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Abstract 

In recent years, military vehicles have been equipped with hybrid, diesel-electric drives to 

improve fuel efficiency and stealth capabilities.  These vehicles require an accurate estimate of 

the power duty cycles during distinct operating conditions.  To meet this demand, a GPS-based 

mobility power and duty cycle analysis is one approach to predict the power requirements of on-

road and off-road vehicles.  The dynamic vehicle parameters needed to estimate the forces 

developed during locomotion are determined from the GPS tracking data, and these forces 

include the following:  the motion resistance, gravitational, linear inertia, rotational inertia, and 

aerodynamic drag.   The motion resistance force generated at the wheel and soil interface is 

quantified via the U.S. military's Vehicle Terrain Interaction (VTI) model.   

 

On-road controlled tests were performed to validate the motion resistance, grade, and inertia 

components of the model.  Uncontrolled tests were performed to validate the model in a scenario 

that simulated a U.S. military reconnaissance mission.  GPS data was collected from Trimble 

132 and Garmin 18 GPS receivers.  The predicted mobility power values from the GPS data 

were compared to the measured drivewheel power estimated from engine data transmitted on the 

vehicle's Controller Area Network (CAN).  The results from the validation tests indicated that 

the model accurately predicted the average power requirements of the vehicle while the model 

had a moderate level of variability when estimating the power requirements at discrete points in 

time during testing.  The motion resistance tests conducted at slow speeds provided for 

reasonable estimates of the required mobility power.  The absolute average percent error of the 

average positive power requirements during the grade and inertia tests was 6 and 21% 

respectively from the Trimble 132 GPS receiver.  The absolute average percent error during the 
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uncontrolled test was 20% from the Trimble 132 GPS receiver.  The model was applied to GPS 

tracking data collected for the U.S. Army's 8-wheeled Stryker vehicle conducting reconnaissance 

missions at Fort Lewis, Washington and Pohakuloa Training Area (PTA), Hawaii.  The mission-

specific power duty cycle characteristics were quantified, and the average positive power 

requirement at Fort Lewis and PTA was 65.4 and 43.6 kW respectively.   
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Chapter 1: Introduction 

In general, the military's requirement for a tactical vehicle's continuous gross traction ratio is 

60% (Taylor, 2011).  The capacity of such vehicles to maintain such a high load on the power 

source and drivetrain for a continuous period results in the careful consideration that must be 

made in selecting the appropriate engine size, cooling system, and drivetrain components 

(Taylor, 2011).  According to Rutherford (2004), the delivery of fuel to military vehicles is the 

single greatest logistical challenge during a military operation.  The costs associated with the 

delivery of fuel easily exceed $50 per a gallon of fuel.  The use of hybrid-electric military 

vehicles has the potential to substantially reduce the fuel costs required to operate military 

vehicles while the improved fuel efficiency may justify any additional cost associated with a 

hybrid-electric drivetrain.  A hybrid military vehicle that is capable of operating in a "pure 

electric" mode where only the electric motors power the vehicle allows the vehicle to be "stealth 

mode" capable is advantageous for today’s military personnel.  This feature extends the silent 

watch capability of the vehicle while reducing the heat signature of the vehicle during the 

stationary or low speed maneuvers.  Furthermore, a hybrid-electric drivetrain allows for the 

vehicle to be a source of mobile power generation (Rutherford, 2004).   

 

The control systems for the complex drivetrains of hybrid electric vehicles must efficiently and 

precisely supply, harvest, and manage the power required for locomotion.  Such systems demand 

accurate estimates of the power requirements of the vehicle during all types of combat 

operations. According to Brudnak (2008), previous efforts to estimate the power requirements 

during certain vehicle operations utilized a virtual vehicle-terrain interface to develop the 

simulated, mission-specific power requirements.  Currently, there is not an in-field method for 
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quantifying a vehicle's power requirements from a "comprehensive combat vehicle usage profile, 

or 'duty cycle' " for a given vehicle type (Brudnak et al., 2008).   

 

Recent research by Taylor (2011) at the U.S. Army Aberdeen Test Center has investigated the 

effect of varying a given vehicle's drivetrain (conventional, series hybrid, parallel hybrid, etc.) on 

the fuel consumption requirements of the vehicles during typical military vehicle duty cycles.  

Possible fuel efficiency improvement for a given vehicle platform is important when evaluating 

various drivetrain configurations.  The power/fuel duty cycle requirement of military vehicles "is 

ever changing, unknown, and is certainly not defined by an agreed upon duty schedule available 

for all platforms and weight classe   s of wheeled and tracked vehicles" (Taylor, 2011).  

 

Current methods for assessing vehicle performance occur in a chassis dynamometer laboratory 

where such fuel efficiency and emissions testing occur according to the Urban Dynamometer 

Driving Schedule (UDDS), the Highway Fuel Economy Test (HFET), and the US06 (Gonder et 

al., 2007).  These chassis dynamometer tests rely upon coastdown testing to provide estimates of 

the load that must be applied to a vehicle at a given point in a driving schedule.  Coastdown 

testing is accepted by the U.S. Environmental protection agency (EPA) as a means of 

determining the dynamic load to apply to a vehicle during chassis dynamometer testing (Yasin, 

1978).   

 

However, these tests may not be indicative of the actual vehicle performance and operating 

characteristics during a given real-world duty cycle (Gonder et al., 2007).  The electrical energy 

generation, consumption, and harvesting characteristics of a hybrid vehicle are substantially 
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effected by the power duty cycle requirements for a given vehicle operation.  Gonder et al. 

(2007) identified the on-road driving characteristics of 227 operators of standard passenger 

vehicles operating in an urban environment via GPS tracking of the vehicles.  The results 

indicated that the laboratory duty cycles did not accurately represent the significantly greater 

acceleration/decelerations that occurred in the observed urban maneuvers.  As a result, the 

Environmental Protection Agency (EPA) has adjusted the methods for determining the fuel 

economy ratings of light-duty cars and trucks.  This indicates that the laboratory tests may 

underestimate the power requirement and the potential regenerative braking energy for vehicles 

operating in this urban environment.  In-field estimation of the power and energy requirements 

of military vehicles during specific maneuvers is necessary to characterize the vehicle's mobility 

power duty cycles.  A GPS-based method for estimating the power duty cycle requirements of 

military vehicles would provide a cost-effective procedure for determining the duty cycle 

characteristics of a large fleet of vehicles.  The duty cycles could be developed from current or 

historical GPS tracking data of military vehicles where sophisticated data acquisition equipment 

for each vehicle may not be practical.    
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Chapter 2: Objectives 

The principle objective of this study was to develop, validate, and apply a GPS-based mobility 

power model to characterize the power requirements of vehicles.  Identifying all of the forces 

that effect vehicle locomotion was a critical task during model development.  Model validation 

occurred by performing on-road, controlled and uncontrolled vehicle tests while tracking the 

vehicle with GPS and logging the vehicle's Controller Area Network (CAN) signals which 

provided for engine and vehicle parameters.  The specific objectives were to:   

 

1. perform controlled tests to validate the motion resistance, grade, and inertia components 

of the model, 

2. validate and conduct an accuracy assessment of the model during the motion resistance, 

grade, and inertia controlled tests, 

3. conduct an uncontrolled test that simulated the maneuvers of military vehicles during 

reconnaissance mission executed by the U.S. Army, 

4. validate and conduct an accuracy assessment of the model during the uncontrolled test, 

5. apply the mobility power model to historical GPS tracking of the U.S. Army’s Stryker 

vehicle conducting reconnaissance missions at Fort Lewis, Washington and the 

Pohakuloa Training Area (PTA), Hawaii, and 

6. develop, compare, and contrast the power duty cycle characteristics of the Stryker 

vehicles operating at Fort Lewis and PTA. 
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Chapter 3: Literature Review 

 

3.1 Global Positioning  System (GPS) 

A Global Positioning System (GPS) is a form of a Global Navigation Satellite System (GNSS) 

developed by the United States Department of Defense initially for maritime navigation.  A 

GNSS system typically requires approximately 20 to 30 satellites to cover the entire Earth, and 

these satellites may or may not be in the geosynchronous orbit.  Three to six orbital planes are 

typically used in a GNSS system.  A GPS system functions by accurately measuring the time it 

takes for a GPS receiver to receive a signal transmitted from at least four satellites.  The distance 

from the GPS receiver to each satellite is computed by multiplying each associated time value by 

the speed of light (ie the speed at which the signals are transmitted), and this distance is called 

the pseudorange.  Advanced algorithms are used to compute the precise position of the GPS 

receiver from the pseudorange values and the precise position of each satellite, and this method 

is called trilateration.  Four satellites are needed to solve for the 3-dimensional position of the 

receiver because the error of the receiver's internal clock must also be calculated.  Differential 

correction of GPS relies upon a master control system that monitors the precise orbit and clock 

drift corrections for all of the satellites of a constellation.  The pseudorange correction data is 

transmitted to the receiver from each satellite to update the receiver on the corrected distance 

between the receiver and the satellites.  This correction data allows for a differentially corrected 

GPS position (Bevly, 2010). 

 



According to the National Marine Electronics Association (NMEA) 0183 Standard (1995), the 

GPS signals can be serially transmitted at a 4800 baud rate.  The critical GPS data for vehicle 

tracking are available on the $GPGGA and the $GPRMC NMEA strings.  The date, time, 

position, elevation, speed, and heading are transmitted on these NMEA strings (NMEA Standard, 

1995).  All of these parameters are important in the assessment of the mobility characteristics of 

a vehicle.  A description of the information transmitted on the $GPGGA and $GPRMC strings 

are given in Figures 1 and 2 respectively.   

 

 

Figure 1:  A description of the $GPGGA string (Source: NMEA Standard, 1995) 
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Figure 2:  A description of the $GPRMC string (Source: NMEA Standard, 1995) 

 

The GPS speed data can be estimated using several different approaches.  The methods used by 

the manufacturers of the GPS receivers to estimate speed are typically proprietary.  The simplest 

approach is to determine the speed of the receiver from the estimated displacement between the 

GPS points' position.  However, only a limited degree of accuracy can be attained using this 

approach, especially if there is significant error in the estimates of the receivers' position.  

Previous efforts by How et. al (2002) indicated that the measurement of each satellites Doppler 

frequency allowed for very accurate estimates of a test vehicle's travel speed.  The changes in the 

frequencies of the signals that are transmitted from the satellite to the receiver allow for the 

speed of the receiver to be estimated.  A principle advantage of this method is that the bias or 

error from the receiver's internal clock does not affect the estimate of speed (How et al., 2002).  

It is thought that the proprietary approach each GPS manufacturer has for estimating vehicle 

speed relies upon a combination of these two methods along with some filtering technique.   
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3.2 Controller Area Network (CAN)  

 

3.2.1 CAN Background 

The Controller Area Network (CAN) was developed by Robert Bosch in the 1980's to decrease 

the complexity of the wiring in automotives.  At the time, dedicated wiring was required between 

each component or device while vehicles began to be equipped with engine controller modules 

(ECM), traction control systems, and anti-lock brake systems (ABS).  The control system of the 

vehicles began to exceed the physical limitations of a system with dedicated wiring to each 

component.  As a result, the CAN network was developed where multiple devices can 

communicate across a single pair of wires. The complexity of the wiring of the vehicle is 

dramatically reduced with a CAN network.  The messages transmitted through a CAN network 

have a unique 11 bit identifier that provides the message’s information and priority.  Each 11 bit 

CAN signal transmitted contains multiple vehicle or engine parameters.  A node in a CAN 

network is any device that receives or transmits a message in the CAN network.  The CAN 

controller formats the messages sent by the nodes.  Only one node can transmit across the 

network at a given time, and all other nodes become receivers.  Other advantages of the CAN 

network include the following:  low cost, efficient data transmission, error detection, and the 

ability to transmit messages to multiple nodes.  The CAN network has been used for the control 

of agricultural and construction equipment along with controlling complex devices found in the 

manufacturing and transportation industries (Farsi, 1999). 

 

The CAN data from a vehicle can be used to estimate the engine power of the engine.  However, 

this estimated power is not the required mobility power or power delivered to the tractive 
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elements of the vehicle since drivetrain losses occur between the engine and the driven wheels or 

sprockets.  According to SAE Standard J1939-71 (1998), CAN bus diagnostics provide for 

several hundred vehicle and engine parameters.  A few of the vehicle and engine parameters 

typically embedded in the 11 bit CAN signals include the following:  vehicle speed, engine 

speed, fuel consumption, throttle position, temperature, and pressure.  The temperature and 

pressure of fluids within the following components are typically measured in a CAN bus system:  

air intake manifold, turbocharger, exhaust, oil pump, and water pump (SAE Standard, 1998).  

Engine diagnostic values are transmitted through the CAN network approximately every 0.01 s 

(10 ms).  An engine torque diagnostic value is available in certain CAN bus signals.  This 

diagnostic value is determined from several "lookup tables" stored in the engine control module 

(ECM).  Lookup tables allow the ECM to estimate and control certain functions of the engine 

and vehicle based on the output from the various sensors on the vehicle and engine.  For 

example, a lookup table that determines the fuel injection advancement may be estimated from 

the measured mass air flow rate and engine speed sensors.  The volumetric efficiency of an 

engine is stored in a lookup table in the ECM, and it is a function of the intake air's density and 

the engine speed.  An engine torque CAN message is estimated for a diesel engine from a lookup 

table that was developed from engine maps where engine torque is known at the given levels of 

engine speed and fuel consumption.  The engine maps are generated from testing the engine on a 

dynamometer.  Previous research with on-road trucks indicated that the estimated engine torque 

from the ECM's lookup tables can predict the actual engine torque within 5% while the vehicle is 

under load (David Irick, University of Tennessee, personal communication, 31 January 2012).  

The validity of messages such as engine speed, engine torque, and wheel speed are typically 

transmitted in the same CAN signal that the vehicle or engine parameters are transmitted.  This 
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allows for the validity of any messages being logged from the CAN network to be checked.  The 

brake power of the engine must be used to power such engine components as the fan, alternator, 

water pump, oil pump, fuel pump, and compressor.  Brake power from the engine is also 

absorbed or dissipated in such drivetrain components as the transmission, differential, and PTO 

shaft (Rakha et al., 2001; Rakha et al., 2004).  Transmission efficiencies usually range from 

approximately 0.89 to 0.94 but can vary due to type and complexity.  All of these factors 

contribute to the deviation between the estimated engine brake power value and a vehicle's 

required mobility power.  In a CAN bus based estimate of power, an indirect estimation of power 

is done where the power loss due to the drivetrain's mechanical efficiency losses and engine 

accessories must be considered to estimate the vehicle's mobility power.   

 

3.2.2 Engine Speed 

Engine speed is a critical engine parameter that is transmitted in various CAN signals, and it is 

an input to numerous engine functions controlled by the ECM.  Engine speed is typically 

measured by inductive or Hall-effect sensors.  Inductive sensors are typically positioned near the 

teeth of a gear on the flywheel or crankshaft.  The teeth of the rotating gear produce a voltage 

across a coil in the sensor, and the frequency and amplitude of the sinusoidal voltage is directly 

proportional to the speed of the rotating shaft.  Hall-effect sensors are semiconductor sensors that 

consist of several magnets, a magnetic rotor, and a microchip that processes the voltage signal.  

The hall-effect occurs when a voltage difference is produced perpendicular to the applied 

voltage, current, and magnetic field, and the perpendicular voltage produced is proportional to 

the rotating speed of the shaft (Bosch, 1993).   
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3.2.3 Engine Torque  

According to Irick, engine torque values found in certain CAN signals come from a lookup table 

stored on the engine control module's (ECM) memory.  For a diesel engine, inputs to the lookup 

table are the fueling rate to the engine, engine speed, and/or several other engine parameters.  

The fueling rate is estimated from lookup tables while the inputs to the lookup tables are the 

duration each diesel fuel injector is spraying fuel into the cylinders and the pressure at each 

injector.  Previous laboratory testing for the given fuel injector allows for the flow rate through 

the injectors to be characterized.  The ECM of a gasoline engine requires similar inputs to 

estimate engine torque except the intake manifold pressure or mass airflow rate is typically an 

input to the lookup table instead of the engine fueling rate since most gasoline engines operate at 

the stoichiometric air to fuel ratio.  A torque value is interpolated by the ECM from the engine 

torque lookup table according to the values of the inputs to the lookup table.  The lookup tables 

are generated from proprietary engine maps that were generated from measured data while the 

engine was loaded via an engine dynamometer.  Numerous engine parameters are measured 

while a known torque load is applied by the dynamometer at a certain engine speed.  The 

proprietary software used by the ECM is typically kept internal to the manufacturer, and there is 

not publicly available literature that describes each manufacturer's proprietary methods for 

estimating engine parameters from lookup tables (David Irick, University of Tennessee, personal 

communication, 31 January 2012).  

 

Any negative torque value in an engine torque lookup table comes from the measured negative 

torque from the engine dynamometer at a given positive fueling rate and one of the following:  

positive engine speed, intake pressure (absolute), and/or another engine sensor(ex. absolute boost 
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pressure) or possibly from another lookup table's outputted engine parameter value.  Negative 

torque can be attained on a dynamometer when, instead of the engine driving the dynamometer, 

the dynamometer's inertia is driving the engine.  For example, when the dynamometer goes from 

applying a high engine load to suddenly zero load at the rated engine speed, the result is that the 

fueling rate is low and the dynamometer is actually applying a negative torque to the engine. 

 

3.2.4 Wheel Speed 

The wheel speed of each wheel on a vehicle is transmitted through the CAN network.  Each 

wheel speed is directly measured at each wheel.  The output from the wheel speed sensors is sent 

through the CAN network to be possibly used as inputs to other functions controlled by the ECM 

such as the vehicle's traction control system or anti-lock brake system (ABS).  The same types of 

sensors used to measure engine speed are also used to measure the vehicle's wheel speeds.  

Inductive or Hall-effect sensors are positioned near the rotating teeth of a gear on the half-shafts 

of each driven axle (Bosch, 1993).   

 

3.3 Longitudinal Vehicle Model 

There are numerous forces that must be overcome in order for vehicle locomotion to occur while 

the gravitational force may aid or resist vehicle motion.  The summation of these forces in the 

longitudinal direction results in the net tractive effort or thrust force required for the given 

operating conditions (Rakha, 2001; Rakha, Rutherford, 2004; Standford, 2001; Wong, 2008; 

Wong, 2010).  The following equation represents the longitudinal vehicle model:   

 



 DrawbarDragInertiaLinGravityMRThrust FFFFFF  ..                                               (1) 

 Where 

ThrustF  is the thrust force from the powered wheels, 

MRF  is the motion resistance force generated at the tire-terrain interface, 

GravityF  is the gravitational force exerted on the vehicle, 

InertiaLinF . is the force associated with any increase or decrease of the vehicle’s linear 

inertia, 

DragF  is the aerodynamic drag force exerted by the air flowing over the surface of the 

vehicle,  

  is the drawbar load applied at the hitchpoint of the vehicle.   DrawbarF

 

Equation (1) provides the basis for estimating the energy and power required to propel a vehicle 

at a given speed, degree of acceleration, grade of the terrain, and applied drawbar load.  Research 

by Rakha et al. (2001) and Rakha et al. (2004) utilized the longitudinal vehicle model to estimate 

the peak acceleration characteristics of on-road trucks.  An important constraint of the model was 

that the thrust force associated with the peak acceleration did not exceed the static frictional 

force between the tires and pavement.  The vehicle dynamics-based approach accounted for the 

external motion resistance, aerodynamic drag, and elevation grade forces along with the 

frictional mechanical losses in the drivetrain to predict peak accelerations.  Such models attempt 

to imitate the actual speed and acceleration characteristics of vehicles while a GPS-based 

mobility power model uses the actual operating characteristics to estimate vehicle power.  The 

longitudinal vehicle model was able to accurately estimate the acceleration characteristics of on-

 13



 14

highway trucks at different power to weight ratios.  The predicted acceleration characteristics 

from the model were compared to 1 Hz GPS data collected during testing to validate the model, 

and the results indicated that the longitudinal model can be used to estimate the acceleration 

profiles for 13 cars, Sport Utility Vehicles (SUV), and light-duty trucks along with heavy-duty 

trucks at 10 different power to weight ratios (Rakha et al., 2001; Rakha et al., 2004).   

 

Previous efforts by Suvinen et al. (2006) utilized GPS and CAN bus data to characterize the site 

specific forces that effect the locomotion of 8-wheeled forwarders (forestry vehicle).  A data 

acquisition unit was used to log such CAN bus data as the following at a sampling rate of 4 Hz:  

event time, torque of the drive axle, rotational speed of hydraulic motors/pumps, working 

pressure of hydraulic circuit, and the gross power on the driveline.  The net resistive force was 

quantified by dividing the gross power on the driveline by the GPS determined vehicle travel 

speed as it maneuvered on a tarmac and a firm soil road.  In the analysis, the aerodynamic drag 

force and inertia force required to accelerate/decelerate the vehicle were considered to be 

negligible at the low travel speeds and accelerations that occurred during the tests (< 0.50 m/s 

average travel speed), and these terms were omitted from the model's governing longitudinal 

vehicle model equation.  The frictional losses in the driveline contributed to the net motion 

resistance, but these losses were also assumed to be negligible.   

 

The three forces that resisted vehicle maneuvers were quantified from the tests conducted, and 

they included the following:  the motion resistance force at the tire soil interface, the resistance 

force due to the vehicle's elevation change, and the winding resistance or force generated during 

turning that occurs due to the vehicle's direct driveline (Suvinen et al., 2006).  The direct 
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driveline resulted in all of the wheels having the same rotational speed but different levels of 

wheel slip (positive and negative) during turning.  This caused an increase in the vehicle's 

motion resistance force, and the increase was defined as the winding force.  The researchers 

validated the GPS and CAN bus data-based model for predicting the resistive forces encountered 

by a forwarder while applying a modified form of the longitudinal vehicle model.  The 3-point 

turning radius calculations performed by Suvinen et al. (2006) were smoothed by using a 5 s 

moving average of the GPS position data.  

 

Suvinen et al. (2006) concluded that the GPS elevation data could detect grades as small as 

0.5%. It was noted that a lag existed between the predicted and measured percent grade traversed 

by the vehicle because the GPS antenna was located 3 m in front of the vehicle's center of 

gravity.  The straight-line motion resistance ratio of the forwarder on the smooth tarmac surface 

was determined to be 0.055, and this value increased as soil strength decreased in the off-road 

terrain (Suvinen et al., 2006).  The power transmitted through the vehicle's driveline increased up 

to approximately 300% during sharp turning maneuvers due to the winding force developed by 

the direct driveline.   

 

3.4 Motion Resistance Power  

Empirical methods for evaluating the performance of wheeled vehicles are useful because the 

complicated tractive element-terrain interaction is difficult to characterize.  Empirical models are 

developed by measuring certain performance criteria at the measured terrain and vehicle 

conditions and fitting equations through the measured data.    

 



3.4.1 Vehicle Terrain Interaction (VTI) Model  

The motion resistance characteristics of tractive elements are oftentimes evaluated via 

homogenous soil bins in laboratory setting.  These controlled conditions do not reflect the 

heterogeneous nature of off-road terrains where soil strength and condition along with the 

terrain's topography and roughness can vary dramatically.  The effect of turning on the motion 

resistance force generated by the wheels is difficult to quantify in a lab setting.  To determine the 

motion resistance (MR) of the tractive elements during operation, the vehicle terrain interaction 

(VTI) model developed by the U.S. Army Corps of Engineers at the Waterways Experiment 

Station (WES) facility in Vicksburg, Mississippi was utilized in the analysis (Jones et al., 2007).  

