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ABSTRACT

A numerical algorithm is formulated to solve the first order,
nonlinear differential equations that describe a multistage flash
eveporator. The nonlinearities appearing in the formulaetion of the
algorithm are products of up to three terms with each term being a
dependent varieble raised to some power.

To develop the algorithm, the first order differential equa-
tions are written in integral form. The dependent variables are
then assumed to have a purely exponential dependence over a finite
time step thereby allowing for the explicit integration of all
terms. The solution of the differential equations is then reduced
to the determination of the exponential dependences. The exponen-
tial dependences are determined by an iterative method.

A computer code based upon the aforementioned algorithm was
written. Before the algorithm was used to obtain solutions to a
flash evaporator system, it was applied to several differential
equations with known solutions. The algorithm was then used to
obtain solutions for two perturbations in the twenty-third order
system that describes a three stage flash evaporator. These solutions

are compared with solutions obtained by other methods.
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CHAPTER I
INTRODUCTION
I. PURPOSE OF THE STUDY

Although considerable effort has gone into the development and the
study of linearized models of multistage flash evaporators,l’2’3’h’5’6*
solutions of the nonlinear models are needed to aid in the interpreta-
tion of experimental date .and in the design of control systems.7
Currently numerical solutions of the nonlinear models of multistage
flash evaporators are being obtained using MATEXP,8 & general purpose
computer progrem for solving differential equationms.

The purpose of this thesis is to develop & solution algorithm
applicable to nonlinear differential equations..and in particular to
the nonlinear models of multistage flash evaporators. The algorithm
will be used to check the use of MATEXP in the solution of the non-
linear models of flash eveporators by presenting an. alternate and
independent solution algorithm. If the computation time permits, the
solution algorithm may become a useful tool for solving the large sets

of nonlinear differential equations that describe multistage flash

evaporator systems.

#*
Superscript numbers. in.the text refer to similarly numbered
entries in the bibliography.



IT. PREVIOUS USE OF THE EXPONENTIAL
ALGORITHM AND ITS EXTENSION TO

NONLINEAR DIFFERENTIAL EQUATIONS

Hansen et al.9’lo

have developed a computational algorithm for
solving the time-dependent neutron multi-group diffusion equations

that is numerically stable, rapid in operation, and accurate. In
essence, Hansen's algorithm was developed by integrating the differen-
tial equations describing the time-dependent neutron fluxes and pre-
cursor concentrations over a finite time step and assuming an exponential
time dependence of the fluxes and precursor concentrations. In this
thesis numerical algorithms for solving differential equations by
assuming an exponential dependence of the dependent variables over a
finite time step are referred to as exponential algorithms.

Others have since applied modifications of Hansen's exponential
algorithm to other problems. Specifically, Swanksll used an exponen-
tial algorithm to obtain solutions to the time-dependent discrete
ordinate neutron transport equations, and Stevenson and Bingha.m12 used
an exponential algorithm for a liquid metal fast breeder transient
analysis.

Because of its speed and accuracy in the solution of large sets
of linear differential equations, an extension of the exponential
algorithm to large sets of nonlinear differentiel equations seems
appropriate. However, the question of numerical stability remains

unanswered when applying the exponential algorithm to nonlinear dif-

ferential equations.



To develop the exponential algorithm for first order, nonlinear
differential equations, the dependent variables are assumed to behave
as pure exponentials over a finite time step. The differential equa-
tions are then integrated over the finite time step, and the solution
of the differential equations is reduced to the determination of the

exponential dependences of the variables.



CHAPTER IT
FLASH EVAPORATORS

I. A DESCRIPTION OF A THREE. STAGE FLASH EVAPORATOR
AND THE VARIABLES USED TO DESCRIBE

A MULTISTAGE FLASH EVAPORATOR

In the model employed in this thesis,6 the differential equations
describing the state of any interior stage of a multistage flash eva-
porator are a function of the variables used to describe that stage
and . the variables used to describe the two adjacent stages. For this
reason, a three stage evaporator system is sufficiently general to
include the coupling that arises. in multistage flash evaporator systems
and is used as a reference system in this study.

A schematic diagram of the three stage flash evaporator used as
the reference system is shown in Figure 1. The brine is heated in the
steam heater section and pumped into Stage 1 where partial flashing
occurs as the brine enters the stage. Pressure differences due to the
vapor pressures and the hydraulic heads support the brine flow from
Stage 1 to Stage 2 and from Stage 2 to Stage 3, and partial flashing
occurs as the brine enters the stages. Fresh water is used in the
coolant loop to condense the vapor, and the condensate is removed from
the system.

As shown in Figure 1, six dependent variables are used to describe
the state:of each stage. Specifically, these variables are.

1. The trey brine mass,
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2. The average tray brine temperature,

3. The cell vapor mass,

4. The average condenser tube temperature,

5. The average coolant temperature, and

6. The coolant outlet temperature.
In addition, five dependent variables are used .to.describe the heating
and cooling loops.

A state variable vector representation, i, is used to describe
the state of the entire system. Table 1 defines the variables used
to describe the three stage evaporator system .and denotes the ordering

of the variables in the state vector.

II. THE DIFFERENTIAL EQUATIONS
USED TO DESCRIBE A THREE

STAGE FLASH EVAPORATOR

The development .of the differential equations used to describe a

1,2,6 Therefore, no

multistage flash evaporator is well documented.
attempt will be made here to present their development. The nonlinear
differential equations used to. describe a three .stage flash evaporator
were obtained from the equations given in the Appendix of Reference 6,
except for the introduction of the nonlinear flashing flowrate dis-
cussed in Reference 6.

The nonlinear differential equations used to describe a three stage

flash evaporator are



TABLE 1

DEFINITION OF THE VARIABLES
USED IN THE THREE STAGE
EVAPORATOR MODEL

Physical Significance

Coolant outlet temperature in Stage 1
Average coolant temperature in Stage 1

Average condenser tube temperature in

Cell vapor mass in Stage 1

Average tray brine temperature in

Tray brine mass in Stage 1
Coolant outlet temperature in Stage 2
Average coolant temperature in Stage 2

Average condenser tube temperature in

Cell vapor mass in Stage 2

Average tray brine temperature in

Tray brine mass in Stage 2
Coolant outlet temperature in Stage 3
Average coolant temperature in Stage 3

Average condenser tube temperature in

Cell vapor mass in Stage 3

Model State
Variable (units) Variable
o]
TTol( F) X,
o
mTl( F) x2
by (°F) x
Tube 1 2! T
Mcv1(pounds) x),
Tas (M x
g > Stage 1
MTBl(pounds) Xg
o
TTo2( F) xT
o
Tpo(°F) X8
by (°F) X
Tube 2 9 Stage 2
MCV2(pounds) X0
P ___(°F) x
TB2 13 Stage 2
Mppo (pounds) X2
o
Tpo3(°F) arb
m o
Tps(°F) 1),
Ly (°F) X
Tube 3 15 Stage 3
Mcv3(pounds) X16




TABLE 1 (continued)

Model State

Variable (units) Variable

Physical Significance

gm§°m

MTBB(pounds)

TCL(°F)

TIP(°F)

Tbr-su( )

o
TBRO—SH( F)

TTube-SH(OF)

WBR(pounds/second)

Wc(pounds/second)
(]

Ty (°F)
o

T (°F)

WFEED(pounds/second)

WBLEED(pounds/second)

X

17

*18

X

19

*20

Fa1

X202

23

Average tray brine temperature in
Stage 3

Tray brine mass in Stage 3

Average coolant temperature in
reservoir

Average inlet plenum temperature

Average brine temperature in brine-
heater

Brine outlet temperature in brine-
heater

Average tube temperature in brine-
heater

Brine flowrate

Coolant flowrate

Temperature of coolant feed
Temperature of steam in brine heater
Brine feed rate

Brine extraction rate
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The definitions of the coefficients used in Equation (1) are given in
Appendix A.

In Equation (1), X,), and x,.. are the effective pressure drops from

a5
Stage 1 to Stage 2 and from Stage 2 to Stage 3 respectively. These

pressure drops are given by the following equations:

K2
3 ok . el 3
Xy = Y%yt AFC, | 6 ~ Y2 *10 " AFCe) X 8y = %,
(2)
1 e
Tos'S Moo T ERE ) 12 T Y3 Y67 A_FE;) L N S

The definitions of the coefficients used in Equation (2) are given in
Appendix A.
In Equation (1) the nonlinear terms are products of the dependent
*

variables and the effective pressure drops. An exponential algorithm

can be readily formulated for nonlinearities of this form.

o

The effective pressure drops are formulated as dependent variables,
and differential equations describing their time dependence can be
obtained by differentiating Equation (2).



CHAPTER III

THE NUMERICAL ALGORITHM

I. DEVELOPMENT OF THE FINITE

DIFFERENCED EQUATIONS

The first order, nonlinear differential equations for a three
stage flash evaporator given in Equation (1) can be written in the

form:

where X is a N dimensional, time dependent state vector; C is a
linear, N dimensional square matrix; F(X) is a N dimensional column
vector containing all the nonlinear terms; Z(X) is a N dimensional
column vector containing all time-lagged terms and S is a N dimen-
sional column vector. The C matrix in Equation (3) is factored into

two parts:

C=A+D (4)

where D is strictly a diagonal matrix and A is the remaining part
of the C matrix. Substitution of Equation (4) into Equation (3) and

rearrangement of terms yields

fe1]

& |6
1
=)
>l
[}
g
ol
+
ol
el
+
N
—~
e !
+
()]

15



The algorithm used to obtain solutions to Equation (3) will
be developed from the general concepts of Hansen's exponential
algorithm ,lO; however, the algorithm will be formulated by con-
sidering the differential equation describing an arbitrary depen-
dent variable, X, instead of using a matrix representation. The

differential equation describing this arbitrary variable is

N
g W g
g diixi = E: ainJ + fi(X) + zi(X) + sy (6)
J=

where the definition of all terms can be inferred by comparison of
Equations (5) and (6).

