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ABSTRACT 

A numerical algorithm is formulated to solve the first order, 

nonlinear differential equations that describe a multistage flash 

evaporator. The nonlinearities appearing in the formulation of the 

algorithm are products of up to three terms with each term being a 

dependent variable raised to some power. 

To develop the algorithm, the first order differential equa

tions are written in integral form. The dependent variables are 

then assumed to have a purely exponential dependence over a finite 

time step thereby allowing for the explicit integration of all 

terms. The solution of the differential equations is then reduced 

to the determination of the exponential dependences. The exponen

tial.dependences are determined by an iterative method. 

A c�mputer code based upon the aforementioned algorithm was 

written. Before the algorithm was used to obtain solutions to a 

flash evaporator system, it was applied to several differential 

equations with known solutions. The algorithm was then used to 

obtain solutions for two perturbations in the twenty-third order 

sy�tem.that describes a three stage flash evaporator. These solutions 

are compared with solutions obtained by other methods. 
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CHAPTER I 

INTRODUCTION 

I .  PURPOSE OF THE STUDY 

Although considerable effort has gone into the development and the 

1 2 3 4 5 6* study of linearized models of multistage flash evaporators, ' ' ' ' ' 

solutions of tbe nonlinear models are needed to aid in the interpreta

tion of experimental data .and in the design of control systems.7 

Currently numerical solutions of the nonlinear models of multistage 

flash evaporators are being obtained using MATEXP,8 a general purpose 

computer program for solving differential equations. 6 

The purpose of this thesis is to develop a solution algorithm 

applicable to nonlinear differential equations .. and in particular to 

the nonlinear models of. multistage flash evaporators. The algorithm 

will be used to check the use of. MATEXP in the solution of the non

linear models of flash evaporators by presenting an. alternate and 

independent solution algorithms If the computation time permits, the 

solution algorithm may become a useful tool for solving.the large sets 

of nonlinear differential equations that describe multistage flash 

evaporator systems . 

Superscript numbers. in .. the .text refer to similarly numbered 
entries in the bibliography. 

1 



II. PREVIOUS USE OF THE EXPONENTIAL 

ALGORITHM AND ITS EXTENSION TO 

NONLINEAR DIFFERENTIAL EQUATIONS 

Hansen et al.9,io have developed a computational algorithm for 

solving the time-dependent neutron multi-group diffusion equations 

2 

that is numerically.stable, rapid in operation, and accurate. In 

essence, Hansen's algorithm was developed by integrating.the differen

tial equations describing the time-dependent neutron fluxes and pre

cursor concentrations over a finite time step and assuming an exponential 

time dependence of. the fluxes and precursor concentrations. In this 

thesis numerical algorithms for solving differential equations by 

assuming an exponential dependence of the dependent variables over a 

finite time step are referred to as exponential algorithms. 

Others have since applied modifications of Hansen's exponential 

algorithm to other problems. Specifically, Swanks11 used an exponen

tial algorithm to obtain solutions to the time-dependent discrete 

12 ordinate neutron transport equations, and Stevenson and Bingham used 

an exponential algorithm for a liquid metal fast breeder transient 

analysis. 

Because of its speed and accuracy in the solution of large sets 

of linear differential equations, an extension of the exponential 

algorithm to large sets of nonlinear differential equations seems 

appropriate. However, the question of numerical stability remains 

unanswered when applying the exponential algorithm to nonlinear dif

ferential equations. 



To develop the exponential algorithm for first order, nonlinear 

differential equations, the dependent variables are assumed to behave 

as pure exponentials over a finite time step. The differential equa

tions are then integrated over the finite time step, and the solution 

of the differential equations .. is reduced.to the determination of the 

exponential dependences of the variables. 

3 



CHAPTER II 

FLASH EVAPORATORS 

I. A. DESCRIPTION OF A THREE.STAGE FLASH EVAPORATOR 

AND THE VARIABLES USED TO DESCRIBE 

A MULTISTAGE FLASH EVAPORATOR 

In the model empl�yed in this thesis, 6 the differential equations 

describing the state of any interior stage of a multistage flash eva

porator are a function of the variables used to describe that stage 

and.the variables used to describe the two adjacent stages. For this 

reason, a three stage evaporator system is sufficiently general to 

include the coupling that arises. in multistage flash evaporator systems 

and.is used as a reference system in this study. 

A schematic diagram of the three stage flash evaporator used as 

the reference system is shown in Figure 1. The brine is heated in the 

steam heater section and pumped into Stage 1 where partial flashing 

occurs as the brine enters the stage. Pressure differences due to the 

vapor pressures and the hydraulic heads support the brine flow from 

Stage 1 to Stage 2 and from.Stage 2 to Stage 3, and partial flashing 

occurs as the brine enters the stages. Fresh water is used in the 

coolant loop to condense the vapor, and the condensate is removed from 

the system. 

As shown in Figure l, six dependent variables are used to describe 

the state ·:of each stage. Specifically, these variables are. 

l. The tray brine mass, 

4 



COOLAN� LOOP 

-----� T
Tol TTl 

Tube 1 

STAGE 1 STAGE 2 STAGE 3 

STEAM HEATER 

.__ ________ __.TBRo-SH TBR-SHl--------J 

Tube-SH 

FIGURE 1 

SCHEMATIC DIAGRAM OF THREE 
STAGE EVAPORATOR SYSTEM· 
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2. The average tray. brine temperature, 

3. The cell vapor mass, 

4. The average condenser tube temperature, 

5. The average coolant .temperature, and 

6. The coolant outlet temperature. 

In addition, five dependent variables are used,to.describe the heating 

and cooling loops. 

A state variable.vector representation, X, is used to describe 

the state of the entire system. Table 1 defines the variables used 

to describe the three stage evaporator system.and denotes the ordering 

of the variables in the state vector. 

II. THE DIFFERENTIAL EQUATIONS 

USED TO DESCRIBE A THREE 

STAGE FLASH EVAPORATOR 

The development.of the differential equations used to describe a 

1 2 6 multistage flash evaporator is well documented. ' ' Therefore, no 

attempt will be made here to present their development. The nonlinear 

differential equations used.to. describe a three .stage flash evaporator 

were obtained from the equations given in the Appendix of Reference 6, 

except for the introduction of the nonlinear flashing flowrate dis

cussed in Reference 6. 

6 

The nonlinear differential equations used to describe a three stage 

flash evaporator are 



Model 
Variable (unit.a) 

TTol(o
F) 

'fTl(O
F) 

'rTube 1(°
F) 

MCVl(pounds) 

TTBl(O
F) 

M.rB1(pounds) 

TTo2(o
F) 

TT2(o
F) 

TTube 2(°
F) 

MCV2(pounds) 

TTB2(o
F) 

�B2(pounds) 

TTo3(o
F) 

TT3( o
F) 

TTube 3( °
F) 

MCV3(pounds) 

7 

TABLE 1 

DEFINITION OF THE VARIABLES 
USED IN THE THREE STAGE 

EVAPORATOR MODEL 

State 
Variable Physical Significance 

Coolant outlet temperature in Stage 1 

Average coolant temperature in Stage 1 

Average condenser tube temperature in 
Stage 1 

Cell vapor mass in Stage 1 

Average tray brine temperature in 
Stage 1 

Tray brine mass in Stage 1 

Coolant outlet temperature in Stage 2 

Average coolant temperature in Stage 2 

Average condenser tube temperature in 
Stage 2 

Cell vapor mass in Stage 2 

Average tray brine temperature in 
Stage 2 

Tray brine mass in Stage 2 

Coolant outlet temperature in Stage 3 

Average·coolant temperature in Stage 3 

Average condenser tube temperature in 
Stage 3 

Cell vapor mass in Stage 3 



TABLE 1 (continued) 

Model State 
Variable (units) Variable Physical Significance 

�TB3( °F) 

�3(pounds) 

TCL(OF) 

TIP(OF) 

TBR- SH(OF) 

TBRo-SH( °F) 

'l'Tube-SH( °F) 

WBR(pounds/second) 

WC(pounds/second) 

TIN(OF) 

TSH(OF) 

WFEED(pounds/second) 

WBLEED(pounds/second) 

xl7 

xl8 

xl9 

x20 

x21 

Average tray brine temperature in 
Stage 3 

TrS¥ brine mass in Stage 3 

Average coolant temperature in 
reservoir 

Average inlet plenum temperature 

Average brine temperature in brine
heater 

Brine outlet temperature in brine
heater 

Average tube temperature in brine-
heater 

Brine flowrate 

Coolant flowrate 

Temperature of coolant feed 

Temperature of steam in brine heater 

Brine feed rate 

Brine extraction rate 

8 



dx2 
dt = - [� M.r1 

+ �l (���
O
J ) X4 + Sl (���

O
J ) p Tube 1 p Tube 1 

(lb) 

(le) 

(ld) 

+tW - K (W ) 1/2 (�)] x20 + K (W -)1/2 (�): L (le) 
BR l BR C TB x6 l BR C TB x6 p 1 p l 
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+ a.2 
( 

���
o

) 
) xlO + f32 (���

0

) 
) p Tube 2 

p Tube 2 

dx10 ( h A· 
) ( h A 

) O·O O 0 

� = h
fg 

2 X9 - (l
2 

h
fg 

2 xlO 

10 

(li) 

(lj) 



dx 
1/2 

( h 
) 

--ll. = . (XWl ) x24 x5 - K ·(XWl )1/2 .J.L 
dt 1 x12 2 1 C TB p 2 

+ a K (XWl )1/2 
(�) 2 ·2 1 C 

TB p 2 

+ a K (XWl )1/2 1/4 + (XWl) 1/2 (XWl) 1/2 
�2 2 1 x24 1 x24 - 2 x25 
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(lk) 

( 11) 

(lm) 

(ln) 



( 
h A . ) 

(h A 

) 
+ a3 (�c

0) xl6 + 63 (�c
0

) 
p Tube 3 p Tube 3 

- S K  (XWl ) 1/2 �/4 - S 
(
ho Ao

) 3 3 2 X25 3 hf g 3 

+ a K (XWl ) 112( 
�

) 3 3 2 C TB p 3 

- (XWl) x25 xl7 
+ S K (XWl ) 1/2 � 

1/2 

( 
) 

2 x18 3 3 2 cpTB 3 
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(lo) 

(lp) 

(lg.) 



dx18 (XWl) 1/2 _ K (XWl )1/2 1/4 + K (XWl )1/2 l/4 
� = 2 x25 3 2 x25 xll a3 3 2 x25 x16 

� (
w�ecf

) (
we) (

we) dt = M xl - M x19 + M (1 - Recf)TIN CL CL CL 

13 

(lr) 

(ls) 

(lt) 

(lu) 

(lv) 

(lw) 



The definitions of the coefficients used in Equation (1) are given in 

Appendix A. 

14 

In Equation (1), x24 and x25 are the effective pressure drops from 

Stage 1 to Stage 2 and from Stage 2 to Stage 3 respectively. These 

pressure drops are given by the following equations: 

x24 
= 

ylx4 + (�cJ x6 

x25 
= 

y2xl0 + (�c
2

) 

- Y2 xlO -

( K21 ) 
AFC2 xl2 + ;l - t2 

r
2

2 

J xl2 - Y3 xl6 - AFC3 xl8 + ;2 - t3 

(2) 

XM3B. 

The definitions of the coefficients used in Equation (2) are given in 

Appendix A. 

In Equation (1) the nonlinear terms are products of the dependent 
* 

variables and the effective pressure drops. An exponential algorithm 

can be readily formulated for nonlinearities of this form. 

The effective pressure drops are formulated as dependent variables, 
and differential equatio ns describing their time dependence can be 
obtained by differentiating Equation (2). 