For wheeled vehicles, the dimensionless wheel numeric, , is determined for the non-steered 

wheels of the vehicle while operating in a fine-grained soil, and the equation is given by the 

following: 

cN
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  Where 

CI  is the measured cone index ( ) of the 0 to 0.152 m layer of the soil determined for 

on-road and off-road conditions, 

CI

  is the tire section width, b

  is the nominal wheel diameter, d

   is the tire section height, h

    is the tire deflection, 
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  is the normal load per a tire.   W

 

A geometrical representation of the tire parameters found in Equation (2) is given in Figure 3 

(Brixius, 1987).  

 

Figure 3:  Tire parameters used to calculate dimensionless wheel numeric (Source:  
Brixius, 1987) 

 
A cone penetrometer is often used to measure CI which is a combined indicator of the soil's 

shear and compressive strength properties.  The cone penetrometer consists of a 30˚ steel cone 

with a base area of 3.22 cm2 along with a sensor for measuring the force required to press the 

cone perpendicular into the soil at a constant rate (30 mm/s).  The force required to press the 

cone into the soil divided by the base area of the cone represents the CI value (ASAE Standard, 

2004).  CI is a required input to the VTI model for estimating the motion resistance force 

generated by the tractive elements during the vehicle maneuvers. 
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The steered-wheel numeric ( ) for vehicles operating in fine-grained soils is determined from 

the following equation: 

cN

 

  2/326.21   cc NN                                              (3) 

 

Where  is the tire steering angle (radians) for each wheel determined from the GPS data (Jones 

et al., 2007).  The motion resistance force, R , generated as the vehicle traverses in a fine-grained 

soil is calculated by the following:   

 

 
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R  for steered wheels utilizes the same equation; except, is substituted for  (Jones et al., 

2007).  To estimate the power that is required to overcome the motion resistance of the vehicle's 

tractive elements, the following equation determines the equivalent motion resistance power: 

cN cN

 

                    (5)  iVehicle

n

i
MR RVP 

1

  Where  

  is the motion resistance power,  MRP

  n is the number of wheels,  

VehicleV is the travel speed,  
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Ri is the motion resistance force for the ith wheel.    

 

The equations presented from the VTI model allow for the motion resistance force of a vehicle 

operating in a fine-grained soil to be predicted, but numerous other equations are available for 

estimating such mobility parameters as the following:  rut depth, wheel slip, and drawbar pull for 

wheeled and tracked vehicles.  Equations are provided for vehicles operating in both fine and 

coarse-grained soils (Jones et al., 2007).  It is thought that the fine-grained equations provide a 

better representation of the interaction between the tractive element and the terrain compared to 

the coarse-grained equations.   

 

3.4.2 Agricultural Semi-Empirical Model  

Research by Wismer and Luth (1973) and Brixius (1987) investigated the tractive performance 

of agricultural type tires.  The modeling approach taken was similar to the VTI model because a 

dimensionless wheel numeric was developed from test data, and a least-squares regression 

analysis was used to estimate the coefficients of the semi-empirical relationships.  The tractive 

performance models developed were for pneumatic tires with common agricultural tread 

geometry while utilizing the tire manufacturer’s specifications and a soil strength index as input 

parameters to the model.  The nominal inflation pressure at the rated normal load of these tires 

typically results in a deflection that is approximately 20% of tire's section height.  The estimated 

rolling resistance from models developed by Wismer and Luth (1973) and Brixius (1987) differ 

from the VTI model because the tire geometry, deflection, tread type, and inflation pressure of 

agricultural and military can differ substantially.  These models were developed to predict 

motion resistance, net traction, and input torque as a function of wheel slip and normal load 



while the VTI model is focused on defining the motion resistance of the tractive elements and the 

resultant rut depth produced by the vehicle.   

 

3.4.3 Rolling Resistance Coefficients  

Bosch (2003) provides guidelines for estimating the rolling resistance coefficients (Analogous to 

motion resistance ratio) for primarily cars and on-road heavy trucks, and these values are found 

in Table 1.  The resultant coefficient of motion resistance (R/W) from the VTI model approaches 

the coefficient of rolling resistances values for concrete and asphalt found in Table 1 as the 

measured CI of the soil approaches infinity.   

 

Table 1:  Rolling resistance coefficients for different vehicles operating on different 
surfaces (Source:  Bosch, 1993) 

Coefficient of rolling resistance

0.013
0.02

0.025
0.05

0.1 - 0.35

Concrete, asphalt 0.006 - 0.01
Track-type tractor in field 0.07 - 0.12
Wheel on rail 0.001 - 0.002

Road Surface
Car tires

Concrete, asphalt
Rolled gravel
Tarmacadam
Unpaved road
Field

Truck tires

 

 

Bosch (2004) indicates that the rolling resistance coefficient (ie motion resistance ratio) is 

directly proportional to the deflection of the tire and inversely proportional to the radius of the 

tire.   
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3.4.4 Existing U.S. Army Models  

A popular method for evaluating the performance of vehicles is the U.S. Army Corps of 

Engineers’ vehicle cone index (VCI) model (Wong, 2010).  Model development consisted of 

evaluating the performance of military vehicles at various soil-strength conditions in fine and 

coarse-grained soils.  The output of the model are two VCI values (VCI1, VCI50); they represent 

the minimum Cone Index (CI) values needed in the critical layer of the soil for the vehicle to 

make 1 and 50 passes respectively over the terrain.  To calculate VCI1 and VCI50 for a given 

vehicle, the Mobility Index (MI) must be estimated, and it is given by the following: 

 



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

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___

           (6) factorontransmissifactorengine __ 

 

Where 

contact_pressure_factor is the mean contact pressure of the vehicle (psi), 

weight_factor is a weighting factor that ranges between 1.0 and 1.8, depending on vehicle 

 weight, 

track_factor is the track width divided by 100.0 (in), 

grouser_factor is 1.0 for grousers less than 1.5 in and1.1 for grousers greater than 1.5 in, 

bogie_factor  is the gross weight divided by the product of the number of bogies in 

 contact with the ground and area of the track shoe (in2), 

clearance_factor is the ground clearance divided by 10 (in), 

engine_factor is 1.0 if the power density is greater than or equal to 8.2 kW/tonne and 1.1 

 if it less than 8.2 kW/tonne, 

transmission_factor is 1.0 and 1.05 for automatic and manual transmissions respectively.   

 

The equations for calculating VCI1 and VCI2 are given by the following equations:   
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If is greater than the measured CI value, the vehicle can effectively make a single pass 

across the terrain while the vehicle can make 50 consecutive passes over a given terrain if 

is greater than the CI of the soil.  The difference between the VCI and CI terms is an 

indicator of the excess soil strength.  The VCI model for fine-grained soils is utilized in 

predicting the output of the NATO Reference Mobility Model (NRMM) model.  Figure 4 details 

the effect of the excess soil strength on the motion resistance (MR) coefficient for wheeled 

vehicles. 

1VCI

50VCI

 

Figure 4:  Motion resistance coefficient as a function of the excess soil strength 

(Source:  Wong, 2010) 
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The predecessor of the NRMM was the U.S. Army Mobility Model (AMM-75).  The NRMM 

attempts to estimate the mean travel speed between two points based on the interaction of system 

parameters such as the terrain conditions, vehicle specifications, and the operator (Wong, 2010).  

The NRMM model relies on the VCI model for estimating the maximum travel speed of a 

vehicle.  In the model, the terrain is divided into discrete terrain units where the mean travel 

speed in each unit is assumed to be constant.  Factors that may limit the travel speed of a vehicle 

are maximum drivewheel power, soil strength, operator discomfort, limited visibility, 

maneuverability concerns, and obstacle avoidance.  The factor with the lowest predicted mean 

travel speed is the limiting factor for mobility of the military vehicle.  Mobility maps such as 

Figure 5 for a truck weighing 22.24 kN can be developed for a given vehicle which allows for 

the optimal travel route to be predicted.   

 



 

Figure 5:  A mobility map for a 22.24 kN truck shows the maximum travel speed (mph)
and ideal travel path in a given offroad-terrain (Source: Wong, 2010) 

 

 

here is the potential that similar maps could be developed that estimate the power required to 

averse a given region tra ing d a of m itary v hicles  The f ired to travel 

along the optimum travel path could be predicted from power maps by making assumptions 

about the energy dissipated between the fuel to the drivewheels.  Providing accurate estimates of 

the fuel requirements for a fleet of military vehicles is of critical interest for military personnel.  

The use of power maps along with the NRMM may allow for decreased fuel delivery cost while 

T

tr  from GPS ck at il e . uel requ

improving delivery efficiency.   
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3.5 Grade Power 

By determining the rate at which the elevation of the terrain changes as a function of time, the 

required power to displace the vehicle vertically is defined by the following:   
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  
t

Grade 


 

  Where  

  GradeP is the grade power,  

  m is the mass of the vehicle,  

  g  is the acceleration due to gravity,  

  

hmgP                              (9) 

t

h is the rate of elevation change acquired from the GPS data.   


 

Determining the road grade is of particular interest for commercial heavy-duty vehicles (Semi-

trailers) with a low power-to-weight ratio because the towed force can vary significantly, making 

road grades greater than 4% difficult to travel at high speeds.  Researchers at Stanford University 

(2001) detailed two processes for determining the road grade of a ground vehicle via global 

positioning system (GPS) units.  The first method required two GPS antennas mounted on the 

 angle of the vehicle in the pitch plane.  The road grade was predicted 

 the GPS elevation data from the two GPS receivers and the known distance between the 

receivers (Stanford University, 2001).  The second method compared the horizontal speed and 

change in elevation data from a single GPS unit to predict road grade of the vehicle.    The 

researchers conducted an accuracy assessment on the test data available for the Mercedes-Benz 

vehicle to measure the

from
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E320 test vehicle, and the results S data (1 Hz) can be used with 

ore complex method that 

lied on two GPS antennas was much more sensitive to acceleration changes by the vehicle 

vehicle pitch.  The change in vehicle pitch in

additional variability in the estimates of grade from the two GPS receivers (Stanford University, 

2001).   

 

3.6.1 Linear Inertia Power

 indicated that low frequency GP

both methods for providing reasonable estimates of road grade.  The results indicated both 

methods could predict the road grade traversed by a vehicle, but the m

re

because any acceleration produced troduced 

3.6 Inertia Power 

 

 

The linear inertia power necessary to increase or decrease the vehicle's speed along the path 

traversed is calculated by the following equation: 

 

   VehicleVehicleInertiaLinInertiaLin VamVFP  ...                   (10) 

 

  Where  

   is the linear inertia power,  

   is the force required to accelerate the vehicle,  

 

..AccelLinP

..AccelLin

  a  is the acceleration of the vehicle.   

F
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 the effects of the various methods for calculating 

cceleration from discrete velocity data when accelerometers are not available.  The three 

approaches for calculating acceleration from velocity as function of time data are the forward, 

backward, and central difference methods.  Previous research with large on-road vehicles 

dicated that the central difference method for calculating acceleration provided for the most 

  The acceleration (

The acceleration of the vehicle has a significant impact on the estimated mobility power of a 

vehicle.  Jun et al. (2006) addressed

a

in

accurate indicator of the required engine power (Jun et al., 2006).   

 

The GPS points stored during tracking maneuvers have a Coordinated Universal Time (UTC) 

and a speed value associated with each point.  ota ) of the vehicle is 

calculated from the GPS speed data (  otv ) using the three-po tral difference acceleration 

equation given by the following:   

 



int cen

  
  

h
ta oo

o 2
                                  (11) 

 

Where h is the absolute differe

htvhtv 

nce between the UTC times (h = 1 s assuming 1 Hz GPS data).  

quation (11) is an average of the forward and backward difference methods for calculating 

acceleration, and it removes so using GPS data to calculate 

acceleration of a vehicle (Jun et al., 2006).    

 

Jun et al. (2006) investigated the effect of the different acceleration calculation methods on a 

vehicle engine power model for estimating emission rates.  The model's governing equation is 

based on the longitudinal vehicle model and is similar to the proposed models's governing 

E

me of the variability associated with 



equation.   The results from the study indicate that each method for calculating acceleration 

provided a statistically different engine power distribution when the vehicle travel speed was less 

than 27 m/s (Jun et al., 2006). 
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3.6.2 Rotational Inertia Power 

accompanied by an increase in the rotational inertia of the vehicle's engine, transmission, 

differential, and drivewheels.  Millo (2011) and Irick (2012) indicated that the vehicle equivalent 

mass value (γ) for a given vehicle relates the power required to vary the rotational inertia of the 

engine and drivetrain components and linear inertia of the vehicle.  γ represents the ratio of an 

equivalent mass of the rotating components to the actual mass of the entire vehicle.  γ effectively 

llows for the power required to vary the rotational inertia of the drivetrain components to be 

m in 

smission is shifted into 

higher gears (Millo, 2011; David Irick, University of Tennessee, personal communication, 31 

January 2012).   The vehicle equivalent m

required to vary the inertia of the engine and drivetrain components, and it is given by the 

following expression: 

 

The increase in the linear inertia of a vehicle by a power source such as an engine must be 

a

estimated from the known mass (m), velocity, and wheel speed of the vehicle.  γ is maximu

the lowest gear of the transmission, and decreases substantially as the tran

ass ( ) is introduced to account for the power that is eqm

)1(  mm        (12) eq
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     (13) 

 

uirement to vary both the linear inertia of the vehicle and 

is a function of the square 

f the rotational speed of the rotating component.  This indicates that the total rotational kinetic 

energy of all rotating engine component's increases by 1600% when engine speed is increased 

from 1000 RPM to 4000 RPM.  γ is a minimum while the transmission's highest gear is engaged 

cause most of any rotational inertia change occurs from the drivetrain components instead of 

ng ing components (David Irick, University of Tennessee, personal 

ce of the vehicle during locomotion, a drag force 

sepie, 1992; Wong, 2008; Wong, 2010).  

ollowing equation:   

Equation (10) is modified to include the effects of any increase or decrease of the vehicle's 

rotational inertia, and the expression is represented by the following: 

 

    VAmP eqInertia 

Equation (13) predicts the power req

rotational inertia drivetrain and engine.  γ is a maximum in the transmission's lowest gear 

because the engine speed associated with any level of acceleration in the lowest gear is the 

greatest compared to any higher gears.  Also, rotational kinetic energy 

o

be

the e ine's rotat

communication, 31 January 2012). 

 

3.7 Aerodynamic Drag Power 

As the viscous fluid (air) flows over the surfa

that resists forward motion is exerted on the vehicle (Gill

The drag force exerted on a body is given by the f

 

2

2 rfDDrag VACF


                                  (14) 
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  Where  

   is the drag force exerted on the vehicle that opposed forward movement,  DragF

   is the density of the air,  

  is the drag coefficient of the vehicle,  

   is the frontal area of the vehicle,  

   is the speed of the air, relative to the vehicle. 

 

The density of air,

DC

fA

rV

  (kg/m3), is given by the following expression: 

 

 

















r

r

T

P

16.273

16.288

325.101
225.1                        (15) 

 

  Where  

   is average atmospheric pressure (kPa) at the given elevation, 

   is the mean air temperature (ºC) (Gillsepie, 1992).   

he drag power ( ) is determined from the following equation:   

rP

rT

 

DragPT

 

 VehiclerfDVehicleDragDrag VVACVFP 





 2

2


                   (16) 
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 b , 

ces to the following: 

 

 

If rV  is assumed to be equal to the vehicle speed ecause the relative air speed is not measured

the expression for DragP  redu

3

2 Vehicle
VACP fDDrag 









                                  (17) 

 

An aerodynamic drag force is exerted on any vehicle during locomotion, assuming a non-zero 

relative air speed.  To calibrate a model due to the effect of the aerodynamic drag force exerted 

on a vehicle, a coastdown test may be performed to estimate the vehicle's drag coefficient ( ).  

A coastdown test can be performed by disengaging the drivetrain of the vehicle after reaching a 

certain speed and measuring the change in the vehicle's speed as a function of time until the 

vehicle becomes stationary (Gillsepie, 1992).    values for various vehicle geometries and 

types are given in Table 2.   

DC

DC



Table 2:  Drag coefficients ( ) for various vehicle types DC

 (Source:  Bosch, 2003) 
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Yasin (1978) detailed the methodology for conducting on-road coastdown tests for estimating the 

aerodynamic drag force exerted on a vehicle.  A total of 157 coastdown tests were conducted on 

22 different small passenger cars and light-duty trucks on flat, paved surfaces.  The resistive 

forces generated during coastdown tests were averaged for two tests conducted in opposite 

directions to minimize the effect of a head or tailwind.  It was concluded that a wind correction 

factor was not accurate in predicting the variation of the drag force due to crosswinds.  

Coastdown tests should be conducted only during low crosswinds (< 4.5 m/s) to obtain accurate 

estimates of a vehicle's drag coefficient ( ).  The drag coefficient can be estimated for the 

vehicle by conducting a least-squares regression analysis of the measured coastdown test data.  

This least-squares regression analysis requires some estimate of the motion resistance forces 

generated by the tires to estimate in  Equation (14).  The drag force and the motion resistance 

forces estimated from coastdown testing are at approximately the same level of precision that can 

be obtained from wind tunnel and chassis dynamometer testing for a vehicle (Yasin, 1978).   

DC

DC

 

Previous research indicates that the effect of  on off-road vehicle performance is minimal 

when the vehicles do not exceed 48 km/hr (30 mph) (Wong, 2010).  Military vehicles oftentimes 

exceed 48 km/hr during certain operations, thus the effect of  must be considered.  Testing 

of heavy-duty vehicles such as tanks or armored personnel carriers with frontal areas in the range 

of 6 – 8 m

DragF

D

DragF

2 indicated such vehicles have a C  value of approximately 1.0.  A 50 ton tank with a 

 value of 1.17 has a drag force of 0.828 kN exerted on it by the air flowing over the tank’s 

surface which amounts to about 11 kW of net power that must be delivered to the tractive 

elements (Wong, 2010).   

DC
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3.8 Drawbar Power  

A towed implement or trailer exerts a force upon the hitch of a vehicle at some angle to the 

longitudinal axis ( ) which opposes the forward motion of the vehicle during locomotion.  This 

force is termed the drawbar load ( ) on a vehicle, and the subsequent drawbar power 

( ) required to tow the implement is given by the following equation: 

DrawbarF

DrawbarP
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                                     (18)  VehicleDrawbarDrawbar VCosFP  )(

 

3.9 Net Mobility Power 

The power required to overcome the forces in Equation (1) along with rotational inertia of the 

wheels represents a wheeled vehicles mobility power.  Mobility power is the power dissipated by 

the wheels of the vehicle in order to develop the tractive or thrust force along the vehicle's travel 

path.  The total mobility power, , required for the vehicle to maneuver across the terrain at 

the measured velocity, turning radius, and loading conditions, while taking into account the 

vehicle's tire characteristics, is determined from the following equation:   

MobilityP

 

 DrawbarDragInertiaGradeMRMobility PPPPPP                        (19) 

 

The calculated mobility power can be equated with the required engine power for the vehicle by 

completing a drivetrain analysis that calculates the overall drivetrain efficiency losses between 

the engine and the tractive elements.  Equation (19) could also be applied to tracked vehicles by 

utilizing the Vehicle Terrain Interaction (VTI) model’s motion resistance equations for tracked 



vehicles operating in fine and coarse-grained soils.  Estimating a tracked vehicle’s equivalent 

mass for the rotational inertia component of the model would be an important parameter to 

consider since sophisticated tracked vehicle systems tend to have a greater magnitude of 

rotational and linear inertia compared to wheeled vehicles.   

 

3.10 Mobility Energy 

The mobility power can be estimated from discrete GPS tracking data for a given vehicle using 

Equation (19), and integration of the mobility power function yields the energy required during a 

given time span.  The net energy ( E ) required for mobility power in a given time period (  –  

) is defined by the following equation: 

2t

1t

 

                      (20)    2

1

t

t Mobility dtPE

 

The power and torque requirements for a given military vehicle on various on and off-road test 

courses would provide engineers the critical information necessary to properly determine the 

power and energy needed from a parallel hybrid's two power sources (Taylor, 2011).   

Instrumenting a fleet of military vehicles to characterize the power requirements during specific 

on-road and off-road operations is oftentimes very costly.  The mobility power model that uses 

the dynamic vehicle parameters from GPS tracking data and the soil's measured or estimated 

cone index (CI) may represent an affordable method of estimating the mission-specific power 

and energy requirements.   
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If a vehicle is equipped with a hybrid powertrain, the positive specific energy consumption value 

can be estimated for the vehicle which represents the mobility energy required by the electric 

power source during specific operations.  The potential specific energy production estimated 

from the model for the vehicle can provide an estimate of the theoretical energy available for 

harvesting via regenerative braking from a hybrid powertrain.  Estimating the specific energy 

consumption and potential specific energy production may allow for the duration that a hybrid 

military vehicle can operate during "silent watch" operations (electric power only) to be 

predicted for the given terrain conditions.  The silent watch capabiliy of current military vehicles 

is of principle importance when evaluating the in-field performance of hybrid vehicles.   

 

3.11 Summary 

The use of hybrid-electric military vehicles is of particular interest in recent years for the U.S. 

military because such vehicles may substantially reduce fuel costs to operate the vehicle.  The 

hybrid-electric drivetrain increases a military vehicle’s silent watch capability by allowing the 

vehicle to operate for longer periods where only the relatively quiet electric motors propel the 

vehicle.  The precise power requirement for locomotion must be known when designing a 

hybrid-electric military vehicle’s complex drivetrain.  At this time, there are not standardized 

power duty cycles for a given type of military vehicle because the duty cycle characteristics can 

vary substantially depending on the terrain type and the mission being performed.  As a result, 

there is a need to determine the terrain and mission-specific power duty cycles of military 

vehicles.   
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Costly methods of data acquisition can be used to quantify the power duty cycles for military 

vehicles.  Instrumenting the driven wheels of a vehicle to obtain a direct measurement of 

drivewheel power represents the most expensive solution.  The complexity and costs associated 

with directly measuring drivewheel power limits the use of this method across vehicle platforms.  

Estimating drivewheel power from a military vehicle’s Controller Area Network (CAN) is 

another option.  However, it may be difficult to log the CAN signals necessary to estimate 

drivewheel power.  Furthermore, the data acquisition equipment required to estimate drivewheel 

power from CAN data may be considered an invasive approach where data acquisition 

equipment may hinder the military personnel operating the vehicle and performing the training 

mission or the necessary CAN signals that transmit engine power values may be proprietary.  

 

GPS tracking data of military vehicle provides for several critical dynamic vehicle parameters 

such as position, speed, acceleration, elevation (height above ellipsoid), and heading.  The GPS 

data can be used to estimate the power required for the vehicle to overcome the motion 

resistance, grade, inertia, and aerodynamic forces that occurred during locomotion.  These 

important vehicle parameters allow for the power duty cycle requirements for the given mission 

and terrain conditions to be characterized from a GPS-based mobility power model.  Developing 

a vehicle’s power duty cycles from GPS data is a non-invasive and cost-effective alternative 

compared to logging signals from a vehicle’s CAN network.  The effect of varying soil strength, 

elevation grade, and vehicle turning radius can be quantified from the GPS-based mobility power 

concept.   
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A GPS-based mobility power model may provide a cost-effective solution for characterizing the 

power requirements of military vehicles, but currently a GPS model that predicts vehicle power 

for military vehicle applications has not been validated.  Validation of such a model is necessary 

to determine the accuracy of the predicted vehicle power duty cycles.  The model can be applied 

to current and historical GPS tracking data of military vehicles after the model has been 

validated to estimate the mission and terrain-specific power duty cycles.   



