11 University of Tennessee, Knoxville
i LN IWERSITY of

TENNESSEE TRACE: Tennessee Research and Creative
FHOREE Exchange
Masters Theses Graduate School

5-2002

Design and Implementation of the L-Bone and Logistical Tools

Edward Scott Atchley
University of Tennessee - Knoxville

Follow this and additional works at: https://trace.tennessee.edu/utk_gradthes

b Part of the Computer Sciences Commons

Recommended Citation

Atchley, Edward Scott, "Design and Implementation of the L-Bone and Logistical Tools. " Master's Thesis,
University of Tennessee, 2002.

https://trace.tennessee.edu/utk_gradthes/2024

This Thesis is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and
Creative Exchange. It has been accepted for inclusion in Masters Theses by an authorized administrator of TRACE:
Tennessee Research and Creative Exchange. For more information, please contact trace@utk.edu.

https://trace.tennessee.edu/
https://trace.tennessee.edu/
https://trace.tennessee.edu/utk_gradthes
https://trace.tennessee.edu/utk-grad
https://trace.tennessee.edu/utk_gradthes?utm_source=trace.tennessee.edu%2Futk_gradthes%2F2024&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=trace.tennessee.edu%2Futk_gradthes%2F2024&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:trace@utk.edu

To the Graduate Council:

| am submitting herewith a thesis written by Edward Scott Atchley entitled "Design and
Implementation of the L-Bone and Logistical Tools." | have examined the final electronic copy of
this thesis for form and content and recommend that it be accepted in partial fulfillment of the
requirements for the degree of Master of Science, with a major in Computer Science.

James Plank, Major Professor
We have read this thesis and recommend its acceptance:
Micah Beck, Brad Vander Zanden

Accepted for the Council:
Carolyn R. Hodges

Vice Provost and Dean of the Graduate School

(Original signatures are on file with official student records.)

To the Graduate Council:

| am submitting herewith a thesis written by Edward Scott Atchley entitled “Design and
Implementation of the L-Bone and Logistical Tools.” | have examined the fina electronic copy of
this thesis for form and content and recommend that it be accepted in partia fulfillment of the
requirements for the degree of Master of Science, with a major in Computer Science.

James Plank
Major Professor

We have read this thesis and
recommend its acceptance:

Micah Beck

Brad Vander Zanden

Accepted for the Council:
Dr. Anne Mayhew

Vice Provost and
Dean of Graduate Studies

(Origina signatures are on file in the Graduate Student Services Office.)

Design and | mplementation of the
L -Bone and L ogistical Tools

A Thesis
Presented for the
Master of Science
Degree
The University of Tennessee, Knoxville

Edward Scott Atchley
May 2002

Copyright © 2002 by Edward Scott Atchley
All rights reserved.

DEDICATION

Thisthesisis dedicated to my loving wife, Kate. She encouraged me to pursue this goal
and, for that, | am deeply grateful. | would also like to dedicate this to my parents, Ed
Atchley and Sharon Atchley, for all their love and support over the years.

ACKNOWLEDGMENTS

I would like to thank a number of people whose help and guidance have allowed meto
reach this milestone. Firgt, | would like to thank my thesis advisor, Dr. Jim Plank. From his Data
Structures class, to his Systems Programming and then Operating Systems classes, | have a deep
appreciation for all types of programming. Completing his OS class, in particular, gave me the
confidence that | could create anything. | would aso like to thank Dr. Plank, along with Drs.
Micah Beck and Terry Maore, for allowing me to work with the Logistical Computing and
Internetworking Lab.

Much of the work in writing code to create these tools was a team effort. | would like to
thank Ding Jin for his efforts in working on the L-Bone and the Logistical Tools. | would like to
thank Stephen Soltesz for his long hours and endless enthusiasm while working on the Logistical
Tools, the IBPster demo and much more. There would not be the L-Bone or Logistical Tools
without IBP and the exNode Library. Thanksto Alex Bass, Y ong Zheng, Xiang Li, Ling Wo and
Erika Fuentes for all their hard work and support.

I would like to thank Dr. Brad Vander Zanden for serving on my committee. Lastly, |
would like to thank all the professors whose classes | took. | have learned quite alot and | have
thoroughly enjoyed myself at the same time.

ABSTRACT

The purpose of this paper is to outline the design criteria and implementation of the
Logistical Backbone (L-Bone) and the Logistical Tools. These tools, along with IBP and the
exNode Library, allow storage to be used as a network resource. These are components of the
Network Storage Stack, a design by the Logistical Computing and Internetworking Lab at the
University of Tennessee. Having storage as a network resource enables users to do many things
that are either difficult or not possible today, such as moving and sharing very large files across
administrative domains, improving performance through caching and improving fault-tolerance
through replication and striping.

Next, this paper reviews the L-Bone, adirectory service for Internet Backplane Protocol
(IBP) storage servers (depots) which stores information about the depots and allows clients to
guery the service for depots matching specific requirements. The L-Bone has three major
components: aclient API, a stateless RPC server and a database backend. Because the L-Boneis
intended to be a service available to anyone on the wide-area network, response timeis critical.
The current implementation provides areliable service and afast service. Average response times
from remote clients are less than half a second.

Lastly, this paper examines the Logistical Tools. The Logistical Tools are a set of
command line tools wrapped around a C API. They provide a higher level of functionality built
on top of the exNode Library as well asthe L-Bone library, IBP library and the Network Weather
Service (NWS) library. This set of tools alows auser to upload afile into an exNode, download
the data from that exNode, add more replicas or remove replicas from the exNode, check the
status of the exNode and modify the expiration times of the IBP allocations. To highlight the
capabilities of these tools and the overall benefits of using exNodes, | perform tests that look at
the performance improvements through loca replication (caching) as well as tests that look at the
higher levels of fault-tolerance through replication. These tests show that using replication for
caching can improve access time from 2 to 16 times and that using simple replication can provide
nearly 100% availability.

TABLE OF CONTENTS

Chapter Page
1. INtrOUCH ON 1
1.1 Current and Proposed Solutions 1

LA L BMal 1

A o I 2

L3 HT TP 2

1.1.4 Network Attached Storage. 3

115 Storage AreaNetwork 3

116 OCeaNStOre 3

L7 WEDRS 3

1.2 Network Storage Stack 4

1.2.1 Internet Backplane Protocol 5

122 Logistical Backbone 5

1.2.3 EXNode Library 6

124 Logistical TOOIS 8

2 Logistical BaCKBONE 9
2.1 DS O 9

2. . GOAIS 9

2. 1.2 ASSUMPLIONS 9

213 Depot Metadata 10

214 RemoteProcedureCals 11

2.2 Implementation. 13

2.2 1 ClientLibrary 13

222 Server Process—Ilbone server 16

2.2.3 DatabaseBackend (openldap) . 18

2.3 L-Bone Response Time 20

3 Logistical TOOIS 23
31 DS AN] 23

B L GOAlS 23

3.2 ASSUMPLIONS 23

3.1.3 FUNCtioN DeSION 25

3.2 Implementation. 26

B2 L C AP 26

3.2.2 Command LineFunctions ...~~~ 32

I T 1=~ 36

3.31 Replicationfor Caching 36

3.3.2 Replicationfor Fault-Tolerance 39

4. CONCIUSI 0N, 43
List Of RE G ONCES 44
AN X 47
Vita 51

Figure

©COoONOOAWNE

LIST OF FIGURES

L-Bone response time per depot returned
exNode size after trimming

Cached vs. non-cached download time at UCSD
Fault-tolerant test exNode

Trimmed exNode with 12 of 21 fragments removed

Vii

xnd_upload() policy

API
FTP
Gb
GB
HTTP
IATA
IBP
1P
1SO
LAN
LDAP
Mb
MB
NAS
NFS
NWS
RAID
RPC
SAN
TCP
URL
WAN
XML

LIST OF ABBREVIATIONS

application programming interface
file transfer protocol

gigabit

gigabyte

hypertext transport protocol
International Air Transport Association
Internet Backplane Protocol

Internet protocol

International Standards Organization
local area network

lightweight directory access protocol
megabit

megabyte

network attached storage

network file system

Network Westher Service

redundant array of independent disks
remote procedure call

storage area network

transmission control protocol
uniform resource locator

wide area network

extensible markup language

viii

1. Introduction

In this paper, | will review the current solutions to sharing and storing data across
administrative domains in the wide-area network, from email and FTP to network attached
storage (NAS) and storage area networks (SAN). My review will include the benefits and trade-
offs associated with each. | will also look at two research projects, OceanStore and WebFS.

I will then outline aview of network storage developed by the Logistical Computer and
Internetworking Lab (LoCl) called the Network Storage Sack. The Network Storage Stack is
composed of layers of protocols similar to the network communication stack (TCP/IP stack). The
goal of the Network Storage Stack is “to layer abstractions of network storage to allow storage
resources to be part of the wide-area network in an efficient, flexible, sharable and scalable way”
[ASP+02].

I will then review, in detail, the design and implementation of two of the components
from the Network Storage Stack, the L-Bone and the Logistical Toals. | will show how the L-
Bone provides a directory service for IBP depots and proximity measuring between I1BP depots. |
will aso show how the Logistical Tools provide the ability to store and transfer large files as well
as provide a measure of fault-tolerance through replication and striping.

1.1 Current and Proposed Solutions

Severa solutions exist today to alow people to share files across administrative domains
in the wide-area network. Each has its benefits as well asits trade-offs. | will not cover
distributed file systems (e.g. NFS and Andrew) since they require that all clients be within the
same administrative domain, which is aless interesting problem.

1.1.1 Emall

Although email is not intended to be a network storage resource, many people use it to
fill that role. Inits simplest form, it allows the sharing of small amounts of data (messages). With
the use of attachments, one user can send files to another user. Mail servers provide some storage
within the network via their incoming and outgoing queues.

The benefits of email for data movement and data storage (i.e. while in transit or stored
on the server) are its smplicity, pervasiveness, and sharing of community resources (mail server
gueues). Another benefit is that the sender does not have to have an account on the receiver's
machine.

Most importantly, email is optimized for both the sender and the receiver. Typicaly, the
sender's mail client will forward the outgoing mail to alocal mail server, which permits a fast
transfer. The local server then automatically routes the message to the recipient's mail server,
which holds the message until the receiver is ready to download it.

For al its benefits, email has some glaring drawbacks. First and foremost, most servers
limit the size of the file that the user can attach. This limit varies, but 10 MB is on the high side.

If the user needs to sends hundreds of megabytes or even gigabytes of data, email is not an
option.

Other limitations to email include the needless duplication of data and the “all or
nothing” approach to data access. If severa people need to access to afile, the sender must send a
duplicate copy to each user, which wastes resources. If the user is only interested in a portion of
the file, he must retrieve the entire file first so that he may read the portion he wants. Finally,
email does not allow third-party transfers from one remote location to another.

112 FTP

Another means of allowing remote file sharing is the File Transfer Protocol (FTP). FTP
allows a user to store afile to and retrieve afile from aremote machine. Like email, it iswidely
available, and unlike email, it does not have the restriction on file size that email attachments
have.