Equation (6) is multiplied by the integrating factor exp(-d,,t),

ii

and the resulting equation is integrated from ta to ta+h yielding

xi(ta+h)exp(-d (t_+h)) - xi(ta)exP(_diita)

ii' o
tu+h N
: [ exp(-a, ) L ayy%,(87) + £,(X) + 2, (%) + s, Jat".  (T)
4 j=l
o}

Multiplying Equation (7) by exP(+dii(ta+h)) and rearranging yields

16
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t +h N
x, (t #h) = x, (¢t )exp(d, h) + exp(d,, (t +h) Z exp(~d, ,t°)}) aidxj(t‘)
J=1
o}
+£,(X) + 2,(X) + 5 ]at”. (8)

It should be noted at this point that fi(i) and zi(i) are functions
of bt
For the flash evaporator described by Equation (1), the nonlinear

terms, fi(i)'s, can in general be represented by

J

il
£, = L v, L (t)xg(e)x(8)], (9)
J=1

where Ji is the number of nonlinearities in the ith differential
equation; the bJ'S are coefficients of the individual nonlinear terms;
the k's, 2's, and m's are integers corresponding to the indices of the
state vector X; and the p's, q's, and r's are real numbers; i.e., for

th

each nonlinear term of the i differential equation there is a

corresponding b, k, £, m, p, q, and r.
The time-lagged terms are expressed in the form:
o
2, (0) = L elx (¢ - 0, (10)
d:



18
where Ti is the number of time-lagged terms in the ith differential

equation; the e,'s are the coefficients of the individual time-lagged

J
terms; the n's are integers corresponding to the indices of the

dependent state vector i; and the 1's are the time lags; i.e., for
each time-lagged term in the ith differential equation, there is a

corresponding e, n, and T.

Substitution of Equations (9) and (10) into Equation (8) yields

xi(tu+h) = xi(tu)eXP(diih)

t *h N
remlay (o) [ eml-at)( L ag(e)
t 3=1
a
9 4
b ”, r -, e e
+ Lo LR (6], + L e lx (87-0)] ¢ s, Jat”
3=1 3=1
(11)
At this point, the assumption that xn(t‘—r), vhere t f_t‘f_ta+ h,

can be accurately approximated by xn(ta + %-— 1) is made. Using this

assumption and the assumption that the aiJ's, bJ's, eJ

constant over the time step ta to ta + h, Equation (11) becomes

's, and s, are

- 4
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xi(ta+h) = xi(ta)exP(diih)
N t_+h
a
+ exp(d-ii(ta+h)) Z 84 f exp(-diit )xj(t‘)dt‘

J=1 t,

J a+h
+ exp(d (t +h) 2: _[. exp -diit )[xp(t )x (t ')x;(t‘)]Jdt’
t

J=1
R t *h

+ exp(d,, (t +h))( A eJ[xn(ta+ %-- r)]J+ si)‘/. exp(-d,,t")at".
J=1 t,

Integration of the last term in Equation (12) and rearrangement of

the resulting equation yields

xi(ta+h) = xi(ta)exp(diih)

N ta+h
+ exp(dii(td+h)) o 84 J[ exp(-diit’)xj(t’)dt‘
J=1 t,
Ji ta+h
+ exp(d,, (t +h)) ) bj_j. exp(-diit’)[xi(t‘)x%(t')x;(t’)]Jdt'
=1 %,
T3
h
+ (L eyIx (t,+ 3- 0]y + s;)(expla ) - 1)/a;.  (13)

J:
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Some assumption must now be made concerning the behavior of the
dependent variables over the time step ta to ta+h' The - dependent

variables are assumed to have a purely exponential time dependence

over the time step; i.e., on the interval ta <t° S.ta+h’ xi(t’) is
given by the expression:
x,(¢7) = x, (¢ Jexp(u, (t7-t_)) (14)

where the w's are a set of real parameters to be determined numeri-

it
cally. A discussion of the method of determining the w's is pre-
sented in the next section. Introduction of the exponential assumption

into Equation (13) and rearrangement of the resulting equation yields

xi(ta+h) = xi(ta)exp(diih)
N

ta+h
+ exP(dii(ta+h)) )} ainJ(ta)exp(-mJta) jr exp((wj-dii)t’)dt’
t
o

J=1
Ji
+ exP(dii(ta+h))' ) bJ[xi(ta)x%(ta)x;(ta)exP(-pwk
=1
t +h

o

+ qw2+rwm)ta) f exp((pwk+qw2+rwm-dii)t ‘)]Jd‘t
"3
"

T3

+ (T eylx (6 2. )], + s;)(explay,n)- 1)/a,,. (15)
J=1

r .

It is noted that the exponential assumption given by Equation
(15) assumes that the values of the dependent variables do not change
sign over a time step.
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After evaluation of the integrals, Equation (15) is written as

xi(ta+h) - xi(ta)exp(diih)

N
+ exp(d, h) y. aijxd(ta)(exp((wj-dii)h) - l)/(wJ - d;y)
J=1
Ji
+ exp(d,;h) ) bj["i(ta)xg(ta)x;(ta)(e@((P“’k
3=1

*qu, +rw - ii)h) - l)/(pouk+qou’L+rmm-d.ii)].j

Ty

+ 2: ej[xn(ta + 2-— T)]J + Si)(exP(diih) - l)/dii' (16)
e

Equation (16) forms the basis of the exponential algorithm.
This equation expresses, in finite difference form, the components
of the state vector i(ta+h) in terms of i(ta) and the undetermined

exponential parameters.
II. DETERMINATION OF THE EXPONENTIAL PARAMETERS

Equation (16) shows that the .solution of the differential equa-
tions for the time step ta to ta+h has been reduced to the problem
of determining the appropriate w's for the time step. The w's are

determined by an iterative method.
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Solving Equation (14) for w; yields

1 o
T, ) il

By letting t° = t *h, Equation (1T) becomes

xj_ ( ta+1? )

i
iy g 8 xizt i £ (18)

a

Once a set of w's which satisfies Equation (18) is obtained, the
solution is said to. have converged on the interval ta to ta+h' In
general, Equation (18) can not be satisfied exactly. As a test

upon convergence, the wi's are required to satisfy either

xi(t +h)

-1 a
wy =5 —;ngzj—- =L (19)

or

1 :
ISR x (5

W

xi(ta+h ))

i

where € and €, are small positive numbers. For very small values
of wi,.the linear convergence test given by Equation (19) is used;
otherwise, the_fractional convergence test given by Equation (20)

is used.
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The iterative method used in this thesis to calculate the w's is
a modification of the method used by Swa.nks.ll The method employs
two schemes to estimate the w's. Scheme 1 calculates new estimates
of the w's from Equation (18), while Scheme 2 calculates new estimates
of the w's by a linear interpolation based upon previous estimates of
the w's. For a detailed discussion of Scheme 2, the reader is referred
to Reference 11.

The use of the iterative method in the determination of the w's
is diagramed in Figure 2. In Figure 2, the looping between control
points 3 and 4 is an inner-iteration, and the looping between control
points 2 and 5 is an outer-iteration. An inner-iteration estimates
the individual w,'s and hence the xi(ta +h)'s. The completion of an
outer-iteration yields a complete set of the w's and hence an estimate
of Tc(ta +h).

The initial estimates of the w's are obtained from the derivatives
of the dependent variables by using a first order Taylor series expansion
of X(h)rabolit ¢ = 0." The mathematical expression used .to obtain the

initial estimates of the w's is

o=
x,(n) = x, (0)explyhl~x, (0) + b = (0) (21)

or

.It has been found that it is advantageous, when introducing
binary perturbations: of the. brine flowrate into a three stage flash
evaporator, to use a modification of Equation (22) to estimate new
exponential parameters whenever the sign of the perturbation changes.
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1 on
Wy~ & 4n (L+n o (O)/xi(O)). (22)

At the beginning of subsequent time steps, the w's are set equal to
the values calculated during the previous time step.

To initiate a time step, its size, h, is set equal to the input
quantity At. An outer-iteration is then started and the values of
xi(ta + h) are calculated individually. After the. calculation of
each xi(ta + h), a check is made to determine if wi satisfies the
appropriate convergence criterion given by Equation (19) or Equation
(20). If a wi does not satisfy .the convergence criterion, up to
three successive estimates of this w, are obtained. The first estimate
is obtained from Scheme 1, and the next two estimates are obtained
from Scheme 2. After each new estimate of wy is made, xi(ta + h) is
calculated again and convergence is checked. Once a_converged Wy is
found, the calculation proceeds to the next xi(ta + h). If a converged
Wy cannot be found in three estimates, the size of the time step, h,
is reduced and the outer-iteration is started again. The above proce-
dure is repeated until an outer-iteration is accomplished.

If a new estimate of any .w, is made during an outer-iteration,
an additional outer-iteration is performed (an additional outer-iteration
is performed if ISTOP = 0). .Although this requirement may be relaxed,
it is employed because of the coupling of the differential equations.
The maximum number of outer-iterations is specified by the input quantity
NOUTIT. Once an outer-iteration in which all the w's remain constant

is completed or after NOUTIT outer-iterations have been performed, ta

is incremented and a new time step is started.



CHAPTER IV

NUMERICAL RESULTS

I. INTRODUCTION

The computer code ESNDE (Exponential Solution to Nonlinear
Differential Equations) was developed from the exponential algorithm
presented in Chapter III. A listing of this code and a discussion
of input deata is given in Appendix B. Although the code was de-
veloped specifically to solve the nonlinear multistage flash evaporator
equations, it can be used to obtain solutions. to sets of first order,
nonlinear differential equations.whose nonlinearities are of the form
given by Equation (15) and whose. dependent variables retain their
original sign over the solution interval. The computer code handles
variable coefficients by evaluating new coefficients at the beginning
of each time step.

