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ABSTRACT 

The purpose of this study is to examine the current fracture toughness test 

procedure and to determine if there is an easier, less complicated method to get the JIc 

value from a test record for fracture toughness specimens. The current method for 

constructing JIc is complicated and involves a detailed computer program or spreadsheet. 

The objective in this study is to simplify the analysis for the determination of JQ. 

This study has shown that the load and displacement record for a fracture 

toughness specimen can be used to directly estimate a JQ value, a provisional value for 

fracture toughness, JIc. The maximum load point is used along with an adjustment factor 

for this direct estimation of the JQ value. This JQ value is equivalent to that obtained from 

the construction procedure, when a unit-sized specimen is tested, that is, a specimen with 

a width of 50 millimeters (2 inches) and a thickness of 25 millimeters (1 inch). Other 

sizes require a size adjustment factor, which is simply a function of the specimen width 

relative to the unit width. The adjustment factor proposed is a square root relationship 

between the width of the test specimen and a unit width. This shows that the effort 

required for the proposed new method of constructing JIc is less than that required for the 

construction method, the new method is simple in concept and requires a minimum 

number of calculations, and the method appears to produce values of JQ which are 

comparable to those obtained from the construction procedure and may have less inherent 

scatter. 
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Atot = Total area under load displacement curve 
a = Crack length 
ao = Initial crack length 
ai = Crack length index 
af = Final crack length 
B = Specimen thickness (gross) 
BN = Net specimen thickness 
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J = Non-linear fracture parameter 
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Jtotal = Total J determined using area under load displacement curve 
K = Crack tip stress intensity factor 
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k = Multiplication factor 
L = Constant used in normalization 
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M = Constant used in normalization 
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N = Constant used in normalization 
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Pno = Normalized load 
Pno max = Maximum normalized load 
Rsb = Strength ratio for bend specimen 
Rsc = Strength ratio for compact specimen  
vel = Elastic displacement 
vpl = Plastic displacement 
vtot =Elastic and plastic displacement 
W = Specimen width 
∆a = Crack growth increment 
η = Coefficient in J calculation, (η=2.15 for compact specimen), (η=2.0 for bend 
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σFlow = Flow stress 
σUTS = Ultimate tensile stress 
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CHAPTER 1: INTRODUCTION 

Fracture mechanics deals with the behavior of structures and material with crack-

like defects. Fracture toughness is defined as a generic term for measuring a material’s 

resistance to the extension of a crack [1]. A higher toughness material resists crack 

growth at higher loading better than a less tough material. Many failures have occurred as 

a result of fracture, which can occur even thought the yield stress is not exceeded. 

Fracture was studied after a number of failures that involved crack-like defects in the 

structure.  Some examples of fracture based failures were: a molasses tank explosion of 

1919 in Boston, Liberty ships cracking during World War II, rocket motor case failures in 

the space program [4, 5, 6]. 

A molasses tank failed in 1919 in Boston, Massachusetts [4]. A tank holding two 

million gallons of molasses burst and a ten-meter high wall of molasses flooded the 

streets. The holding tanks were not designed with crack growth in mind. A crack grew on 

a cold day and the tank exploded. At the time the cause of the tank explosion was a 

mystery and the reason for failure was not understood.  

The Liberty ship problem was a combination of new technologies [5]. New 

welded ship hulls were faster to build than riveted ships. The riveted ships did not have 

problems breaking in half because a crack would stop at the joint of the plates. The 

welded hulls allowed cracks to grow continuously along the ship hull. The Liberty ships 

would get into cold water where the fracture toughness of the steel was reduced and the 

ships experienced cracking problems with several of them splitting in two and sinking. 

The Liberty ship failures created a renewed interest in research studies into the causes of 
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these failures. The United States Navy wanted to know how to build ships that would not 

fail by fracturing in cold water. The study by the Navy was an important step in 

understanding fracture related failures. 

Hydrotesting a solid rocket motor casing for the NASA space program caused a 

highly documented failure [6]. NASA was hydro testing a 660 cm diameter rocket motor 

casing for solid fuel rockets. The rocket motor casing consisted of welded sections that 

formed a tube. During the hydrotest the welded casing ruptured at 56% of the planned 

pressure rating. The pieces were examined and crack growth was observed to be the 

cause. The cracks started from flawed weld joints and cracks continued to grow until the 

casing ruptured. The rocket motor failure led NASA to promote the organization of an 

ASTM committee activity that led to the development of the first standardized method 

for fracture toughness testing. 

The standards developed for fracture mechanics allowed for constancy of fracture 

toughness results. The standards required uniform test specimens, testing procedure and 

analysis of the results. The American Society for Testing and Materials (ASTM) 

Committee E 24 on Fracture Mechanics developed the first standard for fracture testing 

standard; it is ASTM standard E 399; the standard method for KIc testing [1]. The fracture 

toughness test for KIc is strictly for linearly elastic materials. Many engineering materials 

fail under non-linear conditions and a need for a non-linear fracture toughness standard 

became apparent. ASTM published a standard for testing non-linear fracture behavior, 

one that could be used for large plastic behavior in the fracture specimens, in 1981. This 

was standard E 813; it was based on the J integral and resulted in a JIc fracture toughness 

value [2]. As the approaches to fracture toughness testing developed, numerous test 
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methods resulted. The most current standard E 1820 [3] includes both linear and non-

linear fracture behavior.  

The fracture mechanics methodology is used to reduce or prevent failures by 

fracture. The fracture toughness tests determine the toughness of a material; these 

toughness values can be used to set design limits to avoid fracture. Knowing when 

fracture mechanics should be used is important in design and safety.  

Tests are performed according to the ASTM standards, so that the values for 

fracture toughness of a material can be measured. The testing and analysis methods 

currently used are very involved and complicated. The analysis of the data requires large 

amounts of calculations where errors can occur. An inter-laboratory exercise to study the 

current fracture toughness standard test methods (called a Round-Robin study), reveled 

both the complexity of the current fracture toughness construction methods and the 

potential for inter laboratory scatter [8]. A simpler, more direct method for determining 

the fracture toughness value without doing the complex construction and large amounts 

of calculations would be useful. By reducing the number of calculations required, the 

possibility for making errors could be reduced. A simpler method could save both time 

and cost for determining the fracture toughness values.  
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CHAPTER 2: BACKGROUND 

Fracture mechanics is the study of the effects of crack-like defects in structures 

and materials on the load bearing capacity. The use of fracture mechanics allows a 

determination of the conditions necessary to avoid failure. This is usually given in terms 

of a critical load for failure or a critical defect size. 

