Because of the general lack of knowledge about the exact velocity dependence of energy dissipative processes in structures, it is common practice to assume that the damping in the structure is a linear function of node point velocities. This may be readily incorporated into the mathematical model of the structure when modal analysis procedures are used. The same procedure used in modal analysis could be used with the matrix exponential solution, but that course was not followed in this investigation. An approximate representation of damping may be incorporated into the structure by considering two sets of dampers: one associated with the node point inertial characteristics and the other associated with the node point stiffness characteristics, as suggested
by Biggs (9, pages 140-147). The magnitude of the inertial associated damping coefficient matrix, $\mathrm{C}_{\mathbf{r}}$, is

$$
\begin{equation*}
C_{r}=c_{r} M, \tag{3.25}
\end{equation*}
$$

where c_{r} is a scalar constant defined explicitly later. The magnitude of the stiffness associated damping coefficient matrix, C_{g}, is

$$
\begin{equation*}
c_{g}=c_{g} K \tag{3.26}
\end{equation*}
$$

where c_{g} is a scalar constant defined explicitly later. Biggs (9, pages 140-147) presents a method for determining these two sets of coefficients by substitution into the following equation.

$$
\begin{equation*}
c_{g} \omega^{2}+c_{r}=\eta 2 \omega, \tag{3.27}
\end{equation*}
$$

where η is the ratio of actual to critical damping at the circular frequency ω. Thus, the damping ratio, η, may be set at any desired level at two separated frequencies. This determines the damping ratio at all other frequencies. The total structure damping matrix is therefore determined by

$$
\begin{align*}
C & =c_{r}+C_{g} \\
& =c_{r} M+c_{g} K . \tag{3.28}
\end{align*}
$$

An example of the use of this approximate method of representing structural damping is presented in the third example problem in Section 6 of this document.

As discussed in Section 3, the relationship between applied forces, displacements, velocities, and accelerations of node points of a structure may be expressed in matrix form. The matrices used were the structure stiffness matrix and the structure mass matrix. The structure stiffness matrix and the structure mass matrix are completely determined by the properties of the elements which make up the structure and by the boundary conditions of the structure. Boundary conditions were considered in Section 3. A derivation of the stiffness and mass matrices which describe a single beam element of the structure is presented in this section.

The stiffness and mass matrices derived are neither original nor the most general possible for the particular element considered. They were derived and included in this document to insure completeness for the reader unacquainted with finite element techniques. Several authors have derived beam element stiffness and mass matrices under assumptions similar to those made herein, and the reader is directed to the work reported by Archer (10), McCalley (11), Kapur (12), and Gallagher and Lee (13) for comparison. Under similar assumptions, the derived matrices agree with those given in the cited references in all cases.

The beam element matrices may best be developed if the axial and transverse portions of the motion of the beam are considered separately. The incorporation of rigid masses and weightless springs into the mass and stiffness matrices of the structure is not presented in this document because of its simplicity.

4.1 Stiffness and Mass Matrices for Axial Motion

Consider the beam element illustrated in Figure 4.1. Assume that the axial displacement, $w(2)$, of any point on the beam may be represented by

$$
\begin{equation*}
w(z)=m+n z, \tag{4.1}
\end{equation*}
$$

where m and n are arbitrary constants and z is the position on the beam, as illustrated in Figure 4.1. Substituting for the axial displacement of Ends 1 and 2 of the beam results in the equation

$$
\begin{equation*}
w(z)=w_{1}+\frac{w_{2}-w_{1}}{L} z, \tag{4.2}
\end{equation*}
$$

where w_{1} and w_{2} are the axial displacements of Ends 1 and 2 of the beam, respectively. Equation 4.2 may be rewritten in matrix form as follows.

$$
w(z)=\left[1-\frac{z}{L} \quad \frac{z}{L}\right]\left\{\begin{array}{l}
w_{1} \tag{4.3}\\
w_{2}
\end{array}\right\}
$$

From the strain-displacement relations, the axial strain, $\in(2)$, at any point in the beam is obtained by differentiating the displacement with respect to 2 . The result of this operation is given in Equation . 4.4 .

Figure 4.1. Beam Element for Axial Motion.

$$
\epsilon(z)=\left\lfloor-\frac{1}{L} \quad \frac{1}{L}\right\rfloor\left\{\begin{array}{c}
w_{1} \tag{4.4}\\
w_{2}
\end{array}\right\} .
$$

The strain energy, U_{A}, absorbed within the beam element may be expressed as

$$
\begin{equation*}
\mathrm{U}_{\mathrm{A}}=\frac{1}{2} \int_{\text {volume }} \epsilon(z) \sigma(z) \mathrm{dV} \tag{4.5}
\end{equation*}
$$

where $\sigma(z)$ is the axial stress at any point on the beam and $d V$ is the increment of volume. Within the linear elastic region, Equation 4.5 may be rewritten as

$$
\begin{equation*}
\mathrm{U}_{\mathrm{A}}=\frac{1}{2} \int_{\text {volume }} \epsilon(z) \mathrm{E} \in(z) \mathrm{dV} \tag{4.6}
\end{equation*}
$$

where E is Young's modulus for the beam material. Substituting for $\epsilon(2)$ from Equation 4.4 into Equation 4.6 yields

$$
\mathrm{U}_{\mathrm{A}}=\frac{1}{2} \int_{0}^{\mathrm{L}} \mathrm{E}\left\lfloor\mathrm{w}_{1} \mathrm{w}_{2}\right\rfloor\left\{\begin{array}{c}
-\frac{1}{\mathrm{~L}} \tag{4.7}\\
\frac{1}{\mathrm{~L}}
\end{array}\right\}\left\lfloor\begin{array}{ll}
-\frac{1}{\mathrm{~L}} & \frac{1}{L}
\end{array}\right\rfloor\left\{\begin{array}{c}
w_{1} \\
w_{2}
\end{array}\right\} \quad a \mathrm{~d} z
$$

where $d V$ has been replaced by "a dz" and the integration ranges over the beam length L. The cross-sectional area of the beam is represented by " a " and $d z$ is an increment of beam length. Upon integration, Equation 4.7 yields

$$
U_{A}=\frac{1}{2}\left[w_{1} w_{2}\right]\left[\begin{array}{cc}
\frac{a E}{L} & -\frac{a E}{L} \tag{4.8}\\
-\frac{a E}{L} & \frac{a E}{L}
\end{array}\right]\left\{\begin{array}{c}
w_{1} \\
w_{2}
\end{array}\right\},
$$

where the modulus of elasticity and the cross-sectional area have been assumed to be constant over the length of the beam. By definition, the stiffness matrix for axial displacement of the beam element is

$$
K_{a}=\frac{a E}{L}\left[\begin{array}{rr}
1 & -1 \tag{4.9}\\
-1 & 1
\end{array}\right]
$$

The axial velocity, $\dot{w}(z)$, of any point on the beam may be determined by differentiating with respect to time.

$$
\dot{w}(z)=\left[\begin{array}{lll}
1-\frac{z}{L} & \frac{z}{L}
\end{array} \left\lvert\,\left\{\begin{array}{c}
\dot{w}_{1} \tag{4.10}\\
\dot{w}_{2}
\end{array}\right\}\right.,\right.
$$

where \dot{w}_{1} and \dot{w}_{2} are the axial velocities at Ends 1 and 2 of the beam, respectively. The kinetic energy, T_{A}, brought about by the axial velocity is

$$
\begin{equation*}
T_{A}=\frac{1}{2} \int_{\text {volume }} \rho \dot{w}(z)^{2} d V, \tag{4.11}
\end{equation*}
$$

where ρ is the density of the beam material. Substituting for velocity and rewriting Equation 4.11 in matrix form,

$$
T_{A}=\frac{1}{2} \int_{0}^{L} \rho a\left\lfloor\dot{w}_{1} \quad \dot{w}_{2}\right\rfloor\left\{\begin{array}{c}
1-\frac{z}{L} \tag{4.12}\\
\frac{z}{L}
\end{array}\right\}\left\lfloor 1-\frac{z}{L} \quad \frac{z}{L} \left\lvert\,\left\{\begin{array}{c}
\dot{w}_{1} \\
\dot{w}_{2}
\end{array}\right\} d z\right.\right.
$$

After integrating and substituting limits in Equation 4.12, the kinetic energy

$$
T_{A}=\frac{1}{2}\left[\dot{w}_{1} \quad \dot{w}_{2}\right]\left[\begin{array}{cc}
\frac{\rho a L}{3} & \frac{\rho a L}{6} \tag{4.13}\\
\frac{\rho a L}{6} & \frac{\rho a L}{3}
\end{array}\right]\left\{\begin{array}{c}
\dot{w}_{1} \\
\dot{w}_{2}
\end{array}\right\} \text {. }
$$

The mass matrix, M_{a}, for axial velocity of the beam element is

$$
M_{a}=\rho a L\left[\begin{array}{ll}
\frac{1}{3} & \frac{1}{6} \tag{4.14}\\
\frac{1}{6} & \frac{1}{3}
\end{array}\right]
$$

4.2 Stiffness and Mass Matrices for Transverse Motion

Shear deformation will be neglected but the effect of rotary inertia will be included in the derivation of the element stiffness and mass matrices. Consider the transversely displaced beam element illustrated in Figure 4.2. The slope of the neutral axis of the beam, $d y / d x$, is represented by θ in Figure 4.2. Assume that the transverse displacement, $v(z)$, may be represented by

$$
\begin{equation*}
v(z)=m+n z+o z^{2}+p z^{3} \tag{4.15}
\end{equation*}
$$

where m, n, o, and p are arbitrary constants. Substituting the transverse displacements, v_{1} and v_{2}, and rotations, θ_{1} and θ_{2}, at Ends 1 and 2 of the beam, respectively, we may write Equation 4.16.

