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Abstract 

 

In this thesis, an active front end induction motor drive for reactive power 

compensation is analyzed. The classical vector control approach for high performance 

control of an induction motor drive is a well established industry standard today. The 

same idea of decoupled control is extended to the line-side PWM converter for achieving 

better dynamic performance.  

The system model is obtained using d-q rotating frame theory. The iqe component 

of line currents is used to control the reactive power. The ide component is used to control 

the dc-link voltage and also to supply active power required by the motor. A high gain 

feedback controller with input-output linearization is presented to remove coupling 

between iqe and ide currents. A load power feed-forward loop is added to the dc-link 

voltage controller for fast dynamic response. 

The drive performance is analyzed to define system specifications. The motor 

acceleration, deceleration, and variable power factor operation (reactive power 

compensation) of the active drive system are demonstrated. The motor load is varied 

from no load to full load in steps of 10% each.  For each step the device currents, 

switching power loss, line harmonics, and dc-link ripples are plotted. This data is used to 

derive conclusions that define system specifications and also state operating limits. 

The control of the drive system is implemented in MATLAB-SIMULINK. The 

complete system hardware is implemented in commercially available simulation tool, 

PSIM.  The two software packages are interlinked using an interface module. 
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1 Introduction 

 

1.1 Chapter Overview 

The purpose of this chapter is to introduce the research presented in this thesis. 

Section 1.2 provides a brief overview of the research undertaken. In Section 1.3, the 

general idea of Active Front End Inverters is presented. The circuit topology for the 

complete power converter system used for reactive power compensation is explained.  

Section 1.4 discusses the basic operating principle using single-phase equivalent 

circuit of the system. The different modes of operation are elaborated using phasor 

diagrams. Section 1.5 examines the key features and suitable applications of the Active 

Front End Inverter system. Section 1.6 defines research goals. The scope of the research 

is discussed here. Section 1.7 concludes Chapter 1 by presenting the thesis outline. 

 

1.2 Thesis Research 

In this thesis, an active front-end induction motor drive for reactive power 

compensation is analyzed. The vector control approach for high performance control of 

an induction motor drive is now a well accepted industry standard control. The same idea 

of decoupled control is extended to the line-side PWM converter for achieving better 

dynamic performance. The sine-triangle PWM scheme is used to control IGBT switches 

in both rectifier and inverter bridges. 

The system model is obtained using d-q rotating frame theory. The line currents 

are decomposed into iqe and ide components. The iqe component is used to control the 
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reactive power. The ide component is used to control the dc-link voltage and also to 

supply active power required by the motor. A high gain feedback with input-output 

linearization control is presented to remove coupling between iqe and ide currents. A load 

power feed-forward loop is added to the dc-link voltage controller for fast dynamic 

response. 

Using the dynamic d-q model, the drive performance is analyzed to define system 

specifications. The motor acceleration, deceleration, and variable power factor operation 

(reactive power compensation) of the active system are demonstrated. The motor load is 

varied from no load to full load in steps of 10% each.  For each step the device currents, 

reverse blocking voltage, switching power loss, line harmonics, and dc-link ripples are 

plotted. This data is used to derive conclusions that define system specifications and also 

state operating limits. 

The control of the drive system is implemented in MATLAB-SIMULINK. The 

complete system hardware comprising of switches, line inductors, dc-link capacitor bank, 

and the motor is implemented in commercially available simulation tool, PSIM.  The two 

software packages are interlinked using an interface module. 

 

1.3 Active Front-End Inverters 

In this work, the term Active Front End Inverter refers to the power converter 

system consisting of the line-side converter with active switches such as IGBTs, the dc-

link capacitor bank, and the load-side inverter. The line-side converter normally functions 

as a rectifier. But, during regeneration it can also be operated as an inverter, feeding 

power back to the line. The line-side converter is popularly referred to as a PWM rectifier 
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in the literature. This is due to the fact that, with active switches, the rectifier can be 

switched using a suitable pulse width modulation technique. 