The orientation of the loading relative to the crack-like defect determines the 

mode of loading for fracture. There are three modes of loading depending on the loading 

orientation relative to the crack plane. The loading perpendicular to the crack plane is 

called opening mode or Mode I. Mode II loading is in-plane shear or sliding. The crack is 

loaded along the plane of the crack and parallel to the crack plane surface. Mode III 

loading is out-of-plane shear or tearing. The crack is loaded with shear loads out of the 

plane of the crack. Figure 1 shows the three modes of loading (All tables and figures are 

in APPENDIX A).  The most damaging orientation is that for mode I, and all standard 

test methods use only that mode of loading.  

There are two main branches for analyzing fracture mechanics. The analysis of 

the two main branches depends on the type of deformation experienced by the material 

during the test. The linear elastic fracture mechanics (LEFM) that is based on the 

parameter K. The LEFM analysis is for the case of linear elastic deformation and is 

relatively simple and quick to perform. When the deformation of the test specimen has 

plasticity then a non-linear method is required. A non-linear fracture mechanics or 

elastic-plastic fracture mechanics (EPFM), which uses several non-linear parameters, 

namely J and crack-tip opening displacement. EPFM methods are more complex than the 
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simple LEFM analysis. However, non-linear behavior is encountered more often in the 

failures of real materials and structures. The linear elastic method is discussed next. 

 

2.1 LINEAR ELASTIC FRACTURE MECHANICS 

LEFM deals with predominately linear-elastic deformation; small areas of non-

linear deformation can be ignored if they are within the limits set in the test methods. The 

LEFM methods are relatively straightforward and simple. The fracture toughness 

parameter for LEFM is K, the crack tip stress intensity factor; this K parameter is labeled 

KIc at failure. K can be determined from values of load and crack length. The KIc values 

are a material property determined by the ASTM standard E 399 [1]. The KIc values are 

determined from a point on the K-R curve and are a material property.  The K-R curve is 

a plot of the parameter K versus crack extension. It shows that as the crack begins to 

grow, the resistance to its growth, R, decreases until a steady state is reached. The K-R 

curve is a shortened name for the crack growth resistance curve. A typical ductile 

material K-R curve is shown in figure 2.  

When the limits for using the linear method are violated, the non-linear fracture 

methods have to be used.  A parameter labeled stress ratio, Rsc or Rsb, can be used to 

determine whether LEFM of EPFM should be used. The Rsc is used for compact 

specimens and the Rsb is used for bend specimens. The stress ratio is a value of nominal 

crack-tip stress to material yield strength. An example of stress ratio for the compact 

specimen is equation (1). 

ys
sc aWB

aWPR
σ2

max

)(
)2(2

−
+

=   (1) 



 6

 When the Rsc is less than or equal to one, the LEFM method should be used. A 

value below one, means that the material behaves in a fully elastic manner. When the Rsc 

is above two, the material behaves in a fully plastic manner. When the material is fully 

plastic, the EPFM method should be used. When the stress ratio is in between one and 

two, the material is said to be in an elastic-plastic state. The methods for LEFM work 

better for Rsc is closer to one and EPFM work best with Rsc that is above two. The 

equations for Rsc and Rsb are in the ASTM standard E 399. Next the non-linear or elastic-

plastic fracture mechanics methods are discussed. 

 

2.2 ELASTIC-PLASTIC FRACTURE MECHANICS 

When Rsc is greater than one the EPFM method is used. Non-linear fracture 

includes the deformation from elastic and plastic components in fracture analysis. The 

non-linear fracture mechanics methods are more complicated than LEFM methods; the 

incorporation of plasticity into the analysis complicates the analysis. One fracture 

toughness parameter used for non-linear fracture mechanics is the J integral. The 

determination of J includes load, load-line displacement and crack length.  

The basic fracture toughness characterization by the J integral for ductile 

materials is the J-R curve, which is a plot of J versus ductile crack extension, ∆a. Figure 3 

shows a typical J-R curve. Often a single value of toughness is defined to simplify the 

analysis of fracture potential. To get a single point toughness, a point on the J-R curve is 

determined by a construction procedure. This point is labeled JQ, a provisional value that 

becomes JIc when criteria t in the standard are me.  



 7

 

2.3 MULTIPLE SPECIMEN R CURVE CONSTRUCTION  

The two main methods for development of R curves are the multiple specimen 

technique and the single specimen method. The multiple specimen technique involves 

testing five or more identical specimens with each specimen loaded to a different point on 

the load versus displacement curve. The specimens are first loaded to the desired point, 

then unloaded, and finally heated to mark the crack growth by oxidation. The specimens 

are then cooled in liquid nitrogen and broken open. The initial and final crack lengths are 

measured optically on the fracture surface. From this the J value is calculated at the final 

load point. These values, J and crack growth, ∆a, are used to plot the J-R curve.  

Because of cost for each test, it is desirable to use as few specimens as possible. 

For each test a specimen needs to be fabricated, pre-cracked and tested. The fabrication 

and pre-cracking of the specimens can take a considerable amount of time. The accuracy 

of the test also depends on the number of samples tested. The more samples tested the 

better the JQ result. 

 

2.4 SINGLE SPECIMEN R CURVE CONSTRUCTION 

The single specimens method for construction of J-R curves requires that only one 

specimen be prepared and tested. The specimen must have crack monitoring equipment 

to determine crack growth. A crack can be monitored by optical measurements, 

compliance methods or an electrical potential system. The single specimen method 

requires measuring or calculating the crack growth continuously or at a discrete number 
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of points for the specimen and then plotting the J versus ∆a curve. The advantage of the 

single specimen test method is that only one specimen has to be fabricated and tested to 

determine the entire R curve.  