Solutions to several differential equations were obtained before
‘the exponential algorithm was used to obtain solutions to a three stage
evaporator system. Numerical solutions of two of these differential
equations and the results obtained for two perturbations of the three
. stage flash evaporator described by Equation (1) are presented in this

chapter.
IT.. A NUMERICAL SOLUTION TO THE MODIFIED BESSEL'S EQUATION

The modified Bessel's equation is13

26
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2
(S ASERREE R (12 5 ) w B (23)
PR

In order to apply the exponential algorithm to Equation (23), the
equation is written as the following set of coupled, first order

differential equations:

. 5] (2k)

where X = W, X5 = %%, and Xg = t. A solution of the modified Bessel's
equation was obtained from the code ESNDE by solving Equation (24)

with v = 1, xl(l) =1, x2(l) =1, and x3(1} = 1, Tabulated results of
the exponential algorithm sclution are presented in Teble 2 along with

numerical values of the analytic solution,

W= aIl(t) + bKi(t), (25)
where

e = (2K (1) + K (1))/(T (1K (1) + I (DK (1)),



TABLE 2

SOLUTIONS TO MODIFIED BESSEL'S
EQUATION FOR v = 1, w(l) =1,
AND dw(l)/dt = 1

Time Exponential Algorithm Numerical Values
{Seconads) Solution of Analytic_Solution
1.0 1.000 1.000
2.0 2.603 1 2.604 ¢
4.0 1.586 x 10l 1.586 x 10l
6.0 9.96T7 x 10 9.967 x 10
8.0 6.497 x 10§ 6.497 x 1o§
10.0 L.340 x 10, L.340 x 10;,
12.0 2.947 x 105 2.948 x 105
14.0 2.026 x 10g 2.026 x 10¢
16.0 1.405 x 10¢ 1.406 x 10¢
18.0 9.816 x 107 9.819 x 107
20.0 6.896 x 108 6.898 x 108
22.0 L.86T7 x 109 L.868 x 109
24.0 3.448 x 10lo 3.449 x 10lO
= e Sy St
30:0 1:2h8 x 1012 ‘ 122&8 x 1012
i i 1 do £ T
36.0 L.605 x 1012 L.607T x 1012
38.0 3.314 x 1016 3.315 x 100¢.
Lo.o 2.388 x 10 2.389 x 10




b=(1- aIl(l))/Kl(l), (26)

10 IO’ 0° and Kl are modified Bessel functions.

The agreement of the exponential algorithm solution of the modi-

and I K
fied Bessel's equation with the. analytic solution is excellent over

an extremely large range of numerical values. Comparison of the
results shows that the fractional difference between the. two solutions

is generally less than 1073,

ITII. NUMERICAL SOLUTIONS TO VAN

DER POL'S EQUATION

1k

Van der Pol's equation, describing a triode oscillator, is

2
;—x%'—e(l—yz)%+y=0~ (27)

[o7]

In order to apply the exponential algorithm to Equation (27), the

transformations

X, =y +y
x, = %xt'-i- 0 (28)

are made; and the resulting transformed differential equation is
written as the following set of coupled, first order differential

equations:
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g

L
dx 2

&

2

e 2
A (2eyp + 1) x, + e(l -y )x2

+ spx§'+ 2€yxlx2 - exla-x2

+ eD(Y2 o BN (29)

In Equation (28), y and p are positive real constants whose magnitudes
are sufficiently large to insure that X, and x, are always positive.
Numerical solutions of Van der Pol's equation with initial condi-
tions of y(0) = 2 and %ﬁ-(o) = 0 and values of ¢ between 0.5 and 5.0
were obtained by applying the exponential algorithm (ESNDE) to Equation
(29). The results are presented in Figure 3 along with approximate
solutions given by Da.vis.lh Figure 3 shows good agreement between the

exponential algorithm solutions and the approximate solutions of Davis.

IV. NUMERICAL SOLUTION OF THREE STAGE

EVAPORATOR SYSTEM

Solutions for two. perturbations in the three stage flash evaporator
system described by Equation (1) were obtained from the code ESNDE.
Two approaches were teken to include the time dependence of the pressure
differences given by Equation (2) given on page 14, The first approach

was the introduction of two additional differential equations to describe
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the time dependence of the pressure differences by differentiating
Equation (2). The second approach consisted of the evaluation of the
pressure differences at the end of each time step from Equation (2)
and an iterative solution of an assumed exponential dependence of the
pressure differences based upon Equations (19) and (20.) given on page
22, When the time dependence of the pressure differences was included,
the computation time required to obtein a converged solution became
prohibitive.

Solutions were then obtained by assuming that the pressure dif-
ferences remained constant over each time step. This assumption is not
very restrictive since the changes in the pressure differences are small
over a time step and only fractional powers, less than or equal to one-
half, of the pressure differences appear in Equation (1). The solutions
obtained by ipcluding the .time dependence of the pressure differences
and by assuming the pressure difference remained constant over a time
step agreed very well. For the above reasons, the pressure differences
were assumed constant over a time step and were evaluated from Equation
(2) at the end of each time step.

Solutions of the three stage evaporator system obtained from the
exponential algorithm (ESNDE) are compared with solutions obtained by

15

Ball™” using MATEXP and from a computer program written to solve Equa-

16 The solutions obtained by the Euler

tion (1) by the Euler method.
method are taken as the reference solutions because reductions by a
factor of ten in the time step yielded no significant changes in any of

the dependent variables.
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The first perturbation was a ten degree (10°F) step change in

the steam heater temperature, T The second perturbation was &

SH®
twenty percent step change in the brine flowrate, WER’ The initial
conditions used were not the steady state values of the system. For
this reason, the perturbations were introduced .after a forty second
interval.
Tebulated results of the solutions are presented .in Tables 3 and
L. Plots of the transient responses of the vapor mass and brine mass
in the first stage and the brine mass in the third stage are presented
in Figures L4, 5, and 6 for the first perturbation and in Figures T, 8,
and 9 for the second perturbation. The time steps were 0.2 seconds
for ESNDE, 0.1 seconds for MATEXP, and 0.02 seconds for .the Euler method.
The tabulated results show a general agreement between the three
methods of solution. The transient responses show excellent agreement
between the Euler solution and the exponential algorithm solution and
some discrepancies between. the Euler solution and the MATEXP solution
primarily due to the appearance of oscillations in the MATEXP solution.
The oscillations in the MATEXP solution are attributed to either the
use of too large a time step since similar oscillations eppearing in
other problems have been eliminated by a reduction in the size of the

> or the possibility that a slightly different set.of differen-

time stepl
tial equations was used to obtain the MATEXP solutions.
The exponential algorithm results were obtained by requiring that

at each time step none of the values of the exponential parameters



TABLE 3

TABULATED RESULTS FOR A 10°F STEP CHANGE
IN THE STEAM HEATER TEMPERATURE OF A
THREE STAGE FLASH EVAPORATOR

3L

Method Value of Value of Value of
of Initiel Variable at ' Variable at Variable at
Variable Solution Condition L0 Seconds 100 Seconds 200 Seconds

ESNDE 90.3k4 93.06 97.15
x, Euler 89.00 90.33 93.05 97.10
MATEXP 90.32 93.01 97.07
ESNDE 88.46 91.00 9L4.95
x, Euler 8T7.00 88.45 90.99 94.90
MATEXP 88.L44 90.95 9L4.87
ESNDE 98.17 102.0 106.6
g Euler 89.00 98.16 102.0 106.6
MATEXP 98.15 102.0 106.6
ESNDE k256 L4902 .5530
x) Euler .h11k .L256 .4900 .552k
MATEXP .L2s8 .4959 .5TL3
ESNDE 107.1 112.1 117.3
x5 Euler 108.1 1072 112:3 117.3
MATEXP 107.1 112.1 117.3
ESNDE 433.7 407.3 393.3
x¢ Euler L21.4 433.6 407.6 393.7
MATEXP 432.6 Lok.6 385.2
ESNDE 86.59 88.94 92.T4
x Euler 84.99 86.58 88.92 92.70
T MATEXP 86.57 88.89 92.68
ESNDE 84.61 86.TT 90.43
Xg Euler 82.99 8L4.59 86.76 90.39
MATEXP 84.58 86.73 90.37
ESNDE 95.21 98.63 103.0
x9 Euler 8L4.99 95.20 98.62 103.0
MATEXP 95.20 98.58 103.0




TABLE 3 (continued)
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Method Value of Value of. Value of
of Initial Variable at Variable at Variable at
Variable Solution Condition 40 Seconds 100. Seconds 200 Seconds
ESNDE .6155 .6989 .7881
X0 Euler .5901 .6155 .6988 .7876
MATEXP .6160 .TO6T .8178
ESNDE 104.8 109.0 12k.1
X, Euler 105.7 104.8 108.9 114.0
MATEXP 104.8 108.9 114.0
ESNDE 1069. 1051. 10b2,
X, Euler 10L48. 1069. 1058 ; 1041,
MATEXP 1069. 1048. 1030.
ESNDE 82.62 84.61 88.12
X5 Euler 80.98 82.61 84.59 88.08
MATEXP 82.61 84.57 88.05
ESNDE 80.26 82.06 85.39
X)), Euler 78.98 80.25 82.05 85.35
MATEXP 80.25 82.03 85.33
ESNDE 93.50 96.51 100.8
X5 Euler 80.98 93.49 96.50 100.8
MATEXP 93.49 96.4T7 100.8
ESNDE .3406 .3788 LaT1
X6 Euler .3222 .3406 .3787 4266
MATEXP .3410 .3827 .4420
ESNDE 102.0 105.1 Moz
X17 Euler 102.8 101.9 105.0 110.1
MATEXP 101.9 105.0 110.0
ESNDE 1721. 1800. 1834,
X8 Euler 1705. 1721. 1800. 1834,
MATEXP 1720. 1801. 1840.
ESNDE 77.91 79.52 82.67
g Euler 77.00 77.89 79.50 82.63
MATEXP 77.89 79.49 82.61




TABLE 3 (continued)

Method Value of Value of Value of

of Initial Variable at Variable at Variable at

Variable Solution Condition 40 Seconds 100 Seconds 200 Seconds
ESNDE 109.4 115.0 120.3
%50 Euler 110.3 109.4 19550 120.2
MATEXP 109.4 11k4.9 120.2
ESNDE 105.6 110.2 115.2
X1 Euler 106.5 105.6 110.2 115.2
MATEXP 105.6 186, T 115.2
ESNDE 109.2 116.1 120.9
X0 Euler 18053 109.2 116.0 120.8
MATEXP 109.2 116.0 120.8
ESNDE 120.0 134.2 138.2
X53 Euler 2518 120.0 134.2 138.2
MATEXP 120.0 R M 138.1




TABLE k4

TABULATED RESULTS FOR A 20% STEP CHANGE
IN THE BRINE FLOWRATE COF A
THREE STAGE FLASH EVAPORATOR

Method Value of Value of Value of
of Initial Variable at Variable at Variable at
Variable Solution Condition U0 Seconds 100 Seconds 200 Seconds
ESNDE 90.3k4 90.Tk 91.23
X Euler 89.00 90.33 90.T71 91.17
MATEXP 90.32 90.70 91.15
ESNDE 88.46 88.98 89.50
X, Euler 87.00 88.4s5 88.95 89.46
MATEXP 88.44 88.94 89.42
ESNDE 98.16 98.08 98.k42
Xq Euler 89.00 98.16 98.06 98.38
MATEXP 98.15 98.05 98.34
ESNDE L4256 L4176 L4196
x), Euler JLh11k L4256 JL1Th L4192
MATEXP .L42s8 41Tk L4186
ESNDE 107.1 106.7 106.8
X5 Euler 108.1 oy I8 106.7 106.8
MATEXP 107.1 106.7 106.8
ESNDE 433.7 L497.0 511.2
¢ Euler 21,4 433.7 497.0 5il.3
MATEXP 432.6 497.1 511.3
ESNDE 86.59 8T.22 Sl A1
L Euler 8L4.99 86.58 87.20 87.73
MATEXP 86.57 87.18 87.70
ESNDE 8L4.60 85.32 85.90
xg Euler 82.99 8L4.59 85.30 85.86
MATEXP 8L4.58 85.29 85.83
ESNDE 95.21 95. L4 95.82
Xq Euler 8L4.99 95.20 95.k2 95.78