The PWM rectifier basically operates as a boost chopper with ac voltage at the 

input, but dc voltage at the output. The intermediate dc-link voltage should be higher than 

the peak of the supply voltage [1]. This is required to avoid saturation of the PWM 

controller due to insufficient dc link voltage, resulting in line side harmonics. The 

required dc-link voltage needs be maintained constant during rectifier as well as inverter 

operation of the line side converter. The ripple in dc-link voltage can be reduced using an 

appropriately sized capacitor bank. The active front-end inverter topology for a motor 

drive application is shown in Figure 1.1 

 

  

E1

E2

Line-side Converter Vdc

C
Vb

Vc

a
b

c

L

E3

Va

ic

iMidc

a'

b'
c'

Load-side Converter

Induction Motor

 

 

Figure1.1 Active front-end induction motor drive system 
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 The topology shown in Figure 1.1 has two three-phase, two-level PWM 

converters, one on the line side, and another on the load side. The configuration uses 12 

controllable switches. The line-side converter is connected to the utility through inductor. 

The inductor is needed for boost operation of the line-side converter. A transformer on 

the supply side with appropriate secondary impedance also serves the same purpose. 

For a constant dc-link voltage, the IGBTs in the line-side converter are switched 

to produce three-phase PWM voltages at a, b, and c input terminals. The line-side PWM 

voltages, generated in this way, control the line currents to the desired value. When dc-

link voltage drops below the reference value, the feed-back diodes carry the capacitor 

charging currents, and bring the dc-link voltage back to reference value.  

 

1.4 Operating Principle 

A per-phase equivalent circuit of the three-phase, line-side PWM converter is 

shown in Figure 1.2. The source voltage ES, and line inductance L represent the utility 

system. The three-phase voltages at the three input legs of the line side converter are 

represented by V. The voltage V can be viewed as a PWM voltage wave constructed from 

the dc link voltage Vd. The magnitude and phase of the fundamental component of V is 

controlled by the line-side converter. The voltage VL, across inductor L, is ISωL where, ω 

is the angular frequency of supply voltage. Note that, the synchronous machine connected 

to an infinite bus can also be represented by the same per-phase equivalent circuit shown 

in Figure 1.2. Similar to an overexcited or under-excited synchronous machine, the PWM 

converter can also draw line currents at leading, lagging or unity power factor. 
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VES

VL

IS

L

 

 

Figure 1.2 Per-phase equivalent circuit 

 

As illustrated in Figure 1.3 (a), for unity power factor operation in rectifier mode 

of the line-side converter, the PWM voltage V needs to be larger than the supply voltage 

phasor ES in magnitude and lags ES by an angle δ. This makes ES and line current IS, to be 

co-phasal. The angle δ is called the power angle because it controls the power flow 

between the two sources.  

The regenerative mode of the line-side converter is shown in Figure 1.3 (b). The 

IS phasor now reverses, causing reversal of ISωL phasor. In order to satisfy the phasor 

diagram, the V phasor should lead phasor ES by an angle δ. Thus the power angle δ also 

reverses. Likewise, the leading power factor operation is illustrated in Figure 1.3 (c). 

The active power P, and reactive power Q, are given by following expressions: 

ϕcos3 SS IEP ⋅=                   (1.1) 

ϕsin3 SS IEQ ⋅=             (1.2) 

where ES and IS are supply voltage and line current, while φ is power factor angle. 
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φ = 0°
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 a) Unity power factor during motoring mode 

φ = 180°
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b) Unity power factor during regenerating mode 
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φ'

V
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IS

φ

 

c) Leading power factor operation during motoring mode  

Figure 1.3 Operating principle  
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From Figure 1.3 (b) we can write,  

δϕω sincos VLI S =                 (1.3) 

δϕω cossin VLI S =                 (1.4) 

Substituting the values of ϕcosSI  and ϕsinSI  in Equation 1.1 and 1.2 

respectively, 

L
VEP S ω

δsin3 ⋅=                      (1.5) 

L
EVEQ S

S ω
δ −

⋅=
cos

3            (1.6) 

The equations 1.1 through 1.6 indicate that the PWM voltage, V, and power angle, 

δ, can be controlled to control active and reactive power. It is also possible to maintain 

reactive power constant while varying active power. This is done by keeping phasors 

δcosV constant and varying phasor δsinV . An effective control strategy for achieving 

this are discussed in detail in Chapter 4.  

