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Abstract

In this thesis, an active front end induction motor drive for reactive power
compensation is analyzed. The classical vector control approach for high performance
control of an induction motor drive is a well established industry standard today. The
same idea of decoupled control is extended to the line-side PWM converter for achieving
better dynamic performance.

The system model is obtained using d-q rotating frame theory. The i, component
of line currents is used to control the reactive power. The iz, component is used to control
the dc-link voltage and also to supply active power required by the motor. A high gain
feedback controller with input-output linearization is presented to remove coupling
between i, and iz currents. A load power feed-forward loop is added to the dc-link
voltage controller for fast dynamic response.

The drive performance is analyzed to define system specifications. The motor
acceleration, deceleration, and variable power factor operation (reactive power
compensation) of the active drive system are demonstrated. The motor load is varied
from no load to full load in steps of 10% each. For each step the device currents,
switching power loss, line harmonics, and dc-link ripples are plotted. This data is used to
derive conclusions that define system specifications and also state operating limits.

The control of the drive system is implemented in MATLAB-SIMULINK. The
complete system hardware is implemented in commercially available simulation tool,

PSIM. The two software packages are interlinked using an interface module.
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1 Introduction

1.1  Chapter Overview

The purpose of this chapter is to introduce the research presented in this thesis.
Section 1.2 provides a brief overview of the research undertaken. In Section 1.3, the
general idea of Active Front End Inverters is presented. The circuit topology for the
complete power converter system used for reactive power compensation is explained.

Section 1.4 discusses the basic operating principle using single-phase equivalent
circuit of the system. The different modes of operation are elaborated using phasor
diagrams. Section 1.5 examines the key features and suitable applications of the Active
Front End Inverter system. Section 1.6 defines research goals. The scope of the research

is discussed here. Section 1.7 concludes Chapter 1 by presenting the thesis outline.

1.2 Thesis Research

In this thesis, an active front-end induction motor drive for reactive power
compensation is analyzed. The vector control approach for high performance control of
an induction motor drive is now a well accepted industry standard control. The same idea
of decoupled control is extended to the line-side PWM converter for achieving better
dynamic performance. The sine-triangle PWM scheme is used to control IGBT switches
in both rectifier and inverter bridges.

The system model is obtained using d-g rotating frame theory. The line currents

are decomposed into iy and iz components. The i, component is used to control the



reactive power. The iz, component is used to control the dc-link voltage and also to
supply active power required by the motor. A high gain feedback with input-output
linearization control is presented to remove coupling between i,. and iz currents. A load
power feed-forward loop is added to the dc-link voltage controller for fast dynamic
response.

Using the dynamic d-g model, the drive performance is analyzed to define system
specifications. The motor acceleration, deceleration, and variable power factor operation
(reactive power compensation) of the active system are demonstrated. The motor load is
varied from no load to full load in steps of 10% each. For each step the device currents,
reverse blocking voltage, switching power loss, line harmonics, and dc-link ripples are
plotted. This data is used to derive conclusions that define system specifications and also
state operating limits.

The control of the drive system is implemented in MATLAB-SIMULINK. The
complete system hardware comprising of switches, line inductors, dc-link capacitor bank,
and the motor is implemented in commercially available simulation tool, PSIM. The two

software packages are interlinked using an interface module.

1.3 Active Front-End Inverters

In this work, the term Active Front End Inverter refers to the power converter
system consisting of the line-side converter with active switches such as IGBTs, the dc-
link capacitor bank, and the load-side inverter. The line-side converter normally functions
as a rectifier. But, during regeneration it can also be operated as an inverter, feeding

power back to the line. The line-side converter is popularly referred to as a PWM rectifier
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in the literature. This is due to the fact that, with active switches, the rectifier can be
switched using a suitable pulse width modulation technique.

The PWM rectifier basically operates as a boost chopper with ac voltage at the
input, but dc voltage at the output. The intermediate dc-link voltage should be higher than
the peak of the supply voltage [1]. This is required to avoid saturation of the PWM
controller due to insufficient dc link voltage, resulting in line side harmonics. The
required dc-link voltage needs be maintained constant during rectifier as well as inverter
operation of the line side converter. The ripple in dc-link voltage can be reduced using an
appropriately sized capacitor bank. The active front-end inverter topology for a motor

drive application is shown in Figure 1.1

Line-side Converter 7/ i Load-side Converter
— c
J J J I, J J J Induction Motor
N N N I N
I Va b C,, ‘ /
V, b’
C VC CV P |
J( i J( i Jﬁg

Figurel.1 Active front-end induction motor drive system
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The topology shown in Figure 1.1 has two three-phase, two-level PWM
converters, one on the line side, and another on the load side. The configuration uses 12
controllable switches. The line-side converter is connected to the utility through inductor.
The inductor is needed for boost operation of the line-side converter. A transformer on
the supply side with appropriate secondary impedance also serves the same purpose.

For a constant dc-link voltage, the IGBTs in the line-side converter are switched
to produce three-phase PWM voltages at a, b, and ¢ input terminals. The line-side PWM
voltages, generated in this way, control the line currents to the desired value. When dc-
link voltage drops below the reference value, the feed-back diodes carry the capacitor

charging currents, and bring the dc-link voltage back to reference value.

1.4 Operating Principle

A per-phase equivalent circuit of the three-phase, line-side PWM converter is
shown in Figure 1.2. The source voltage Es, and line inductance L represent the utility
system. The three-phase voltages at the three input legs of the line side converter are
represented by V. The voltage V' can be viewed as a PWM voltage wave constructed from
the dc link voltage V;. The magnitude and phase of the fundamental component of V' is
controlled by the line-side converter. The voltage V;, across inductor L, is IswL where,
is the angular frequency of supply voltage. Note that, the synchronous machine connected
to an infinite bus can also be represented by the same per-phase equivalent circuit shown
in Figure 1.2. Similar to an overexcited or under-excited synchronous machine, the PWM

converter can also draw line currents at leading, lagging or unity power factor.
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Figure 1.2 Per-phase equivalent circuit

As illustrated in Figure 1.3 (a), for unity power factor operation in rectifier mode
of the line-side converter, the PWM voltage V" needs to be larger than the supply voltage
phasor Es in magnitude and lags Es by an angle . This makes Es and line current /s, to be
co-phasal. The angle J is called the power angle because it controls the power flow
between the two sources.

The regenerative mode of the line-side converter is shown in Figure 1.3 (b). The
Is phasor now reverses, causing reversal of IswL phasor. In order to satisfy the phasor
diagram, the ¥ phasor should lead phasor Es by an angle 6. Thus the power angle J also
reverses. Likewise, the leading power factor operation is illustrated in Figure 1.3 (c).

The active power P, and reactive power 0, are given by following expressions:

P=3-E,];cos¢ (1.1)

Q=3-E g sing (1.2)

where Es and Igare supply voltage and line current, while ¢ is power factor angle.
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a) Unity power factor during motoring mode

A

S

¢ = 180° B

b) Unity power factor during regenerating mode

¢) Leading power factor operation during motoring mode

Figure 1.3 Operating principle
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From Figure 1.3 (b) we can write,
I;wLcosg =Vsind (1.3)
IswLsing =V cosé (1.4)

Substituting the values of Igcos¢ and [ sing in Equation 1.1 and 1.2

respectively,
P=3-E, V:Eé (1.5)
Vecosé —Eg

The equations 1.1 through 1.6 indicate that the PWM voltage, V, and power angle,
0, can be controlled to control active and reactive power. It is also possible to maintain
reactive power constant while varying active power. This is done by keeping phasors
V cos d constant and varying phasor V'sind . An effective control strategy for achieving

this are discussed in detail in Chapter 4.

1.5 Key Features of Active Front-End Inverters

The power electronics equipments are often viewed as a source of troublesome
line-side interactions in the form of non-linear reactive currents and harmonics. However,
with the advent of high power semiconductor devices capable of switching adequately
fast, many new applications of power electronics equipments are being envisaged. One
amongst them is Active front-end inverter, which can provide a solution to some power

quality problems. The key features of this topology are discussed here.



Regenerative Capabilities — In normal motoring mode of the drive, power flows
from supply-side to the motor. The line-side converter operates as rectifier,
whereas the load-side converter operates as an inverter. During regenerative
braking mode, their respective roles are reversed. The system can continuously
regenerate power if the machine is a generator, such as in wind generation system.
Unity Power Factor Operation — With the line currents in phase with the line
voltages, the unwanted reactive currents are eliminated. Since regeneration is also
possible at unity power factor, the overall power quality is improved significantly.
The converter will be able to supply the same active power but at reduced current
ratings. Thus an increased cost of the converter on account of using active power
switches can be justified for high power applications.

Reactive Power Compensation — Alternatively, the kVA ratings saved due the
unity power factor operation can be used to provide reactive power compensation
to the utility system. The double-sided power converter thus acts as static VAR
compensator while driving a variable speed motor load. This scheme can be an
attractive alternative to the overexcited synchronous motor used as a VAR
compensator.

As an Interface between Distributed Energy Source and Utility — The line-
side PWM converters are applicable whenever a DC bus is to be connected to the
AC grid. Usually this is the case for distributed energy sources such as fuel cells,

microturbines, or variable speed wind energy plants employing a dc-link.
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Figure 1.4 Distributed energy source and utility interface

Figure 1.4 shows schematic representation of distributed energy sources
connected to the utility grid. The line-side PWM converter facilitates the flow of power

from distributed sources to the Utility at fixed frequency, and at desired power factor.

1.6 Research Goals

Evaluating the system performance by accurate simulations is the first important
step in the development of any power electronics system prototype. By simulating the
expected performance of the system, technical risks in the actual development can be

reduced significantly. Thus to identify device selection, system specifications, and design



issues prior to the actual design, is the principal motivation behind undertaking this
research.

The broader objective stated above is further articulated into specific goals
mentioned below.

1. Demonstrate application of an Active Front End Motor Drive topology, shown in
Fig. 1.1, for supplying variable reactive power compensation to the utility, while
driving a variable speed motor load.

2. Obtain the system dynamic model and present effective decoupling control
strategies for better transient performance.

3. Implement the system model and suitable control scheme in SIMULINK.

4. Evaluate the system performance at variable load by plotting system parameters
such as line currents, line harmonics, dc-link voltage ripple, device peak currents
and voltages. Use the device loss model to plot conduction, and switching losses
for the active switches.

5. Draw conclusions about the system operating efficiency, device selection, and
discuss optimum system design issues.

The research presented in this thesis aims to achieve these goals.

1.7 Chapter Summary and Thesis Outline

In this chapter, several topics were discussed. A brief overview of the research to
be presented in this thesis is first provided. A circuit topology used for an Active Front
End motor drive system is discussed as well. Further the principle of operation for this

topology is explained with the help of phasor diagrams. Several key features and some
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potential applications of Active Front End Inverters are examined further. At the end, the
primary motivation behind this research and the precise goals that this research set out to
achieve are also stated.

In Chapter 2, a detailed discussion on power quality, stability, and reactive power
compensation will be presented. In addition the Instantaneous Active and Reactive power
definitions will be reviewed. Further, different methods for compensation will be
compared. In particular, the power compensation using induction motor drive will be
discussed.

In Chapter 3, the d-q rotating frame theory as applied to the active front end
inverter system will be discussed. The system dynamic model in d-g coordinates will be
derived. The active and reactive power definitions in dq-frame will be derived as well.
This will set up the control problem, which will be solved in the next chapter.

In Chapter 4, the control strategy is formulated. The input-output linearization for
decoupled control of iz and iz, current components will be discussed. The load power
feed-forward compensation is also discussed to achieve better transient performance.

The main purpose of Chapter 5 will be to simulate all possible modes of operation
of the complete drive system. The simulation set up and implementation issues in
SIMULINK as well as PSIM will be discussed. In addition, this chapter will set down the
approach for determining the system specifications, loss calculations, and optimum
system performance. The detailed simulation results will also be presented.

In Chapter 6, a brief summary of the thesis will be given. Based on the simulation
results, important conclusions regarding the research will be made. Lastly, several

suggestions on possible future research will be made.
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2 Background

2.1 Chapter Overview

In the previous chapter, the general idea of active front-end inverters and the
thesis outline was presented. The purpose of this chapter is to provide a detailed
background pertaining to other research useful in analyzing the active front-end drive. In
Section 2.2 power quality issues including cause and effects of harmonics are discussed.

In Section 2.3 the role of power electronics in improving the ac grid power is
reviewed. The interesting interpretations of instantaneous real and reactive power are
discussed in Section 2.4. At the end, the comparison between traditional drives with
phase-controlled rectifiers and drives with active front-ends is presented. This
comparison is the motivation for preferring active front-end drives over traditional drives

for some high power applications.

2.2 Power Quality Issues

An uninterrupted, sinusoidal voltage at rated magnitude and frequency represents
the power supply of highest quality. The factors that define the quality of electric power
are harmonic distortion, voltage regulation, voltage sag, and voltage unbalance in
addition to the continuity of power supply.

The universal use of non-linear loads, mainly power electronic converters, has
increased the presence of non-linear and reactive currents in the power system. In most

applications, the switching of these converters is done synchronously with the line
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voltage. The harmonic components produced in this case are integer multiples of the
fundamental frequency, also referred to as superharmonics. The presence of lagging, non-
linear currents lead to the line voltage distortions, increased transmission losses,
additional transmission and distribution capacity, in addition to affecting power system
stability.