Figure 4.2. Beam Element for Transverse Motion.

$$
\begin{align*}
v(z)=v_{1}+\theta_{1} z & +\left(-3 \frac{v_{1}}{L^{2}}-2 \frac{\theta_{1}}{L}+3 \frac{v_{2}}{L^{2}}-\frac{\theta_{2}}{L}\right) z^{2} \\
& +\left(2 \frac{v_{1}}{L^{3}}+\frac{\theta_{1}}{L^{2}}-2 \frac{v_{2}}{L^{3}}+\frac{\theta_{2}}{L^{2}}\right) z^{3} . \tag{4.16}
\end{align*}
$$

Equation 4.16 may be written in matrix form as

$$
v(z)=\left\lfloor 1-\frac{3 z^{2}}{L^{2}}+\frac{2 z^{3}}{L^{4}} ; z-\frac{2 z^{2}}{L}+\frac{z^{3}}{L^{2}} ; \frac{3 z^{2}}{L^{2}}-\frac{2 z^{3}}{L^{3}} ;-\frac{z^{2}}{L}+\frac{z^{3}}{L^{2}} \left\lvert\,\left\{\begin{array}{c}
v_{1} \\
\theta_{1} \\
v_{2} \\
\theta_{2}
\end{array}\right\} .(4.17)\right.\right.
$$

Differentiating Equation 4.17 with respect to 2 yields

$$
\frac{\partial v(z)}{\partial z}=\left\lfloor\frac{6 z^{2}}{L^{4}}-\frac{6 z}{L^{2}} ; \frac{3 z^{2}}{L^{2}}-\frac{4 z}{L}+1 ;-\frac{6 z^{2}}{L^{3}}+\frac{6 z}{L} ; \frac{3 z^{2}}{L^{2}}-\frac{2 z}{L}\right\rfloor\left\{\begin{array}{c}
v_{1} \tag{4.18}\\
\theta_{1} \\
v_{2} \\
\theta_{2}
\end{array}\right\}
$$

Differentiating Equation 4.18 with respect to 2 yields

$$
\frac{\partial^{2} v(z)}{\partial z^{2}}=\left\lfloor\frac{12 z}{L^{4}}-\frac{6}{L^{2}} ; \frac{6 z}{L^{2}}-\frac{4}{L} ;-\frac{12 z}{L^{3}}+\frac{6}{L^{2}} ; \frac{6 z}{L^{2}}-\frac{2}{L} \left\lvert\,\left\{\begin{array}{c}
v_{1} \tag{4.19}\\
\theta_{1} \\
v_{2} \\
\theta_{2}
\end{array}\right\}\right.\right.
$$

Equation 4.19 may be rewritten as

$$
\begin{equation*}
\frac{\partial^{2} v(z)}{\partial z^{2}}=\left\lfloor f_{1}(z) f_{2}(z) f_{3}(z) f_{4}(z)\right\rfloor\{\delta\} \tag{4.20}
\end{equation*}
$$

where

$$
\begin{equation*}
f_{1}(z)=\frac{12 z}{L^{4}}-\frac{6}{L^{2}} \tag{4.21}
\end{equation*}
$$

$$
\begin{align*}
& f_{2}(z)=\frac{6 z}{L^{2}}-\frac{4}{L} \tag{4.22}\\
& f_{3}(z)=-\frac{12 z}{L^{3}}+\frac{6}{L^{2}}, \tag{4.23}\\
& f_{4}(z)=\frac{6 z}{L^{2}}-\frac{2}{L}, \text { and } \tag{4.24}\\
& \{\delta\}=\left\{\begin{array}{c}
v_{1} \\
\theta_{1} \\
v_{2} \\
\theta_{2} \\
2
\end{array}\right\} \tag{4.25}
\end{align*}
$$

If the shear deformation is neglected, the strain energy, U_{B}, absorbed in the beam because of bending is

$$
\begin{equation*}
\mathrm{U}_{\mathrm{B}}=\frac{1}{2} \int_{0}^{\mathrm{L}} \mathrm{EI}\left(\frac{\partial^{2} v(z)}{\partial z^{2}}\right)^{2} d z \tag{4.26}
\end{equation*}
$$

where I is the second moment of area of the cross section of the beam. Substituting $\partial^{2} v(z) / \partial z^{2}$ into the bending energy equation (Equation 4.26) yields

$$
U_{B}=\frac{1}{2} \int_{0}^{L} E I\left[\delta^{T}\right]\left\{\begin{array}{c}
f_{1}(z) \\
f_{2}(z) \\
f_{3}(z) \\
f_{4}(z)
\end{array}\right\}\left[\begin{array}{llll}
f_{2}(z) & f_{2}(z) & f_{4}(z) & f_{5}(z)
\end{array}\right\}\{\delta\} d z, \quad(4.27)
$$

where $\left\lfloor\delta^{T}\right\rfloor$ is the transpose of $\{\delta\}$. If the moment of inertia, I, and Young's modulus, E, are independent of position, the resulting equation upon integration and substitution of limits is given in Equation 4.28.

$$
\mathrm{U}_{\mathrm{B}}=\frac{1}{2} \mathrm{EI}\left[\delta^{\mathrm{T}}\right]\left[\begin{array}{cccc}
\frac{12}{\mathrm{~L}^{3}} & \frac{6}{\mathrm{~L}^{2}} & -\frac{12}{\mathrm{~L}^{3}} & \frac{6}{\mathrm{~L}^{2}} \tag{4.28}\\
& \frac{4}{\mathrm{~L}} & -\frac{6}{\mathrm{~L}^{2}} & \frac{2}{\mathrm{~L}} \\
& & \frac{12}{\mathrm{~L}^{3}} & -\frac{6}{\mathrm{~L}^{2}} \\
\text { Symmetric } & & \frac{4}{\mathrm{~L}}
\end{array}\right]\{\delta\} .
$$

The beam element stiffness matrix, K_{B}; for transverse displacements may be written as

$$
K_{B}=\frac{E I}{L^{3}}\left[\begin{array}{rrrr}
12 & 6 L & -12 & 6 L \tag{4.29}\\
& 4 L^{2} & -6 L & 2 L^{2} \\
& & 12 & -6 L \\
\text { Symmetric } & & 4 L^{2}
\end{array}\right]
$$

If the shear deformation is neglected, the kinetic energy, T_{B}, associated with transverse motion of the beam element is

$$
\begin{equation*}
T_{B}=\frac{1}{2} \int_{0}^{L} \rho a|\dot{v}(z)|^{2} d z+\frac{1}{2} \int_{0}^{L} \rho I\left(\frac{\partial \dot{v}(z)}{\partial z}\right)^{2} d z, \tag{4.30}
\end{equation*}
$$

where $\dot{\mathbf{v}}(\mathrm{z})$ is the transverse velocity at any point on the beam and may be found by differentiating the transverse displacement with respect to time.

$$
\dot{v}(z)=\left\{1-\frac{3 z^{2}}{L^{2}}+\frac{2 z^{3}}{L^{3}} ; z-\frac{2 z^{2}}{L}+\frac{z^{3}}{L^{2}} ; \frac{3 z^{2}}{L^{2}}-\frac{2 z^{3}}{L^{3}} ;-\frac{z^{2}}{L}+\frac{z^{3}}{L^{2}}\right\rfloor\left\{\begin{array}{c}
\dot{v}_{1} \tag{4.31}\\
\dot{\theta}_{1} \\
\dot{v}_{2} \\
\dot{\theta}_{2}
\end{array}\right\}
$$

where \dot{v}_{1} and \dot{v}_{2} are the transverse velocities and $\dot{\theta}_{1}$ and $\dot{\theta}_{2}$ are the angular velocities at Ends 1 and 2 of the beam.

The first integral in Equation 4.30 is associated with translational inertia and the second integral is associated with rotatory inertia. To evaluate the first integral, let

$$
\begin{equation*}
\dot{v}(z)=\left\lfloor f_{5}(z) f_{6}(z) f_{7}(z) f_{8}(z)\right\rfloor\{\dot{\delta}\} \tag{4.32}
\end{equation*}
$$

where

$$
\begin{align*}
& f_{5}(z)=1-\frac{3 z^{2}}{L^{2}}+\frac{2 z^{3}}{L^{3}}, \tag{4.33}\\
& f_{6}(z)=z-\frac{2 z^{2}}{L}+\frac{z^{3}}{L^{2}}, \tag{4.34}\\
& f_{7}(z)=\frac{3 z^{2}}{L^{2}}-\frac{2 z^{3}}{L^{3}}, \tag{4.35}\\
& f_{8}(z)=-\frac{z^{2}}{L}+\frac{z^{3}}{L^{2}}, \text { and } \tag{4.36}\\
& \{\dot{\delta}\}=\left\{\begin{array}{l}
\dot{v}_{1} \\
\dot{\theta}_{1} \\
\dot{v}_{2} \\
\dot{\theta}_{2} \\
z
\end{array}\right\} . \tag{4.37}
\end{align*}
$$

The expression for the first integral may be written as follows.

$$
\begin{align*}
& \frac{1}{2} \int_{0}^{L} \rho a|\dot{v}(z)|^{2} d z \\
& \left.\left.\quad=\frac{1}{2} \int_{0}^{L} \rho a \right\rvert\, \dot{\delta}^{T}\right]\left\{\begin{array}{c}
f_{5}(z) \\
f_{6}(z) \\
f_{7}(z) \\
f_{8}(z)
\end{array}\right\}\left[\begin{array}{lll}
f_{5}(z) & f_{6}(z) & f_{7}(z)
\end{array} f_{8}(z)\right]\{\dot{\delta}\} d z . \tag{4.38}
\end{align*}
$$

By assuming constant cross-sectional area and constant density after integrating Equation 4.38, the first integral becomes

$$
\frac{1}{2} \int_{0}^{L} \rho a|\dot{v}(z)|^{2} d z=\frac{1}{2}\left\{\dot{\delta}^{T}\right] \frac{\rho a}{420}\left[\begin{array}{rrrr}
156 L & 22 L^{2} & 54 \mathrm{~L} & -13 L^{2} \\
& 4 L^{3} & 13 L^{2} & -3 L^{2} \\
\text { Symmetric } & & 156 \mathrm{~L} & -22 \mathrm{~L} \\
& & 4 \mathrm{~L}^{3}
\end{array}\right]\{\dot{\delta}\} \cdot(4.39)
$$

Thus, the mass matrix associated with the translational portion of the transverse motion is

$$
M_{B T}=\rho a L\left[\begin{array}{cccc}
\frac{13}{35} & \frac{11}{210} \mathrm{~L} & \frac{9}{70} & -\frac{13}{420} \mathrm{~L} \tag{4.40}\\
& \frac{1}{105} \mathrm{~L}^{2} & \frac{13}{420} \mathrm{~L} & -\frac{1}{140} \mathrm{~L}^{2} \\
& & \frac{13}{35} & -\frac{11}{210} \mathrm{~L} \\
\text { Symmetric } & & \frac{1}{105} \mathrm{~L}^{2}
\end{array}\right] \text {. }
$$

To evaluate the second integral, which is associated with rotatory inertia, in Equation 4.30; it is necessary to differentiate Equation 4.18 with respect to time.

$$
\frac{\partial \dot{v}(z)}{\partial z}=\left\lfloor\frac{6 z^{2}}{L^{3}}-\frac{6 z}{L^{2}} ; \frac{3 z^{2}}{L^{2}}-\frac{4 z}{L}+1 ;-\frac{6 z^{2}}{L^{3}}+\frac{6 z}{L^{2}} ; \frac{3 z^{2}}{L^{2}}-\frac{2 z}{L}\right\rfloor\left\{\begin{array}{c}
\dot{v}_{1} \\
\dot{\theta}_{1} \\
\dot{v}_{2} \\
\dot{\theta}_{2}
\end{array}\right\} .(4.41)
$$

Equation 4.41 may be rewritten as

$$
\begin{equation*}
\frac{\partial \dot{v}(z)}{\partial z}=\left[f_{9}(z) f_{10}(z) f_{11}(z) f_{12}(z)\right]\{\dot{\delta}\}, \tag{4.42}
\end{equation*}
$$

where

$$
\begin{align*}
& f_{9}(z)=\frac{6 z^{2}}{L^{3}}-\frac{6 z}{L^{2}}, \tag{4.43}\\
& f_{10}(z)=\frac{3 z^{2}}{L^{2}}-\frac{4 z}{L}, \tag{4.44}\\
& f_{11}(z)=\frac{6 z^{2}}{L^{3}}+\frac{6 z}{L^{2}}, \text { and } \tag{4.45}\\
& f_{12}(z)=\frac{3 z^{2}}{L^{2}}-\frac{2 z}{L} \tag{4.46}
\end{align*}
$$

The second integral in Equation 4.30 may be written as $\frac{1}{2} \int_{0}^{L} \rho I\left(\frac{\partial \dot{\mathrm{v}}(z)}{\partial z}\right)^{2} d z$

$$
=\frac{1}{2} \int_{0}^{L} \rho I\left[\dot{\delta}^{T}\right]\left\{\begin{array}{l}
f_{9}(z) \tag{4.47}\\
f_{10}(z) \\
f_{11}(z) \\
f_{12}(z)
\end{array}\right\}\left[f_{9}(z) f_{10}(z) f_{11}(z) f_{12}(z)\right]\{\dot{\delta}\} d z
$$