Among the different single specimen methods for determining the J-R curve, only 

the compliance method is accepted by ASTM. The compliance method uses unloading 

and reloading to develop elastic slopes. These slopes are related to crack length using a 

compliance calibration equation. From the individual crack length measurements and 

values of J calculated at each point, the J-R curve can be determined. The elastic 

unloading compliance method is favored because it lends itself well to computerized data 

collection and analysis. However, the method is often difficult to use and requires good 

set up and experience. The fixtures have to be aligned properly in order to get good 

results. Noise from the testing equipment can cause some errors for measuring the 

compliance. Measuring the compliance requires that the gauges be very accurate. When 

bad alignment or noise interferes with the test, the crack length measurements may have a 

great deal of variability. The crack may appear to first grow larger and then smaller, an 

unrealistic possibility. Measuring the crack by compliance is difficult and many 

laboratories have trouble getting the compliance measuring equipment to work. The 

automated compliance method requires a good amount of experience. Once the J-R curve 

is determined by these compliance measurements, the analysis procedure in the standard 

is used to determine the JQ value.  
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2.5 THE R CURVE SHAPE AND USE 

A ductile material fails by coalescence of micro-voids; the development of the 

micro-voids causes an increase in slope of the R curve. A material that fails by cleavage 

results in an unstable fracture and an R curve does not develop. When the failure mode 

changes from predominantly ductile micro-void coalescence to cleavage, the R curve will 

suddenly terminate. 

The R curve is used to determine the fracture toughness value of a material. A 

point is selected on the R curve as the fracture toughness value. When a single value of 

fracture toughness is determined for ductile fracture, the point is called JIc. The JIc value 

is a point determined by a construction procedure on the J-R curve and originally is 

called the JQ value. JQ is a trial or provisional value of JIc. The JQ value has to meet 

specific criteria before the point is accepted as JIc value. The current method for 

determining JQ requires a detailed construction procedure that sometimes allows for 

errors or inconsistencies in the analysis.  

 

2.6 DETERMINATION OF JQ POINT 

The construction procedure for determining the JQ point is explained in full detail 

in a later section. The J values determined from the data were plotted versus crack 

growth. A line is drawn at ∆a = 0, the slope of this line is used to draw two other lines 

offset at 0.15 millimeters and 1.5 millimeters. The data inside the two offset lines is 

included in further analysis. The data also have to lie below the maximum J limit and lie 

within the crack growth limits. The data not excluded is by the lines and limits, is fitted 
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with a power law. A third offset line at 0.2 millimeters is drawn, were the line intersects 

the curve fit of the data determines the JQ value. The JQ value is a provisional value of 

fracture toughness. The JQ value becomes a JIc value when the validity requirements in 

the ASTM standard were satisfied. A typical construction plot with all the construction 

lines is shown in figure 4. 

 

2.7 DIFFICULTY WITH CURRENT ANALYSIS 

There are problems with the current analysis method. These problems include 

difficulty with both the multiple and single specimen methods for determining J. The J-R 

curve and the subsequent construction procedure used to determine JQ from the J-R curve 

are a cause for variability in the JQ value. 

The multiple specimen tests require the use of five or more specimens. The 

specimens need to be fabricated, and pre-cracked before any testing can be started. 

Making five or more specimens could be expensive when testing a new material. Pre-

cracking the specimens takes time and ties up equipment. The more specimens used to 

determine the J-R curve the better the results. After testing the specimens the crack 

locations need to be measured. Measuring the initial and final crack points takes time. 

The possibility for making and error while measuring on multiple specimens is increased. 

The problems with the single specimen method are related to the compliance 

method. This method is often difficult to get to work. Problems from set up of the fixtures 

and gauges effect the compliance. Noise form the testing machine can create errors in the 

compliance. When the compliance method does not work a normalization method can be 

used. The normalization method is calculation intensive and requires a computer-spread 
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sheet or programs. When testing large specimens there may not be a sufficient number of 

development data points in the area defined by the two exclusion lines. With a small 

amount of data in the analysis area, the fitting constants created from the power trend line 

do not accurately portray the shape of the R curve.  

The difficulty with the current JIc test method and potential variability caused by 

the analysis gives a reason to try to find an easier and more reproducible method for 

determining a JIc value. 

 

 2.8 OBJECTIVE 

The purpose of this study is to find a less complicated method for determining JIc 

fracture toughness values. Currently the determination of JIc is based on a construction 

process that is complicated and time consuming. Eliminating the need to do a large 

number of calculations saves time and reduces chances for making errors. The idea 

pursued her is find a characteristic point on the load displacement curve that gives a JQ 

estimate close to the JIc value obtained by the rigorous construction procedure given in 

the standard test procedure. If such a point is identifiable, a JQ value could be estimated 

with much less work. The value may not be the exact fracture toughness of the material. 

An exact value would require doing the present procedure. However, this estimation 

could provide a satisfactory estimation of the JQ fracture toughness value. 
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CHAPTER 3: PROCEDURE 

3.1 SPECIMEN PREPERATION 

The most commonly used specimen for fracture toughness testing is the compact 

specimen. It is rectangular in shape, with thickness half of the width. The dimensions of 

the compact specimen are labeled width (W), total thickness (B), notched thickness (BN), 

crack length (a), initial crack length (ao), final crack length (af) and un-cracked ligament 

(b). A compact specimen is constructed according to the ASTM standard for fracture 

toughness testing. A typical compact specimen with dimensions labeled is shown in 

Figure 5. All but three of the specimens used in this work were of the compact geometry. 

The most commonly used specimen size is 50 millimeters or two inches in width. In this 

study the 50 millimeter specimen size will be taken as a unit sized specimen. The 25 

millimeter specimen is becoming popular for new materials testing and irradiation tests. 

Since the cost of some new materials is high it is often better to test as small amount of 

material as possible. When irradiating specimens it is desirable to limit the specimen size 

because there is limited space in the capsules for irradiating specimens.  

The data used in the analysis consisted of nineteen 50 millimeter specimens and 

eleven other specimens other than 50 millimeters. The 50 millimeter specimen size was 

chosen as the unit size in this work. 

Test specimens must be fatigue pre-cracked before they can be tested. Pre-

cracking creates a sharp crack tip. The pre-cracking procedure is given in each of the 

ASTM standards. The prepared specimens must be fully heat treated to the test conditions 

for fracture toughness before pre-cracking is performed. After the pre-cracking operation 
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no intermediate treatments are allowed to the test specimen. The specimen can only be 

side grooved after pre-cracking. Side grooving produces nearly straight crack fronts.  