In many other industrial loads such as arc furnaces, spot wielding machines,
rolling mills, and mine hoists, the load currents are rapidly changing and non-sinusoidal
in shape. The harmonic spectrum of the rectifier input currents for these loads contain
subharmonic components, which are not integer multiples of the fundamental line
frequency, in addition to the superharmonics components [2]. These waveforms are
considered as non-periodic.

These reactive currents along with periodic and non-periodic harmonic currents
need to be eliminated from the power system to improve the overall power quality to an
acceptable level. Before discussing the details of various power compensation methods, it
is useful to investigate the sources of harmonics and their effects in different types of

electrical loads.

2.2.1 Sources of Harmonics

Any component of voltage or current waveform, other than specified frequency
sinusoidal component is referred to as harmonics. Non-linear loads change the sinusoidal
nature of the ac power current, thereby, resulting in the flow of harmonic currents in an
ac power system. A brief review of these loads and harmonics produced by them is

presented here [3].
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Static Power Converters - Thyristor and/or diode based power converters are the
largest non-linear loads connected to the power system. These are extensively
used in industry to convert power from ac-to-dc, dc-to-ac, dc-to-dc, and ac-to-ac.
The current commutation phenomenon results in voltage notching and the poor
displacement power factor (DPF) draws additional VAR from the source.

Arc furnaces, mine hoists loads — The harmonics produced by these loads are
highly unpredictable because of cycle-by-cycle variation of the mechanical
torque. The line current is non-periodic. The harmonic spectrum shows presence
of both integer and non-integer order of frequencies [2]. These types of loads
often require a shunt compensator to maintain voltage levels, improve power
factor, and increase power system stability.

Switch Mode Power Supplies (SMPS) — Most electronic equipment uses a SMPS
to provide the stabilized voltage to the equipment. It feeds the capacitor that
supplies voltage to the equipment. Since the load, as seen from the power system,
is a capacitor, the current to the power supply is discontinuous, producing line
harmonics.

Pulse Width Modulated (PWM) Drive — The dc link drive has a diode at the input
and a large capacitor on the dc link to regulate the dc voltage. For light loads (30-
50%), the current only flows when the voltage output of the diode rectifier is
above that of the capacitor. Thus at light loads current in the ac circuit is
discontinuous.

Utility Interface with Distributed Energy Sources — With the increasing use of

distributed energy sources such as fuel cells, wind generators, micro-turbines, and
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solar cells, there are various topologies available to connect these sources to the
utility. These interfacing power converters may act as current sources attached to
the electric utility or as voltage sources tied to the utility through a series
impedance. Depending on the topology used, the outputs of these power
converters may contain harmonics of various orders and power factors that may

cause unacceptable power quality for the utility grid.

2.2.2 Effects of Harmonics

Most power equipment are designed to operate at fixed frequency sinusoidal
voltages and currents. The presence of harmonics will naturally have unwarranted effects
on these equipments. The degree to which harmonics can be tolerated depends on the
type of load consuming these harmonics. In case of heating loads, such as oven or
furnaces, the harmonic currents are utilized for heating and thus presence of harmonics
do not have any adverse impact.

In rotating machines, such as induction motors and synchronous generators, the
harmonics cause increased iron and copper losses, resulting in increased heating and
reduced efficiency. Harmonic currents also give rise to higher audible noise compared to
the sinusoidal currents. The harmonic currents can also cause or enhance cogging (refusal
to start smoothly) or crawling (high slip) phenomenon in an induction motor. The
interaction between harmonic currents and fundamental frequency stator current leads to
pulsating torque and may cause mechanical oscillations. In the case of transformers, the

harmonics cause higher iron and core losses resulting in increased heating.
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Power cables carrying harmonic currents are prone to heating due to skin and
proximity effects. Power cables acting as parallel capacitors may be involved in system
resonance. Due to magnified harmonic levels, the cables may be subjected to the voltage
stress and corona, which can lead to diclectric failure.

Additionally, the presence of harmonics may cause metering and instrumentation
devices to produce erroneous results. In power system equipment such as switchgears,
harmonic currents increase heating and losses, thereby reducing steady state current
carrying capacity and shortening the life of insulating components. Fuses also suffer de-
rating because of the heat generated by the harmonics during ‘normal’ operation.

The IEEE recommended practices and harmonic control guidelines [3] limit the
harmonic contents and the distortions caused by them in the waveform to a certain level.
The distortion level is gauged in terms of total harmonic distortion (THD), defined as,

/ 2 2
THD :M*IOO (2.1)
1

Where, Vgys is the root mean square value of the total voltage waveform,
comprising all the harmonics including the fundamental frequency component. Whereas,
V', is the root mean square value of the fundamental components of total voltage.

The distortion limits recommended by IEEE 519 standard are listed in Table 2.1.
The limits are applicable only at the point of common coupling (PCC) of the utility and
plant interface. The limits are recommended to be used as system design values for the
“worst case” for normal operation. Normal operation is the operating condition lasting
longer than an hour. For shorter periods, such as during start-ups or unusual conditions,
the limits may be exceeded by 50%.
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Table 2.1: Voltage distortion limits

Bus Voltage at Point of Individual Voltage Total Harmonic
Common Coupling (PCC) Distortion (%) Distortion (%)
69 kV and below 3.0 5.0
69.001 kV through 161 kV 1.5 2.5

161.001 kV and above 1.0 1.5

2.3 Role of Power Electronics in Improving Quality of AC Grid

Power

Power electronics, which is the major contributor to the troublesome line-side
interactions in the form of reactive currents and harmonics, can also provide solution for
removing such effects. The prospects of using a power electronics based system to
address the power quality issues promise to change the landscape of future power
systems in terms of generation, transmission and distribution, operation and control. The
ever increasing interest in these applications can be attributed to the several factors as
listed below [4]:

1. Availability of power semiconductor devices with high power ratings capable

of switching fast lead to better conversion efficiency and high power density.
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2. Growing awareness of power quality issues and stricter norms set forth by the
utility companies and regulatory authorities to control harmonic pollution and
EMC effects.

3. Continual use of existing transmission system capacity for increased power

transfer without compromising transmission system stability and reliability.

4. Need for effective control of power flow in a deregulated environment.

5. Increased emphasis on decentralized generation with renewable energy

sources to avoid transmission line congestion.

Many types of utility applications based on power electronics controllers are
being envisaged. These include active and reactive power flow control, system stability,
improving power quality by eliminating harmonics, improving transmission efficiency,
and protection.

Thus, power quality solutions comprising reactive compensation, compensation
for the non-active currents, harmonic compensation, or active filtering is one of the many
significant areas of utility applications for these controllers, summarily referred to as
flexible ac transmission system (FACTS) controllers. The different types of FACTS

controllers and the principle of operation is reviewed briefly in the following subsections.

2.3.1 Flexible AC Transmission Systems (FACTS) Operating Principle

In existing ac transmission networks, limitations on constructing new power lines
has led to several ways to increase power transmission capability without sacrificing the
stability requirements. Power flow on a transmission line connecting two ac systems is

given by,
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E\E,

P= sin & (2.2)

Where E; and E, are magnitudes at the two ends of transmission line, X is the line
reactance, and o is the angle between the two bus voltages. Equation 2.2 shows that
power flow on a transmission line depends on the voltage magnitude £; and E», the line
reactance X, and the power angle 6. FACTS devices based on phase-controlled thyristors
or active switches such as IGBTs can be used to rapidly control one or more of above
three quantities.

The term, FACTS devices, can be formally defined as a collection of power
converters and controllers that can be applied individually or in coordination with others
to control — series impedance, shunt impedance, current, voltage, phase angle, oscillation
damping. By controlling one or all these quantities, FACTS devices enable transmission
system to be operated closer to its thermal limit without decreasing the system’s
reliability in addition to providing improved quality power. Depending on whether they
are connected in shunt or series, the FACTS devices can be categorized as shunt-

connected and series-connected controllers [5].

2.3.2 Shunt-Connected Controllers

Typically, the shunt-connected controllers draw or supply reactive power from a
bus, thus causing the bus voltage to change due to the internal system reactance. Some of
the popular shunt controllers are described below [6].

Static synchronous compensator (STATCOM) is a shunt-connected static VAR

compensator, which can control its output current (inductive/capacitive) independent of
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the ac system voltage variations. It uses self commutated (active) switches like IGBTsS,
GTOs, or IGCTs. It may or may not need large energy storage capacity depending on
what active and/or reactive power compensation is desired.

Static VAR compensator (SVC) is another type of power compensator, whose
output is adjusted to exchange capacitive or inductive current so as to maintain bus
voltage constant. SVC is based on devices without turn-off capability, like thyristors.
SVC functions as a shunt-connected controlled reactive admittance. Some popular SVC
configurations are thyristor controlled reactor (TCR), thyristor switched reactor (TSR),
and thyristor switched capacitor (TSC). The TCR has an effective inductive reactance
which is varied by firing angle control of the thyristor valve. The effective inductive
reactance of a TSR, on the other hand, is varied in step-wise manner by full or zero
conduction of the thyristor vale. In case of a TSC, the effective capacitive reactance is

varied in a step-wise manner by full or full conduction of the thyristor valve.

2.3.3 Series-Connected Controllers

These types of devices are connected in series with a transmission line, thereby,
changing the effective transmission line reactance. This feature allows series-connected
controllers to control the flow of power through the transmission line. Various forms of
such devices include static synchronous series compensator (SSSC), thyristor controlled
or switched series capacitor (TCSC/TSSC), and thyristor controlled or switched series
inductor (TCSR/TSSR).

The output of SSSC is in quadrature with the line current, and is controlled

independently of the line current. The SSSC decreases the overall reactive voltage drop
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across the transmission line and controls flow of electric power. The SSSC may include
transiently rated energy storage to compensate temporarily an additional real power
component. The TCSC varies its effective capacitive reactance smoothly by firing angle
control of the thyristor valve. Alternately, the effective capacitive reactance of a TSSC is
varied in step-wise manner, by full or zero conduction of the thyristor vale. Similarly in
case of a TCSR and TSSR, the effective reactance is varied smoothly and in a step-wise
manner respectively.

Table 2.2 summarizes the above discussion on different types of controllers, their
respective circuit schematic, system functions, and control principle [5]. The active front-
end induction motor drive analyzed in this thesis work falls under the category of static
synchronous compensator (STATCOM). From power quality point of view, it is basically
a shunt-connected static VAR compensator which can control its output current
(inductive/capacitive) independent of the ac system voltage variations or load. It needs a
temporary energy storage element in the form of a dc-link capacitor to effectively supply
the desired power compensation while driving the mechanical load connected to the
induction motor.

After establishing different methods of compensation, it will be worthwhile to
know exactly how much and which component of the source power needs to be
compensated. In other words we need to establish the reference commands for the power
controllers discussed above. The instantaneous power definitions presented in the next

section explain how to choose compensation references.
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Table 2.2: A summary of FACTS controllers’ configurations

Controller

Circuit configuration

System functions

Control principle

TCR/TSC - Thyristor
Controlled or

Switched Reactor

Regulate voltage

Improve stability

VAR control by
varying L in the

shunt connection

TCC/TSC — Thyristor
Controlled or

Switched Capacitor

Regulate voltage &
compensate VAR

Improve stability

VAR control by
varying C in the

shunt connection

TSSC — Thyristor
Switched Series

Capacitor

Control power flow

Improve stability

Power and VAR
control  through

varying C.

TCSR — Thyristor
Controlled Series

Capacitor

Control power flow
Improve stability

Limit fault current

Power and VAR
control  through
varying C & L in

shunt connection

TCSR — Thyristor

Controlled Series

Limit fault current

Current control by

inserting L in

Reactor series.
VAR control
STATCOM W Regulate voltage &
through current
Static Synchronous 5 compensate VAR
~

Compensator

Improve stability

control in shunt

connection

Active Filter
(Shunt Connected)

avol

Harmonic current

filtering

Inject canceling
harmonic current

into the source

SSSC — Static Series
Synchronous

Compensator

:

)

Control power flow

Improve stability

VAR control
through series

voltage control.
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2.4 Generating Reference Currents Using Instantaneous Power p-¢q

Theory

For single-phase and three-phase power systems with sinusoidal voltages and
sinusoidal currents, the quantities such as active power, reactive power, active current,
reactive current, and power factor are based on the average concept [7]. For
compensating the non-active currents, however, instantaneous power and current
definitions are required. Akagi et al [8] have introduced an interesting theory of
instantaneous power in three-phase circuits, without zero sequence currents. The theory is
also popularly referred to as p-¢g theory. The concept establishes an effective method to
compensate instantaneous components of active and reactive power of the three-phase
system.

This work is widely regarded as a classical theoretical research and is one of the
most cited references in the field of reactive power compensation and active filtering [2].
Since, it is also the basis for generating reference commands for active compensator
presented in this thesis, the brief summary of the instantaneous power p-g theory is
presented below. The three-phase, three-wire system is shown in Figure 2.1. The three-

phase voltages and currents are transformed to d-¢g coordinates as shown below.

e, . 1 -1/2 —1/2 e,
er[=157] © V312 =372 e, (2.3)
e VN2 142 142 e,

i, 5 1 -2 —1/2 i
i, :\E- 0 372 =3/2]i (2.4)
N2 U2 142 i
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1
S

Figure 2.1 Three-phase three-wire system

For balanced voltages e; + e; + e; = 0. Thus ey equals to zero. For balanced

currents, iy equals to zero as well.