CHAPTER III 

THE NUMERICAL ALGORITHM 

I. DEVELOPMENT OF THE FINITE 

DIFFERENCED EQUATIONS 

The first order, nonlinear differential equations for a three 

stage flash evaporator given in Equation (1) can be written in the 

form: 

dX 
dt =ex+ F(x) + z(x) + s (3) 

where Xis a N dimensional, time dependent state vector; C is a 

linear, N dimensional square matrix; F(X) is a N dimensional column 

vector containing all the nonlinear terms; Z(X) is a N dimensional 

column vector containing all time-lagged terms and Sis a N dimen

sional column vector. The C matrix in Equation (3) is factored into 

two parts: 

C = A + D (4) 

where D is strictly a diagonal matrix and A is the remaining part 

of the C matrix. Substitution of Equation (4) into Equation (3) and 

rearrangement of terms yields 

dX cit - DX= AX+ F(X) + z(x) + §. ( 5) 

15 



The algorithm used to obtain solutions to Equation (3) will 

be developed from the general concepts of Hansen's exponential 

algorithm9, 10; however, the algorithm will be formulated by con

sidering the differential equation describing an arbitrary depen

dent variable, xi ' instead of·using a .matrix representation. The 

differential equation describing this arbitrary variable is 

N 

L 
j=l 

where the definition of all terms can be inferred by comparison of 

Equations (5) and (6) .  

(6) 

Equation (6) is multiplied by the integrating factor exp(-d11 t_), 

and the resulting equation is integrated from t to t +h yielding 
a a 

--
t

l

+

.

h 

exp ( -d11 t � ) [ 

a 

N 

[ aijxj(t-:) + r1(x) + z1 (x) + s1]dt ... 
j=l 

Multiplying Equation (7) by exp(+di1(ta+h)) and rearranging yields 

(7) 

16 
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N 

exp ( -dii t .. ) [ L a i j x j ( t .. ) 
j=l 

(8) 

It should be µoted at this point that fi(X) and zi(X) are functions 

of t ... 

For the flash evaporator described by Equation (1), the nonlinear 

terms, fi(X)'s, can in general be represented by 

Ji 

L bj[{(t)xi(t) x�(t)]j (9-) 

j=l 

where J. is the number of nonlinearities in the ith differential 
1 

equation; the bj's are coefficients of the individual nonlinear terms; 

the k's, i's, and m's are integers corresponding to the indices of the 

state vector X; and the p's, q's, and r's are real numbers; i.e., for 

each nonlinear term of the 1th differential equation there is a 

corresponding b, k, i, m, p, q, and r. 

The time-lagged terms are expressed in the form: 

T. 
1 

z i ( X) = L e j [ xn ( t - T ) ] j 
j=l 

(10) 



where Ti is the number of time- lagged terms in the ith differential 

equation; the ej's are the coefficients of the individual time-lagged 

terms; the n's are integers corresponding to the indices of the 

dependent state vector X; and the T's are the time lags; i. e. , for 

th each time-lagged term in the i differential equation, there is a 

corresponding e, n, and T. 

Substitution of Equations (9) and (10) into Equation (8) yields 

t +h N 

+ 
exp(dii C\/hl) J exp(-dii 

t') ( L a
ilJ 

(t ') 
t j=l 

Cl 

j=l j=l 

18 

(1 1) 

At this point, the assumption that x (t'-T), where t < t'< t + h, 
n a. - - a. 

can be accurately approximated by x. (t + h.2 - T) is made. Using this n . a. 

assumption and the assumption that the aij's, bj's, ej's, and si are 

constant over the time step t to t + h, Equation (ll) becomes 
Cl Cl 



N 

+ exp(dii (ta +h))  L aij 
j=l 

Ji 

t +h a 

J exp(-d11t') xJ(t')dt' 

t a 

t +h a 

19 

+ exp(d11 (ta +h) )  L bj 
j=l { 

exp(-d11 t')[�(t')xi(t')x:(t') J /t' 

a 

t +h 
CJ 

e J [ x
0 

(ta+ } - T) ) t s 1) J exp ( -d11 t ') dt' . 
t a 

(12) 

Integration of the last term in Equation (12) and rearrangement of 

the resulting equation yields 

N 

L 
j=l 

Ji ta+h 

+ exp(d11 ( ta +h))  [ b J J exp(-d11 t' )[�( t' )xi( t' )x: ( t ') ) /t' 
j=l t a 

Ti 

+ ( L ej[xn(ta+ !- T)]j + si) (exp(d11h) - 1)/dii. (13) 
j=l 



Some assumption mus� now be made concerning the behavior of the 

dependent variables over the time step t to t +h. The·dependent · a a 

variables are assumed to have a purely exponential time dependence 

over the time step; i.e. , on the interval .t < t' < t +h, xi(t') is 
a - - a 

given by .the expression: 

(14) 

where thew's are a set of real parameters to be determined numeri-

cal�y. A discussion of.the_ method of determining �he w's is pre-

20 

sented in the next section. Introduction of the exponential assumption 

into Equation (13) and :rearrange�ent of the resulting equation yields 

* 

N 

L aijxj(ta)exp(-wjt�) 
j=l 

Ji 

+ exp(dii (ta +h) ) .  [ bj [�(ta )xi(ta )x�(ta )exp(-pwk 

j=l. 

t +h 

+ qw
.e. 
+rwm)ta) J exp((pwk +qw

.e. 
+rwm-dii )t ')] lt' 

t 
a · 

Ti 

+ ([ eixn(ta+ } - -r)]
j 

+ si) (exp(d11h)- l)/d11. (15) 

j=l 

It is noted that the exponential assumption given by Equation 
(15) assumes that the values of the dependent variables .do not change 
sign over a time step. 



After evaluation of the integrals, Equation (15) is written as 

N 

+ exp(dHh) [ aijx/ta)(exp((wj-dii)h) - 1)/(wj - di·i) 
j=l 

Ji 

+ exp(diih) L bj[{(ta)xi(ta)x�(ta)(exp((pwk 
j=l 

T. 
1 

+ ( L 
j=l 

Equation (16) forms the basis of the exponential algorithm. 

This equation expresses, in finite difference form, the components 

of the state vector X(t +h) in terms of X(t ) and the undetermined a a 

exponential parameters. 

II. DETERMINATION. OF THE EXPONENTIAL PARAMETERS 

(16) 

Equation (16) shows that the.solution of the differential equa

tions for the time step t to t +h has been reduced to the problem a a 

of determining the appropriate w' s for the time step. The w' s are 

determined by an iterative method. 

21 



Solving Equation (14) for w. yields 
1 

By letting t' = t +h, Equation (17') becomes a 

One� a set of w' s which sat is fies Equation � 18) is obtained, the 

solution is said to. have converged .on the interval t to t +h. In a a 

general, Equation (18) can .not be satisfied exactly., As a test 

upon convergence, the wi's are required to satisfy either 

. 1 
wi - h R.n 

or 

where Et and Ef .are small positive numbers. For very small values 

of w., .the linear convergence test given by Equation (19) is used; 
· 1  

otherwise., the fractional convergence test given by Equation (20) 

is used. 

22 

(17) 

(18) 

(19) 

(20) 



The iterative method used in this thesis to calculate the w's is 

11 a modification of the method used by Swanks. The method employs 

two schemes to estimate the w's. Scheme 1 calculates new estimates 

23 

of the w '· s from Equation (18), while Scheme 2 calculates new estimates 

of the w's by a linear interpolati9n based upon previous .estimates of 

the w's. For a detailed discussion of Scheme 2, the reader is referred 

to Refe:r::-ence llo 

The use of the iterative method in the determination of the w's 

is diagramed in Figure 2. In Figure 2, the looping between control 

points 3 and 4 is an inner-.iter_ation, and the looping between control 

points 2 and 5 is an outer-iteration. An inner-iteration estimates 

the individual wi's and hence the x. (t +h)'s. The completion of an 
1 a 

outer-iteration yields a complete set of the w's and hence an estimate 

of x(t +h). a 

The initial estimates of the w's are obtained from the derivatives 

of ·the. dependent var,iables by using a first order Taylor series expansion 
* 

of X(h) about t = 0. The mathematical expression used .to obtain the 

initial estimates of the w's is 

(21) 

or 

rt has been found that it is advantageous, when introducing 
binary perturbations· of the. brine. flowrate into a three stage flash 
evaporator·, to use a modification of Equation (22) to estimate new 
exponential parameters whenever the sign of the perturbation changes. 
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(22) 

At the beginning of subsequent time steps, the w's are set equal to 

the values calculated during the previous time step. 

To initiate a time step, .its size, h, is.set equal to the input 

quantity 6t. An outer-iteration is then started and the values of 

xi(ta + h) are calculated individually. After the .calculation of 

each x.(t + h), a check is made to determine if wi satisfies the 
1 a 

appropriate convergence criterion given by Equation (19) or Equation 

(20). If a wi does not satisfy.the convergence criterion, up to 

25 

three successive estimates of this w. are obtained. The first estimate 
1 

is obtained from Scheme 1, and the.next two estimates are obtained 

from Scheme 2. After each new estimate of wi is made, xi(ta + h) is 

calculated again and convergence is checked. Once a converged w. is 
. 1 

found, the calculation proceeds to the next x.(t + h). If a converged 
1 a 

w. cannot be found in three estimates, the size of the time step, h, 
1 

is reduced and the outer-iteration is started again. The above proce -

dure is repeated until an outer-iteration is accomplished. 

If a new estimate of any.w. is made during an outer-iteration, 
1 

an additional outer-iteration is performed (an additional outer-iteration 

is performed if ISTOP = 0) . .  Although this requirement may be relaxed, 

it is employed because of the coupling of the differential equations. 

The maximum number of outer-iterations is specified by the input quantity 

NOUTIT. Once an outer-iteration in which all the w's remain constant 

is completed or after NOUTIT outer -iterations have been performed, ta 

is incremented and a ·�ew time step is started. 



CHAPTER IV 

NUMERICAL RESULTS 

I. INTRODUCTION 

The computer code ESNDE (!xponential §_elution to !!_onlinear 

Differential !quations) ·was developed from the exponential algorithm 

presented in Chapter III. A listing of this code and a discussion 

of input data is given in Appendix B. Although the code was de

veloped specifically to solve the nonlinear multistage flash evaporator 

equations, it can be used to obtain solutions.'to sets.of first order, 

nonlinear differential equations_.whose nonlinearities are of the form 

given by Equation (1.5) and whose. dependent variables retain their 

original sign over the solution interval. The computer code handles 

variable coefficients .by evaluating new coefficients at the beginning 

of each time step. 

Solutions to several differ�ntial equations were obtained before 

·the exponential algorithm.was used to obtain solutions to a three stage 

evaporator systemo Numerical solutions of two of these differential 

equations and the results obtained for two perturbations of the three 

. stage flash evaporator described by Equation (1) are presented in this 

chaptero 

II •. · A NUMERICAL SOLUTION TO THE MODIFIED BESSEL'S EQUATION 

The modified Bessel,' s equation is13 

26 



2 
t2 d w + t dw _ ( t2 2 ) 0 + \) w = 

dt2. dt 

In order to apply the exponential algorithm to Equation ( 2 3) , the 

equation is written as the following set of coupled, first order 

differential equations: 

d.x2 2 xl . x2 . � 
dt ·= xl + " -2 - -X

3 X
3 

(2 3) 

d.x _l.·= 1 (24) dt 
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wh�re .�1 = w� x2 =�;, and x3· = t. A solution of the modified Bessel's 

-equation was obtained from the code ESNDE by solving Equation (24) 

with ·v = 1, �(l) = l, .x2
(1) = 1, and x3(1} = 1 .  Tabulated results of 

the . exponential algorithm solution are presented in Table 2 along with 

numerical values of the analytic solution, 

(25) 

where 



Time 
(Seconds} 

1.0 
2.0 
4.o 
6�0 
8.0 

10.0 
12.0 
14.o 
16.0 
18.0 
20.0 
22.0 
24.o 
26.0 
28.0 
30.0 
32.0 
34.o 
36.0 
38.0 
40.0 

TABLE 2 

SOLUTIONS TO MODIFIED BESSEL'S 
EQUATION FOR v = 1, w(l) = 1, 

AND dw(l)/dt = 1 

Exponential Algorithm 
Solution· 

1.000 
2.603 l 
1.586 X 101 9.967 X 102 6.497 X 103 4.340 X 104 2.947 X 105 2.026 X 106 1.405 X 106 9.816 X 107 6.896 X 108 4.867 X 109 3.448 X 1010 · 2.451 X 10ll 
1.745 X 1012 1.248 X 1012 8.935 X 1013 6.409 X 1014 
4.605 X 1015 3.314 X 10l6 2.388 X 10 

_Numerical Values 
ot Analytic Solution 

1.000 
2.604 l 
1.586 X 101 9.967 X 102 6.497 X 103 4.340 X 104 2.948 X 105 2.026 X 106 1.406 X 106 9.819 X 107 6.898 X 108 4.868 X 109 3.449 X 1010 2.451 X 10ll 
1. 747 X 1012 1.248 X 1012 8.938 X 10

13 6.412 X 1014 4.607 X 1015 3.315 X 10l6· 
2.389 X 10 

28 



(26-) 

and r1, I0, K0, and K1 are modified Bessel functions. 