When a user stores afile remotely using FTP, the stored file has the same properties of
any other file on the host machine. Since the operating system and file system will try to maintain
that file indefinitely, a remote user can use up the host machine's storage resources. Because of
this, most users of FTP require that remote users have accounts on the host machine before
allowing writing of files.

The user account requirements are one of the drawbacks of using FTP. Another
disadvantage of using FTPisthat it is not optimized for the remote user. Since the filesreside on
the host machine and the transfers are typically single-threaded, downloads may take along time
if thefileislarge. FTP shares other limitations with email in that neither support partia
downloads or third-party transfers. By its nature, FTP exposes the host machine' s directory
structure, which may not aways be desirable.

A variant of FTP is GridFTP under development by the Globus group. GridFTP adds
“new extensions to the FTP protocol for parallel datatransfer, partial file transfer, and third-party
(server-to-server) datatransfer” [Glo02]. Using GridFTP aong with another Globus tool, Replica
Catalog, will alow the user to optimize the transfer using the “ closest” replica or alow the user to
transfer from multiple sourcesin parallel. Although GridFTP addresses many of the concerns
regarding FTP, it still requires aremote user to have an account and assumes that any stored data
should be permanent. Additionally, the management of replicas requires additional tools.

1.1.3 HTTP

The HyperText Transport Protocol (HTTP) is the protocol that drives the World Wide
Web. It allows a remote user's browser to retrieve HyperText Markup Language (HTML) pages
and their embedded images with which the browser then builds the web page. HTTP can aso be
used to allow remote access to stored files via hyperlink. Thus, it provides a very smple means of
file sharing, which any modern browser supports. The benefits of HTTP are its widespread usage
and simplicity. Also, the remote user does not typically require an account to receive afile.

The disadvantages of HTTP as afile sharing and storing mechanism are many. To
implement access controls, the machine's owner must use htaccess (or another password based

method) and he must require any remote user to have an account. Like FTP, HTTP does not allow
partia transfers and it is optimized for delivery. Most importantly, HTTP does not provide any
means for alowing writes from remote users.

1.1.4 Network Attached Storage

Network Attached Storage (NAS) describes a machine that is attached to a TCP/IP
network that provides storage. The data traffic flows over the same network as the storage traffic.
It typically providesfile 1/O service rather than block 1/O service [Sac01], although the iSCS
initiative would allow NAS devices to provide block 1/0 service.

The chief benefit isthat NAS can provide familiar services, like file I/O service using
NFS or block 1/0 service using iSCSl. On the other hand, NAS is primarily designed for usein
local area networks and is not intended to be a sharable resource outside of the local
adminigtrative domain. It is not optimized for the remote user.

1.1.5 Storage Area Network

Not to be confused with NAS, Storage Area Networks (SAN) are separate from the
regular communication networks with the sole purpose of providing storage. A SAN typically
uses FibreChannel to connect clients and the storage device(s) and provides block 1/0 service
[Sac01]. Because of the need to build a network to handle storage requests that is separate from
the communication network, SAN is not suited for the wide area.

1.1.6 OceanStore

OceanStore is a project under development at the University of California, Berkeley. Itis
designed to be aglobal utility providing permanent data storage. It will not have any centralized
state or control. Any server can create alocal replica of data to improve access times and fault-
tolerance. It alows writes by creating a new version of the file while maintaining al older
versions as in ajournaling file system. Although OceanStore will not have a centralized state or
manager, the devel opers intend to build a distributed process (i.e. the introspection layer) that
monitors the system and then reacts to data requests, failures or attacks. This layer will then
migrate data objects, create additional replicas or isolate links under attack [KBC+0Q].

OceanStore promises high levels of fault-tolerance (e.g. 0.99999+% availability),
permanence (i.e. 1,000 year duration), fast access and adaptation to network conditions. It
remains to be seen whether than can realize their goals.

1.1.7 WebFS

Part of the WebOS project, WebFS isagloba cache consistent file system. It alows
reading from HTTP URLs as well as reading from and writing to WebFS sites. The write policies
include “last writer wins’ and append-only. It relies on public key encryption and access control
lists to determine read, write and execute permissions. WebFS is similar to AFS in functionality
but it has looser file semantics and it adds the ability to read from the HT TP namespace. Both the
WebOS and the WebFS projects have been discontinued. [VEA96]

1.2 Network Storage Stack

The L ogistical Computing and I nternetworking (L oCl) Lab at the University of
Tennessee has been developing an aternative framework for integrating storage in the network,
which aims to improve its performance and reliability. Rather than treating storage in the
traditional sense just as an attached resource, the LoCl Lab views storage as an integral part of the
network. The LoCl Lab calls the combining data storage and data movement, Logistical
Networking.

Logistical Networking takes the rather unconventional view that storage can be used to
augment data transmission as part of a unified network resource framework. The adjective
“logistical” is meant to evoke an analogy with military and industrial networks for the movement
of material which requires the co-scheduling of long haul transportation, storage depots and local
transportation as coordinated elements of a single infrastructure [BMPO1].

The design for the use of network storage revolves around the concept of a Network
Sorage Stack (Figure 1). Its purpose is to layer abstractions of network storage to allow storage
resources to be part of the wide-area network in an efficient, flexible, sharable and scalable way.
It ismodeled after the IP stack, which achieves all these goals for data transmission, and its
guiding principle has been to follow the tenets laid out by End-to-End arguments [SRC84,
RSC98]. Two fundamenta principles of this layering are that each layer should (a) abstract the
layers beneath it in a meaningful way, but (b) expose an appropriate amount of its own resources
so that higher layers may abstract them meaningfully (see [BMPO1] for more detail on this

approach).

In this section, | review the middle three layers of the Network Storage Stack. In chapters
2 and 3, | give more detailed descriptions of the L-Bone and Logistical Tools. The bottom two
layers are smply the hardware and operating system layers of storage. The top two layers, while
interesting, are future functionalities to be built when we have more understanding about the
middle layers.

Applications

Logistical File System

Logistical Tools

L-Bone exNode

IBP

Local Access

Physical

Figure 1: The Network Storage Stack

1.2.1 Internet Backplane Protocol

The lowest level of the network accessible storage stack is the Internet Backplane
Protocol (IBP) [PBB+01]. IBP isaserver daemon and aclient library that allows storage owners
to insert their storage into the network, and to allow generic clients to allocate and use this
storage. The unit of storage is atime-limited, append-only byte-array. With IBP, byte-array
alocation islike anetwork mal | oc() call: clients request an allocation from a specific IBP
storage server (or depot), and if successful, atrio of cryptographically secure text stringsis
returned (called capabilities) for reading, writing and management. Capabilities may be used by
any client in the network, and may be passed freely from client to client, much like a URL.

IBP does itsjob as alow-level layer in the storage stack. It abstracts away many details of
the underlying physical storage layers: block sizes, storage media, control software, etc.
However, it also exposes many details of the underlying storage, such as network location,
network transience and the ability to fail, so that higher layersin the stack may abstract these
more effectively.

1.2.2 L-Bone

Whileindividua IBP alocations may be employed directly by applications for some
benefit [PBB+01], they, like |P datagrams, benefit from some higher-layer abstractions. The next
layer contains the L-Bone, for resource discovery and proximity resolution, and the exNode, a
data structure for aggregation. Each is defined here.

The L-Bone (Logistical Backbone) is a distributed runtime layer that alows clients to
perform IBP depot discovery. IBP depots register themselves with the L-Bone, and clients may
then query the L-Bone for depots that have various characteritics, including minimum storage
capacity and duration requirements, and basic proximity requirements. For example, clients may
request an ordered list of depots that are close to a specified city, state, airport, US zipcode, or
network host.

Thus, while IBP gives clients access to remote storage resources, it has no features to aid
the client in figuring out which storage resources to employ. The L-Bone'sjob isto provide
clients with those features. As of early 2002, the L-Bone is composed of 21 depots in the United
States and Europe, serving roughly aterabyte of storage to Logistical Networking applications
(Figure 2).

In Chapter 2, | review the L-Bone in detail. | will review the design goals and
assumptions, the metadata stored in the L-Bone, the RPC call formats that clients use to contact
the server, the client API and the L-Bone server’s structure. Lastly, | present data that shows the
L-Bone' s response time to clients across the country.

Harvard

UCSB iy
UTK %i 8 UNC
=
TAMU Turin, IT

Stuttgart, DE

Figure 2: The L-Bone as of early April 2002

1.2.3 exNodelLibrary

The exNode is a data structure for aggregation, analogous to the Unix inode (Figure 3).
Whereas the inode aggregates disk blocks on a single disk volume to compose afile, the exNode
aggregates | BP byte-arrays to compose alogical entity like afile. Two mgjor differences between
exNodes and inodes are that the IBP buffers may be of any size, and the extents may overlap and
be replicated. For example, Figure 4 shows three exNodes storing a 600-byte file. The leftmost
one stores all 600 bytes on IBP depot A. The center one has two replicas of the file, one each on
depot B and depot C. The rightmost exNode aso has two replicas, but the first replicais split into
two segments, one on depot A and one on depot D, and the second replicais split into three
segments, one each on depots B, C, and D.

In the present context, the key point about the design of the exNode isthat it allows usto
create storage abstractions with stronger properties, such as a network file, which can be layered
over |BP-based storage in away that is completely consistent with the exposed resource
approach.

Since our intent is to use the exNode file abstraction in a number of different
applications, we have chosen to express the exNode concretely as an encoding of storage
resources (typicaly IBP capahilities) and associated metadatain XML. Like IBP capabilities,
these seridlizations may be passed from client to client, allowing a great degree of flexibility and
sharing of network storage. The use of the exNode by varying applications provides
interoperability similar to being attached to the same network file system. The exNode metadata
is capable of expressing the following relationships between the file it implements and the storage
resources that constitute the data component of the file's state:

The portion of the file extent implemented by a particular resource (the starting offset and
ending offset in bytes).

The service attributes of each constituent storage resource (e.g. reliability and
performance metrics, duration).

IBP
Depots

Local inode
Disk

Figure 3: Comparing the UNIX inode and an exNode

100
200
300
400

600

Figure 4: Sample exNodes

The total set of storage resources, which implement the file and their aggregating
function (e.g. smple union, parity storage scheme, more complex coding).

1.2.4 Logistical Tools

At the next level of the Network Storage Stack are tools that perform the actual
aggregation of network storage resources, using the lower layers of the Network Stack. These
tools take the form of client libraries that perform basic functionalities, and stand-alone programs
built on top of the libraries. Basic functionalities of these tools are upload, download, stat/list,
refresn, augment and trim. | will cover these in more detail in Chapters 3.2.1 and 3.2.2.

The Logistical Tools are much more powerful as tools than raw IBP capabilities, since
they allow users to aggregate network storage for various reasons:

Capacity: Extremely large files may be made from smaller IBP alocations. In fact, it
isnot hard to visualize files that are tens of gigabytesin size, split up and scattered
around the network.

Striping: By breaking filesinto small pieces, the pieces may be downloaded
simultaneoudly from multiple IBP depots, which may perform much better than
downloading from a single source.

Replication for Caching: By storing files in multiple locations, the performance of
downloading may be improved by downloading the closest copy.