The transformation matrix C; and its inverse matrix C;”' are defined as,

1 —1/2 =1/2 2/3 0 ~2/3

CI:\E- 0 372 —ﬁ/z,cl‘:\g- ~1/3 1/3 2/3
/42 142 142 ~1/3 —1/43 2/3

Using the matrices C; and Cl'l we can do following coordinate transformation

i, I I I, e, e,
. . . -1 . -1

i,|=C-11i|,|i|=C, -|i,|,and| e, |=C, -| e,
lO lc lc lO ec eO

Note, C; and Cl'l are orthogonal matrices, so that,
a'a=ca’ =@ at=cl@h =1 (2.5)
Where, / represent an identity matrix.
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The instantaneous active power, p, in a-b-c¢ coordinates is defined by,

la
p=e,i, +ei, tei, = [ea e, ec]- i (2.6)

l

c

Converting voltages and currents in d-¢g coordinates, we can write,

p=e,i, te,y, (2.7)

In the similar way, an instantaneous reactive power ¢ is defined as [9],

q=e,i, —e,, (2.8)

Note that, p, as shown in Equation 2.7 is an instantaneous active power, because it
is defined as the sum of the product of the instantaneous voltage and instantaneous
current in the same phase. So, p has dimension of Watt (W). On the contrary, the
expression for ¢ contains the product of instantaneous voltage in one phase and
instantaneous current in another phase. Therefore, ¢ cannot have dimension of W,
instead, a new dimension called as “imaginary watt” will be used [2].

Combining Equation 2.7 and 2.8, we can write,

L el

Alternatively, currents in d-g coordinates can be expressed as:
' e. e, |
i
ld - ed eq q
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Equation 2.9 can be rewritten as,

—iq— 1L e —edip+;.eq —ed.O
ia] e +e,] (e e 0] e’+e,” & € |lg

i ] |[i i
= T+ (2.10)

[ La | La_p Li_g

Where, the p and ¢ components of g-axis and d-axis currents are given by,

. €, P . e, p

i,y =555l , = @.11)
e, +e, e, te,

And

. —€,°q . e, q

by ¢ =7 ‘ 70t g = 2q 2 (2-12)
e, +e, e, +e,

Next, the instantaneous active power in terms of g-axis power p,, and d-axis

power py, 1s given by,

p=eji, teji,=p, +p, (2.13)

|:pq:|:|:eql:q:|: eql:q,p " eql:q,q (2.14)
P €.l €ily » €ila 4

The two components of instantaneous active power in Equation 2.14 are referred

[pq}:[l’qp]{l’qq} 2.15)
Pa Pa_p Pa 4

to as,

Also note that,
P, ,tPs ,=¢l, ,+tei, ,=ei +e;j,=p =p (2.16)
Py ¢ TPi =61, teid, ,=0=p, (2.17)
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As can be seen, p; (e4iy + eqig) is the net power delivered to the load while, pg is
the ripple power oscillating between source and load, such that net pp is zero.

In similar fashion, we can also write instantaneous reactive power in d-g

coordinates as,

q=e,i, —e,,

|:qz]:|: eqid. _ eqid.,p + eqid.,q (2.18)
qd —edlq —edlqip —edzqiq

The two components of instantaneous reactive power in above equation are referred to as,

[qq] :[q”}r[%q] (2.19)
qq da_p 9a_q

Note here that,
qq7p+qd7p=eqid7p—ediq7p=0=qR (2.20)
Ay ¢t g =€l =€, (=479, (2.22)

Equations 2.15 through 2.17 and Equations 2.19 through 2.22 lead to the

following interesting interpretations of instantaneous real and imaginary power [9].

e The instantaneous active power has two components, p; and pg. p; is the active
power delivered to the load. While, pr is the ripple power which oscillates

between source and load, such that average py is zero.

e Similarly, the instantaneous reactive power can be split in two components, g,

and gr. g 1s the reactive power delivered to the load. While, gz is the ripple

power which oscillates between source and load, such that average gz is zero.

e The p-g theory reveals exactly which components of real and reactive power flow
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to the load and which oscillates between source and load. As required by the
utility, the particular power/current components can be compensated.

e Thus a shunt active compensator without energy-storage element can be used to
compensate a ripple component of reactive power, which is flowing to-and-from
between source and load.

e On the other hand, the ripple component of the active power, which is the result
of harmonic currents, can be compensated by a shunt active filter with energy-
storage element.

The p-q theory, however, does not take into account zero-sequence currents. A
generalized theory of instantaneous active and reactive power proposed by Peng et al [10]
define instantaneous real and reactive power for all scenarios such as, sinusoidal or non-
sinusoidal, and balanced or unbalanced three-phase systems, with or without zero-
sequence currents and/or voltages.

Based on above generalized power definitions, reactive power compensation

references are generated for the active front-end drive simulations presented in this thesis.

2.5 Comparison between Traditional Drives and Active Front-End

Drives

The discussion so far in this chapter leads us to a couple of interesting scenarios.
First, the presence of non-linear loads in a power system has been significantly increased,
and because of their ability to control electric power precisely and efficiently, the

widespread use of power electronics converters is indispensable. Secondly, utilities are
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increasing concern about the non-linear currents in power system, resulting into stricter
harmonic and power quality standards. This situation calls for alternative solutions in the
form of various compensation techniques. Depending on the compensation objective,
different topologies as discussed in section 2.3 can be used.

For large variable speed drives such as those used in mining excavators, the huge
influx of non-linear currents, seriously affect the power quality at the point of common
coupling. To ensure power grid compatibility, a reactive compensator such as a capacitor
bank or a STATCOM device is required for such installations. Alternatively, an induction
motor drive with an active front-end can be used. It can achieve powerful dynamic
performance, while providing exceptional compatibility with the line in terms of power

factor and total harmonic distortion. Figure 2.2 shows the two schemes.

Source Voltage

E
s g, N N
S L
~
E
Thyristor Dc-link Inverter Induction Motor
PCC Rectifier
Ls
LY -
Series J J
Reactance A
Active front-End  Dc-link Inverter Induction Motor

Figure 2.2 Comparison between phase-controlled and active front-end rectifiers
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2.5.1 Traditional Interface with the Power Grid

As can be seen in Figure 2.2 a rectifier consists of a standard phase-controlled
thyristor. The drive typically operates near its full load at all the time. The line-side
rectifier controls need to provide a stable dc-link voltage under all line and load
conditions or drive performance may suffer.

Maintaining a stable dc-link voltage in the presence of wide power swings is
difficult for phase-controlled thyristors because of the poor power factor to the line. Thus,
when the distribution system voltage is weak, the voltage available for rectification is
also reduced resulting in poor time response. The poor power factor and limited time
response of phase-controlled rectifiers require a large amount of capacitance in the dc-

link to minimize the voltage fluctuations seen by the inverter [11].

2.5.2 Improved Power Grid Interface with Active Front-End Inverter

The use of high power IGBTs in active front-end inverter (AFE) topology as
shown in Figure 2.2 eliminates the shortcomings of traditional rectifier front ends. The
active front end boosts the line voltage to a dc-link voltage higher than normally
produced with a diode bridge. It takes an advantage of the network’s inherent reactance
to increase dc-link voltage greater than the peak of the line-to-line supply voltage. The
line reactance is a disadvantage in a phase-controlled rectifier resulting in voltage
notching.

The system can be designed to operate with sufficient control margins so that the

desired dc-link voltage can be maintained, even in the presence of large dips in the
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incoming line voltage. The current flow between the line and the active rectifier is
directly dependent on the voltage difference between line voltage and PWM voltage
generated by the active rectifier. This voltage difference is applied across the line
reactance. Adjusting the magnitude and phase of this voltage gives the active rectifier
continuous control over the current amplitude and phase in all four quadrants of
operation.

The controller regulates the dc-link voltage by maintaining the balance of active
power supplied by the rectifier and the active power required by the inverter/load. At the
same time, the controller can independently control flow of reactive power allowing unity
power factor at the primary of the transformer or at any other given point in the network,
like the point of common coupling that feeds the rectifier. This helps in improving the
voltage regulations and overall efficiency.

However, there is a limit on the amount of power that can be transferred to or
from the grid. The voltage ratio between the line voltage peak and dc-link voltage
imposes this limit [11]. Additionally, the current rating of active front-end rectifier
imposes constraints on both the active and reactive power to be transferred to and from
the power grid. To find out the limits, first the system model is required which is

presented in Chapter 3.

2.6 Chapter Summary

In this chapter, a background material on reactive power compensation and power
electronics controllers used in utility applications was presented. Power quality standards

and IEEE guidelines on harmonic distortion were also discussed.
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A brief review of FACTS devices, their respective circuit configuration, system
function and operating principle was presented. Further, the instantaneous active and
reactive power theory was discussed. The power definitions provided by p-g theory are
the basis of compensation commands generated for the active drive. The benefits of using
active drive were discussed by comparing it with traditional drive with phase-controlled
rectifiers. In the next chapter the mathematical model for active drive is derived. Based

on this mathematical model, a control approach is formulated in Chapter 4.
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3 System Modeling

3.1 Chapter Overview

In the previous chapter, the need for compensating non-active currents and a
detailed review of the compensation methods using power electronic devices were
discussed. The theoretical background on instantaneous power definitions was also
presented. In this chapter, a dynamic d-g model, needed for faster transient response of an
active front end converter will be derived. Later in this chapter, the power loss model to
estimate the total heat dissipation in a front-end rectifier will be introduced.

In Section 3.2, the system configuration for using active drive as a shunt
compensator will be presented. The compensation characteristics and the steady-state
controllability of an active drive will be discussed here. Section 3.3 will introduce the d-g
theory of transforming three-phase parameters to equivalent two-phase rotating
coordinate system. In Section 3.4 the d-¢g theory will be applied to the system differential
equations to derive the dynamic d-g model. To provide desired reactive power
compensation, the active and reactive power measurements in d-g coordinates are
required. These power definitions will be presented in Section 3.5.

In Section 3.6 the power loss model to estimate conduction and switching losses
in IGBTs and anti-parallel diodes used in the front-end rectifier will be presented. The
total heat dissipation estimated using the power loss model can be used in designing an

appropriate thermal system.
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3.2 System Configuration

Consider a simplified power system shown in Figure 3.1. It is assumed that the
system voltage Eys is purely sinusoidal. £; and E, are the intermediate line voltages which
are not sinusoidal, but are distorted at varying degrees. V), 1s the voltage generated by
the active front-end converter, while Z; and Z, are transmission line impedances. Lg is the
series reactance of an active drive used for boost operation.

The non-linear load, shown in figure, draws currents with active and non-active
components. If the non-active currents are not compensated, it will result in source
voltage distortion. The role of an active front-end converter, in this situation, is to supply
the non-active currents needed to keep total harmonic distortion (THD) at the desired
level. At the same time, the converter must draw real current to feed its own load which

is induction motor.

Non-linear Load
Source Voltage
Eg .
Z, I+ iy
m —
E,
Utility Line 1 ,
lio-iny
Utility Line 2
Ly Vo
oot Kp
Series

Reactance  pctive Drive

Figure 3.1 A simplified power system
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The fundamental real current drawn by the active drive depends on the
application. In applications like mine hoists, the drive draws the real power from utility to
feed the continuously varying mine load. In other applications such as, an induction
motor connected to an external energy source like a wind powered generator or a micro-

turbine, the inverter may feed net real power back into the network.

3.2.1 Compensation Characteristics of an Active Drive

As illustrated in Figure 3.1, the active front-end converter represents a shunt-
connected synchronous voltage source (STATCOM), previously described in Chapter 2.
The active drive can be viewed as a shunt compensator with an energy storage element in
the form of a dc-link capacitor. Due to energy storage capability, the active drive has
several beneficial features, which are used to maintain desired power grid compatibility.
These features are listed below.

e The maximum attainable compensating current of an active drive is limited only
by the current ratings of the active switches and by the chosen ratio of peak line
voltage to dc-link voltage. The active drive can maintain the maximum VAR
compensation and the desired dc-link voltage, even in the presence of large dips
in the incoming line voltage [11].

e The active front-end converter can be operated over its full current range even at
the low line voltage levels. Sometime line voltages as low as 20% of the rated can

also be tolerated.
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3.2.2

Operation over full current range help increase the stability margin in case of a
fault, and thus improves overall transient stability.

The response time of an active front-end converter for compensation purposes can
be as fast as a fraction of a half cycle (~ 10ms) [12]. For thyristor controlled
reactors, the dynamic response can be as slow as 5 to 6 cycles. Later in Chapter 5,
the compensator response to the step input is plotted to illustrate this.

The decoupled control strategy allows the compensator to exchange reactive as
well as real power to and from the ac system. The two power exchanges are
mutually exclusive.

Due to real power exchange capability, the compensator can be used for power

oscillation damping.

Steady-State Control

The steady state characteristics as well as differential equations describing the

dynamics of the front-end rectifier can be obtained independent of an inverter and motor

load. This is because the dc-link voltage can be viewed as a voltage source, if V. is

maintained constant for the full operating range. The inverter is thus connected to the

voltage source, whose terminal voltage V., remains unaffected by any normal inverter-

motor operation.

Furthermore, as shown in Figure 3.2, the rectifier can also be viewed as connected

to the voltage source V.. Thus, the rectifier is able to control magnitude and phase of

PWM voltages V. irrespective of line voltages E;>;3.
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Figure3.2 A voltage source rectifier

The system is an exact replica of the inverter-motor system. The PWM voltages,
Vabe, are now excitation voltages similar to the motor terminal voltages. The source
voltages E;;; can be compared to the motor counter emf voltages. Whereas, line
inductance is similar to the motor leakage reactance!