The agreement of the.exponen�ial algorithm solution of the modi

fied Bessel's equation with the. analytic solu��on is excellent over 

29 

an extremely large range of.numerical values. Comparison of the 

results shows that the fractional difference between the. two so.lutions. 

is generally less than 10-3. 

III. NUMERICAL SOLl:JTIONS TO VAN 

DER POL'S EQUATION 

Van.der. Pol's equation, descr�bing a triode oscillator, is14 

In order to apply the exponential algorithm to Equation (27), the 

transformations 

are made; and the resulting transformed differenti�l equation is 

written as the following set of coupled, first order differential 

equations: 

(27) 

(28) 



2 
+ Ep(y - 1) + y. (29) 

In Equation (28), y and pare positive real constants whose magnitudes 

are sufficiently large to insure that x
1 

and x
2 

are always positive. 
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Numerical solutions of Van der Pol's equation with initial condi

tions of y(O) = 2 and f (0) = 0 and values of E between 0.5 and 5.0 

were obtained by applying .. the exponential algorithm (ESNDE) to Equation 

(29) . The results are presented in Figure 3 along with approximate 

1 t. i b D . 14 F 0 3 h d t b t th so u ions g ven y avis. igure s ows goo agreemen e ween e 

exponential algorithm solutions and the approximate solutions of Davis. 

IV. NUMERICAL SOLUTION OF THREE STAGE 

EVAPORATOR SYSTEM 

Solutions for two.perturbations in the three stage flash evaporator 

system described·by Equation (1) were obtained from the code ESNDE. 

Two approaches were taken to include the time dependence of the pressure 

differences given by Equation (2) given on page 14. The first approach 

was the introduction of two additional differential equations to describe 
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the time dependence·of the pressure differences by differentiating 

Equation (2.). The second approach consisted of the evaluation of the 

pressure differences at the end of each time step from Equation (2) 

32 

and an iterative solution of an assumed exponential dependence of the 

pressure differences based upon Equations (19) and (20 .) given on page 

22, When the. time dependence of the pressure differences was included, 

the computation time required to obtain a converged solution became 

prohibitive. 

Solutions were then obtained by assuming that the pressure dif

ferences remained constant over each time step. This assumption is not 

very restrictive since the changes in the pressure differences are small 

over a time step and only fractional powers, less than or equal to one

half, of the pressure differences appear in Equation (1). The solutions 

obtained by i�cluding the.time dependence of the pressure differences 

and by assuming the pressure difference remained constant over a time 

step agreed very well. For the above reasons, the pressure differences 

were assumed constant over a time step and were evaluated from Equation 

(2) at the end of each time step. 

Solutions of the three stage evaporator system obtained from the 

exponential algorithm (ESNDE) are compared with ·solutions obtained by 

Ba11
15 using MATEXP and· from a computer .program written to solve Equa

tion (l) by the Euler method.16 The solutions obtained.by the Euler 

method·are taken as the reference solutions because reductions by a 

factor of ten in the time step yielded no significant changes in any of 

the dependent variables. 



The first perturbation was a ten degree (10°F) step change in 

the steam heater temperature, TSH " The second perturbation was a 

twenty percent step change in the brine flowrate, WBR " The initial 

conditions used were .not the steady state values of the system. For 

this reason, the perturbations were introduced .after a· forty second 

interval. 

Tabulated results of · the . solutions are presented . in Tables 3 and 

4. Plots of the transient responses of the vapor mass and brine mass 

in the first stage and the brine mass in the third stage are presented 

in Figures 4 ,  5, and 6 for the first perturbation and in Figures 7 ,  8 ,  

and 9 for the second perturbation. The time steps were 0. 2 seconds 

33 

for ESNDE, 0. 1 seconds for MATEXP, and 0. 02 seconds for .the Euler method. 

The tabulated results show a general agreement between the three 

methods of solution. The transient responses show excellent agreement 

between the Euler solution and the- exponential algorithm solution and 

some discrepancies between. the Euler solution and the MATEXP solution 

primarily due to the appearance of oscillations in the MATEXP solution. 

The oscillations in the MATEXP solution are attributed to either the 

use of too large a time step since similar oscillations appearing in 

other.problems have been eliminated by a reduction in the size of the 

time step15 or the possibility that a slightly different set .of differen

tial equations was used to obtain the MATEXP solutions. 

The exponential algorithm results were obtained by requiring that 

at each time step none of the values of the exponential parameters 



Variable 

xl 

x2 

x
3 

X4 

X
5 

x6 

X
7 

x8 

x
9 

TABLE 3 

TABULATED RESULTS FOR A 10°F STEP CHANGE 
IN THE STEAM HEATER TEMPERATURE OF A 

THREE STAGE FLASH EVAPORATOR 

Method Value of Value of 
of Initi�l Variable at · Variable at 

Solution Condition 40 Seconds 100 Seconds 

ESNDE 90. 34 93. 06 
Euler 89. 00 90. 33 93. 05 
MATEXP 90. 32 93. 01 

ESNDE 88. 46 91. 00 
Euler 87. 00 88. 45 90. 99 
MATEXP 88. 44 90. 95 

ESNDE 98. 17 102. 0 
Euler 89. 00 98. 16 102. 0 
MATEXP 98. 15 102. 0 

ESNDE . 4256 . 4902 
Euler . 4114 . 4256 . 4900 
MATEXP . 4258 . 4959 

ESNDE 107. 1  112. 1 
Euler 108. 1 107. 1  112. 1 
MATEXP 107. 1 112. 1 

ESNDE 433. 7 407. 3 
Euler 421. 4 433. 6 407 . 6  
MATEXP 432. 6 4o4. 6 

ESNDE 86. 59 88. 94 
Euler 84. 99 86. 58 88. 92 
MATEXP 86. 57 88. 89 

ESNDE 84. 61 86. 77 
Euler 82. 99 84. 59 86. 76 
MATEXP 84. 58 86. 73 

ESNDE 95 . 21 98. 63 
Euler 84. 99 95. 20 98. 62 
MATEXP 95. 20 98. 58 
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Value of 
Variable at 
200 Seconds 

97. 15 
97. 10 
97. 07 

94. 95 
94. 90 
94. 87 

106. 6 
106. 6 
106. 6 

. 5530 

. 5524 

. 5743 

117. 3 
117. 3 
117. 3 

393. 3 
393. 7 
385 . 2  

92. 74 
92. 70 
92. 68 

90. 43 
90. 39 
90. 37 

103. 0 
103. 0 
103. 0 



TABLE 3 ( continued) 

Method Value of 
of Initial Variable at 

Variable Solution Condition 40 Seconds 

ESNDE . 6155 
xlO Euler . 5901 . 6155 

MATEXP . 6160 

ESNDE 104. 8 
xll 

Euler 105. 7 104. 8 
MATEXP 104. 8 

ESNDE 1069. 
xl2 Euler 1048. 1069. 

MATEXP 1069. 

ESNDE 82. 62 
xl

3 
Euler 80. 98 82. 61 
MATEXP 82. 61 

ESNDE 80. 26 
xl4 Euler 78. 98 80. 25 

MATEXP 80. 25  

ESNDE 93. 50 
xl5 Euler 80. 98 93. 49 

MATEXP 93. 49 

ESNDE . 3406 
x16 Euler . 3222 . 3406 

MATEXP . 3410 

ESNDE 102. 0 
Xl7 

Euler 102. 8 101. 9 
MATEXP 101. 9 

ESNDE 1721. 
xl8 Euler 1705. 1721. 

MATE XP 1720. 

ESNDE 77. 91 

xl9 Euler 77. 00 77. 89 
MATEXP 77. 89 

Value of . 
Variable. �t .. 

100. Seconds 

. 6989 

. 6988 

. 7067 

109. 0 
108. 9 
108. 9 

1051. 
1051. 
1048. 

84. 61 
84. 59 
84. 57 

82. 06 
82. 05 
82. 03 

96. 51 
96. 50 
96. 47 

. 3788 

. 3787 

. 3827 

105. 1 
105. 0 
105. 0 

1800. 
1800. 
1801. 

79. 52 
79. 50 
79. 49 

Value of 
Variable at .. . ... 

200 Seconds 

. 7881 

. 7876 

. 8178 

114. 1 
114. o 
114. o 

1041. 
1041. 
1030. 

88. 12 
88. 08 
88. 05 

85. 39 
85. 35 
85. 33 

100. 8 
100. 8 
100. 8 

. 4271 

. 4266 

. 4420 

110. 1 
110. 1 
110. 0 

1834. 
1834. 
1840. 

82. 67 
82. 63 
82. 61 
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�ABLE 3 (continued) 

Method Value of Value of Value of 
of Initial Variable at Variable at Variable at 

Variable Solution Condition 40 Seconds 100 Seconds 200 Seconds 

ESNDE 109 . 4  115 . 0  120 . 3  
x20 Euler 110. 3 109 . 4  115 . 0  120 . 2  

MATEXP 109 . 4  114. 9 120 . 2  

ESNDE 105 . 6  110 . 2  115 . 2  
x21 Euler 106 . 5  105 . 6  110. 2 115 . 2  

MATEXP 105 . 6  110 . 1  115 . 2  

ESNDE 109 . 2  116 . 1  120 . 9 
x22 Euler 110 . 3  109 . 2  116 . 0  120. 8 

MATEXP 109 . 2  116 . 0  120 . 8  

ESNDE 120. 0 134 . 2  138 . 2  
x23 Euler 125 . 3  120 . 0  134 . 2  138 . 2  

MATEXP 120 . 0  134 . 1  138 . 1  



Variable 

xl 

x2 

X3 

X4 

x5 

x6 

x8 

x9 

TABLE 4 

TABULATED RESULTS FOR A 2 0% STEP CHANGE 
IN THE BRINE FLOWRATE OF A 

THREE STAGE FLASH EVAPORATOR 

Method Value o f  Value o f  
o f  Initial Vari able at Variable at 

Soluti on Con di tion 40 Secon ds 1 00 Seconds 

ESNDE 90 . 34 90 .74 
Euler 89 . 00 90 . 33 90 .71 
MATEXP 90 . 32 90 .70 

ESNDE 88 .46 88 . 98 
Euler 87 . 00 88 .45 88 .95 
MATEXP 88 .44 88 . 94 

ESNDE 98 .16 98 . 08 
Euler 89 . 00 98 .16 98 . 06 
MATEXP 98 .1 5 98 . 05 

ESNDE .4256 .41 76 
Euler .41 1 4 .4256 .41 74 
MATEXP .4258 .41 74 

ESNDE 1 07 .1 1 06 .7 
Euler 1 08 .1 1 07 .1 1 06 .7 
MATEXP 1 07 .1 1 06 .7 

ESNDE 433 .7  497 . 0  
Euler 421 .4 433 .7 497 . 0 
MATEXP 432 .6 497 .1 

ESNDE 86 . 59 87 . 22 
Euler 84 . 99 86 .58 87 .20 
MATEXP 86 .57 87 .18 

ESNDE 84 . 60 85 . 32 
Euler 82 . 99 84 . 59 85 . 30 
MATEXP 84 .58 85 .29 

ESNDE 95 . 21 95 .44 
Euler 84 . 99 95 .20 95 .42 
MATEXP 95 .20 95 .41 
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Value o f  
Vari able at 
2 00 Secon ds 