 

1.5 Key Features of Active Front-End Inverters 

The power electronics equipments are often viewed as a source of troublesome 

line-side interactions in the form of non-linear reactive currents and harmonics. However, 

with the advent of high power semiconductor devices capable of switching adequately 

fast, many new applications of power electronics equipments are being envisaged. One 

amongst them is Active front-end inverter, which can provide a solution to some power 

quality problems. The key features of this topology are discussed here. 
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• Regenerative Capabilities – In normal motoring mode of the drive, power flows 

from supply-side to the motor. The line-side converter operates as rectifier, 

whereas the load-side converter operates as an inverter. During regenerative 

braking mode, their respective roles are reversed. The system can continuously 

regenerate power if the machine is a generator, such as in wind generation system.  

• Unity Power Factor Operation – With the line currents in phase with the line 

voltages, the unwanted reactive currents are eliminated. Since regeneration is also 

possible at unity power factor, the overall power quality is improved significantly. 

The converter will be able to supply the same active power but at reduced current 

ratings. Thus an increased cost of the converter on account of using active power 

switches can be justified for high power applications.   

• Reactive Power Compensation – Alternatively, the kVA ratings saved due the 

unity power factor operation can be used to provide reactive power compensation 

to the utility system. The double-sided power converter thus acts as static VAR 

compensator while driving a variable speed motor load. This scheme can be an 

attractive alternative to the overexcited synchronous motor used as a VAR 

compensator. 

• As an Interface between Distributed Energy Source and Utility – The line-

side PWM converters are applicable whenever a DC bus is to be connected to the 

AC grid. Usually this is the case for distributed energy sources such as fuel cells, 

microturbines, or variable speed wind energy plants employing a dc-link.  
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Figure 1.4 Distributed energy source and utility interface 

   

 Figure 1.4 shows schematic representation of distributed energy sources 

connected to the utility grid. The line-side PWM converter facilitates the flow of power 

from distributed sources to the Utility at fixed frequency, and at desired power factor. 

 

1.6 Research Goals 

 Evaluating the system performance by accurate simulations is the first important 

step in the development of any power electronics system prototype. By simulating the 

expected performance of the system, technical risks in the actual development can be 

reduced significantly. Thus to identify device selection, system specifications, and design 
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issues prior to the actual design, is the principal motivation behind undertaking this 

research. 

The broader objective stated above is further articulated into specific goals 

mentioned below. 

1. Demonstrate application of an Active Front End Motor Drive topology, shown in 

Fig. 1.1, for supplying variable reactive power compensation to the utility, while 

driving a variable speed motor load. 

2. Obtain the system dynamic model and present effective decoupling control 

strategies for better transient performance. 

3. Implement the system model and suitable control scheme in SIMULINK. 

4. Evaluate the system performance at variable load by plotting system parameters 

such as line currents, line harmonics, dc-link voltage ripple, device peak currents 

and voltages. Use the device loss model to plot conduction, and switching losses 

for the active switches.    

5. Draw conclusions about the system operating efficiency, device selection, and 

discuss optimum system design issues.  

The research presented in this thesis aims to achieve these goals. 

 

1.7 Chapter Summary and Thesis Outline 

 In this chapter, several topics were discussed. A brief overview of the research to 

be presented in this thesis is first provided. A circuit topology used for an Active Front 

End motor drive system is discussed as well. Further the principle of operation for this 

topology is explained with the help of phasor diagrams. Several key features and some 
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potential applications of Active Front End Inverters are examined further. At the end, the 

primary motivation behind this research and the precise goals that this research set out to 

achieve are also stated. 

In Chapter 2, a detailed discussion on power quality, stability, and reactive power 

compensation will be presented. In addition the Instantaneous Active and Reactive power 

definitions will be reviewed. Further, different methods for compensation will be 

compared. In particular, the power compensation using induction motor drive will be 

discussed.  

In Chapter 3, the d-q rotating frame theory as applied to the active front end 

inverter system will be discussed. The system dynamic model in d-q coordinates will be 

derived. The active and reactive power definitions in dq-frame will be derived as well. 

This will set up the control problem, which will be solved in the next chapter.     

 In Chapter 4, the control strategy is formulated. The input-output linearization for 

decoupled control of ide and iqe current components will be discussed. The load power 

feed-forward compensation is also discussed to achieve better transient performance.    

 The main purpose of Chapter 5 will be to simulate all possible modes of operation 

of the complete drive system. The simulation set up and implementation issues in 

SIMULINK as well as PSIM will be discussed. In addition, this chapter will set down the 

approach for determining the system specifications, loss calculations, and optimum 

system performance. The detailed simulation results will also be presented.  