During steady state, the system operation can be described using the phasor
diagram shown in Figure 3.3. As explained earlier in Chapter 1, the real and reactive

power are represented by,

1L>=315‘S-V:2‘j G.1)
Vcosd —Eg

Equations 3.1 and 3.2 suggest that an active rectifier can generate a desired, fixed

valued reactive power while supplying the variable real power demanded by the motor.
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V' sind’

Figure 3.3 Steady-state control of PWM rectifier

As shown in Figure 3.3, this can be done by keeping “V cosd ” constant and
varying “V sind . Thus by controlling the magnitude and phase rectifier voltage V, the
steady state control of active and reactive power is possible. However, the equations fail
to explain simultaneous control over real and reactive power, which is required for a
dynamic operation of an active drive.

Secondly, an important prerequisite for an active drive operation is a constant dc-
link voltage, Vy. A variable dc-link will introduce undesirable fluctuations in the
magnitude and phase of PWM voltages generated by the rectifier. It will cause the active
and reactive currents drawn by the rectifier to vary from the desired values. This will
further introduce additional noise in the dc-link voltage, since these line currents charge

and discharge the dc capacitor. To solve this non-linearity and at the same time achieve
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fast dynamic response, an effective control scheme is needed.

The voltage source rectifier connected to the utility can be effectively controlled
using the field oriented approach, same as used for controlling the voltage source inverter
feeding an induction motor [13]. The rotating reference frame d-g theory is first used to
obtain a dynamic d-g model of a line side converter. The dynamic d-¢ model is then used

to implement field oriented control. The d-g theory is introduced in the next section.

3.3 The d-q Theory

A system of three-phase, sinusoidal, time-varying voltages can be represented by
an equivalent two-phase system. Consider a balanced, three-phase, Y-connected voltages,
E;, E,, E; which are 120 electrical degrees apart. Consider a stationary, two- axis
coordinate system, where the g-axis is aligned with E;, and d-axis is orthogonal to the g-
axis. The three-phase voltages have component on both the ¢ and d axes. The ¢ and d

axis components can be expressed as,

E, E
Eqs:El—E200s60—E3cos60:E1—72—73 (3.3)
3 3
E, =0+E,cos30—-E,cos30=F, 5—E3 5 3.4)

In matrix form,

E, 1 -12 -1/27E
E,|=| 0 ~3/2 -3/2|E, (3.5)
E,| |UN2 N2 142 | E,

However, in order that the two coordinate systems are equivalent, the instantaneous

power in both the coordinate systems should be equal.
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F,

g = P (3.6)
where Pjy; 1s power in three-phase circuit, and P, is power in equivalent two-phase

system. To meet this requirement, the transformation matrix needs to be multiplied by a

factor of v2/3.

The new transformation matrix, Cj, is,

- 1 —1/2 -=1/2 2/3 0 ~2/3
clz\g. 0 3/2 =372 ,Cll=€- ~1/3 1/43 2/3 (3.7)
/N2 142 142 —1/3 —1/43 2/3

The Equation 3.5 is rewritten as,

E, 1 -12 -12E
E, =\E- 0 +3/2 =3/2|E, (3.8)
E, /42 142 142 | E

Note that parameters E,, E4 in two-phase stationary reference frame are still
time-varying. Because most of the electric circuits are associated with inductances, the
time varying parameters such as sinusoidal currents and voltages tends to make the
system model complex, and system response is often sluggish.

R. H. Park proposed in 1920 [1] to transform these variables to a fictitious
reference frame rotating at some angular speed. If this speed of rotation is the same as the
angular frequency of time-varying parameters, then all the parameters in this reference
frame become time invariant or dc quantities. Because the effect of inductances
associated with varying currents and voltages is removed, the system model is relatively
simple and system response can be sufficiently fast.

Figure 3.4 and 3.5 illustrate Park’s transformation.
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Figure 3.4 Three-phase to two-phase transformation
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Figure 3.5 Stationary to rotary reference frame, Park’s transformation
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The orthogonal axes de and ge are rotating at an angular speed of w,. The 6, is the

angular displacement such that,

dbe
e = 3.9
7 (3.9)
The new variables in de-ge reference frame are,
E, _ c?see —sin@ || £, (3.10)
E, sin@ cosé || E,
The Park’s transformation matrix is referred to as C,,
cos@ —sin6 4 cos@ siné
sin@  cos 0 —sin@ cosé
Note that, both the matrices C; and C; are orthogonal matrices such that,
ClTC1 :C1 C1T=Iand CZT C2:C2 CZT:I (312)

where [ represents an identity matrix.

3.4 Dynamic d-g¢ Model

Figure 3.6 shows source voltages E;, E, E3 as line-to-neutral voltages for each of

the three phases. The phase voltages and line currents i, i, and i3 are given by,

E =FE sinat; i, =i, sin(wt+ @)
E,=FE sin(at—120); i, =1, sin(awt —120+ ¢) (3.13)
E, =E sin(wt—240); i, =i, sin(wt —240+ ¢)

The currents lead the source voltages by angle¢ . E,, is the maximum line-to-

neutral voltage, while i, is the peak line current.
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Figure 3.6 Circuit representation of system mathematical model

3.4.1 Deriving the d-¢ Model

The dynamic equations for each phase can be written as,

0
E =L 4R i+V,
di

E, :L-%+R-i2 +V,

i
E,=L- 23 4Ri,+V,
dt

In matrix form, Equation 3.14 can be written as,

El d il il Vuo
E, :LE 1:2 +R 1:2 +V,,
E, I3 I3 Veo
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Using transformation matrix C;, we can write,

iqs il E qs E 1 Vqs ao
i, |=C|i,|,and| E, |=C/|E, |,and |V, |=C,|V,, (3.16)
iOs i3 EOS E3 VOS co

Pre-multiplying Equation 3.15 by C),

El d il il Vao
C\|E, :LE(CI i, D+RC\|i, |+C|V,, |
E3 i3 i3 I/co

Since C; is a constant, it can be taken inside the derivative term.

E j J V
A A (3.17)
Eds dt lds lds Vds

Equation 3.17 represents dynamic model in stationary reference frame.

Using second transformation matrix, C,, we can write,

el [ Jee [ ] 315)
lde lds lds ld@

Pre-multiplying Equation 3.17 by C, and using Equation 3.18,

E J J V
G| = re e Ry ey
Eds dt lde lds Vds
qe :ch{i(cz—l)} l'qe +LC2C2—11 l'qs +R l'qe + qe
E de dt lde dt lds lde Vde

Putting the value of C,, and differentiating with respect to time,
E, _s Cf)SHe —sin & d co.see siné |||, +L-Ii Iy R Iy N Ve
E, sin@ cos@ |[|dt|—sin@ cosé|||i, de|i, iy, V.
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(E ] cos@ —siné || —wsinf wcos@ |i, dli, i, V.,
“1=Lf . . “A+L—| “|+Rl *|+] 7
| E,. | sin@ cosé |[—wcos@ —wsiné|i, de|i, iy, V.

E | 0o 1]: ' j 14
| = ol 0 P R I T T g (3.19)
_Ede B - 1 0 lde dt ide ide Vde

where o = df,/dt. Expanding Equation 3.19,

di

E,=L df +@Li, +Ri, +V, (3.20)
diy, : .

E,=L 1 —aLi, +Ri, +V, (3.21)

Equations 3.20 and 3.21 represent the dynamic d-g model of an active front end
inverter in a reference frame rotating at an angular speed of @w. In this model @, iy, ize
E,e, and Eg, are state variables while V. and Vg, are the inputs.

Note that although the i, and ize components of line currents are orthogonal to
each other, they are not perfectly decoupled. The dynamics of i, and i, interfere with
each other. Based on this dynamic model an effective method of control, one in which the

two current components are decoupled is proposed in Chapter 4.

3.4.2 Selecting the Rotating Coordinate System

A better insight into the dynamic behavior of the system is obtained by choosing a
rotating system of coordinates, where the steady state oscillations disappear. For the
dynamic model described in Equations 3.20 and 3.21, the pulse-width-modulated rectifier
voltages serve as actuating voltages, while the line voltages assume the role similar to

that of rotor induced voltages in induction motor [13]. The PWM voltages control the line
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current so that desired power factor with respect to the line voltages can be achieved. A
suitable choice of coordinate system in this case is the one defined by the line voltages.

A moving coordinate frame formed by the sinusoidal line voltages is shown in
Figure 3.7. The two-phase voltages are represented by,

E, =E, cos6,—E,sinG,

E, =E,sin6, +E, cos6,

E,. and Eg are the projections of the £, and Ez components on g and d axis
respectively.

The angular speed of rotation of the moving coordinates, w, is given by,

d6

e

dt

As 1illustrated in Figure 3.7, select 6. such that, £, = 0. The E, and Ey

components of source voltage thus form a right angle triangle so as to give,

E s
tan @, = .
ds

This choice helps to track 6, by expressing 6, in terms of E,, and Ey as below,

E

qs

cosf, = ,and sin@, =
2

2
E+FE, E

qs

dé

e

dt

sin6,andcos6, are used to rotate parameters at an angular speed of w=

Since 6, is the angular displacement of the source voltages, the above approach ensures

correct tracking of supply frequency even if it is varying and not constant.
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Figure 3.7 Tracking 6,

3.5 Power Definitions in d-q Coordinate System

Using the system dynamic model established in previous sections, the control of
line currents is carried out in a moving reference frame so that the feedback signals are dc
quantities. This suggests that the current and/or power reference commands also need to
be defined in a rotating reference frame. For this purpose the instantaneous active and
reactive power in moving coordinate frame are defined below.

Refereeing to the generalized instantaneous power theory [10], the instantaneous
active power P in three-phase coordinates is defined by,

P=E,i +E,i, +E,
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where E,, E,, E; are the source phase-to-neutral voltages, and ij, i, i3 are the line

currents.

In matrix form we can write,

Converting the parameters to two-phase moving coordinates using transformation

matrices C; and C»,

T .
p= {CI_ICZ_I |:qu:|} {Cl—lcz—l [l'qe]}
Ede lde

E T i
P:[qu] (C;l)T(Cﬁ)TC{‘C;l[i‘”}

de de

Since C; and C; are orthogonal, (Cl'l)TC{1 =/and (Cz'l)TCz'1 =]

[ ] Le . .
P= qu Ede ’ i :qu.lqe+Ede.lde
de
As explained in previous section, E, is maintained equal to 0 at all the times,
resulting in,
P=E, i, (3.22)

e

In the same manner, according to the generalized instantaneous power theory

[11], the reactive power in three-phase coordinates is given by,
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0 iy I
1
O=E,Xipy =0, |=

Q3 E‘1 lz'2

O = (C171Edqx)>< (C{lidqx) = Clil (Edqs Xidqx)

qus = (Edqs Xidqs) = Eqsids - Edsiqs

This is an expression for reactive power in two-phase stationary frame for a
balanced three phase system. In d-¢ moving coordinates, the expression is given by,

que = quide _Edeiqe

Recall that £, is always maintained to zero value.

Qe =—Euelye (3.23)

Equation 3.23 shows that for a positive iz, Quse 1S negative, implying that the
active rectifier is feeding the reactive power back to the source. Alternatively for a

negative i, the Qg 1s positive, resulting in net inflow of reactive power from source to

the load.

3.6 Active Rectifier Power Loss Modeling

The control scheme based on the dynamic model presented in the previous section
is used to determine the current and voltage ratings of an active rectifier for a given motor

load and compensation requirements. Further, to analyze the system performance an
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effective loss model of an active rectifier is necessary. The loss model will help estimate
power loss, evaluate the efficiency, and do thermal analysis.

The heat generated as a result of power loss must be conducted away from the
power chips and into the environment using a heatsink. If an appropriate thermal
management system is not used, the power devices will overheat which could result in
failure [14]. The loss model can also be used for comparing the power loss vis-a-vis

phase-controlled rectifier.

3.6.1 Estimating Power Loss

The first step in thermal design is the estimation of total power loss. In an active
rectifier using IGBTs, the two most important sources of power dissipation are
conduction losses and switching losses. Conduction losses are the losses that occur while
the IGBT is on and conducting current. The total power dissipation during conduction is
computed by multiplying the on-state saturation voltage by the on-state current. In PWM
applications, the conduction loss should be multiplied by the duty factor to obtain the
average power dissipated.

The switching loss is the power dissipated during the turn-on and turn-off
switching transitions. The most accurate method of determining switching losses is to
plot the 7. and V., waveforms during the switching transition. Multiply the waveforms
point by point and get instantaneous power waveform. The area under the power
waveform is the switching energy expressed in watt-seconds/pulse. In addition to the
IGBT losses, the feedback diode conduction and switching losses also needs to be

considered.
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3.6.2 Conduction Loss Model

The switches used in simulation are ideal switches with no forward voltage drop
and so no power loss is associated with them. But, the switches still carry the rated
current. To estimate conduction losses in an IGBT, the device on-state saturation voltage
is required along with the on-state current.

Once the IGBT is selected based on voltage and current ratings, the corresponding
collector-emitter saturation voltage characteristics are used to calculate the conduction
losses. Figure 3.8 shows collector-emitter saturation voltage versus collector current
curve for a 1200 V, 100 A IGBT manufactured by POWEREX Inc. This curve is
modeled in MATLAB using a 2™ order curve fitting technique. Given a current, the real
time saturation voltage can be obtained from the curve. Thus accurate estimation of the
conduction loss is possible [15].