91 .2 3 
91 .1 7 
91 .1 5 

89 .50 
89 . 46 . 
89 .42 

98 .42 
98 . 38 
98 . 34 

.41 96 

.4192 

.4186 

1 06 .8 
1 06 .8 
1 06 .8 

51 1 .2 
51 1 . 3  
51 1 . 3  

87 .77 
87 .73 
87 .70 

85 . 90 
85 .86 
85 .83 

95 .82 
95 .78 
95 .74 
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TABLE 4 ( continued) 

Met
h
od Value of Value of Value of 

of Initial Variable at Variable at Variable at 
Variable Solution Condition 40 Seconds 100 Seconds 200 Seconds 

E SNDE . 6154 . 6116 . 6148 
xlO Euler . 5901 . 6155 . 6113 . 6142 

MATEXP . 6160 . 6+16 . 6138 

ESNDE 104. 8 104. 7 104 .. 9 

�l Euler 105. 7 104. 8 104. 7 104. 9 
MATEXP 104. 8 104. 7 104. 8 

E SNDE 1069. 113. 9 1174. 
xl2 E uler 1048. 1069. 113 .9 1174 .. 

MATEXP 1069. 113. 7 1173. 

E SNDE 82. 62 83. 42 84. 03 
xl3 Euler . 80. 98 82 . 61 83. 40 83. 99 

MATEXP 82. 61 83. 39 83. 97 

E SNDE 80. 26 81. 12 81. 76 
xl4 Euler 78. 98 80. 25  81. 10 81. 72 

MATEXP 80. 25 81. 10 81. 71 

ESNDE 93. 50 �3. 94 94. 32 
xl5 Euler 80. �� 93. 49 93. 91 94 . 28 

MATEXP 93. 49 93. 90 94. 25 

ESNDE . 3407 . 3421 . 3440 

�6 Euler . 3222 . 3406 . 3419 . 3437 
MATEXP . 3410 . 3421 . 3438 

ESNDE 102. 0 102. 3 1�2. 5 

�7 
Euler 102. 8 101. 9 �02. 3 102. 5 
MATE XP 101. 9 102. 3 102. 4 

ESNDE 1721. 1696. 1766. 

�8 Euler 1705 •' 1721. 1697. 11,67. 
MATEXP 1720. 1692. 1762. 

ESNDE 77. 90 78. 82 79. 50 
xl9 Euler 77. 00 77. 89 78. 80 . 79. 46 

MATEXP 77 . 89 78. 80 79. 45 
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TABLE 4 (continued) 

Method Value of Value of Value of 
of Initial Variable at Variable at Variable_ at 

Variable Solution Condition 40 Seconds 100 Seconds 200 Seconds 

ESNDE 109.4 108 . 5  108. 6 

x20 Euler 110. 3 109.4 108. 5 108 . 6  
MATEXP 109.4 108 . 5 108. 5 

ESNDE 105 . 6  105 ,4 105 . 6  

x21 Euler 106 . 5 105. 6 105 . 3 105.5 
MATEXP 105. 6  105 . 3 105 . 5 

ESNDE 109. 2  108. 5 108.7 
x22 Euler 110 . 3  109. 2 108 .4  108. 6 

MATEXP 109. 2  108 .4 108 . 6  

ESNDE 120. 0 118. 2 118 .4 

x23 Euler 125 .3 120 . 0  118. 2 118 .4 
MATEXP 120. 0 118 . 2  118. 3 
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changed during the last .outer-iteration. In order to reduce .the com

putation time, this requirement was relaxed, and only one outer

iteration was performed at each time step. The solutions obtained in 

this manner were essentially identical to the .solutions presented in 

this section. In addition , it . was found that comparable results could 

be obtained . by increasing the size of the time step to 0. 6 seconds. 

The time step of 0. 6 seconds was found to be the maximum acceptable 

time step regardless of the number of outer-iterations allowed. At 

larger time steps, several of the dependent variables attempted to 

take on negative values which. are physically unacceptable. 

46 

The computation time . required by the exponential algorithm to 

obtain solutions to the three stage evaporator system with only one 

outer-iteration and a time step size of o. 6 seconds is almost identical 

to the time required by MATEXP to obtain the solutions presented in 

this · section. 



CHAPTER V 

CONCLUSIONS 

The results presented in Chapter IV demonstrate the succes sful 

use of the exponential algorithm in the solution of specific non

linear differential equations . Analytic predictions of the numerical 

stability of· the algorithm are not available ,  but the algorithm is  

useful for obtaining solutions to the - type of nonlinear equations 

encountered in this study . 

Since · tbe exponential algorithm presented in this thesis  is 

based upon an iterative method of solution , it should allow the use 

of larger time steps than are allowed in non-iterative methods of 

solution . The results presented in Chapter IV for the three stage 

evaporator system . tend to confirm this statement . The ability to 

use a larger time step coupled with · the option to reduce .the time 

step when convergence is difficult makes the exponential algorithm 

attractive when estimates of a suitable time · step are not available 

for other methods of solution .. 

As dis cussed in Chapter IV , a reduction in the MATEXP time step 

may be - require� in . order to remove the osc illations in the three 

stage evaporator solutions . Since the CQmputation time required -by 

8 
MATEXP is  approximately proportional to the number of time intervals , 

the time required to obtain acc;:urate solutions for a three stage 

evaporator system will be less  for the exponential algorithm than for 

MATEXP i f  a reduction of the MATEXP time step is required . 

47 



As noted in Chapter IV, only one outer-iteration was required to 

obtain solutions for the three stage evaporator .system . When only 

one outer-iteration is specified, the computation time is approxi-

48 

.mately proportional to. the number of equations to be solved. For this 

reason, ·the use of the exponential algorithm with one outer-iteration 

is attractive for the solution of the large sets of nonlinear differen

tial equations that describe a multistage flash evaporator . 
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APPENDIX A 

TERMINOLOGY USED FOR THE FLASH EVAPORATOR 

The terminology used to describe the . three stage flash evaporator 

is basically that used in Reference 6 "  The terms used in the develop

ment of Equations ( 1) and ( 2) are defined below: 

M = mass . ( po�ds) 

W = mass flowrate ( pounds/second) 

T = temperattll".e { °F) 

P = pressure ( psi) 

C = · specific heat ( Btu/pound/°F) 

h = heat transfer coefficient ( Btu/second/ft2/°F) 

h
fg = heat of vaporization ( Btu/pound ) 

p = density . ( pounds/ft3
) 

A =  heat transfer area ( ft2
) 

AFC = base area of channel · ( ft2) 

VV = vapor volume ( rt3) 

Reef = coolant recirculation fraction 

XWl . = flow coefficient between stages ( pounds/second/psi112
) 

K = flashing flow coefficient ( pounds112; second1 12/°F) 

XM3B = bias term accounting for curvature of Stage 3 ·sides ( psi) 

K2 = import_ance factor for downstream liquid level 

T = time delay ( seconds) 
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P V -SATO 

( �V ) (psi/pound) 

Pvo 

(psi) • 

(°F/pound) 

The following subscripts are applied to the above terms : 

0 = initial 

1 = Stage 1 

2 = Stage 2 

3 = Stage 3 

i = inside 

o = outside, outlet 

T = water in tubes 

TB = tray brine 

CV = cell vapor 

BR = brine 

C = coolant water 

CL = coolant in reservoir 

IP = inlet plenum 

SH = steam heater 
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Tube = tube 

SAT = saturated 

V = vapor. 
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APPENDIX B 

THE COMPUTER CODE 

I. INPUT INFORMATION 

th The following general representation of the i differential 

equation is used to discuss the input data . required .by the c�mputer 

code ESNDE: 

dxi 
N Ili 

- = L aijxj + dfixi + L 
Plj 

CljX,,l dt 

where 

j=l 

I2i 

+ L 
j=l 

I4 . 

+ L 
j=l 

P2lj P22j 
C2 jX,,21 X,,22 j j 

j=l , 

.I3i 

L 
j=l 

c4j�4 
j 

(t - T
j

) + S
i 

j 

P3l j P3_2 
J 

P33 j 
c3jX,,31jX,,32jX,,33j 

N is the number of dependent variables; 

th xi is the i dependent variable; 

aij 

dii 

IL 

is the 

is the 

th ij element 

th ii element 

of the linear matrix A .in Eq�ation ( 5) ; 

of the diagonal matrix D in Equation ( 5); 

is the number of type- 1 nonlinearities in .the 1th differential 

equation; . 
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I2 . .  is the number of type-2 nonlinearities -in ·the ith differential 
1 

equation; 

I3 . is the number of type-3 nonlinearities in the ith differential 
1 

equation; 

I4 . is the number of pure time deley-s in the ith .differential 
1 

equation; 

Cl 
j
's , C2 

j
's, and C3 j

's are . the coefficients of the type-1, type-2, 

an� type-3 nonlinearities respectively; 

C4
j
's are the coefficients of the time-lagged terms; 

Vl
j
's, V2l

j
's, V22

j's , V3lj's, V32
j
's, V33

j
's, and V4

j's _ are 

integers corresponding to the indices of the dependent 

variables; 

Pl/ s, P21/ s ,  P22/ s, P31/ s ,  P32/ s, ·and P33/ s are real numbers 

denoting the 1 powers to which the dependent · variables are 

raised ; 

Tj's are the time deley-s; anq 

s �  is the ith element of -forcing function vector S in Equation (5) . 
1 

The. arrangement of the data cards. for a typical . problem is shown 

in . Figure ·10 . The layouts of the individual data cards are : 

Title .Card 

This car,d may contain . up to 80 alphanumeric characters. 

Control Card 1 

The. fellowing data are specified -on this card in a 2I4 format : 



Title 

Card 

Control 
Card 1 

Control 

Card 2 

Cards 

FIGURE 10 

ESNDE INPUT DATA ARRANGEMENT 

V1 

0:, 

'!}rpe 1 
Cards 



1 .  N = the number of dependent variables , and 

2. NOUTIT = the maximum number of outer-iterations . . 

Control Card 2 

The following data are specified on this · card in a 7El0. 3 format : 

1. TO = starting time for solution, 

2. DELTAT = maximum size of solution time step, 

3. TMAX = final solution time, 

4 .  

5 . 

6 .  

7 . 

HMIN = 

CONVLR 

CONVFR 

CONVCH 

minimum size of solution time step, 

= line or convergence constant (e: R.
), 

= fractional convergence constant (e:f), 

= value of exponential parameters (w's) 

and 

above 

which ,fractional convergence test is applied and 

below which linear convergence , test is applied. 

Linear Matrix Cards 

These cards are used to input the linear matrix A. The elements 

of the linear matrix, aij
's, are specified by rows in a 8El0. 3 format. 

Diagonal Matrix Cards 

These cards are used to input the diagonal elements . of · the dia

gonal matrix D. The diagonal elements, dii's, are specified in a 

8El0. 3 format. 

'fype Cards 

For each differential equation, four integers are required to 
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denote the number and type of nonlinearities and the number of time� 

lagged terms . These numbers, corresponding to Il. , I2. , I3. , and 
1 1 1 

I4. in Equation (30), are specified in the aforementioned order in a 
1 

20I4 format . 