MATEXP 95.20 95.41 95.Tk




TABLE 4 (continued)

Method Value of Value of Value of
of Initial Variable at Variable at Variable at
Variable Solution Condition u40 Seconds 100 Seconds 200 Seconds
ESNDE .6154 .6116 .6148
X0 Euler .5901 .6155 .6113 L6142
MATEXP .6160 .6116 .6138
ESNDE 104.8 10L4.7 104.9
X, Euler 205.7 104.8 104.7 104.9
MATEXP 104.8 104.7 104.8
ESNDE 1069. 113.9 1174,
1 Euler 1048. 1069. 113.9 1174,
MATEXP 1069. 1997 117S.
ESNDE 82.62 83.k42 84.03
X) 3 Euler .80.98 82.61 83.%40 83.99
MATEXP 82.61 83.39 83.97
ESNDE 80.26 81.12 81.76
X)), Euler 78.98 80.25 81.10 81.72
MATEXP 80.25 81.10 8. T1
ESNDE 93.50 93.94 94,32
X5 Euler 80.98 93.49 93.91 9L .28
MATEXP 93.49 93.90 9L .25
ESNDE .3k07 .3k21 .34k0
X6 Euler .3222 .3406 .3419 .3437
MATEXP .3410 .3k21 .3438
ESNDE 102.0 102.3 102.5
X)q Euler 102.8 101.9 102.3 102.5
MATEXP 101.9 102.3 102.4
ESNDE 1721. 1696. 1766.
X g Euler 1705. 1721. 1697. 1767.
MATEXP 1720. 1692. 1762.
ESNDE 77.90 78.82 . 79.50
X Euler T7.00 77.89 78.80 - 79.46

19 MATEXP 77.89 78.80 79.45




TABLE 4 (continued)
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Method Value of Value of Value of

; of Initial Variable at Variable at Variable at

Variable Solution Condition 40 Seconds 100 Seconds 200 Seconds
ESNDE 109.L4 108.5 108.6
X5 Euler 110.3 109.4 108.5 108.6
MATEXP 109.4 106v5 108.5
ESNDE 105.6 105.4 105.6
X Euler 106.5 105.6 15,3 105.5
MATEXP 105.6 105.3 5.5
ESNDE 109.2 108.5 108.7
X0 Euler 110.3 109.2 108.4 108.6
MATEXP 109.2 108.4 108.6
ESNDE 120.0 118.2 118.4
%53 Euler 125.3 120.0 118.2 118.4
MATEXP 120.0 118.2 118.3




VAPOR MASS IN STAGE 1 (POUNDS)

.58

.56

.5b

«22

.50

.u8

L6

LUk

b2

ko

] 1 = = 1= ] i | i ]

20 Lo 60 80 100 120 140 160 180

TIME (SECONDS)
FIGURE L4

TRANSIENT RESPONSE OF VAPOR MASS IN STAGE 1 FOR A 10°F STEP CHANGE
IN THE STEAM HEATER TEMPERATURE OF A THREE STAGE FLASH EVAPORATOR

ESNDE and Euler

200

O



BRINE MASS IN STAGE 1 (POUNDS)

437

431

425

419

413

Lo7

Lo1

399

389

383

o—; | 1 i 1 ] 1 1 1

20 Lo 60 80 100 120 140 160
TIME (SECONDS)
FIGURE 5

TRANSIENT RESPONSE OF BRINE MASS IN STAGE 1 FOR A 10°F STEP CHANGE
IN THE STEAM HEATER TEMPERATURE OF A THREE STAGE FLASH EVAPORATOR

180

200

T



BRINE MASS IN STAGE 3 (POUNDS)

1850

1830

1810

1790

1770

1750

1730

1710

1690

1670

ESNDE and Euler

1 ] i i I 1 i Il 1

20 4o 60 80 100 120 140 160 180
TIME (SECONDS)
FIGURE 6

TRANSIENT RESPONSE OF BRINE MASS IN STAGE 3 FOR A 10°F STEP CHANGE
IN THE STEAM HEATER TEMPERATURE OF A THREE STAGE FLASH EVAPORATOR

200

ch



VAPOR MASS IN STAGE 1 (POUNDS)

0.437

0.434

0.431

0.428 H

0.k425

0.422

0.419

0.416

0.413

0.410

I 1 i ] 1 { 1 1 1

0 20 Lo 60 80 100 120 140 160 180
TIME (SECONDS)
FIGURE T

TRANSIENT RESPONSE OF VAPOR MASS IN STAGE 1 FOR A 20% STEP CHANGE
IN THE BRINE FLOWRATE OF A THREE STAGE FLASH EVAPORATOR

200

£



BRINE MASS IN STAGE 1 (POUNDS)

512.5

500.0

)"87-5

475.0

L62.5

450.0

k37.5

425.0

k12.5

400.0

i ESNDE and Euler
 ESNDE and
Euler
MATEXP
[ 1 L 1 1 I 1 L 1 |
20 Lo 60 80 100 120 140 160 180

TRANSIENT RESPONSE OF BRINE MASS IN STAGE 1 FOR A 20% STEP CHANGE

TIME (SECONDS)

FIGURE 8

IN THE BRINE FLOWRATE OF A THREE STAGE FLASH EVAPORATOR

200

i



BRINE MASS IN STAGE 3 (POUNDS)

TS

1760

1745

1730

1715

1700

1685

1670

1655

1640

1 1 1 1 ! ! ! 1 ! 1

20 40 60 80 100 120 140 160 180 200
TIME (SECONDS)
FIGURE 9

TRANSIENT RESPONSE OF BRINE MASS IN STAGE 3 FOR A 20% STEP CHANGE
IN THE BRINE FLOWRATE OF A THREE STAGE FLASH EVAPORATOR

St



L6

changed during the last outer-iteration. In order to reduce.the com-
putation time, this requirement was relaxed, and only one outer-
iteration was performed at each time step. The solutions obtained in
this manner were essentially identical to the solutions presented in
this section. In addition, it was found that comparable results could
be obtained by increasing the size of the time step to 0.6 seconds.
The time step of 0.6 seconds was found to be the maximum acceptable
time step regardless of the number of outer-iterations allowed. At
larger time steps, several of the dependent variables attempted to
teke on negative values which. are physically unacceptable.

The computetion time required by the exponential algorithm to
obtain solutions to the three stage evaporator system with only one
outer-iteration and a time step size of 0.6 seconds is almost identical
to the time required by MATEXP to obtain the solutions presented in

this section.



CHAPTER V
CONCLUSIONS

The results presented in Chapter IV demonstrate the successful
use of the exponential algorithm in the solution of specific non-
linear differential equations. Analytic predictions of the numerical
stability of the algorithm are not available, but the algorithm is
useful for obtaining solutions to the type of nonlinear equations
encountered in this study.

Since the exponential algorithm presented in this thesis is
based upon an iterative method of solution, it should allow the use
of larger time steps than are allowed in non-iterative methods of
solution. The results presented in Chapter IV for the three stage
evaporator system tend to confirm this statement. The ability to
use & larger time step coupled with the option to reduce .the time
step when convergence is difficult makes the exponential algorithm
attractive when estimates of a suitable time ‘step are not available
for other methods of solution.

As discussed in Chapter IV, a reduction in the MATEXP time step
may be- required in order to remove the oscillations in the three
stage evaporator solutions. Since the computation time required by
MATEXP is approximately proportional to the number of time intervals,8
the time required to obtain accurate solutions for a three stage
evaporator system will be less for the exponential algorithm than for

MATEXP if a reduction of the MATEXP time step is required.

L7



L8
As noted in Chapter IV, only one outer-iteration was required to
obtain solutions for the three stage evaporator .system. When only
one outer-iteration is specified, the computation time is approxi-
mately proportional to the number of equations to be solved. For this
reason, the use of the exponential algorithm with one outer-iteration
is attractive for the solution of the large sets of nonlinear differen-

tial equations that describe a multistage flash evaporator.



BIBLIOGRAPHY



10.

BIBLIOGRAPHY

Ball, S. J., "Nuclear Desalination Dual-Purpose Plant Control
Studies Interim Report," USAEC Report ORNL-TM-1618, Part
I, Oak Ridge National Laboratory (October, 1966).

Ball, S. J., "Nuclear Desalination Dual-Purpose Plant Control
Studies Interim Report Appendix," USAEC Report ORNL-TM-
1618, Part II, Oask Ridge National Laboratory (Jenuary, 1967T).

Kerlin, T. W., et al., "Nuclear Desalination Plant Dynamics:
Modeling and Analysis of a Multistage Flash Evaporator,"
Report NEUT 2806-1, Nuclear Engineering Department,
University of Tennessee, Knoxville (1967).

Kerlin, T. W., et al., "Nuclear Desalination Plant Dynamics:
Modeling and Analysis of a Multistage Flash Evaporator,"
Report NEUT 2806-2, Nuclear Engineering Department,
University of Tennessee, Knoxville (1968).

Wright, W. C. and T. W. Kerlin, "An Efficient Computer-Oriented
Method for Stability Analysis of Large Multivariable
Systems," Report NEUT 2806-3, Nuclear Engineering Depart-
ment, University of Tennessee, Knoxville (1968).

Ball, S. J., et al., "Dynamics Experiments on the AMF Millstone
Point Flash Evaporator," USAEC Report ORNL-TM-2188, Oak
Ridge National Laboratory (July, 1968).

Kerlin, T. W., et al., "Nuclear Desalination Plant Dynamics:
Modeling and Analysis of a Multistage Flash Evaporator,"
Report NEUT 2806-U4, Nuclear Engineering Department,
University of Tennessee, Knoxville (1969).

Ball, S. J. and R. K. Adams, "MATEXP, A General Purpose Digital
Computer Program for Solving Ordinary Differential Equations
by the Matrix Exponential Method," USAEC Report ORNL-TM-1933,
Oak Ridge National Laboratory (August, 1967).