The conduction losses in fast recovery diode are estimated in a similar manner by
first finalizing the diode ratings. The diode forward characteristics shown in Figure 3.9
are then modeled in MATLAB. The diode current is measured and voltage drop across
the diode for a given variable current can be estimated from the device forward
characteristics. The conduction loss is obtained by multiplying current with the resulting
voltage, and then averaged within one cycle.

The total conduction loss is given by,
PC = Pcondidiode + Pcondf[GBT (324)
where P, .. and P . ... are average conduction losses for fast recovery diode and

IGBT respectively.
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Figure 3.8 Saturation voltage characteristics for a 1200 V, 100 A IGBT
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Figure 3.9 Forward voltage characteristics for a 1200 V, 100 A diode
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3.6.3 Switching Loss Model

To estimate the total switching loss, IGBT switch-on and switch-off losses as well
as diode reverse recovery losses are considered. However, as the switches used in the
simulation are ideal, the turn-on and turn-off times are almost instantaneous. In this case,
switching losses are calculated based on the amount of current to be turned on and off.

To calculate switching losses in an IGBT, the device switching loss versus
collector current characteristics shown in Figure 3.10 are used. This curve is modeled in
MTALAB using a 2™ order curve fitting technique. Further, the reverse recovery loss in a
diode for a given collector current is calculated by [14],

Prp =0.25% L # Ly # Vg * S (3.25)

where Izr 1s diode peak recovery current, fzz is reverse recovery time; Veggy is the peak
voltage across diode at the recovery; and f;,, is the switching frequency. The values for
Irg and g can be obtained from the reverse recovery curves shown in Figure 3.11.

The total switching losses are associated with circuit operating conditions. So, we
cannot simply add the IGBT switching losses and diode recovery loss to get the total
switching loss in the circuit. Consider that the IGBT is turned-on when the collector
current is negative. This means the diode is freewheeling. There is no switching loss
because the device is at zero potential. Now consider the switch-off operation. If the
collector current is positive, there will be certain switching-off loss associated with the
IGBT. However, if the collector current is negative, then anti-parallel diode is carrying
the load current and not IGBT [15]. In this case the switching loss is basically the diode

reverse recovery loss computed using Equation 3.25.
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Figure 3.10 Switching energy characteristics for a 1200 V, 100 A IGBT
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Figure 3.11 Reverse recovery characteristics for a 1200 V, 100 A diode
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Based on this discussion the switching loss estimation algorithm is programmed
in SIMULINK. Using switching loss algorithm along with the switching energy and

reverse recovery plots mentioned earlier, the total switching loss can be calculated as,
PSW = PSWanJGBT + PSWaijGBT + PRRﬁdiode (3.26)
where Py, jgsr and Py 165 are the IGBT switching on and off losses. And Py,

is the reverse recovery loss for antiparallel diode.
Finally the total heat dissipation associated with each half leg of an active rectifier

is calculated as below,

PL = (Pc()ndidiode + f)condilGBT) + (PSW0/171GBT + PSWQ{}?IGBT + PRRidiode) (327)

3.7 Chapter Summary

In this chapter, several topics were discussed. The system configuration for using
an active motor drive as a shunt compensator was introduced. The various features of
active drive useful for compensation objective were listed. Further limitations of steady
state control to produce better transient performance were discussed. This underlined the
need for using decoupling control based on d-¢ theory.

The details of d-g theory were then introduced. The system dynamic model was
obtained using d-q theory. The different transformation matrices used to transform three-
phase coordinates to two-phase stationary and moving frame were introduced. Since the
control will be carried out in moving d-g coordinates the power definitions in d-gq
coordinates are required, which were introduced next. Finally, for evaluating the system

efficiency and comparing it vis-a-vis diode rectifier front end, the power loss model was
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presented. The loss model was based on device characteristics curves provided in the
device datasheet and also circuit operating condition.

The dynamic model presented in this chapter provides the building block for
determining suitable control strategies to achieve better transient performance of the

active front end induction motor drive. The control scheme is introduced in Chapter 5.
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4 Active Front-End Motor Drive Control

4.1 Chapter Overview

In the previous chapter, the mathematical model of an active rectifier describing
the dynamic behavior of the active rectifier was presented. Additionally a power loss
model to estimate the heat dissipation in a rectifier module was also discussed. The
purpose of this chapter is to present a suitable approach for controlling the rectifier
dynamics. Apart from the front-end rectifier, the load-side inverter and induction motor
are also part of the system configuration. The second half of the chapter is devoted to
discussions on the mathematical model and field oriented control of induction motor.

In Section 4.2 the ac side per-phase equivalent circuit and dc side equivalent
circuit of the line-side converter will be discussed. The equivalent circuits are based on
the system differential equations. In Section 4.3 a high gain feedback controller for
controlling line currents will be introduced. A scheme for estimating angular frequency
of source voltages in real time will also be discussed in this section. In Section 4.4 an
input-output linearization controller to counteract the dc-link variations will be presented.

For achieving better transient performance a feed-forward controller will be
presented in Section 4.5. In Section 4.6, the complete control scheme and parameter
measurements will be discussed. In Section 4.7 a mathematical model of an induction
machine will be introduced. Further, a classical field-oriented controlled for induction

motor will be discussed.
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4.2 Dynamic Equations for an Active Front-End Converter

For the purpose of fast response, the control is carried out in the d-g reference
frame. This type of control is referred to as ‘field-oriented’ control. The starting point of
the control is the system of non-linear differential equations which characterizes its
behavior. As derived previously, the dynamics of an active front-end converter are given

by a system of differential equations stated below,

diqe . .
L 5 =E, -wli, —Ri, -V, 4.1)
di,

(4.2)

e

L=t = By, +0Li, = Riy =V,

The differential equation governing dc-link voltage also needs to be added to the
above set of system equations to completely define system dynamics.

av, . .
C dzik =i, —iy (4.3)

where, iz 1s the total dc-link current supplied by the rectifier, while iy, is the load-side dc
current which is the result of induction motor operation. The i, and iy, currents are shown
in Figure 4.1. Figure 4.2 and 4.3 show ac and dc side equivalent circuits respectively.

The dc current, iy, can be viewed as a noise in dc-link voltage V. [13]. A positive
iy (motoring-mode) will discharge the dc-link, while a negative i), (regeneration-mode)
will charge the dc-link to a higher potential. If the dc-link current i, supplied by the line-
side converter equals to iy, then we have,

av,
dt

C =0.

In other words, dc-link voltage remains constant.
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Figure 4.1 DC-link dynamics controlled by line-side converter
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Figure 4.3 DC-side equivalent circuit of an active drive

59



In Equation 4.1, the terms E,. and E,. are computed from source voltages, E;, E>,
and E;. Since line voltages are known, the angular frequency, w, can be easily estimated.
The PWM voltages V,. and V. are the two inputs to the system which are generated
using the sine-triangle PWM controller. Lg and R represent series impedance.

Figure 4.2 illustrates ac-side per-phase equivalent circuit representation of
Equation 4.1. V4. appears as a controlled voltage-source which is a function of a
modulation index and dc-link voltage V,.. On the other hand, Figure 4.3 shows dc-side
equivalent circuit representation of Equation 4.2. The dc-link current, iz, appears as a
current source, which controls the capacitor voltage while supplying the current required

by the motor load [16].

4.3 Control of Active Drive

The above discussion sets up the non-linear control problem. The system to be
controlled is basically multiple-input-multiple-output (MIMO) type system. The PWM
voltage commands, V. and V., are the two inputs to the system. The resultant i,., and iz,
currents are the output of the system.

These two output currents are utilized for two different purposes. The iy

component is assigned to produce the desired reactive power (Q =—FE i ). Thus, i, is

delqe
considered as a reactive compensation command. Further, the real component of line
currents is required to maintain constant voltage across dc-link capacitor, and also to

drive a physical load connected to the motor. Thus, iz is assigned to supply the desired

real power (P = E i, ) to the system.
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The control problem is to choose V. and Vg in such a way as to force i, and iz

to track the respective reactive and real power reference trajectories.

4.3.1 Feed-Back Control

The suitable control strategy for the above mentioned non-linear system is the one
which effectively eliminates the coupling between the two current components. This is
done by forcing the system into current-command mode using high gain feedback.
Firstly, the current reference commands need to be generated.

To ensure constant dc-link voltage, the PI control loop is applied to the dc-link
voltage error, resulting in the current reference command, i, *. The dc current, iy, fed to

the load through an inverter is added to i, * to form a new current reference command as,

* ' '
e =Ky J'(Vdcire{f Ve )dt+ K, (V,

c_ref _Vdc)+lM (44)
Secondly, the reactive power compensation algorithm will generate a second

current reference command i,.*. The PI controllers shown in Figure 4.4 are then applied

directly to the error between current reference and actual values, as shown below.

* . * . . * .
Vie =Ky _[(lde — i )dt+ K p iy —1y.) (4.5)

* . * . . * .
Ve =K, G, =i, )dt+K G, —i,) (4.6)

qe
By appropriately choosing the gains of the PI controllers, i . and iz can be made
* k
to track i, * and i . * respectively. Consequently the new references, Ve and Ve for the

PWM controller are generated. The PWM controller, if not saturated, will produce a

switching pattern such that desired active and reactive power can be provided.
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Figure 4.4 High-gain feedback controller for line-side converter

4.3.2 Estimating Angular Frequency of Source Voltages

A suitable choice of coordinate system, defined by the source voltages, is made in
Chapter 3 to achieve better transient performance. The three-phase source voltages,
separated by 120 electrical degrees, rotate at an angular speed of @ radians per second.
Since the control is carried out in moving coordinates, all the variables must be converted
to the moving coordinate system, rotating at an exact same angular speed of w rad/ sec.

The source voltage frequency usually remains unchanged during normal operation
of the power system. However, even a small variation in o will cause error in all the

parameters that are transformed into the rotating coordinate system. This will result in
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erroneous feedback and consequently affect the performance of the system. For this

reason, the supply frequency needs to be tracked and continuously estimated in real time.
Recall, for a given supply frequency, we choose d-g axes such that £,. component

always remains zero. Now if the supply frequency changes, £, will no longer be zero.

The error in £, can be minimized by a PI controller to track  in real-time as,
w=K, j (0-E, )dt + Kr(0—E,,) (4.7)
The new angular displacement &,, is then given by,
0, =[w-dt (4.8)

By choosing appropriate gains for the PI controller the variations in supply

frequency can be tracked accurately. This is illustrated in Fig 4.5

E, Ege
e O

Trans- T 0 PI Controller Integrator

formation

Egs Ede w = angular frequency

Figure 4.5 Supply voltage frequency estimation
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4.4 Input-Output Linearization Control

For a relatively constant V., the field oriented high-gain feedback control
scheme, explained in the previous section, removes the coupling effect. In other words,
the current equations are decoupled, and the equations are linear as long as dc-link

voltage is constant. Recall the system dynamic equations,

di,
L—"“=E, -aoLi,-Ri, -V,

dt o oo
dig, : :

L s E, +Li,—Ri, -V, (4.9)
av.

C dtdc =i, —i,

The PWM voltages V,. and V. can be represented in terms of modulation index
and dc-link voltage as,

V,=G-M,V, (4.10)

V,=G-M, -V, (4.11)
Where G is the PWM controller gain and M, and M, are modulating vectors in
d-q coordinates. For large variations in dc-link voltage; however, the equations are no
longer linear. This situation arises when the motor load changes suddenly or during high
acceleration and decelerations (regeneration) of motor shaft.
During dc-link variations, the iz current reference varies as a function of V.. The
dynamics of iz then interfere with the dynamics of iz, resulting into unsatisfactory

performance. This coupling of currents can be effectively eliminated by considering an

input-output linearization controller.
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In dynamic equations (4.9), V,. and V. are the inputs, controlled in such a way as

to generate desired currents. Now define new variables ¥, and V,, such that,

'

Vi =V,.—E,+®Li, +i R (4.12)

'

Ve =V, —Eg,—Li, +i,R (4.13)

e

So that the new system dynamic equations become,

LYy (4.14)
i« '
di, '

e __y 4.15
dt de ( )

In equations 4.14-4.15, the dynamics of iz and i, are decoupled. The high gain
feedback controller is then applied to these currents to generate new voltage commands.
The final voltage commands however, should account for the substitution made in

equations 4.12 and 4.13. Thus new voltage references are given by [12], [17]:

* 13k

V. =V, +E,-alLi,—i,R (4.16)
* 13k

Vi =V +E,+0Li,—i,R (4.17)

4.5 Feed-Forward Compensation

The linearization controller explained in the previous section decouples the two
current controllers effectively, and allows the system operation during variable dc-link.

However, the system still suffers from slow response.
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Refer to the Figure 4.1 again, and consider following sequence of events. If the
motor load changes suddenly, dc current iy, will rise sharply, resulting in a dip in dc-link
voltage. The linearization controller now tries to restore the dc-link voltage back to its
reference value. If the rate of rise of dc current iy, is faster than rate of restoration of dc-
link voltage, the V,; will continue to decrease until it reaches zero potential.
Alternatively, the rate of rise of i), can be restricted to avoid considerable decrease in dc-
link voltage. In other words the system time response would be slow.

A better dynamic response is achieved by employing feed-forward compensation
[18]. The power required to generate the desired electromagnetic torque is measured in
the dc-link using dc voltage and current sensors. This power needs to be supplied from
the source. Thus, the feed-forward compensation current i, rcan be obtained from [17],

Vdc ldc

4.18
E, (4.18)

idﬁf =K, -

where, E4 is source voltage and K; is proportional gain in feed-forward loop. K is
allowed to vary to maintain the stability in the current loop, and it is also dependent on
line voltage fluctuations.