Type-1 Cards 
Plj For each nonlinearity of the form Clj�l , a type-1 card is 

j 
required . Each type�l card specifies a Clj, Vlj, and Plj in a 

El0. 3, I3, El0 . 3  format. 

Ty;pe-2 Cards 
P2l

j 
P22

j For each nonlinearity of · the form C2j�21 �22 , a type-2 card 
j j 

is required. Each type-2 card specifies a C2
j
, V2l

j, P2lj
, V22

j
, 

and P22
j 

in a El0 . 3, I4, El0 .3, I4, El0 . 3  format . 

Type-3 Cards 
P3lj 

P32 
j 

P33 j For each nonlinearity of the form C3j�31 �32 �33 , a 
j j j 

type-3 card is required . Each type-3 card specifies a C3j, V3lj, 

P3l
j, V32

j
, P32

j
, V33j, and P33j in a El0 . 3, I4, El0 . 3, I4, El0 . 3, 

I4, El0 . 3  format . 

Type-4 Cards 

For each time lagged term, a type-4 card is required . Each 

type-4 card specifies a c4
j
, V4

j
, and a time lag Tj in a El0 . 3, I4, 

El0 . 3  format . 
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Forcing Function Cards 

These cards are used to input forcing function vector §. The 

elements of this vector, s. 's, are specified in a 8El0. 3 format. 
1 

Initial Condition Cards 

These cards are to input the initial ·conditions. The initial 

conditions are specified in a 8El0. 3 format. 

At the beginning of each time step, the subroutine COEFF is 

called in order to update the values of time-varying coefficients. 

The user must supply his own COEFF subroutine. 

II. LISTING OF THE CODE 

61 

A listing of the computer code ESNDE is presented . on the following 

pages. 



C E SN DE---WR I TTEN FOR I BM-360  
C TH I S  PROGRAM  SOLV E S  SETS Of · COUPL E D  F I RST ORDER  
C D IF FER ENT I AL EQUAT I ON S  W I TH PURE T I ME DEL AY S  AND 
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C NONL I NE AR I T I E S  WH I CH ARE PRODUC T S . OF F R ACT I ON AL POW ERS  
C OF ·  UP TO THREE  DEP E NDENT  VAR I ABLE S .  
C THE · PROGRAM  A S SUME S AN  E X PONE NT I AL D E P ENOENCE · OF THE  
C DEP ENO E NT -VAR I A8 L E S OVER A TI ME  STEP . ANO ITER AT I VE LY 
C SOL VES FOR THE E XPONE NT I AL . DEPENDENCE . · · 
C T I M E  VAR I NG COE FF I C I ENTS  .MAY ' -BE . I NC LUDE D  BY CHANG I NG 
C THE · VALUE S OF THE - COE�F I C I E NTS AT  THE B EG I NN I NG OF  
C E ACH T I ME S TE P . � .  THE USER  MUST WR I TE H I S  OWN c-o-E-F-F 
C SUBROUT INE · TO · VARY - · TH E C OE FF I C I E NTS. · 

COMMON/MATR I X / X ( 30 J , XT ( 3 0 J , LMAT ( 30 , 30 ) , D l 30 ) , CONSOR ( 30 
l l , I TYPE 1 ( 30 l , ITYPE 2 ( 3 0 ) � 1TVPE3 ( 30 ) , I TYPE4 ( 30 ) , CO EF 1 ( 30 
2 t , COEF 2 f 30 J , COEF 3 ( 30 J ,COEF4( 30 l , VAR1 ( 30 ) , POW1 { 30 ) ,  
3V AR 21 ( 30 l ;POW 21 ( 30 ) i VAR2 2 ( 30 ) , POW22 ( 30 J , V AR31 ( 30 J ,  
4POW 3 1  ( 3 0  t ,  VAR32  ( 30 ) ,POW3 2 1 30 ) ·, VAR33 ( 30 ) , POW33 ( 30 l ,  
5VAR 4( 30 ) , TA U( 30 ) - · 
-coMMON/L UG/TYPE4 , DELTAT , Xl ( l O l , TO , T , N · 
·COMMON /OMEG /OMEGA ( 3 0 )  , H  
D IM E N S I ON T I T L.E ( 2 0 1  · · 
R EAL - LMAT  · 
I NT EGER VAR l , VAR 2 1 , VAR2 2 , VAR 3 1 , VAR32 , VAR33 , VAR4 
I NTEGER TYPE 1 , TYPE 2 ,TYPE3 � TYPE4 
DAT A TYPE 1 , TYPE 2 , T YPE3 /0 , 0 ,0/  
TYP E4=0  
TYP E l=O  · · 
TYP E 2=0  
TYP E 3� 0  
TYPE 4= 0  
R E  A O  ( 5 ,  8 0 0 )  ( T I  Tl E ( I  ) , I = 1 , 2 0 ) 

W R I T E ( 6 i80 1 J ( T I TLE ( l ) , I =l , 20 )  
R EAD { 5 f90 0 J  N , NOUT I T ' 

C N�NUMB ER ·OF D I FF ER ENT I A L  E QUA T I ONS  
C NOUT I T= MA X I M UM ·  NUMB ER Of OUTE R  I TERATI ON S  

R EA D (  5 ,  90 1 1  "· TO , D E L  TAT , TMAX ,H MI N , C ONVLR ,  C ONVF R ,  CONV CH  
C T O= I N I TI � L · T I ME 
C DEt TA T=MA X I MUM T I M E  S TE P  S I Z E · 
C TMA X=F l NAl  TI ME 
C HM I N= M I N I MUM TI M E  STE P S I Z E  
C CONVLR=L I NE AR ··CONVER?E NC E  CONST A NT 
C CON VFR=FR AC T I ON Al C ONVERGENCE  C ONSTA NT : 
C CONVCH= VALUE OF E XP ONENT I AL PARAMETE RS ( OME G A ' S )  A BOVE 

· c W H I CH · FRAC T I O NAL  ·C ONVERG E NC E  TE ST  I S  US E D  ANO B ELOW 
C WH ICH  L I NEAR  CONVE RGE NC E  TEST I S  USE D  

WRI TE f 6 , 777J N iNOUT I T , TO ,OELTAT , T M� X  
WRI TE ( 6 ,778 l HM IN , C ON VLR �CONVFR iCONVCH 
R EAD( 5i 90 l ) ( ( LM AT ( I y J ) , J=l , N J , 1 =1 , N t  

C LMAT- 1 S · N T I ME S ·N D I M ENSI ON  L I NE AR MATR I X  
WR I TE ( 6 , 300 0 l  
WR I TE f 6 , 300 1 )  ( ( LMAT ( l , J t , J=l , N l , l= l , N t 



� 

R EA0( 5 , 90 1 J  { O ( I > , I = l , N l  
C D · I S  N D I MENS ION  D I AGO NA L VECTOR 

WR I TE ( 6 ,3 002 J 
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WRI TE ( 6 , 3 00 1 ) ( D ( I J , I =l , N )  
R EA0 ( 5� 90 0 J f I TYPE l ( I l , I TYP E 2 ( 1 ) , I TY P E 3 ( t ) , I TY P E4 ( 1 . , I= 

1 1 , N )  · ·  · 
C FOR THE I-TH D I FFE NT I A L  E QUATI ON# 
C . I TY P E l=NUMB ER OF · TER MS  OF THE FORM  C ( X ( I l ** A )  
C I TYPE2 = NUMBER  OF TERMS  OF THE  FORM C C X ( l l ** A ) ( X ( J l ** B ) 
C I TYPE 3= NUMBER  OF  TER M S  OF THE F OR M  
C _ C ( X (  I ) **A H X (  J t **B H X ( K J  **D J · 
C · 1 TYPE4=NUMB ER OF  P UR E  T I ME DELAYS Of TH E FORM 
C C ( X ( t ) l l . TI ME = · T - TAU ·-� 

WR I TE ( 6 , 3 003 J 

C 

C 
C 
C 

C 

C 

C 
C 
C 
C 

C 

C 
C 
C 
C 
C 
C 
C 

C 
C 

WR I TE (  6 ,  3004 ) { I TYPE l ( I ) ,  I TYPE2 ( I t ,  I TYPE3  ( l > ,  ITY P E lt- 1 I I 
l ,  I =  l ', N J  
00 1 1  1 = 1 , N  
TYP E l-=TYP E l  + I TY PE l  ( I ) 
T YP E 2-= TYP E 2  + I TYPE 2 U  l 
TVP E3=TYP E3  + I TYP E3 ( I l  
TYP E4=TYPE4  + I TVPE4 ( 1 )  

1 1  CON T I NUE 1 • • 

I F f TYPE l . LE . O )  GO TO 1 2  
W E · HA VE TER M S  OF THE F OR M  C ( X ( l ) ** A )  
R EAD( 5 ,  904H C OE F l  ( I t  , VAR l  ( I ) , POW l  ( I ) ,  I= l , TYP E l ) 
COE F l • S C OR R E SPOND TO THE c • s . 
VAR l ' S CORRE SPO ND . TO THE I ' S 
POW l ' S  COR R E SPOND TO THE · A • S · 

1 2  J F ( TYPE 2 . tE . O f · GO  TO 13  
WE  HAVE ·TERM S OF  THE FORM C ( X ( l ) **A ) ( X ( J ) ** B )  
R EA0 ( 5 � 90 5 ) ( COEF 2 ( 1 1 , VAR21 ( I l , POW2 1 ( 1 ) , VAR22 ( I ) , POW 22 ( 

1 1  l , J: l , TYPE 2 J · · 
COEF2 ' S  C ORRE SPOND TO , THE c • s 
VAR 2l ' S COR R E SPOND TO THE I ' S 
POW 2 l  I S  C OR R E  SPONO TO THE A·• S 
VAR 2 2 1 S C ORRE SPOND TO THE J ' S  
POW22 1 S C OR R E SPOND TO THE B ' S 

1 3  I F ( TYP E 3. LE . O )  G'O TO 14· · - ' . .  
. W E  HAVE TERMS ' OF ·THE FOR M  C ( X ( l l**A ) ( X ( J ) ** B I  ( X (_K ) ** D )  

R EAD (  5 , 906 J f- COEF 3 (  I t , VAR 3 1  ( I ) • POW3 1 ( I ) ,  V AR32  ( I l ,  POW 3 2 f 
· 1 l l ,  VAR 3 3 (  l ) , P OW3 3 (- I l ,  t =1 , TVPE3 ) 
· COE F3 ' S  C ORRE SPOND TO THE c • s  
· VAR 31 ' S ·C ORRE SPONO TO THE I ' S 
POW3 1 1 S C ORR E SP O ND TO , THE A ' S  
V AR 3 2 '  S C ORRE SPO ND TO THE J ' S  
POW32 ' S  C ORRE SPOND TO THE B ' S · 
VAR 33 ' S C ORRE SPO ND TO THE K ' S 
POW 33 1 S C ORRE SPOND TO THE , 0 1 S 

1 4  J F C 'TYPE4. LE ·. o ) GO ·ro 1 5  · · ... 
W E  HAVE TER MS  OF . TH E  FORM C ( X ( I ) ) � T I ME =T--T AU 
THA T I S # WE HAVE P UR E  T I ME DEL AYS  



R EA0 ( 5 , 907 ) ( C OEF 4 ( 1 1 , VAR4 ( I ) , TAU ( I l , 1 = 1 , TYP E4 ) 
C COEF4 ' S C ORRE SPOND TO · THE c • s : 

C V AR4 1 S CORRE SPOND TO THE I ' S 
C TAU ' S C ORRE SPOND TO THE T I ME OEL AYS ( TO THE T AU ' S J 

1 5  CONT I NUE · · 
WR I TE ( 6 , 3 005 J 
I F t TYP E l iLE . O l G O  TO 4000 . 
WR I T E ( 6 • 3006 J ( COEF l ( l l � VARl ( I ) , POWl ( l l , 1 = 1 , TY PE l t 