Chapter 4: Validation 

4.1 Model Development  

The development of the model began by defining all of the components of the model that sum to 

a vehicle’s required mobility power.  The longitudinal vehicle model given by Equation (1) 

provided the basis for the resistive forces generated during locomotion.  Equations (2 – 5) and (9 

– 18) were used to quantify the motion resistance, grade, inertia, and aerodynamic drag power 

components of the model.  The model validated does not include any drawbar loads because the 

test vehicle did not have an applied drawbar load during the tests; thus  was assumed to 

be zero.  Equation (19) was slightly modified so that the governing equation of the mobility 

power model validated is given by the following: 

DrawbarP

 

DragInertiaGradeMRMobility PPPPP                 (21) 

 

The input parameters to the model such as the vehicle’s position, speed, acceleration, rate of 

elevation change, and time are all determined from the GPS data acquired during the vehicle 

maneuvers.  The vehicle, tire, and drivetrain specifications are the other necessary input 

parameters to the model that are not obtained from the GPS data.   
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4.2 Materials  

 

4.2.1 Validation Testing Sites  

The location where validation occurred was at certain test sites in the Knoxville, Tennessee area.  

The controlled motion resistance and inertia tests occurred at a test site with minimal grade.  The 

grade tests were conducted along a travel path with a continuously positive grade and an 

elevation gain of approximately 50 m.  Figure 6 provides an aerial map of the test location where 

the motion resistance and inertia tests were conducted.  The latitude and longitude of the motion 

resistance and inertia test site was approximately the following:  N 35.9497°, W 83.9371°.  

Figure 7 details the test site where the grade tests were performed.  The latitude and longitude of 

the grade test site was approximately the following:  N 35.9935°, W 83.8470°.  Figure 8 provides 

a representation of the travel path taken by the test vehicle during the uncontrolled validation test 

that simulated a U.S. Army reconnaissance mission.  The latitude and longitude of the 

uncontrolled test start location was N 35.9449°, W 83.9093°.  The controlled and uncontrolled 

validation tests were performed on the 16th and 20th of December 2011 respectively.  There was 

not a significant amount of wind at the locations where validation testing occurred so it was 

acceptable to apply the assumption implied in Equation (17) from Section 3.7 for estimating the 

aerodynamic drag power of the test vehicle.  

 



 

Figure 6:  The motion resistance and inertia test location 
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Figure 7:  The travel path taken at the grade test site  
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Figure 8:  The uncontrolled test travel path along with the discrete predicted mobility 
power values from the Trimble 132 GPS receiver for a section of the test 
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4.2.2 Vehicle Tracking System Components 

Previously developed Vehicle Tracking System (VTS) units were used to gather the necessary 

GPS data for the mobility power model.  The VTS system is comprised of a serial data recorder 

(SDR) that typically stores data from a Garmin 18 Wide Area Augmentation System (WAAS) 

Differential Global Positioning System (DGPS) receiver while powered by 12 V batteries and 

enclosed in a watertight case.  The components of the VTS system can be seen in Figure 9.  The 

Garmin 18 GPS receiver is shown in Figure 9.   

 

 

Figure 9:  Vehicle Tracking System (VTS) components 

 

The VTS units were designed to be compact and cost-effective devices that can be mounted to 

any type of vehicle.  No external power source is needed while approximately 10 days of GPS 

data can be acquired from the stand-alone device.  The GPS and SDR are supplied 12 V DC 
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power from two lead-acid batteries, and the components are self-contained in a watertight plastic 

case, except for the GPS receiver that is magnetically mounted to the exterior of the case or 

vehicle (Howard et al., 2011).   

 

4.2.2.1 GPS Receivers – Garmin 18 and Trimble 132 

The VTS units utilized a Garmin 18-PC WAAS DGPS receiver that was configured to output 

data at a sampling rate of 1 Hz.  This Garmin receiver is typically used with the VTS unit 

because it weighs only 1.08 N, is small, and can be attached magnetically to the exterior of a 

vehicle or VTS case.  Furthermore, the receiver can operate at ambient temperatures between -

30C and 85C and at an unregulated DC input voltage range between 6 and 40 V (Garmin, 

2008; Potteti, 2009).  Power is supplied to the Garmin receiver via a single cable.  The GPS data 

outputted by the Garmin GPS18 GPS receiver was recorded by the SDR on a compact flash card.  

The GPS data is in National Marine Electronics Association (NMEA) string format, and only the 

$GPGGA and $GPRMC are stored to the SDR during vehicle tracking (Potteti, 2009).  The 

following parameters are transmitted on these two NMEA strings:  Coordinated Universal Time 

(UTC), latitude (Coordinate system:  WGS 1984), longitude (Coordinate system:  WGS 1984), 

Speed Over Ground (SOG) (ie travel speed), Coarse Over Ground (COG) (ie heading), Height 

Above Ellipsoid (Elevation), and date (NMEA Standard, 1995).  The critical data transmitted on 

the $GPGGA and $GPRMC strings represents the vehicle parameters necessary to apply the 

mobility power model to GPS data.   

 

A separate VTS unit was used to log GPS data from a Trimble AgGPS132 receiver with 

Omnistar differential correction so that the vehicle was tracked simultaneously by two different 



types of GPS receivers.  The differential correction used by the Trimble GPS receiver tends to 

result in more accurate and precise position, speed, and grade elevation data while tracking 

vehicles.  The manufacturer claims sub-meter static accuracy can be attained by the GPS 

receiver.  The GPS receiver's dynamic mode was configured to "land" (Trimble, 2003).  Figure 

10 shows the Garmin 18 and Trimble 132 GPS receivers mounted on the roof of the test vehicle.  

 

 

Figure 10:  The Garmin 18 and Trimble 132 GPS receivers mounted on the test vehicle 

 

4.2.2.2 Serial Data Recorder (SDR) 

The GPS data is stored via Acumen's DataBridge SDR2-CF on a 256 MB compact flash card.  

The device is compact (12.4 X 8.57 X 3.12 cm) and is enclosed in a durable aluminum 

enclosure.  The SDR device requires approximately 350 mW of electrical power while logging 
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data.  The SDR can operate at ambient temperatures between -40C and 85C and at an input DC 

voltage range between 5 V and 30 V.  The SDR can collect 1 Hz GPS data for 20 days with a 

256 MB flash card.  The serial data was stored to a flash card in FAT32 format (Potteti, 2009).    

 

4.2.2.3 Power Supply 

Two Odyssey rechargeable drycell 12 V batteries (PC625) were used to power the GPS receiver 

and the SDR.  The lead-acid battery is a starved electrolyte dry cell battery that is explosion and 

corrosion proof.  The battery can be shipped via conventional methods since it is dry cell battery.  

The battery can operate at ambient temperatures between -40C and 60C.   

 

4.2.2.4 Protective Case 

A small Pelican case contains the GPS receiver, SDR, and two batteries that comprise the VTS 

system.  The small case (36 X 27 x 15 cm) is rated as impact resistant and waterproof, and it can 

easily be mounted externally or internally in a cargo storage area of the vehicle.  A small piece of 

sheet metal (ferrous) is fixed to the outside of the case where the GPS receiver can be 

magnetically attached.   

 

4.2.3 Vehicle, CAN Hardware, and CAN Software Components 

A 2005 Chevrolet Equinox was the vehicle used during validation testing.  The vehicle was 

equipped with Intrepid Control Systems, Inc.'s NeoVI Pro hardware that receives and transmits 

CAN signals in order to control the vehicle and engine.  The NeoVI Pro executed a Vehicle Spy 



3 file (*.vs3) that controlled the vehicle and engine while logging the desired CAN signals such 

as engine speed, engine torque, and wheel speed.   

 

4.2.3.1 Test Vehicle 

The 2005 Chevrolet Equinox had a 1.9 L Fiat turbocharged diesel engine that propelled the 19.3 

kN vehicle.  The engine's peak power and torque ratings are 109 kW (at 4000 RPM) and 326 Nm 

(at 2000 RPM) respectively.  The vehicle is capable of being operated as a parallel through-the-

road hybrid where rear drivewheel power is supplied by an electric motor, but the vehicle was 

operated during validation testing with a conventional drivetrain (ie diesel engine sole power 

source).  The engine power was delivered via a six-speed Fiat manual transmission to the front 

axle of the vehicle.  The Fiat engine’s maximum torque and power as a function of engine speed 

are represented in Figures 64 and 65 respectively from Appendix A.  The vehicle was equipped 

with Michelin's PAX runflat tires (Model: Challenge X235-710 R460A) with a rolling resistance 

coefficient of 0.00675.  The drag coefficient ( ) provided by General Motors was 0.42.  The 

vehicle, engine, drivetrain efficiency (

DC

Drivetrain ), and equivalent mass ( ) specifications provided 

by General Motors are given in Tables 23 and 24 in Appendix A.  The vehicle mass in Table 23 

from Appendix A includes the mass of a 70 kg operator and a 70 kg passenger.  An image of the 

vehicle used during validation is given in Figure 11.   
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Figure 11:  The 2005 Chevrolet Equinox vehicle used during validation testing 

 

4.2.3.2 NeoVI Pro Hardware 

The test vehicle's CAN network was controlled via Intrepid's NeoVI Pro device.  The device 

executed a *.vs3 file generated in the Vehicle Spy 3 software.  The *.vs3 file was stored on the 

flash card that was connected to the NeoVI hardware.  The device's primary function was to 

receive and transmit CAN signals so that the engine and vehicle were controlled according to the 

program stored on the flash card and the input from the operator.  The *.vs3 file used during 

validation testing allowed for logging of the necessary vehicle and engine parameters.  The 

NeoVI Pro device used during testing is shown in Figure 12.   
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Figure 12:  The NeoVI Pro device 

 

4.2.3.3 Vehicle Spy 3 Software 

Vehicle Spy 3 (Version 1.11) was the software used to create the *.vs3 file for controlling the 

CAN network and logging the appropriate CAN signals.  The *.vs3 file was transferred to the 

NeoVI Pro's flash card after it was generated with the Vehicle Spy 3 software.  The powerful 

software allows for communication across multiple CAN networks while providing the user with 

a helpful tool for testing and analysis of vehicles with a CAN network.  The *.vs3 file used 

during testing was created so that the engine speed, engine torque, and wheel speed data from the 

CAN network were stored to the NeoVI Pro's flash card at a sampling rate of 25 Hz.  As 

discussed in Section 3.2, the engine torque values found in certain CAN signals were estimated 

from a lookup table stored on the engine control module's (ECM) memory.  Since the test vehicle 

had a diesel engine, inputs to the lookup table were the fueling rate to the engine, engine speed, 
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and/or several other engine parameters.  Engine and wheel speed values transmitted on two 

separate CAN signals were measured from either hall-effect or induction type rotational speed 

sensors.  A screenshot of the logging window used to select and log the appropriate CAN signals 

can be seen in Figure 13. 

 

 

Figure 13:  The Vehicle Spy 3 software’s user interface  

 

4.2.4 ArcGIS 10 Software 

ArcGIS 10 was necessary to spatially map the GPS tracking data for the development of aerial 

maps of the test sites and mobility power maps of the vehicles analyzed.  The software was also 

used to convert the GPS position data from a spherical coordinate system to the Universal 

Transverse Mercator (UTM) projected coordinate system.  Haugen (2002) indicated that the 

conversion of the spatial GPS data to a projected coordinate system allows for the vehicle’s 
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turning radius to be calculated from the GPS data via the three-point method (Haugen, 2002).  

The three-point method was used to estimate the vehicle’s turning radius during testing.   

 

4.2.5 MATLAB 2010B Software 

A MATLAB program was developed to convert the 25 Hz signals logged from the CAN network 

to the 1 Hz sampling rate that the GPS data was collected at.  A simple average was taken from 

the 25 Hz data to estimate the associated 1 Hz value.  The software was necessary due to the 

data’s tendency for having unequal sampling intervals between each data point.   

 

4.3 Methods 

4.3.1 Model Verification 

Verifying the model was necessary to ensure that the calculations performed by the mathematical 

model during validation met the model developer’s intentions.  The model's mathematical 

operations, unit conversions, and logic were checked for accuracy during verification.  A known, 

discrete measured drivewheel power value was compared to the model’s predicted discrete 

mobility power value from GPS data collected during testing in order to verify the model.  Data 

collected during validation testing was used during verification of the model.  The methodology 

used in the model for calculating mobility power from GPS data was independent of the GPS 

receiver used; thus calculations are only shown for a single receiver.   

 



4.3.1.1 Measured Drivewheel Power Calculations 

The measured drivewheel power value was determined from the CAN data’s measured engine 

power, but the power dissipated through the drivetrain and by the accessory components of the 

engine had to be taken into account.  The further use of the term “measured drivewheel power” 

refers to the calculated drivewheel power values estimated from the engine speed and engine 

torque messages transmitted on certain 11 bit CAN signals.  The measured engine power was 

calculated from the engine speed and engine torque values which were 1894 RPM and 88.64 Nm 

respectively for the discrete dataset that was verified.  The engine power was calculated from 

Equation (22) in Section 4.3.2 and is given by the following:    

 

kW
RPMNmnT

P EngineEngine
Engine 58.17

60000

189464.882

60000

2









 

 

It should be noted that equation numbers are not shown in Section 4.3.1 when illustrating the 

required calculations for model verification.  The power transmitted to the accessory components 

of the engine was subtracted from the measured engine power since it was not delivered to the 

drivewheels of the test vehicle.  Equation (23) from Section 4.3.4 was used to calculate the 

accessory power demand, and the calculations are represented by the following:   

 

kWRPMnP EngineAccessory 79.23317.018940013.03317.00013.0   

 

The vehicle was operating in the 2nd gear of the transmission, and the associated net drivetrain 

efficiency value of 0.91 was used from Table 24 in Appendix A.  The calculated engine and 
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accessory power along with the known drivetrain efficiency in 2nd gear allowed for the measured 

drivewheel power to be computed from Equation (25) from Section 4.3.6, and the following 

expression details the calculation:   

 

    kWPPP DrivetrainAccessoryEngineDrivewheel 46.1391.079.258.17    

 

The measured drivewheel power value was 13.46 kW, and this value was used to compare the 

predicted mobility power value during verification of the model.   

 

4.3.1.2 Predicted Mobility Power Calculations 

The GPS based mobility power model used during validation testing utilized Equations (2 – 20) 

from Chapter 3 where the summation of each component of the model represented the mobility 

power of the test vehicle.  The critical parameters from the discrete GPS data that were used to 

verify the model are given in Table 3.  The values of the important test vehicle and terrain 

parameters used during verification of the model are given in Table 4.   

 

Table 3:  The critical parameters from the GPS data used during model verification 

Δ t (s): 1
Speed (m/s): 9.16
Acceleration (m/s2): -0.026
Elevation rate (m/s): 0.58
Turning radius (m): >> 500

Pertinent GPS Parameters
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Table 4: The vehicle and terrain parameters used during model verification and validation  

RCI[on-road] (kPa): 4137
Wtotal (kN): 20.88

Wper tire (kN): 5.22
d (m): 0.71
b(m): 0.225
h(m): 0.125
δ (m): 0.017

Number Tires: 4
Frontal Area (m2) 2.686
Drag Coefficient: 0.42

Air Density (kg/m3): 1.21

Model Parameters

 

 

Verification of the model required Equations (2 – 5) from Section 3.4.1 to compute the value of 

the motion resistance power of the model for the discrete GPS data point.  The first step to 

calculate the motion resistance component of the model was to calculate the non-steered wheel 

numeric.  The wheel numeric for each non-steered wheel was calculated according to the 

following expression:   
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For the purpose of model verification, the steered wheel numeric was assumed to be equal to the 

non-steered wheel numeric since the estimated vehicle turning radius exceeded 500 m.  The 

motion resistance force for each tire was estimated from Equation (3) and is represented by the 

following:     
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Since R  was assumed to equal for all tires, Equation (5) reduced to the following expression for 

calculating the motion resistance power: 
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The grade power value for the discrete GPS point was calculated from the GPS data’s estimated 

rate of elevation increase and the known mass of the test vehicle.  Equation (9) from Section 3.5 

was used to compute to the grade power component of the model, and it is given by the 

following expression:   
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The power required to vary the linear inertia of the vehicle and the rotational inertia of the engine 

and drivetrain was determined by applying Equations (12) and (13) from Section 3.6.2.  The 

gamma value was 0.3 when the transmission was in 2nd gear as shown in Table 24 from 

Appendix A.  Hence the equivalent mass of the vehicle was calculated as follows:   

 

    kgsmNgWmm Totaleq 2767)3.01(/81.9/1088.20)3.01(/)1( 23    
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The acceleration and speed values found in Table 3 along with the calculated equivalent mass 

allowed for the inertia component of the model to be computed, and it is represented by the 

following expression: 

 

     kWsmsmkgVAmP eqInertia 65.0/16.9/026.02767 2   

 

The aerodynamic drag power that was transmitted to the drivewheels to overcome the drag force 

exerted on the vehicle was calculated using Equation (15) from Section 3.7, and it is given by the 

following: 
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There was not a drawbar load on the test vehicle so this component of the model was not used 

any further during verification and validation analyses (ie 0DrawbarP ).  Calculating the non-zero 

value for each component of the model allowed Equation (21) from Section 4.1 to be utilized to 

calculate the predicted mobility power of the vehicle.  The net mobility of the test vehicle for the 

discrete GPS data point analyzed is expressed by the following:   

 

kWkWkWkWkWPPPPP DragInertiaGradeMRMobility 46.1352.0)65.0(11.1248.1   

 

The measured drivewheel power and predicted vehicle power both had a value of approximately 

13.46 kW.  This indicated that the model’s calculated output was in agreement with the actual or 
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indicated power value delivered to the drivewheels of the test vehicle.  It appeared that the 

mathematical model developed met the model developer's programming intentions while the 

calculations and unit conversions performed were checked.  The approach for estimating the 

discrete mobility power value from the model and comparing these values to the measured 

drivewheel power values has been verified.   

 

4.3.2 CAN Data Analysis and Conversion 

The sole power source of the Chevrolet Equinox during testing was the 1.9 L Fiat diesel engine.  

The engine power determined from the data acquired from the vehicle's CAN network and the 

vehicle's drivetrain efficiency must be known to estimate the vehicle's mobility power 

requirements.  For a rotating power source such as the Fiat engine, the net engine power ( ) 

produced by the engine is given by the following equation:   

EngineP

 

  
60000

2 EngineEngine
Engine

nT
P





              (22) 

  
 Where  is engine power (kW), EngineP

  is the net torque or load on the engine (Nm), EngineT

  is the engine speed (RPM). Enginen

 

CAN network signals such as engine speed, engine torque, and wheel speeds were logged via the 

NeoVI Pro controller (CAN controller hardware) at a sampling rate of 25 Hz.  The 25 Hz CAN 

data was converted to the 1 Hz sampling rate of the GPS data in order to validate the GPS-based 

mobility power model.  For a given second of GPS UTC time, the given CAN signal's values that 
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were plus or minus one half second above or below the given UTC time were summed, and a 

simple average was taken for the given UTC time.   In other words, integrating across all of the 

available data for a given second was chosen because the net power and associated energy 

supplied by the engine during an entire second has an equal effect on the resultant movement of 

the vehicle.  In effect, this simple average integrates over all available data points for a given 

second to provide an averaged representative value from the 25 Hz data.  A comparison of the 25 

Hz and averaged 1 Hz engine speed and torque data acquired from CAN signals can be seen in 

Figures 14 and 15.  A *.m MATLAB file was used to convert the raw 25 Hz CAN data stored as 

a *.CSV file into averaged 1 Hz data.  The program used to average the CAN data is given in 

Appendix B.   
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Figure 14:  Raw 25 Hz CAN engine speed data and the averaged 1 Hz engine speed data 
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Figure 15:  Raw 25 Hz CAN engine torque data and the averaged 1 Hz engine torque data 
 

After comparing the GPS and CAN data, it was concluded that the absolute time (s) associated 

with the CAN data logged with NeoVI Pro was slightly inaccurate.  By looking into the data 

further, it was determined that a one second period of GPS UTC time corresponded to 

approximately 0.996994 s of the CAN data's absolute time.  An approximate 11 second offset 

occurred after one hour of testing.  The conversion factor of time between the two sets of data 

was necessary to align the data for validation of the model.  Static time checks were performed 

during testing so that the offset between the sets of data could be monitored.  It was also 

concluded that minimal offset or delay in time occurred between when the *.vs3 file was 

manually executed by the NeoVI Pro (ie program selected by the operator via NeoVI Pro's user 

interface) and when the NeoVI Pro device began logging the CAN signals.  However, an 
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approximate 8 s offset or delay of logging the CAN signals occurred after the NeoVI Pro device 

was supplied electrical power and the device automatically executed the appropriate *.vs3 file.   

 

4.3.3 Test Vehicle Equivalent Mass  

Equation (13) allows for the power required to vary the rotational and linear inertia of a vehicle 

to be estimated from GPS data’s estimated speed and acceleration values.  The inertia power of 

the vehicle represented by Equation (13) requires that the test vehicle's equivalent mass (meq) be 

estimated.  The equivalent mass of the test vehicle varied depending on what gear was engaged 

in the transmission.  The gamma value ( ) for each gear of the transmission is given in Table 3 

of Appendix A.  The meq for the test vehicle was calculated from Equation (12) according to the 

given gear engaged in the transmission while the vehicle was operated. 

  

4.3.4 Engine Accessory Power 

The engine data acquired from the CAN network indicated that a non-zero, positive power 

requirement was required by the engine while the engine was under zero load.  The power 

measured under no load was dissipated by the belt-driven accessory components such as the 

engine's fuel pump, water pump, oil pump, and alternator.  The most significant parasitic load 

included in the accessory power demand was the engine’s fuel pump because the diesel engine 

had a high pressure common rail fuel injection system.  The summation of the power required to 

drive these components represented the accessory power required to overcome these parasitic 

loads on the engine.  The accessory power measured from the CAN signal's engine data was 

proportional to the engine speed. 
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Some amount of accessory power must be subtracted from the engine power calculated from the 

CAN engine data to determine the power delivered to the drivewheels of the Equinox.  The 

Equinox's engine was operated under no load (ie transmission in neutral) for 30 s at various 

engine speeds to develop a relationship between accessory power and engine speed.  The tests 

began at an idle engine speed of approximately 900 RPM while the engine speed was increased 

every 30 s until an engine speed of 4000 RPM was attained.  Engine data from the CAN network 

was logged via the NEOVi Pro controller to estimate the engine's accessory power under no 

load.   

 

A linear least-squares regression analysis was applied to the engine data acquired to develop a 

relationship between the independent variable, engine speed, and the dependent variable, 

accessory power.  The measured accessory power data and the least-squares linear fit of the data 

are given in Figure 16.   The linear relationship between accessory power and engine speed is 

given by the following equation: 

 

             (23) 3317.00013.0  EngineAccessory nP

 

Where is the engine accessory power demand (kW) and  is the engine speed 

(RPM).  The least-squares linear fit of the engine data had a coefficient of determination (R

AccessoryP enginen

2) 

value of 0.619. 
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Figure 16:  The Fiat engine's accessory power demand data as a function of engine speed 
and the least-squares linear fit of the accessory power 

 
 

4.3.5 Test Vehicle Drivetrain Efficiency 

The drivetrain efficiency ( Drivetrain ) must be considered when calculating drivewheel power.  

Drivetrain  represents the efficiency of transferring power through the drivetrain to the driven 

wheels, and it is given by the following:   

 

  
Engine

Drivewheel
Drivetrain P

P
              (24) 
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The drivetrain efficiency of the Equinox vehicle while operating in a given gear is provided in 

Table 24 in the Appendix A.   

 

4.3.6 Drivewheel Power 

The drivewheel power supplied by the engine for vehicle locomotion can be calculated by 

accounting for the accessory power ( ) of the engine and the vehicle's net drivetrain 

efficiency (

AccessoryP

Drivetrain ).  The equation used to estimate drivewheel power during testing for 

validation of the model is given by the following: 

 

    DrivetrainAccessoryEngineDrivewheel PPP      (25) 

 

Equation (25) provided for discrete measured power values calculated from the CAN messages 

that were logged to the compact flash card, and they were compared to the discrete predicted 

power values during the tests performed.  The flow of energy from the engine’s fuel to the 

drivewheels is given in Figure 17, and it provides a qualitative representation of the relationship 

between engine and drivewheel power.   The further use of the term “measured drivewheel 

power” refers to the calculated drivewheel power values estimated from the engine speed and 

engine torque messages transmitted on certain 11 bit CAN signals. 