Figure 4.6 illustrates feed-forward compensation with input-output linearization

controller.

4.6 Complete Control Scheme for Active Front-End Converter
Based on above discussions the complete control scheme for control of active

front-end converter is implemented using two ac voltage sensors, three line current

sensors, one dc current sensor, and one dc voltage sensor
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Figure 4.6 Feed-forward compensation for input-output linearization controller

Figure 4.7 illustrates the control of front-end converter. The two ac voltage
sensors are connected to the source voltage. From these line sensors, the three source
voltages (phase-neutral) are available for use. These voltages are further transformed into
equivalent two-phase moving coordinates £, and Eg. The de-ge axes are aligned such
that the £,, component of the source voltages always remains at zero value.

The next step is to generate current references. The i, reference is formed as a
function of dc-link voltage variations and feed-forward compensation. The dc current iy,
is measured by the dc current sensor placed on load-side of the capacitor. The iy,
reference current is generated from the reactive power compensation command. In
current-command control mode, the actual currents i,. and iz are forced to follow the

reference commands using high-gain feedback and input-output linearization controller.
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Figure 4.7 Complete control scheme for front-end converter
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The new input for the system, V,. and V., are fed to PWM controller to provide
required switching pulses using either sine-triangle or space-vector PWM algorithm. The
instantaneous values of currents i, and i, can be measured using three current sensors.
Alternatively, they are estimated using the system dynamic model shown in Equation 4.9.
In the model, L, w, E, and E4 are all known; V, and V, are unknown. The
instantaneous values of PWM voltages are estimated from the switching signals to IGBT
devices, and the dc-link voltage as shown below,

%

Vo =225, -5, = 55) (4.19)
And

Vdc \/_
V. :T 3-(5,-5,) (4.20)

where S, S», S3 are integer variables which cannot assume any values other than +1 and -
1.

When the IGBT in the upper half of the first leg of the rectifier-bridge is switched
on, + V. is connected to the phase-1 of the supply. Thus, S; assumes value equal to 1.
When this IGBT is switched off, - V. is connected to the phase-1 of the supply. Thus, S
assumes value equal to -1. In the same manner S, and S3 assume value equal to either 1 or
-1. This approach measures instantaneous values of PWM voltages without needing to

employ three current sensors.
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4.7 Induction Motor Control

The field of induction motor control is well established today. The major
challenges in controlling induction motors are: non-linear system dynamics, inability to
measure control variables such as rotor flux and rotor current physically, and the motor
parameters variations with heating such as variations in rotor resistance value. Taking
these challenges into account, the universally accepted approach for controlling an
induction motor is the field-oriented approach also referred to as vector control [19].

The field-oriented control deals with rewriting the system dynamic equations in a
moving coordinate system that is rotating with the rotor flux vector. In this new
coordinate system, the dynamics in motor torque and speed becomes linear, provided the
rotor flux magnitude is kept constant. For a variable rotor flux, an input-output

linearization controller is used that decouples the speed and rotor flux magnitude.

4.7.1 Induction Motor Dynamic Model

For field oriented control, the new coordinate system rotates with the rotor flux.
Since rotor flux or rotor currents are not available for measurements, the rotor flux is
estimated using a flux observer. The rotor flux linkages in a two-phase stationary

reference frame are expressed as [19],

dl/)R RR RR .

LR Ry —n oW, +—2M-i 4.21
i L, Viee —1,0W g, L, Sa ( )

dy g, R R ,

TtR = —it//Rb +n,0,, +iM g, (4.22)
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where, ., and y,, are rotor flux linkages, n,is number of pole-pairs of induction

motor, M is coefficient of mutual inductance between stator and rotor windings, R, and

L, are rotor resistance and leakage reactance respectively. o is the speed of rotation of

rotor. is, and ig; are the line currents in stationary two-phase coordinates.

The motor currents can be measured using current sensors, which are then
transformed to equivalent two-phase values ig, and is,. A simple way to estimate rotor
flux linkages is then to solve Equations 4.21 and 4.22. Once rotor flux linkages are

known, the angular position in the moving coordinate system can be defined as,

p=tan” (22 (4.23)

Ra

Wy =AW W0 (4.24)

where y , is called the magnitude of rotor flux linkage and p 1is the angle of rotor field

flux. The motor currents and voltages are then rewritten in the moving coordinate system

I _| cosp sinp |ig, | Vs _| cosp sinp ||V, 4.25)
I, —sinp cosp |ig | |V, —sinp cosp ||V, '

where Vs, and Vs, are motor terminal voltages in an equivalent two-phase stationary

as,

reference frame. iy, i, and Vy, V, are the motor currents and terminal voltages in the
moving reference frame, along d and g axis respectively.
Using the above mentioned coordinate transformation, a mathematical model of

an induction motor with state variables expressed in moving coordinates is given by, [19]
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d6

7 (4.26)
dw . D T,

do _ LN 427
L (J) ; (4.27)
Wa_ Rey (Reyry (4.28)

d L, L,

di R Ry M-i” v
i:_y-id+—R(L)-y/d+npa)-iq+—R T+ 4 (4.29)
dt Ly, 0-L;L; L, v, o-Lg

di R M-ii V

S Y SR L S 0 LS Bt B (4.30)
dt o-L;L; L, vy, o-Lg

. . da . . .
where o is the angular velocity of the rotor, % is angular acceleration, J is moment of
t

inertia of the rotor, 77 is load torque, and D is coefficient of friction. The electromagnetic

torque developed is thus given by, T, =Juy ,i,. Rs and Ls are stator resistance and

leakage reactance respectively, while the motor constants are defined as,

M?R R n M
£ )+——and u=(-2
O"LR LS O-'Ls JLR

y=( ). 4.31)

This model is then used to develop an effective method of control.

4.7.2 Feed-Back Control

The effect of non-linear terms appearing in the dynamic model is eliminated using
the high-gain feedback. For this, the first step is to find the current references. Desired
rotor acceleration and load torque will decide how much electromagnetic torque needs to

produced. The current reference i,* can be assigned to generate required electromagnetic
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torque. Secondly, as explained before, for the torque and speed dynamics to remain
linear, y,; should be kept constant. The second current command, i,;*, can be assigned the

job of keeping y, constant. The two current references are then given by,

iq* = {Koj(%f - w)dt+K,(®,, — o)+ ?a)}/yl//do (4.32)

*
iy = Kn//]J'(l//dO -y, )dt +K1//P(l//d0 -V, +iy (4.33)

These new inputs i,* and i;* are then given PI controllers to produce required

motor terminal voltage references as below,

* . * . . * .
V, = Kd]_[(ld —i)dt+K (i, —1,) (4.34)

* . * . . * .
v, =K, [G, —i)dt+K,G, i) (4.35)

By proper choice of proportion and integral gains, iy an i, can be forced to track
their corresponding references. The resultant V;* and V,* commands are given to the
inverter PWM controller, to produce required switching pulses for the IGBTs.

The new motor terminal voltages, thus generated, will produce the
electromagnetic torque, essential to drive the load at desired acceleration. At the same
time the motor terminal voltages are such that the rotor flux magnitude is maintained

constant. The complete motor control scheme is illustrated in Figure 4.8.

4.8 Chapter Summary

In this chapter, the control methods for a front-end converter and an induction
motor were examined. The system dynamics on ac side and dc-side were discussed with

the help of equivalent circuit representations.
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The feedback control strategy for the front-end converter was introduced next.
Tracking the angular frequency of supply voltages was also discussed. Further, input-
output linearization controller was introduced to obtain satisfactory system performance
under varying dc-link voltage. For better transient performance a feed-forward
compensation loop was added to the linearization controller. The advantages of feed-
forward compensation were discussed. A block diagram of the complete control scheme
was presented, and various inputs and outputs to the system were discussed. Further, the
induction motor dynamic model was analyzed. The field-oriented control of induction
motor with high-gain feedback was discussed.

The control strategies to achieve better transient performance discussed in this

chapter are used in next chapter to simulate various scenarios.
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5 Simulation Results

5.1 Chapter Overview

The previous two chapters introduced the theory behind the research presented in
this thesis. In this chapter, the simulation results will be presented. In Section 5.2, a
methodology used in the research will be presented. The steps performed in simulating
the various modes of operation and in evaluating the system performance will be listed.
In Section 5.3 the simulation set-up and the software configuration will be discussed.

In Section 5.4, the active drive operation with and without motor load will be
simulated. The different features of an active drive, such as variable power factor and
better control over dc-link voltage will be verified. In Section 5.5, the drive performance
will be analyzed in detail. The simulation data will be used to address design issues, such
as device rating, power loss, power quality, and thermal management system. Further, the
drive will be simulated to define limits on the amount of reactive power that can be

compensated.

5.2 Methodology used in Research

To evaluate the performance of active front-end drive by accurate simulations and
to establish the limits on amount of reactive power that can be compensated was the main
objective behind this work. The application targeted was a 50 hp induction motor driving
a conveyor load and supplying maximum possible VARs to the utility.

The broad task was organized into three major tasks:
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. Present theoretical modeling and effective control strategy.

. Accurately simulate system modes of operation.

o Analyze system performance from point of view of device ratings, power losses,
and power quality.

The first step dealt with deriving the mathematical model of front-end converter
connected to the utility. The d-g theory presented in Chapter 3 was used to derive the
system model. Further, the different control principles suitable for independently
controlling real and reactive power supplied to or consumed by the drive were presented
in Chapter 4. Based on these discussions a comprehensive control scheme was developed.

The remaining two tasks, outlined above, are elaborated in this chapter.

5.2.1 Steps Performed in Simulating System Modes of Operation

The simulations to demonstrate different modes of operation were divided in two
stages. During the first stage, the load-side inverter and the induction motor was
disconnected from the rest of the system. The front-end converter was then controlled to
provide unity, leading, and lagging power factor to the utility, while dc-link variations
were monitored. The magnitude of dc-link ripples and the step response to the reactive
power command were used to gauge the effectiveness of the control scheme.

Once the stability of the controllers and satisfactory system response was
ascertained, the load-side inverter and motor load were connected to the dc-link. In the
second stage, different operating scenarios were simulated. These include unity power

factor operation and reactive compensation during motor acceleration and deceleration.
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5.2.2 Steps Performed in Analyzing System Performance

The task here was to use the modeling and simulations to analyze the drive
performance for a given application. The application under consideration was: active
front-end induction motor drive providing reactive power compensation to the utility. The
analysis was carried out with regard to:

1. Determining device voltage and current ratings.

2. Amount of reactive compensation possible under different load conditions.

3. Device power losses and thermal design considerations.

4. Power quality issues such as total harmonic distortion (THD), during VAR

compensation.

First, the application specifications such as motor power rating and line-side
power specification were determined. Appropriate dc-link voltage, capacitor and line-side
inductance were chosen. The electrical parameters of the induction motor were identified.
Accordingly, the motor field-oriented controller was carefully tuned to provide
satisfactory variable speed operation. The induction motor was accelerated to the full
load, while line-side power factor was maintained at unity.

The currents carried by the devices and the voltage waveforms across the devices
were analyzed to determine the ratings of IGBTs and anti-parallel diodes. Once the
switches were selected, the characteristic curves of the respective switches were modeled
to estimate the total power loss. The line-side power factor was maintained at unity and
the motor load was varied in steps. The total harmonic distortion of line currents and

power losses in active front-end converter were plotted.
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Further, the reactive compensation command and the motor load were increased
in steps in such a way that peak line current remained below the rated value. The
maximum VAR compensated at each step thus defined the limit on amount of reactive
power that can be compensated to the source. These limits are valid for a given ratio of
dc-link voltage to the line voltage peak, and the current rating of the active switches. To
ascertain the power quality at the line-side, total harmonic distortion of line currents was

calculated in each step.

5.3 Simulation Set-up

Two three-phase, two-level converters were needed to implement the active drive
configuration. One of the converters was connected to the three-phase, wye-connected
source while, other was operated as a load-side inverter. The power electronics switches
employed in the simulations were ideal IGBTs, with no forward voltage drop and almost
instantaneous switching times.

The PSIM software package from Powersim Inc. was used to implement the
active drive configuration with motor load. Figure 5.1 shows the complete circuit
schematic. The complete hardware and sensors were implemented in PSIM. Secondly,
Simulink, an extension to MATLAB, was used to implement the control functions. The
“Simcoupler” module, provided by PSIM was used to interface control and power signals
between PSIM and Simulink. Thus hardware configuration was separated from the
system control functions. The simulation step-size in Simulink and PSIM was chosen to
be 1 ps for better results. All the reference commands for desired operation and various

control functions were generated in Simulink. Figure 5.2 illustrates the Simulink model.
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Figure 5.1 The hardware configuration

80



3

!!!!

ig_ref
r.- vdc_sense
Ede
-
ide_raf o=
- act_rpm
Rotany Frame Estimation

If0 Linearization Contraller

- Reference Generator

a: Inwerse Fahs Transformation  pyypd Controller
SimCoupler_R11
id_matar
speed_motor
onfoff sm
THD

Motor Reference Generation

(.