Replication for Fault-Tolerance: By storing files in multiple locations, the act of
downloading may succeed even if many of the copies are unavailable. Further, by
breaking the file up into blocks and storing error correcting blocks calculated from
the origina blocks (based on parity asin RAID systems [CLG+94] or on Reed-
Solomon coding [P1a97]), downloads can be robust to even more complex failure
scenarios.

Routing: For the purposes of scheduling, or perhaps changing resource conditions,
augment and trim may be combined to effect a routing of afile from one network
location to another. Firgt it is augmented so that it has replicas near the desired
location, then it is trimmed so that the old replicais deleted.

Therefore, the Logistical Tools enable usersto store data as replicated and striped filesin
the wide area. The actual best replication strategy — one that achieves the best combination of
performance, fault-coverage and resource efficiency in the face of changing network conditions —
isamatter of future research.

2. L-Bone

2.1 Design
2.1.1 Goals

The primary function of the L-Bone is resource discovery, to allow usersto find IBP
depots. Users should be able to specify their storage requirements and receive back alist of
suitable depots. In addition to just finding depots, users should be able to determine proximity to
depots and between depots. Users should also be able to query about the size of the L-Bone.

Additionally, the L-Bone implementation should provide the following:

The L-Bone should be accessible over the Internet. It should not attempt to
maintain state for the depots but instead cache data about them.

The L-Bone should respond to user requests as fast as possible. If the serviceis
busy or down, the client should have atimeout option so that the user does not
block indefinitely.

It should provide replication to avoid a single point of failure and to spread the
load. Geographically dispersing the L-Bone will also improve response times.

The L-Bone should scale up as more depots are added and more users interact
with the service.

The code should be as portable as possible to alow as many users as possible.
2.1.2 Assumptions

Sincethisis aresearch tool, we chose to use C as the development language and UNIX as
the development OS. We felt that using C would alow us to maximize performance yet still
maintain portability. To test portability of the UNIX code, we checked the code on Solaris (7 and
8), Linux (kernels 2.2 and 2.4), Apple's Mac OS X (Darwin) and AlX.

The L-Bone needs to maintain a certain amount of metadata about the listed depots.
Rather than create a database tool from scratch, we selected an open-source application,
openldap, to maintain the data. Openldap is optimized for lookups, and since the vast majority of
L-Bone calls are reads, and not writes, openldap is alogical choice. For a distributed service,
openldap is aso easier to setup and maintain than a relational database such as mySQL.

To assist in determining proximity of clients to depots, we use the Network Weather
Service (NWS) [WSH99] to determine available bandwidth between locations, the NetGeo
service for hostname location [Net02], the US Census Bureau' s database of geographic
coordinates for each US zip code and the IATA list of US and international airport locations.

All client/server communication is accomplished through RPC calls. Using RPC alows
us to develop clients for other programming languages or operating systems without requiring the
use of the C language or UNIX-specific libraries. Lastly, we use the pthread library whenever we
need multi-threading to improve portability among UNIX variants.

2.1.3 Depot Metadata

The L-Bone can store alarge amount of information about a depot, but the only necessary
datafor adepot to be accessibleisits fully qualified domain name (hostname) and the port used
by IBP. With just these two items, the L-Bone can poll the depot periodically and determine the
status of the depot.

In order to alow searches for storage space, the L-Bone needs to keep data about the
status of the depot. The L-Bone polls all registered depots at a specified interval and stores the
results for later user queries. IBP provides a depot query function, | BP_st at us() , that returns
the following data:

The maximum amount of stable storage to be served
The amount of stable storage currently served

The maximum amount of volatile storage to be served
The amount of volatile storage currently served

The maximum duration it will alow for an allocation

The L-Bone keeps this data but replaces the currently served values with available
storage values (total storage less currently served storage) for both stable and volétile.

In order to determine geographic proximity, the L-Bone tries to determine and store the
latitude and longitude for each depot. It uses the following metadata to determine that location:

Country (2 letter 1SO code),

State (US only),

City,

Zip (USonly) and

Airport code (3 letter IATA code).

Using the NetGeo service, the L-Bone can a <o try to determine latitude and longitude
based just on the hostname. If the user provides overlapping or conflicting data, the L-Bone
chooses the keyword that yields the highest precision. From highest to lowest precision, the
categories are hostname, airport, zip, city, state and country.

Asthe L-Bone continues to grow, it is likely that depots will be run on awide variety of
machines in awide variety of environments from university machine rooms to home users with
persistent connections (cable or DSL). To alow users to select depots that have certain
characterigtics, the L-Bone optionally keeps the following environmental metadata:

10

Type of network connection
Frequency of machine monitoring
Power backup availability

Data backup policy

Whether the depot is behind afirewall

The L-Bone also has some administrative duties that require additional metadata. To
provide a minimal amount of security, the L-Bone requires that someone listing a depot provide
his or her email address. The L-Bone uses the email address as the password when the owner
wishes to change any of the user-configurable metadata.

Other administrative metadata include:

Email notification policy if the depot is unreachable
Last time the owner was notified

The number of polling attempts

The number of polling replies

The status of the depot (used by the cgi scripts only)

Of these, only the email natification policy is user changeable. The rest are for
bookkeeping purposes for the L-Bone.

2.1.4 Remote Procedure Calls

All requests from the client to the server are formatted with strings. This avoids the need
to worry about incompatibilities between machines with little-endian versus big-endian
architectures. So far, we have implemented three RPC calls.

2.1.4.1 Get Depots

For this RPC call, the client sends a 512-byte packet to the server. The server will then
return a sorted list of depot and port pairs that meet the request requirements. The client message
contains a version number, request type, the maximum number of depots to return, the minimum
amount of stable storage in MBs each depot should have, the minimum amount of volatile storage
in MBs each depot should have, the minimum number of days the depot should allow for
allocations and alocation string. All fields are 10 bytes long except location, which is 452 bytes
long.

Client to Server

10 10 10 10 10 10 452

\ version\ type \num depots \min stablesize | minvolailesize |duration | location

11

Server response to Client

10 10 256 10

\success\ num depots \ hostname \ port \ repeat for each depot

Currently, IBP alocations are limited to 32 bits, which can represent a 10-digit string of
numbers. In the future, if IBP allows 64 bit (long long) sized alocations, the min stable size and
min volatile size fields will need to be expanded to 20 bytes. At thistime, the IBP team does not
intend to increase to the long long format for two reasons. accessing the datain such alargefile
would be inefficient and aggregating allocations can attain the large file storage functionality. The
exNode library, discussed in section 1.2.3, performs the aggregation.

For this call, the server aways returns success; there are no error conditions. The server
is allowed to return SUCCESS with a depot count of zero if none matched the request criteria

2.1.4.2 Count Depots

The client will send a 20-byte message that contains the version number and the request
type. It does not send any parameters. The server then returns the number of listed depots and the
number of depots that responded to the last poll.

Client to Server

10 10
\version\ type \

Server response to Client

10 10 10
\success\ total depots \ live depots \

Again, there is no unsuccessful return message.

2.1.4.3 Get Proximity

For the last RPC call, the client sends a version number, request type and a location string
of 492 bytes. The server then returns alist of depots and distance metrics from the specified
location.

Client to Server

10 10 492
\version\ type\ location

Server response to Client

10 10 256 10

\ success\ count \ hostname value \ repeat for each depot

12

2.2 Implementation

2.2.1 Client Library

The L-Bone client library provides five cals to the user:

Depot *| bone_get Depot s() —RPC call to server
Depot *I bone_checkDepot s() - client only
Depot *I bone_sort ByBandwi dt h() - client only
i nt | bone_get Proxi mty() - RPC cal to server
i nt | bone_depot Count () - RPC call to server

Each of these functionsis a blocking call. To prevent indefinite blocking, each includes a
timeout parameter.

2.2.1.1 Ibone_getDepots()

Thel bone_get Depot s() cal isthe primary call in the library. It alows the user to
specify storage and duration requirements as well as location hints. The output will be anull-
terminated array of data structures containing hostnames and ports for |BP depots that meet the
requirements set by the user.

The synopsisis:
Depot *| bone_get Depot s(Depot | boneServer,
LBONE _r equest req,

int timeout);

The function requires two data structures, Depot and LBONE_r equest . The Depot
struct is simply a#define of the | BP_depot data structure that contains a hostname and a port
number. The LBONE_r equest isthefollowing:

typedef struct |bone_request {

i nt nunDepot s;
unsi gned | ong st abl eSi ze;
unsi gned | ong vol atil eSi ze;
doubl e durati on;
char *| ocati on;

} LBONE_request;

The request holds dl the information that the server will need to find depots for the
client. Thefirst item, numDepots sets a maximum number for the server to return athough it
could return less. Both the stableSize and volatileSize parameters specify what the minimum
amount of each type of storage must be available. If both are non-zero, the depots must have both
classes of storage available above the minimums. The duration amount is the minimum number
of days (or partial days) that the storage allocation must exist.

13

The location field allows the user to associate keyword/value pairs. Some keywords
affect which depots will be returned and other keywords affect the order in which depots will be
returned. The user may include any combination of keyword and value pairs in the location up to
the 452-byte limit.

As mentioned in section 2.1.3, the L-Bone maintains metadata about the environment of
the depots such as data backup policy. Keywords that specify environmental metadata restrict
which depots are returned. Just like stableSize or duration, a depot must meet the minimum
level specified by the keyword/value pair. For example, for the data backup policy, the options
are:

Daily backups with multiple media
Daily backups reusing the same media
Occasional backups

No backups

When a particular level is specified, that level and dl levels above it would meet the
requirement. So, if auser specifies “Daily backups with the same media’, only depots that backup
daily with either the same media or multiple mediawill qualify.

Geographic keywords do not restrict depots but they affect the order in which they are
returned. For example, the client may specify severa geographic keywords, such asst at e= and
ci t y=, with their associated values. The server will not just return depots exactly meeting that
state and city (if any did), but instead, it will return the depots based on proximity to that city and
state.

Lastly, thel bone_get Depot s() function takes atimeout value. If the client does not
return within this number of seconds, the function will discontinue waiting and return nothing
(i.e. NULL pointer) to the user.

2.2.1.2 |Ibone_checkDepots()

Because the L-Bone server caches data that may be minutes or hours old, the
| bone_get Depot s() cal may return depots that no longer meet the user's requirements for
storage space and/or duration. To allow the user to check the list of depots, the client library
providesthel bone_checkDepot s() function.

Theinput is a null-terminated array of depots (as returned by | bone_get Depot s()).
This function returns a subset of that list or the entire list if al are available and still meet the
requirements.

The synopsisis:
Depot *| bone_checkDepot s(Depot *depots,
LBONE r equest request,

int timeout);

This function does not contact the L-Bone server. Instead, it contacts each depot directly
and usesan | BP_st at us() call to determine:

14

1. that the depot is reachable and functioning and
2. whether the depot's available storage space and duration still meet the request
requirements.

Thisis amulti-threaded call that contacts each depot simultaneously. It requires the user
to compile with the pthread library. Like the | bone_get Depot s() cal,
| bone_checkDepot s() provides atimeout parameter to prevent indefinite blocking unless the
client so chooses.

2.2.1.3 |Ibone_sortByBandwidth()

By default, the L-Bone server returns depotsto thel bone_get Depot s() call sorted by
geographic distance if the location field included the proper keywords. There are Situations,
however, when the user would prefer to sort the depots by highest to lowest bandwidth. The L-
Bone client providesthel bone_sor t ByBandwi dt h() function for this purpose.