After integration and substitution of limits in Equation 4.47, the second integral

$$
\frac{1}{2} \int_{0}^{L} \rho I\left(\frac{\partial \dot{v}(z)}{\partial z}\right)^{2} d z=\frac{1}{2}\left[\dot{\delta}^{T}\right] \rho I\left[\begin{array}{cccc}
\frac{6}{5 L} & \frac{1}{10} & -\frac{6}{5 L} & \frac{1}{10} \tag{4.48}\\
& \frac{2}{15} L & -\frac{1}{10} & \frac{L}{30} \\
& & \frac{6}{5 L} & -\frac{1}{10} \\
\text { Symmetric } & & \frac{2}{15} \mathrm{~L}
\end{array}\right]\{\dot{\delta}\} .
$$

Thus, the mass matrix associated with the rotational portion of the transverse motion is

$$
M_{B R}=\rho I\left[\begin{array}{llll}
\frac{6}{5 L} & \frac{1}{10} & \frac{6}{5 L} & \frac{1}{10} \tag{4.49}\\
& \frac{2 L}{15} & -\frac{1}{10} & \frac{L}{30} \\
& & \frac{6}{5 \mathrm{~L}} & -\frac{1}{10} \\
\text { Symmetric } & & \frac{2 L}{15}
\end{array}\right] .
$$

4.3 Stiffness and Mass Matrices for Single Beam Element

The stiffness matrices derived in Subsections 4.1 and 4.2 (Equations 4.9 and 4.29) may be combined to form a single element stiffness matrix by superposition. The resulting stiffness matrix for the beam element is given in Equation 4.50.

$$
K_{E}=\left[\begin{array}{cccccc}
\frac{a E}{L} & 0 & 0 & -\frac{a E}{L} & 0 & 0 \tag{4.50}\\
& \frac{12 E I}{L^{3}} & \frac{6 E I}{L^{2}} & 0 & -\frac{12 E I}{L^{3}} & \frac{6 E I}{L^{2}} \\
& & \frac{4 E I}{L} & 0 & -\frac{6 E I}{L^{2}} & \frac{2 E I}{L} \\
& & \frac{a E}{L} & 0 & 0 \\
\text { Symmetric } & & & \frac{12 E I}{L^{3}} & -\frac{6 E I}{L^{2}} \\
& & & & \frac{4 E I}{L}
\end{array}\right]
$$

The appropriate displacement vector is formed from $w_{1}, v_{1}, \theta_{1}, w_{2}, v_{2}$, and θ_{2} in this order.

The mass matrices derived in Subsections 4.1 and 4.2 (Equations 4.14 and 4.49) may be combined to form a single element mass matrix by superposition. The resulting mass matrix for the beam element is given in Equation 4.51.
$M_{E}=\left[\begin{array}{cccccc}\frac{\rho a L}{3} & 0 & 0 & \frac{\rho a L}{6} & 0 & 0 \\ & \frac{13 \rho a L}{35}+\frac{6 \rho I}{5 L} & \frac{11 \rho a L^{2}}{210}+\frac{\rho I}{10} & 0 & \frac{9 \rho a L}{70}-\frac{6 \rho I}{5 L} & -\frac{13 \rho a L^{2}}{420}+\frac{\rho I}{10} \\ & & \frac{\rho a L^{2}}{105}+\frac{2 \rho I L}{15} & 0 & \frac{13 \rho a L^{3}}{420}-\frac{\rho I}{10} & \frac{\rho a^{3}}{140}+\frac{\rho I L}{30} \\ & & & \frac{\rho a L}{3} & 0 & 0 \\ & & & \frac{13 \rho a L}{35}+\frac{6 \rho I}{5 L} & -\frac{11 \rho a L^{2}}{210}-\frac{\rho I}{10} \\ \text { Symmetric } & & & & \frac{\rho a L^{3}}{105}+\frac{2 \rho I L}{15}\end{array}\right]$

The appropriate velocity vector is formed from $\dot{w}_{1}, \dot{v}_{1}, \dot{\theta}_{1}, \dot{w}_{2}, \dot{v}_{2}$, and $\dot{\theta}_{2}$ in this order.

5. DEVELOPMENT OF COMPUTER PROGRAM

The mathematical form of the matrix exponential solution method makes it necessary that all but the simplest of solutions be performed by computer methods. A high-speed digital computer is well suited for this purpose. With this thought in mind, a computer program was developed to implement the solution of the transient dynamics of plane structures composed of beam elements of uniformly distributed mass, weightless springs, and rigid masses.

The logical flow of the computer program is given in flow-chart form in Appendix A, and the major steps in the program are as follows. Data describing the geometric and structural characteristics are input for the program, which in turn formulates the structure stiffness and mass matrices. The structure stiffness and mass matrices are modified for boundary conditions, as discussed in Subsection 3.4. The mass matrix is inverted and post multiplied by the structure stiffness matrix. The coupling matrix, A, is then formed, and the effect of damping is incorporated by using input damping coefficients c_{r} and c_{g}. For a given time increment and number of terms in the series approximation, the matrix exponential, [exp At], and the forcing function transition matrix,

$$
\tau\left[\sum_{k=1} \frac{A^{k-1} \tau^{k-1}}{k!}\right],
$$

are next formed. This completes the preliminary steps directed toward problem solution. The solution is then developed incrementally, as indicated by Equation 3.24 which is repeated here for convenience.

$$
\left\{\begin{array}{l}
x \tag{3.24}\\
\dot{x}
\end{array}\right\}_{t+\tau}=[\exp A \tau]\left\{\begin{array}{l}
x \\
\dot{x}\}_{t}+\tau\left[\sum_{k=1}^{\infty} \frac{A^{k-1} \tau^{k-1}}{k!}\right]\left\{\begin{array}{l}
\phi \\
M^{-1} f(t)
\end{array}\right\}_{t}, ~
\end{array}\right.
$$

where approximations have been made for the matrix functions indicated.
It should be noted that the number of terms in the matrix exponential approximation must be limited, as is the case with all series approximations. In this case, an upper limit on the number of terms or lower limit on the time increment exists because of the possibility of exceeding the capability of the digital computer to represent very small floating point numbers. An estimate of the maximum number of terms permissible may be obtained from Equation 5.1.

$$
\begin{equation*}
\xi \leq N \ln \tau-\ln (N!) \tag{5.1}
\end{equation*}
$$

where ξ is the exponent associated with the smallest number that may be represented within the machine and N is the number of terms used in the approximation. In turn, τ should be chosen to insure accuracy; that is, it should be small enough to permit the necessary transient response details to be represented. For most problems for which this computer program was developed, N will be less than 10 and τ will be chosen to be one-twentieth of the smallest significant structure period. A solution so limited will be in error by less than

$$
\left[\frac{A^{N+1} \tau^{N+1}}{(N+1)!}\right]\left\{\begin{array}{l}
\frac{d^{N+1} x}{d t^{N+1}} \tag{5.2}\\
\frac{d^{N+2} x}{d t^{N+2}}
\end{array}\right\}
$$

for free vibration analysis. This error may be made as small as may be represented within the machine by the argument previously presented.

After this investigation was completed, the error criteria reported by Liou (3,4) and by Mankin and Hung $(5,6)$ were examined but were not incorporated into this study because of time limitations.

The matrix inversion used was a version of the Gauss-Jordan algorithm as presented by Wang (14). The matrix function approximations and step-by-step solution were re-programmed from programs presented by Ball and Adams (15). The limitations of the computer program are presented in Appendix B, the input data format is presented in Appendix C, the output data format is presented in Appendix D, and the computer program listing is presented in Appendix E.

6. TRANSIENT RESPONSE OF SIMPLE STRUCTURES

To demonstrate the use of the computer program developed in this investigation, three example problems are presented and compared with known solutions.

6.1 First Example Problem

The first example problem involves the determination of the time history of displacements for the three-degrees-of-freedom problem illustrated in Figure 6.1. The displacements indicated in Figure 6.1 are measured from the static equilibrium position of the node points indicated as circled numerals. The time relationship and magnitudes of the applied loads $f_{2}(t), f_{3}(t)$, and $f_{4}(t)$ are indicated in Figure 6.2.

Figure 6.1. Three-Degrees-of-Freedom Model With Weightless Springs and Lumped Masses for First Example Problem.

Figure 6.2. Applied Loads for the Three-Degrees-of-Freedom Model of the First Example Program.

The data from this problem were supplied to the computer program and used to write a forcing function subroutine DISTURB, which is the version of DISTURB presented in Appendix E. The time increment used in the solution of the problem was 0.005 second, and the number of terms in the series approximation of the matrix exponential was ten. The displacement of node point 3 as determined with the computer program is plotted in Figure 6.3 and may be compared with the solution developed through the use of modal methods reported by Biggs (9, pages 121-123). The solution for this example problem was plotted by using the computer program XYPLOT presented by Tobias and Jung (16). The smooth line in Figure 6.3 represents the theoretical solution and the symbols "X" represent the approximate solution as output from the computer program.

6.2 Second Example Problem

The distributed mass beam elements developed in Section 4 of this document are used in the second example problem. In this problem, the response of the point of dynamic load application for a simply supported

Figure 6.3. Example One Response of Three-Degree System.
beam, as illustrated in Figure 6.4, is to be determined. The beam is a wide-flange steel section 14 inches deep that weighs 142 pounds per lineal foot. The dynamic load, $f(t)$, is initially 50,000 pounds, decreases linearly to zero at 0.01 second, and remains zero for all later time.

Figure 6.4. Simply Supported Beam of Second Example Problem.

The response of this beam was determined by using two combinations of beam elements connected in series. The time increment used in the solution of the problem was 0.0001 second, and eight terms were used in the series approximation. A comparison of the predicted response and that determined through modal analysis methods is illustrated in Figure 6.5. The smooth line represents the theoretical solution obtained by superposition of the first three modes. The computer solutions for twoand four-beam elements are plotted with the symbols X and Δ, respectively.

Figure 6.5. Response at Point of Loading for a Simply Supported Beam.

6.3 Third Example Problem

The third example problem is an attempt to predict the transient response of a concrete and steel tower for which experimental data were reported by Takahashi, Gates, and Benuska (17). This tower is diagrammatically illustrated in Figure 6.6, and the model used in the computer analysis is illustrated in Figure 6.7. The data on the structural properties of the tower were taken from that reported by Takahashi, Gates, and Benuska (17). The node points used in modeling the structure are indicated by the circled numerals in Figure 6.7. The small tower was subjected to a base motion acceleration that is a pseudo half sine wave pulse. A multi-linear approximation of this pulse is illustrated in Figure 6.8. The data resulting from tests of this structure indicate a first mode frequency of 125 cycles per second and a fourth mode frequency of 1,300 cycles per second (17).