 

3.2 TEST PROCEDURE 

The test procedure involves loading a pre-cracked specimen to the fracture point 

or to a predetermined load or displacement point. During the test, the load and 

displacement for the specimen are measured. Additional measurements can be taken to 

determine crack length if such equipment is available. Test machines can measure 

compliance by unloading and reloading the specimen many times during a test; this 

method includes the crack growth on the data output for the test. The compliance is 

calculated from the reciprocal of the slope generalized by the unloading and reloading 

procedure. The compliance is then used to determine the crack length. Compliance is 

related to crack length using a calibration equation given in ASTM E 1820. Figure 6 

shows a typical compliance un-load reload curve. 

The specimen is broken open after the test to reveal the fracture surface in order 

to measure the initial and final crack lengths. The initial and final crack lengths are 

measured at nine different points through the thickness and an averaged value is used.  

In this study test results were taken from the literature. These include tests 

conducted at Westinghouse Research and Development Center [9], GKSS 

Forschungszentrum, Geesthacht [8], and tests used for the ASTM round robin exercise 

where the origin of the material and data was not revealed [8]. The Westinghouse data 

include some large specimen tests. The specimens B1 and B2 are large specimen tests 

conducted at Westinghouse [9]. B3 is a unit-sized specimen of same material. The 
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material for B1, B2 and B3 is an A508 steel, a reactor pressure vessel steel. The specimen 

dimensions for the Westinghouse R&D tests are in Table 1. Material properties for the 

Westinghouse R&D data Table 2. The GKSS tests specimen dimensions are in Table 1. 

GKSS is a European company that conducted some of the Round Robin tests. Material 

properties for the GKSS data are in Table 2. The material designations for the GKSS are 

A1 through A12. The round robin test specimen dimensions from the undisclosed 

laboratories are in Table 3. The material properties for these specimens are in Table 4. 

The unknown round robin specimens were designated C1-C16. 

The total number of specimens in the study was thirty-one. Fifteen specimens 

were used to construct the JQ point using the current ASTM standard analysis procedure. 

Nineteen other specimens from the Round Robin program used several different 

laboratories and graduate students to determine the JQ values. All thirty-one specimens 

were used to estimate the JQ values using the new method explained in chapter 5. The 

standard analysis procedure for determining the JQ point is described in chapter 4. 



 15

CHAPTER 4: DATA ANALYSIS 

The data were analyzed according to the ASTM standard E 1820 using the 

equations for compact specimens. The analysis also follows the method given by Kang 

Lee for normalization using the LMN constants [7]. The normalization method is used to 

determine the crack growth without the use of crack monitoring equipment. The 

procedure for determining the fitting constants, LMN, is explained in greater detail in a 

paper by Landes et. al [10].  

The basic data collected from the tests were in the format of load versus 

displacement. An example of a load versus displacement curve is given in figure 7a. The 

specimen dimensions along with the measured initial and final crack length were used in 

the analysis. The modulus of elasticity can be computed from the load and displacement 

record, but the flow stress must be known from tensile tests. The flow stress was the 

average of the yield and ultimate tensile stresses at the test temperature. The flow stress is 

used in the construction procedure to determine the JQ value. The data were analyzed to 

determine crack growth using the normalization method. 

The compliance is used to separate the plastic and elastic components of 

displacement from the test record. The equation for computing compliance is in the 

ASTM standard E1820. The original crack length is used for the compliance calculations. 

The elastic component of the displacement is determined from the load by using Eq. (2). 

The total displacement is a combination of elastic and plastic displacement as shown in 

Eq. (3). The plastic displacement is determined by subtracting the elastic displacement 

from the total displacement, Eq. (3).  



 16

( ) ( )iLLiel CPv *=  (2) 

plel vvv +=   (3) 

After the two components of displacement were determined, the load could be 

normalized to eliminate size and crack length dependence. A normalized load, PN versus 

a normalized plastic displacement, vpl/W is plotted. This normalized load versus 

normalized plastic displacement curve is a plot of the specimen plastic deformation 

character; it can be fitted. With a function that uses three unknown fitting constants L, M 

and N to fit the deformation shape. The plastic component of displacement is needed to 

determine the M and N fitting constants. The constants M and N have to be solved 

simultaneously. The constant L is determined by using the maximum normalized load. 

Equations (4) and (5) were arranged into a matrix form used to determine the M and N 

constants, explained later in greater detail later. 
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 The maximum load was selected from the data and was used as the L coefficient 

for the normalized load fit for crack growth. The value of L can be multiplied by 1 to 

1.12 depending on the value of N. When the fitting constant N was less than 0.0006, the 

value of L can be multiplied by k. The k values range from 1.0 to 1.12. The constant k is 

explained further in the dissertation of Kang Lee [7]. L, M, N are all the fitting constants 
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used in the calculation of crack growth. Equation (6) shows the calculation for the L 

constant. 
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 The values of M and N were calculated using Eq. (4) and (5). The loads for each 

of the equations must be equal so the N and M constants can be calculated. The known 

normalized load (Pno(i)) was used for Eq. (4) and the constants are solved from Eq. (5). 

 A simultaneous solver was used to solve at each value on the load displacement 

data points. Equation (7) was the equation set up for determining the N and M constants. 

Equations (8), (9) and (10) were the values substituted into Eq. (7) to solve for the M and 

N values at every load and displacement point. 
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The upper row of the matrix contained the current line being analyzed while the 

lower line contained the last point of the measured data. The last line of data always 

contained the final crack length and final load in the data. The equations had to be solved 

simultaneously. A computer program was written to solve the values of M and N at every 

data point. The appropriate range of M and N values were selected from the data and 
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averaged. The maximum data values for the M and N constants were determined by 

drawing a line from the final crack displacement point on the normalized load (PN) versus 

plastic displacement divided by width (vpl/W) diagram tangent to the curve, see Figure 

7b. Where the line was tangent to the PN versus vpl/W curve located the last point usable 

in the calculated N and M constants. The minimum point used was the first point on the 

PN versus vpl/W curve that was in the non-linear portion. The L, M and N values were 

used to calculate the normalized load including crack growth. The normalized load using 

the LMN constants to calculate the load was Eq. (5). 

 The normalized load with crack growth and no crack growth were plotted versus 

the plastic displacement divided by the width. Solving for the crack growth at each load 

displacement data point Eq. (4) and (5) were used along with Eq. (11) resulting in Eq. 