 

 64



 

Figure 17:  The flow of energy from the fuel to the movement of the vehicle  

 

4.3.7 Controlled Tests  

Validation of the mobility power model occurred while conducting controlled and uncontrolled 

tests in an on-road environment in the Knoxville, TN area.  The controlled tests were performed 

at two on-road test locations on 16 December 2011.  The vehicle was tested on firm pavement 

during the controlled and uncontrolled tests.  The controlled tests were performed to isolate each 

component of the model.  The motion resistance, grade, and inertia components of the model 

were each validated by attempting to maintain constant levels of speed, elevation grade, and 

acceleration respectively during each test.  A group of tests for a each component of the model 

had an accuracy assessment performed after the validation tests in order to identify the variability 

associated with each component.  Evaluation of each test occurred by comparing the discrete 

values and the average predicted power values from the GPS-based mobility power model to the 

measured drivewheel power values estimated from the vehicle's CAN data.   
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4.3.7.1 Motion Resistance Tests 

The VTI model's fine-grained equations were utilized to estimate the motion resistance force 

generated at the soil/tire interface even though the surface that all tests were conducted on was a 

firm, concrete surface.  The VTI model’s fine-grained equations were used in the model to 

estimate the test vehicle’s motion resistance force because the equations were thought21 to 

provide for a more accurate prediction of the resistive force generated compared to the motion 

resistance force estimates from the VTI model's coarse-grained equations.  The motion resistance 

tests were performed on a flat, concrete surface, and the test site is represented in Figure 6.  The 

CI value of the firm concrete surface could not be measured with a cone penetrometer so the CI 

value in Equation (2) from Section 3.4.1 was assigned to be 4137 kPa (600 psi) for all controlled 

tests because firm pavement is typically assigned this value for military vehicle mobility 

applications (Richmond, 2006).  This CI value was also used for tests when the vehicle was 

operating on an asphalt surface.  The motion resistance power tests were conducted on smooth, 

asphalt surfaces with minimal grade (i.e. flat ground) while attempting to maintain a constant 

travel speed.  The length of each straight-line test was approximately 110 m.   

 

Six straight-line, motion resistance tests were conducted at the following approximate average 

travel speeds: of 2.6, 4.8, and 6.7 m/s.  Six tests each were conducted at the 6.7 m/s average 

travel speed while the transmission was in 1st and 2nd gear.  This resulted in a total of 24 straight-

line tests that were performed for validation of the motion resistance component of the model.  

After completing the straight-line maneuvers, five constant turning radius motion resistance tests 

were performed at travel speeds of approximately 2.3, 3.3, and 5.0 m/s to verify the assumption 

that the motion resistance increased as the vehicle's turning radius increases.  The operator began 
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the maneuvers by initially turning the steering wheel to attain a constant turning radius at a 

certain speed while continuing to maintain the constant turning radius for five revolutions.  The 

constant turning radius tests were performed at the turning radii of approximately 4.9 m and 9.5 

m and at average travel speeds of 2.3 and 3.3 m/s.  The tighter 4.9 m turning radius test could not 

be performed at the 5.0 m/s travel speed without being traction limited during the constant 

turning radius tests.  Thus only the 9.5 m constant turning radius test was evaluated at the 5.0 m/s 

travel speed.   

 

4.3.7.2 Grade Tests 

The effect of the grade power component of the model was tested by maneuvering the vehicle at 

a constant travel speed on a firm asphalt surface.  The grade test location is represented in Figure 

7.  The controlled grades tests were performed while the vehicle was increasing in elevation (ie 

positive grade) at a constant speed to determine the accuracy of the model at predicting the 

vehicle's positive mobility power requirement.  Nine positive grade tests were performed at the 

single testing location.  The elevation gain and average percent grade traversed during each 

grade test were 50 m and 7.5% respectively.  Tests were conducted at average travel speeds of 

approximately 3.3, 4.8, 7.1, 9.3, and 11.4 m/s.  Three grade tests were performed at the 3.3 m/s 

average travel speed while two grade tests each were conducted at average travel speeds of 7.1 

and 11.4 m/s.  The grade tests performed at slower travel speeds (7.1 m/s or less) had the 1st gear 

of the transmission engaged while the high travel speed grade tests were completed in 2nd gear.  

A positive grade was traversed by the test vehicle at a constant speed so that only discrete 

positive grade power estimates were analyzed during validation.  The grade power component 

was the primary source of the vehicle's required mobility power during these tests.   
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4.3.7.3 Inertia Tests 

Inertia tests were conducted at a location with a hard, concrete surface where the operator 

accelerated the vehicle along a straight-line path from the minimum vehicle travel speed for a 

given gear (ie 0 m/s for 1st gear, approximately 5 m/s for 2nd gear) to the maximum attainable 

travel speed in the given gear.  The inertia tests were conducted at the same test site where the 

motion resistance tests were conducted, and the location is represented in Figure 6.  The 

maximum attainable travel speed in a given gear could not always be attained because the tests 

were limited by the 150 m length of the test track.  The test began when the transmission was 

shifted into the specified gear and the clutch was engaged so that power was transmitted from the 

engine through the drivetrain to the drivewheels.  The end of each test occurred when the 

maximum possible speed was attained, and the clutch was disengaged by the operator.  The tests 

were used for the combined validation of the linear and rotational inertia power components of 

the model.  Three degrees of approximately constant acceleration were maintained during the 

inertia tests.  The three levels of acceleration were classified as "slow", "medium", and "fast."   

The operator attempted to maintain a constant rate of increase in the engine speed; thus, an 

approximate constant level of acceleration (slow, medium, fast) could be attained for a given 

gear.  Three levels of acceleration allowed for the sensitivity of the model to fluctuations in 

vehicle travel speed and acceleration to be characterized.  Three, straight-line inertia tests were 

conducted at each degree of acceleration while operating in the 1st and 2nd gears of the 

transmission.  However, inertia tests while the 2nd gear was engaged could only be conducted at 

levels of acceleration of "medium" and "fast" because it was difficult to attain a "slow" level 

acceleration.  The vehicle speed had to be at least 5 m/s before the 2nd gear could be engaged 
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which substantially reduced the length of the test track available to conduct inertia tests in 2nd 

gear.  Straight- line inertia tests were repeated three times at the five different combinations of 

acceleration and gears which resulted in a total of 15 inertia tests that were analyzed during 

validation.  The model's accuracy was analyzed during the motion resistance, grade, and inertia 

component tests from the GPS and CAN data collected.   

 

4.3.8 Uncontrolled Tests 

The uncontrolled, simulated reconnaissance mission was performed on 20 December 2011 along 

a predetermined, on-road travel path.  Simulating a reconnaissance mission typically performed 

by U.S. Army personnel at U.S. Army installations required careful planning prior to executing 

the proposed mission and vehicle movement patterns.  The maneuvers performed during the 

controlled tests attempted to simulate the on-road and off-road maneuvers patterns observed 

during tracking studies at U.S. Army installations.  Haugen (2002) summarizes three types of 

reconnaissance training missions performed by the U.S. Army, and they include the following:  

area security, screen line, zone reconnaissance.  All three types of reconnaissance missions are 

performed by the U.S. Army's tactical vehicles at numerous installations.  A description of each 

mission is given in Table 5 (Department of the Army, 2000; Haugen, 2002).   
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Table 5:  A description of the three U.S. Army reconnaissance training missions (Source:  
Department of the Army, 2000; Haugen, 2002) 

Mission Description 

Area Security 
Provide reconnaissance and security in support of designated personnel, 
facilities, unit convoys, main supply routes, lines of communications, high 
value assets, equipment, and critical points  

Screen Line 

A screening force provides early warning to the main body and impedes and 
harasses the threat with direct and indirect fires, conducted on the front, 
flanks, and rear of a stationary force and to the flanks and rear of a moving 
force; establishes a series of operating positions and conducts patrols to 
ensure adequate reconnaissance and surveillance of the assigned sector; the 
platoon may suppress threat reconnaissance units with indirect fires in 
coordination with other combat elements 

Zone 
Reconnaissance 

Provide detailed information about a zone, before forces are maneuvered 
through the zone; provide detailed picture of how the threat plans to occupy 
the zone; can be terrain-oriented, force-oriented, or both; the reconnaissance 
platoon conducts terrain-oriented zone reconnaissance to gain detailed 
information about routes, terrain, and resources within the zone; the 
reconnaissance platoon conducts force-oriented zone reconnaissance to gain 
detailed information about threat forces within the zone  

    
 

The test was deemed uncontrolled because the maneuvers performed during testing were dictated 

by the terrain conditions and the simulated mission being performed by the operator of the 

vehicle.  Figure 8 details the travel path taken during the uncontrolled test.  The operator 

attempted to not exceed a travel speed of 8 m/s because the military vehicles previously tracked 

at U.S. Army installations typically perform reconnaissance missions at low travel speeds.  The 

maneuvers of the vehicle were determined from the operator's interpretation of the mission being 

performed and the terrain conditions.  The operator attempted to remain in a given gear with the 

clutch fully engaged while using the brake pedal sparingly during the test.  These factors affected 

the vehicle movement patterns during the uncontrolled validation test. 

 

The distinct mobility power duty cycle characteristics for the vehicle and mission type were 

developed by applying the mobility power model to the GPS data collected during the 
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uncontrolled test.  The accuracy assessment and development of the mobility power duty cycle 

characteristics for the test vehicle were calculated for only the time periods when the clutch was 

fully engaged and the brake pedal was not being pressed.  This allowed for the drivewheel power 

to be estimated from the measured engine power.  The transmission was in either the 1st, 2nd, or 

3rd gear during the uncontrolled test.   The power duty cycle values were estimated for the time 

periods when engine power was delivered to the drivewheels and the clutch was fully engaged.   

 

4.3.9 GPS Speed and Acceleration Offset 

It was hypothesized that there may be some offset between the GPS and CAN data where the 

GPS data possibly lagged the CAN data.  This offset may result because the measurement of the 

vehicle's change in inertia by the GPS receiver occurred some period after the power produced 

by the engine.  Engine power during testing was calculated from the engine speed and engine 

torque values logged from certain CAN network signals.  The GPS offset attempted to 

compensate for any offset or delay that occurred between the observed engine power, vehicle 

speed, and vehicle acceleration values calculated from the CAN data and GPS data.  The Trimble 

132 GPS receiver was configured to the “land” dynamic mode to optimize speed measurements 

from the receiver.  The Garmin 18 GPS receiver did not have an option to configure the dynamic 

mode of the receiver.  These factors had to be considered when comparing the theoretical 

drivewheel power delivered and the predicted mobility power from the GPS data.   

 

The GPS offset is some delay between the GPS data's measured kinematic properties (position, 

speed, acceleration, turning radius, elevation) of a vehicle and the actual kinematic's that 

occurred during vehicle locomotion.  A positive GPS offset was defined as the GPS data lagging 



the measured or observed vehicle speed, vehicle acceleration, and drivewheel power calculated 

from the CAN data.  The first approach for determining the optimum GPS speed and acceleration 

offset associated with the Garmin and Trimble GPS receivers consisted of comparing the GPS 

data's estimated vehicle travel speed and acceleration to the calculated vehicle travel speed 

determined from the measured wheel speeds.  The effective rolling radius (r) of the Chevrolet 

Equinox's wheels was determined during validation testing by measuring the distance traveled by 

the vehicle during a single revolution of the wheel.  The effective rolling radius of all wheels 

during testing was 0.358 m.  The calculated vehicle travel speed during straight-line maneuvers 

was determined by averaging the four wheel speed values (units:  RPM) logged from the CAN 

network and applying the following equation:   
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     60/2 wheelsVehicle nrV         (26) 

  Where  

  r is the measured rolling radius of the wheels (m), 

   is the measured wheel speed (RPM).   wheelsn

 

Straight-line, inertia test data was used to determine the GPS speed and acceleration offset for 

each receiver.  Taking the derivative of Equation (26) with respect to time allowed for a 

measured vehicle acceleration to be determined which was compared to the predicted 

acceleration from the GPS data.  The vehicle travel speed and acceleration as a function of time 

was determined for 0, 1, 2 and 3 s GPS offsets and compared to the vehicle travel speed and 

acceleration calculated from the CAN data.  The optimum GPS offset for a given receiver was 

the GPS offset that resulted in the maximum measured and predicted speed and 



maximum/minimum accelerations occurring at the same time.  Table 25 in Appendix C details 

the optimum GPS offsets for both GPS receivers during ten inertia tests.  Figures 18 and 19 

along with Figures 66 – 75 in Appendix C detail the vehicle travel speed and acceleration as a 

function of time at various GPS offsets during slow, medium, and fast inertia tests for the 

Trimble 132 and Garmin 18 GPS receivers. 
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Figure 18:  Vehicle travel speed at various Trimble 132 GPS offsets during a slow inertia 
test 
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Figure 19:  Vehicle acceleration at various Trimble 132 GPS offsets during a slow 
inertia test 

 

 

The optimum GPS offset tended to increase as the level of acceleration (slow, medium, fast) 

increased.  The optimum GPS offset for a given level of acceleration also varied depending on 

the GPS receiver (Garmin 18 or Trimble 132).  Comparing the observed and predicted vehicle 

speed and acceleration values indicated that some positive, non-zero GPS offset may be needed.  

However, the optimum GPS offset varied for each inertia test, and it was not apparent what the 

correct GPS offset should be for each GPS receiver.  As a result, a comparison of the predicted 

mobility power and the observed drivewheel power was necessary to determine the optimum 

GPS offset.   
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The net engine power that was delivered to the drivewheels (ie measured mobility power) was 

compared to the predicted mobility power from the GPS data in the second approach to further 

evaluate the optimum GPS offset between the two sets of data.  The GPS offset that decreased 

the variability between the measured and predicted mobility power values during nine separate 

inertia tests was selected as the optimum GPS offset.  A comparison of the predicted and 

measured mobility power at 0, 1, 2, and 3 s GPS offsets was done for nine inertia tests.  Six of 

the tests were conducted at a degree of acceleration classified as "fast" (3 tests in 1st gear and 3 

tests in 2nd gear) while three of the inertia tests were classified as "slow" (in 1st gear).  Table 26 

in Appendix C details the variability between the measured and predicted mobility power values 

at various GPS offsets for the Trimble and Garmin GPS receivers.  The data for the Trimble 132 

and Garmin 18 GPS receivers used in the comparison of the measured and predicted mobility 

power values at 0, 1, and 2 s GPS offsets are represented by Figures 76 and 77 respectively in 

Appendix C (Note:  3 s GPS offset data not shown due to extreme outliers). 

 

The R-squared value associated with the measured and predicted mobility power values was 

used as an indicator of the variability between the measured and predicted values.  A 2 s GPS 

offset was chosen as the optimum offset for both the Garmin and Trimble GPS receivers because 

this offset tended to minimize the variability between the predicted mobility power from the GPS 

data and the measured drivewheel power from the vehicle's CAN data.  An integer GPS offset 

was chosen instead of some non-integer value because the GPS data was logged at a sampling 

rate of 1 Hz.   

 



4.3.10 GPS Elevation Offset 

The GPS receivers' ability to estimate the vehicle's elevation and rate of elevation change were 

characterized because the change in elevation of the vehicle is the principle input variable to the 

grade power component of the model.  Static GPS data was collected at three points at the grade 

test location to determine the variability of the vehicle's predicted elevation from the Garmin 18 

and Trimble 132 GPS receivers.  The accuracy of the receiver's elevation data was first 

investigated by comparing the static elevation data collected for 600 s on two separate days at 

three points along the travel path at the test location.  The 600 s of static elevation data collected 

at a single location during two days is shown in Figures 20 and 21 for the Trimble 132 and 

Garmin 18 GPS receivers respectively.   
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Figure 20:  Static Trimble 132 elevation data during two different days at the grade test 
location  
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Figure 21:  Static Garmin 18 elevation data during two different days at the grade test 
location  

 

Figure 20 and 21 indicated that the difference between the two average elevation values was very 

small (< 0.1 m) for the Trimble 132 GPS receiver.  The Garmin 18 receiver had approximately a 

5.25 m difference between the two average elevation values.  The variability of each GPS 

receiver during the 600 s of static data was similar, but the Trimble 132 receiver was more 

accurate at predicting the elevation (height above ellipsoid) of the test location.  Any further use 

of the term elevation refers to the height above the ellipsoid.   

 

However, the critical input parameter to the grade power component of the model was the 

vehicle's rate of elevation change, not the GPS elevation value.  Thus the ability of each GPS 

receiver to accurately estimate the change in elevation of the vehicle during each grade test 
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needed to be investigated.  Figures 22 and 23 detail the estimated vehicle elevation as a function 

of the distance traveled by the vehicle from the Trimble 132 and Garmin 18 receivers 

respectively during five positive grade tests.   
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Figure 22:  The change in elevation of the test vehicle as a function of distance traveled 
from the Trimble 132 data during uphill grade tests at different travel speeds 
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Figure 23:  The change in elevation of the test vehicle as a function of distance traveled 
from the Garmin 18 data during uphill grade tests at different travel speeds 

 

Figures 22 and 23 indicated that there was substantially greater variability from the Garmin 18 

GPS receiver's rate of elevation change data compared to the Trimble 132 receiver.  The Trimble 

132 GPS receiver had a greater degree of accuracy at predicting the average elevation of the 

vehicle.  The greater accuracy of the Trimble 132 receiver was indicated from the curves seen in 

Figure 22.  The dynamic elevation values during each test for the Trimble 132 receiver were 

within 1.3 m of the static elevation values for the three locations estimated from 600 s of static 

GPS data.  The Garmin 18 receiver's dynamic elevation values differed up to 8.3 m from the 

static elevation value.  The elevation and associated change in elevation values during each test 

appeared to be more consistent across each grade test for the Trimble 132 receiver.  The Garmin 

18 GPS receiver had greater variability of the elevation values between each test.  This indicated 
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that Garmin 18 receiver might be less accurate at estimating the vehicle's rate of elevation 

change.   

 

Any offset or delay associated with the GPS elevation data was determined by comparing the 

uphill and downhill elevation values at static location #2.  An indicator of a GPS elevation offset 

would have been if the downhill elevation values tended to be greater than the associated 

elevation value while the vehicle was traversing uphill.  Table 6 summarizes the elevation values 

while traversing uphill and downhill during five separate grade tests.   

 

Table 6:  A comparison of the elevation data (height above ellipsoid) obtained from the 
Garmin 18 and Trimble 132 GPS receivers while traversing uphill and downhill during 
five grade tests 

Downhill Uphill Downhill Uphill
1 288.9 289.5 289.39 288.10
2 285.1 289.4 288.52 288.70
3 288.5 289.3 287.19 287.71
4 289.2 285.2 288.05 286.94
5 291.9 289.5 286.92 287.81

Trimble 132 GPS receiver
Elevation (m)Elevation (m) 

Test No. 

Garmin 18 GPS receiver

 
 

The average elevation at this location was estimated to be 282.1 and 287.72 m for the Garmin 18 

and Trimble 132 GPS receivers respectively.  The average elevation values were estimated from 

static elevation data collected at the location on 15 February 2012 and 18 February 2012.  The 

results summarized in Table 6 led to a 0 s GPS elevation offset being chosen for both GPS 

receivers since no distinct trends were observed in the data analyzed such as the downhill 

elevation values being greater than the uphill values.  

 

 80



 81

4.4 Results and Discussion  

GPS data was acquired from the Trimble 132 and Garmin 18 GPS receivers during the controlled 

and uncontrolled tests to validate the model.  The Garmin 18 receiver is typically the GPS 

receiver used with the Vehicle Tracking System (VTS) to track military vehicles during training 

missions.  This GPS receiver is used with the VTS units because it is a compact, low-power, and 

cost-effective receiver that can be easily mounted so that it does not interfere with the training 

mission.  The Trimble 132 GPS receiver represents a more accurate GPS receiver.  The results 

from the controlled and uncontrolled tests are first presented for the Trimble 132 GPS receiver 

because it represents the best available receiver for validating the model during testing.  The 

results from the Garmin 18 receiver are an indicator of the model’s accuracy when data from the 

GPS receiver typically used to track military vehicles is applied to the model.  The further use of 

the term “measured drivewheel power” refers to the calculated drivewheel power values 

estimated from the engine speed and engine torque messages transmitted on certain 11 bit CAN 

signals.  The absolute average percent error values provided in this section were calculated by 

dividing the magnitude of the difference between the discrete predicted and measured values by 

the magnitude of the measured value while averaging all of these discrete terms. 

 

4.4.1 Controlled Tests  

Validation of the model required that controlled tests be performed for each component of the 

model.  The predicted net mobility power value was compared to the total indicated or measured 

drivewheel power value that was determined from the CAN data logged during validation of 

each model component.  Accuracy assessment while validating each component of the model 
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was conducted by comparing the total measured and predicted power values, rather than 

comparing the component measured and predicted power values for validation.  In other words, 

component validation occurred by comparing the total predicted values from the GPS data, not 

each component value, to the net, measured drivewheel power values.  The results presented 

were generated using a 2 s GPS speed and acceleration offset (ie lag) and a 0 s GPS elevation 

offset for both GPS receivers.  Equation (11) was used to predict the vehicle's acceleration from 

the discrete GPS speed data, and a simple 5 s running average was used to filter the GPS 

elevation data.  Sections 4.3.9 and 4.3.10 provide a detailed description of the methods used to 

determine the correct GPS speed and acceleration offset.  A *.m MATLAB file given in 

Appendix B was used to convert the 25 Hz engine speed, engine torque, and wheel speed data 

logged from the signals transmitted on the test vehicle’s CAN network during testing to the GPS 

data's 1 Hz sampling rate.  Power dissipated by the engine's accessory components and the 

drivetrain frictional losses were accounted for when estimating the discrete measured drivewheel 

power values.  Section 4.3.2 provides the procedure used to convert the 25 Hz CAN data, and the 

process for estimating drivewheel power is provided in Sections 4.3.3 – 4.3.6. 

 

4.4.1.1 Motion Resistance Tests 

It was critical that the appropriate GPS speed offset was determined before validating the motion 

resistance component of the model.  The 24 straight-line motion resistance tests performed 

allowed for the accuracy and variability of the motion resistance component of the model to be 

characterized.  There was a fault in the Trimble 132 GPS data stored to the Serial Data 

Recorder(SDR) during the straight-line, 6.6 m/s travel speed tests in 1st gear, and this resulted in 

four of the six tests at this travel speed being excluded from the analysis of the Trimble 132 data.  



The error in the GPS data occurred for 80 s, and the data collected after this fault was not 

affected.  Thus only 20 of the 24 straight-line motion resistance tests were analyzed from the 

Trimble 132 GPS data while the data from the Garmin 18 receiver was analyzed for all 24 tests.  

The statistics for the 20 straight-line motion resistance tests are summarized in Table 7, and a 

comparison of the discrete predicted and measured power values at the five average travel speeds 

is represented in Figure 24 for the Trimble 132 GPS receiver.   