The synopsisis:

Depot *| bone_sort ByBandw dt h(Depot *depots,
int timeout);

This function attempts to determine the avail able bandwidth to each depot using
nws_pi ng() . For each depot in the array, it creates a thread that callsnws_pi ng() . If the
nws_pi ng() issuccessful, it records the bandwidth measured. If the depot does not respond
before the timeout or it is not running NWS, the function records a bandwidth of 0. It then sorts
the depots and returns a null-terminated array.

Thisfunction relieson asingle nws_pi ng() cal per depot, which can provide widely
varying results. In the future, this call will be replaced by acall to the L-Bone server when the L-
Bone server is able to provide more NWS forecasting and prediction information to the user.

2.2.1.4 int Ibone_getProximity()

One of the goals of the L-Bone isto provide proximity information about depots to users.
Thisfirst version of the L-Bone can determine geographic proximity to a location specified by the
user and return alist of all depots sorted by the inverse of distance.

The synopsisis:

i nt |1 bone_getProximty(Depot |boneServer,
char *| ocation,
char *fil enane,
int timeout);

This function does contact the L-Bone server, so the first argument is a struct containing

the L-Bone server's hostname and port. The second parameter is the user's location string
containing keyword and value pairs. Thiswill determine by what location to sort the depots. The

15

filename specifies an output file name. And lastly, the timeout prevents the call from blocking
forever if the server is not available or hangs.

The output file format is a space delimited text file. Each line contains a hostname
followed by avaue. Higher valuesindicate closer proximity.

2.2.1.5 int Ibone_depotCount()

If the user needs to determine the number of depots listed in the L-Bone, he can use
| bone_depot Count () . It takes as input a struct containing the L-Bone server's hosthame and
port and, if successful, it fillsin two unsigned long pointers. These pointers will have the number
of total depots listed and the number of depots that responded to the last poll.

i nt | bone_depot Count(ulong_t *total,
ulong_t *live,
Depot | boneSer ver,
int timeout);

This call may assist the client with its depot request policy.

2.2.2 Server Process- |Ibone server

The L-Bone server process, Ibone_server, isthe RPC server that receives client requests,
gueries the database and returns an RPC message to the client. It is a multi-threaded program that
has two persistent threads and an unbounded number of temporary threads to handle client
requests. The operating system, however, may constrain the number of simultaneous processes
and/or file descriptors.

When the server starts up, it initializes a Ser ver Conf i g struct that stores the startup
parameters, the listening socket number, a mutex lock and L-Bone state values. This struct will be
passed to all threads to allow sharing of these resources. Theser ver _confi g is.

typedef struct server_config {

char *passwor d;
char *config_path;

i nt port;

char *| daphost ;

i nt socket;

ul ong_t t ot al Depot s;

ul ong_t i veDepots;

ul ong_t st abl eLi st edMb;
ul ong_t st abl eAvai | M;
ul ong_t vol Li st edM;

ul ong_t vol Avai | Mo;

pt hr ead_nut ex_t | ock;

} *ServerConfig;
As the thread continues, it determines what the startup parameters are. To start, it needs

to find the database, the port number that the L-Bone server should open and on which to listen,
and a password. If any of these are not found, it exits.

16

If the server finds the necessary parameters, it tries to maximize its alowable resources.
In case the host machine limits the number of user open files (i.e. file descriptors), the server
attempts to get its resource limits and increase the allowable number of processesto the
maximum (usually 1024).

To avoid exiting when aclient connection islost (SIGPIPE), the server startsa signal
handler that intercepts SIGPIPE signals and ignores them.

The server then opens a socket on the port specified by the startup parameters. Once the
socket is open, it forks a persistent thread using pt hr ead_cr eat e() that will monitor the
socket.

After opening the socket monitor, the main thread has completed its startup duties and it
now it will enter an infinite loop. It will poll every depot listed in the database and update the
cached data in the database. After the polling is complete, this thread goes to sleep for a set period
of time, currently set at 45 minutes, and repeats the polling when it wakens.

The second persistent thread is the socket monitor. Like the startup/polling thread, the
socket monitor enters an infinite loop. It callsaccept () and blocks until aclient initiates a
connection. It then createsaCl i ent | nf o struct that includes the Ser ver Conf i g struct as well
asthefile descriptor for thisclient. Thecl i ent _i nfo is:

typedef struct client_info {
Server Confi g server;
i nt fd;

} *dientlnfo;

The socket monitor thread then forks a temporary thread using pt hr ead_creat e() to
handle this client. It then loops and blocks on accept () until the next client request. To ensure
that the temporary thread releases its resources as soon asit callspt hr ead_exi t () , the socket
monitor creates it as a detached thread. The socket monitor thread does not call
pt hread_j oi n() whichisequivalent to the UNIX wai t () function.

The temporary client thread handles one client request and then exits. The client thread
parses the first 20 bytes to determine the version number and the request type. It then calls a
subroutine depending on the request type. When the subroutine is finished, the thread closes this
socket connection and exits.

Currently, the server implements the following requests:
handl e_cl i ent _request ()
handl e_depot _count ()
handl e_proximty_list()
Thehandl e_cl i ent _request () istheserver endtol bone_get Depot s() . Thiswas

the original L-Bone client call. It parses the message, then callsget _resul t () and then
send_li st () subroutines.

17

Theget _resul t () subroutine getsalist of all depots from the database, then it
determines if they meet the client's storage and duration requirements. If the depot does, it
calculates the depot's distance from the client's location request, if thereis one or it generates a
random number if the client did not specify alocation. Lagt, it inserts the depot into a red-black
tree using the distance as the sort key. Theget _resul t () function then returns the red-black
treelisttothecl i ent _request handler. Thelistishandedto send_I i st () function which
returns the sorted list of hostnames and ports to the client.

We added the depot _count handler to alow aclient to ask how many depots are listed
in the L-Bone and how many replied to the last poll. When the server's polling thread contacts
each depat, it keeps count of how many depots are in the database and how many replied to the
poll. The two numbers are kept in the Ser ver Conf i g struct that is passed to every thread. This
function then simply returns those two numbers to the client.

Thelast handler isproxi mity_list. It Smply parsesthe client message for the
location string, passes that string to the get Proxi mi t y() subroutine and then returns alist of all
depots and their geographic distance to the location. This handler was added to provide a rough
measure of proximity based on distance that may be used by the exNode clientsif no other
proximity metric is available.

2.2.3 Database Backend (openldap)

The L-Bone server is a stateless server. The only data kept internally in the server isthe
number of depots polled and how many responded. All other data about the depotsis stored in a
backend database. This releases the L-Bone server from all state management responsibility.

In addition to the shifting the responsibility for state management, another benefit from
using a separate backend is speed of deployment. We were able to get a system up and running
very quickly. The last benefit of this approach is that we can change database systems if another
proves to be better (i.e. faster, more reliable, easier to replicate, etc.) by simply re-writing the
lookup calls.

Since the L-Bone's primary purpose is to allow resource discovery, and resources would
be relatively stable over time (i.e. not requiring many writes), we opted to use a directory
application, openldap, rather than arelational database.

2.2.3.1 Directory Structure

Every LDAP (Lightweight Directory Access Protocol) application has its data organized
in ahierarchical tree structure. Starting with the root of the tree at the top, it branchesinto
different sub-trees and eventually end with data entries at the leaves.

The L-Bone structure begins with the root node, which is usually the organization in
LDAP. Therefore the L-Bone root node is o=Ibone (organization equals Ibone). This root node
currently has four branches or organizational units: depots, zipcodes, airports and locations. The
depots, zipcodes and airport branches have no further branches and simply contain leaves. The
|ocations branch has three more sub-branches: countries, states and cities. The L-Bone tree
appearsin Figure 5.

18

Rather than use a unique key to reference data entries as in arelational database, an
LDAP server uses the path of the object from the leaf back to the root. This path is called the
entry's distinguished name. For example, a depot with the name of “dg.cs.utk.edu” has the
distinguished name of:

depotname=dg .cs.utk.edu,ou=depots,o=lbone

As of early 2002, the L-Bone contains approximately 30,000 zipcode entries and 8,000
airport entries, which include about 6,000 US and 2,000 international airports. The number of
depotsisin the range of 20 to 25. At thistime, we do not use the locations sub-branch since we
have not found free databases for countries other than the US that contain city or city and state
data along with latitude and longitude values. In the interim, we can find much of the same info
on internationa locationsin the airport database, which includes city and country in the entry.

2.2.3.2 Data Entry Structure and Validation via Schema

Depending on the branch of the treg, the data entries may have differing attributes. For
depots listed in the depots branch, section 2.1.3 has already listed the required and optional
metadata stored in openldap. For each depot, it may have up to 26 attributes, although only four
are required: depotname, hostname, port and email address of owner.

S

For itemsin the US zipcode branch, they must have a zipcode, latitude and longitude.
They may additionally have country, state and city. In actuality, al zipcode entries include city,
state and country.

The entriesin the airport branch must have a 3-letter IATA airport code, longitude and
latitude. They may also have country, state and/or city. All US entries have the city and state
information, and internationa airports have country information. The internationa airports also
have the airport name listed under the city attribute. Usually, thiswill include the city's name,
which allows us to provide city/country lookup for non-US cities.

Whenever anew entry is added or an existing entry is modified, the openldap server uses
this schemato check the entry and ensure that it includes the required information and that the

o=lbone
I T | T 1
ou=depots ou=zipcodes ou=airports ou=locations
depotname= Zip=37996 airport=TYS c=UsS
dsj.cs.utk.edu |
st=TN
I=Knoxville

Figure 5: L-Bone Directory Tree Structure

19

entry does not include any arbitrary attributes not specified in the schema. See Appendices 1 and
2 for the complete L-Bone schema.

2.2.3.3 Finding Data Efficiently

Openldap provides arich query language that allows the user to target a query for faster
responses. The query is based on regular expressions. Any attribute may be included in a search.
Attributes that are used frequently in searches can be indexed to improve performance. Currently,
the L-Bone's openldap server indexes these attributes: objectClass, depotname, hostname,
country, state, airport, zip and city. These items require an exact match, although the match is
case insensitive. The city attribute may also be searched for substrings.

Another |dap feature that improves search performance is searching a particular branch.
Rather than search the entire L-Bone tree looking for a specific depot or airport, the user may
specify the branch where that type of dataislocated, depots or airports, for example.

The last feature of openldap that we have used to improve performance is caching.
Openldap alows the user to specify how many records to keep in memory and how much
memory to make available to indices. We have specified that openldap should keep 50,000
records in memory and use up to 1 MB for indices. Since our entire tree contains less than 50,000
records at present, the entire database is held in memory. This ability, along with the tree
structure provided by openldap, allows usto provide very quick response to user queries.

2.2.3.4 Replication to Improve Fault-Tolerance

Sincethe L-Boneis a service available to any user on the Internet, it isimportant that we
avoid single points of failure. If the L-Bone were limited to asingle L-Bone RPC server and a
single LDAP database, it would not be a very reliable service. Fortunately, openldap includes a
simple solution to provide replication.