Andrews, J. B., II and K. F. Hansen, "Numerical Solution of the
Time-Dependent Multigroup Diffusion Equations," Nuc. Sei.
Eng., 31, 304-313 (February, 1968).

McCormick, W. T., Jr. and K. F. Hansen, "Numerical Solution of
the Two-Dimensional Time-Dependent Multigroup Equations,"
Proceedings of Conference on the Effective Use of Computers
in Nuclear Industry, USAEC Report CONF-690401, T76-101
Tapril, 1969).

50



11.

12,

I8

1k,

lsn

16.

Bl

Swanks, J. H., "Approximate Numerical Solutions to the Time-
Dependent Neutron Transport Equations," Order No. 69-16,
535, Ann Arbor, Michigan: University Microfilms (1969).

Stevenson, M. G. and B. E. Bingham, "TART-An LMFBR Transient
Analysis Project," Proceedings of Conference on the Effective
Use of Computers_in Nuclear Industry, USAEC Report CONF-690L01,
186-29 (april, 1989) 1

Abramowitz, M. and I. A. Stegun, editors, Handbook of Mathematical
Functions with Formulas, Graphs, and Mathematical Tables,

Washington: U. S. Government Printing Office (196L).

Davis, H. T., Intfodppfjpn_ﬁp Nonlihea; Differential and Integral
Eguations, New York: Dover Publications Inc. (1962).

Ball, S. J., Oak Ridgg_Néfibhﬁl Laboratory, Oak Ridge, Tennessee,
personal communication with the author.

McCracken, D. D. and W. S. Dorn, Numerical Methods and Fortran.
Programming, New York: John Wiley and Sons, Inc. (196L).




APPENDIXES



APPENDIX A

TERMINCLOGY USED FOR THE FLASH EVAPORATOR

The terminology used to describe the. three stage flash evaporator
is basically that used in Reference 6. The terms used in the develop-

ment of Equations (1) and (2) are defined below:

M = mass. (pounds)

W = mass flowrate (pounds/second)
T = temperature (°F)

P = pressure (psi)

Cp =-specific heat (Btu/pound/°F)

h = heat transfer coefficient (Btu/second/ft2/°F)

hfg = heat of vaporization (Btu/pound)
density‘(pounds/ft3)

P

A

heat transfer area (ftz)
AFC = base area of channel. (ft°)
: 3
VV = vapor volume (ft~)
Recf = coolant recirculation fraction
XW1l = flow coefficient between stages (pounds/second/psillz)
/4
K = flashing flow coefficient (poundsl/e/second / /°F)
XM3B = bias term accounting for curvature of Stage 3 -sides (psi)

K2 = importance factor for downstream liquid level

T = time deley (seconds)
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Ty_sat (1 ) e
P

B = Tyy - o My (°F)

%y ‘l_), (psi/pound)
%y_sar| P i

Vo

§ = Pyy = TMyo (psi) .

The following subscripts are applied to the above terms:

0

1

o [=> w
[} [} [}

=]
[}

TB

Ccv

BR

Q
[}

CL

iR

SH

initial

Stage 1

Stage 2

Stage 3

inside

outside, outlet

water in tubes

tray bdbrine

cell vapor

brine

coolant water

coclant in reservoir

inlet plenum

steam heater
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Tube = tube
SAT = saturated

V = vapor.
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APPENDIX B
THE COMPUTER CODE

I. INPUT INFORMATION

The following general representation of the ith differential

equation is used to discuss the input data required by the computer

code ESNDE:
11
ax, i 1 pl
et Big%y tdpxg v ) Clyxyy
J=1 J=1.
i I3,
e P21, P22, P31, P32, P33,
L C2yxyn Xy L C3y%yy Xy3p X33
3 R e gy e
J=1 J
IL,
1
€ Z Chijh (t R
where

N is the number of dependent variables;
X, is the ith dependent variable;

a,, is the ijth element of the linear matrix A in Equation (5);

1)

d;; is the 11" element of the diagonal matrix D in Equation (5);

Ili is the number of type-l nonlinearities in the ith differential

equation; .
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I2i,is the number of type-2 nonlinearities in the ith differential

equation;

I3, is the number of type-3 nonlinearities in the ith differential
equation;

I4, is the number of pure time delays in the ith'differential
equation;

Cl,'s, C2,'s, and C3

J J J
and type-3 nonlinearities respectively;

's are. the coefficients of the type-l, type-2,

Chd's are the coefficients of the time-lagged terms;

V1,'s, V2l

4 's, and Vi

Ushv2ah Vs VSl Rigk W32, V5, V38 's are

J J J J J J

integers corresponding to the indices of the dependent
variables;

Pl,'s, P21

P 's, P22

's, P31,'s, P32,'s, and P33,'s are real numbers

J J J J J
denoting the powers to which the dependent variables are
raised;

TJ'S are the time delays; and

s; is the i*B element of forcing function vector S in Equation (5).

The arrangement of the data cards for a typical .problem is shown

in .Figure -10. The layouts of the individual data cards are:

Title Card

This card may contain up to 80 alphanumeric characters.

Control Card 1

The. following data are specified on this card in a 2IL4 format:



-

Initial Con-
dition Cards

Fgorc1ng Func-

ion Cards
/
e b
(gggds
/
Type 3
Cards
15
e 2
(ﬁgggds
e 1
f,§§¥ds
e
r’gzgds
(Dlagonal
Matrix Cards

/

Linear

Matrix Cards

Control
Card 2
Control
Card 1
Title
Card
FIGURE 10

ESNDE INPUT DATA ARRANGEMENT
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1l. N = the number of dependent variables, and

2. NOUTIT = the maximum number of outer-iterations.

Control Card 2
The following data are specified on this card in a TE10.3 format:
l. TO = starting time for solution,
2. DELTAT = meximum size of solution time step,

3. TMAX

final solution time,

L. HMIN = minimum size of solution time step,

5. CONVLR = line or convergence constant (El)’
6. CONVFR = fractional convergence constant (ef), and
T. CONVCH = value of exponential parameters (w's) above

which fractional convergence test is applied and

below which linear convergence test is applied.

Linear Matrix Cards,
These cards are used to input the linear matrix A. The elements

of the linear matrix, a,,6's, are specified by rows in a 8E10.3 format.

i

Diagonal Matrix Cards
These cards are used to input the diagonal elements of the dia-

gonal matrix D. The diagonal elements, d,.'s, are specified in a

ii
8E10.3 format.

Type Cards_

For each differential equation, four integers are required to



denote the number and type of nonlinearities and the number of time-
lagged terms. These numbers, corresponding to Ili’ I2i, I3i’ and
Ihi in Equation (30), are specified in the aforementioned order in a
20I4 format.

Type-1 Cards

Pl
For each nonlinearity of the form ClijlJ’ a type-l card is
J

required. Each type-l card specifies a ClJ, VlJ, and PlJ in a
E10.3, I3, E10.3 format.
Type-2 Cards

P21, P22

For each nonlinearity of the form C2JxV2l Xyop''s & type-2 card
J J

is required. Each type-2 card specifies a C2J, V2lj’ P21J’ V22J,
and P22J in a E10.3, Ik, E10.3, Ik, E10.3 format.
Type-3 Cards,

ESIRMPSRIES PSS
For each nonlinearity of the form CSJxV3leV32JxV33J’ a
type-3 card is required. Each type-3 card specifies a CBJ, V3lj’

P31,, V3R s F3z in & P08y TN, ELIGNS, TN, E10.3,

3° ) J
I4, E10.3 format.

o VS8t SandtPs3

J J

Type-l Cards,
For each time lagged term, a type-4 card is required. Each

type-4 card specifies a Ch4,, V4, , and a time lag v, in a E10.3, Ik,

J J J

E10.3 format.
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Forcing Function Cards
These cards are used to input forcing function vector S. The

elements of this vector, s.,'s, are specified in a 8E10.3 format.

i

Initial Condition Cards

These cards are to input the initiel conditions. The initial
conditions are specified in a 8E10.3 format.

At the beginning of each time step, the subroutine COEFF is
called in order to update the values of time-varying coefficients.

The user must supply his own COEFF subroutine.

II. LISTING OF THE CODE

A listing of the computer code ESNDE is presented . on the following

pages.
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ESNDE---WRITTEN FOR IBM-360
THIS PROGRAM SOLVES SETS OF COUPLED FIRST ORDER

DIFFERENTIAL EQUATIONS WITH PURE TIME DELAYS AND
NONLINEARITIES WHICH ARE PRODUCTS. OF FRACTIONAL POWERS
OF UP TO THREE DEPENDENT VARIABLES. '

THE- PROGRAM ASSUMES AN EXPONENTIAL DEPENDENCE OF THE
DEPENDENY -VARTABLES OVER A TIME STEP AND ITERATIVELY
SOLVES FOR THE EXPONENTIAL DEPENDENCE.

TIME VARING COEFFICIENTS MAY BE INCLUDED BY CHANGING
THE- VALUES OF THE COEFFICIENTS AT THE BEGINNING OF
EACH TIME STEP. . THE USER MUST WRITE HIS OWN C-0-E-F-F
SUBROUTINE "TO VARY THE COEFFICIENTS,.
COMMON/MATRIX/X{(30) ,XT(30) yLMAT(30,30),D(30),CONSOR (30
1),ITYPEL(30),ITYPE2(30),ITYPE3(30),ITYPE4(30),COEF1(30
2),COEF2(30),COEF3(30),COEF4(30),VAR1(30),POW1(30),
3VAR21(30)5P0OW21(30),VAR22(30) ,P0OW22({30),VAR31(30},
4POW31(30)yVAR32(30)yP0H32(30),VAR33(30)1P0H33(30)1
SVAR 4(30), TAU{ 30} -

“COMMON/LUG/TYPE4 ,DELTAT,,XL(10),T0,T,oN"
COMMON /OMEG /OMEGA{30) 4H

DIMENSION FTITLE(20) -

REAL LMAT

INTEGER VAR1l,VAR21,VAR22,VAR31,VAR32,VAR33,VAR4
INTEGER TYPE1l,TYPE2,TYPE3;TYPE4

DATA TYPEl,TYPE2,TYPE3/0,0,0/

TYPE4=0

TYPE1=0

TYPE2=0

TYPE3=0

TYPE4=0

READ(S5,800) (TITLE(I),I=1,20)

WRITE(6,801) (TITLE(I),I=1,20)

READ{55900) NyNOUTIT

N=NUMBER 'OF DIFFERENTIAL EQUATIONS

NOUTI T=MAXIMUM NUMBER OF OUTER ITERATIONS

READ{5,901) -TOyDELTAT,TMAXsHMIN,CONVLRyCONVFRyCONVCH
TO=INITIAL TIME

DELTAT=MAXIMUM TIME SYEP SIZE

TMAX=FINAL TIME

HMIN=MINIMUM TIME STEP SIZE

CONVLR=LINEAR "CONVERGENCE CONSTANT

CONVFR=FRAC TIONAL CONVERGENCE CONSTANT .