 

Table 7:  A summary of the results for the Trimble 132 GPS receiver during 20 straight-
line motion resistance tests 

Test Test Avg. Travel Avg. Predicted Avg. Measured Predicted Power Measured Power Measured vs. Predicted
No. Duration (s) Speed (m/s) Power (kW) Power (kW) Std. Dev. (kW) Std. Dev. (kW) Power RMSE (kW)
1 1 54 2.4 0.29 1.09 0.8 1.2 1.2
2 1 45 2.6 0.46 0.82 0.6 0.7 0.7
3 1 45 2.6 0.38 0.57 0.8 1.0 0.7
4 1 40 2.7 0.42 0.50 0.6 0.6 0.6
5 1 46 2.7 0.55 0.40 0.7 0.6 0.7
6 1 44 2.7 0.36 0.41 0.7 0.6 0.6
7 1 24 4.6 1.23 0.05 2.0 2.1 1.4
8 1 23 4.8 0.25 -0.39 1.5 0.7 1.3
9 1 23 4.7 0.70 -0.47 1.2 0.8 1.4

10 1 24 4.8 0.83 -0.09 1.1 0.5 1.3
11 1 25 4.8 0.65 -0.35 0.7 0.5 1.1
12 1 23 4.8 0.68 -0.03 1.1 0.6 1.1
13 1 16 6.5 2.41 1.95 4.6 0.8 1.4
14 1 16 6.7 0.56 0.19 2.2 0.9 1.8
15 2 16 6.8 1.24 1.09 6.5 5.6 2.2
16 2 14 6.6 0.33 -0.23 1.9 1.5 1.2
17 2 15 6.9 1.35 0.56 1.7 1.6 1.3
18 2 16 6.9 1.12 0.52 2.1 2.0 1.4
19 2 17 6.8 0.91 0.49 3.0 1.9 1.8
20 2 16 6.8 0.73 0.28 2.4 1.8 1.4

Gear
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Figure 24:  The discrete predicted mobility power values from the Trimble 132 GPS 
receiver during 20 straight-line motion resistance tests compared to the measured 
drivewheel power 

 

 

The majority of the discrete predicted and measured power values did not exceed 4 kW in 

magnitude, and the discrete data was concentrated about the origin. The standard deviation of the 

discrete measured and predicted power values revealed that the power values estimated from the 

Trimble 132 GPS data typically had more variation than the drivewheel power values calculated 

from the CAN data.  The Root Mean Square Error (RMSE), an indicator of the magnitude of the 

variability of the discrete predicted power values, tended to only increase slightly as the average 

travel speed of the vehicle increased.  The slight increase in RMSE indicated that the magnitude 

of the variability relative to the measured power values may have decreased assuming that the 
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motion resistance power increased as the vehicle travel speed increased.  Any slight wind that 

may have existed during the tests would have also been another source of variability.    

 

The measured and predicted discrete power values tended to fluctuate above and below 0 kW of 

power, but the values were skewed slightly positive.  The average measured and predicted power 

values in Table 7 further indicated that the discrete values were skewed positive.  The positive 

power requirement during the tests appeared to increase slightly as the average travel speed 

increased.  It was previously thought that the power requirement during the motion resistance 

tests would be a small, positive value that increased with travel speed.  The discrete negative 

predicted and measured values were not expected during the motion resistance tests.  The test 

site had a minimal grade, but a slight grade of the surface was present for stormwater drainage at 

the test site.  This factor introduced another possible source of variability during the motion 

resistance tests because the grade may have increased the range of the measured power values, 

both positive and negative.   

 

The small fluctuations in the vehicle travel speed during the motion resistance tests were one 

reason why the discrete positive and negative values occurred.  The fluctuations of the travel 

speed and subsequent power values that exceeded 4 kW in magnitude may also have been due to 

the difficulty in maintaining a constant, slow travel speed during the motion resistance tests.  A 

power value greater than positive 4 kW may have occurred because the operator increased the 

throttle position at a certain time to attempt to maintain a constant travel speed.  The increase in 

the throttle position resulted in a greater measured power, but the operator may have exceeded 

the target travel speed.  Any slight negative acceleration during the motion resistance tests 
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resulted in braking from the engine which produced a negative measured power since the 

drivetrain was directly coupled to the engine during all tests.  The brake pedal was not pressed 

during any of the motion resistance tests.  Exceeding the travel speed may have caused the less 

than -4 kW values where the operator may have had the throttle at the idle position while the 

engine braked or slowed down the vehicle.  The negative average power values estimated from 

the Trimble 132 data may have also been to due to errors in the GPS elevation data.   

 

The statistics for the 24 straight-line motion resistance tests are summarized in Table 8, and a 

comparison of the discrete predicted and measured power values at the five levels of average 

travel speed and two levels of turning radii is represented in Figure 25 for the Garmin 18 GPS 

receiver.   

 



 

Table 8:  A summary of the results for the Garmin 18 GPS receiver during 24 straight-
line motion resistance tests 

Test Test Avg. Travel Avg. Predicted Avg. Measured Predicted Power Measured Power Measured vs. Predicted
No. Duration (s) Speed (m/s) Power (kW) Power (kW) Std. Dev. (kW) Std. Dev. (kW) Power RMSE (kW)

1 1 54 2.4 0.13 1.09 1.2 1.2 1.7

2 1 45 2.6 0.87 0.82 1.7 0.7 1.7

3 1 45 2.6 -0.78 0.57 1.4 1.0 2.2

4 1 40 2.7 0.19 0.50 1.5 0.6 1.6

5 1 46 2.7 -0.06 0.40 1.6 0.6 1.8

6 1 44 2.7 -0.09 0.41 1.5 0.6 1.6
7 1 24 4.6 1.38 0.05 2.9 2.1 1.8

8 1 23 4.8 -0.47 -0.39 1.3 0.7 1.2

9 1 23 4.7 0.14 -0.47 1.6 0.8 1.6

10 1 24 4.8 -0.49 -0.09 1.6 0.5 1.5

11 1 25 4.8 1.36 -0.35 1.4 0.5 2.1

12 1 23 4.9 -0.76 -0.03 1.1 0.6 1.5
13 1 16 6.5 2.95 1.95 4.5 0.8 1.8

14 1 15 6.4 -3.25 0.25 2.3 1.5 3.7

15 1 16 6.6 0.36 0.25 3.0 1.4 1.9

16 1 15 6.8 -1.72 -0.02 2.7 1.5 2.5

17 1 15 6.8 2.95 0.40 4.3 1.1 4.1

18 1 16 6.7 0.06 0.19 1.8 0.9 1.0
19 2 16 6.8 1.45 1.10 6.8 5.6 1.8

20 2 14 6.7 -1.86 -0.23 2.7 1.5 2.6

21 2 15 6.9 1.35 0.56 2.2 1.6 1.6

22 2 16 6.9 -0.84 0.52 2.7 2.0 1.8

23 2 17 6.9 -0.12 0.49 4.1 1.9 2.5

24 2 16 6.8 0.34 0.28 2.1 1.8 1.8

Gear
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Figure 25:  The discrete predicted mobility power values from the Garmin 18 GPS 
receiver during 24 straight-line motion resistance tests compared to the measured 
drivewheel power 

 

The straight-line motion resistance results from the Garmin 18 GPS data had similar trends and 

statistics, but the variability of the predicted mobility power values increased slightly compared 

to the Trimble 132 data’s results.  The discrete data points in Figure 25 are not as concentrated 

along the 1:1 line at a point slightly above the origin.  The data points greater than 5 kW in 

magnitude also tended to lie closer to the 1:1 line compared to the same points calculated from 

the Garmin 18 data.  The average RMSE value of all of the straight-line tests from the Garmin 18 

data was approximately 37% greater than the average RMSE value from the Trimble 132 data.  

These quantitative measures were a confirmation of the qualitative conclusions drawn from 

Figure 24 and Figure25. 
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The statistics for the five constant turning radius motion resistance tests are summarized in Table 

9, and a comparison of the discrete predicted and measured power values at the five levels of 

average travel speed and turning radii is represented in Figure 26 for the Trimble 132 GPS 

receiver.  The average predicted and measured power during the 20 straight-line and five 

constant turning radius motion resistance tests are represented in Figure 27.   

 

Table 9:  A summary of the results for the Trimble 132 GPS receiver during five constant 
turning radius motion resistance tests 

Test Test Avg. Travel Avg. Turning Avg. Predicted Avg. Measured Predicted power Measured power Meas. vs. Pred.
No. Duration (s) Speed (m/s) Radius (m) Power (kW) Power (kW) Std. Dev. (kW) Std. Dev. (kW) Power RMSE (kW)
1 1 61 2.2 4.9 0.29 1.23 0.83 0.88 1.2
2 1 103 2.4 9.2 0.35 0.62 0.53 0.51 0.7
3 1 60 3.2 4.9 0.64 0.65 0.90 0.90 0.7
4 1 96 3.5 9.5 0.55 -0.19 1.34 0.83 1.5
5 1 55 5.0 9.4 0.92 1.39 2.31 1.32 1.7

Gear
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Figure 26:  The discrete predicted mobility power values from the Trimble 132 GPS 
receiver during five constant turning radius motion resistance tests compared to the 
measured drivewheel power 
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Figure 27:  The predicted average mobility power from the Trimble 132 GPS receiver 
compared to the measured average drivewheel power during the 20 straight-line and five 
constant turning radius motion resistance tests 

 

The data from the constant turning radius tests resulted in similar trends seen during the straight-

line tests.  The variability of the predicted values was similar, but there were no values that 

exceeded approximately 4.3 kW in magnitude.  The RMSE values during the turning radius tests 

ranged between 0.7 and 1.7 kW, and the values were similar to the values calculated for the 

straight-line tests.  The discrete data points were concentrated about the origin, but the discrete 

power values tended to be more positive compared to the straight-line motion resistance tests.  

The negative measured power values may have been due to the inaccuracies associated with 

estimating drivewheel power from the calculated engine power values.  The constant turning 

radius average power values in Figure 27 indicated that the constant turning radius tests had a 



slightly greater non-zero, positive power requirements than the straight-line tests.  The measured 

and predicted power during the constant turning radius tests tended to increase as the vehicle 

travel speed increased and the vehicle turning radius decreased.  These trends confirmed the 

assumptions underlying the Vehicle-Terrain Interaction (VTI) model that assumes motion 

resistance increases as the steering angle of the wheel increases.   

 

The statistics for the five constant turning radius motion resistance tests are summarized in Table 

10, and a comparison of the discrete predicted and measured power values at the five levels of 

average travel speed and turning radii is represented in Figure 28 for the Garmin 18 GPS 

receiver.  The average predicted and measured power during the 24 straight-line and five 

constant turning radius motion resistance tests are represented in Figure 29.   

 

Table 10:  A summary of the results for the Garmin 18 GPS receiver during five constant 
turning radius motion resistance tests 

Test Test Avg. Travel Avg. Turning Avg. Predicted Avg. Measured Predicted power Measured power Meas. vs. Pred.
No. Duration (s) Speed (m/s) Radius (m) Power (kW) Power (kW) Std. Dev. (kW) Std. Dev. (kW) Power RMSE (kW)
1 1 61 2.3 6.5 0.96 1.23 1.41 0.88 1.7
2 1 103 2.5 15.7 0.14 0.62 2.00 0.51 1.9
3 1 60 3.3 5.3 0.19 0.65 1.54 0.90 1.2
4 1 96 3.6 11.6 0.90 -0.19 2.29 0.83 2.5
5 1 55 5.1 9.9 1.59 1.39 2.39 1.32 2.2

Gear

 

 92



-8

-6

-4

-2

0

2

4

6

-6 -4 -2 0 2 4 6

Measured Power (kW)

P
re

d
ic

te
d

 P
o

w
er

 (
k

W
)

2.3m/s - T.R.=6.5m 2.5m/s - T.R.=15.7m 3.3m/s - T.R.=5.3m 3.6m/s - T.R.=11.6m 5.1m/s - T.R.=9.9m 1:1 line  

Figure 28:  The discrete predicted mobility power values from the Garmin 18 GPS 
receiver during five constant turning radius motion resistance tests compared to the 
measured drivewheel power 
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Figure 29:  The predicted average mobility power from the Garmin 18 GPS receiver 
compared to the measured average drivewheel power during the 24 straight-line and five 
constant turning radius motion resistance tests  

 

The variability of the Garmin 18 GPS receiver during the constant turning radius tests also 

tended to be greater than the variability of the Trimble 132 receiver’s results.  The Garmin 18 

receiver’s discrete data points were less concentrated near the 1:1 line.  The Garmin 18 receiver 

had 22 discrete data points that had predicted mobility power values greater than 4 kW in 

magnitude, compared to only two discrete data points from Trimble 132 data.  The average 

RMSE value of all of the constant turning radius tests from the Garmin 18 data was 

approximately 39% greater than the average RMSE value from the Trimble 132 data.  The 

Trimble 132 tended to provide a better estimate of the vehicle’s required mobility power during 

the five constant turning radius tests.   
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The turning radius estimated from the GPS data was an important input parameter during the 

constant turning radius tests because the steered wheel angle values needed to apply Equation (4) 

were estimated from the predicted turning radius.  The Trimble 132 receiver resulted in a higher 

level of accuracy being attained during the constant turning radius tests because the spatial 

position of each GPS point allowed for a more accurate estimate of the vehicle’s turning radius.  

The actual turning radius of each test was approximately 5 and 10 m while the discrete turning 

radius values estimated from the Garmin 18 data exceeded these values by up to approximately 

10 m.  The greater variability that was associated with the Garmin 18 data’s turning radius 

estimates was one possible source of the increased variability of the Garmin 18 receiver 

compared to the Trimble 132 receiver during the constant turning radius tests.   

 

The average power values during the straight-line and constant turning radius motion resistance 

tests further confirmed the greater accuracy that was attained with the Trimble 132 GPS receiver.  

It was estimated that 10 of the 24 straight-line tests had negative power requirements from the 

Garmin 18 data compared to zero for the Trimble 132 receiver.  The average power values from 

the Trimble 132 receiver were more concentrated along the 1:1 line just above the origin.  The 

results from the straight-line and constant turning radius motion resistance tests indicated that the 

results from the Trimble 132 receiver had less variability than the Garmin 18 receiver’s results 

while the estimates of the discrete power requirements were reasonable.   

 

The motion resistance ratio estimated from the Vehicle Terrain Interaction (VTI) model for the 

Chevrolet Equinox's tires used during validation testing was compared to the coefficient of 
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rolling resistance (analogous to motion resistance ratio) provided by the tire manufacturer.  The 

VTI model estimated the motion resistance ratio of the vehicle to be 0.00773 while the estimated 

ratio at the rated inflation pressure from the tire manufacturer was 0.00675.  The percent 

difference between the two motion resistance values was 14.6%.  This indicated that the VTI 

model's estimated motion resistance ratio was in reasonable agreement with ratio provided by the 

manufacturer. The close agreement between the two values gives validity to the assumption 

made that a firm pavement terrain should use a CI of 4137 kPa when applying Equation (2) from 

the VTI model.  The VTI model provided for a more flexible model while the model predicted 

that the motion resistance ratio of the wheel increased as the vehicle turning radius decreased.  

Furthermore, the VTI model is more suitable for estimating the motion resistance of military 

vehicles operating in on-road and off-road terrains where the terrain's measured CI value can 

vary substantially.  

 

4.4.1.2 Grade Tests 

Nine grade tests were conducted at average travel speeds of approximately 3.3, 4.8, 7.1, 9.3, and 

11.4 m/s.  Evaluating the accuracy of the GPS receivers’ ability to estimate the vehicle’s rate of 

elevation increase was critical to characterizing the grade power component of the model.  

Figure 30 compares the vehicle's predicted rate of elevation change from the two GPS receivers 

during a 10.8 m/s constant speed grade test.   
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Figure 30:  Elevation change estimated from the Garmin 18 and Trimble 132 GPS 
receivers during a 11.4 m/s uphill grade test 

 

The Trimble 132 GPS receiver's data during the constant speed tests resulted in a smaller amount 

of variability associated with the vehicle's predicted rate of elevation change.  The standard 

deviation of the elevation change during this test was 0.27 and 0.34 m/s for the Trimble 132 and 

Garmin 18 GPS receivers respectively.  Figure 30 indicated that filtering of the rate of elevation 

change data was necessary to smooth the data for both receivers due to the rapid fluctuations in 

the magnitude of the elevation change between the discrete data points.  The elevation change 

estimated from the Garmin 18 receiver's data may have been more variable than the Trimble 132 

receiver’s data, but a simple 5 s running average filter was used to smooth both GPS receivers 

change in elevation data.  Comparing the predicted mobility power using several types of change 

 97



in elevation filters further emphasized the need to smooth the change in elevation data.  Figure 

31 and 32 provide a comparison between the filtered and unfiltered predicted mobility power 

values and the measured drivewheel power for the Trimble 132 and Garmin 18 receivers 

respectively.   
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Figure 31:  The predicted mobility power using different change in elevation filters 
Trimble 132 GPS data during a 7.1 m/s travel speed grade test  
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Figure 32:  The predicted mobility power using different change in elevation filters 
Garmin 18 GPS data during a 7.1 m/s travel speed grade test  

 

The predicted mobility power without using an elevation filter resulted in predicted values that 

tended to oscillate above and below the measured drivewheel power values when the Garmin 18 

receiver data was used.  The measured drivewheel power values refer to the calculated 

drivewheel power values estimated from the engine speed and engine torque messages 

transmitted on certain 11 bit CAN signals.  The oscillations of the predicted values from the 

Trimble 132 data appeared to be significantly smaller in magnitude when no filter was used.  

This trend was observed during all of the grade tests, independent of the average travel speed.  

The 5 s running average filter was applied to the change in elevation data to smooth the change 

in elevation data and reduce the oscillating characteristics of the predicted mobility power 
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curves.  This 5 s filter was used to estimate the discrete predicted mobility power values during 

the nine grade tests.   

 

The statistics and results for the nine grade tests are summarized in Tables 11 and 12 

respectively, and a comparison of the discrete predicted and measured power values at the five 

average travel speeds is given by Figure 33 for the Trimble 132 GPS receiver.  The average 

predicted and measured power values during the nine grade tests are represented in Figure 34.   

 

Table 11:  A summary of the Trimble 132 GPS receiver data collected during the nine 
grade tests 

Test Test Avg. Travel Avg. dh / dt Avg. Predicted 
No. Duration (s) Speed (m/s) (m/s) Percent Grade

1 1 232 3.1 0.22 7.2%
2 1 186 3.6 0.27 7.4%
3 1 216 3.1 0.23 7.5%
4 1 142 4.8 0.36 7.6%
5 1 101 7.1 0.52 7.3%
6 1 90 7.2 0.52 7.3%
7 2 75 9.3 0.66 7.1%
8 2 56 11.5 0.86 7.5%
9 2 44 11.3 0.81 7.2%

Gear

 
 

Table 12:  A summary of the results and statistics from the Trimble 132 GPS receiver 
during the nine grade tests 

Test Avg. Predicted Avg. Predicted Avg. Measured Avg. Measured Absolute Average  Measured vs. Predicted Power
No. Power (kW) Power Std. Dev. (kW) Power (kW) Power Std. Dev. (kW) Percent Error Power RMSE (kW) CV RMSE

1 5.08 4.07 5.06 1.00 58.5% 4.2 0.83
2 6.23 3.32 5.65 1.38 50.3% 3.4 0.61
3 5.43 3.87 5.12 0.98 56.8% 3.9 0.77
4 8.39 3.09 8.50 2.81 48.2% 3.8 0.45
5 12.19 6.77 9.98 3.82 80.2% 7.7 0.77
6 12.34 5.61 11.93 2.54 42.8% 5.8 0.49
7 16.23 5.14 16.41 4.66 37.6% 7.0 0.43
8 20.18 8.59 21.29 8.60 33.7% 7.4 0.35
9 21.05 8.58 21.51 5.86 37.4% 3.9 0.18  
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Figure 33:  The discrete predicted mobility power values from the Trimble 132 GPS 
receiver during nine grade tests compared to the measured drivewheel power  
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Figure 34:  The predicted average mobility power from the Trimble 132 GPS receiver 
during nine grade tests compared to the measured average drivewheel power  

 

The statistics in Table 12 and the variability of the model indicated by Figures 33 and 34 led to 

the conclusion that there was a moderate level of variability between the discrete measured and 

predicted power values during the grade tests.  The discrete data points for a given travel speed 

tended to be equally scattered above and below the 1:1 line in Figure 33.  The magnitude of the 

predicted discrete and average power values increased as the average vehicle travel speed 

increased.  The predicted average power requirement during all nine grade tests had an absolute 

average percent error of 6% which indicated the model was very accurate at predicting the 

average power requirements.  The absolute average percent error values were calculated by 

dividing the magnitude of the difference between the discrete predicted and measured values by 

the magnitude of the measured value while averaging all of these discrete terms.  A lower level 

 102



 103

of accuracy was attained when estimating the discrete power requirements during the grade test, 

as indicated by an absolute average percent error of 50%.  The maximum discrete and average 

predicted mobility power values were approximately 39 and 20% of the rated engine power 

respectively during the nine grade tests.   

 

The absolute average percent error, RMSE, and Coefficient of Variation of the RMSE (CV 

RMSE) values were used as an indicator of the models accuracy at predicting the discrete 

mobility power values during the nine grade tests.  CV RMSE is the RMSE normalized to the 

average of the measured values, and it provided an indication of the variability of the model 

relative to the average measured drivewheel power.  These measures of accuracy indicated that 

the model tended to attain a higher level of accuracy during the grade tests performed at higher 

average travel speeds.  The CV RMSE values tended to decrease as the average vehicle travel 

speed increased.  The variability of the model's predicted power value was minimized during the 

grade test performed at an average travel speed of 11.3 m/s.  The absolute average percent error 

and CV RMSE values for this test were 37.4% and 0.18 respectively.  These values starkly differ 

compared to the absolute average percent error and CV RMSE values for the 3.1 m/s average 

travel speed grade test which were 58.5% and 0.83 respectively.   

 

The statistics and results for the nine grade tests are summarized in Tables 13 and 14, and a 

comparison of the discrete predicted and measured power values at the five average travel speeds 

is given in Figure 35 for the Garmin 18 GPS data.  The average predicted and measured power 

values during the nine grade tests are represented in Figure 36 for the Garmin 18 GPS data. 

 



Table 13:  A summary of the Garmin 18 GPS receiver data collected during the nine 
grade tests 

Test Test Avg. Travel Avg. dh / dt Avg. Predicted 
No. Duration (s) Speed (m/s) (m/s) Percent Grade

1 1 232 3.0 0.24 7.8%
2 1 186 3.6 0.28 7.7%
3 1 216 3.0 0.21 7.0%
4 1 142 4.8 0.39 8.2%
5 1 101 7.1 0.51 7.3%
6 1 90 7.2 0.43 5.9%
7 2 75 9.2 0.56 6.1%
8 2 56 11.5 0.86 7.5%
9 2 44 11.2 0.74 6.6%

Gear

 
 

Table 14:  A summary of the results and statistics from the Garmin 18 GPS receiver 
during the nine grade tests 

Test Avg. Predicted Avg. Predicted Avg. Measured Avg. Measured Absolute Average  Measured vs. Predicted Power
No. Power (kW) Power Std. Dev. (kW) Power (kW) Power Std. Dev. (kW) Percent Error Power RMSE (kW) CV RMSE

1 5.42 2.86 5.08 1.00 44.8% 2.69 0.53
2 6.40 4.97 5.65 1.38 32.1% 5.16 0.91
3 5.00 4.23 5.10 0.98 64.6% 4.14 0.81
4 9.15 4.88 8.45 2.81 62.4% 5.18 0.61
5 12.23 5.78 10.04 3.82 58.9% 6.01 0.60
6 9.97 4.91 11.95 2.54 41.5% 5.77 0.48
7 14.40 8.12 16.54 4.66 52.2% 10.39 0.63
8 19.97 11.15 21.08 8.60 37.3% 11.62 0.55
9 19.31 9.99 21.58 5.86 31.4% 3.51 0.16  
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Figure 35:  The discrete predicted mobility power values from the Garmin 18 GPS 
receiver during nine grade tests compared to the measured drivewheel power 
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Figure 36:  The predicted average mobility power from the Garmin 18 GPS receiver 
during nine grade tests compared to the measured average drivewheel power  

 

The discrete data represented in Figure 35 indicated that the Garmin 18 GPS receiver data 

slightly decreased the model’s accuracy during the nine grade tests compared to the results from 

the Trimble 132 data.  The Garmin 18 receiver’s discrete data points tended to have more 

outliers while the points appeared to be slightly less concentrated near the 1:1 line.  The RMSE 

and CV RMSE values calculated for each test indicated that the model had a small increase in 

the variability when the Garmin 18 GPS receiver’s data was used.  However, both receivers 

provided reasonable estimates of the discrete predicted power requirements during the grade 

tests.  Furthermore, the model attained a high level of accuracy when estimating the average 

power requirements for the data from both GPS receivers while the Trimble 132 receiver was 

slightly more accurate.   
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Any difference in the model’s accuracy between the Trimble 132 and Garmin 18 receivers’ 

results was attributed to the Trimble 132 GPS receiver’s ability to more accurately estimate the 

vehicle’s rate of elevation change.  The Trimble 132 GPS receiver data provided for smoother 

estimates of the vehicle’s elevation change with fewer rapid changes in the magnitude of the 

elevation change, as indicated by Figures 30 – 32.  The estimated average percent grade during 

the tests allowed for the variability of the predicted percent grade traversed to be characterized 

across each test.  The average percent grade values for the Garmin 18 GPS receiver were 

between 5.9 and 8.0% while the average percent grades from the Trimble 132 receiver ranged 

between 7.1 and 7.6%.  The standard deviation of the Garmin 18 receiver’s average percent 

grade values was approximately 550% greater than the 0.14% standard deviation of the percent 

grade estimated from the Trimble 132 GPS receiver.   