To analyze the behavior of a system for which a specified base motion is prescribed, a transformation of the basic equations of motion is useful. Let x represent the structure displacement vector relative to its foundation displacement, and let u represent the vector of foundation displacement. The equations of motion may then be written as follows:

$$
\begin{equation*}
M\{\ddot{x}+\ddot{i}\}+C\{\dot{x}\}+K\{x\}=0, \tag{6.1}
\end{equation*}
$$

where the damping matrix C is assumed to be associated with relative motion only and \mathbf{i} is the foundation acceleration vector. Transposition of the base motion terms to the right-hand side of Equation 6.1 yields

$$
\begin{equation*}
M \ddot{x}+C \dot{x}+K x=-M \dot{u} . \tag{6.2}
\end{equation*}
$$

Figure 6.6. Elevation and Plan Views of Small Tower of Third Example Problem.

Figure 6.7. Model for Small Tower of Third Example Problem.

Figure 6.8. Base Motion Accelogram for Small Tower of Third Example Problem.

From a comparison of Equation 6.2 with Equation 3.1, it is apparent that the procedure presented in Section 3 may be used to solve Equation 6.2 if -Mu is substituted for $\mathrm{f}(\mathrm{t})$.

To model the behavior of the structure, the time increment for solution was chosen as 50 microseconds and six terms were used in the series representation of the matrix functions. The structure damping determined in experiments was approximately 2% of critical in all modes. An approximate representation of this damping is provided by using

$$
c_{g}=4.75 \times 10^{-6} \text { seconds. }
$$

Using these values as constants in Equation 3.27, the maximum damping is 2% of critical and the minimum damping is 0.2% of critical in the frequency range of interest.

The output data from the computer indicate a dominant frequency of 124 cycles per second, which is a very good agreement with the experimental data. The maximum relative displacement between the base and the top of the tower given by the experimental data (17) is 0.0028 inch, and the maximum relative displacement predicted by the computer program is 0.0024 inch.

7. CONCLUSIONS AND RECOMMENDATIONS

It has been shown in this investigation that the dynamic equations for a linear, elastic structure may be written as a set of coupled first order differential equations with constant coefficients. The matrix exponential solution method was developed to show the close similarity between it and the solution of a single first order constant coefficient differential equation.

The coefficients of the dynamic equations were shown to be related to the stiffness and inertial characteristics of the structure. That these coefficients may be determined by a process of linear superposition was demonstrated. A technique for the incorporation of structural damping was also presented. The stiffness and inertial characteristics of individual beam elements were derived by assuming a compatible deformation pattern for the beam and then determining the strain energy and kinetic energy in the beam. This then defined the stiffness and mass matrices for the beam element.

A computer program based on the equations derived in this document was developed, and the transient response of three simple structures was determined through the use of this program. The transient responses determined in this manner were compared with previously reported analytical and experimental data.

7.1 Conclusions

The objective of this investigation was to develop a numerical solution for the transient response of linear, elastic mechanical
systems by using the matrix exponential method. With regard to this objective, the following conclusions may be drawn.

1. The matrix exponential solution method was applied successfully to determine the structural response of linear, elastic mechanical systems.
2. The computer program developed in this investigation provided accurate solutions to the response of simple mechanical systems.
3. This computer program was used and modified with little difficulty, requiring only that one subroutine be rewritten for each system analyzed.

7.2 Recommendations

A comparison was made in this investigation between computer solutions and experimental data to evaluate the ease of program use and modification under realistic circumstances. This effort was severely limited by a lack of sufficient experimental data. Therefore, it is recommended that a minor experimental program be initiated to obtain transient response data for linear, elastic mechanical structures.

It is well known that shear deformation effects can become quite important as the ratio of beam length to depth decreases. It is therefore recommended that the beam element stiffness and mass matrices be modified to include the effect of shear deformation. This could be accomplished by using the modified Timoshenko beam theory presented by Egle (18).

In view of the need to analyze mechanical systems with up to 1,000 degrees of freedom, it is further recommended that the sparse matrix
characteristics of the transition matrix be fully utilized by rewriting the computer program in the computer language MATLAN (19). The MATLAN language is a flexible problem-oriented language designed to carry out matrix and scalar operations. Storage management is accomplished automatically in that MATLAN may control both core and direct access devices. Routines for sparse matrix operations are built into MATLAN.

LIST OF REFERENCES

1. United Nuclear Corporation, "An Interpretive Review of Seismic Design Methods," USAEC Report ORNL-TM-2900, Oak Ridge National Laboratory, May 1970.
2. L. A. Zadeh and C. A. Desoer, Linear System Theory: The State Space Approach, McGraw-Hill Book Company, New York, 1963.
3. M. L. Liou, "Time and Frequency Domain Analysis of Linear TimeInvariant Systems," System Analysis By Digital Computer, pp. 99129, John Wiley and Sons, Inc., New York, 1966.
4. M. L. Liou, "A Novel Method of Evaluating Transient Response," Proceedings of the IEEE, Vol. 54, No. 1, pp. 20-23, January 1966.
5. J. B. Mankin, Jr., and J. C. Hung, "On Round-Off Errors in Computation of Transition Matrices," USAEC Report CTC-INF-597, Oak Ridge Gaseous Diffusion Plant, Computing Technology Center, June 27, 1969.
6. J. B. Mankin, Jr., and J. C. Hung, "Selection of Computational Parameters for Transition Matrices," USAEC Report CTC-INF-969, Oak Ridge Gaseous Diffusion Plant, Computing Technology Center, September 17, 1969.
7. A. Craggs, "Transient Vibration Analysis of Linear Systems Using Transition Matrices," NASA Contractor Report 1237, National Aeronautics and Space Administration, Washington, D. C., 1968.
8. A. Craggs, "The Transient Response of Coupled Acousto-Mechanical Systems," NASA Contractor Report 1421, National Aeronautics and Space Administration, Washington, D. C., August 1969.
9. J. M. Biggs, Introduction to Structural Dynamics, McGraw-Hill Book Company, New York, 1964.
10. J. S. Archer, "Consistent Mass Matrix for Distributed Mass Systems," Journal of the Structural Division, Proceedings of the American Society of Civil Engineers, Vol. 89, pp. 161-178, August 1963.
11. R. B. McCalley, Jr., "Mass Matrix for a Prismatic Beam Segment," USAEC Report KAPL-M-6913, Knolls Atomic Power Laboratory, March 1968.
12. K. K. Kapur, 'Vibrations of a Timoshenko Beam Using Finite-Element Approach," The Journal of the Acoustical Society of America, Vol. 40, No. 5, pp. 1058-1063, 1966.
13. R. H. Gallagher and C. H. Lee, "Matrix Dynamic and Instability Analysis With Non-Uniform Elements," International Journal for Numerical Methods in Engineering, Vol. 2, No. 2, Pp. 265-275, Wiley-Interscience, New York, April-June 1970.
14. P. C. Wang, Numerical and Matrix Methods in Structural Mechanics With Applications to Computers, Pp. 172-173 and 341-342, John Wiley and Sons, Inc., New York, 1966.
15. S. J. Ball and R. K. Adams, "MATEXP, A General Purpose Digital Computer Program for Solving Ordinary Differential Equations by the Matrix Exponential Method," USAEC Report ORNL-TM-1933, Oak Ridge National Laboratory, August 30, 1967.
16. M. Tobias and L. Jung, "XYPLOT, An Elementary Graphical Preparation Routine for the CRT Plotters," USAEC Report ORNL-TM-2867, Oak Ridge National Laboratory, January 1970.
17. S. K. Takahashi, W. E. Gates, and K. L. Benuska, "Resistance of Tubular Structures to Dynamic Loading," Technical Report R-463, U. S. Naval Civil Engineering Laboratory, Port Hueneme, California, July 1966.
18. D. M. Egle, "An Approximate Theory for Transverse Shear Deformation and Rotatory Inertia Effects in Vibrating Beams," NASA Contractor Report 1317, National Aeronautics and Space Administration, Washington, D. C., May 1969.
19. "System/360 Matrix Language (MATLAN, 360A-CM-05X) Program Description Manual," Report H20-0564-0, International Business Machines Corporation, Technical Publications Department, White Plains, New York, First edition, 1968.

APPENDIXES

APPENDIX A

FLOW CHART FOR COMPUTER PROGRAM

As discussed in Section 5 of this document, a computer program was developed to implement solution of the transient dynamics of plane structures composed of beam elements of uniformly distributed mass, weightless springs, and rigid masses. The logical flow of this computer program is presented in flow-chart form in this appendix. The symbols used in the flow chart are illustrated and defined in Figure A.l, and the flow chart is presented in Figure A. 2.

Figure A.1. Symbols Used in Flow Chart for Computer Program.

Figure A.2. Flow Chart for Computer Program Developed to Implement Solution of Transient Dynamics of Plane Structures.

Figure A. 2 (continued).

Figure A. 2 (continued).

APPENDIX B

PROGRAM LIMITATIONS

The limitations of the computer program developed to implement solution of the transient dynamics of plane structures composed of beam elements of uniformly distributed mass, weightless springs, and rigid masses are as follows.

Maximum number of node points: ten.
Maximum number of beam elements: nine.
Maximum number of data points for plotted output: one.
The number of node points may be increased by changing the dimension statements in blank common and common block /MATEXP/. If the number of node points is N , the common blocks would appear as follows.

COMMON TITLE (18), NUMNP, NUMEL, XNP(N), YNP(N), IRX(N), IRY(N),
$1 \quad \operatorname{IRT}(\mathrm{~N}), \operatorname{EE}(\mathrm{N}-1), \operatorname{EA}(\mathrm{N}-1), \operatorname{EEI}(\mathrm{N}-1), \operatorname{ESW}(\mathrm{N}-1), \operatorname{INP}(\mathrm{N}-1), \operatorname{JNP}(\mathrm{N}-1)$, $2 R(6,6), \operatorname{ESM}(6,6), \operatorname{ESG}(6,6), \operatorname{SSG}(3 N, 3 N), \operatorname{EMM}(6,6), \operatorname{EMG}(6,6)$, 3 SMG(3N, 3N), SMSG(3N, 3N), L, EL, E, ECA, EI, U, RG, CR, CG COMMON /MATEXP/ C(6N, 6N), HP(6N, 6N), A(6N, 6N), QPT(6N, 6N), X(6N), $1 \quad \mathrm{~F}(3 \mathrm{~N}), \mathrm{Z}(6 \mathrm{~N}), \mathrm{Y}(6 \mathrm{~N}), \mathrm{XIC}(6 \mathrm{~N}), \mathrm{TQP}(6 \mathrm{~N})$, ITMAX, KK, LL, MM, 2 JJFLAG, NI, TIME, TMAX, TZERO, NE, T, IlZ, ICONTR, 3 PLTINC, MATYES, ICCS, JFLAG, PLT, IONODE

APPENDIX C

INPUT DATA FORMAT

The type designation, contents, and format of the input data cards for the computer program developed to implement solution of transient dynamics of plane structures composed of beam elements of uniformly distributed mass, weightless springs, and rigid masses are given in Table C.1.