Openldap's durpd daemon provides the replication service. The durpd process looks for a
log file that includes any changes made by the LDAP server, dapd. It then forks a child for each
slave server and each child updates one dave database. After a child process is complete, it exits.

Thefinal step to adding fault-tolerance isto run alocal L-Bone RPC server with each
slave LDAP database. The user can then query any of the L-Bone servers and get the information
needed. We have successfully run a master and dave openldap servers, each with aL-Bone
server. Although openldap provides the option to allow writes at the dave locations, its creators
do not recommend it since it dlows down read performance. We only alow writes on the master
LDAP server. We have found that writes to the master are propagated to the daves almost
instantaneoudly. Currently, the primary L-Bone server and master openldap server are located on
adder.cs.utk.edu on ports 6767 and 6776, respectively. A secondary L-Bone server and dave
openldap server are running on gal apagos.cs.utk.edu also on ports 6767 and 6776, respectively.

2.3 L-Bone Response Time

To determine an average L-Bone response time, we created a client that would generate a
L-Bone request and then call | bone_get Depot s() . To minimize the benefits of caching within

20

the openldap server, the program would generate arandom number that was used to choose the
number of depots, the amount of storage and a location string from an array.

The program makes five callsto r andon{() . These calls determine how many depots to
request up to 25, how much storage to get up to 1 GB, which type of storage to get (i.e. stable,
volatile, or both), how long the duration should be up to 10 days and, which location string to use,
if any, from an array of 22 strings.

The locations strings used a variety of zip, state, city, country, airport and hostname
keywords. Within a category, we used widely spaced values to ensure that it would have to look
at all parts of the database. For example, five of the locations include the zi p= keyword and the
values were 01001, 21120, 43201, 65651 and 98983.

Tests were run from the UT campus, from the University of California, San Diego and
from Harvard. The test script ran every 10 minutes over a 30-hour period. All calls were made to
the primary L-Bone server located at adder.cs.utk.edu, port 6767.

On the UTK campus, as expected, the L-Bone was extremely fast. The mean response
time was 0.15 seconds and the median time was 0.08 seconds. Out of 187 tries, only two
responses took more than one second (Figure 6).

The wide-area clients were not as fast, but both still averaged under a half second. The
UCSD results showed amean of 0.42 seconds and a median of 0.35 seconds. Its longest time was
2.42 seconds and its shortest was 0.28 seconds. The Harvard test had dightly better times.
Harvard's mean was 0.38 and its median was 0.29. The longest response measured at Harvard
took 5.21 seconds and the shortest was 0.23 seconds.

0.45 0.42

0.38

0.40

0.35

0.35
0.29

0.30

0.25

Seconds

0.20
0.15

0.15

0.08
0.10

0.05 F
0.00 T

UTK UCSD Harvard

‘ D Mean EMedian

Figure 6: L-Bone response time

21

0.100
0.090
0.080
0.070
0.060

0.087

0.078

0.050

0.050 0.044 0.041
0.040

0.030

Seconds

0.000 T

UTK UCSD Harvard

‘DM%nlemM

Figure 7: L-Bone response time per depot returned

Because the return RPC call uses 266 bytes per depot, it takes longer to return more
depots. When we looked at time per depot returned in the wide-area, the numbers were nearly
identical. This seemsto indicate that the time to return a large number of depots should scale
linearly with the number of depots returned. The median was 0.05 seconds per depot at UCSD
and 0.04 seconds per depot at Harvard (Figure 7).

22

3. Logistical Tools

The Logistical Tools are a set of command line tools and the underlying C API that alow
auser to easily find IBP depots using the L-Bone, store afile into the depots, and then store the
file metadata, including the IBP capability keys, into a XML file using the exNodes Library. This
paper describes the first version of these tools and the API.

These tools make use of the IBP client library, the NWS client library, the L-Bone client
library, and the exNode library. Alex Bass and Y ong Zheng devel oped the exNode library. It
provides the basic abilities to create an exNode, add certain metadata about the exNode, create a
“segment”, which is aholder for an IBP capability and certain metadata, and add a segment to the
exNode. The exNode library also provides the XML seridize and de-seridize routines.

Going back to the “Network Storage Stack”, the Logistical Tools are the layer on top of
the L-Bone and exNode Library and provide a set of user tools that combine features of both.

3.1 Design
3.1.1 Goals

The primary motivation for this version is to provide a set of tools for the user that
automates the storing and retrieving of files using the exNode data structure and its XML
serialization. The tools should expose details of the underlying layers as necessary but automate
routine matters as much as possible. Also, the command line tools should be awrapper around a
C API to allow others to use the tools from other applications.

The tools should provide the following functions:

Store afile

Retrieve afile

Add replicasto afile

Remove replicas from afile

Extend the durations of the IBP alocations

View the file's metadata including allocation metadata

The tools should try to perform “intelligently.” For example, if an exNode has severa
replicas, the download tool should choose to download from the replica that would provide the
fastest download.

3.1.2 Assumptions

Asin section 2.1.2, we chose to use C as the development language and UNIX asthe
development platform. Due to the underlying exNode library's use of the Oracle XML parser, we
were further restricted to Solaris and Linux due to the fact that the parser is distributed in binaries
and is only available for certain platforms.

23

For this version of the tools, we are only concerned with storing entire files. Thus, our
tools can store asingle file as well as an entire directory tree. For this version, we do not consider
storing data from memory or storing sub-extents of afile. Asfor retrieving stored data, we alow
downloading a part or the entire file. The retrieved data can be stored to afile or sent to stdout.

With these tools, we allow the user to store the file in a single, complete IBP allocation or
in multi-part, fragmented |BP allocations. We place no restrictions on the number of fragments
among different replicas and we do not require replicas to be aligned on offsets.

Also, we do not prohibit the user from deleting allocations from the exNode, as long as at
least one allocation remained. This raises the issue of what a stored file's size means. We use the
convention that the file's size is the value of the address of the last addressable byte in thefile.

Using this convention, for example, if the original file is 600 bytes and the user deletes all
allocations that contain bytes 401 to 600, the exNode then reports the file's “size” as 400. If the
user then deletes all alocations that contain bytes O to 200, the exNode will till report the size
(largest addressable byte) as 400 even though only 200 bytes were accessible (Figure 8).

This version of the underlying exNode library requires that all stored datais stored in IBP
depots. The Logistical Tools were built with this restriction in mind. Future versions will alow
for other storage types.

Since this was a proof of concept version, we did not focus on multi-threading the storing
or retrieving of files. Also, there were many policy options available when we implemented these
tools. Since we faced a deadline to have working tools ready for the SuperComputing 2001
conference, we did not try to find the “best” policy. Instead, we chose “reasonable” policiesin
order to get the tools working. We left the question of finding the “best” policy for future
research.

Sizeis Sizeis Sizeis
600 bytes 400 bytes 400 bytes
0 0 0
200 200 200
400 400 400 -
600 600 600

Figure 8: exNode size after trimming

24

3.1.3 Function Design

There are six functions that allow users to store data to exNodes, to retrieve data from
exNodes and to manage exNodes.

3.1.3.1 Upload

The Upload function fulfills two duties: the creation of the exNode and storing data into
the exNode. It allows the user to specify the file to be stored, to find depots using the L-Bone
client, and to specify how many copies to create and whether the copies are single, complete
copies or broken into multiple fragments.

3.1.3.2 Download

The Download function is the complement to Upload. It allows the user to retrieve data
previoudly stored in an exNode. If multiple copies are available, it tries to choose the “best” depot
to use to get the data. The tools allow the user to specify the proximity metric. It allows the user
to download the entire file or any portion of it.

3.1.3.3 Augment

The Augment function allows the user to add more replicas to an existing exNode. It does
not, however, add new data (extend the logical file's length, for example) to an exNode. The same
options available for Upload are available for augment (multiple copies, fragments, select depots
viathe L-Bone).

3.1.34 Trim

The Trim function is the complement of the Augment function. It allows the user to
remove | BP allocations from the exNode. The user is able to trim stale or expired fragments as
well asto be able to specify fragments by number. Additionally, the user may delete the
underlying IBP byte-array.

3.1.3.5 Refresn

Since the underlying storage relies on IBP allocations, which are time-limited, the
Refresh function allows the user to extend the duration of the IBP allocations. The user may
specify the number of daysto add or subtract in addition to setting an absolute time.

3.1.3.6 Stat/ls

Using the C AP, the Stat function provides a data structure with the exNode' s metadata
and IBP capabilities. The Ls function displays the exNode' s metadata and the IBP capabilities on
stdout like the UNIX |s command.

25

3.2 Implementation

321 CAPI

3.2.1.1 xnd_upload()

The xnd_upl oad() cal creates an exNode, stores afile into IBP depots and returns a
pointer to an exNode.

The synopsisis:

LPEXNODE xnd_upl oad (char *file_target,
char *| bone_server,
i nt | bone_port,
i nt storageType,
doubl e duration_days,
char *| ocati on,
i nt copies,
int fragments,
int buffsize,
i nt bl ocksize);

The first parameter, file_target, is the name of the output file where the user wants to
store the data. The next two parameters, Ibone_server and Ibone_port, tell the tool where to find
the L-Bone server in order to find depots.

The storageType and dur ation_days parameters expose the choices for underlying IBP
storage. StorageT ype determines if the user wants volatile or stable IBP alocations and
duration_days sets the minimum acceptable allocation period. The location parameter is passed
directly to the L-Bone client call and indicates where the user wants to store the file and under
what operating conditions the depots should exist. If the parameter is NULL, then return depots
with no regard to location (random distribution).

The copies arguments tell the function how many replicas to include in the exNode. The
fragments and blocksize arguments determine how each copy will be subdivided. They are
mutually exclusive parameters. If the user selects fragments, the function will divide the file into
n equa size fragments. On the other hand, if the user selects blocksize, the file will be stored into
equal size blocks and the last block will amost always be less than the block size unlessthefileis
evenly divisible by the blocksize. In neither case does the function alocate more space than it
needs (i.e. no fragmentation). Lastly, the buffsize parameter allows the user to tune the amount of
buffer space used by the function. Thisis usually set between 4 and 10 MB.

After the function checks the parameters, the function builds the LBONE_r equest struct
based on the parameters. It determines how many depots will be needed, what size each
allocation should be, whether the allocations need to be STABLE or VOLATILE, how long the
allocations should exist. It passes the location string through to the | bone_get Depot s() call. It
makesthel bone_get Depot s() cal and gets back alist of depots. It alocates the storage for
each fragment or block and then uploads the file. For each fragment or blocksize, once the first
copy is uploaded, it then uses| BP_copy() to move data from the first depot to each additional

26

Then IBP_copy()
The original file is used to move
is stored using datato the
IBP_store() replicas

Figure 9: xnd_upload() policy

depot serialy. For example, in Figure 9, the upload requires three copies. First, it uses
| BP_st ore() tostorethefile A into IBP alocation B. Next, it uses| BP_copy() to copy the
datafrom B to IBP allocation C. Lastly, it copies from B to IBP allocation D.

3.2.1.2 xnd_download()

The xnd_downl oad() call takes a pointer to an exNode, downloads the data and sends it
to an output file. It returns how many bytes were successfully read.