(12). Equations (4) and (5) loads were set equal and crack length was determined. The 

LMN constants for determining the load and displacement include crack growth so the 

crack growth was calculated at every point. The un-cracked ligament for the initial crack 

length is bo. As the crack length increases the un-cracked ligament decreases, Eq. (11) 

determines the un-cracked ligament with increasing crack length (bi). 
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When the crack length is known at every point the values for K and Jtotal are 

calculated using the equations in the ASTM standard. J versus the crack growth is plotted 

in order to determine the provisional fracture toughness value, JQ. 

The JQ is determined by a construction procedure that is described next. A construction 

line was drawn on the plot using Eq.  (13) as the slope.  

aMJ Y∆= σ  (13) 

Where M is usually taken as 2.0. Two exclusion lines are drawn offset at 0.15 and 

1.5 mm the crack length, using the same slope as the construction line from Eq. (13). 

Only the data between these two lines are used for the analysis, all data outside of the 

exclusion lines are not used for the calculation of JQ. The data in-between the exclusion 

lines are checked if in the maximum J integral and maximum crack extension limits. The 

maximum crack extension capacity for a specimen, ∆amax is given in Eq. (14). The 

maximum J integral capacity for a specimen, Jmax is the smaller of Eq. (15) or Eq. (16). 

The limits for ∆amax and Jmax do not show up on the graph because of the reduced scale. 

All data that meets these requirements can be used to determine the JQ point. Equations 

(14), (15) and (16) given the limits as specified in the ASTM standard E 1820. 

oba 25.0max =∆  (14) 

20max
YobJ σ

=   (15) 

20max
YBJ σ

=   (16) 
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The data falling between the exclusion lines are fitted with a power law, given by 

Eq. (17).  

( ) 2
1

CaCJ ∆=   (17) 

Where C1 and C2 are fitting constants. Using the power law the shape of the R 

curve can be plotted. Another construction line was drawn offset at 0.2 mm. The JQ value 

was determined from the intersection of the fitted line Eq. (14) and the 0.2mm offset line. 

Figure 4 shows a typical J-R construction for calculating the JQ point. The JQ value 

becomes a JIc value when the qualification requirements ASTM standard E 1820 are met.  

The specimens labeled A and B were analyzed using the ASTM standard E 1820 

method and the JQ values were determined. The JQ values for the specimens labeled C 

were already determined and documented in the round robin study. An example 

construction curve to find the JQ point is in figure 8. The closest data point to the JQ 

location is given as a solid point for identification and to use later. The points that were 

not between the two exclusion points were removed. The equation in the middle of the 

graph shows the constants C1 and C2 determined from the power trend line curve fit. The 

power trend line is the solid line on the plot. The maximum crack extension capacity and 

maximum J integral capacity are out of frame on the plot.  
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CHAPTER 5: SIMPLIFICATION STUDIES 

The major idea for simplifying the JQ evaluation process began with identification 

of the location of the load versus displacement value that is equivalent to the JQ point 

determined by the construction procedure of E 1820. The load versus displacement 

curves for specimens A1 through B3 are plotted and the points that are equivalent to the 

JQ values for the specimens were plotted on the curves. This point is located using 

spreadsheets to determine the point on the load versus displacement curve equivalent to 

the JQ value. This analysis is made for a range of specimen sizes from a width of 25 

millimeters to 508 millimeters. Two specimens are 25 millimeters in width, six are 50 

millimeters in width, three are 100 millimeters in width, two are 200 millimeters and two 

are 508 millimeters in width. Each group of sizes is plotted separately. The 50 millimeter 

specimens plot of the JQ on the load displacement curve is figure 9. The 25 millimeter 

specimens plot of the JQ on the load displacement curve is figure 10. The 100 millimeter 

specimens plot of the JQ on the load displacement curve is figure 11. The two 200 

millimeter specimens did not get a valid value for JQ, so the JQ from the 50 millimeter 

specimens is used as the value for the plots. The 50 millimeter specimens JQ value is used 

since the fracture toughness value because the same material has approximately the same 

JQ value for different specimen sizes. Figure 12 shows the 200 millimeter specimen’s 

load versus displacement curve with the JQ point on the curve. The two 508 millimeter 

specimens also did not give a valid result for JQ, so the JQ value from the B3 specimen is 

used for the JQ point. Figure 13 shows the 508 millimeter specimens load versus 

displacement curve with the JQ point on the curve.  
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The location of the JQ point on the load displacement curve for the 50 millimeter 

specimens shown in figure 9 is approximately at the maximum load point for all of the 

specimens. This is so for all six 50 millimeter specimen examples used in the analysis. 

The location of the JQ points on the load displacement curve for the 25 millimeter 

specimens is shown in figure 10. The JQ points are past the maximum load point for both 

specimens. The location of the JQ point on the load displacement curve for the 100 

millimeter specimens shown in figure 11 is before the maximum load point for all three 

specimens. The location of the JQ point on the load displacement curve for the 200 

millimeter specimens shown in figure 12 is well before the maximum load point for both 

specimens. The location of the JQ point on the load displacement curve for the 508 

millimeter specimens shown in figure 13 is at the earliest point of all specimens.  

Some observations about these plots can be made. The JQ value fell at 

approximately the maximum point on the load displacement curve for the 50 millimeter 

specimens (2 inch), therefore, this size is taken as the unit size. The maximum point is a 

convenient point because it is easy to identify on the unit sized specimen. From this it can 

be concluded that the maximum load provides a good estimation of JQ for the 50 

millimeter specimens analyzed here. The JQ for the specimens smaller than the unit size 

are farther along the load displacement curve, past the maximum load point. For 

specimens larger than the unit size JQ falls before the maximum load point. The smaller 

specimens have a larger plastic component of plastic displacement than the larger 

specimens. The larger component of plastic deformation causes the JQ point to fall farther 

out on the load versus displacement curve. The larger specimens have a larger elastic 
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component of displacement than the smaller specimens. The hence the JQ point fall 

earlier on the load displacement curve. This is reasonable because the larger the 

specimen, the larger the component of elastic displacement. As stated previously, 

specimens other than the unit size have a JQ value that is not exactly at the maximum 

load point; therefore, if JQ is to be based on the maximum load point an adjustment must 

be considered. The procedure below describes how the calculation for JQ on the unit size 

and the determination for other sized specimens is performed. 