In Chapter 6, a brief summary of the thesis will be given. Based on the simulation 

results, important conclusions regarding the research will be made. Lastly, several 

suggestions on possible future research will be made. 
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2 Background 

 

2.1 Chapter Overview 

In the previous chapter, the general idea of active front-end inverters and the 

thesis outline was presented. The purpose of this chapter is to provide a detailed 

background pertaining to other research useful in analyzing the active front-end drive. In 

Section 2.2 power quality issues including cause and effects of harmonics are discussed. 

In Section 2.3 the role of power electronics in improving the ac grid power is 

reviewed. The interesting interpretations of instantaneous real and reactive power are 

discussed in Section 2.4. At the end, the comparison between traditional drives with 

phase-controlled rectifiers and drives with active front-ends is presented. This 

comparison is the motivation for preferring active front-end drives over traditional drives 

for some high power applications.  

 

2.2 Power Quality Issues 

An uninterrupted, sinusoidal voltage at rated magnitude and frequency represents 

the power supply of highest quality. The factors that define the quality of electric power 

are harmonic distortion, voltage regulation, voltage sag, and voltage unbalance in 

addition to the continuity of power supply.  

The universal use of non-linear loads, mainly power electronic converters, has 

increased the presence of non-linear and reactive currents in the power system. In most 

applications, the switching of these converters is done synchronously with the line 
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voltage. The harmonic components produced in this case are integer multiples of the 

fundamental frequency, also referred to as superharmonics. The presence of lagging, non-

linear currents lead to the line voltage distortions, increased transmission losses, 

additional transmission and distribution capacity, in addition to affecting power system 

stability.  

 In many other industrial loads such as arc furnaces, spot wielding machines, 

rolling mills, and mine hoists, the load currents are rapidly changing and non-sinusoidal 

in shape. The harmonic spectrum of the rectifier input currents for these loads contain 

subharmonic components, which are not integer multiples of the fundamental line 

frequency, in addition to the superharmonics components [2]. These waveforms are 

considered as non-periodic. 

These reactive currents along with periodic and non-periodic harmonic currents 

need to be eliminated from the power system to improve the overall power quality to an 

acceptable level. Before discussing the details of various power compensation methods, it 

is useful to investigate the sources of harmonics and their effects in different types of 

electrical loads. 

 

2.2.1 Sources of Harmonics 

Any component of voltage or current waveform, other than specified frequency 

sinusoidal component is referred to as harmonics. Non-linear loads change the sinusoidal 

nature of the ac power current, thereby, resulting in the flow of harmonic currents in an 

ac power system. A brief review of these loads and harmonics produced by them is 

presented here [3]. 
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• Static Power Converters - Thyristor and/or diode based power converters are the 

largest non-linear loads connected to the power system. These are extensively 

used in industry to convert power from ac-to-dc, dc-to-ac, dc-to-dc, and ac-to-ac. 

The current commutation phenomenon results in voltage notching and the poor 

displacement power factor (DPF) draws additional VAR from the source. 

• Arc furnaces, mine hoists loads – The harmonics produced by these loads are 

highly unpredictable because of cycle-by-cycle variation of the mechanical 

torque. The line current is non-periodic. The harmonic spectrum shows presence 

of both integer and non-integer order of frequencies [2]. These types of loads 

often require a shunt compensator to maintain voltage levels, improve power 

factor, and increase power system stability. 

• Switch Mode Power Supplies (SMPS) – Most electronic equipment uses a SMPS 

to provide the stabilized voltage to the equipment. It feeds the capacitor that 

supplies voltage to the equipment. Since the load, as seen from the power system, 

is a capacitor, the current to the power supply is discontinuous, producing line 

harmonics. 

• Pulse Width Modulated (PWM) Drive – The dc link drive has a diode at the input 

and a large capacitor on the dc link to regulate the dc voltage. For light loads (30- 

50%), the current only flows when the voltage output of the diode rectifier is 

above that of the capacitor. Thus at light loads current in the ac circuit is 

discontinuous. 

• Utility Interface with Distributed Energy Sources – With the increasing use of 

distributed energy sources such as fuel cells, wind generators, micro-turbines, and 
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solar cells, there are various topologies available to connect these sources to the 

utility. These interfacing power converters may act as current sources attached to 

the electric utility or as voltage sources tied to the utility through a series 

impedance. Depending on the topology used, the outputs of these power 

converters may contain harmonics of various orders and power factors that may 

cause unacceptable power quality for the utility grid. 