The synopsisis:

i nt xnd_downl oad (LPEXNCDE pNode,
char *output_file,
XNDULONG of f set,
XNDULONG | engt h,
i nt bufsize,
i nt verbose);

The first parameter is the pointer to the exNode. The second parameter, output_file, is
the name of the file where the function should store the data. If it is NULL, it will send the datato
stdout. The offset and length parameters determine which part of the file should be downloaded.
The XNDULONG data type is ssimply an unsigned long long, a 64 bit integer. The bufsize
parameter sets the size of the internal buffer. The verbose parameter sets the level of status
messages sent to stderr.

After checking parameters, the function calls xndst at () which checks the status of the
allocations and returns a XNDSTAT struct. Next, it alocates the working buffer. It then opens a
temporary fileif output_fileis not NULL or it directs the output to stdout. Lastly, it will start
downloading thefile.

27

It then enters aloop that will continue until al the requested bytes have been
downloaded. At the current offset, it finds all alocations that contain the offset and sorts them by
their proximity measure stored in the XNDSTAT struct. To determine how many bytes to
download, it looks to see which is the smallest:

The end of the current allocation,
The offset of the start of any other alocation, or
The end of the requested bytes.

Using this algorithm, whenever the set of allocations that contain the current offset
changes, it will decide among the new set of alocations which has the best download
performance.

In Figure 10, xnd_downl oad() must make decisions at byte offsets 0, 900, 1200, 1800,
2400 and 3000. The Download Choices column shows one possible combination of fragment
sources. Note that once it starts downloading from an IBP alocation, it does not need to continue
using that allocation after the next decision point. Also, if during a download, xnd_downl oad()
has retrieved some of the bytes and the IBP allocation becomes unreachable, xnd_downl oad()
will use the current offset as a new decision point.

3.2.1.3 xnd_augment()

Thexnd_augnent () function adds more allocations to an existing exNode. The new
allocations may be at different locations and may be different sizes than the current allocations.
The function also alows the user to augment the entire file or a portion of the file.

The synopsisis:

Decision Download
exNode Points Choices

4“0

<4— 900
<4— 1200
<4— 1800
<4— 2400
<4— 3000

Figure 10: xnd_download() decision points

28

LPEXNODE xnd_augnment (LPEXNODE pNode,
char *| bone_server,
i nt | bone_port,

i nt storageType,
doubl e duration_days,
char * location,

i nt copies,

int fragments,

i nt buffsize,

i nt bl ocksi ze,
XNDULONG of f set,
XNDULONG | ength);

The parameters are nearly identical to xnd_upl oad() , except that the first parameter is
an exNode and not afile name. The other major difference between upload and augment is that
augment allows the replica of a portion of thefile.

In thisversion of the tools, xnd_augnent () triesto use the first available copy to move
thefile. Thisis not optimal. 1deally, it would use the copy that has the highest available
bandwidth to the target. We intend to add this functionality to the L-Bone and make it availablein
the next version of the Logistical Tools.

3.2.1.4 xnd_trim()

Thexnd_tri m() function allows the user to specify which allocations to remove from
the exNode. The user has the choice of deleting the underlying IBP alocation or smply removing
it from this exNode. It returns the number of segments remaining after the trimming.

The synopsisis:

int xnd_trim (LPEXNODE pXnd,

int *segments,
int options);

The first parameter is a pointer to the current exNode. The segments parameter is an
integer array of segment numbers to remove. The current options include:

Non-Destructive Remove the allocation from the exNode, but do not freeiit.

Decrement One Remove the dlocation from the exNode and decrement its IBP read
reference count by 1.

Decrement All Remove the alocation from the exNode and decrement its | BP read
reference count until it frees the allocation.

Non-Existing Remove the allocation only if it is unreachable.

This call will modify the existing exNode. If the user wishes to keep the original exNode,
he will need to mentpy() the exNode before using this function.

29

By combining xnd_augnent () and xnd_t ri (), the user has the ability to route data
within the network. The augment adds replicas in the new location and then the trim removes the
original replicas, leaving only the data in the new location.

3.2.1.5 xnd_refresh()

Thexnd_ref resh() cal triesto modify each IBP alocation's expiration time. The tool
allows the user to request additional (or fewer) days and it alows the user to request an absolute
expiration time. The modified exNode is returned.

The synopsisis:

LPEXNODE xnd_refresh (LPEXNODE pNode,
tinme_t timeout,
unsi gned char options)

Thefirst parameter is the exNode. The timeout value is either the number of secondsto
add or subtract from the current expiration times or it is the UNIX time at which the alocations
should expire.

The options are:

Extend By Add (or subtract) the number of secondsto each allocation.
Absolute Set all allocations to this UNIX time.

This function attempts to modify each allocation separately. If some can be modified and
others cannot, it does not rollback the modified allocation expirations to their previous values.

Also, if the user requests n days and if the allocation's host depot will only allow another
m days where m < n, the function does not try to use the lesser available value. If nis not
available, it does not modify that allocation.

3.2.1.6 xndstat()

Thexndst at () call isused by most of the exNode functions. It returns metadata about
the exNode in a standard data structure. This data structure isimplemented in the tool layer, not
in the underlying exNode library. The underlying tools have an abstracted interface that does not
allow usto directly manipulate the data structures. In order to alow these tools to perform certain
functions without having to make repeated calls to the same library functions, the xndst at ()
function makes these calls once and stores the data into this struct.

The synopsisis:

i nt xndstat (LPEXNCDE pXnd,
XNDSTAT * buf,
int options);

The XNDSTAT data structureis:

30

typedef struct xndstat {
char nanme[MAXNAVELENGTH] ;
XNDULONG si ze;
XNDULONG curSi ze;

i nt nunSegnent s;
XNDSEGVENT **segnent s;
} XNDSTAT;

This structure smply is the stored file's name, its original size, its current size, how many
allocations the exNode has and a pointer to an array of segments (allocations and their metadata).
The XNDSEGVENT data structure is more complicated:

typedef struct xndsegment {

i nt id;

char host name[MAXNAMELENGTH] ;

i nt port;

XNDULONG of fset;

XNDULONG si ze;

XNDULONG start PoslnStr;

L PXNDSEGVENT pSeg;

| BP_set _of _caps caps;

Doubl e bandwi dt h;

Doubl e | at ency;

i nt read;

i nt wite;

i nt manage;

i nt dat aType;

i nt capsType;

i nt reliability;

time_t startValidity;

time_t endVal i dity;

i nt r eadRef Count ;

i nt wri t eRef Count ;
} XNDSEGVENT;

Theid isthe segment's position in the listing. It isused by thexnd_t ri n() call to
specify which allocations to remove. The hosthame and port identify the depot's address where
the allocation is kept. The offset and size describe this alocation's relation to the stored file.

The startPosl nStor holds the value of the offset with the IBP allocation. Although the
underlying exNode library allows us to store multiple pieces of datain the same IBP alocation, in
this implementation we always use a new IBP alocation for each segment. Therefore, this value
isaways zero. The LPXNDSEGMENT is apointer to segment within the real exNode data
structure. We keep this for quick removal of the allocation when trimming. Theread, write and
manage integers will contain a positive value if the IBP allocation contains the corresponding
capabilities or a-1if they do not.

The dataType describes what type of storage is used. These tools only use IBP. The

reliability indicates whether the allocation is STABLE or VOLATI LE while the capsType describes
if the IBP allocation is a byte array, fifo, etc. In these tools, we only use byte arrays.

31

The startValidity currently is the time that the allocation is made. In the future, if IBP or
other storage mechanisms allow for reservations, this would indicate when the storage would
start. The endValidity is the Unix time when the allocation expires.

The readRefCount and the writeRefCount match the values returned by
| BP_manage() . Any valid alocation must have awrite count of 1 or more to allow writes. By
the same measure, any valid IBP alocation must have aread count of 1 or more. As mentioned in
thexnd_t ri m() function, if the read count is decremented to zero, the IBP depot frees that
dlocation.

3.2.2 Command Line Functions

For this version of the tools, we expected that most users would want to use command
line tools rather than a C API. For each of the above tools, we created applications that did some
error checking and passed parameters to the API for the user. To make the command line tools
more user friendly, each looksto seeif the user has set up a .xndr c file with user preferences. If
it isfound, the user does not need to enter al options on the command line unless the user wants
to override one of the preferences. Some of the command line tools add a little more functionality
to the API. Not surprisingly, they use the same names.

3.2.2.1 xnd_upload

The xnd_upload tool performs some basic error checking and then passes the options
through to the API.

The usageis:

xnd_upload input_file [options]

The options are:

[-f | -o output _file [-dir directory]]

The -f option will make it use the input file name and append .xnd when it
creates the exNode.

The -0 output_file option will make it store the exNode using the name
“output_file".

The -dir flag will make it store the new exNode in the specified directory.

If neither -f nor -0 is specified, it sends the exNode file to stdouit.
-1 bone- host host

-1 bone-port port
-1 location

The lbone-host, Ibone-port and -1 location options are passed through to the
AP for the L-Bone client. The location string must be in single or double quotes.

32

-t [STABLE | VOLATILE]
-d days

The -t and -d options are passed through to the API for the IBP client.

-C copi es
[-F fragnments | -BS bl ock_size]

The —C, -F, and -BS options are passed through to the API.
-buffsize buffer_size
The -buffsize option is passed to the API.

3.2.2.2 xnd_download

The xnd_download tool performs some basic error checking, parsesthe . xndr ¢ file and
then passes the options to the API. It adds the ability to specify a negative offset that is
understood to be an offset from the end of thefile.

The usageis:

xnd_downl oad xnd_file [options]

The options are:

[-f | -o output _file [-dir directory]]

The -f option will make it use the filename stored in the exNode when it
downloads thefile.

The -0 output_file will make it use “output_file” for the new file.
The -dir will make it store the file in the specified directory.
Again, if neither -f nor -0 is specified, it sends the file to stdout.

-of fset offset
-length length

The -offset flag allows the user to specify from where in the file that the user
wants to start downloading. The user may specify a negative offset to set the
offset a specific number of bytes from the end.

The -length flag allows the user to specify how much of the file to download
after the offset. The default is everything after the offset.

-buffsize [1 - 100]

33

The -buffsize flag is converted to MBs and is passed to the API.

3.2.2.3 xnd_augment

The xnd_augment tool adds the ability to augment using a negative offset and by segment

number.

3224

The usageis:

xnd_augment xnd_file [options]

The options are:

[-f | -o output _file [-dir directory]]

-1 bone- host host
-1 bone-port port

-1 location

-t [STABLE | VOLATILE]

-d days

-C copi es

[-F fragnments | -BS bl ock_size]

-buffsize buffer_size
These are the same as in the Upload tool.

[[-offset offset] [-length length]] [-s]
These flags |et the user specify what he wants copied. The user may specify
offset and/or length OR he may specify a segment. If he only specifies the offset,
the tool assumes that the user wants to augment bytes to the end of thefile. If the
user only specifies the length, it assumes the offset is 0. If the user specifiesa
segment, it only augments that segment. Like download, the user may specify a
negative offset to set the offset a specific number of bytes from the end. The
default isto augment the entirefile.

xnd_trim

The xnd_trim tool passesits options through to the API.

The usageis:

xnd_trimxnd_file [options]

The options are:

[-f | -o output _file [-dir directory]]
These are the same as the previous tools.