Fower Losses

FPower Loss model

Figure 5.2 SIMULINK model for active front-end drive control
81



5.4 Demonstrating System Modes of Operation

As mentioned before, two scenarios were considered to simulate different modes
of operation. In the first case, there was no motor load connected to the dc-link while in
the second case, the motor was operating at full load. The front-end converter was
connected to the three-phase, wye-connected, 110 V (line-to-line), 60 Hz supply. The
series inductance was chosen to be 10 mH. The dc-link voltage was maintained constant

at 500 V to provide sufficient margin for current control. The dc capacitor was 700 pF.

5.4.1 Without Motor Load

In d-q coordinates the reactive power is given by,

0=E, i, 5.1)

Since the sign of E, is chosen to be negative, a positive valued i results in
leading line currents while, a negative valued i, causes lagging line currents. Figure 5.3
shows the i, component of line current following the step change in reference command.
Accordingly, the line-side power factor changes from unity to leading and then lagging.
This is shown in Figure 5.4. Note the time response to step change in compensation
command. The transition from leading to lagging reactive current took only a few
milliseconds. Figure 5.5 shows the effect of compensation on dc-link voltage. The
maximum ripple magnitude was found to be 5 V, which is 1% of total dc-link voltage
(500 V). The i 4. current reference changes according to the dc-link voltage variations so
that the dc-link voltage ripple can be kept to the minimum value. Figure 5.6 shows the iz

component of line current tracking the reference.
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One important feature of an active-front end rectifier is the better control over dc-
link voltage. The step response of the dc-link controller to the step-change in dc-link
voltage reference, shown in Figure 5.7, demonstrates this feature. As can be seen, it took
a little more than one cycle (20 ms) for the V. to reach to the new reference value.

The change in dc-link reference resulted in brief active current component for
charging the dc-link capacitor, while the reactive current component remained nearly
undisturbed. Figure 5.8 shows active and reactive current components. As can be seen,
the decoupling control was clearly effective.

The ability of the active front-end converter to smoothly control the dc-link
voltage can be used in improving efficiency of large power motor drives. Traditionally
the variable output power from motor drive is achieved by varying the modulation index
and keeping the dc-link voltage constant. As pointed out in [20], the amplitude of
modulation index affects the amount of current that flows through active devices in two-
level PWM inverter. Consequently, at low modulation indices the power loss in the
inverter is considerably high when compared to output power resulting in low efficiency.
The active rectifier, on the other hand, can provide variable output power by controlling
the dc-link voltage to keep the modulation index close to one.

Further, the percentage core losses in an induction motor are minimized when the
inverter is operating at modulation index close to one [21]. In this case an active front-
end converter can improve the overall efficiency of the motor by varying the dc-link
voltage and allowing the load-side inverter to be operated at higher modulation indices.
The choice of variable dc-link operation is not available for the rectifier with phase-

controlled thyristors, due to the complexity of control and slow dynamic response [21].
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5.4.2 With Motor Load

The effectiveness of decoupling control also needs to be proven when operating
under full motor load. This was done by connecting the load-side inverter to a 110 V, 3
hp, 6-pole induction motor. The motor fed a conveyor type load. The torque for the
conveyor load varies linearly with angular speed of rotation.

Since the motor will be used for a variable speed operation, the speed reference,
@, was set as an input to the motor controller. For the rectifier controller, i,. reference
was set to provide desired reactive compensation during motor acceleration, deceleration,
and constant speed operation. The motor load was 40 Nm.

Figure 5.9 shows the speed command for motor controller and the reactive
compensation reference for the rectifier controller. The motor was first accelerated to a
speed of 120 rpm (revolutions per minute) in 0.5 seconds. The compensation started
during constant speed operation at time, t = 0.6 seconds. At time, t = 0.7 seconds, the
motor began decelerating.

Figure 5.10 illustrates line current at unity power factor and later at leading power
factor with respect to the line voltage. As can be seen in Figure 5.11, the i, component of
line current followed the reactive compensation reference while, i;. component provided
real power required for acceleration and deceleration. The two current components
remained unaffected by each other, thereby illustrating independent control over real and
reactive power. The actual currents drawn by the motor are shown in Figure 5.12

emphasizing healthy operation of motor.
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Three-phase motor currents (Amps)
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5.5 Active Front-End Inverter System Design and Analysis Issues

A 50 hp induction motor was considered to analyze performance of an active
front-end drive and to discuss the design issues. First step was to select system
parameters such as converter power rating, dc-link voltage, dc capacitance, reactance of
line-side inductor. Further, induction motor parameters needed to be identified to achieve

satisfactory performance from the field-oriented controller.

5.5.1 System Specifications

The induction motor specifications were: 50 hp, 480 V, 60 Hz, 6-pole, with base
speed of 1200 rpm. The mechanical load connected to the motor was conveyor type load.
The torque for the conveyor load, 77 is defined by,

T, =K @ Nm (5.2)
where, K is a torque constant and @ is motor speed in radians per second.

The torque constant is chosen to be equal to 2.8 so that the mechanical torque at

1100 rpm would be,
2n
T, =2.8*5*1100:322.53 Nm (5.3)

The steady state motor output power would be,

2n

P :6—0*1100*322.53 =37.153 kW (5.4)

mech

Further, the parameters for an equivalent circuit model of the induction motor
used in the simulations were:

Stator resistance, Ry = 0.294 Q;
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Stator Reactance, Ly = 1.39 mH;

Rotor resistance, R, = 0.156 Q;

Rotor Reactance, L, = 0.74 mH;

Magnetizing Reactance, L, =41 mH;

The motor parameters were assumed to be known. In practice however, the
equivalent-circuit parameters can be estimated using laboratory tests [22]. The tests
generally performed are a dc test, no-load test, and a blocked rotor test. Stator resistance
can be found by a dc test. The remaining parameters can be determined by performing the
no-load test and blocked-rotor test.

The supply side had a three-phase, wye-connected, 480 V (line-to-line), 60 Hz
source. The dc-link voltage needs to be chosen as shown in Equation 5.4, so that the

front-end rectifier can generate sinusoidal PWM voltages [1].

E V
V2 < L 55
50 (5.5

where E/; is line-to-line supply voltage and V. is dc-link voltage.

A higher V. is desired, because the voltage ratio between the E;; and V. imposes
a limit on amount of reactive power that can be compensated [11]. However, higher V.
means the active devices have a higher voltage rating. The dc-link voltage is selected to
be equal to 1000 V as a trade off between reactive compensation capabilities and the
device voltage rating. This choice obviously satisfies the condition laid down by
Equation 5.5. The line-side resistance, R, was equal to 1 Q while, the line reactance, L,
was chosen as 10 mH. The dc-link capacitor was selected to be equal to 1000 pF so that

dc-link voltage ripples could be kept to the minimum level.
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5.5.2 Device Power Rating Considerations

To define device voltage and current ratings, the induction motor needed to be
driven at full load. As explained in Chapter 4, the Kp and K; gains for the field-oriented
controller were properly chosen based upon the induction motor parameters. The motor
was accelerated to 1100 rpm. The line current was maintained at unity power factor with
respect to supply voltage.

The maximum voltage that the IGBT and anti-parallel diode have to block is V.
(1000 V). As a result, the voltage rating of switches in both the front-end converter and
line-side inverter was selected to be 20% more than the dc-link voltage i.e. 1200 V. It
was later shown that when the motor load was varied in steps and reactive compensation
limit set at different levels, the maximum fluctuations in dc-link voltage remained less
than 3% (30 V). Thus, the 20% margin in device voltage rating was considered to be
sufficient. For any dc-link voltage swings, greater than 15% (150 V) the converter
operation would be halted.

The peak current that flows through the switches in front-end converter is the
peak line current. Figure 5.13 shows that the peak current of 100 A was carried by IGBT
and feedback diode at full load. Consequently, the current rating for the switches was
selected to be 150 A, with 50% overcurrent margin. Similarly as seen in Figure 5.14, for
a 480 V motor, the peak current to drive a 50 hp load was 85 A. This suggests the same
devices used for front-end converter can be used for load-side inverter as well. As a result

there is an opportunity for a modular design with simplified assembly and repair.
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Further, to ensure correctness of simulated values of currents and voltages, a
power balance at the source and load side needs to be verified. Accordingly, power at the
input and output terminals of motor is given by,

N

P, =+3-V-1-cos¢ And P, =27 T, (5.6)

ut

where, the motor power factor is 0.86 and the load torque, 7, = 322.54 Nm.

Thus, the real power at the input and output of the motor is,

P, _ /3 %480% 524086 = 42973 W (5.7)
V2
P, =2n-%-322.54:37153 w (5.8)

The motor copper losses, core losses and friction losses accounted for the

remaining (P;, - P,y,) 5820 watts. Figure 5.15 shows real and reactive currents.
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Similarly power on the supply side can be calculated. Figure 5.15 shows the real
component of line current to be equal to 119 A, while the reactive current component is

zero. Recall that real and reactive power in d-g coordinates are given by,
P=~3-EJcosp=E, -i, (5.9)
Q=+3 EIsing=E, i, (5.10)

From Equation 5.9 and 5.10, we can write,

cosp=——tde (5.11)

[. 2, .2
Lo +lqg

Further, the line-to-line supply voltage, Ej, is given by,

E,=\E, +E,’ (5.12)

Since, E, = 0, the E4 component would be 480 V. Thus, the real power supplied
by the converter was,

P=480%119=57120 W. (5.13)

From Figure 5.13, the peak line current was found to be 98 A. So, for the line side

resistance of 1 Q, the power at the input of the rectifier, P,..;, was,

P

> =P-3-1’R=57120-14406 = 42714 W (5.14)
Because the switches used in the simulation were all ideal devices, there was no
power loss in the rectifier, dc-link, or inverter. Thus the power at the input of rectifier

should be equal to the power at the input of the motor. From Equation 5.6 and 5.7 we

have P

rect

=~ P, (42973 =42714). This illustrates power balance between source and a

load. The small difference in P,..; and P;, is an error in iy and line current measurements.
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5.5.3 Thermal Management System Issues

Based on the voltage and current requirements for the front-end converter, the
switching device recommended was: 1200 V, 150 A, IGBT module (Module No:
CM150DY-24NF) with built in free-wheeling diode, supplied by POWEREX Inc.

The thermal loss model discussed in Chapter 3 was used to estimate power losses.
Depending upon how much heat needs to be dissipated, a suitable thermal management
system will be recommended. First, the characteristic plots for the selected device were
modeled in MATLAB. Figure 5.16 shows IGBT collector-emitter saturation voltage
characteristics provided in device datasheet while, Figure 5.17 shows the actual
characteristics modeled in MATLAB using curve-fitting techniques. In a similar way,
IGBT switching loss characteristics, free-wheeling diode forward, and reverse recovery
characteristics were also plotted.

The switching loss curves provided in the device data-sheet assume a common dc-
link voltage of 600 V. Moreover, the switching energy is expressed in units of mJ/Pulse.
The term, “Pulse”, constitutes one period of a switching cycle. So the actual switching

losses for a 1000 V dc-link voltage and a switching frequency of 4 kHz were calculated

as [15],
1000
E, =E ¥f F—— W 5.15
sw_on sw_ onrated .fsw 600 ( )
1000
Eswiqff' = Eswiqff'mted *fvw g 600 W (516)

where, Eg, onraea and Egy, ofiaea are switch-on and switch-off energy losses in mJ per

pulse at 600 V.
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To estimate the maximum heat dissipation, the front-end converter was operated
to the full capacity at unity power factor. The conduction and switching losses for one
IGBT module at the peak line current of 98 A are shown in Figure 5.18. The conduction
and reverse recovery losses in the free-wheeling diode are shown in Figure 5.19.

The average total power loss per switching device (IGBT + diode) is given by,

Pr = (Pcond _diode + Pcona _1G87) + (Pswon _ 1687 + Pswoy _ 1G8T + PRR _ diode) (5.17)

From Figure 5.18 and 5.19, the average power loss per device, P, was:

Pr=11+32+45+6=94 W (5.18)

The amount of heat that can be taken away from the device junction to ambient is
given by [23],

T, -T,

"R_+R_+R (>-19)
Gc bcs 6sa

P,

where, Ry 1s the device junction-to-case thermal resistance, R;, is the case-to-heat sink
thermal resistance, and Ry, is the heat sink-to-air thermal resistance. The thermal
resistance is expressed as °C/W.

From the device data-sheet, Ry. is 0.25 °C/W and Rj. is 0.093 °C/W. The
maximum junction temperature recommended is 125 °C. Considering the worst case
ambient temperature of 50 °C, we can calculate Ry, as,

. 125-50
0.25+0.093+ R,

: Thus, R,, = 0.45 °C/W (5.20)

It is not possible to get an appropriate sized heat sink with natural convection
which provides Ry, as low as 0.45 °C/W [23]. Thus for this application, a heat sink with

forced air cooling is recommended.
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5.5.4 Power Quality Considerations

As mentioned before in Chapter 2, the motor drive with an active front-end
provides a much improved interface with power grid. By drawing line currents at unity
power factor it eliminates the need for installing a reactive compensator. However, the
line current distortions still need to be monitored. Because, highly distorted line currents
at unity power factor will introduce harmonics in line voltage, thereby affecting the other
loads connected to the system.