The simplified procedure uses the maximum load point to determine the JQ value 

from the load displacement record. The calculation of the Jtotal using the total area under 

the load displacement curve is done using Eq. (18).  

Bb
A

J
o

tot
total

η
=   (18) 

The constant η is 2.15 for compact specimens and 2.0 for three point bend 

specimens, from the ASTM standard E 1820. The total area (Atot) under the load 

displacement curve is calculated so that Jtotal can be calculated. The total area under the 

load displacement curve is calculated using a trapezoidal rule for the data. The total area 

included all the area under the curve up to the maximum load point. Figure 14 shows the 

area used in the Atot calculation. The crack length used in Eq. (18) to get bo is the original 

crack length, ao.   

The Jtotal is used as the JQ value for the three point bend specimens and unit sized 

compact specimens. For specimens other than the unit size an adjustment factor is used.  

To determine the adjustment factor many different ideas were tried. The first idea was a 

linear fit with the ratio of the unit width to that of the actual specimen width. This 
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adjustment was not very accurate, causing the JQ estimation to be shifted too much. A 

better fitting factor for the adjustment factor would shift the JQ point less and would have 

to be non-linear.  Since the behavior required a smaller shift a square root of the ratio of 

specimen widths, was chosen as the adjustment factor. The Jtotal was then used to 

calculate the JQ for the specimen using the adjustment factor. Equation (19) is the 

adjustment factor used to get the JQ values from the other sized specimens. 

totalQ J
W

J *50
=  (19) 

The values for all 15 specimens were calculated and compared to the calculated JQ 

values using the construction method. The new values are in Table 5 as JQ new and the 

current construction method values as JQ. The Jtotal values without the adjustment factor 

and with the adjustment factor were plotted for each size specimen. Figure 15 is the 

estimated Jtotal value with the corresponding corrected JQ value. The adjustment factor 

adds to the specimens smaller than the unit-sized specimen and subtracts from the larger 

sized specimens. The non-linearity is evident in the plot of Jtotal values.   

For specimens with flat load displacement curves the noise in a test machine can 

cause oscillations in the load and an exact maximum load is difficult to determine. For 

these cases a point 1.0% to 0.5% before the maximum load is used as the loading point to 

determine the JQ value. This approach eliminates the noise from the test machine, but 

give a slightly lower value of fracture toughness. This lower point should only be used on 

specimens with noise problems. Specimens A11 and A12 were specimens were this rule 

was applied. The noise was causing the load to oscillate up and down and many 

maximum points were observed on the load versus displacement curve.  
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To verify that the maximum load point method was approximating the JQ value 

correctly, the JQ values were tested using data with known JQ values. The Round Robin 

data set with the known JQ values contained several different strengths of steel and a 

multiple specimen test for aluminum. These data was analyzed by a diverse group 

including several laboratories with experience in this type of analysis and some graduate 

students who were relatively inexperienced. For each test record the JQ values were 

estimated from the maximum load point method, Eq. (18), and were compared to the 

other laboratories’ JQ analyses. The values calculated from the different laboratories, 

graduate students and the new method are in table 6. Figure 16a through 16l shows the JQ 

values determined by the different labs, students, and maximum load method. The JQ data 

is the estimated JQ value using the new maximum load method. The data labeled 0.1% P 

in the legend of Figures 16 is the new maximum load method for estimating JQ with noise 

adjustment, that is using 99% of the maximum load for the estimation of JQ. The Data JIc 

is the results from the experienced laboratories and graduate students that participated in 

the round robin exercise. The average in the bar graph is the average values of the Data 

JIc or average values of the laboratories and students analysis. The average value excludes 

the estimation form the new maximum load method. The material in Figures 16a and 16l 

is aluminum; the material in the other figures is steel.  

Comparing Figures 16a through 16l shows that there is some scatter in the 

determined value for fracture toughness. Since these values are somewhat empirical, no 

one value can be taken as the exact value. Fracture toughness values that are within the 

range of previous toughness values are considered acceptable.  
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The average value cannot always be taken as the acceptable fracture toughness 

value. The averaged values of fracture toughness may not be the correct average if any 

one value has a large error or a value that is greatly different from rest of the values. 

Figures 16e, 16f, 16l are good examples of when any one value has a large error and is 

not within the range of the other values. By comparing the computed values from other 

laboratories the determined values of JQ can be checked to see if any gross errors were 

made. The values from the new method were plotted and error bands were drawn to show 

the JQ values determined from other laboratories. Figure 17 shows the plot of the JQ from 

the new method for the C specimens, the error bars are the maximum and minimum JQ 

determined by the Round Robin laboratory study. In Figure 17 specimens C1, C10 and 

C11 are outside of the error bands. These values are the only three that were out of the 

maximum to minimum region. The other specimens have the JQ value inside the 

maximum to minimum region. Specimens C2, C10 and C11 are the three bend bar 

specimens. 
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CHAPTER 6: SUMMARY AND CONCLUSIONS 

The JQ point can be estimated directly from the load versus displacement curve by 

using a method proposed in this work. This estimation is based on a J value determined at 

the first occurrence of the maximum load point in a load versus displacement curve. The 

specimens with noise can use 99% or 99.5% of the load value to estimates the JQ value. 

For unit-sized specimens (W=50 mm) this maximum load point gives a good JQ 

estimation. The bend specimens also use the maximum load method for an estimation of 

JQ. For other sizes the estimation of the JQ requires an adjustment factor. This adjustment 

factor is used to shift the estimated JQ from the J at maximum load for non-unit sized 

specimens. The three point bend specimens follow the same procedure as the compact 

specimens, except they do not use the adjustment factor; the Jtotal value is the JQ value.  

The new estimation method is not size dependent. The data analyzed appeared to 

be valid for specimens ranging from 25 millimeters to 508 millimeters. Further study to 

explore the range of the new method would require testing of many more different sized 

specimens. 