[-n] -d]| -D]

The -n flag (non-destructive) leaves the underlying IBP allocations alone. The —d
flag (decrement) will decrement the IBP alocation's read counter by 1 (if the
counter was at 1 and is decremented to O, it frees the alocation). The -D flag
(decrement all or nuke) will decrement the allocation's read counter until it frees
the alocation. The default is -n.

[-a | -s segnent [segnent ...]] [-nonexist]
These flags determine if the user wantsto trim all (-a) segments or selected
segments (-S). If he uses -s to specify segments, he must use white space to
separate the segment numbers. The user may modify either the -a or the -swith
the -nonexist flag. It checks to see if the segments are available and, if they are
not, it trims them.

3.2.2.5 xnd_refresh

The xnd_refresh tool converts arelative time request to UNIX time. It also adds the
ability to get the current timeinct i me() format and in UNIX time, which is seconds since

epoch.
The usageis:
xnd_refresh xnd_file [options]
The options are:
[-d days | -a absolute_tine]]

The -d option will add (or subtract if it is negative) days to the expiration times
of each segment.

The -a option will sync al segments to the specified time.
[-what _tine_is_it | -w]

The -w flag (what time isit) leaves the exNode alone and prints out the timein
seconds since epoch as well as formatted using ct i ne() .

3.2.2.6 xnd_ls
The xnd_Istool will list the exNode's metadata and alocations.
The usageis:
xnd_Is [-b] xnd_file

The -b option will output the proximity metric from the user’s proximity file.

35

xnd_|s printsits output as follows:

$ test.xnd: test 100
$ Ssrwa 0 1 utk.edu:6714 100 O 90.90 WwWed Cct 24 18:55:56 2001

It repeats for each allocation in the exNode. The output can be read from left to right as
follows:

t est. xnd exNode file named test.xnd

t est name of the file stored in test.xnd

100 sizein bytes of the file named test

S underneath storage reliability of the segment

S - | BP_STABLE
V - | BP_VOLATI LE
r the exNode is readable
w the exNode is writable
m the exNode is managable
a the underneath storage type of the segment
a - | BP_BYTEARRAY
f - IBP_FIFO
c - IBP.CRQ
b - | BP_BUFFER

0 segment id
1 read reference count of the segment
utk. edu name of the server hosting the underneath storage
6714 port of the server hosting the underneath storage
100 size of the segment in bytes
0 offset in bytes of the segment in the exNode
90. 90 connection bandwidth in MBs of the server to the user's host
machine (only available with the -b option)
Ved ... 2001 theexpiration time of the segment
3.3 Tests

3.3.1 Replication for Caching

Thistest looks at the benefits of having afile replicated locally for improved access
performance. It tries to simulate three geographically dispersed users that need to access the same
data. Their options are to use an exNode with local replicas, or a centrally stored file available
through FTP or asimilar service. First, we created the cached exNode of a 6.5 MB file with
replicas at UTK, UCSD and Harvard. This exNode represents the goal of having replicas near
each user. For comparison, we then stored the same file in a separate, non-cached exNode at
Texas A& M that would represent a non-replicated file that is stored at a centrally located server.
Every ten minutes over a period of four days, each “user” downloaded the file from the cached
exNode and then from non-cached exNode. Both operations were timed.

36

35.0

32.2
29.8
30.0

25.0

20.0

Seconds

15.0

10.0

5.0

1.8 0.5
0.0 I

Cached Non-Cached

O Mean B Median

Figure 11: Cached vs. non-cached download time at UTK

Thetests at UTK show dramatic differences between the cached exNode and the non-
cached exNode. Thetest at UTK had a mean download time of 1.8 seconds and a median of 0.5
seconds. We could download the non-cached exNode on average in 32.2 seconds with a median
download time of 29.8 seconds. Of the 517 cached downloads at UTK, over 250 of them took
only 0.4 seconds. The fastest non-cached download took 16.2 seconds (Figure 11).

Similarly, the Harvard results show large benefits for caching data locally. The average
time to download from the cached copy was 4.3 seconds with a median of 4.6 seconds. The non-
cached downloads, on the other hand, took 44.0 seconds on average with a median of 42.8
seconds. Of the 424 cached downloads at Harvard, over 100 took only 4.6 seconds while the
fastest non-cached download took 39.6 seconds (Figure 12).

The results at UCSD again show the benefits of caching but to alesser extent than the
other two test sites. The cached downloads, on average, took 7.3 seconds with a median of 7.1
seconds. The non-cached version only took twice as long rather than the 10 to 16 times longer at
Harvard and UTK. The non-cached downloads averaged 13.3 seconds with a median of 12.5
seconds. While the frequency of times overlapped somewhat, the most frequent cached download
time was 1.9 seconds (i.e. 48 of the 553 total downloads) while the fastest non-cached time was
10.3 seconds. Interestingly, the most common non-cached time was 10.4 seconds, which occurred
58 times. (Figure 13)

Clearly, using the exNode with local replicas provides a performance advantage versus
accessing files from aremote FTP server or other centralized service.

37

Seconds

Seconds

50.0

44.0

45.0

40.0
35.0
30.0

25.0
20.0
15.0
10.0

4.3 4.6
o
0.0

Cached Non-Cached

‘ OMean EMedian

Figure 12: Cached vs non-cached download time at Harvard

14.0

13.3
12.0

10.0

8.0 7.3 7.1

6.0

4.0

2.0

0.0

Cached Non-Cached

OMean B Median

Figure 13: Cached vs. non-cached download time at UCSD

38

3.3.2 Replication for fault-tolerance

For this test, we stored a 3 MB file into an exNode. The exNode had five replicas spread
out over thirteen depots in four states (Figure 14). To test the fault-tolerance of the exNode, every
five minutes we checked fragment availability by using xnd_|s and then we downloaded the file
using xnd_download. We ran thistest on UTK 1 (Knoxville), UCSD 1 (San Diego) and Harvard
(Cambridge) over athree-day period.

The fragment availability percentages from xnd_Is are shown in Figures 15, 16 and 17.
Since the majority of segments are at Tennessee, we expect to see the highest availability
numbers from UTK 1, and thisis the case. Similarly, we expect the availability numbers from
UCSD to favor the California depots. Interestingly, however, the San Diego test saw higher levels
of availability from the Knoxville depots than from the same state Santa Barbara depots.

The most surprising result from Figure 17 is that the availability of the Harvard segment
is so low as measured at Harvard. The reason is that the Harvard IBP depot went down for a
period of time during the tests even though the machine remained functional. The depot has
automatic restart as a cron job, but during that time, none of the tests could access the Harvard
segment.

During the test, UTK 1 was able to access the 21 fragments on average 94.54% of the
time. Out of 860 downloads, UTK 1 had 100% success retrieving the file. Since the exNode had
two complete copies on the UTK network, most downloads could retrieve the entire file without
leaving the UTK campus. The UCSD test experienced the lowest average availability rate at
90.93% among the 21 fragments. Even with the lower average availability rate, in 857 attempits,
this site a so experienced a 100% success rate in downloading the file. The Harvard test had a
better availability rate than UCSD at 63.42%, and it too had 100% success in downloading the
file. Looking at al three tests, we were able to successfully download the file over 2,400 times.

0
UCSB 1
UCSB 2
UCSB 3

3 MB

Figure 14: Fault-tolerant test exNode

39

8-
66 | O_\\v
<z,
6 L
6. ¥ «@éﬁ\
VNMQ_ S
QQ.Q 6| WQ@O\V
Oz | 7330
%..o.@o, %Q.w/
66 NQ@W\V
8p.)
o%&, 9,y
%, $3n
Wv. L\&
oo.omq & \mo
oo.oow wu,_\&w
<
I B I B g
0O0Qo09QQQOoOo
SOO~OLI®N

(%) Aupgejreay juswbeld

Figure 15: Depot availability measured at UTK

<% | W,
6>.
L I 2,
%m... .\&h\
6,
o Sog
.58 S0
“5p 23557
&p. %@O“W
NQ.%Q %Q@
Ge r Q@O\v
QQN O\v
056 ,o\,\
56 sTn
9 Y
056 | 20
S L\&
56 | &N
076 X
%V. _ L\&
<

(%) Aupgejreay juswbeld

Figure 16: Depot availability measured at UCSD

40

(S}
SRFSRE L& &
SEPIIPY NESEN >
g 100] S¥S
< 90 7]
£ 80 7 N2
2 g o
S oA
< _
E %0 -
% 20
1
SOIEE S o & S
KREKEK 00 900 & S
SIS
N) \)O\)o \)o\)o\)o Q@

Figure 17: Depot availability measured at Harvard

Next, we wanted to test the fault-tolerance of the exNode when we simulated high levels
of unavailability. We used the exNode from the previous test, but we deleted 12 of the 21 byte-
arrays from their IBP depots, in order to ssimulate a high level of resource failure (i.e. machine or
network). The resulting exNode (Figure 18) has 33% to 67% of each replica eliminated. Even
with the eliminated segments, there are always at least two possible locations available for the
download tool to choose, so in the event that one should fail, even if it were the closer of the two,
the other is available for a complete recovery.

From UTK 1, we checked the availability and then downloaded the file every two and
half minutes over three days. Similar to the last test, we saw individual fragment availability vary
from 48.24% to 100%. On average, this test experienced 92.93% segment availability.

Using this restricted exNode, we were able to download the file 1,150 times before we
experienced a download failure. Out of the 1,225 total tests, only 75 downloads failed. The first
sixth of the file was available only from UCSB 3 and Harvard, which coincidentally had the
worst availabilities (93.88% and 48.24%, respectively) of the nine segments. Accordingly, itis
reasonable to expect failed downloads of this segment.

This shows that by using smple replication, exNodes can provide a high level of fault-
tolerance. Even when the replication was reduced to about two replicas, it still managed to
maintain nearly a 94% availability rate. In the future, we plan to add RAID-like encoding to
provide high fault-tolerance with lower numbers of replicas.

41

Figure 18: Trimmed exNode with 12 of 21 fragments removed

42

4. Conclusion

In this paper, | reviewed the current solutions to sharing and storing data across
administrative domains in the wide-area network. Current methods including email, FTP, network
attached storage and storage area networks all have benefits and shortcomings. The OceanStore
project is looking into this problem, but they have not made any tools available for the public to
try. The WebFS project alows usersto read HT TP resources in addition to reading and writing to
its own distributed servers. This project is no longer under development.

| outlined a view of network storage developed by the Logistical Computer and
Internetworking Lab (LoCl) called the Network Storage Sack. The Network Storage Stack is
composed of layers of protocols similar to the network communication stack (TCP/IP stack). The
Network Storage Stack layers abstractions of network storage to allow storage resources to be
part of the wide-area network in an efficient, flexible, sharable and scalable way. IBP lays the
foundation of the stack, which provides access to the underlying storage resources. On top of IBP,
the exNode Library provides the ability to aggregate | BP alocations into something like a
network file. It also serializes the exNode into a XML text file that can be passed from user to
user across administrative domains.

| then reviewed, in detail, the design and implementation of two of the components from
the Network Storage Stack, the L-Bone and the Logistical Toals. | showed how the L-Bone
provides a directory service of IBP depots. The L-Bone has three mgjor parts: the client AP, the
RPC protocol and the server. The server uses openldap for data storage, which is tuned for fast
performance. Tests show that the L-Bone respondsin less than a half second on averagein the
WAN.

| al'so showed how the Logistical Tools provide the ability to store and transfer large files.
Building on top of the IBP, exNode Library and L-Bone layers of the Network Storage Stack, the
Logistical Tools provide an easy to use C API and set of command line tools that automate many
tasks associated with creating exNodes, modifying exNodes and retrieving data stored in
exNodes. At the same time, the Logistical Tools exposes the functionality of the lower layers (i.e.
IBP, exNode and L-Bone) to let the user take advantage of their properties. To demonstrate two
of the benefits of using the Logistical Tools, | reviewed tests that showed benefits of replication:
caching and fault-tolerance. The results of the caching test showed performance gains of 2 to 16
times when alocal replicais available versus using a centralized service like FTP. The fault-
tolerance tests showed that using a high number of replicas could provide 100% availability and
that even just two replicas could provide over 90% availability.