Table C.1. Type, Contents, and Format of Input Data Cards for Computer Program

Card Type	Contents	Format
I	Title	18A4
II	Number of node points	I5
	Number of beam elements	I5
	Number of node for which x displacement is to be plotted; zero if no plotted output is desired	I5
III	Coefficient for damping proportional to mass matrices (sec. ${ }^{-1}$)	E10.3
	```Coefficient for damping proportional to stiffness matrices (sec.)```	E10.3
IV	Initial time for problem (sec.)	F10.0
	Final time for problem (sec.)	F10.0
	Time increment to be used in solution (sec.)	F10.0
	Time increment between printed/plotted output (sec.)	F10.0
	Number of terms to be used in series approximation of matrix exponential	I 10
$v^{a}$	Node number	I5
	$X$ coordinate of node (in.)	F10.0
	$Y$ coordinate of node (in.)	F10.0
	$X$ restraint flag	I5
	Y restraint flag	I5
	Theta restraint flag	I5
$V I^{\text {b }}$	Beam number	I5
	Young's modulus (p.s.i.)	$\text { F } 10.0$
	Beam cross-sectional area (in. ${ }^{2}$ )	F10.0
	Beam moment of inertia (in.4)	F10.0
	Beam weight per unit of length (lb./in.)	F10.0
	Node point number at first end	I5
	Node point number at opposite end	I5
$V I I^{\text {c }}$	Node point number at first end of weightless spring	I5
	Node point number at opposite end of weightless spring	I5
	Spring modulus associated with the X direction (lb./in.)	F10.0
	Spring modulus associated with the $Y$ direction (lb./in.)	F10.0
	Spring modulus associated with angular displacement (in.-lb./radian)	F10.0

Table C. 1 (continued)

Card
Type
Contents
Format
VIII ${ }^{\text {d }} \quad$ Node point number for location of rigid mass Weight of rigid mass (lb.) I5
Weight of rigid mass (lb.)
Mass moment of inertia of rigid mass (lb./in. ${ }^{2}$ ) F10.0
F10.0
${ }^{\text {a }}$ Node is restrained if restraint flag is not zero. The number of Type $V$ cards is equal to the number of node points given on card Type II.
${ }^{\mathrm{b}}$ The number of Type VI cards is equal to the number of beam elements given on card Type II. If no beam elements are used, no Type VI cards appear in the input data.
${ }^{c}$ Terminate entry of Type VII cards with a blank card.
$\mathrm{d}_{\text {Terminate }}$ entry of Type VIII cards with a blank card.

## APPENDIX D

COMPUTER PROGRAM OUTPUT

The computer program developed to implement solution of the transient dynamics of plane structures composed of beam elements of uniformly distributed mass, weightless springs, and rigid masses prints out all input data. The element stiffness and mass matrices, the assembled coupling matrix (A), and the series approximations to the matrix functions are printed. The major output of the program is the printout of the node point displacements and velocities at each point in time, as specified on the input cards. The $x$ displacement for the specified node point is punched on cards for computer plotting.

## APPENDIX E

COMPUTER PROGRAM LISTING

The listing for the computer program developed to implement solution of the transient dynamics of plane structures composed of beam elements of uniformly distributed mass, weightless springs, and rigid masses is given on the following pages of this appendix.
$C$
$C$ ..... 10
main precram ..... 20 ..... 30
COMMON TITLE(18), NUMNP, AUMEL, XNP (10), YNP(10), IRX(10),IRY(10),
1 IRT(10),FE(9),EA(9),EEI(9), ESW(9),INP(9), JNP(9). ..... 41
$2 \quad$ P( 6,6$), \operatorname{ESM}(6,6), \operatorname{ESG}(6,6), \operatorname{SSS}(30,30)$,EMM 6,6$)$,FMG( 6,6$)$, ..... 42
SMG(30, 30$), \operatorname{SMSG}(30,30), L, E L, E, E C A, E I, U, R G, C R, C G$ ..... 43
COMMCN /MATEXP/ C $(60,60)$,HP $(60,60), A(60,60), 0$ PT $(60,60)$, X( $(E 0)$. ..... 50
$1 \quad F(20), Z(60), Y(60), X I C(60), T O P(60), I T M A X, K K, L L, M M$. ..... 51 JJFLAG,NI, TIME'; TMAX,TZERO,NE,T,IIZ,ICONTR, 52 PLT INC, MAT YES, ICCS, JFLAG,PLT, IONODE 53
COMMCN /PLOT/ TPLCT(?s),XPLOT(99) ..... 60
REAL * 4 MXY,MMI ..... 70
INITIALIEE ARRAYS ..... 80
$C$
$C$
$C$ ..... 90
OC $11=1,10$ ..... 110
XNP(I)=0.0 ..... 120
YNP 1 I $=0.0$ ..... 130
I RX (I)=0 ..... 140
IRY(I)=C ..... 150
1 IRT(I)=0 ..... 160
00 2 I=1,9 ..... 170
EE(I) $=0.0$ ..... 180
FA(I)=0.0 ..... 190
EEI(I)=C.0 ..... 200
ESW(I)=0.0 ..... 210
INP(I)=C ..... 220
JNP(IIEC ..... 230
003 I=1,6 ..... 240
DO $3 \mathrm{~J}=1.6$ ..... 250
R(I, J) =C.O ..... 260
ESN(I, Jla0.0 ..... 270
ESG(I.J)=0.0 ..... 280
EMR(I, J) $=0.0$ ..... 290
EMC(I,J)=0.0 ..... 300
DO G 1=1,30 ..... 310
F(I) = C.O ..... 320
00 ム J=1,30 ..... 330
SSG(I, J)=0.0 ..... 340
SMC(I,J)=0.0 ..... 350
4 SMSG(I,J)=0.0 ..... 360
DO 5 I=1,60 ..... 370
DO 5 J=1,60 ..... 380
( $(1, J)=C .0$ ..... 390
HP(I, JI=C.0 ..... 400
A(I, J) $=0.0$ ..... 410
OPT(I,J) $=0.0$ ..... 420
DO 6 I=1,60 ..... 430
$X(1)=0$. $C$ ..... 440
$z(I)=0 . C$ ..... 450
$Y(I)=0.0$ ..... 460
XIC(I)=0.0 ..... 470
TOP(I) $=0.0$ ..... 480
$C$
$C$
$C$ reac anc print input data ..... 90
510
REAC (5,1001) (TITLE(I),I=1,18) ..... 520
FCRNAT (18A4) ..... 530
WRITE (E,1002) (TITLE(I),I=1,18) ..... 540
1002RORMAT (1H1,18A4)5.50
REAC(5,1003) NUPNP, NUMEL,ICNODE ..... 560
1003FOPMAT (315)E 70
WQITE (E.1004) NUMNP ..... 580
1004 FOPNAT(2HO,22HNUMEER OF NODE PCINTS 141 ..... 590
WRITE (6,1005) AUMEL ..... 600
1005 FOFMAT(IHO.24HNUMEER CF BEAM ELEMLANTS .I4)610
WRITE (6,1006) IONODE ..... 6201006 FORMAT ILHO, 32HX DISPLACEMENT PLCTTED FOR NODE , ISI630
READ (5,1007) CR,CG ..... 640
1007 FCPNAT (2EZ O.3)650
WAITE (E,1002) CR,CG ..... 660
1008 FORMATI 1 HO, 3OHABSOLUTE DAMPING COEFFICENT - .EI $1.4,2 \mathrm{x}$, ..... 670
130PRELATIVE CAMPING CCEFFICENT = DEIl.G1 ..... 671READ (5,3001) TTERO,TMAX,T, PLTINC,ITMAX
3001 FOFMAT (4F10,0,5X,15)WRITE(6.2000) TRER
2000 FORMATIIHO,23HINITIAL DRCBLFM TIME $=$,FIO.4)
WRITE(E, 2001) TMEX
2001 FCPMAT(IMO, 22 HFINAL PROELEM TIME $=$.FIO.41
URITE16,20021 T
2002 FOFMAT(1HO,34HTIME INCREMENT USEC SCP EXP (AT) = ,F10.4)
WRITE(6,2003) PLTINC
2003 FORNATIIFO, 3EHTIME INCPEMENT FOR PRINTED CUTPUT $=$,FIO.4)
WRITE(E, 2004 ) ITMAX
2004 FDPMAT (IHO,4]HNUMEER OF TERMS IN SERIES APPAOXIMATION $=$, 13)WPITE (E,1005)680
1009 FOPMATISGHONOCE NUMBER X-CCDRDINATE Y-COORDINATE X-RESTRAINT , ..... 690
127HY-RESTRA INT THETA-RESTRAINTI ..... 691
DC 8 I $=1$, NUMAD ..... 700
REAC(5,1010) I, XNP(I),YNP(I),IRX(I),IRY(I),IRT(I) ..... 710
1010 FORMAT (15,2F10.0,3151 ..... 720
8 WRITE(6,10!1)I,XNP(I),YNP(I),IRX(1),IRY(I),IRT(!) ..... 730
 ..... 740
C STAPT LCOP TO DETERMINE STRUCTURE DROPERTIFS ..... 760
770
IF INUMEL ©EC. OI GO TO 12 ..... 780
WRITE (E,101Ẽ) ..... 790
1012 FOFMAT(1HO,44HPEAM NUMBER ELASTIC MODULUS AREA INERTIA. ..... 800
125HWEIGFT/INCH I-NDDE J-NODEI ..... 801
DO 9 ! = 1, NUMEL ..... e:0
PEAD(5,1012) I, EE(I),EA(I),EEI(!),ESW(II,TNP(II,JNP(I) ..... 820
1013 FCRMAT (!5,4F10.0,215) ..... E 30
9 WRITE (E,IOJ\&)I,EE(I),EA(I),EEI(I),ESW(I),INP(II, JND(I) ..... 840
 ..... 850
DC 11 Led,NUMFL ..... 850
$1=\operatorname{INP}(L)$ ..... 870
$\mathrm{J}=\mathrm{JNPPL}$ ..... 880
X1 $=$ XNP(I) ..... 890
Y1 $=$ YNP(I) ..... 900
X2 $2=\mathrm{XNP}(\mathrm{J})$ ..... 910
$Y 2=$ YNP(J) ..... 920
$E L=S O R T((X 2-X 1) * * 2+(Y 2-Y 1) * * 2)$ ..... 930
$E=E E(L)$ ..... 940
ECA $=E A(L)$ ..... 950
EI= EEI(L) ..... 960
U = ESW(LI/326.4 ..... 970
RG $=$ SORTIEI/ECAI ..... 980
C DETERMINE STIffNESS MATRIX ..... 090
C ..... 1000 ..... 1000
CALL ELSTIF ..... 1010 ..... 1020 ..... 1020
WRITE (E,1015) ..... 1030
1015 FDRMAT (4OHIELEMENT STIFFNESS MATPIX IN MEMBER AXIS) ..... 1040
WRITE (6,101E) ( (ESMIII,JJI, JJal,6 ), II=1,6) ..... 1050
1016 FORMAT (1H, E(5X,F10.4)) ..... 1060
C DETEPMINE POTATION TRANSFORMATICN MATPIX ..... 1070
1090
CSANG=(x2-X1)/EL ..... :100
SNANG= (Y2-Y\&)/\&L ..... 1110
10 R(1,1) = CSANG
1120
$P(1,2)=-S N A N G$ ..... 1130
R(2,1) = SNANG ..... 1140
$R(2,2)=$ CSANG ..... 1250
$R(3,3)=1.0$1160
$R(4,4)=$ CSANG ..... 1170
R(4,5) =-SNANG ..... 1180
R(5,G) = SNANG ..... 1190
R(5.5) = CSANG ..... 120012101220
TRANSFOPM STIFFNESS MATRIX FRCM ELYMENT TO STRUCTURE AXIS C C ..... 1230CALL MMULT(R,ESN,ESG,611240$\$ 250$