 

2.2.2 Effects of Harmonics 

Most power equipment are designed to operate at fixed frequency sinusoidal 

voltages and currents. The presence of harmonics will naturally have unwarranted effects 

on these equipments. The degree to which harmonics can be tolerated depends on the 

type of load consuming these harmonics. In case of heating loads, such as oven or 

furnaces, the harmonic currents are utilized for heating and thus presence of harmonics 

do not have any adverse impact.  

In rotating machines, such as induction motors and synchronous generators, the 

harmonics cause increased iron and copper losses, resulting in increased heating and 

reduced efficiency. Harmonic currents also give rise to higher audible noise compared to 

the sinusoidal currents. The harmonic currents can also cause or enhance cogging (refusal 

to start smoothly) or crawling (high slip) phenomenon in an induction motor. The 

interaction between harmonic currents and fundamental frequency stator current leads to 

pulsating torque and may cause mechanical oscillations. In the case of transformers, the 

harmonics cause higher iron and core losses resulting in increased heating.  
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Power cables carrying harmonic currents are prone to heating due to skin and 

proximity effects. Power cables acting as parallel capacitors may be involved in system 

resonance. Due to magnified harmonic levels, the cables may be subjected to the voltage 

stress and corona, which can lead to dielectric failure.  

Additionally, the presence of harmonics may cause metering and instrumentation 

devices to produce erroneous results. In power system equipment such as switchgears, 

harmonic currents increase heating and losses, thereby reducing steady state current 

carrying capacity and shortening the life of insulating components. Fuses also suffer de-

rating because of the heat generated by the harmonics during ‘normal’ operation.  

The IEEE recommended practices and harmonic control guidelines [3] limit the 

harmonic contents and the distortions caused by them in the waveform to a certain level. 

The distortion level is gauged in terms of total harmonic distortion (THD), defined as,  

100*
1

2
1

2

V
VV

THD RMS −
=             (2.1) 

Where, VRMS is the root mean square value of the total voltage waveform, 

comprising all the harmonics including the fundamental frequency component. Whereas, 

V1 is the root mean square value of the fundamental components of total voltage.  

The distortion limits recommended by IEEE 519 standard are listed in Table 2.1. 

The limits are applicable only at the point of common coupling (PCC) of the utility and 

plant interface. The limits are recommended to be used as system design values for the 

“worst case” for normal operation. Normal operation is the operating condition lasting 

longer than an hour. For shorter periods, such as during start-ups or unusual conditions, 

the limits may be exceeded by 50%. 
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Table 2.1: Voltage distortion limits 

 

Bus Voltage at Point of 

Common Coupling (PCC) 

Individual Voltage 

Distortion (%) 

Total Harmonic 

Distortion (%) 

69 kV and below 3.0 5.0 

69.001 kV through       161 kV 1.5 2.5 

161.001 kV and above 1.0 1.5 

 

 

 

2.3 Role of Power Electronics in Improving Quality of AC Grid 

Power 

Power electronics, which is the major contributor to the troublesome line-side 

interactions in the form of reactive currents and harmonics, can also provide solution for 

removing such effects. The prospects of using a power electronics based system to 

address the power quality issues promise to change the landscape of future power 

systems in terms of generation, transmission and distribution, operation and control. The 

ever increasing interest in these applications can be attributed to the several factors as 

listed below [4]: 

1. Availability of power semiconductor devices with high power ratings capable 

of switching fast lead to better conversion efficiency and high power density.  
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2. Growing awareness of power quality issues and stricter norms set forth by the 

utility companies and regulatory authorities to control harmonic pollution and 

EMC effects. 

3. Continual use of existing transmission system capacity for increased power 

transfer without compromising transmission system stability and reliability. 

4. Need for effective control of power flow in a deregulated environment. 

5. Increased emphasis on decentralized generation with renewable energy 

sources to avoid transmission line congestion. 

Many types of utility applications based on power electronics controllers are 

being envisaged. These include active and reactive power flow control, system stability, 

improving power quality by eliminating harmonics, improving transmission efficiency, 

and protection.  

Thus, power quality solutions comprising reactive compensation, compensation 

for the non-active currents, harmonic compensation, or active filtering is one of the many 

significant areas of utility applications for these controllers, summarily referred to as 

flexible ac transmission system (FACTS) controllers. The different types of FACTS 

controllers and the principle of operation is reviewed briefly in the following subsections.  