CONVCH=VALUE OF EXPONENTIAL PARAMETERS(OMEGA'S) ABOVE
WHICH FRACTIONAL CONVERGENCE TEST IS USED AND BELOH
WHICH LINEAR CONVERGENCE TEST IS USED

WRITE(6,77T7T) NyNOUTIT,TO,DELTAT,TMAX

WRITE(6,778) HMIN,CONVLR,CONVFR;CONVCH

READ( 55 901) {(LMAT(I yJ) yJ=1,4N),1=1,N)

LMAT-IS'N TIMES ‘N DIMENSION LINEAR MATRIX
WRITE(6,43000)

WRITE(6,3001) ((LMAT(IJ),J=1,N),I=1,N)
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READ(S5,901) (D{I),1=1,N)

D IS N DIMENSION DIAGONAL VECTOR

WRITE(643002)

WRITE(6,3001) (D(I),I=1,N)
READ(5'900,(ITYPEI(I)vITYPEZ(I) ITYPE3(1),ITYPE4(]I},I=
114N)

FOR THE I-TH DIFFENTIAL EQUATION#

ITYPE1=NUMBER OF TERMS OF THE FORM C{X{I)*%xA)
ITYPE2=NUMBER OF TERMS OF THE FORM CE{X(I)%%xA) (X(J)*%x%B)
ITYPE3=NUMBFER OF TERMS OF THE FORM
CAX(II*%RA )N X(J)%x%xB){ X(K) *%D)"

"ITYPE4=NUMBER OF PURE TIME DELAYS OF THE FORM
C(X(I)¥d TIME =T =~ TAU -~

WRITE(6,3003)

WRITE(643004) (ITYPELUI)ITYPE2(I}ITYPE3(I),ITYPEA{])
1lyI=19N)

DO 11 1=1,N

TYPEYI=TYPE1 +ITYPE1I(I)

TYPE2=TYPE2 +ITYPE2(1}

TYPE3=TYPE3 +ITYPE3(1}

TYPE4=TYPE4 +1TYPE4(])

CONTINUE la o

IFCTYPEL1.LE.O) GO YO 12

WE HAVE TERMS OF THE FORM C(X(I)x**A)
READ{5;904)(COEF1(T1),VARLI(I) POW1{I},1I=1,TYPELl)
CDEF1*S CORRESPOND TO THE C*'S

VAR1'S CORRESPOND TO THE I°*S

POW1°S CDRRESPOND TO THE A'S"

IF(TYPE2.LE.O0) GO TO 13

WE HAVE -TERMS OF THE FORM C(X(I)*%A) (X{(J)*%B)
READ(5,905){COEF2(1), VARZI(I)'PDH21(I"VAR22([)'POHZZ(
11),1=1,TYPE2)

COEF2°*S CORRESPOND TO THE C*S

VAR21*S CORRESPOND TO THE 1I°S

POW21?S CORRESPOND TO THE A*'S

VAR22*S CORRESPOND TO THE J°*S

POW22°*S CORRESPOND TO THE B?*'S

IF(TYPE3.,LE.O0) GO 1O 14 -~ '~

- WE HAVE TERMS DOF THE FORM C(X(I)**A) (X(J)**xB8) {X(K)**D)

READ(5,906){COEF3(1},VAR31(I),POW31(1),VAR32(1),POW32¢{
II’1VAR33(I) POW33(I),1=1,TYPE3)

COEF3*S CORRESPOND TO THE C'S

"VAR31'S 'CORRESPOND TO THE I°'S

POW31°*S CORRESPOND TO THE A°*S

VAR32*'S CORRESPOND TO THE J°'S

POW32'S CORRESPOND TO THE B°*S

VAR33*'S CORRESPOND TO THE K'S

POW33*S CORRESPOND TO THE D'S

IF(TYPE4.LE<O) GO TO 15 &N

WE HAVE TERMS OF THE FORM C(X(I))3 TIME=T-TAU
THAY IS # WE HAVE PURE TIME DELAYS
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15

4000

4001

4002

4003

6L

READ(5,907)(COEF4(I),VAR4(I),TAU(I)},I=1,TYPE4)
COEF4*'S CORRESPOND TO THE C'S:

VAR4'S CORRESPOND TO THE I1'S

TAU'S CORRESPOND TO THE TIME DELAYS( TO THE TAU*®S)
CONTINUE

WRITE(6,43005)

IF(TYPE1,LE.O) GO TO 4000

WRITE(6,3006) (COEF1(1),VAR1(I),POW1(I), I=lvTYPE1’
WRITE({643008)

IF(TYPE2.LE.O) GO TO 4001

WRITE(6,3009) (COEF2(1I),VAR21(I),POW21(I),VAR22(I},POW
122(1),1=1,TYPE2) - L=

WRITE(643010) - =

IF{TYPE3.LE.O) GO TO 4002

WRITE(6,3011) (COEF3(I),VAR31{(I),POW31(I),VAR32(]1),POW
132(!"VAR33(I) POHBB(I)'I 19TYPE3)

WRITE(6,3012)

IF{TYPE4.LE.O) GO TO 4003

WRITE(6,3013) (COEF4(I)'VAR4(I)vTAU(liyl I'TYPE4)
CONTINUE -

READ(5,901){CONSOR(I) 4I=1,N)

CONSOR ‘IS N DIMENSION CONSTANT SOURCE VECTOR
WRITE(643014)

WRITE(6,3001) (CONSOR(I),I l N)

READ IN INITIAL CONDITIONS

READ{5,90Y) (X(I)yI=1,4N)

INITIALIZE TIME LAG" ARRAYS

CALL "LAG(0)

T=T0

THE- SUBROUTINE OMGAl ESTIMATES THE FIRST VALUE OF
THE OMEGA*'S

CALL OMGA1l~

CONTINUE

WRITE(6,1000) T

WRITE(6,3001) (X{I),I=1,N)

WRITE({6,3001) (OMEGA(I),I=1,N)

IF(T.GE.TMAX) GO TO 2000

UPDATE TIME LAGGED ARRAYS

IF(T.NE.TO) CALL LAG(1)

THE SUBROUTINE COEFF IS USED TO UPDATE TIME VARING
COEFFICIENTS AT THE BEGINNING OF EACH TIME STEP .
CALL COEFF

H=DELTAT

CONTINUE

ISToP=1"

DO 4 II=1,NOUTIY

IF{ISTOP.EQ.O0) GO TO 8

CONTINUE

FIND TIME LAGGED VARIABLES

CALL LAG(2)

IFLAG=0"
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2

2000

777,
1'DELTAT="? 5512.4,3)(, TTMAX="? QEIZQIQ) '

778

800
801
900
901
904
905
906
907
1000
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ISTEP1=0
ISTEP2=0

ISTEP3=0

ISTEP4=0

1STOP=0

DO 5 I=1,N

ISTEP=0 }
SUBROUTINE EVALXT CALCULATES THE X'S AT TIME=T+H
CALL ‘EVALXT(I,ISTEP1,ISTEP2,ISTEP3, 1STEP4, IFLAG)
IFLAG=0 -

OMESTR=(ALOG{ XT(E) /X(I}))/H
TF{ABS(OMEGA(I)}).GE.CONVCH) GO TO 50
IF(ABS(OMESTR-OMEGA (1)), LE.CONVLR) GO TO 5

60 1O 51 -
IF(ABS{(OMESTR-OMEGA (1)) /OMEGA(I)),LE.CONVFR) GO TO 5
CONTINUE

ISTEP=ISTEP+1

ISTOP=1STOP+1

SUBROUTENE ITER ITERATES UPON THE OMEGA'S AND RETURNS
NEW ESTIMATES OF THE OMEGA®S

CALL ITER(I,OMESTR,ISTEP)

IF(H.LELHMIN) WRIFE(6,1002) H,I

TF(H.LE.HMIN) CALL EXIT

IFLAG=1

IFLISTEP.NE.4) GO TO 6

GO TO:7

CONTINUE

IF(11.EQ.NOUTIT) WRITE(6,1009)

CONTINUE

CONTINUE

T=T+H -

DO 2 I=1,N

X{Ly=XT(T)

GO YO 1

CONTINUE
FORMATELHOy *N="3I343X,"NOUTIT=",12,3X,*'TO=",E12,.%4,3X,

FORMAT(1HOy "HMIN=",E12. 443X, '"CONVLR=" ,E12.4,3X,
1*CONVFR="3E12.4,3X,y "CONVCH=",E12.4)
FORMAT(20A%)

FORMAT{1H1,15X,20A4%)

FORMAT{201I4)

FORMAT(8E10.3)

FORMAT(E10.3,13,E10.3)
FORMAT(E10.3413,E10.3,1I3,E10.3)
FORMAT{E10.3,13,E10.3,13,E10.3,13,E10.3})
FORMAT(E10.3,413,E10.3})

FORMAT(1HO, *X(T) AND -OMEGA{I) FOR TIME='",F13.4,1X,

* " 17ARE?®)

1002

FORMAT(1H]1, '"CALCULATION TERMINATED H LE HMIN H=',
1E10e3,'1=",14)
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1009 FORMAT{1HO, '*PROBLEM MAY NOT HAVE CONVERGED AT THE ',
1*FOLLOWING TIME STEP')