Thereis still much work to be done. We have many opportunities to add more
functionality to the L-Bone and optimize the Logistical Tools. We plan to use the L-Boneto
monitor bandwidth between depots using NWS. Thiswill assist users looking to perform overlay
routing using depots. The Logistical Toolswill benefit greatly from multi-threading and using
different policies for uploading, downloading and augmenting. Thiswork is aready under way.

43

LIST OF REFERENCES

[ASP+02]

[BMPO1]

[CLG+94]

[Glo02]

[KBC+00]

[Net02]

[PBB+01]

[Plad7]

[RSC8]

[Sac01]

[SRC84]

LIST OF REFERENCES

S. Atchley, S. Soltesz, J. Plank, M. Beck and T. Moore, Fault-Tolerance in the
Network Stack. In Annual |EEE Workshop on Fault-Tolerant Parallel and
Distributed Systems, April 19, 2002.

M. Beck, T. Moore, and J. S. Plank. Exposed vs. encapsulated approaches to grid
service architecture. In 2nd International Workshop on Grid Computing, Denver,
2001.

P. M. Chen, E. K. Lee, G. A. Gibson, R. H. Katz, and D. A. Patterson. RAID:
High-performance, reliable secondary storage. ACM Computing Surveys,
26(2):145-185, June 1994.

GridFTP. The Globus Project. Available: http://www.globus.org/toolkit/data-
management.html, accessed March 29, 2002.

John Kubiatowicz, David Bindel, Y an Chen, Steven Czerwinski, Patrick Eaton,
Dennis Gedls, Ramakrishna Gummadi, Sean Rhea, Hakim Weatherspoon,
Westley Weimer, Chris Wells, and Ben Zhao. OceanStore: An Architecture for
Global-Scale Persistent Storage. Appears in Proceedings of the Ninth
International Conference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS 2000), November 2000.

NetGeo. NetGeo — The Internet Geogrphic Database. Available:
http://www.caida.org/tool s/utilities/netgeo/, accessed April 3, 2002.

J. S. Plank, A. Bass, M. Beck, T. Moore, D. M. Swany, and R. Wolski.
Managing data storage in the network. |EEE Internet Computing, 5(5):50-58,
September/October 2001.

J. S. Plank. A tutorial on Reed-Solomon coding for fault-tolerance in RAID-like
systems. Software — Practice & Experience, 27(9):995-1012, September 1997.

D. P. Reed, J. H. Sdltzer, and D. D. Clark. Comment on active networking and
end-to-end arguments. |EEE Network, 12(3):69-71, 1998.

David Sacks. Demystifying Storage Networking: DAS, SAN, NAS, NAS
Gateways, Fibre Channel, and iSCSI. IBM Storage Networking, 3-11, June 2001.

J. H. Saltzer, D. P. Reed, and D. D. Clark. End-to-end arguments in system

design. ACM Transactions on Computer Systems, 2(4):277-288, November
1984.

45

[VEA9S]

[WSH99]

Amin M. Vahdat, Paul C. Eastham, and Thomas E. Anderson. WebFS: A Global

Cache Coherent File System. Available: http://www.cs.duke.edu/~vahdat/webfs/
webfs.html, accessed April 2, 2002.

R. Wolski, N. Spring, and J. Hayes. The Network Wesather Service: A distributed
resource performance forecasting service for metacomputing. Future Generation
Computer Systems, 15(5-6):757-768, 1999.

46

APPENDI X

47

Attribute Name
depotname

hostname
port
StableStorage

AvailableStableStorage

VolatileStorage

AvailableVolatileStorage

duration
lastUpdate

status

lat

lon

airport

Zip

email
connection
monitoring
power
backup
polled
responded
firewall
notifyOwnerPeriod

lastMail

APPENDIX 1: L-BONE SCHEMA

Attribute Types

Description

Depot name — may be same as hosthame. Must be unique within the
L-Bone.

IBP depot’ s hostname

IBP depot’s port

The amount of stable storage the depot is capable of serving

The amount of stable storage available for new alocations

The amount of volatile storage the depot is capable of serving
The amount of volatile storage available for new allocations

The maximum amount of time this depot will allow per alocation

The last time the depot responded to an | BP_st at us() call from
the L-Bone

Currently unused

The latitude of the depot

The longitude of the depot

3-letter code of the nearest airport

The five-digit US postal code for the depot (US only)

The email address of the depot owner

Describes what type of internet access the depot has
Describes how frequently the machine is monitored
Describes the backup power capability offered to the depot
Describes the data backup policy for the depot

How many times the depot has been polled by the L-Bone
How many times the depot responded to L-Bone polls
Shows whether the depot is behind afirewall

Describes what frequency the L-Bone should alert the owner if the
depot becomes un responsive

Stored the time when the L-Bone last emailed the owner that the
depot was unresponsive

48

APPENDIX 2: L-BONE SCHEMA

Object Classes

depot

Required Attributes:
depotname
hostname
port

Optiona Attributes:
StableStorage
AvailableStableStorage
VolatileStorage
AvailableVolatileStorage
Duration
status
lastUpdate
c
st
I
zip
lat
lon
airport
email
connection
monitoring
power
backup
polled
responded
firewall
notifyOwnerPeriod
lastMail

location

Required
Attributes:;
lat

lon

Zipcode — “ Zipcode”

Required Optional
Attributes: Attributes:
zip c
st

airportClass — “Airport”

Required Optional
Attributes: Attributes:
airport c
st

cc —“Country Class”

Required
Attributes:
c
state — “ State”
Required Optional
Attributes: Attributes:
st c
city —“City”
Required Optional
Attributes: Attributes:
I c
st

49

APPENDIX 3: SAMPLE XNDRC FILE

This file contains defaults for the ExNode library. These defaults can be overriden by specifying parameters on the
command line of each tool. Any line starting with a # is ignored. To uncomment a line, delete the #.

H* H*

Schema file and Oracle parser library.

#

Use SCHEMA_FILE to specify the absolute path for exNode.xsd. The default for SCHEMA_FILE is to look in the

current directory.

#

Use PARSER_DIR to set the env variable ORA_NLS33 to the absolute path to nisdata_linux or nisdata_sun. There is
no default for PARSER_DIR. If it is not specified here, the environmental variable ORA_NLS33 must already be set
before using any tools.

#

SCHEMA_FILE /neon/homes/atchley/projects/eXnode/exNode.xsd

PARSER_DIR Ineon/homes/atchley/projects/eXnode/xnd/nisdata_linux

LBone information.

#

The LBONE_SERVER and LBONE_PORT are required.

#

See loci.cs.utk.edu/lbone/lbone_api.html for details on how to specify location options. Location may be left unused and
will default to random depots.

#

Set DURATION_DAYS to be the number of days that you want the new storage to exist when you use xnd_upload,

xnd_augment and xnd_download. You may specify partial days. The default is 5 day.

#

The Ibone uses the PROXIMITY_FILE to determine which depots to are best for downloading. If no file is specified, the
exnode tools will look for proximity.txt in the current directory. If it is not there, then no proximity resolution is done and
downloads will be from the first available segment.

#

LBONE_SERVER adder.cs.utk.edu

LBONE_PORT 6767

LOCATION zip= 37996

DURATION_DAYS 5.0

PROXIMITY_FILE /neon/homes/atchley/projects/eXnode/src/proximity.txt

IBP information. STORAGE_TYPE may be either STABLE or VOLATILE and it defaults to STABLE. See the IBP
website for details.

#

STORAGE_TYPE STABLE

Error message output. Set VERBOSE to 0 for error messages only. Set VERBOSE to 1 for basic status messages. Set
VERBOSE to 3 for detailed status and error messages. The default is 0.

#

VERBOSE 0

Output directory. Specify a directory where you would like to store your exnode files. The default is the current
directory.

#

XND_DIR exnodes

Buffer size. Upload and download require a buffer as they move data to and from depots. You can specify values using
K for kilobytes or M for megabytes. Make sure there is a space between the number and the K or M. Currently, the
tools will accept a value between 1 K and 100 M. The default buffer size is 4 M.
#
BUFFER_SIZE 4M

Use FRAGMENTS_PER_FILE to break a file into a specific number of pieces. Use FRAGMENT_SIZE to store the file
in blocks of this size. You may specify either FRAGMENTS_PER_FILE or FRAGMENT_SIZE, but not both. If you set
both, it will use FRAGMENTS_PER_FILE. The default is FRAGMENTS_PER_FILE = 1. You may use K for kilobytes or
M for megabytes. You must leave a space between the number and K or M.

Use COPIES to set how many copies of the file that you want to create. COPIES defaults to 1.

HH o oHHH

FRAGMENTS_PER_FILE 1
COPIES 2

50

VITA

Scott Atchley first attended the University of Tennessee from 1983 to 1987. He received
his Bachelor of Science from the College of Business Administration in March 1987 with a major
in Marketing. He graduated with honors.

During his senior year, he began worked for the Cobia Boat Company, located in
Sanford, Florida, as a salesman. Histerritory covered seven states in the southeast. After
graduation, he continued in this capacity until 1998 when he became the Director of Marketing.
He helped oversee the company’ s expansion into a new plant in VVonore, Tennessee. At that time,
he became much more involved in the daily operation of company and was involved in
production scheduling, product design and engineering in addition to his marketing duties.

In 1993, Scott became VP of Sales and Marketing at which time the field sales began
reporting to him. In 1995, Y amaha Moator Corporation bought Cobia and planned to move it to
Panama City, Florida. Scott |eft the company and joined Eastern Marketing Associates, a
manufacturers representative firm that sells components to boat builders and distributors. At
EMA, Scott was responsible for afive state region. In 2000, EMA merged with the R. J. de Recat
Company and formed the Derema Group. During that year, Scott’ s territory increased over 70%.
In the fall of 2000, Scott entered the University of Tennessee Graduate School in the Computer
Science department. He stayed with Derema through January 2001 to bring his replacement up to
speed.

During histenure at UT, he has worked with the Logistical Computing and Inter-

networking (LoCl) Lab working on the L-Bone and Logistical Tools. He plans to work for LoCl
as a staff researcher after graduation.

51

	Design and Implementation of the L-Bone and Logistical Tools
	Recommended Citation

	atchley-thesis.pdf