 

The results from the Trimble 132 and Garmin 18 GPS receiver data collected indicated that the 

model had moderate level of variability associated with the estimated discrete mobility power 

values during the nine grade tests.  However, a high degree of accuracy and a substantially 

decreased level of variability were achieved by the model when predicting the test vehicle’s 

average power requirement.   

 

4.4.1.3 Inertia Tests 

The 15 straight-line inertia tests allowed for the accuracy and variability of the inertia power 

component of the GPS-based mobility power model to be characterized.  Three tests were 

conducted at a degree of acceleration of "slow" while the 1st gear of the transmission was 
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engaged.  Six tests each were conducted at degrees of acceleration of "medium" and "fast" where 

half of the tests had the 1st gear engaged and the other tests were in 2nd gear.   

 

The accuracy of the model at predicting the power required to vary the inertia of the test vehicle 

was strongly dependent on the estimated vehicle speed and acceleration values obtained from the 

GPS data.  The results presented were generated using a 2 s GPS speed and acceleration offset 

(ie lag), and Sections 4.3.9 and 4.3.10 provide a detailed description of the methods used to 

determine the correct GPS speed and acceleration offset.  The derivative of the discrete GPS 

speed data was taken with respect to time to determine the vehicle's predicted acceleration.  The 

acceleration calculated from the discrete GPS speed data was identified possibly as a significant 

source of variability in estimating the test vehicle's inertia power requirements because 

numerically differentiating the discrete GPS speed data may have amplified any noise in the GPS 

speed data.  Figures 37 and 38 summarize a comparison of the average measured and predicted 

acceleration during each inertia test for the Trimble 132 and Garmin 18 GPS receivers.  The 

measured acceleration values were calculated from the discrete measured wheel speed data.  The 

measured or calculated vehicle travel speed was computed from the discrete measured wheel 

speed data via Equation (26) from Section 4.3.9, and the derivative was taken with respect to 

time to calculate the discrete measured acceleration values.   
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Figure 37:  The average predicted vehicle acceleration from the Trimble 132 GPS 
receiver during 15 inertia tests compared to the measured acceleration 
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Figure 38:  The average predicted vehicle acceleration from the Garmin 18 GPS receiver 
during 15 inertia tests compared to the measured acceleration 
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Figures 37 and 38 indicated that the Trimble 132 and Garmin 18 receivers accurately predicted 

the vehicle's average acceleration during the 15 inertia tests.  The GPS receivers tended to 

slightly underestimate the vehicle's average acceleration during the inertia tests except during 

tests with a slow degree of acceleration.  The average predicted acceleration RMSE values were 

0.42 and 0.30 m/s2 for the Trimble 132 and Garmin 18 receivers respectively.  The Garmin 18 

GPS receiver had slightly less variability associated with estimating vehicle acceleration, despite 

the greater precision of the Trimble 132 GPS.   

 

The differences in the estimated vehicle acceleration values from the two receivers were 

attributed to a few significant factors.  The proprietary method for estimating the discrete speed 

value for each GPS point is different for each GPS receiver manufacturer.  The various methods 

available for estimating and filtering the GPS speed data was the primary reason why there were 

differences between the GPS receivers.  One method may over-smooth or under-smooth the 

vehicle speed data more than the other.  The derivative of the discrete speed data was taken to 

determine the vehicle's acceleration.  Taking the derivative of the vehicle speed data to determine 

vehicle acceleration may have amplified the magnitude of the error associated with the speed 

data.  One source of error may have been the inaccuracy associated with the rotational speed 

sensor for each wheel.  The measured straight-line vehicle acceleration was calculated from the 

wheel speed CAN data, and the accuracy of these sensors was unknown.  Another factor to 

consider was the 2 s GPS offset used in the analysis.  The 2 s GPS offset may have been biased 

or more applicable to one receiver compared to the other.  The Trimble 132 receiver may have 



provided for better estimates of vehicle acceleration at some other non-integer GPS offset that 

was not analyzed (ie 0.5, 1.5, 2.5 s GPS offset).   

 

The 15 straight-line inertia tests conducted allowed for validation and an accuracy assessment of 

the inertia component the model.  The results and statistics from the Trimble 132 GPS data for 

the 15 inertia tests are detailed in Tables 15 and 16, and the relationship between the measured 

and predicted values are given in Figure 39.  The average predicted acceleration Root Mean 

Square Error (RMSE) values are also provided in Table 15.  The average RMSE value was a 

maximum during Test Number 12 while the RMSE was minimized during Test Number 13.  

There was minimal variability across the three acceleration RMSE values during the inertia tests 

conducted at a given level of acceleration and gear.   

 

Table 15:  A summary of the Trimble 132 GPS receiver data collected during the 15 
inertia tests 

Test Test Measured vs. Predicted

No. Duration (s) Acceleration RMSE  (m/s2)

1 1 Slow 10 0.53
2 1 Slow 9 0.51
3 1 Slow 8 0.59
4 1 Medium 4 0.41
5 1 Medium 4 0.39
6 1 Medium 4 0.47
7 2 Medium 6 0.30
8 2 Medium 7 0.31
9 2 Medium 6 0.43

10 1 Fast 5 0.55
11 1 Fast 10 0.65
12 1 Fast 8 0.68
13 2 Fast 8 0.10
14 2 Fast 8 0.27
15 2 Fast 7 0.13

Gear Degree of Acceleration 
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Table 16:  A summary of the results and statistics from the Trimble 132 GPS receiver 
during the 15 inertia tests 

Test Avg. Predicted Avg. Predicted Avg. Measured Avg. Measured Absolute Average  Measured vs. Predicted Power

No. Power (kW) Power Std. Dev. (kW) Power (kW) Power Std. Dev. (kW) Percent Error Power RMSE (kW) CV RMSE
1 10.1 3.69 8.9 3.49 29% 2.29 0.26
2 9.1 3.02 7.9 1.95 35% 2.90 0.37
3 10.2 4.45 10.2 2.82 27% 2.86 0.28
4 30.1 6.37 23.1 3.25 45% 18.64 0.41
5 14.6 3.93 12.0 3.21 43% 17.97 0.35
6 21.7 4.75 17.6 3.99 32% 16.81 0.33
7 16.3 2.61 16.5 3.09 46% 10.65 0.44
8 19.1 10.62 20.7 6.21 43% 11.63 0.42
9 28.4 2.68 25.2 6.03 38% 12.05 0.36
10 33.7 23.15 24.3 16.79 30% 8.12 0.35
11 36.9 29.15 27.8 21.75 26% 3.62 0.30
12 43.2 27.91 33.9 19.35 26% 5.83 0.33
13 63.1 18.52 45.4 17.94 15% 3.26 0.20
14 65.2 18.12 51.3 21.08 38% 10.80 0.52
15 65.4 21.53 51.0 18.09 19% 4.54 0.18  
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Figure 39:  The discrete predicted mobility power values from the Trimble 132 GPS 
receiver during 15 inertia tests compared to the measured drivewheel power 

 

The results indicated that the GPS-based model provided very reasonable estimates of the 

required mobility power of the vehicle during the 15 inertia tests.  CV RMSE is the RMSE 
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normalized to the average of the measured values, and it provided an indication of the variability 

of the model relative to the average measured drivewheel power.  The maximum predicted 

discrete mobility power value during the 15 inertia tests was approximately 84% of the rated 

engine power.  This discrete value represented the greatest predicted and measured power 

requirement for the test vehicle during all of the controlled tests.  The three inertia tests 

conducted at a fast degree of acceleration while the 2nd gear of the transmission was engaged (ie 

Test Numbers 13 – 15) had the lowest absolute average percent error and Coefficient of 

Variation of the RMSE (CV RMSE) values between the estimated mobility power and the 

measured drivewheel power.  The absolute average percent error values were calculated by 

dividing the magnitude of the difference between the discrete predicted and measured values by 

the magnitude of the measured value while averaging all of these discrete terms.  The absolute 

average percent error and CV RMSE values during the three inertia tests conducted at a medium 

level of acceleration in 2nd gear (ie Test Numbers 7 – 9) were on average approximately 37% 

greater than the values calculated for the fast inertia tests in 2nd gear.  In general, the model 

provided accurate estimates of the discrete power requirements during the 15 inertia tests.  The 

average predicted and measured mobility power requirement values for the 15 inertia tests are 

summarized in Figure 40 for the Trimble 132 GPS receiver.  
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Figure 40:  The predicted average mobility power from the Trimble 132 GPS receiver 
during 15 inertia tests compared to the measured average drivewheel power 

 

The average power values predicted from the mobility power model for the 15 inertia tests were 

very similar to the average measured power delivered to the drivewheels of the test vehicle.  The 

maximum average predicted mobility power values was approximately 58% of the rated engine 

power during the 15 inertia tests.  The model tended to slightly overestimate the average power 

requirement during the 15 inertia tests.  This trend may have been attributed to the equivalent 

mass term that was used in Equation (13) to estimate the power requirement from the inertia 

component of the model.  The  term depended on the gamma value (γ) value for the gear that 

was engaged during an inertia test.  Some unknown difference between the  predicted from 

the model and the vehicle's actual  in a given gear was one possible source of the model's 

eqm

eqm

eqm
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tendency to overestimate the mobility power requirements of the vehicle.  The γ values provided 

for the vehicle to estimate  may have needed to be recalibrated for the vehicle configuration 

tested since the model tended to slightly overestimate the power requirements despite 

underestimating the average vehicle acceleration.  Figure 40 indicated that the model tended to 

predict the average power requirements with a high level of accuracy during the 15 inertia tests 

from the Trimble 132 GPS data.   

eqm

Deg

 

Tables 17and 18 along with Figures 41 and 42 detail the results obtained using data collected 

from the Garmin 18 GPS receiver for the 15 inertia tests conducted.   

 

Table 17:  A summary of the Garmin 18 GPS receiver data collected during the 15 inertia 
tests 

Test Test Measured vs. Predicted

No. Duration (s) Acceleration RMSE  (m/s2)

1 1 Slow 10 0.51
2 1 Slow 9 0.50
3 1 Slow 8 0.62
4 1 Medium 4 0.55
5 1 Medium 4 0.61
6 1 Medium 4 0.65
7 2 Medium 6 0.05
8 2 Medium 7 0.06
9 2 Medium 6 0.07
10 1 Fast 5 0.13
11 1 Fast 10 0.15
12 1 Fast 8 0.16
13 2 Fast 8 0.15
14 2 Fast 8 0.15
15 2 Fast 7 0.16

ree of Acceleration Gear
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Table 18:  A summary of the results and statistics from the Garmin 18 GPS receiver 
during the 15 inertia tests 

Test Avg. Predicted Avg. Predicted Avg. Measured Avg. Measured Absolute Average  Measured vs. Predicted Power

No. Power (kW) Power Std. Dev. (kW) Power (kW) Power Std. Dev. (kW) Percent Error Power RMSE (kW) CV RMSE
1 10.5 3.87 8.9 3.49 48% 3.54 0.40
2 8.3 3.34 7.9 1.95 38% 3.29 0.42
3 10.8 5.19 10.2 2.82 39% 3.99 0.39
4 27.8 5.13 23.1 3.25 22% 6.91 0.30
5 14.0 3.45 12.0 3.21 27% 3.22 0.27
6 20.2 5.86 17.6 3.99 22% 5.28 0.30
7 15.2 2.20 16.5 3.09 12% 3.13 0.19
8 22.3 5.31 20.7 6.21 22% 4.55 0.22
9 25.8 5.50 25.2 6.03 6% 1.83 0.07
10 27.6 22.36 24.3 16.79 36% 6.59 0.27
11 32.5 29.35 27.8 21.75 42% 8.30 0.30
12 39.3 30.44 33.9 19.35 41% 10.71 0.32
13 60.0 16.02 45.4 17.94 41% 16.42 0.36
14 59.3 13.67 51.3 21.08 38% 14.81 0.29
15 62.2 18.43 51.0 18.09 28% 14.09 0.28  
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Figure 41:  The discrete predicted mobility power values from the Garmin 18 GPS 
receiver during 15 inertia tests compared to the measured drivewheel power 
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Figure 42:  The predicted average mobility power from the Garmin 18 GPS receiver 
during 15 inertia tests compared to the measured average drivewheel power  

 

The trends of the model using the Garmin 18 GPS receiver data were similar to the trends 

described for the Trimble 132 receiver.  The model continued to slightly overestimate the power 

requirements of the vehicle during the inertia tests when the Garmin 18 data was used.  The 

variability of the predicted mobility power values decreased slightly when the Garmin 18 GPS 

receiver data was used because there was less variability associated with the predicted vehicle 

acceleration values from the Garmin 18 GPS receiver.  The decrease in variability may have 

resulted from the 2 s GPS offset that was used.  The decrease in variability of the predicted 

power values from the Garmin 18 GPS receiver was indicated by the scatter of the discrete data 
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points in Figure 41.  The absolute average percent error and CV RMSE also tended to decrease 

slightly with the Garmin 18 GPS receiver.   

 

The least-squares linear regression lines shown in Figures 40 and 42 for the Trimble 132 and 

Garmin 18 GPS receivers respectively were developed from the average predicted and measured 

power values while the intercept of the regression line was set to zero.  The coefficient of 

determination value (R2) for the least-squares linear regression lines were 0.98 for both GPS 

receivers.  The model tended to overestimate the average power requirement of the test vehicle 

during the inertia tests, and the slope of the linear regression lines further reinforced this 

conclusion.  The slope of the linear regression lines were 1.27 and 1.18 for the Trimble 132 and 

Garmin 18 receivers respectively.  The linear regression slopes for the Trimble 132 and Garmin 

18 receivers indicated that a 27 and 18% respectively reduction in the gamma (γ) values used in 

Equation (12) from Section 3.6.2 to calculate the inertia component of the model allowed for the 

model to be calibrated for the test vehicle and the given GPS receiver.  Figures 43 and 44 detail a 

comparison of the average predicted mobility power and drivewheel power values after reducing 

the gamma values used for the GPS data from Trimble 132 and Garmin 18 receivers by 27 and 

18% respectively.   
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Figure 43:  The predicted average mobility power from the Trimble 132 GPS receiver 
using calibrated drivetrain gamma (γ) values during 15 inertia tests compared to the 
measured average drivewheel power 
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Figure 44:  The predicted average mobility power from the Garmin 18 GPS receiver 
using calibrated drivetrain gamma (γ) values during 15 inertia tests compared to the 
measured average drivewheel power 

 

Reducing the gamma values used to estimate the inertia component of the model decreased the 

variability between the average predicted mobility power and the drivewheel power values.  The 

absolute average percent error and RMSE values between the average predicted and measured 

values were both decreased by 74% for the Trimble 132 GPS receiver.  The absolute average 

percent error and RMSE values between the average predicted and measured values were 

decreased by 81 and 71% for the Garmin 18 receiver.   
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The inertia test results indicated that the model had an acceptable amount of variability 

associated with the estimated discrete mobility power values from both the Trimble 132 and 

Garmin 18 GPS receiver data collected.  The GPS receivers accurately estimated the average 

acceleration of the vehicle during 15 inertia tests.  A high degree of accuracy and a decreased 

level of variability were achieved by the model when predicting the test vehicle’s average power 

requirement during the inertia tests from the Trimble 132 and Garmin 18 GPS data.   

 

4.4.2 Uncontrolled Test – Simulated Reconnaissance Mission  

The uncontrolled test performed attempted to simulate the vehicle movement patterns of U.S. 

Army vehicles during reconnaissance missions.  Approximately 2400 s of test data was collected 

during the uncontrolled test while engine power was delivered to the drivewheels for only 2100 s 

of the test.  The results are only for the durations when the clutch was fully engaged and 

transmitting engine power to the drivewheels through the 1st, 2nd, or 3rd gear of the transmission.  

The statistics from the uncontrolled test are summarized in Table 19 for each gear, and the 

discrete measured and predicted values are shown in Figure 45 for the Trimble 132 GPS 

receiver.  Figure 8 in Section 4.2.1 illustrates the discrete predicted mobility power values during 

a portion of uncontrolled test from the Trimble 132 GPS data.  A thematic map is given in Figure 

46 showing the estimated absolute error between the measured and predicted discrete power 

values estimated from the Trimble 132 GPS data.  The absolute error values were determined by 

calculating the magnitude of the difference between the discrete predicted and measured values. 

 



Table 19:  A summary of the results and statistics from the Trimble 132 GPS data during 
the uncontrolled tests  

Avg. Travel Avg. Absolute Avg. Predicted Avg. Measured Measured vs. Predicted
Speed (m/s) Elevation Change (m/s) Positive Power (kW) Positive Power (kW) Power RMSE (kW)

1 757 3.7 0.17 5.0 3.6 6.86
2 1128 7.8 0.28 7.1 5.9 6.95
3 218 9.4 0.21 6.6 6.7 3.59

Average: 6.5 0.23 6.3 5.2 6.57

Gear Duration (s)
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Figure 45:  The discrete predicted mobility power values from the Trimble 132 GPS 
receiver during uncontrolled compared to the measured drivewheel power 
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Figure 46:  The absolute error of the model’s predicted mobility power requirement from 
the Trimble 132 data compared to the measured drivewheel power during the 
uncontrolled test 
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There was a moderate level of variability between the discrete measured and predicted power 

values.  No outliers were identified from the discrete Trimble 132 data in Figure 45.  Reasonable 

estimates of the discrete negative and positive power requirements were predicted from the 

mobility power model.  The majority of the discrete positive and negative power values were less 

than 25 kW.  The average positive predicted and measured power requirements in each gear were 

between 5.0 – 6.6 kW and 3.6 – 6.7 kW respectively.  The absolute average percent error of the 

positive power requirements during the reconnaissance mission was approximately 20%.  The 

absolute average percent error values were calculated by dividing the magnitude of the 

difference between the discrete predicted and measured values by the magnitude of the measured 

value while averaging all of these discrete terms.  The model tended to slightly overestimate the 

power requirement of the test vehicle during the uncontrolled test.   

 

In general, the power requirement was less than 5 kW for the portion of the uncontrolled test 

represented in Figure 8 from Section 4.2.1.  The discrete predicted positive power requirement 

during the uncontrolled test tended to be less than 17% of the rated engine power.  The travel 

path shown in Figure 8 attempted to simulate a military vehicle while performing a 

reconnaissance mission.  The two on-road looping travel paths represented in Figure 8 were 

similar to previously observed movement patterns during reconnaissance missions.  The on-road 

loops performed during the uncontrolled test were an attempt to simulate the off-road movement 

patterns of military vehicles during reconnaissance missions when the military personnel 

maneuver in new off-road terrain after leaving a main road or trail.  In general, the power 

requirement of the test vehicle during these simulated off-road maneuvers was less than the 
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power requirement while traversing the on-road terrain.  The lower mobility power requirements 

during the simulated off-road movements were due to a reduced travel speed that typically did 

not exceed 3 m/s.  The simulated on-road movement patterns shown in Figure 8 had discrete 

values that exceeded 20 kW in magnitude which was due to the vehicle’s greater travel speed, 

acceleration, and percent grade traversed during the simulated on-road maneuvers.   

 

The discrete absolute error values in Figure 46 varied substantially, and the spatial location 

appeared to affect the variation of the predicted mobility power requirement.  Approximately 10 

– 20 discrete GPS points in a row tended to have similar absolute error values.  The similar 

values were, in general, either greater than 10 kW or less than 3 kW.  This implied the accuracy 

of the model was affected by the GPS signal quality where the signals transmitted from the 

satellites may have been blocked by the surrounding environment.  The travel path resulted in 

some of the satellites’ signals being blocked from tree cover, houses, or other structures in the 

surrounding environment.  After further investigation of the Trimble 132 GPS data, it was 

confirmed that the signals from certain satellites became blocked during the uncontrolled test.  

This was indicated by the GPS receiver losing communication with three of the seven satellites 

when the vehicle was traversing the path represented on the far left side of Figure 46.  At this 

point, the Dilution of Precision (DOP), a measure of the quality of the position of the satellites 

relative to the receiver’s location, increased from approximately 1.2 to 6.3.  This information 

confirmed that the poor GPS signal quality was one source of the increased absolute average 

error during the uncontrolled test.  The GPS quality indicators should be taken into consideration 

when estimating mobility power from GPS data.  The accuracy of the mobility power estimates 

may increase substantially if the GPS quality is poor. 
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The correlation coefficient can be used as an indicator of the strength of a linear relationship 

between two variables.  The correlation coefficient was calculated between the Dilution of 

Precision (DOP) value acquired from the GPS data and the absolute error estimated from the 

model’s predicted discrete mobility power values.  This correlation coefficient value provided 

for an indication of the ability of the GPS data’s DOP values to be used to estimate the accuracy 

of the model.  The correlation coefficients for the Garmin 18 and Trimble 132 GPS receivers 

were -0.04 and 0.38 respectively during the uncontrolled tests.  The correlation coefficient for 

the Garmin 18 receiver indicated that the DOP values from this GPS receiver could not be used 

as a measure of the accuracy of the model.  However, the DOP values from the Trimble 132 

receiver allowed for a moderate correlation between the DOP and the absolute error of the 

model.  Thus the Trimble 132 receiver’s DOP values can be used as an indicator of the accuracy 

of the model.  The Garmin 18 GPS receiver’s DOP values tended to range between 0.9 and 1.4 

while the Trimble 132 receiver’s DOP values ranged between 0.9 and 9.2.  The standard 

deviations of the DOP values for the Garmin 18 and Trimble 132 receivers were 0.06 and 1.3 

respectively.  The DOP values from the Garmin 18 receiver remained constant as the model’s 

accuracy decreased while the Trimble 132 receiver’s DOP values tended to increase as the 

variability of the model increased.  In general, it is suggested that future applications of this 

model should be applied to GPS data with good quality and DOP values less than 2.5.  The 

Garmin 18 and Trimble 132 GPS receiver DOP values as a function of time during the 

uncontrolled test are represented in Figure 47.  The absolute error of the predicted discrete 

mobility power values as DOP varied during the uncontrolled test is represented by Figure 48 

and 49 for the Trimble 132 and Garmin 18 GPS receivers respectively.   
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Figure 47:  The Dilution of Precision (DOP) from the Trimble 132 and Garmin 18 GPS 
receivers during the uncontrolled test 
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Figure 48:  The predicted mobility power absolute error as a function of the Trimble 132 
GPS receiver’s Dilution of Precision (DOP) values 
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Figure 49:  The predicted mobility power absolute error as a function of the Garmin 18 
GPS receiver’s Dilution of Precision (DOP) values 
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The model's greater accuracy in 3rd gear may be due to the accuracy associated with the 

measured power value.  The measured power value was determined from the logged engine 

speed and torque values found in certain CAN signals.  The accuracy of the estimated torque 

value may have been dependent on the load of the engine which was why the accuracy of 

measured power value may have varied depending on the gear and subsequent load on the 

engine.  The greater variability about the origin represented in Figure 45 may be attributed to the 

inaccuracy of the engine torque measurement when the engine was under minimal load.   