3000 FORMAT(1H1l, *THE LINEAR MATRIX IS BY ROWS?')

3001 FORMAT(1H ,10E12.4) .

3002 FORMAT(1H1, *THE DIAGONAL ELEMENTS ARE?®)

3003 FORMAT(1H1,'ITYPEl,ITYPE2,ITYPE3,ITYPE4 ARE')

3004 FORMAT(1IH 47X 94143;8X9414,8X9414,8X,414,8X,414)

3005 FORMAT({1H1, 'COEF1,VAR1,POWl ARE")

3006 FORMAT(1H ,E12.4,14,E12.4)

3008 FORMAT(1HO, "COEF2,VAR21,P0OW21,VAR22,P0OW22 ARE')

3009 FORMAT(1H 4E12.4414,E12.4,14,E12.4)

3010 FORMAT(1HO, '*COEF3, VAR31,P0OW31,VAR32,P0OW32,VAR33,POW33"
1,' ARE?) -

3011 FORMAT(1H ,E12.4914,E12.4,14,E12.4514,F12.4)

3012 FORMAT(1HO, 'COEF 4, VAR4,TAU ARE"')}

3013 FORMAT(1H ,E12.4,414,4E12.4)

3014 FORMAT(1H1l, 'THE CONSTANT SOURCE TERMS ARE')
CALL EXIT
END
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SUBROUTINE ITER(I,OMESTR,ISTEP)
COMMON/OMEG /OMEGA( 30) 4H
COMMON/LUG/TYPE4,,DELTAT, XL(IO):TOyT'N
INTEGER TYPE4 -

DATA EPL,EPER4BMX,HRD/.00141.0,40.7540.9/

"HRD=FACTOR ‘BY WHICH TIME STEP IS REDUCED IF A

CONVERGED OMEGA CAN NOT BE FOUND IN THREE ESTIMATES
THE TIME STEP IS REDUCE -

EPLEPR=EPL*EPER

THE PRODUCT EPL*EPER SHOULD ALWAYS BE LESS THAN OR
EQUAL "TO CONVLR®

IF{ISTEP.GT.1) ' GO"TO 1

BELOW IS SCHEME 1

ER1=0OMESTR-OMEGA(TI)

OM1=0MEGA(I)

OM2=0ME STR

OMEGA( T )=0M2

RETURN '

IF(ISTEP.GT.2) GO TO 2

BELOW IS SCHEME 2

OM3=0MESTR

ER2=0M3-0M2

IFtABS(ER2).GE.ABS(ER1)) GO YO 7
IF(ABS(ER2).GE.EPLEPR) GO TO 7

OMEGA( T1=0M3

- RETURN

B=1.0-ER1/ER2
IF{ER1*ER2.LT.0.0) GO TO 8
IF(ABS(B).GE.BMX) GO TO 8
IF{B.GT.0.0) GO TO 9

R==BMX
GO 1O 10
B=BMX

TF(ABS(ER1).GE.ABS(ER2)) GO TO 8
A=ER1*(1.0-8)

GO 0 11

A=ER2-B%*(0M3-0M1)

OM3=0M1-A/8

OMEGA(1)=0M3

RETURN-

IF (ISTEP.GT.3) GO TO 3

BELOW IS SCHEME 2

OM4=0OMESTR '

ER3=0M4-0M3
IFC¢ABS(ER3).GE.ABS(ER2)) GO TO &
IF(ABS({ER3).GE.EPLEPR) GO TO 4
OMEGA({ I )=0M4&

RETURN

B=1,0-ER2/ER3

IF(ER2%ER3,LT.0.0) GO TO 5
IF{ABS(R).GE.BMX) GO TO 5



20

68

IF(B.GT.N.0) GO TO 6

B=—=8BMX
GO YO 12
B=AMX

IF(ABS{ER2).GE.ABS(ER3)) GO TO S
A=ER2%*{1,.0-R)

60 Y013

A=ER3-B*{ OM4&-DM2)

0M4=0M2-A/8B

OMEGA{ 1 )=0M4

RETURN

TIME STEP IS REDUCED HERE

H=H*HRD

WRITE(6+20) H,I

FORMAT(1H ,*TIME STEP REDUCED TO 'sE12,6,'FOR I=',14)
RETURN

END
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SURRDUTINE EVALXT{I,ISTEP1,ISTEP2,ISTEP3,ISTEP4, [FLAG)
COMMON/MATRIX/X(30) 4XT(30) ,LMAT(30,30),0(30),CONSOR(30
1),ITYPE1(30), ITYPE2(30),ITYPE3(30),ITYPE4(30),COEF1{30
2),COEF2{30),COEF3(30),COEF4(30),VAR1(30),POW1(30),
3VAR21(30),POW21(30),VAR22(30),POW22(30) s VAR31(30),
4POW31(30),VAR32(30) ,POW32(30) ,VAR33(30) ,PON33(30),
SVAR4(30), TAU(30) -
"COMMON /OMEG /OMEGA ( 30) ,H
'COMMON/LUG/TYPE4,DELTAT,XL{10),T0,T,N
INTEGER TYPE4
REAL LMAT
INTEGER VAR1,VAR21,VAR22,VAR31,VAR32,VAR33,VARS
DATA DEMMIN/.001/
ST=CONSOR( 1)
XT(I)=X(T)*EXP(D(I)*H)
IF(ABS(D(I)).LE.DEMMINIGO TO 1
XTCI)=XT{I)+(EXP(D(I)*H)=1,0) *ST/D(T}
GO TO 2
A SERIES EXPANSTION IS TO BE MADE FOR THE TERM
(EXP(D}=1.0) /D~ BECAUSE D IS VERY SMALL.
THIS SERIES EXPANSION IS MADE WHENEVER D IS
LESS THAN' OR EQUAL YO DEMMIN.
XTCI)=XT(I)#ST#H*(1,0+4D(T)*H/2,0+4 ((D(1)*H)*%2)/6.0)
CONTINUE
DO 3 K=1,N
XK=0MEGA(K)-D (1)
TF(ABS(XK).LE.DEMMIN ) GO TO 4
XTCI)=XT(I)4 LMATCTK)*EXP(DUTI#H)*(EXP( XK*H)=1.0)%X(
1K) /XK
GO TO-3
A SERIES EXPANSION IS TO BE MADE FOR THE TERM
(EXP{XK)-1.0) /XK BECAUSE XK IS VERY SMALL.
THIS SERIES EXPANSION IS MADE WHENEVER XK IS
LESS THAN DR EQUAL TO DEMMIN,
4 XTCI)=XT(I)#LMAT(I K)*EXP(D(T)*H)*X (K)*H* (1.04XK*H/ 2.0
1+((XK*H)*%2)/6,0)"
3 CONTINUE -
IF(ITYPEL(I).LE.O)GO TO 20
WE HAVE TERMS OF THE FORM C(X{I)*%*A)
NO=ITYPEL(1)
TF(IFLAG.EQ.1) ISTEP1=ISTEP1-NO
DO 11 K=1,NO -
ISTEP1=ISTEP1+1
XK=POW1(ISTEP1) *OMEGA{VAR1 (ISTEP1))-D(1)
IF(ABS{XK).LE:DEMMINIGO TO 12
XT{I)=XT({I)+COEF1(ISTEPL) *EXP(D( I)*H ) * (X (VAR1 (ISTEP1))
1*%POW1{ ISTEP1) ) *(EXP( XK*H)=1,0) /XK
60 TO- 11
A SERIES EXPANSION IS TO BE' MADE FOR THE TERM
(EXP{XK)-1.0) /XK BECAUSE XK IS VERY SMALL.
THIS SERIES EXPANSION IS MADE WHENEVER XK IS

N =
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LESS THAN OR EQUAL TO DEMMIN.
12 CONTINUE
XT{I)=XT(I)+COEFI(ISTEP1)*EXP(D(I)*H) *(X(VARLI{ISTEP1))
1%%POWLI(ISTEP]1)) *H*(1.0+XK*H/2. 0+((XK*H)**2)/6 0)
11 CONTINUE
20 IF(ITYPE2(I}.LE.O}GO -TO 30
WE HAVE TERMS OF THE FORM C{X{I)*%xA){X{J)*%xB)
NO=ITYPE2(T)
IFC(IFLAG.EQ.1) ISTEP2=ISTEP2-NO
DO 21 K=1,NO
ISTEP2=ISTEP2+1
XK=POW21( ISTEP2)*OMEGA(VAR21(ISTEP2) )+POW22(ISTEP2)*0OM
1EGA{VAR22{ISTEP2))-D(T1)
"TF{ABS(XK)LE.DEMMIN)GO TO 22
XT{I)=XT(I)+COEF2(ISTEP2)*EXP(D(I)*H) *(X(VAR21{ISTEP2)
1)*%POW21( ISTEP2) ) *{ X( VAR22( ISTEP2) ) **POW22{ISTEP2) ) *(E
2XP(XK*H)-1.0) 7XK
GO 710 21
A SERIES EXPANSION IS TO BE MADE FOR THE TERM
fEXP(XK)-1.0)/XK BFCAUSE XK IS VERY SMALL.
THIS SERIES EXPANSION IS MADE WHENEVER XK IS
LESS THAN OR EQUAL TC DEMMIN.
22 CONTINUE'
XT(I)=XT(T)+COEF2( ISTEP2)*EXP(D(I)*H)*{X{VAR21(ISTEP2)
1) *%POW21( ISTEP2) ) *{ X(VAR22(ISTEP2) ) **%POW22(ISTEP2) ) *H*
2(1:.0+¢XK*H/2. 0+((XK*H)**2)/6 0)
21 'CONTINUE
30 TF(ITYPE3(I).LE.O)GD TO 40
WE HAVE TERMS OF THE FORM C{X(I)*%xA) (X(J)*%B) (X(K)*%D)
NO=TITYPE3(I)
IF(IFLAG.EQ.1) ISTEP3= ISTEPB—NO
DO 31 K=1,NO
ISTEP3=ISTEP3+1
XK=POW31( ISTEP3) *OMEGA(VAR31{ISTEP3) )+POW32(ISTEP3)*0OM
IFGA(VAR32(!STEPB)’+POH33(ISTEPB)*OMEGA(VARBB(ISTFPB))-
20(1)
IF{ABS{XK).LE.DEMMINIGO TO 32
XT(I¥I=XT(I)+COEF3(ISTEP3)*EXP(D(IV*H)*(X(VAR31(ISTEP3)
11%%POW31( ISTEP3) ) *(X(VAR32(ISTEP3) ) **POW32(ISTEP3) ) *{X
2(VAR33(ISTEPB))**POHBB(ISTEP3))*(EXP(XK*H)—1 0)/XK
GO"TO 31
A SERIES EXPANSION IS TO BE MADE FOR THE TERM
(EXP{XK)-1.0)/XK BECAUSE XK IS VERY SMALL.
THIS SERIES EXPANSION IS MADE WHENEVER XK IS
LESS' THAN' OR EQUAL TO DEMMIN.
32 CONTINUE
XTCI)=XT(I)4COEF3(ISTEP3) *EXP(D(I)*H)*(X(VAR31{ISTEP3)
1)*%POW3L{ ISTEP3) ) *{ X{ VAR32(ISTEP3)) **POW32(ISTEP3) ) * (X
2(VAR33(ISTEP3) ) **POW3I3{ISTEP3) ) *H*(1 ., 0+XK*H/2.0#( ( XK*H
3)%%2) /6.0)
31 CONTINUE
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40 TFUITYPE4{I).LE.O0)GO TO 50

42

41
50

WE HAVE TERMS DOF THE FORM C(X(I})2 TIME=T-TAU

THAT IS # WE HAVE PURE TIME DELAYS

NO=TTYPE4(I)

IFUIFLAG.EQ.1) ISTEP4= ISTEP4-N0

DO 41 K=1,NO

ISTEP4=ISTEP4+1

IF(ABS(D(I)).LE.DEMMIN) GO TO 42

XT(I)Y= XT(I)+COEF4(ISTEP4)*(EXP(D([)*H’ 1.0Y*XL(ISTEP4)

2/0(1)

GO TO 41

A SERIES EXPANSION IS TO BE MADE FOR THE TERM
(EXP(D)-1.0)/D BECAUSE D IS VERY SMALL.