4 000 WRI TE ( 6 ; 3 008 ) 
f f ( TYP E2 . L E . O ) GO TO 400 1 
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· WR I TE ( 6 , 3 009 l f COEF 2 C l . , VAR2 1 f I ) , POW2 1 ( 1 l , V AR22 ( 1 } , POW 
1 2  2 f t )  , I= 1 , TYP E  2 ) · · · "� 

400 1 WR I TE ( 6 , 3 01 0 l · · · ·  
I F ( TYPE 3. LE . O l GO · TO 4002 
WR I TE ( 6 ,- 3 0 1 1 )  . ( COE F 3 ( I  >, VA R3 l (  I ) , POW 3 1  ( I ) , V AR3 2 ( 1 1  , POW 

1 3 2 ( I t , VAR 33 ( I l , POW33 ( I t � l = l , TYPE 3 ) 
4002 WRI TE ( 6 , 3 0 l2 ) 

I F f TVPE 4� LE . O ) GO · TO 4003 
WR I TE ( 6 , 3 0 1 3 J ( COEF4 ( I ) , VAR4 (JJ , TAU ( I t , 1 =1 ,TYPE4 ) 

4003 CONTINUE · ·. · ·  

R EA0 ( 5 , 90 l ) ( C ON SOR ( I J , l=l , Nl 
C CON SOR · I S  N D I HE N S I O N  CONSTANT SOURCE · VECTOR · 

WR I TE ( 6 , 3 0 1 4 )  . .  
WR I TE C 6 , 3001 ) ( CON SOR ( l t , I =l , N1 

C R EAD· I N  I N I TI AL ·  C OND I TI ON S  
R EAD 1 5 , 90 l ) · ( X ( l ) � I :1 , NJ 

C I N I T I AL I Z E  T I ME . LAG ' ARRAYS 
C ALL · L AG( O t  
T=TO 

C THE - SUBROUT I NE O MG A l  E ST I MAT E S T HE F I RST V ALU E OF 
C THE OMEGA ' S  

CALL · OMGA l ' 
1 CON T I NUE 

WR I TE f 6' , 1 00 0 )  T 
WR I TE f6 , 3 00 1 ) ( X ( I J , I = l , N l  
WR I TE (  6 , 3 00 1  J ( OMEG A (  l l  , 1 =1 , N ) 
I F ( T . GE . TMA X )  GO TO 2 000 . 

C UPDATE T I ME · L AGGEO ARR AY S  
l F ( T . NE . TO l  C AL L  LAG ( l J  

C THE SUBRO UTI N E  COEF F . I S  USED TO UPDATE  T I ME V AR I NG 
C COEFF I C I E NTS  AT  THE B EG I NN I NG OF E ACH T I ME ST EP . 

CALL COEFF  
H=OEL TA T 

3 CON T I NUE 
I STOP= l · 
DO 4 I I  = 1 , NOUT I  T 
l f ( I STOP � EQ � O )  GO TO 8 

7 CONT I NUE 
C F IND T I ME L AGGED V AR I AB LE S 

C AL L  LAG (  2 )  
I FL AG:Q · 



I STEP l=O  
1 STEP 2=0 
I STEP 3= 0  
I STEP4:: 0  
I STOP= O  
DO 5 · l= l , N 
I STEP= O 

C SUBROUT I N E  E VALXT C A LCULATE S  THE x • s AT T I ME=T +H 
6 C AL L •E VALX T ( I , I STEP 1 , I STE P2 , I STE P3 , 1 STE P4 •.I FL AG) 

I FL AG= O · · · 
O ME STR= ( ALOG ( XT ( l ) /X ( l . ) ) /H . 
l f f A B S ( OMEGA ( I t1 . GE . CONVCH ) GO TO 50 . 

I f f  A8 S f 0M E S TR-OMEGA ( I  M .  LE .C ONVL R )  GO TO 5 
· GO TO 5 1  · 

50  I F ( AB S f ( O ME STR-OMEGA ( l ) l /OMEGA ( I 1� . tE . C ONVFR ) GO TO 5 
5 1  CON T I NUE , 

I STEP= I STEP+l  
I STOP= I STOP+ 1 

C SUBROUT I N E· I TE� I TERATES UPON THE OMEGA ' S  ANO RETURNS 
C NEw · · e sT IMA TE S  OF <THE O ME GA ' S  

C ALL  I TER ( l , OME STR , I S TE P )  
I F ( H . L E . HM I N )  WR I TE f 6 , 1 0 02 ). H ,  I . 
I F ( H . L E . HM I N ) C Att , E X I T  
I FL AG= l 
I F f  I STE P . NE . 4 )  GO - TO 6 

GO TO � T  
5 CON T I NUE 

l f( l l � EQ . NOUT I T ) WR I TE ( 6 , 1009 ) 
4 CON T IN UE 
8 CON TI N UE 

T=T +H 

DO 2 l = l , N 
2 Xt l  J': XT ( t )  
·· GO · TO l · · · 

2 000  CONT ·t N tJI: 
777. FOR M A Tf lHO , ' N= ' , I 3 , 3X , ' NOUTI T= ' , I2 ,3 X , ' T0= ' , E 12. 4 , 3X , 

1 ' 0EtTAT= ' i E 1 2 . 4 , 3X , ' TMAX = ' , E l 2 . 4 ) · 
778 FOR MAT(  lHO , ' HMI N = ' � E 1 2 . 4 , 3 X j  ' C ONVl R= ' , E 1 2 . 4 , 3X ,  

l 1 CONVFR= ' � E 1 2 . 4 , 3 X , ' CONVCH= ' , E 1 2 . 4 ) 
800  FORMAT ( 20A4 )  
801  FORMA T( 1H l � l 5X , 2 0A 4 )  
qoo · FORMAT (  20 1 4 )  
901 FORMAT ( 8E 1 0 ; 3 )  
904 FOR MAT ( E l 0. 3 , 1 3 , E l 0 . 3 )  
9 0 5 FORMAT (  E l O .  3 ; I � , E 1 0 .  3 , I 3 , E 1 0 . 3 ) . 
906 FOR M AT( E l0 . 3 , I 3 , E l 0 . 3 , I 3 , E l 0 . 3 , t 3 , E 1 0 .3 l 
907 FORMAT ( E 10. 3 , 1 3 , E I 0 � 3 l  

1 000  FORM A T ( lHO , ' X ( t l ANO ·OMEGA ( l l  FOR T I M E= ' , Fl3 . �, 1X ,  
' . . ' l I AR E • l ... 

1 00 2  FORM AT C  l H l , 'C ALC ULA TION TERMI NAT ED H L E  HMI N H=' , 
. l E l0 . 3 , ' l= ' , 14 )  
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t ooq FOR M A T f l HO , • PRORLEM MAY NOT .HAVE CONVERGED AT . T HE ' ,  

3000 
3001 

300 2 
300 3 
3 004 

3 005 

3006 

3008  
3009 
30 1 0  

30 1 1  
30 12  
3 0 1 3  
301 4  

l ' FOLLOW I NG TI ME STE P ' ) ' 
FORMAT ( lH l� ' THE L I NE AR MATRI X t S  BY ROWS • t  
FOR M AT ( l H  , I OE 1 2 . 4 J · 
FORMAT ( lH l , ' THE DI AGONAL ELEME NTS  AR E • , 
FOR MAT ( 1 H l , ' I TYPE 1 , I TYPE 2 , I TYPE3 , I TY PE4 ARE ' I 
F OR M A T ( lH , 7X j4l 4 i 8 X ,4 1 4 , 8 X ,4l4 � 8X , 4 t 4 , 8 X , 4 I4 )  
FOR MAT ( l H l ,  1 COEF 1 ,  VAR 1 , P OWl · ARE ' 1  · 
FOR MAT (  1 H , E 1 2 .  4 ;  1 4 ,  E 12 • 4 )  
�OR MAT ( l H0 , ' COEF 2 , VAR 2 1 , POW2 1 , VA R2 2 , POW22 AR E • t 
FOR MA T ( lH  , E I 2 . 4 � l� , E1 2 . 4 , t4 , E l 2 . 4 )  
FORMAT (  lHO ,  1 C OEF 3 ,  VAR 3 1 , POW31 ,VAR32 , POW32  , V ,AR33 , POW33 '  

1 ·, ' AR E •  ) · 

FOR MAT ( lH , E I 2 . 4 , 1 4 , E 1 2 . 4 i J 4 iE1 2 . 4 , I 4 , E l 2 . 4 l  
FOR M AT { lH0 , 1COE F 4 , VAR4 , TAU ARE • t  
FOR MA T ( lH  , E l 2 . 4 , 1 4 , E l 2 . 4 J  
FOR M A T ( l H1 , ' THE CONSTANT SOURCE . TERMS ARE • t 
C ALl  E X I T  
ENO 



SUBROUT I N E  I TER f l t OME STR , I STE P )  
COMMON /OM EG /OMEG A ( �O ) , H  
COMMON /LUG /TYPE4 , DElTAT � Xlf l O ) , TO , T , N  
I NTEGER TYP E 4  · 
O ATA  EPL , EP ER iBM X , HRO / . OOt , t . 0 , 0 . 75 , 0 . 9 /  

C . HRD-==FACTOR · sv  WH I CH · .T 1I ME STE P I S  R E DUCE D  I F  A 
C CONVER G ED OMEGA C A N  NOT B E  F OUND I N  THRE E  EST I MAT ES  
C THE T I ME · STE P I S  R EDUCE ·  · 

EPL EPR=EPL*E P ER 
C T HE · P ROOUC� . E P L *E P ER SHOULD ALWAYS B E  L ESS  THAN  O R  
C E QUAL · TO C ON VtR · 

I F ( I S  TE P . GT .  l l · · G O  ·:TO  1 
C B EL OW I S  SCHE ME  1 

ER l=OME STR-OMEGA ( I )  
OMl=OMEGA ( I  l 
OM2=0ME STR 
O MEGA ( l l=OM 2 
R ETUR N 

1 I F f. t STEP . G T . 2 1  GO  · TO 2 
C B EL OW I S  SC HE ME  2 

OM3=0ME STR 
ER2: 0M3-0M 2  
t F f AB S t ER 2 1 . G E . A8 S ( E R 1 ) ) G O T O  7 
I F ( AB S ( ER 2 ) . GE . E PLE PR ) GO  TO 7 
OMEGA (  I ·t=OM 3 

· R ETURN 
7 B=l . O-ER 1 /ER 2 

1 F t ER l*ER 2. LT . O . O )  G O  TO 8 
I F I A B S( B )  . •  GE . B MX ) GO TO 8 
l f { B � GT . o � o ,  GO To · q 
B=- B M X  
G O  TO · 1 0  

q B=B M X  · · 

1 0  J F ( AB S ( ER 1 ) . GE . A8 S ( ER 2 J J GO TO 8 
A=fR t • 1 1 . o-s , 
GO rn 1 1  

. 8 A=ER 2-B* ( OM3-0M U 
1 1  OM3=0M l-A /8 

· OMEGA ( I l=OM3 
R ETUR N · 

2 I F · ( · I STEP . G T . 3 )  GO TO 3 
C B EL OW I S  SCHE ME  2 

OM4=0ME STR 
ER3=0M4-0M 3  
l f f A8S ( ER 3 l . GE . AB S ( E R 2 J J GO  T O  4 
I F ( A8 S ( ER 3 ) . GE . E P L E PR ) GO  TO 4 
OMEGA ( I J :OM4 
R ETURN · 

4 8= 1 . 0-ER 2 /ER3  
I F ( ER 2*ER 3 . LT . O . O )  GO  TO  5 
I F ( A B S ( B J . GE . 8M X )  GO  TO 5 
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t F ( R . G T . o . o ,  GO TO 6 
B=-BMX  
GO  TO 1 2  

6 R =B M X  
1 2  I F ( AB S ( ER 2 J . GE . A8 S ( ER3 ) ) G O  T O  5 

A=ER2 * ( 1 . 0-B J 
GO TO w· 1 3  .. 