The calculation using the new JQ estimation method is much easier than the 

existing method of ASTM standard E 1820. Some of the variability inherent in using the 

standard method can be avoided. The new JQ estimation method works well for 

specimens that deform plastically and are ductile. The new estimation method is a good 

technique for getting JQ values when the current construction procedure fails. Using the 

new method, one can estimate a value from the tested specimen even when the 

construction procedure is not able to determine a fracture toughness value.  
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Further study would be desirable to see if this estimation method is more 

generally applicable. One idea for further study is to try this method for other materials. 

The study used only steel and aluminum specimens. Different materials behave 

differently and so this method may not work as well. Evaluation of the simplified method 

on polymers and alloys would be useful in determining the validity of the new method 

over a range of materials. 

Also, different specimen geometries should to be evaluated. The compact 

specimen was the main specimen geometry and only three bend specimens were tested. 

Further evaluation of different specimen geometries and other specimen sizes would also 

determine whether this method is size and geometry insensitive. The study of the effect 

of material and geometry variables is a recommended topic for future work.  
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Figure 1 - Modes of loading on crack surface [5] 
 

 
 

 
Figure 2 - Typical K-R curve [5] 
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Figure 3 - Typical J-R curve [5] 
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Figure 4 - Typical J-R curve construction and shape and analysis [5] 
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Figure 5 - Compact specimen geometry and dimension [3] 

 
 

 
Figure 6 - The Elastic Unloading-Reloading Compliance Method for 

monitoring Crack growth during fracture testing [7] 
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Figure 7a - Typical load displacement curve 

 
 

 
 

Figure 7b – Location of maximum data points for the calculation of 
normalization constants M and N 
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Figure 8 – Construction example of compact specimen. 
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Figure 9 - 50 mm specimens JIc points 
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Figure 10 - 25 mm specimens JIc points 
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Figure 11 - 100 mm specimens JIc points 

 
 



 40

0

100000

200000

300000

400000

500000

600000

700000

800000

900000

0 5 10 15 20∆a (m)

J 
(M

J/
m

2) A12 JIc

A11 JIc

A12

A11

 
Figure 12 – 200 mm specimens JIc points 
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Figure 13 – 508 mm specimens JIc points 
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Figure 14 – Area used in new method for determination of JQ 
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Figure 15 - The JQ estimated value with the corresponding corrected JQ value for different 
sizes of specimens  
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Figure 16a – C1 values for determining JQ 
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Figure 16b – C2 values for determining JQ 
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Figure 16c – C3 values for determining JQ 
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Figure 16d – C4 values for determining JQ 
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Figure 16e – C5 values for determining JQ 
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Figure 16f – C6 values for determining JQ 
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Figure 16g – C7 values for determining JQ 
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Figure 16h – C8 values for determining JQ 
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Figure 16i – C9 values for determining JQ 
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Figure 16j - C10 values for determining JQ 
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Figure 16k - C11 values for determining JQ 
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Figure 16l - C12-C16 values for determining JQ 
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Figure 17 – New JQ estimation comparison wit error bars for the maximum and 

minimum values for the JQ values from other laboratories 
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Table 1 - Material dimensions for compact specimen tests  
Specimen Material W B BN ao ∆a σflow 

A1 GKSS 25 12.5 12.5 14,22 2,47 544.5 
A2 GKSS 25 12.5 12.5 14,29 2,55 544.5 
A3 GKSS 50 25 25 27,57 4,68 544.5 
A4 GKSS 50 25 25 27,71 4,59 544.5 
A5 GKSS 50 25 25 27,46 4,75 544.5 
A6 GKSS 50 25 25 28,09 2,76 541.0 
A7 GKSS 50 25 25 28,59 4,77 541.0 
A8 GKSS 100 50 50 56,98 6,38 541.0 
A9 GKSS 100 50 50 56,56 9,43 541.0 
A10 GKSS 100 50 50 56,78 5,09 544.5 
A11 GKSS 200 100 100 113,15 17,47 541.0 
A12 GKSS 200 100 100 114,21 8,57 541.0 
B1 A508 508 254 203.2 298.958 73.00 465.4 
B2 A509 508 254 203.2 295.275 71.22 465.4 
B3 A510 50.8 25.4 20.32 26.1874 6.93 488.9 

* Dimensions in millimeters, Stress in MPa.     
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Table 2 - Material properties 1 

Specimen W (mm) E (GPa)
σYield 

(MPa) 
σUTS 

(MPa) 
σflow 

(MPa) 

Test 
Temperature 

(°C) 

A1 25 187.5 470.0 619.0 544.5 0.0 

A2 25 173.3 470.0 619.0 544.5 0.0 

A3 50 205.2 470.0 619.0 544.5 0.0 

A4 50 207.3 470.0 619.0 544.5 0.0 

A5 50 203.7 470.0 619.0 544.5 0.0 

A6 50 210.2 470.0 612.0 541.0 20.0 

A7 50 203.3 470.0 612.0 541.0 20.0 

A8 100 210.9 470.0 612.0 541.0 20.0 

A9 100 203.8 470.0 612.0 541.0 20.0 

A10 100 214.3 470.0 619.0 544.5 0.0 

A11 200 207.8 470.0 612.0 541.0 20.0 

A12 200 207.1 470.0 612.0 541.0 20.0 

B1 508 192.6 386.0 545.0 465.0 - 

B2 508 182.8 386.0 545.0 465.0 - 

B3 50.8 201.6 386.0 545.0 465.0 - 
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Table 3 - Material dimensions for test specimens  
Specimen Material W B BN ao ∆a σflow 

C1 AL 1.992 0.995 0.793 1.201 0.484 52.0

C2 Steel 2.0 1.0 0.8 1.130 0.105 93.0

C3 Steel 2.0 1.0 0.786 1.210 0.543 93.0

C4 Steel 2.0 1.0 0.8 1.224 0.298 84.0

C5 Steel 2.0 1.0 0.8 1.227 0.037 76.0

C6 Steel 2.0 1.0 0.8 1.249 0.077 76.0

C7 Steel 2.0 1.0 0.8 1.240 0.437 76.0

C8 Steel 12.0 6.0 4.8 6.210 3.405 86.4

C9 Steel 2.0 1.0 0.8 1.224 0.028 76.0

C10 Steel 4.0 2.0 1.6 2.056 0.005 85.5

C11 Steel 4.0 2.0 1.6 2.035 0.011 85.5

C12 AL 2.0 1.0 0.8 1.236 0.035 52.0

C13 AL 2.0 1.0 0.8 1.232 0.013 52.0

C14 AL 2.0 1.0 0.8 1.237 0.037 52.0

C15 AL 2.0 1.0 0.8 1.224 0.028 52.0

C16 AL 2.0 1.0 0.8 1.232 0.057 52.0

*Dimensions in inches, Stress in ksi 
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Table 4 - Material properties 2 