CALL MTMUL(ESM,R,ESG,6) ..... 1260
$C$
$C$ ..... 1270ALDELEMP.NT STSTIFFNESS MATRIX TC STRUCTURE STIFFNESS MATRI1280$11=3 * 1-2$1300
$12=3$ = 1-1 ..... 1310
$13=3$ ㅍ ..... 1320
J1 = 3* J - 2 ..... 1330
J2 = 2\#」-2 ..... $1 ? 40$
J3 = 2* J1350
SSG(11,11) $=$ SSG(11,11) + ESG(2.11 ..... 1360
SSC(11,12) = SSG(11,12) + ESG(1,2) ..... 1370
SSC(11,13) = SSG(11,13) + ESG(1,2) ..... 1380
SSC(12.11) $=\operatorname{SSG}(12,11)+E S G(2,1)$ ..... 1390
SSG(12,12) = SSG(12.12) + ESG(2.21 ..... 1400
SSC(12,13) = SSG(12,13) + ESG(2,3) ..... 14.10SSG(13,11) $=$ SSG(13,11) + ESG(3,1)
1420SSC(I2,12) = SSC:(13,12) +ESG(3,2)
1430SSC(13,13) = SSG(13.13) + EST(3.3)1440
SSC(11,J1) = SSG(11, J1) + ESG(1,4) ..... 1450
SSC(11,J2) $=$ SSG(11,J2) + ESS(1.5 ..... 1460
SSG(11,J3) $=$ SSG(11,J3) + ESS(1,t: ..... 1470
SSC(12.J1) = SSG(12,J1) + EST(2.4) ..... 1480
SSG(12,J2) $=$ SSG(12,J2) +ESG(2,5) ..... 1490
SSC(12,J3) $=$ SSG(12,J3) + ESG(2,6) ..... 1500
SSC(12,J1) $=$ SSG(13,J1) +ESG(3,4) ..... 1510
SSC(I3,J2) = SSG(I3,J2) + ESG(3.5: ..... 1520
$\operatorname{SSC}(13, J 3)=\operatorname{SSC}(13, J 3)+E S G(3,6$ : ..... 1530
SSC(Jl,ll) = SSC:(Jl,11) + ESG(4,1) ..... : 540
SSC(Jl,12) = SSG(Jl,12) +ESG(4,2) ..... 1550
SSC(J1,13) $=$ SSG(J1,131 + ESG(4,?) ..... 1560
SSC(J2,11) $=$ SSG(J2,11) + ESG(5.1. ..... 1570
SSC(J2,12) $=$ SSG(J2,12) + ESG(5,2: ..... 1580
SSC(J2,13) $=$ SSG(JE,13) +ESG(5,3' ..... 1590
SSC(J3,11) $=$ SSC(J3,11) +ESG(6.11 ..... 1600
SSC(J3,12) $=$ SSG(J3,12) + ESG(6,2) ..... 1610
SSC(J3,13) $=\operatorname{SSG}(J 3,13)+E S G(6,3)$ ..... 1620
SSG(Jl,J1) = SSG(Jl,J1) +ESG(4,4, ..... 1630
SSC(J1, J2) $=$ SSC(J1, J2) + ESG(4.5. ..... 1640
SSClJ1, J3) $=$ SSf(Jl,J3) + ESG(4, E. ..... 1650
SSC(J2,J1) $=$ SSG(J2,J1) + ESG(5,4) ..... 1660
SSC(J2.J2) = SSC(J2,J2) + ESf(5,5) ..... 1670
SSC(J2,J3) = SSG(J2,J3) + ESG(5,6) ..... 1680
SSC(J3, Jl) $=$ SSG(J3, Jl) + ESG(6,4, ..... 1690
SSC(J3,J2) $=$ SSG(J3,J2) + ESG(6,5. ..... 1700
SSC(J3.J3) = SSC(J3,J3) + EST(6,6* ..... 1710CALL ELMASS1740
WRITE (E,1017)175017601760
WRITE (E,2018) (IEMM(!I,JJI, JJ=..,6 I, II=1,6) ..... 1770
1018 FCRMATIIN , 6(5X,E10.4)) ..... 1780
C1790
TOANSFOFN MASS MATRIX FRCM ELEMENT TO STRUCTIJRE AXIS C ..... 1800
CALL MMULT(R,EMM,EMG,G) ..... 1810
CALL MTMUL (EMM,R,EMG,6) ..... 1820
ACD ELEMENT MASS MATR IX TC STRUCIURE MASS MATRIX ..... 1830
SMG(11,11) $=S^{W} G(11,11)+$ FMG(1,11) ..... 1840
SMG(11,121 $=$ SMG(11,12) + EMG(1,2) ..... 1850
SMC(11,13) $=$ SMG(11,13) + EMG(1,3) ..... 1860
SMC(12,11) $=\operatorname{SMG}(12,11)+\operatorname{EMC}(2,1)$ ..... 1870
SMG(12,!2) $=$ SNG(12.12) + EMG(2.2) ..... 1880
SMC(12,13) = SMG(12,13) + EMG(2,3) ..... 1090
SMG(12.11) $=$ SMG(13.11) + FMG(3.1) ..... 1900
SMC(13.12) $=$ SMG(13.12) + EMG(3.2) ..... 1910
SMC(13,13) $=\operatorname{SMC}(13,13)+E M C(3,2)$ ..... 1920
SMC(11,Jl) $=$ SMG(Il,Jl) + EMG(1,4) ..... 1930
SMC(11,J21 $=$. SMG(11,J2) + EMG(1,5) ..... 1940
SMC(11,J3) $=$ SMG(!1,J3) + EMG(1,f1 ..... 1950
SMC(12,J1) = SMG(12,J1) + EMG(2,4) ..... 1960
SMC(12,J2) $=$ SNG(12,J2) + EMG(2.5) ..... 1970
$\operatorname{SME}(12, J 3)=\operatorname{SMG}(12, J 3)+\operatorname{EMG}(2, t)$ ..... 1580
SMC(13.J1) $=$ SNG(13.J1) +FMG(3,4) ..... 1990
SMC(13.J2) $=\operatorname{SMG}(13, J 2)+$ EMG(3.5) ..... 2000
SMC(13,J3) $=$ SMG(13,J3) + EMS(3,6) ..... 2010
SMC(J1,11) $=$ SMC(Jl,11) + ENG(4.1) ..... 2020
SMC(J1,!2) $=$ SMG(J1,12) + EMG(4,2) ..... 2030
SMC(J1,12) = SMG(J1,12) + EMG(4,2) ..... 2040
SMC(J2,11) $=$ SMG(J2,11) + EMG(5,1) ..... 2050
SMG(J2.12) = SMG(JE.12) + EMG(5.2) ..... 2060
SMC(J2,13) $=$ SMG(J2,13) + EMC(5,3) ..... 2070
SMC(J3,11) $=$ SNG(J3.111 + EMG(E,1) ..... 2080
SMC(J3,12) $=$ SMG(JZ.121 + EMG(C.2) ..... 2090
SMC(J3,13) $=\operatorname{SMG}(J 3,1 ? 1+E M F(E, ?)$ ..... 2100
SMC(Jl,J1) $=$ SMG(J!,J1) + EMG(4,4) ..... 2110
SMC(J1, J2) $=$ SNG(J1,J2) + EMCi(4, 5) ..... 2120
SMC(Jl.J3) $=$ SNG(Jl,J3) + EMC(4,t $)$ ..... 2130
SMC(J2,J1) = SMC: (J2,j1) + EMG(E.4 ..... 2140
SMG(J2,J2) = SMri(J2,Jさ̃) + EMG(5,51 ..... 2150
SMC(J2,J2) $=\operatorname{SNG}(J 2, J 3)+\operatorname{EMG}(5, t)$ ..... 2160
SMC(J3,J1) $=$ SMG(J3,J1) + EMC(16,4) ..... 2170
$S M G(J 3, J 2)=S M G(J 3, J 2)+\operatorname{EMG}(6,5)$ ..... 2180
SMG(J3,J3) $=$ SMG(J3,J3) + EMG(6,6) ..... 2190
CCNTINUF ..... 2200REAC ANC PF INT INPUT OATA FOR LIAEAR SPRINGS$22: 0$
12 REAC (5,10! S) ?NOCE , JNOCE , SX. SY , STHFTA ..... 2220
1019 FCRMAT (215,3F10.0) ..... 2230
IF(INCDE.EN.OI GD YO 13 ..... 2240
WRITE (E,1020) INODE, JNCDE,SX,SY,STHETA ..... < 250
1020 ..... 2260
8HPCTATION,F10.41 ..... 22612
INCOE $=$ ? a TNODE - 2 ..... 2270
JNCDE $=3$ *JNCDF - 2 ..... 2290
SSCIINOCE,INCDEI = SSGIINODE,INOCEI + SX ..... 2290
SSGIINOCE, JNODEI = SSGI?NODE, JNOCE - SX ..... 2300
SSE(JNOCE, JNCDE) = SSG(JNODE, JNODE) + SX ..... 2310
SSC(JNOCE,INCOE) = SSG(JNODE,INOCF) - SX ..... 2320
SSG(INOCRE1,INOEE+1)=SSG(INODE+1,INODE+1) + SY ..... 2330
SSC(INOCE+1, JNOCE+1)=SSG(INNDE+1,JNODE+1) - SY ..... 2340
SSC(JNOCE+1, JNOCE+1)=SSG(JNOOE+1, JNODE+1) + SY ..... 2350
SSG(JNOCE+ ? , INOCE+1) = SSG(JNODE+1,INODE+1) - SY ..... 2360
SSC(INOCE+z, INOCE+2)=SSG(INNDE+i,INOCE+2) + STHETA ..... 2370
 ..... 2380
SSC(JNOCE+2,JNOCE+2)= SSG(JNJDE+2,JNODE+E:) + STHETA ..... 2390
SSC(JNOCE+2,INCCE+2)=SSG(JNOCE+?,!NODE+21-5THETA ..... 2400
GO TC 12 ..... 24! 0
$c^{2}$ CGATINUE. CGATINUE. 2420 2420
C REAC ANC PG int input data fer lunaec masefe ..... 2430
2440
14 مEAC 15,10E11 IMOCE, NXY, NMI ..... 24:0
1021 FORMAT (15,2F10.01 2460IFINODE.EO.C) GO TO 15 24702470
WRITE (E,IC22) INODE, NXY,MMI
WRITE (E,IC22) INODE, NXY,MMI
FORMAT (28HOADCED LUMPEC MASSES TC NDDE, IE, 12 HTRANSLATION ..... 2480
1022 ..... 24901 ĖO.4, BHROTATIGN,EIO.41
2491MXY $=$ MXY/38E.4INCDE = 3\#INODE - 2
MMI $=$ MNI/38E.42500
SMC(INOTE, ! NODE) = SMC(INODE,INODE) + MXY ..... 2510
SMC(INOCE+1,INOCE+1)=SMG(INDDE+1,INODE+1) + MXY ..... 2520
 ..... 2530
GO TC 14 ..... 2540
15 COATINUE ..... 2550
C

- MOD!FY STRUCTURE STIFFNESS AND MASS MATRICTS FOD CONSTRAINTS ..... 2570
DC $1 t \quad 1=\mathrm{J}, \mathrm{NUMNP}$ ..... 2580
M1 $=3 *!-2$ ..... 2590
M2 = 3\#! - 1 ..... 2600
M3 $=3$ ) ! ..... 2610
IF(IRX(I).NE.O) CALL MOCIFY(MI) ..... 2620
IFIIRY(I).NE.O) CALL MECIFY(M2I ..... 2630
IF(IRT(I).NE•O) CALL MCCIFY(M3) ..... 2640
16 CCATINUE ..... 2650
WRITE (E,1025) ..... 26.60
1023 (27HIETRLCTURE STIFFNESS MATRIX ..... 2670
NC $=10$ ..... 2680
DO :7 NCM = 1,21,10 ..... 2690
WRITF (E,1024) ((SSG(I,J),J=NCM,NC), P=1, M3) ..... 2700 ..... 2710
IF(M3-NC) 1ع,18,17 ..... 2720
17 NC $=N C+10$ ..... 2730
$18 N C=10$ ..... 2740
WRITE (E,102s) ..... 2750
102! FORMAT (22HISTRLCTURE MASS MATRIX) ..... 2760
DC 19 NCM $=1,21,10$ ..... 2770
WRITE (E,1C24 ( (SMG(!,J),J=NCM,N() II=1,M3) ..... 2780
IF(M2-NC) 20,2C.19 ..... 2790
19 NC $=N C+10$ ..... 2800
20 CONTINUF ..... 2810
C ..... 2820
C INVERT STRUCTURE MASS MATRIX AND ICST MIJLTIPLY RV ..... 2830
STRUCTURE STIFFAIESS MATRIX ..... 2840
CALL NIV (SMC, SMSG,M3,3C) ..... 2850
CALL MMLLTISMG,SSG,SMSG,301
CALL MMLLTISMG,SSG,SMSG,301 ..... 2860 ..... 2860 ..... 2870 ..... 2870
$C$
$C$2880
CALL MTXP ..... 2890
STCP ..... 2900
ENC ..... 2910
SUERCUTINE MODIFY (M)
COMMCN TITLE(18), NUMNP, NUMEL, XNP(10), YNP(10), IRX(1C),IRY(10),
MODIF 10

COMMCN TITLE(IB), NUMNP, NUMELIXNP (10), YNP(L0), IRX(1C),IRY(IO),

      MOCIF 20
    
      IRT(10), EE(9), EA(9), FE!(9),ESH(9),INP(O), JNP(S),
    
                      \(R(6,6), \operatorname{ESM}(6,6), E S G(6,6), S E G(30,30), E M M(6,6), E M G(6,6)\),
    
      MODIF 22
    
      MOCIF 22
    
      MOCIE 23
    
      MOCIF 30
    
          \(N=3 * N U N N P\)
    
      MDDIF 40
    
          \(001 I=1, N\)
    
          SSG(I,M) \(=0.0\)
    
          \(\operatorname{SSG}(N, I)=0.0\)
    
          SMC(IDM) \(=0.0\)
    
          SMC(N,I) \(=0.0\)
    
          CONTINUE
    $S S G(N, M)=1.0$

$\operatorname{SMG}(\mu, N)=1.0$

PETUPN

E.NC

MODIF 50

MOCIF 60

MCDIF 70

MODIF 80

MCDIF 90

MODI 100

moci 110

MCCI 120

MCDI 130