To monitor power quality, a motor load is changed from full load to no load in
steps of 10%. At each step, total harmonic distortion was monitored. Table 5.1 shows line
currents, real and reactive power, current THD and power losses for each step. Based on

this data, a current THD is plotted against % of motor load as shown in Figure 5.20.
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Figure 5.20 Total harmonic distortions in line current at unity power factor
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Table 5.1 Drive parameters at different motor loads

Motor 1, I, I line Ei iz THD in line | Total Power
Load (A) (A) Peak (A) (kW) current (%) losses (W)
100% 120 0 97 57.6 24 564
90% 99 0 80 47.5 2.5 480
80% 84 0 68 40.3 33 420
70% 72 0 59 34.5 3.5 348
60% 58 0 49 27.8 4.5 300
50% 48 0 40 23 5.0 252
40% 37 0 31 17.7 7.0 198
30% 27 0 22 12.9 10.0 150
20% 19 0 17 9.12 16.0 108
10% 10 0 9 4.8 30.0 72
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5.5.5 Limits on Reactive Compensation

In this section the amount of reactive power that the active drive can compensate
at different load levels is investigated. Again, the motor load was varied from 100% to
10% in ten steps. For each step the reactive compensation command was selected such
that the peak line current remained within the rated value of 100 A.

From Equation 5.9 and 5.11 we can write,

E,-1
B—=L L _-E, (5.21)

.2 .2
NI +1i,

where, [ is the RMS line current.

Since Ej = Eye, the line current peak, /,car, 1S given by,

V3
]Peak = E* ldez +lq62 (522)

Note that, for the same motor load, the iz current drawn by the rectifier during
reactive compensation will be different from the i,z current drawn without reactive
compensation. The reason for this is that during reactive compensation the dc-link
variations will be different from the variations at unity power factor operation. As a

result, more real power in the form of £, -i,, will be needed to restrict de-link variations

to the minimum level.

Table 5.2 shows real power, reactive power limits, and the corresponding line
current peak value. The table also shows the line current THD, power losses, and
maximum change in dc-link voltage, AV, at each step. The total power loss, Pr, was

further split into switching loss, Ps,, and conduction loss, P..
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Table 5.2 Drive parameters during reactive compensation at different motor loads

Motor | I, 1, I line Eqoiqe Reactive Line DPF at | Power | AV,

Load | (A) | (A) | peak (A) | (kW) | compensation current | line side | Loss V)
Es iz (KVAR) | THD (%) W)

100% | 120 0 98 57.6 0.00 2.34 1.0 570 23
90% 110 | 50 99.5 52.8 24.00 2.35 0.910 588 21
80% 101 65 99 48.48 31.2 2.45 0.841 582 20
70% 92 78 99 44.16 37.44 2.40 0.763 585 20
60% 84 86 98.5 40.32 41.28 2.45 0.698 570 20
50% 76 95 99.3 36.48 45.6 2.7 0.624 582 15
40% 65 101 98 31.2 48.48 3.15 0.537 588 18
30% 58 106 98.5 27.84 50.88 3.5 0.480 600 20
20% 50 110 99 24.00 52.8 3.7 0.414 594 22
10% 44 115 99.7 21.12 55.2 4.5 0.344 630 25
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The peak line current, real power, and the maximum possible reactive power
compensation at each load step are shown in Figure 5.21. As can be seen, with increase in
motor load, the maximum allowable reactive compensation decreases, so that the peak
line current can be kept below rated value.

The front-end converter, when operating at full load at unity power factor, draws
57.6 kW active power. At 90 % motor load, the active power drawn by the front-end
converter was 52.8 kW (91.67 %) while, the reactive power compensated was 24 kVAR
(41.67 %). Note, that at 90% motor load, the maximum change in dc-link voltage, AV,
was 20 V. Since the power devices used in the simulation were ideal switches with no
power loss, all the additional real power (kW) drawn by the front-end converter was

utilized for charging the dc-link capacitor, so that AV, could be reduced to zero.
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Figure 5.21 Reactive compensation limits for active drive
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Figure 5.22 illustrates line current THD at different compensation levels. The
maximum distortion, 4.5 %, occurred at 10% load. As motor load increases to its rated
value, the iz component of line current becomes dominant. Consequently, the
displacement power factor approaches to unity while total harmonic distortion also
reduces.

Figure 5.23 shows the total power loss and switching loss along with conduction
losses in IGBT and diode. During the load and reactive power changes, the switching loss
remained constant. Further, as displacement power factor moves from highly leading
towards unity, the IGBT conduction loss increases while, conduction loss in the free-
wheeling diode reduces. Consequently, the total power loss also decreases by a small
amount.

Further, it can be seen from Table 2.2 that, at all operating conditions, the
maximum decrease in the dc-link voltage was about 25 V (< 3%). The less ripple in dc-

link means a dc capacitor with lower capacitance can be used.

5.6 Chapter Summary

In this chapter several topics were discussed. A methodology used in the research
was presented first. Three main tasks attempted in this research were: theoretical
modeling and control of active front-end drive, simulation of system modes of operation,
and performance analysis. The simulation setup and software configuration used was then

presented.
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Some of the simulation results obtained from active front-end drive operating
with and without motor load were then presented. Further, the modes of operation such as
variable power factor operation and dynamic control over dc-link voltage were
demonstrated. Based on simulation data, several design related issues such as device
rating, power loss, power quality, and thermal management system were discussed. In the
end, the simulations performed to define reactive compensation limits were discussed.

In the next chapter, a brief summary of the thesis will be given. From this
summary, some conclusions regarding the research will be made. Finally, some

suggestions on future research will be given.
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6 Summary and Conclusions

6.1 Chapter Overview

In this chapter some concluding remarks regarding the research will be provided.
In Section 6.2 a brief summary of the thesis will be given. Based on the simulation results
presented in Chapter 5, some conclusions regarding the research will be made in Section
6.3. The key features of an active rectifier useful in certain applications were also
discussed in this section. Section 6.4 will provide suggestions for possible future research

in the area of active front-end drive for VAR compensation and harmonic filtering.

6.2 Thesis Summary

To investigate reactive compensation capabilities of an active front-end drive by
accurate simulations was the principal motivation behind this thesis work. The
mathematical model of the front-end converter was established. A suitable control
strategy for decoupled control of real and reactive power was formulated. The
simulations were performed to evaluate system performance. Based on simulation results,
the limits on reactive power compensation were established.

Chapter 1 and 2 served to provide an introduction to the active front-end
technology used in drives and also some background information regarding the power
compensation techniques used in the power system. In Chapter 1, a brief summary of
research to be presented in the thesis was first provided. A circuit topology used for

reactive power compensation comprising a front-end rectifier, a load-side inverter, and an
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induction motor was presented. Further, basic operating principle and modes of operation
of active drive were discussed. The research goals and the thesis outline were also
presented.

In Chapter 2, a detailed background pertaining to reactive power compensation in
the power system and power quality issues such as sources of harmonics and their effects
was given. The role of power electronics in improving the ac grid power was reviewed.
The interpretations of instantaneous real and reactive power were also discussed. A
comparison between traditional drives with phase-controlled rectifiers and drives with
active front-ends was presented.

Chapter 3 and 4 discussed theory behind modeling and control of active front-end
inverter. In Chapter 3, a dynamic d-g¢ model, needed for a fast transient response of an
active drive was derived. Since the control was to be carried out in d-g coordinates, the
real and reactive power definitions in d-g coordinates were presented. The compensation
characteristics and the steady state controllability of the active front-end converter were
also discussed. Further, the power loss model to estimate the conduction and switching
losses in IGBTs and free-wheeling diodes was presented. The total heat dissipation
estimated from the loss model was used in Chapter 5 to recommend a suitable thermal
management system for a high power active drive.

In Chapter 4, an effective approach for controlling the rectifier dynamics was
derived. Based on system differential equations, an ac-side per-phase equivalent circuit
and a dc-side equivalent circuit models for the front-end converter were introduced. A
high gain feedback controller for controlling the magnitude and phase of the line currents

was then discussed. A scheme for estimating angular frequency of source voltages in real
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time was also discussed.

An input-output linearization controller to effectively decouple the real and
reactive current components during the dc-link variations was discussed next. For
achieving better transient performance, a feed-forward controller was also presented. In
addition to the front-end rectifier, the control of the load-side inverter and induction
motor also needed to be discussed. In the later part of Chapter 4, a mathematical model of
an induction motor was introduced. Further, a classical field oriented control of induction
motor was discussed in detail.

In Chapter 5, the simulation results were presented. The simulation set-up and the
software configuration used were discussed first. The steps performed in simulating
various modes of operation and in evaluating the system performance were listed as well.
The active drive was simulated with and without motor load, and the different key
features of the drive, such as variable power factor and better control over dc-link
voltage, were demonstrated.

Further, the drive performance was analyzed under different load scenarios to
address design issues such as device rating, power loss, power quality, and thermal
management system. The simulation data was interpreted to determine the maximum

reactive power that can be compensated for a given motor load.

6.3 Conclusions from Research

Compared to conventional AC drives with phase-controlled rectifiers, the active

front-end drives provide faster dynamic response, better control over dc-link voltage, and
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improved power grid interface with minimum harmonic distortions. The active front-end
drives also have integrated line regeneration capability.

This thesis presented a methodic approach to analyze the performance of an active
front-end induction motor drive. By establishing the expected performance, technical
risks in actual development will be reduced. Further, the research also helps identify the
device selection and system design issues prior to the actual design itself.

A controller for the active rectifier was presented which consists of an outer dc-
link voltage regulation loop and inner current regulation loop. A faster dynamic response
is obtained by including the load power feed-forward compensation.

The decoupled control presented allows independent control over real and
reactive power. This makes variable power factor operation possible. The simulation
results demonstrated faster time response of the current controllers to the step change in
compensation command.

The simulation results also show that the active power drawn by the rectifier is
more than the power required to drive the motor load. The additional active power is used
to charge a dc-link capacitor. Thus, the maximum reactive compensation depends upon
the amount of active motor load as well as the maximum ripple in the dc-link voltage.
This compensation limit is valid for a specified ratio of peak line voltage to dc-link
voltage, and also for a specified current rating of active switches.

A fast dynamic response of the active rectifier helps regulate the dc-link voltage
to a desired value and makes it immune to the load and line variations. The maximum dc-
link ripple at different operating conditions was found to be below 3 %. Thus, the dc-link
capacitance can be significantly lowered and there is possibility of using film capacitors
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instead of expensive electrolytic capacitors [24]. This will result in less number of
failures, thereby improving the reliability of the drive measured in terms of the mean-
time-between-failures (MTBF).

The current and voltage rating of the active devices used in inverter and rectifier
was found to be identical. Thus the same devices and the associated gate drivers can be
used for both inverters and rectifiers. This presents an opportunity for modular design,
resulting in simplified assembly and repair.

The power loss in switching devices was found to be considerably high. Even
with a low switching frequency of 4 kHz, a heat sink with forced cooling system was
required. With increase in power rating or switching frequency, the water cooled thermal
management system would be necessary to dissipate the extra heat generated.
Alternatively, emerging devices such as silicon carbide based IGBTs or MOSFETs with
high temperature handling capabilities need to be investigated for such high power
applications.

Unlike traditional phase-controlled rectifiers, the active rectifiers do not draw
lagging currents from the utility, eliminating the need for additional VAR compensator
for high power applications. Secondly, the line current total harmonic distortion at the
supply-side was below 5 % even for highly leading power factor. The improved power
grid interface argues well for using active front-end rectifier not only for the high power
drives, but also for providing utility interface to the distributed energy sources such as
micro-turbine generators and wind power generators.

One obvious drawback of the active front-end drives is the high cost on account

of extra active devices used in the rectifier. This restricts the use of active front-end
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drives for large power applications where the extra cost is justified either by operating at
unity power factor, providing integrated line regeneration capabilities, or supplying

reactive power compensation to the utility.

6.4 Future Research

One interesting area for the future research would be to extend the capabilities of
active drive for harmonic elimination [25]. In the research presented in this thesis, the
reference command for reactive power compensation, iz, was considered to be a dc
value. This is because, the sinusoidal line currents with angular frequency of w, are
transformed into the dc quantities in the d-g coordinate system rotating at the same
angular frequency, w. Thus the compensation achieved in this case was the fundamental
frequency reactive compensation. Alternatively, a new i, reference can be generated
which is the combination of fundamental frequency as well as the harmonic frequency
components of line current. By using the same decoupled control principle that was used
for VAR compensation, the resultant line currents can be made to eliminate the harmonic
components from the source. The active drive thus can also provide harmonic filtering.

Another suggestion for future research concerns dynamically controlling dc-link
voltage to keep inverter modulation index close to one. For two level inverters, keeping
the amplitude of modulation index close to one reduces the power loss and improves the
efficiency [20]. Similarly for induction motor this results into reduced core losses [21]. In
future research, this idea of changing the dc-link voltage dynamically to maintain

modulation index close to one can be explored.
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For the input-output linearization controller used in this research, the exact values
of line inductor, resistor and angular frequency are required. The angular frequency is
estimated in real time, so it is known accurately. Further, as the voltage drop across the
series impedance and the line currents are known, it should be possible to estimate the
series inductor and resistor values. The series impedance at the supply side does not
change in the same manner as induction motor parameters. However, estimating the
series impedance value would eliminate the need to tune the controller for every little
change made in system configuration, thus making the controller more robust.

Most often the active front-end drive is considered for high power applications.
At such high power ratings the amount of current that can be handled by the IGBTs used
in two-level inverter, the dc-link voltage level, and also the switching losses impose a
limit on the amount of reactive power that can be compensated. Alternatively, in future
research, a cascaded multilevel inverter can be studied for providing reactive

compensation while also driving the induction motor load.

6.5 Chapter Summary

The purpose of this chapter was to provide concluding remarks. A brief summary
of the thesis was first provided. Following this summary, some conclusions regarding the
research were then made. Some topics concerning future research in the area of

multilevel inverters were also discussed.
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