 

It was critical to characterize the model's ability to accurately estimate the mission-specific 

power duty cycle values for a given vehicle.  Reasonable predictions of the power duty cycle 

values from the GPS-based model would indicate the approach can be used by on-road and off-

road vehicle design engineer's to estimate power requirements.  The measured and predicted 

power duty cycle values for each duty cycle range during the uncontrolled test are given in 

Figure 50 for the Trimble 132 GPS receiver.   
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Figure 50:  The predicted power duty cycle values from the Trimble 132 receiver 
compared to the measured duty cycle values 

 

There was a reasonable level of agreement between the measured and predicted duty cycle 

values during the uncontrolled test.  The variability of the predicted mobility power duty cycle 

values was minimized when estimating the seven duty cycle ranges that were between 2 and 12 

kW.  The absolute average percent error for the duty cycles between 2 and 12 kW was 

approximately 14%.  This indicated that the model was able to estimate the positive power duty 

cycles that were less than 12 kW with a small amount of variability during the uncontrolled test.  

The model tended to over predict the values of the duty cycles greater than 12 kW and less than  

-9 kW.  The absolute average percent error increased to approximately 560% for the largest 

positive power duty cycle, greater than 20 kW.  The absolute average error of the negative power 
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duty cycle ranges tended to increase as the duty cycle range increased in magnitude.  The 

predicted -2 to 2 kW duty cycle value was significantly different than the measured -2 to 2 kW 

duty cycle.  This indicated that the model had less accuracy in predicting the less than 2 kW in 

magnitude, positive and negative, power requirements during the uncontrolled test.   

 

The predicted average positive power requirement from each component of the model during the 

uncontrolled test was calculated to characterize the fraction of the total positive power 

requirement that was due to each resistive force.  This information allows for the change in the 

motion resistance, grade, inertia, and aerodynamic drag power components due to the mission 

and terrain-type to be characterized.  However, only the maximum 20% of the discrete positive 

predicted mobility power values were used in the analysis because the maximum power 

requirement in the given operating conditions is of principle interest when determining the 

appropriate size of a vehicle’s power source.  The inertia and grade components of the model 

were averaged over only the positive values of each component where the negative and zero 

component values were not used to estimate the average positive power requirement.  For this 

reason, the sum of the values for all of the components do not sum to the total mobility power 

requirement.  Figure 51 summarizes the average positive power requirement for total mobility 

power and each component of the model along with one standard deviation bars for the 

maximum 20% of the discrete positive mobility power values.   
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Figure 51 :  The predicted peak 20% average positive power requirement of the 
components of the model and the total average positive power with one standard 
deviation the bars from the Trimble 132 GPS receiver during the uncontrolled test  

 

The average positive power requirement for the vehicle during the uncontrolled test was 

approximately 15.9 kW from the Trimble 132 receiver's.  The grade component of the model 

resulted in the greatest average positive power requirement from any component because the 

average positive grade during the uncontrolled test was 3.5%.  The inertia component had the 

second greatest average positive power requirement with a value of 7.5 kW, followed by the 

motion resistance and aerodynamic drag components.  The standard deviation of the inertia 

component was the greatest of any component with a value of 7.3 kW.  This was due to the test 

vehicle’s 0.37 m/s2 average positive acceleration, estimated from the discrete GPS data.  The 

variation in the vehicle travel speed was partially due to the 3.5% average grade traversed by the 
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test vehicle.  The mobility power model was applied to the Garmin 18 GPS receiver data 

collected during the uncontrolled test.  Table 20 and Figure 52 detail the results from the Garmin 

18 GPS receiver during the uncontrolled test.    

 

Table 20:  A summary of the results and statistics from the Garmin 18 GPS data during 
the uncontrolled tests  

Avg. Travel Avg. Absolute Avg. Predicted Avg. Measured Measured vs. Predicted
Speed (m/s) Elevation Change (m/s) Positive Power (kW) Positive Power (kW) Power RMSE (kW)

1 757 3.6 0.22 6.6 3.7 6.24
2 1125 7.8 0.30 7.8 5.8 8.12
3 218 9.4 0.27 7.3 6.7 4.80

Average: 6.5 0.26 7.3 5.1 7.10

Gear Duration (s)
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Figure 52:  The discrete predicted mobility power values from the Garmin 18 GPS 
receiver during uncontrolled compared to the measured drivewheel power 
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Of the 2100 total discrete data points, three data points are not shown in Figure 52 because they 

exceeded 75 kW in magnitude and were identified as outliers. Subsequently, they were removed 

from the statistical analysis summarized in Table 20.  The difference between the measured and 

predicted power values for these three discrete values substantially exceeded the calculated 

RMSE value multiplied by two.  The three discrete data points were removed for this reason.  

The justification for removing these outliers is analogous to the Chauvenet’s criterion for 

removing outliers from normally distributed data based on the mean and standard deviation of a 

dataset.  Chauvenet’s criterion states that if the difference between a discrete value and the mean 

of a normally distributed data set exceeds the standard deviation multiplied by two then the 

discrete value can be considered an outlier (Ross, 2003).  The outliers were the result of poor 

estimates of vehicle acceleration from the GPS speed data.  The predicted vehicle acceleration 

values during a 3 s span were 7 and -8 m/s2 which exceeded the levels of vehicle acceleration 

that occurred during the uncontrolled test.   

 

The Garmin 18 data slightly decreased the accuracy of the predicted discrete and average power 

requirements during the uncontrolled test.  The absolute percent error of the average positive 

power requirement during the uncontrolled test increased to 41% for the Garmin 18 receiver 

compared to 20% for the Trimble 132 receiver.  The model's Root Mean Square Error (RMSE) 

value from the Garmin 18 data during the entire uncontrolled test was increased by 

approximately 8% compared to the Trimble 132 data.  The greater accuracy of the Trimble 132 

receivers' elevation estimates (height above ellipsoid) was identified as a possible reason for the 

increased variability from the Garmin 18 receiver.  The predicted mobility power duty cycle 

values from the Garmin 18 receiver are compared to the measured duty cycles in Figure 53, and 



the average maximum 20% positive power values and one standard deviation bars are 

represented in Figure 54. 
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Figure 53:  The predicted power duty cycle values from the Garmin 18 receiver compared 
to the measured duty cycle values 
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Figure 54:  The predicted peak 20% average positive power requirement of the 
components of the model and the total average positive power with one standard 
deviation the bars from the Garmin 18 GPS receiver during the uncontrolled test  

 

The predicted power duty cycle values from the Garmin 18 receiver were similar to the duty 

cycles estimated from the Trimble 132 data.  The absolute average percent error for the duty 

cycles between 2 and 12 kW was 14%, approximately equal to the value calculated for the 

Trimble 132 results.  The absolute average errors of the predicted negative (< -2kW) and positive 

(> 2kW) duty cycle values increased by approximately 32 and 18% respectively.  The predicted  

-2 to 2 kW mobility power range had a 21% increase in the absolute percent error.   
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The test vehicle's average positive power requirement during the uncontrolled test was estimated 

to be approximately 16.7 kW from the Garmin 18 data.  The percent error of the predicted 

average positive mobility power value was approximately 43% from the Garmin 18 receiver data 

compared to 37% for the Trimble 132 receiver.  The estimate of the average positive grade and 

inertia power requirements during the uncontrolled test were 22 and 18% less in magnitude 

respectively from the Garmin 18 data.  The standard deviation values of the total and component 

positive power values were similar for both GPS receivers. 

 

Figure 55 represents another way of comparing the duty cycle trends estimated from the Trimble 

132 and Garmin 18 GPS data to the measured power duty cycle.  The “percent power greater 

than” value for a given power value represents the fraction of the total discrete data points that 

are greater than the given discrete point.  This allowed for the measured duty cycle curve to be 

compared to the predicted duty cycle curves from the Trimble 132 and Garmin 18 GPS data.   
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Figure 55:  The predicted mobility power duty cycle curves from the Trimble 132 and 
Garmin 18 GPS data compared to the measured drivewheel power duty cycle during the 
uncontrolled test 

 

Approximately 55% of the measured power requirement during the uncontrolled test was greater 

than 0 kW.  The model was able to predict that approximately 56% of the power requirement 

during the test was greater than 0 kW from both GPS receivers.  The deviation between the 

measured and predicted curves tended to increase as the magnitude of the power value increased.  

The curve generated from the Trimble 132 data was more similar to the measured duty cycle 

curve in Figure 55, compared to the Garmin 18 duty cycle curve.  The Trimble 132 data was 

more accurate at estimating the characteristics of the duty cycle curve in the positive power 

region in comparison to estimating the curve’s trends in the negative power region.  The duty 
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cycle curve estimated from the Garmin 18 GPS data had similar trends for both the positive and 

negative power regions of the curve.  Figure 55 indicated that the Trimble 132 and Garmin 18 

GPS receivers estimated the characteristics of the duty cycle curve during the uncontrolled test 

with an acceptable level of accuracy.  In the future, the predicted duty cycle curves may continue 

to approach the measured duty cycle curves as the accuracy of GPS data improves while 

providing improved estimates of the dynamic vehicle parameters necessary for application of the 

mobility power model.   

 

The results from the Trimble 132 and Garmin 18 GPS receiver data collected during the 

uncontrolled test were a validation of the entire model in a scenario that simulated a U.S. Army 

reconnaissance mission.  A moderate level of accuracy was achieved from the model using 

Trimble 132 and Garmin 18 GPS data.  Reasonable estimates of the test vehicle's average power 

were attained with the Garmin 18 receiver.  The average positive power requirement estimated 

from the Trimble 132 data had a high level accuracy when compared to the measured average 

drivewheel power.   
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Chapter 5: Applications  

The controlled and uncontrolled tests that were performed validated the mobility power model, 

and the results indicated that a Vehicle Tracking System (VTS) equipped with a Garmin 18 GPS 

receiver can be used to provide reasonable estimates of a vehicle’s power duty cycle 

characteristics.  Quantifying the mobility power duty cycles of military vehicles from historical 

GPS tracking data may provide design engineers with a useful approach for characterizing the 

actual, in-field power duty cycles of military vehicles.  Quantifying the in-field power duty 

cycles may represent a potentially useful tool for hybrid military vehicle design.  The U.S. 

Army’s Stryker vehicles were tracked with VTS units while conducting training missions at the 

Fort Lewis and Pohakuloa Training Area (PTA) military installations in 2005 and 2009 

respectively.  The mobility power duty cycles’ of three Stryker vehicles were estimated from 

GPS tracking data for the missions conducted at each installation.   

 

5.1 Materials  

The VTS system described in Section 4.2.2 was used to track the Stryker vehicles operating at 

the two U.S. military installations.  The mobility power model was used to predict the power 

duty cycles from historical GPS data.  A cone penetrometer was used to measure the soil’s Cone 

Index value (CI) during off-road maneuvers at PTA (Howard, 2011).   

 

5.1.1 Stryker Vehicle Specifications 

The GPS data from the U.S. military’s Stryker Infantry Carrier Vehicle (ICV) was used to 

characterize the power duty cycles at the two military installations.  The Stryker is an 8-wheeled, 



17,237 kg vehicle that is powered by a 261 kW V-8 diesel engine.  General dimensions of the 

vehicle are shown in Figure 56.  The maximum travel speed of the vehicle is 27 m/s.  The 

vehicle is either 4 or 8-wheel drive; during maneuvers, the vehicle was operated in as a 4-wheel 

drive vehicle.  The vehicle is equipped with a Central Tire Inflation System (CTIS) that allows 

the operator to vary the inflation pressure of all tires simultaneously according to the terrain 

conditions (Ayers et al., 2009; Potteti, 2009).  All wheels were equipped with Michelin X tires.  

The inflation pressure of the tires remained a constant 483 kPa during the 2005 and 2009 Stryker 

maneuvers.  The tire parameters necessary for applying Equation (2) are given in Figure 57 while 

the tire deflection represented in Figure 57 was at a 483 kPa inflation pressure.  Wong (2010) 

indicated that large military vehicles typically have a drag coefficient value ( ) of 

approximately 1.0, and this value was assumed to be the approximate drag coefficient of the 

Stryker vehicle (Wong, 2010).   

DC

 

Figure 56:  Stryker vehicle geometry (units: meters) 
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Figure 57:  The geometry of the Michelin X tire on the Stryker vehicle (units: meters) 

 

5.1.2 2002 U.S. Army Mission and Installation  

Ayers et al (2005) detailed the maneuvers performed by Strykers from the U.S. Army's 3rd 

Infantry Regiment, 2nd Battalion, 3rd Brigade, 2nd Infantry Division.  The Stryker vehicles 

conducted maneuvers at the Fort Lewis, Washington installation during a training mission that 

was performed 17 October 2005 through 25 October 2005.  Live-fire, urban operations, and 

security training missions were performed by U.S. military personnel.  A total of 19 Stryker 

vehicles were tracked with the VTS units.  The mobility power duty cycle characteristics for 

three Stryker vehicles from “Charlie” company were estimated from the GPS tracking data.  A 

map of the maneuvers performed by the three Stryker vehicles that were analyzed is given in 

Figure 58.  The vehicle maneuvered primarily on-road while some off-road movements were 

performed.  Approximately 97% of the Stryker maneuvers analyzed were on-road maneuvers 

(Ayers et al., 2005).  Previous research by Richmond (2007) suggested that a CI value of 4137 

kPa should be used for on-road terrains when using the Vehicle Terrain Interaction (VTI) model.  

The terrain where the vehicle maneuvered was assumed to have this CI value because nearly all 

of the maneuvers were conducted on-road.  The CI of the terrain was assigned this value for the 
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same reasoning described in Section 4.3.7.1 (Richmond, 2006).  The CI value was a necessary 

input to Equation (2) described in Section 3.4.1.   



 

Figure 58:  The maneuvers of the three Stryker vehicles at Fort Lewis, Washington along 
with a single vehicle’s mobility power requirements 
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5.1.3 2009 U.S. Army Mission and Installation  

According to Howard et al (2011), three Stryker vehicles from a reconnaissance platoon from the 

2nd 
 
Brigade of the 25th Infantry Division conducted a single day proofing mission on 9 

November 2009 at the U.S. Army's Pohakuloa Training Area (PTA) in Hawaii.  Figure 59 details 

the maneuvers performed by the three Stryker vehicles analyzed.  The objective of the proofing 

mission was to assess the trafficability of the region while identifying optimum access points and 

hazardous areas of the terrain.  During the proofing mission, on-road and off-road maneuvers 

were performed.  The off-road maneuvers were conducted at the Keamuku parcel of PTA.  The 

soil type at the Keamuku parcel is classified as a coarse-grained Kilohana loamy fine sand.  Off-

road maneuvers were conducted in two areas of the Keamuku parcel, and the average measured 

CI was 1536 and 1970 kPa at each location respectively (Howard et al., 2011).  The Vehicle 

Terrain Interaction (VTI) model’s fine-grained equations were used even though the off-road 

maneuvers were conducted in a coarse-grained equation.  The fine-grained equations were 

utilized because it was thought that they provide a better representation of the interaction 

between the tractive elements and the terrain compared to the coarse-grained equations.  The on-

road maneuvers were assigned to have a CI of 4137 kPa. 

 



 

Figure 59:  The maneuvers of the three Stryker vehicle at the Pohakuloa Training Area 
(PTA), Hawaii along with a single vehicle’s mobility power requirements during off-road 
maneuvers at the Keamuku parcel 
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5.2 Methods 

The controlled and uncontrolled tests performed validated the mobility power model's governing 

equation represented in Section 4.1.  Equations (2 – 5) and (9 – 11), and (14 – 18) from Chapter 

3 were used to estimate the motion resistance, grade, inertia, and aerodynamic forces of the 

Stryker vehicle and the subsequent power requirement.  The Vehicle Terrain Interaction (VTI) 

model equations for estimating motion resistance of a wheeled vehicle operating in a fine-

grained soil (Equations (2 – 5)) were used to quantify the motion resistance force of the wheels, 

as these equations were determined to be the best available.  The mobility power estimates for 

the Stryker vehicle only include the linear inertia of the vehicle while the rotational inertia of the 

vehicle was not estimated.  This mobility power estimate differs slightly compared to the 

mobility power estimate used in Chapter 4 for the validation test data.  However, the predicted 

values for the Stryker are independent of vehicle drivetrain which is advantageous if a different 

drivetrain design is being considered for the vehicle.    

 

The conclusions drawn in Section 4.3.9 indicated that a 2 s speed and acceleration GPS offset 

was necessary for the Garmin 18 GPS receiver.  This 2 s speed and acceleration offset was used 

in the mobility power analysis of the Stryker maneuvers.  Equation (11) from Section 3.6.1 was 

used to estimate the vehicle’s acceleration from the discrete GPS speed data.  The tests 

performed and summarized in Section 4.3.10 indicated the Garmin 18 GPS receiver's optimum 

elevation offset is 0 s.  This 0 s elevation offset was used when applying the mobility power 

model to the Stryker maneuvers.  A simple 5 s average was used to estimate the vehicle’s rate of 

elevation change from the GPS elevation data (height above ellipsoid data).  The proper offsets 



allowed each discrete GPS point or spatial location where the vehicle maneuvered to have the 

correct discrete vehicle speed, acceleration, and elevation values.   

 

5.3 Results 

The power duty cycle characteristics for three Stryker vehicles operating at the Fort Lewis and 

the Pohakuloa Training Area (PTA) military installations were predicted by applying the 

mobility power model to the GPS tracking data.  The mobility power duty cycle estimates are for 

the durations where a non-zero vehicle speed was estimated from the GPS tracking data.  The 

GPS data and estimated average positive power requirements for the three Stryker vehicles 

operating at Fort Lewis are shown in Table 21.  Figure 60 represents the mobility power duty 

cycle curves for the Stryker vehicles at Fort Lewis.  Figure 58 details the estimated mobility 

power values for a portion of a Stryker vehicle’s on-road maneuvers at Fort Lewis.   

 

Table 21:  A summary of the Garmin 18 GPS data and mobility power results for the 
three Stryker vehicles operating at Fort Lewis, Washington 

Stryker Maneuver Percent Avg. Daily Avg. Travel Avg. Absolute Avg. Absolute Avg. Predicted 

ID: Time (hr) Moving Travel (km/day) Speed (m/s) Acceleration (m/s2) Elevation Change (m/s) Positive Power (kW)
C-21 2.50 3.5% 31.8 10.6 0.29 0.13 68.2
C-24 2.06 2.7% 26.9 10.9 0.27 0.15 71.2
C-31 4.01 5.4% 49.1 10.2 0.24 0.14 60.7

Average: 3.10 4.2% 38.7 10.5 0.26 0.14 65.4  
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Figure 60:  The mobility power duty cycle curves for the three Stryker vehicles 
performing live-fire, urban operations, and security training missions at Fort Lewis, 
Washington  

 

On average, maneuvers were being conducted by the three Stryker vehicles for only 4.2% of the 

time during the nine day live-fire, urban operations, and security training missions conducted at 

Fort Lewis.   The average travel speed of the vehicles was estimated to be approximately 10.5 

m/s.  The absolute average acceleration and rate of elevation change were 0.26 m/s2 and 0.14 m/s 

respectively.  The average positive power requirement was 65.4 kW, and the associated standard 

deviation of the average positive power requirements between the three vehicles was 5.4 kW.   

The estimated positive power requirement was approximately 25% of the rated engine power for 

the Stryker vehicle.  Figure 60 indicated that the variability between the three mobility power 

duty cycle curves was small.  All three vehicles had a positive power requirement for 
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approximately 62% of the time when the vehicles had a non-zero travel speed while conducting 

maneuvers at Fort Lewis.  The power duty cycle curve for the Stryker vehicle identified as “C-

31” differed the greatest compared to the other two vehicles’ power duty cycle curves.  The GPS 

tracking data and estimated average positive power requirements are shown in Table 22 and the 

mobility power duty cycle curves are represented in Figure 61 for the three Stryker vehicles 

operating at Pohakuloa Training Area (PTA).  Figure 59 details the estimated mobility power 

values for a portion of a Stryker vehicle’s off-road maneuvers at the Keamuku parcel of PTA.   

 

Table 22:  A summary of the Garmin 18 GPS data and mobility power results for the 
three Stryker vehicles operating at the Pohakuloa Training Area, Hawaii 

Stryker Maneuver Percent Avg. Daily Avg. Travel Avg. Absolute Avg. Absolute Avg. Predicted 

ID: Time (hr) Moving Travel (km/day) Speed (m/s) Acceleration (m/s2) Elevation Change (m/s) Positive Power (kW)
8 3.74 16.5% 64.6 4.8 0.17 0.22 42.4
17 6.55 20.7% 117.9 5.0 0.14 0.23 43.0
19 6.33 20.0% 116.2 5.1 0.15 0.24 44.9

Average: 5.83 19.5% 105.2 5.0 0.15 0.23 43.6  
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Figure 61:  The mobility power duty cycle curves for the three Stryker vehicles 
performing a proofing mission at the Pohakuloa Training Area, Hawaii 

 

The proofing mission conducted at PTA resulted in distinctly different power and duty cycle 

requirements compared to the power requirements for the Stryker vehicles operating at Fort 

Lewis.  The vehicles conducted maneuvers for approximately 19.5% of the time during the 

single day proofing mission conducted at PTA.  This percent moving value is significantly 

greater than the 4.2% value estimated for the mission performed at Fort Lewis.  The estimated 

average travel speed and absolute average acceleration values for the three vehicles maneuvering 

at PTA were reduced by approximately 52 and 42% respectively.  The absolute average rate of 

elevation change increased by 64% which indicated the grade component had a greater effect on 

the power requirement at PTA.  The average positive power requirement decreased by 33% at 
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PTA compared to the positive power requirements at Fort Lewis while the standard deviation of 

the average positive power requirements between the three Stryker vehicles decreased by 

approximately 76%.  The power duty cycle curves shown in Figure 61 for the Stryker vehicles 

operating at PTA also indicated that there was decreased variability in the power requirements.  

Each vehicle had very similar mobility power duty cycle curves while the power duty cycle 

curve for the Stryker identified as “19” had the greatest difference compared to the two other 

vehicles’ curves.  The Stryker vehicles had a positive power requirement for approximately 57% 

of the time when the vehicles were maneuvering compared to 62% when training at Fort Lewis.  

Figures 62 and 63 provide comparisons of the average mobility power duty cycle trends for the 

Stryker vehicles operating at Fort Lewis and PTA along with the associated one standard 

deviation bars between the three Stryker vehicles.   
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Figure 62:  The average mobility power duty cycle curves for the Stryker vehicles 
operating at Fort Lewis, Washington and the  Pohakuloa Training Area, Hawaii 
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Figure 63:  A comparison of the average mobility power duty cycles for three Stryker 
vehicles operating at Fort Lewis, Washington and the Pohakuloa Training Area, Hawaii 
along with the associated standard deviation between the vehicles 

 

The 100 to 150 kW and greater than 150 kW power duty cycle ranges’ values were 

approximately 152 and 555% greater in magnitude for the training missions conduced at Fort 

Lewis.  The 10 to 30 kW and 30 to 50 kW power duty cycle ranges’ values were approximately 

21 and 25% greater in magnitude for the proofing missions conducted at PTA.  These trends 

were another indicator that there was a greater positive power requirement for the maneuvers 

conducted at Fort Lewis.     
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In summary, the mobility power model was used to estimate the power duty cycle requirements 

from existing GPS tracking data for three Stryker vehicles operating at Fort Lewis and PTA.  