```
 SURRCUTINE ELSTIF
 ELSTI }2
 COMMON TITLEII8), NUMNP,AUMEL,XNP(10), YNP(10),IRX(10),IRY(10),
 & IRT(IO),EEP9),EAP91,FEI(9),ESN(9),INP(9),JNP(9),
 R(6,6),ESM(6,6),ESG(6,6),SSG(30,30), EMM(6,6),EMG(6,6),
 SNG(20,30),SMSC(3C,30),L,EL,EE ,ECA,EI,U, RG, CR,CG
 00 1 I=1,6
 OO 1 J = 1,E
 ESM(IOJ) = 0.0
 ESM(1,&)=ECA*E/EL
 ESM(1,4)=-FSM(1,1)
 ESM(4,1)= -ESM(1,1)
 ESM(4,4) = ESM(1,1)
 ESM(2,2)=120*E*EI/EL**3
 ESM(5,5)=ESM(2,2)
 ESM(2,5) =-ESM(2,2)
 ESM(5,2)=-ESM(2,2)
 ESM(2,3) = 6.*E#EI/(EL*EL)
 ESM(2,6)=ESM(2,3)
 ESM(3,2)=ESM(2,3)
 ESM(6,2)=ESM(2,3)
 ESM(2,5) =-ESM(2,ミ)
 ESM(5,3) =-ESM(2,3)
 ESM(5,E)=-ESM(2,3)
 ESM(6,5) =-ESM(2,3)
 ESM(3,3) = ESM(2,2)*EL*EL/3.
 ESM(E,E)=ESM(3,3)
 ESM(3,6) = ESM(5,3)/2.
 ESM(6,3)=ESM(3,t)
 PETURN
 FNO
 SURROUTINE ELNASS
 COMMCN TITLE(IA),NUMNP,NUMEL,XNP(IC),YNP(IC),IRX(IO),IRY(10),
 1 IPT(10),FEE(S),EA(9),EEI(9),ESW(9),INP(9),JNP(9),
 O(6,6) ,ESM(6,6), ESG(6,6), Sar, (30,30),EMM(6,6),EMG(6,6),
 SNGI30,301,SMSG(3C,30)IL,EL,E,ECA,EI,U,RG,CR,CG
 OO 1] = 1,6
 OO 1 J = 1,6
 EMM(I,JI = 0.0
 EMM(1,1)=U*EL/3
 EMM(4,4) = EMM(1,1)
 EMM(1,4) = EMM(1,1)/2.
 EMM(4,1) = EMM(1,4)
 EMM(2,2) = U#EL*(13./3E. +((RG/EL)**2.)**6.15.)
 EMM(5,5) = EMM(2,2)
 EMM(2,E)= U*EL*(S./7C. - ((RG/EL)**2.1**6./5.1
 EMM(5,2) = FUM(2,5)
 EMM(2,3)=U*EL*(I1./21C**EL +((R.,/EL)**2.)*FL/20.)
 EMM(3,2) = EMM(2,3)
 ENM(5,6)=-EMN(2,3)
 EMM(6,5) = -FMM(2,3)
 EMM(2,6)= U#EL*(-! 2.*FFL/420. + ((RG/EL)**2)*EL/10.)
 EMM(6,?)=[MM(2,t)
 EMM(3,3)= U*EL*(EL#EL/805. +((RG/EL)**2)*FL*EL*2./15.1
 EMM(6,E)=FMM(3,3)
 EMM(3,5) = FMN(2,6)
 EMM(5,3)=-EMM(2,6)
 EMM(3,6)= U#EL*(-EL*EL/1440.-((RG/EL)**2)#EL*EL/30.)
 EMM(6,3)=ENM(3,6)
 RETURN
 ENC
 ELMAS 10
 ELMAS 20
 ELMAS 21
 ELMAS }2
 ELMAS 23
 ELMAS 30
 ELMAS 40
 ELMAS }5
 ELMAS }6
 ELMAS }7
 ELMAS }8
 ELMAS 90
 ELMA }10
 ELMA 110
 ELMA 120
 ELMA 130
 ELMA 140
 FLMA 150
 ELMA }16
 ELMA }17
 FLMA }18
 ELMA }19
 ELMA 200
 ELMA 210
 ELMA }22
 ELMA 230
 ELMA 240
```

```
 C MATRIX INVERSICN EY GAUSS-JORDAN NETHOD
 DIMENSICN A(M,M),U(M,M)
 OC 1 I=1,M
 OO 1 J=1,m
 U(I,J)=C.
 IF(I.EO.J) U(I,J)=1.0
 COATINLLE
 EDS=C.OC00002
 OC 11 P=1,NM
 K=1
 !FII-NM 12,6,2
 IF(ACI,I)-FPSSI?,4,6
 IF(-AII,II-EPSI4,4,6
 K=k+1
 DO 5 J=1,NM
 U(I,J)=(Cl!,J) +U(K,J)
 A(I,Jl=A(I,J)+A(K,J)
 GO TC 2
 DIV=A(I,I)
 DC 7 J=1,NM
 U(I,J)=6(I,J)/DIV
 A(I,J)=A(!,J)/CIV
 DO 11 MM=1,NN
 DELT=A(NN,I)
 IF(APS(CELT)-EPSSI11,11,8
 IF(MN-I)S,11,9
 DC 10 J=1,NM
 U(MM,J)=U(MM,J)-U(I,J)#CELT
 10 A(MM,J)=A(MM,J)-A(I,J)*CELT
11 continue
 OO 12 I=1,NM
 DC 12 J=1,NM
 A(I,J)al(I.J)
 RETURN
 ENC
 MIV
 10
 M!V
 m!V
 MIV
 MIV
 MIV
 MIV
 MIV
 MIV
 M!V 100
 100
 MIV 110
 MIV 120
 MIV 130
 MIV 1<0
 MIV 150
 MIV 1*0
 nIV i>0
 u!V j?0
 viv 190
 MIV 190
 MIV 210
 MIV 220
 M!V 230
 MIV 240
 MIV 250
 MIV 260
 MIV 260
 Miv
 280
 MIV 200
 MIV 300
 MIV 310
 MIV 320
 MIV 330
 MIV 340
 MIV 340
MIV 3&O
\begin{tabular}{|c|c|}
\hline SURROUTINE MMULT (\(A, B, C, N\)) & MMULT 10 \\
\hline DIMENSICN A(N,NI, B(N,N),C(N,N) & MMULT 20 \\
\hline MATR ! \({ }^{\text {NULTIPLICATION NCTS }}\) & MMULT 30 \\
\hline DO \(11=1, N\) & YMUL' 40 \\
\hline On \(1 \mathrm{~J}=1, \mathrm{~N}\) & MMULT 50 \\
\hline \(C(1, J)=0.0\) & MMULT 60 \\
\hline OO \(1 \mathrm{~K}=1, \mathrm{~N}\) & MMULT 70 \\
\hline \(C(1, J)=C(I, J)+A(I, K) * A(K, J)\) & MMULT 80 \\
\hline \(002 \mathrm{I}=1, \mathrm{~N}\) & MMULT 90 \\
\hline DC \(2 \mathrm{~J}=1, \mathrm{~N}\) & MMUL 100 \\
\hline B(I, J) = CPI, J) & MMUL 110 \\
\hline RETURN & MMUL 120 \\
\hline ENC & MMUL 130 \\
\hline
\end{tabular}
SURROUTINF MTMUL (A,B,C,N)
```