5 A=ER3-A * ( OM4-0M 2 J  
1 3  O M4=0M 2-A /8 

OMEGA ( t t =OM4 
R ETURN  

C T I M E  STE P I S  REDUCED  HER E  
3 H=H*HRD 

WR I TE ( 6 , 2 0 t  H , 1  
2 0  FORMAT( l H  , ' T I ME STEP  REDUCED TO  ' , E 1 2 . 6 , ' .FOR l = ' , 1 4 )  

R ETUR N  
ENO 
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SURR OUT I NE E VALX T { I , I ST E P 1 , I STE P2 , I STEP3 , I ST EP4, I FL AG J  
C OMMON/MATR I X /X ( 3 0 ) , XT( 3 0 l , LMAT ( 30 , 30 J , 0 ( 30 1 , CONS0R f 30 

l l , I TYP E 1 ( 30 ) , I TYPE 2 ( 3 0 l , I TYeE3 ( 3 0 ) , I TYPE, ( 30 ) , COE F 1 ( 30 
2 J , COEF 2 ( 3 0 ) , COEF 3 ( 30 l ,COEF4 ( 30 J , VAR1 ( 30 ) , POW1 ( 30 ) , 
3VAR 21 ( 30 J iPOW21 ( 30 l , VAR2 2 ( 3 0 1 � POW22 ( 30 J iVAR31 ( 30 ) , . 
4POW 3U 3 0 )  , VAR 32 ( 30 )  , POW3 2 ( 30 )  , VA R33 ( 30 )  , POW33 ( 30 ) , 
5 V AR 4 ( 3 0 )  , TAU ( 3 0 ) · · · · - · · · · · 
· COMMON /OMEG /OMEG A ( 30 1 , H  
· COM MON /LUG /TYPE4 , DE LTAT , XL ( l O J , TO ,T , N  

I NTEGER TYPE4  · 
R EAL  L MA T  
I NTEGER VAR 1 , VA R 21 , VAR22 , VAR31 , VAR3 2 , VAR33 , V AR4 
O ATA · OEMM IN/. 00 1 /  
ST=CON ·SOR ( I l 
XT (  I ) : X ( I  ) *E XP (  D (  I )  *H J 
I F ( AB S ( D ( I ) t . LE . OE M M I N ) GO TO 1 
XT (  I l = XT (  l ) + ( E XP ( O (  B *H l-l . O ) *ST/0 ( 1 }  
GO T0 · · 2 · · -

C A S ER I E S  E X P A NS I ON 1 S  TO  B E .  MAD E . FOR  THE TER M  
C (· E XP  ( 0 ) -- 1  • 0 ) /0 · · B ECA USE  D I S VERY S M  Al  L .  
C THI S - SER I E S  E XP A N S I ON I S  MAOE ' WH E NE VE R  O I S  
C L ES S  THAN · OR  EQUAL TO DE MM I N. 

1 XT ( I ) = XT( l ) +ST*H*{ l . O+ O ( I J *H /2. 0+ ( ( D ( l } *H l **2 l /6 . 0 ) 
2 CONT I N UE 

00 · 3  K=l , N 
XK=OMEGA ( K ) -0 { 1 )  
l f ( A B S ( XK J . LE . DEMM I N  l GO TO 4 
XT ( I > =XT (  I ) + · U4A T (  l , K J *E XP ( O (  U *H ) * ( EX P (  X K*H ) - 1 . 0  l *X f  · 

· t K ) / XK · · 
. , 

GO ro ·-· 3 
C A S ER I E S  E XPAN S ION I S  TO B E  MADE FOR  TH E TE RM 
C ( E XP ( XK l - 1 . 0 1 /XK B ECAUSE XK  I S - VE RY S MALL • . · 
C T�I S SER I E S · E XP A NS I ON I S  MAOe  WHE NEVE R X K  I S  
C L E S S  THAN OR E QUAL · TO OE MM I N. 

4 XT( I t = XT{ l t +L MA T ( l • K l *E X P ( D ( l ) *H l *X ( K ) *H* ( l . O +X K * H/ 2 . 0  
l + ( ( X K *H l **2 l / 6. 0 ) · 

3 CON T I NUE · · · · ·  
I f( I TYPE l ( l l . LE . O ) GO TO 2 0  

C W E  HAVE TER M S  OF · THe FORM· C ( X ( l l **A ) 
NO= ITYPE l f l l  
I F( I Fl AG .  EQ . 1 J · I STE P l=t  STE P l -NO 
DO 1 1  K = 1 , NO · · · · · · . 

I STEP l= I STE P l + l  
X K=POW l f l ST EP l ) *OMEGA ( VA R l ( ISTE P l ) ) -O ( t • 
I F ( AB S { XK ) � LE � OE MMl N ) GO TO 1 2  . 
X T C i l = XT ( l ) +COEF l ( I STEP l l *E XP ( D t l , *H l * f X ( VARl ( IST E Pl l ) 

l**P OW l ( I STEP l ) ) * ( E X� ( XK.H ) - 1 . 0 l /X K · 
GO TO + 1 1  

C A S ER I E S · E XPANS I ON I S  TO B E · MADE  · FOR THE T ERM  
C ( E XP ( XK ) - 1 . 0 J /XK B EC AUS E  XK  I S  VERY S MALL . 
C THI S S ER I E S  E XP A NS I ON I S  MADE WHE NEVER  XK· I S  



C 

C 

C 
C 
C 
C 

C 

C 
C 
C 
C 
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L ES S  THAN OR EQUAL · ro OE MM I N. 
1 2  CON T I N UE 

XT ( I )= X T ( l ) +COE f l ( I ST EP l l *E XP ( D ( l ) *H ) * ( X ( VARl ( I S T EP l ) ,  
l **PO W l f I STEP l ) ) *H* ( l . O+ X K*H/2 . 0+ ( ( X K *H l **2 ) /6 . 0 )  

l l · CON T T N UE 
2 0  I F ( I TYP E 2 ( I l . L E . O l GO rTO 30  

W E  HAVE TER M S  OF THE FOR M C ( X ( I ) ** A l { X ( J l ** B ) 
NO= I TYPE 2 ( 1 )  
I F ( I FL AG . EQ . l t  I STE P 2=1 STE P2-NO 
DO 2 1  K= l , NO 
1 STEP 2= I S TE P 2+ l  
X K=P0�2 l ( I STE P 2 } *0MEGA ( VAR2 1 ( 1 ST E P2 ) } +POW22 ( 1 ST EP 2 J *OM 

1 EGA ( VAR 22 ( 1 STE P 2 l ) -O ( I ) 
· I F  ( AS S (· XK· I .  L E  ·. O E M M I  N )  GO TO 2 2  
XT ( I 1= XT( l l +COE F 2 ( I S TEP2 l *E XP ( O ( l ) *H l * ( X fVAR2 1 ( 1 ST EP2 1 

l l **POW2 � ( 1 STE P2 ) l * ( X ( VA R 2 2 ( I STE P2 ) l **P0W2 2 { I ST EP2 l l * ( E  
2 XP ( XK*H l- l . O ) /XK  
GO  TO 2 1  

· A SER I E S  E X PA N S I ON I S  T O  B E  MADE F OR THE TERM  
f E XP ( XK )- 1 . 0 l /XK  B EC AUSE X K· I S  VERY S MALL . 
THI S  SER I E S E XP A N S I ON I S  MADE WH ENEVER X K  I S  
L E S S  THAN  OR E QUAL TO OE M M I N.  

2 2  CON T I N UE ' 
X T ( I l =Xt( I l +C OEF 2 ( 1 STEP 2 ) *E XP ( O ( l > *H ) , { X f VARZ 1 { 1 ST EP 2 )  

l l **POW2l ( I STE P2 l l * ( X ( VAR 2 2 ( 1 STE P2 ) l ** POW2 2 ( I ST EP2 ) ) *H* 
2 ( 1 . 0+ XK*H /2 . 0+ { ( X K *H > **2 ) /6 . 0 )  

2 1  ··CON T I NUE · · · ·· · · · 
3 0  I F ( I TYP E 3 C l l . L E . O ) GO TO 40 

WE  HA VE T ER MS OF THf F OR M  C ( X ( I l ** A ) { X ( J ) ** B ) ( X ( K l **D ) 
NO= ITYPE3  ( I ) 
I F (I FL AG .  EO . l l I S TE P3=t STE P3- NO 
00 31 K=l . NO 
I STEP 3= 1 STE P 3+ 1  
X K=POW3 1 ( I STE P3 ) *0MEGA ( VA R3 1 ( 1 ST E P3 ) ) +P0W32 ( 1 ST EP 3 ) *0M 

1 EGA f VAR 3 2 ( 1 STEP3 ) J + POW33 ( I STE P3 l * OMEGA ( V AR3 3 ( 1 ST EP3 ) ) -
20 ( I l  

I F f AB SC XK ) . L E . OEMM I N ) GO TO 3 2  
XT ( I l = XT ( l ) +C OEF 3 ( 1 STEP3 ) *E X P ( D ( l l *H l * ( X ( VA R3 l ( 1 ST EP3 l 

·1 l**POW3 1 (  1 STE P3 ) ) * (  X f  VAR 3 2 ( I STE P3 ) ) **P0�3 2 ( I ST EP3 ) 1 * 1  X 
2 f VAR33 f l S TE P3 ) l **POW33 ( t STEP3 ) ) * ( EX P ( X K�Hl- l � O l / X K  

GO '· TO 3 1  
A SER I E S E X P AN S I ON I S  TO B E  MADE FOR TH E T ERM  
( E XPf XK ) - 1 . 0 ) /X K  · B EC AUSE XK  I S  V E RY S MALL .  
TH I S SER I E S  E XP AN S ION  I S  MADE WHE NE VE R X K  I S  
L E S S · THAN · OR EQ UAL TO OE MM I N. 

3 2  CON T I NUE 
XT (  I l = XT {  I ) +C OEF 3 ( l STEP3 ) *E X P ( O {  I l *H ) * ( X ( VAR3 l 1 I ST EP3 ) 

l ) ** POW3l ( I S T E P3 ) J *( X ( VAR32 ( 1 STE P3 l J **POW3 2 ( I S T EP3 ) l * l X  
2 ( VAR 33 f l S TE P 3 ) l **POW33 ( 1 STEP3 J ) *H* ( l . O+XK*H/2 . 0 • ( t iK*H  
3 ) ** 2 l /6 . 0 l 

3 1  CON T I N UF. 



40 T F ( I TYPE4 { 1 ) . L E . O ) GO TO 50 
C W E  HA VE TER MS OF THE  FORM C ( X ( l ) l 3 - T I ME =T-T AU 
C THA T  I S # WE HA VE P UR E  T I ME DE LAYS  

NO= J T YPE4 (  I )  
I F { I FL AG . E Q . l )  I S TEP4=1 STE P4- NO 
DO 41 K= l , NO 
t STEP 4= I S TE P4+ 1 
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I F ( AB S (· D f I M • l E • OE M M  I N J  GO TO 4 2 
X T( I t = X T ( l ) +COE F 4 ( 1 ST E P4 ) * f E X P ( 0 ( I ) *H ) - 1 . 0 l *X l ( I ST EP4 1 

2 /D ( I )  
GO TO 41 

C A ·S fR I E S  E XPANS ION I S  TO B E  MADE F QR TH E TERM  
C ( E XP ( O ) � l . 0 ) /D B E C AU SE O I S  VE RY -S M ALL�  
C T H I S S ER I E S  E XP A N S I ON I S  MADE WHE NEVER O I S  
C L E SS  THAN OR EQUAL TO OE MM I N. 