THIS SERIES EXPANSION IS MADE WHENEVER D IS

LESS THAN DR EQUAL TO DEMMIN.

CONTINUE
XTCI)=XT(I)4+COEF4(ISTEP4Y*HX(1.0+D(IV1*H/2.0+((D(TI)*xH)*

1%2)/6.,0)%XL(ISTEP&)

CONTINUE
CONTINUE
RETURN
END
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SURROUTINE OMGA1
COMMON/MATRIX/X{30) 4XT(30),LMAT(30,30),D(30),CONSOR(30
1),ITYPEL(30),ITYPE2(30)sITYPE3(30),ITYPE4(30),COEF1(30
2),COEF2(30),COEF3{30),COEF4(30),VAR1(30),POW1{30),
3VAR21(30) yPOW21(30),VAR22(30),P0OW22(30),VAR31(30),
4P0OW31(30), VAR32(30).P0w32(30i.VAR33(301 POW33(30),
SVAR4( 30); TAU{ 30) -
COMMON /OMEG /OMEGA( 30) ,H
COMMON/7LUG/TYPE& ,DELTAT,XL{10),TO,TyN
REAL LMAT
INTEGER VAR1,VAR21,VAR22,VAR31,VAR32,VAR33,VAR%G
INTEGER TYPE4
THIS SUBROUTINE ESTIMATES THE FIRST VALUE OF
THE OMEGA 'S
ISTEP1=0
ISTEP2=0
ISTEP3=0
ISTEP4=0
DD 11 I=1,N
XT(I)=CONSOR(I)
XTCII=XTOCII+D(T ) %X(1)
DO 2 J=1,N
2 XTOIN=LMAT(T 0V XU J)+XT(T)
IF(ITYPEL(I).LE.O) GO TO &
NO=ITYPE1(I)
DO 3 K=1,NO
ISTEP1=ISTEP1+1
3 XT{I)=XT(I)+COEFI1{ISTEPL) *{ X{VARL(ISTEP1) ) **POW1{ ISTEP
11 !
4 TF(ITYPE2(I}.LE.O) GO TO 6
NO=ITYPE2(1)
DO 5 K=1;NO
ISTEP2=ISTEP2+1
5 XT{I)=XT(I)+COEF2(ISTEP2) *(X(VAR21 (ISTEP2) ) *%POW21(IST
1EP2) )% (X({ VAR22({ISTEP2) ) **POW22(ISTEP2))
6 IF(ITYPE3(I).LE.O) GO TO 8
NO=ITYPE3(1)
DO 7 K=15NO "
ISTEP3=ISTEP3+1
7T XT(I)=XT(I)+COEF3(ISTEP3) *(X({VAR31{ISTEP3) ) **POW31{IST
‘1EP3) )%t X( VAR32( ISTEP3) ) *%POW32 (I STEP3) ) *{X{VAR33I{ISTEP
231 )**POW33( ISTEP3))
8 IF{ITYPE4{I).LE.O) GO TO 10
NO=ITYPE4(T)
DO- 9 K=1,NO
ISTEP4=ISTEP4+]
9 XT(I)=XT(I)+COEF4(ISTEP4) *X(VAR4 (ISTEP4))
10 CONTINUE-
11 CONTINUE
WRITE(6,100)
WRITE(6,101) (XT(I),I=1,N)



100
101

DO 1 I=14N

IF(ABS{XT(I)).LE.1.,0E-03) OMEGA(I)=0.0
TF(ABS(XT(I)).LF.1.0E-03) GO 71O 1
OMEGA(TI)=(ALOG(1.0O¢+DELTATXXT{(I)/X{I)))/DELTAYT
CONTINUE -

FORMAT(1H1,* DOXDT(I) INITIALLY IS ')
FORMAT(1H ,10E12.4)

RETURN

END
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SUBROUTINE LAG{LGCODE)
COMMON/MATRIX/X{30) yXT{30) LMAT{30,30),D(30),CONSOR(30
1),ITYPEL1(30),ITYPE2({30)4ITYPE3(30),ITYPE4(30),COEF1{30
2),COEF2(30),COEF3(30),COEF4(30),VAR1(30),PONW1{30),
3VAR21(30) yPOW21(30) ,VAR22({30),P0OW22(30) ,VAR31(30),
4P0H31(30),VAR32(30)9P0H32(30)'VAR33(30) POW33(30),
5VAR4(30), TAU(30) -

COMMON /OMEG /OMEGA( 30) oH

COMMON/LUG/TYPE4 ;DELTAT,,XL(10) 4,TO,T,N

DIMENSION XLAG({10,100),TLAG(100)}

DIMENSION XXLAG(10,100),TTLAG(100)

REAL LMAT

INTEGER VAR1,VAR21,VAR22,VAR31,VAR32,VAR33,VARS
INTEGER TYPE4

THIS SUBROUTINE STORES AND FINDS THE LAGGED VARTABLES.
IF - ANY TIME LAGS EXCEED ‘APPROXI MATELY 80*DELTAT THEN
NL SHOULD BE INCREASED AND THE DIMENSIONS OF 100 IN
THIS SUBROUTINE SHOULD BE INCREASED LIKEWISE. -

WHEN LGCODE=0, THE INITIAL LAGGED TERMS ARE SET EQUAL
TO THE INITTAL CONDITIONS AND L AGGED ARRAYS' ARE
PRODUCED.

WHEN LGCODE=1, THE LAGGED ARRAYS ARE UPDATED.

WHEN LGCODE=2, THE LAGGED VARIABLES ARE FOUND AND
RETURNED ‘T0 THE ~ MAIN CODE,

ALL TAU'S MUST BE GREATER THAN DELTAT,
IF(TYPE4.EQ.0) RETURN

NL=100

IF{LGCODE .GT.0) GO TO 1

TLAG{1)=TO

DO 2 K=1,TYPE4

XLAG(K, 1)=X{VAR4(K))

DO 3 KK=2,4N

TLAG{KKI=TLAG(KK=1)Y-DELTAT

DO 3 K=1,TYPE4

XLAG{ Ky KK)=X{ VAR&4{K))

RETURN

IF{LGCODE.GT.1) GO TQO 5

NN=NL-1

DO 12 KK=2,NL

TTLAGIKK)I=TLAG(KK~-1)

DO 12 K=1,TYPE4

XXLAGI{K gKK}¥I=XLAG{K,KK-1)

DO 6 KK=2,Nt

TLAG(KK)=TTLAG(KK)

DO 6 K=1,;TYPF4

XLAGI{ KKK )I=XXLAG (K oKK)

TLAG(1)=T

DO 7 K=1,TYPE4

XLAG(K,1)=X{VAR4(K))

RETURN

CONTINUE
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DD 11 IX=1,TYPE4
TC=T4+H/2.0-TAULIX)

DO 8 I=1,NL
TF(TC.GE.TLAG(I)) L=I
IF(TC.GE.TLAG(I)) GO TO 9

B CONTINUE
WRITE(65100) VAR&{ IX)
100 FORMAT(1H , ***x%x%x%x CAN NOT -FIND LAGGED VARIABLE =',14)
CALL EXIT

9 IF{TC.NE.TLAG(L)) GO TO 10
XLOIX)I=XLAG(IX,L)
GO TO 11
10 XLOIX)I=XLAG(UX, L)+ (XLAG(IXyL-1)-XLAG(IX L)) *(TC-TLAGIL
1))/ (TLAG(L-1)-TLAG(L))
11 CONTINUE
RETURN
END
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SUBROUTINE COEFF
_ COMMON/MATRIX/X(30) ,XT(30) 4LMAT{30,30),D(30),CONSOR(30
1), 1TYPE1(30), ITYPE2(30),ITYPE3(30),ITYPE4(30),COEF1 (30
2),COEF2(30),COEF3{30) ,COFF4(30),VAR1 (30) ,POW1(30) 5
3VAR 21('30), POW21(30) ,VAR22{30) ,PON22{30) ,VAR31(30),
4POW31(30), VAR32(30),POW32{30) ,VAR33(30),PON33(30),
SVAR4(30), TAU(30) il e

COMMON /OMEG /OMEGA { 30) 4H

COMMON/LUG/TYPE4 ;DELTAT,XL(10),T0,T,N

REAL LMAT :

INTEGER VAR1,VAR21,VAR22,VAR31,VAR32,VAR33,VARS

THIS SUBROUTINE MAY BE USED TO CHANGE ANY

COEFFICIENTS AT THE ‘BEGINNING OF EACH TIME STEP, ALSO
PERTURBATION MAY BE TNTRODUCED INTO THE SYSTEM IN THIS
SUBROUT INE

RETURN -

END



VITA

Maurice Manning Anderson, Jr. was born in Nashville, Tennessee
on September 15, 1945. His parents are Maurice Manning Anderson, Sr.
and the former Etheleen Mae Wilson. Bill, as he is known to his
friends, attended elementary and secondary schools in Gallatin,
Centerville, and Columbia, Tennessee. After graduating from Columbia
Military Academy in 1963, he entered The University of Tennessee and
was graduated with a Bachelor of Science in Nuclear Engineering in
1967.

Bill is married to the former Evalia Jean Rogers of Kingsport,

Tennessee and is the father of Maurice Manning Anderson, III.

T



	A Numerical Algorithm For Solving the Nonlinear Differential Equations that Describe a Multistage Flash Evaporator
	Recommended Citation

	tmp.1487945867.pdf.By3nE