```
 SUEROUTINE MTXP MTXP 10
 CCNMCN TITLE(10),NUMNP,NUMEL, XNP(10), NNP(10),IRX(10),IRY(10)
 MTXP
 20
 MTXP 21
 IRT(IO),EE(9),EA(9),EE{(9),FSW(9),INP(9),JNP(9), MTXP
 A(6,6),ESM(6,6),ESG(6,6),SPG(30,30),EMM(E,6),EMG(6,6), MTXP 22
 SNG(20,30),SMSG(3C,30),L,EL,E,ECA,EI,U,RG,CR,CG
 MTXP }2
 MTXP }3
 MTXP 31
 MTXP 32
 MTXP }3
 MTXP 40
 MTXP }5
 MTXP }6
 THIS PRCGRAM CALCULATES THE SOLUTION OF A MATRIX OF FIRST MTXP }7
 ORCER, SIMULTANEOUS DIFFERENTIAL EQUATIONS W/ CONSTANT COEFFICIENTMTXP 80
 OF THE FORM DXIOT = AX & 2. MTXP
 MTXP 90
 MTXP 100
 THE METHCD IS PAYNTER-S MATRIX EXFONENTIAL METHOD
 THE SOLUTION IS GIVEN FCR INEREMENTS CF THE INDEPENDENT
 VAPIARLE (T) FRCM TZERO THROISGH TMAX
 CCMPUTES MATRICES C = EXP(A*TI ANE:
 HP = (C-I)#A INUERSE
 SOLUTIOA X(N*T) = C#X((N-1)#T)+HP*Z((N-I)#T)
 OUTPUT FRCM THE PRDGRAN IS PRINTED AT INTEPVALS PLTINC.
 THE PROGRAM USES SUBROUTINES DISTRB AND OUTPUT
 NI=O ON 1-ST PASS. SET TO 1 ON 1-ST CALL OF CUTPUT.
 NI=O
 NE = 6*NUMNP
 M3 = 3 A AUMNP
 DC 2 1 = 1,M3
 J=I + M3
2 A(I,J) = 1.0
 OO 3 1 = 1,M3
 IM2 = I +M3
 A(IN3,IN3) = -CR
 DC z J = 1,M3
 JM3 = J +M3
 A(IM2.JN?) = A(IM3,JM3) - CG*SMSG(I,J)
 A(IME,J)=-SMSG(I,J)
 5 JJFLAG=C
C CALCULATICN OF MATRIX EXPONENTIAL.S C AND HP
 DO 6 I=I,NE
 C!!,I!=1.
 OO7 !=1,NE
 HP(I,I)=T
C
 DO 9 I=1,NE
 OO 9 J=1,NE
 OPT(I,J)=C(I,J)
C
C NOW FORM THE MATOIX EXPONENTIALS C=EXP(A#T) AND HP=((C-I)*A INVERSE)
 AL=1.0
C
 10 00 10 KL=1, ITMAX
C
 KLN=KL
 ALL=T/AL
 AL=AL+1.0
 TALLL=T/AL
MTXP 110
MTXP 120
MTXP 130
MTXP 140
MTXP 150
MTXP !60
MTXP }17
MTXP 180
MTXP {90
MTXP 200
MTXP 210
MTXP 220
MTXP 350
MTXP 360
MTXP 380
MTXP 410
MTXP 400
MTXP 420
MTXP 510
MTXP 520
MTXP }53
MTXP 540
MTXP 550
MTXP E60
MTXP 570
MTXP 580
MTXP }59
MTXP }60
MTXP }61
MTXP 630
MTXP E40
MTXP E50
MTXP 660
MTXP E70
MTXP 680
MTXP E90
MTXP 710
MTXP 720
MTXP 730
MTXP 740
MTXP }75
MTXP }76
MTXP }77
MTXP 780
MTXP }79
MTXP 800
MTXP 810
MTXP 820
MTXP 830
MTXP R40
MTXP &50
```

```
C MTXP 860
DC 12 I=2,NF
C
 OO 11 J=1,NF
 TOP(J)=0.0
 DC 11 KM=1,NE
 TOF(J)=TOP(J)&GPT(I,KX)#A(KX,J)
c
 OO l& J=1,NE
 OPT(I,J)=TOP(J)#ALL
C
 QP9=MATRIX TERM IN SERIES APPROX. =((A*T)**K)/K FACTORIAL
 00 :3 I=1,NE
 DO 13 J=1,NE
 13 C(I,J)=C(I,J)+OPT(I,J)
 14 IFIITMAX-KLII7,17,15
 15 DO 16 I=ITNE
 OO le J=1,NE
 16 HP(I,J)=HP(I,J)+OPT\I,J)#TALLL
 17 CONTINUE
 18 CONTINUE
C
 C(I,J) IS THE MATRIX EXPONENTIAL C=EXP(A*T)
 ANC HP(I,J) !S THE ((C-I)#A INVERSE) MATR!X
 C NOW WE READ IOR CALLL SUBRCUTINE FORI EISTUREANCE VECTOR
C
 19 TIME=TZERN
 pLT=0.
 20 CALL CISTRB
C ON 1-ST CALL OF nUTPUT NI SET TO 1
 21 CALL CUTPUT
C
C NON CONES TRE FOUATION SOLUTION BASED ON
C X(NTT)=M#X(NT-1)+((M-I)A INV.)#Z(NT-1)
 22 CONTINUE
C
23 IF(JJFLAGI24, 25,24
 24 CALL CISTRB
 25 CONTINUE
 26 DO 27 I=1,NE
 Y(1)=C(1,1)#X(1)+HP(1,1)*Z(1)
 DO 27 J=2&NE
 27 Y(I)=Y(I)+C(I,J)#X(J)+HP(I,J)#2(J)
 28 DO 29 I=1,NE
 29 x(I)=Y(I)
C C ONE TIME INCREMENT CF THE SCLUTICN HAS JUST bEEN fOUND
C NOW PLCT ANC PRINT IF PLTINC INTERVAL HAS ELAPSED
 JJFLAG=1
 T!ME=T!ME+T
 PLT=PLT*?
 IF(PLT-PLTINCI31,30,30
30 CALL CUTPUT
 PLT=0.
31 IFITINE-TMAXI22,32,32
32 PLT=C.O
 NI = NI-1
 HRITE (7.1002) NT MTX 1400
34 WRITE (7,1002) NT
1002 FOPMAT (121
 IF(ICNOCE.FO.O) GC TO 4C
 HPITE (7,1003) (ITPLOT(I),XPLOTIIII,I=1,NI) MTX 1510
1003 FCGMAT (8E10.3/(8E10.31)
40 PETURN
 ENC
MTX 1520
MTX }154
```

	SURROUT INE RUTPUT	OUTPU 10
	COMMCN TITLE(18), NUMNP, AUMEL, XNP(10), YNP(10), IRX(10),IRY(10),	OUTPU 20
	IRT(10), EE(9), EAC9), EEP(9), ESH(9), INP (0), JNP(9),	OUTPU 21
		OUTPU 22
	3 SNG(?0,30),SMSG(3C, 30$)$, L PFL, 2 , ECA, EI, U, RG, CR,CG	OUTPU 23
	COMMCN /MATEXP/ C $(60,60)$, $\mathrm{HP}(60,6 \mathrm{C}), A(60,60), 0 \mathrm{PT}(60,60), \mathrm{X}(60)$,	OUTPU 30
	F(30), $2(60), Y(60), X I C(6 C), T \cap D(60), I T M A X, K K, L L, M M$,	OUTPU 31
	2 JJFLAG, AI, TIME, TM/ $X, T$ PERO,NE,, , ! I I, ICENTR,	OUTPU 32
	PL'INC, MATVES, ICCS, JFLEG, PLT, IONODE	OUTPU 33
	CONMCN /PLOT/ TPLCT(99),XPLCT(くg)	OUTPU 40
C		OUTPU 50
6		OUTPU 60
C		OUTPU 70
	IF(N1)7,1.7	OUTPU 80
1	N! $=1$	OUTPU 90
	$N C=10$	OUTP 100
	DO 2 NCN=1,51,10	OUTP 110
	WRITE(6,1001) (PACI, JI, J=NCN,NC), I=2,NE)	OUTP 120
1001	FORMAT (2HIA ( 1 (H,1P10E11.3)	QUTP 130
	IF (NE-NC) 3,3,2	OUTP 140
2	$N C=N C+1 C$	OUTP 150
C		OUTP $1 \in 0$
3	NC=1C	OUTP 170
	DO 4 NCN=1.51.10	OUTP 180
		OUTP 190
1002	FORMAT (2HOC/IIH.1P10E11.31)	OUTP 200
	IF(NE-NC) 5,5,4	OUTP 210
4	NC $=$ NC+1C	OUTP 220
C		DUTP 230
5	NC=1C	OUTP 240
	OO 6 ACN $=1,5!, 10$	OUTP 250
		OUTP 260
1003	FORYAT (ЗHCHD/(1H,1PLOEII.E)I	OUTP 270
	IF(NE-NC) 7.7.E	OUTP 280
6	NC=NC+1C	OUTP 200
C		OUTP 300
	WRITE (E,1004) TIME	OUTP 310
1004		OUTP 320
		OUTP 321
	DO 8 I = 1, NUWNP	OUTP 330
	K6 $=$ NF/2 + 3*1	QUTP 340,
	$K 5=K 6-1$	OUTP 350
	-K4 $=$ K5 - 1	OUTP 360
	$k 3=3+1$	OUTP 370
	K2 $=$ K3-1	OUTP 380
	K1 = K2-1	OUTP 390
	IFIICNOCE.EO.OI GO TO 8	
	-PLET(NI) = TINE	OUTP 400
	XPLDT (NI) $=$ X(3*ICNODE - 21	OUTP 410
8		OUTP 420
1005	FORMAT 11H, 11FNODE NUMEER, 15,615:,1PE10.311	OUTP 430
	H! = N! + !	OUTP 480
9	RFTURA	OUTP 490
	ENC	QUTP 500


	SURRCUTINE DISTRE	DISTR 10
		DISTR 20
	1 IPT(10), 1 EE(9), EA(9),EEI(9), ESW(9), INP(0), JNP(9),	OISTP 21
		OISTR 22
	3 SNG(30,30), SMSG(3C,30), L, EL, E, ECA, EI, U, RG, CR, CG	DISTR 23
	COMMEN /PATEXP/ C $(60,60)$,HP( 60,60$), A(60,60), O P T(60,60), X(60)$.	DISTR 30
	1 F (20),Z(60),Y(60),XIC(EC), TCP(60),ITMAX,KK,LL,MM,	DISTR 31
	2 JJFLAG,NI, TIME,TMAX,TRERO,NE, T, ! Z I, ICONTR,	DISTR 32
	3 PLTINC,MATYES,ICCS,JFLAG, PLT, IONODE	CISTR 33
C		DISTR 40
	M3 $=3$ \# AUMNP	DISTR 50
	FT = 1. - 10.*) Time + T/2.1	DISTR 60
	IFITINE.ET. O. $11 \mathrm{FT}=0 . \mathrm{C}$	DISTR 70
	F1 = 3000.*FT	OISTR 80
	$F 2=4000{ }^{*} F^{T}$	DISTP 90
	$F 3=-2000 * F T$	DIST 100
	$F(4)=F 1$	DIST 110
	$F(7)=F 2$	DIST 120
	$F(10)=F 3$	DIST 130
	On $11=1, \mathrm{~m} 2$	DIST 140
	$J=1+M 3$	DIST 150
	$2(J)=0.0$	CIST 160
	DO $1 \mathrm{~K}=1 . \mathrm{ma}$	OIST 170
1	Z(J) $=2(J)+S N G(I, K) \neq F(K)$	OIST 180
	RFTURN	DIST 190
	ENE	OIST 200

William Christopher Terrill Stoddart was born in Detroit, Michigan, on August 25, 1941. He attended high school in Reading, Ohio, and received his undergraduate education at the University of Cincinnati and The University of Tennessee. He received a Bachelor of Science degree in Mechanical Engineering from The University of Tennessee in August, 1963. While attending the University of Cincinnati, he was employed at Wright Field in Dayton, Ohio; and after graduating from The University of Tennessee, he was employed by Pratt and Whitney Aircraft Corporation in East Hartford, Connecticut. He has been employed at Oak Ridge National Laboratory, which is operated by Union Carbide Corporation under contract with the United States Atomic Energy Commission, since September, 1965.

He entered the Graduate School at The University of Tennessee in June, 1966, and received the Master of Science degree in Engineering Mechanics in December, 1970.


[^0]:    *Numbers within parentheses in the text designate numbered references given in the List of References.