4 2  CON T I N UE · 
XT ( I l = X T ( I t+COEF4 ( 1 STEP4l *H• f l . O+O ( I J *H / 2 . 0+ ( ( 0 ( l ) *H ) *  

l*2 ) /6 . 0 t * Xl ( 1 STE P4 ) 
4 1  CONT I N UE 
50 CON T I NUE 

R ETURN 
END 
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S UAROUT I NE OMGA .l 
COMMO N/MATR I X /X ( 30 ) i XT( 3 0 ) , L MA T ( 30 , 30 ) , 0 ( 30 J , CONS 0R ( 30 

1 ) , 1 TYP E 1 ( 30 1 , I TYPE2 ( 3 0l � !TYPE3 ( 3 0 ) • 1 TYPE4 ( 30 ) , CO E F 1 ( 30 
2 ) , COEF2 f 3 0l , C OEF 3{ 30 t ,COEF4 ( 3 0 ) , VAR1 (30 ) , POW1 f 30 l , . 
3VAR 2 1 ( 3 b ) iPOW2 1 ( 30 ) , VAR22 ( 30 l , POW2 2 ( 30 l , VAR31 ( 3d l , 
4POW31 ( 3 0 J , VAR 32 ( 30 ) , POW3 2 ( 30 1 , VAR33 ( 3 0 ) , POW33 ( 30 t , 
5VAR 4f 30 ) ;  TA U( 30 ) - · · ·  · · ·  · 
COMMON /OM EG /OMEGA ( 30 1 ,H  
COMMON fl UG /TYPE 4 , 0f� tTAT , XLU 0 ) , TO , T ,  N 
R EAL LMA T  
I NTEGER VAR 1 , VAR 2 1 ,VAR 2 2 , VAR3 1 , VAR3 2 , VAR33 , VAR4 
I NTEGER TYPE4 · 

C TH I S  SUBR O UTI NE E S TIMATE S THE F I RST VALU E  OF 
C . THE OME GA ' S  

I STEP l=O  
I STEP Z=O  
I STEP 3= 0  
I STEP4= 0  
D O  1 1  l = l  , N  

X T I  I ) =CON SOR ( I J 
XT (  I l = X T( 1 I l +D ( l ) *X f l l 
DO 2 J = l , N  

2 XT( I ) =lMA Tf I , J l * X ( J l + XT ( I )  
I F ( I TYPE l ( I ) . L E . O )  GO TO 4 
NO= ITYP E U  I )  

DO 3 · K=l , NO 
I STEP l= I S TEt> l + l  

3 XT ( l ) = XT( l ) +C OE F l ( I ST EPl J • ( X f VARl ( I S TEP l l J **POWl ( I STEP  
l l l 1 

4 · I F ( I TYP E2 ( I l . LE . O )  GO TO 6 
NO= I TYPE 2 ( 1 )  
DO · 5 · K= l , NO 
I ST EP 2-= I STE P  2+ l 

5 X T ( I J = X T ( l l+COEF2 ( I STE P2 J * C X ( VAR21 ( 1 STE P2 J J ** POW2 1 ( J ST 
1 E P2 ) ) * I X (  VAR 2 2 (  I STEP2 ) l **POW2 2 f l  STEP2 ) ) 

6 · I F ( I TYPE3 C I ) � L E . O l Gn TO 8 
�O= I T YP E 3  f l )  
DO · 7 K= 1 i NO · 
I ST EP 3= 1 STE P3+1  

7 XT (  1 l =X Tf I ) +COEF 3 (  I ST EP3 > * I X ( VAR3 1 f I STE P3 ) J **POW 3 1  C 1 ST � 
· 1 EP3 ) ) * t X ( VAR 3 2 ( I STEP 3 J ) * *P OW3 2 { l ST E P3 ) J * f X ( V AR 3 3 { I S  T EP 
23 ) l **POW3 3 ( 1 STEP 3 J ) 

e - I F ( I TYP E4( l l . L E . O l  GO TO 1 0  
NO= I TYPE4(  I )  

DO · 9 K= 1 , NO 
I STEP4= I s ·TE P4+ 1 

q XT( I l =XTf l ) +C OEF 4 ( 1 S TEP4 l * X ( VAR4 ( I ST EP4 ) l 
1 0  CON T I N UE · 
1 1  CON T I N UE 

WR I TE ( 6 , 1 00 )  
WR I TE ( 6 , 1 0 1 )  ( XT ( I l , l = l , N J  



DO 1 I =  1 ,  N 
I F ( ABS ( X T ( l ) ) . L E . l . OE-03 ) OMEGA ( I ) :O . O 
I f ( A B S ( XT ( l ) ) . LF . l . OE-03 ) GO TO 1 
OMF GA ( J j= ( ALOG ( l . O+DE LTA T*XT ( l ) / X ( l ) ) t / OELT AT 

1 CONT I N UE · · 

1 00 FnRMAT ( lH l , ' 0 XO T (  I )  I NI T l  ALLY 1 S . ' )  
1 0 1  FOR M AT ( l H  , 1 0E 1 2 . 4 )  

R E TURN 

E NO 
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SUBROUT I N E  L AG ( LGC OOE l 
COMMON/MA TR I X /X ( 30 l i Xtf 3 0 ) , L MA T { 30 , 30 ) , 0 ( 30 t , CONS 0R ( 30 

l l , I TYP E 1 ( 30 ) , I TYP E 2 ( 30 ) j J TVP E 3 ( 30 l , I TY P E4 ( 30 t , CO EF 1 ( 30 
2 ) � CO E F 2 ( 3 0 ) , C OEF 3 ( 30 t , COEF4 (30 l , VAR1 ( 3� ) , POW1 1 30 ) ,  
3VAR 21 ( 3 0 ) iPOW2 1 ( 30 ) , VAR2 2 ( 3 0 1 , POW22 ( 30 ) , VAR3 1 ( 30 J , 
4POW 31 ( 30 ) , VAR 32 ( 30 ) , POW32 ( 30 ) ,  VA R33 f 3 0 1 , POW33 ( 30 ) , 

5VAR 4 ( 30 ) , TA U( 30 ) - . . 
COMMON /OMEG /OMF-G A ( 30 J , H  
COMMON /LUG/TYPE4 � 0ELTAT , Xl ( 1 0 ) , TO , T , N  
D IM E N S I ON XL AG ( l 0 , 1 00 ) , TlAG ( l OO )  
D IMEN S I ON XXL AG ( l 0 , 1 00 ) , TTLAG ( l O O ) 
R EAL - LMAT  
I NTEGER VAR 1 , VAR 2 1 , VAR2 2 , VAR3 1 , V AR3 2 , VAR33 , V AR4 
I NTEGER TYP E 4  

C : THI S ·SUBROUT I NE STORE S AND F I NDS  THE L AGGED . V AR I ABL ES . 
C I F · ANY T I ME · L AG S  E XC E ED � APPROXI MATELV 80*0ELT AT THEN  
C N L  SHOULD B E  I NCRE A S ED A ND THE D I ME NSI ONS  OF  1 00 I N  
C THI  s SUBR O UT I NE SHOULD se I NCRE ASEO L I KEW I S E . - . 
C WHE N LGCOOE :O , THE I N i TI AL LAGGE D  T E R MS ARE S ET EQU AL 
C TO THE I N I T I AL . COND I T I ON S  A NO L AGGE D  ARR AYS : AR E · 
C PROOUC E O .  
C WHEN · L GCODE = l , THE L AGGEO ARR AYS ARE  UPD ATED.  
C · W HEN LGCO DE = 2 , TH� L AGGE D  VAR I ABL ES ARE  FOU ND AND 
C R ETUR NED  · TO THE · MA I N  C ODE  • . 
C ALL TAU ' S MUST B E  GR E ATER · THA N  DE LT AT . 

t F ( TYPE4� EQ . O ) R E TUR N 
Nl= l OO· · 
I F f lGCOOE . GT � O t  GO TO 1 
TL AGf l ) =TO 
DO 2 K= l ,  TYPE 4 

2 Xl AG ( K j l ) =X f VAR 4f K J l 
DO 3 K K=2 ;' N  
TlAGf KK J = TL AG ( KK- l l -DELTAT 
00 3 K= l , TYP E 4  

3 XL AG ( K , KK ) = Xf VAR 4 C K ) ) 
R ETUR N 

l I F ( LGCODE . GT . 1 1  GO  TO 5 
NN-=Nl -- 1  
0 0  1 2  K K= 2 , Nl 
TTL AGI KK t = TLAG ( KK- l l 
DO 1 2  K= l , TYP E 4  

l 2 X XL AG(  K ,KK ) =X LAG ( K ,  K�-l J 
DO 6 KK=2 , Nt 
TLAG( KK ) = TTlAG f KK l -
00 6 K= 1 , TY PF. 4 

6 XLAG( K . KK ) = X XLAG ( K , KK )  
TL AG(  l l =T 
oo · 7 K= l ,  TYPE 4 

7 XLAG ( K , l l =X ( VAR 4 f K ) ) 
RETURN  

5 CONTI NUE 



DO 1 1  I X= l ,  TYPE4 
·rc= T+H /2 . �TA U( I X ) 
DO 8 l = h NL 
I F ( TC .GE .  Tl AG ( I J )  l=I  
I f ( TC . GE . TL AG ( t ) l  GO  TO q 

8 CON T I NUE 
WR I TE ( 6 ; 1 00 )  VAR4 ( 1 X ) 
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1 00 FOR MAT ( lH · , ' ****** CAN  NOT , F I NO L AGGED  V AR I A BL E = ' , 1 4 )  
C ALL  E X I T  

9 I Ff TC . NE . TL AG ( l l ) GO TO 1 0  
Xl ( I X ) = XL AG ( I X , L ) 
GO TO 1 1  

1 0  X L ( l X ) = XL AG ( I X , L l + ( XLAG( l X ,l-1 1 -XLAG ( I X , L l l * f TC-TL AG fl  
1 ) ) / ( TLAG( L- l ) -TLAG ( L i t 

1 1  · CON T I N UE 
R E TURN 
END 
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SUBRO UTI N E COEFF 
. COMMON/MA TR I X/X ( 30 ) , XT ( 3 0 J , L MAT ( 30 , 3 0 l , D ( 30 ) , CONS0R ( 30 
l l , I TYPE 1 ( 30 ) , I TYPE 2 ( 3 0 l , I TYPE 3 ( 30 J , I TY PE4 1 30 l , COE F 1 ( 30 
2 ) , COEF 2 ( 30 l , COEf 3 f 30 J ,COfF4 ( 3 0 ) , VAR1 ( 30 1 , POW 1 ( 30 J � · 
3VAR 21 f ·30 l , �OW 2 1 ( 30 )  , VAR 2 2 (3 0 )  , POW22 ( 30 )  ,V AR 3 1  ( 30 ) , 
4POW 3 1 ( 30 ) ,  VAR 3 2 (  3 0 )  ·, POW3 2 ( 3 0 ) , VAR33  ( 30 l ,  POW 33 ( 30 I ,  

5VAR 4( 30 ) , TA U ( 30 ) · · · · · · · ·  
COMMON /OMEG /OMEGA ( 30 l , H  
cn�MO N /L UG /TYPE4 � DElTA J , XL ( l O ) , TO ,T , N 
R EAL L MA T  

I NTEGER · VAR 1 , VA R 2 1 , VAR2 2 ,VAR3 1 , VAR3 2 , VA R33 , V AR4 
C TH I S SUBR OUTI NE · MAY ··B E  U SED '.TO  CHANGE ANY · 
C COE FF IC  I fNTS  AT THE · B EG !  NNI  NG OF E ACH TI M E  S T EP ,  ALS O  
C PER TUR BAT I ON MAY B E  I NTRODUC E D  I NTO THE SYSTEM  I N  T HI S  
C SUBROUT I N E  

R ETURN · 
ENO 
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