Specimen W (in) E (psi) 
σYield 

(kpsi) 
σflow 

(kpsi) 

Test 
Temperature 

(°C) 

C1 2.0 1.10E+07 44.0 52.0 25.0 

C2 2.0 2.90E+07 83.0 93.0 25.0 

C3 2.0 2.90E+07 83.0 93.0 25.0 

C4 2.0 2.90E+07 76.0 84.0 25.0 

C5 2.0 2.90E+07 65.0 76.0 -15.0 

C6 2.0 2.90E+07 65.0 76.0 -2.0 

C7 2.0 2.90E+07 65.0 76.0 23.0 

C8 12.0 2.90E+07 68.8 86.4 82.0 

C9 2.0 2.90E+07 65.0 76.0 -31.0 

C10 4.0 2.90E+07 72.0 85.5 12.0 

C11 4.0 2.90E+07 72.0 85.5 12.0 

C12 2.0 1.10E+07 45.0 52.0 25.0 

C13 2.0 1.10E+07 45.0 52.0 25.0 

C14 2.0 1.10E+07 45.0 52.0 25.0 

C15 2.0 1.10E+07 45.0 52.0 25.0 
C16 2.0 1.10E+07 45.0 52.0 25.0 
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Table 5 - JQ Values for different methods and laboratories 1 
    NEW ANALYSIS ASTM     

Specimen W (mm) JQ new JQ 0.995% P JQ 0.99% P JQ   Rsc
A1 25 0.778416 0.666701 0.577679 0.657240 MJ/m2 2.3806

A2 25 0.616101 0.616101 0.550081 0.633854 MJ/m2 2.3286

A3 50 0.829651 0.706431 0.629709 0.813028 MJ/m2 2.2446

A4 50 0.904273 0.801623 0.705730 0.991699 MJ/m2 2.3806

A5 50 0.894291 0.794894 0.726585 0.955348 MJ/m2 2.2706

A6 50 0.972451 0.744227 0.682015 0.695963 MJ/m2 2.2289

A7 50 0.901181 0.815943 0.725302 0.868390 MJ/m2 2.2504

A8 100 1.014811 0.895133 0.812397 1.495468 MJ/m2 2.2670

A9 100 0.955696 0.860522 0.789024 1.065560 MJ/m2 2.2518

A10 100 1.059944 0.801028 0.748705 1.215961 MJ/m2 2.2473

A11 200 1.250026 0.997778 0.884532 - MJ/m2 2.2234

A12 200 0.954769 0.936153 0.767759 - MJ/m2 2.2670

B1 508 0.166522 0.140159 0.140159 - MJ/m2 1.8015

B2 508 0.163014 0.125977 0.125977 - MJ/m2 1.7479

B3 50.8 0.183918 0.146356 0.113295 0.141530 MJ/m2 1.7773
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Table 6 - JQ Values for different methods and laboratories 2 

    NEW ANALYSIS 
OTHER LABS 

DATA    

Specimen W JQ new JQ 0.995% P JQ 0.99% P JQ max JQ min JQ ave Rsc 
C1 2.0 224.1 210.0 198.8 197.0 178.0 185.7 1.4518 

C2 2.0 653.1 554.4 512.5 959.5 511.4 811.8 1.9665 

C3 2.0 733.9 664.2 645.1 857.7 538.6 710.2 2.0981 

C4 2.0 2717.1 2224.6 1760.1 3148.0 2392.0 2768.5 2.1904 

C5 2.0 1020.7 314.0 726.5 1080.0 569.0 759.1 2.1450 

C6 2.0 985.0 804.4 709.9 1235.0 789.0 939.6 2.0907 

C7 2.0 1424.2 1203.5 1100.2 1639.0 1229.0 1520.2 2.1795 

C8 12.0 220.1 213.9 206.5 558.0 190.0 359.0 1.0710 

C9 2.0 300.6 289.7 289.7 369.0 264.4 316.4 1.9197 

C10 4.0 201.0 199.6 195.0 489.0 270.0 373.2 1.3804 

C11 4.0 733.3 718.3 706.0 1229.0 861.0 1072.8 1.9109 

C12 2.0 204.2 185.4 180.7 - - - 1.3621 

C13 2.0 170.5 166.2 161.9 - - - 1.3188 

C14 2.0 213.5 194.9 175.4 - - - 1.3274 

C15 2.0 181.2 171.8 158.8 - - - 1.3071 
C16 2.0 211.2 182.2 177.5 - - - 1.3247 

C15-C19 2.0 204.2 - - 291.0 151.0 185.9 - 

*Units for J in-lb/in2, W units Inches 
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APPENDIX B 
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A MATLAB program to simultaneously solve for constants for the M and N calculations 
used in the LMN calculations. Program uses Microsoft Excel spread sheet to get values 

used in solver and writes calculated values into spreadsheet columns and rows. 
 
 
% Calculates the LMN coefficients 
clear all 
clc 
format long; 
 
c=ddeinit('excel','A508.1 LMN.xls');% input file name here and below also 
dc=ddereq(c , 'r4c18:r393c18'); % reads data from Column " U " r4c21:r###c21 
m=ddereq(c , 'r4c19:r393c19'); % reads data from Column " V " r4c22:r###c22 
n=ddereq(c , 'r4c20:r393c20'); % reads data from Column " W " r4c23:r###c23 
 
nf=23; % Last row in data 
for i=2:22; 
 
    a=[m(i), n(i) ; m(nf), n(nf)]; 
    b=[dc(i), dc(nf)]; 
    x=b*inv(a)'; 
    mm(i)=x(1); 
    nn(i)=x(2); 
    i=i+1; 
 
end 
 
c=ddeinit('excel','A508.1 LMN.xls'); 
ddc=ddepoke(c,'r4c21:r407c21',mm'); % writes data to Column " X " r4c24:r###c24 
dcc=ddepoke(c ,'r4c22:r407c22',nn'); % writes data to Column " Y " r4c25:r###c25 
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