The results indicated that the GPS-based mobility power model can be used to identify 

differences in the power duty cycle requirements as a result of the specific training missions 

performed and the U.S. Army installation where the maneuvers were conducted.   
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Chapter 6: Conclusions 

The principle objective of this study was to develop, validate, and apply a GPS-based mobility 

power model to characterize the power requirements of vehicles.  Controlled tests were 

performed to validate the motion resistance, grade, and inertia components of the model.  

Uncontrolled tests were performed to validate the model in a scenario that simulated the 

maneuvers of military vehicles during reconnaissance missions executed by the U.S. Army.  The 

predicted mobility power values were compared to “measured drivewheel power” values which 

were estimated from the engine speed and engine torque messages transmitted on certain 11 bit 

CAN signals.  Finally, the model was applied to historical GPS tracking for the U.S. Army’s 

Stryker vehicle conducting training missions at Fort Lewis, Washington and the Pohakuloa 

Training Area (PTA), Hawaii.  The duty cycle characteristics of the Stryker vehicles 

maneuvering at each installation were characterized and compared. 

 

6.1 Model Validation  

Controlled and uncontrolled tests were conducted to validate the GPS-based mobility power 

model.  The predicted values estimated from the Trimble 132 and Garmin 18 GPS receivers were 

compared to the drivewheel power values calculated from signals transmitted on the test 

vehicle’s CAN network.  Controlled motion resistance, grade, and inertia tests were performed to 

validate each component of the model.  The uncontrolled test conducted simulated a typical 

reconnaissance mission performed by the U.S. Army.  The uncontrolled test validated the model 

in a scenario that simulated the vehicle movement patterns typically performed by military 

vehicles during reconnaissance missions.  The results from the uncontrolled test were considered 
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a combined validation of all components of the model.  A 2 s GPS speed and acceleration offset 

was used during all validation tests while a 0 s elevation offset was used.  The tests performed 

allowed for the accuracy of each component and the entire model to be characterized.   

 

6.1.1 Controlled Tests 

 

6.1.1.1 Motion Resistance Tests 

Validation of the motion resistance component of the model was achieved by conducting 24 

straight-line and five constant turning radius tests at several levels of constant travel speed.  The 

predicted average mobility power values from the Trimble 132 GPS data showed reasonable 

agreement with the average predicted drivewheel power values.  The discrete predicted values 

tended to concentrate around the 1:1 line slightly above the origin about a small positive value 

(Approximately 1 kW) for the straight-line tests.  There was an increase in the average power 

requirement during the constant turning radius tests at a given average travel speed.  The 

increased power requirement was due to the increase in motion resistance from the steered 

wheels.  The results from the Garmin 18 data slightly increased the variability between the 

measured and predicted power values compared to the Trimble 132 GPS receiver.  The Garmin 

18 receiver's results had a greater amount of predicted average negative power values during the 

motion resistance tests.  The negative average power values estimated from the Garmin 18 data 

were partially due to errors in the GPS elevation data.  Fluctuations in the vehicle travel speed 

may have contributed to the power requirements that were greater than 5 kW and less than -2 kW 

during the straight-line and constant turning radius tests respectively.  The constant turning 
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radius tests indicated that both GPS receivers can be used to estimate the turning radius of a 

vehicle.   

 

6.1.1.2 Grade Tests 

A total of nine grade tests were conducted at average travel speeds of approximately 3.3, 4.8, 7.1, 

9.3, and 11.4 m/s while either the 1st or 2nd gear of the transmission was engaged.  The elevation 

increase and average percent grade during each test was approximately 50 m and 7.3% 

respectively.  A 5 s running average of the change in elevation value was needed to smooth the 

elevation data.  The Trimble 132 and Garmin 18 GPS receivers were able to estimate with a 

reasonable level of accuracy the percent grade traversed by the test vehicle.  The Garmin 18 

receiver’s elevation data (height above ellipsoid) had significantly greater variability than the 

Trimble 132’s data, but a 5 s running average of the elevation data was used for the GPS 

elevation data from both receivers.  The discrete predicted power values from both receivers had 

a moderate level of variability between the measured and predicted values.  The receivers 

estimated with a high degree of accuracy the average power requirement during the nine grade 

tests.  The Root Mean Square Error (RMSE) between the discrete measured and predicted power 

values increased as the average vehicle travel speed increased, but the CV RMSE decreased as 

the average travel speed increased for both GPS receivers.  The CV RMSE statistic indicated that 

the model became more accurate as the average travel speed increased during the grade tests.   
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6.1.1.3 Inertia Tests 

The model’s greatest level of accuracy during the controlled tests was attained during the 15 

inertia tests conducted at degrees of acceleration of slow, medium, and fast while the 

transmission was in either 1st or 2nd gear.  The predicted discrete and average mobility power 

values had the lowest amount of variability compared to the controlled motion resistance and 

grade tests performed.  The average acceleration during each test ranged from 0.6 to 2.2 m/s2.  

The model tended to slightly overestimate the power requirement during each inertia test from 

the Trimble 132 and Garmin 18 receivers’ data, despite slightly underestimating the test 

vehicle’s acceleration during each inertia test.  The average power requirement during the inertia 

tests ranged from approximately 9 to 65 kW for both receivers.  The RMSE value between the 

predicted and measured power values tended to increase as the level of acceleration increased.  

The CV RMSE values for the Trimble 132 and Garmin 18 receivers during all 15 inertia tests 

were less than 0.44 and 0.42 respectively.  The results from the Garmin 18 receiver's data had 

less variability than the Trimble 132 receiver's results, but this may have been due to the 2 s GPS 

speed and acceleration offset being biased to the Garmin 18 receiver.  The gamma values (γ) 

used to estimate the vehicle’s equivalent mass and subsequent inertia power requirement were 

calibrated by reducing the magnitude of the gamma values because the inertia test results 

indicated the model overestimated the average positive power requirement.  The gamma values 

were reduced by 27 and 18% for the Trimble 132 data and Garmin 18 GPS data respectively, and 

this was deemed a combined calibration of the GPS receivers and the test vehicle.  Decreasing 

the gamma values resulted in a 74 and 71% reduction in the magnitude of the RMSE values for 

the Trimble 132 and Garmin 18 GPS receivers respectively.   
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6.1.2 Uncontrolled Tests 

The uncontrolled test simulated the vehicle movement patterns of U.S. Army vehicles during 

reconnaissance missions.  Approximately 2400 s of test data was collected during the 

uncontrolled test while engine power was delivered to the drivewheels for only 2100 s of the test.  

The discrete mobility power values estimated for the durations when the clutch was not fully 

engaged while the transmission was in either 1st, 2nd, or 3rd gear were removed from the 

validation analysis.  There was a moderate level of variability between the discrete measured and 

predicted power values from the Trimble 132 and Garmin 18 GPS data.  The Trimble 132 

receiver provided for accurate estimates of the average positive power requirements during the 

test, as indicated by an absolute average percent error value of 20%.  The absolute average 

percent error values were calculated by dividing the magnitude of the difference between the 

predicted and measured average values by the magnitude of the average measured values.  The 

Garmin 18 receiver had an absolute average percent error of 41% when estimating the average 

positive power requirement of the test vehicle.  The peak power requirement during the 

uncontrolled test was estimated and compared to the measured peak power values.  

Approximately 20% of the maximum discrete power values were used in the analysis.  The 

percent error of the predicted average positive mobility power value was approximately 37% 

from the Trimble 132 receiver data compared to 43% for the Garmin 18 receiver.  The 

correlation coefficient was estimated between the discrete absolute error values from the model 

and the discrete Dilution of Precision (DOP) values from the GPS data.  The correlation 

coefficient values for the Trimble 132 and Garmin 18 GPS receivers were 0.38 and -0.04 

respectively.  The correlation coefficient for the Trimble 132 receiver indicated that there was a 

moderate correlation between the GPS receiver’s DOP values and the absolute error from the 
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model.  Thus the Trimble 132 GPS receiver’s DOP values could be used as indicator of the 

accuracy of the model.   

 

The model provided for reasonable estimates of the positive power duty cycles between 2 – 12 

kW in magnitude from the GPS data.  The absolute average percent error for the duty cycles 

between 2 and 12 kW were estimated to be approximately 14% for both GPS receivers.  The 

model tended to over predict the power duty cycle requirements greater than 12 kW or less than  

-9 kW while the magnitude of the variability tended to increase as the predicted power values 

increased.  The accuracy of the model decreased slightly when estimating the power duty cycles 

that were between -9 and -2 kW.  The variability of the power duty cycle values increased 

substantially when estimating the power duty cycle ranges that were greater than 12 kW or less 

than -9 kW.  The model was able to accurately estimate the percent power greater than duty 

cycle curves while accurately estimating that approximately 55% of the required power during 

the uncontrolled test was greater than 0 kW.  The Trimble 132 data was more accurate at 

estimating the characteristics of the percent greater than duty cycle curve in the positive power 

region, compared to the Garmin 18 receiver’s estimate of the test vehicle's power duty cycle 

curve.  The duty cycle curve estimated from the Garmin GPS 18 data was not as accurate as the 

curve estimated from the Trimble 132 data, and the trends of the curve in both the positive and 

negative power regions were similar.  The results from the uncontrolled test indicated that the 

model’s estimates of mobility power may be significantly affected by the quality of the GPS 

data.  The accuracy of the model decreased when the Dilution of Precision (DOP) increased and 

the number of satellites transmitting data to the GPS receiver decreased.  It is suggested that 
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future applications of this model should be applied to GPS data with good quality and DOP 

values less than 2.5.   

 

6.2 Model Application  

The mobility power model was used to estimate the power duty cycle requirements from existing 

GPS tracking data for three Stryker vehicles operating at Fort Lewis and the Pohakuloa Training 

Area (PTA).  Live-fire, urban operations, and security training missions were performed at Fort 

Lewis in 2005 while a proofing mission was conducted at PTA in 2009.  The results indicated 

that the GPS-based mobility power model can be used to identify differences in the vehicle's 

power duty cycle requirements due to the training mission being performed and the U.S. Army 

installation where the maneuvers were conducted.  The average positive power requirement for 

the Stryker vehicles operating at Fort Lewis was 65.4 kW.  The average positive power 

requirement at PTA was approximately 33% less than the power requirement at Fort Lewis.  The 

Stryker vehicles had a positive power requirement for approximately 62% of the time while 

operating at Fort Lewis compared to only 57% of the time when the vehicles maneuvered at 

PTA.  The three Stryker vehicles’ power duty cycles at a given military installation were similar.  

The Stryker vehicles that conducted maneuvers at Fort Lewis had greater mobility power 

requirements in the extreme power duty cycle ranges (> 100 kW and < -150 kW). 

 

The mobility power model represents a cost-effective approach for estimating the in-field power 

duty cycle requirements of military vehicles from GPS data.  The model provides design 

engineers with a useful tool for quantifying the on-road and off-road power requirements of 

conventional or hybrid military vehicles.  The duty cycles can be estimated for specific locations 
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where the effect of the terrain on the vehicle’s mobility power requirement can be taken into 

account.  Furthermore, the effect of the mission type being performed can be characterized, and 

the associated power requirements and operating characteristics can be quantified.     
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Chapter 7: Recommendations  

The mobility power model that used GPS tracking data to estimate the required power to propel 

the vehicle was validated.  The model utilizes the Vehicle Terrain Interaction (VTI) model to 

estimate the motion resistance force generated at the wheels.  The mobility power duty cycle 

characteristics for the U.S. military's 8-wheeled Stryker vehicle were determined by applying the 

mobility power model to historical GPS tracking data when the vehicle conducted 

reconnaissance missions at Fort Lewis, Washington and the Pohakuloa Training Area (PTA), 

Hawaii.  The application of this model demonstrated that the power duty cycles for a vehicle 

could be predicted from previously acquired GPS tracking data.  There exists the potential to 

develop a substantial power duty cycle database by applying the mobility power model to 

historical GPS tracking data for many different types of military vehicles operating at numerous 

U.S. military installations.   

 

The effect of the degree of acceleration of a vehicle has on the optimum GPS offset should be 

investigated further during any future validation efforts.  Results from the controlled validation 

tests performed indicated that the ideal GPS offset increases in magnitude as the vehicle's level 

of acceleration increases.  The effect of the quality of the GPS data on the mobility power 

estimates should be investigated further because the uncontrolled tests performed during 

validation of the model indicated that the model’s accuracy may be dependent on the GPS data’s 

Dilution of Precision (DOP) values.  The results from the uncontrolled test indicated that the 

accuracy of the mobility power model decreased when the GPS quality was poor.   
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Validating the mobility power model with a tracked vehicle using the VTI model's tracked 

equations would vastly expand the potential application of the model for military vehicle design.  

Ideally, the torque and rotational speed at each driven sprocket would be measured directly.  Any 

future validation testing should be conducted off-road in order to further characterize the VTI 

model's accuracy and the affect of varying soil strength conditions.   Any validation effort should 

be completed using Real Time Kinetic (RTK) GPS along with the Garmin 18 GPS receiver that 

is typically used to track military vehicles.  RTK GPS provides an accurate position within 2 cm, 

and represents the most accurate type of GPS currently available.  This validation effort would 

be comparing the best possible mobility power estimates to the measured power delivered 

directly to the tractive elements.  This approach would eliminate any errors introduced when 

estimating the power delivered to the tracks or wheels from measured engine power values.  In 

the future, the application of the mobility power model to military vehicle design may increase as 

the accuracy of GPS improves while the associated costs decrease.   
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Figure 64:  The 1.9L Fiat diesel engine's torque curve 
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Figure 65:  The 1.9L Fiat diesel engine's brake power curve 
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Table 23:  General specifications of the Chevrolet Equinox Test Vehicle 

Vehicle Make:  Chevrolet 

Vehicle Model:  Equinox 

mass (kg): 1713 

Frontal area (m2): 2.686 

Cd: 0.42 

Tire Make/Model: PAX Challenge X235-710 R460A 

Tire radius (m): 0.355 

Coeff. of rolling resistance:  0.00675 

Front axle final drive ratio: 5.545 
 

 
 
 

Table 24:  Gear ratio, drivetrain efficiency, and gamma values for each gear of the 
transmisison 

Gear Gear Ratio Drivetrain Effic. Gamma
1 3.92 0.90 0.500
2 2.04 0.91 0.300

3 1.32 0.93 0.100

4 0.95 0.97 0.050
5 0.76 0.98 0.030

6 0.63 0.98 0.025

Transmission Specifications
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Appendix B  

MATLAB *.m file for CAN data conversion 
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clear all 
clc 
 
%opens raw NEOVi CAN .csv file  
fid = 
fopen('F:\Equinox_Validation\NeoVI_Data\12_16_11\NeoVI_data_transform\Trans_12_16_11_
UTC202757.csv'); 
data = textscan(fid, '%f%f%f%f%f%f%f','delimiter',','); 
fclose(fid); 
 
%reads data into variable arrays 
time_abs_in = data{1}; 
eng_speed_in = data{2}; 
eng_torque_in = data{3}; 
wheel_sp_fl_in = data{4}; 
wheel_sp_fr_in = data{5}; 
wheel_sp_rl_in = data{6}; 
wheel_sp_rr_in = data{7}; 
 
i = 1; 
j = 0;                      %counter for each second being averaged 
k = 1; 
t_1 = 0;                    %keeps track of what second being averaged 
sum_eng_speed = 0;          %Defines summation variables 
sum_eng_torque = 0; 
sum_sp_fl = 0; 
sum_sp_fr = 0; 
sum_sp_rl = 0; 
sum_sp_rr = 0; 
ratio_conv = 0.996994;       %conversion factor between 1 s NeoVI data and 1 s UTC GPS data 
 
time_abs_in = time_abs_in / ratio_conv; 
length = length(time_abs_in); 
int_final_time = round(time_abs_in(length)); 
 
time_abs = zeros(1,round(time_abs_in(length))); 
eng_speed = zeros(1,round(time_abs_in(length))); 
eng_torque = zeros(1,round(time_abs_in(length))); 
wheel_sp_fl = zeros(1,round(time_abs_in(length))); 
wheel_sp_fr = zeros(1,round(time_abs_in(length))); 
wheel_sp_rl = zeros(1,round(time_abs_in(length))); 
wheel_sp_rr = zeros(1,round(time_abs_in(length))); 
 
 
while i < length         
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    if time_abs_in(i) > (t_1 - 0.5) && time_abs_in(i) <= (t_1 + 0.5) 
        %sums all data points for a given UTC SECOND 
            sum_eng_speed = sum_eng_speed + eng_speed_in(i); 
            sum_eng_torque = sum_eng_torque + eng_torque_in(i); 
            sum_sp_fl = sum_sp_fl + wheel_sp_fl_in(i); 
            sum_sp_fr = sum_sp_fr + wheel_sp_fr_in(i); 
            sum_sp_rl = sum_sp_rl + wheel_sp_rl_in(i); 
            sum_sp_rr = sum_sp_rr + wheel_sp_rr_in(i); 
            i = i + 1; 
            j = j + 1; 
         
    elseif j ~= 0 
        %divides all of the summed values for a given second and stores in 
        %given array 
            eng_speed(k) = sum_eng_speed / j; 
            eng_torque(k) = sum_eng_torque / j; 
            wheel_sp_fl(k) = sum_sp_fl / j; 
            wheel_sp_fr(k) = sum_sp_fr / j; 
            wheel_sp_rl(k) = sum_sp_rl / j; 
            wheel_sp_rr(k) = sum_sp_rr / j; 
            time_abs(k) = t_1; 
             
            t_1 = t_1 + 1;             
            j = 0; 
            k = k + 1; 
            sum_eng_speed = 0; 
            sum_eng_torque = 0; 
            sum_sp_fl = 0; 
            sum_sp_fr = 0; 
            sum_sp_rr = 0; 
            sum_sp_rl = 0; 
    else 
            eng_speed(k) = 0; 
            eng_torque(k) = 0; 
            wheel_sp_fl(k) = 0; 
            wheel_sp_fr(k) = 0; 
            wheel_sp_rl(k) = 0; 
            wheel_sp_rr(k) = 0; 
            time_abs(k) = t_1; 
             
            t_1 = t_1 + 1; 
            i = i + 1; 
            j = 0; 
            k = k + 1; 
            sum_eng_speed = 0; 
            sum_eng_torque = 0; 
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            sum_sp_fl = 0; 
            sum_sp_fr = 0; 
            sum_sp_rr = 0; 
            sum_sp_rl = 0; 
    end 
     
 
end 
 
time_abs = time_abs'; 
eng_speed = eng_speed'; 
eng_torque = eng_torque'; 
wheel_sp_fl = wheel_sp_fl'; 
wheel_sp_fr = wheel_sp_fr'; 
wheel_sp_rl = wheel_sp_rl'; 
wheel_sp_rr = wheel_sp_rr'; 
 
%logs data to .txt file 
fid = fopen('1_hz_avg_12_16_202757.txt','w'); 
data = [num2cell([time_abs.'; eng_speed.'; eng_torque.'; wheel_sp_fl.'; wheel_sp_fr.'; 
wheel_sp_rl.'; wheel_sp_rr.'])]; 
fprintf(fid, '%f,%f,%f,%f,%f,%f,%f\n', data{:}) 
fclose(fid) 
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Appendix C 

GPS Speed and Acceleration Offset 
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Table 25:  Optimum GPS offset for estimating vehicle speed and acceleration during ten 
inertia tests 

Garmin 18 Vehicle Speed Garmin 18 Vehicle Acceleration Trimble 114 Vehicle Speed Trimble 114 Vehicle Acceleration
Optimum GPS Offset (s) Optimum GPS Offset (s) Optimum GPS Offset (s) Optimum GPS Offset (s)

Slow 1 32 0 -1 -1 -1
Slow 1 21 0 0 0 0
Slow 1 37 0 0 -1 -1

Medium 1 29 0 0 -1 -1
Medium 1 32 0 0 -1 -1
Medium 2 23 1 2 1 1

Fast 1 25 2 2 1 2
Fast 1 23 2 2 1 2
Fast 2 20 2 2 1 1
Fast 2 23 2 2 1 1

Test Duration (s)GearDegree of Acceleration 
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Figure 66:  Vehicle travel speed at various Garmin 18 GPS offsets during a slow 
inertia test 
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Figure 67:  Vehicle acceleration at various Garmin 18 GPS offsets during a slow 
inertia test 
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Figure 68:  Vehicle travel speed at various Trimble 132 GPS offsets during a medium 
inertia test 

 179



-1.5

-1

-0.5

0

0.5

1

1.5

2

3095 3100 3105 3110 3115 3120 3125 3130 3135 3140

Time (s)

A
cc

el
er

at
io

n
 (

m
/s

2
)

Measured Acceleration 0 s GPS Offset -1 s GPS Offset 1 s GPS Offset 2 s GPS Offset 3 s GPS Offset  

Figure 69:  Vehicle acceleration at various Trimble 132 GPS offsets during a medium 
inertia test 
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Figure 70:  Vehicle travel speed at various Garmin 18 GPS offsets during a medium 
inertia test 
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Figure 71:  Vehicle acceleration at various Garmin 18 GPS offsets during a medium 
inertia test 
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Figure 72:  Vehicle travel speed at various Trimble 132 GPS offsets during a fast inertia 
test  

 181



-4

-3

-2

-1

0

1

2

3

4

490 495 500 505 510 515

Time (s)

A
cc

el
er

at
io

n
 (

m
/s

2
)

Measured Acceleration 0 s GPS Offset -1 s GPS Offset 1 s GPS Offset 2 s GPS Offset 3 s GPS Offset  

Figure 73:  Vehicle acceleration at various Trimble 132 GPS offsets during a fast inertia 
test 
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Figure 74:  Vehicle travel speed at various Garmin 18 GPS offsets during a fast inertia 
test 
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Figure 75:  Vehicle acceleration at various Garmin 18 GPS offsets during a fast inertia 
test 
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Table 26:  The variability between the predicted and measured mobility power values at 
0, 1, 2, and 3 s GPS speed and acceleration offsets 

GPS Offset Receiver Degree of Acceleration Gear R-Squared
0 Garmin 18 Slow 1 0.0584
0 Garmin 18 Fast 1 0.0781
0 Garmin 18 Fast 2 0.1915
1 Garmin 18 Slow 1 0.1048
1 Garmin 18 Fast 1 0.4029
1 Garmin 18 Fast 2 0.0182
2 Garmin 18 Slow 1 0.4400
2 Garmin 18 Fast 1 0.9024
2 Garmin 18 Fast 2 0.9654
3 Garmin 18 Slow 1 0.5927
3 Garmin 18 Fast 1 0.2452
3 Garmin 18 Fast 2 0.3218
0 Trimble 132 Slow 1 0.0070
0 Trimble 132 Fast 1 0.1764
0 Trimble 132 Fast 2 0.1092
1 Trimble 132 Slow 1 0.1148
1 Trimble 132 Fast 1 0.6402
1 Trimble 132 Fast 2 0.3895
2 Trimble 132 Slow 1 0.6694
2 Trimble 132 Fast 1 0.7408
2 Trimble 132 Fast 2 0.6507
3 Trimble 132 Slow 1 0.5296
3 Trimble 132 Fast 1 0.0450
3 Trimble 132 Fast 2 0.1539  
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Figure 76:  A comparison of predicted and measured mobility power at various GPS 
speed and acceleration offsets during nine inertia tests for the Garmin 18 GPS receiver 
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Figure 77:  A comparison of predicted and measured mobility power at various GPS 
speed and acceleration offsets during nine inertia tests for the Garmin 18 GPS receiver 
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