 

2.3.1 Flexible AC Transmission Systems (FACTS) Operating Principle 

In existing ac transmission networks, limitations on constructing new power lines 

has led to several ways to increase power transmission capability without sacrificing the 

stability requirements. Power flow on a transmission line connecting two ac systems is 

given by, 
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P = 
X
EE 21  sin δ            (2.2) 

Where E1 and E2 are magnitudes at the two ends of transmission line, X is the line 

reactance, and δ is the angle between the two bus voltages. Equation 2.2 shows that 

power flow on a transmission line depends on the voltage magnitude E1 and E2, the line 

reactance X, and the power angle δ. FACTS devices based on phase-controlled thyristors 

or active switches such as IGBTs can be used to rapidly control one or more of above 

three quantities. 

The term, FACTS devices, can be formally defined as a collection of power 

converters and controllers that can be applied individually or in coordination with others 

to control – series impedance, shunt impedance, current, voltage, phase angle, oscillation 

damping. By controlling one or all these quantities, FACTS devices enable transmission 

system to be operated closer to its thermal limit without decreasing the system’s 

reliability in addition to providing improved quality power. Depending on whether they 

are connected in shunt or series, the FACTS devices can be categorized as shunt-

connected and series-connected controllers [5]. 

 

2.3.2 Shunt-Connected Controllers 

Typically, the shunt-connected controllers draw or supply reactive power from a 

bus, thus causing the bus voltage to change due to the internal system reactance. Some of 

the popular shunt controllers are described below [6]. 

Static synchronous compensator (STATCOM) is a shunt-connected static VAR 

compensator, which can control its output current (inductive/capacitive) independent of 
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the ac system voltage variations. It uses self commutated (active) switches like IGBTs, 

GTOs, or IGCTs. It may or may not need large energy storage capacity depending on 

what active and/or reactive power compensation is desired. 

Static VAR compensator (SVC) is another type of power compensator, whose 

output is adjusted to exchange capacitive or inductive current so as to maintain bus 

voltage constant. SVC is based on devices without turn-off capability, like thyristors. 

SVC functions as a shunt-connected controlled reactive admittance. Some popular SVC 

configurations are thyristor controlled reactor (TCR), thyristor switched reactor (TSR), 

and thyristor switched capacitor (TSC). The TCR has an effective inductive reactance 

which is varied by firing angle control of the thyristor valve. The effective inductive 

reactance of a TSR, on the other hand, is varied in step-wise manner by full or zero 

conduction of the thyristor vale. In case of a TSC, the effective capacitive reactance is 

varied in a step-wise manner by full or full conduction of the thyristor valve. 

 

2.3.3 Series-Connected Controllers 

These types of devices are connected in series with a transmission line, thereby, 

changing the effective transmission line reactance. This feature allows series-connected 

controllers to control the flow of power through the transmission line. Various forms of 

such devices include static synchronous series compensator (SSSC), thyristor controlled 

or switched series capacitor (TCSC/TSSC), and thyristor controlled or switched series 

inductor (TCSR/TSSR). 

The output of SSSC is in quadrature with the line current, and is controlled 

independently of the line current. The SSSC decreases the overall reactive voltage drop 



 21

across the transmission line and controls flow of electric power. The SSSC may include 

transiently rated energy storage to compensate temporarily an additional real power 

component. The TCSC varies its effective capacitive reactance smoothly by firing angle 

control of the thyristor valve. Alternately, the effective capacitive reactance of a TSSC is 

varied in step-wise manner, by full or zero conduction of the thyristor vale. Similarly in 

case of a TCSR and TSSR, the effective reactance is varied smoothly and in a step-wise 

manner respectively. 

Table 2.2 summarizes the above discussion on different types of controllers, their 

respective circuit schematic, system functions, and control principle [5]. The active front-

end induction motor drive analyzed in this thesis work falls under the category of static 

synchronous compensator (STATCOM). From power quality point of view, it is basically 

a shunt-connected static VAR compensator which can control its output current 

(inductive/capacitive) independent of the ac system voltage variations or load. It needs a 

temporary energy storage element in the form of a dc-link capacitor to effectively supply 

the desired power compensation while driving the mechanical load connected to the 

induction motor. 

After establishing different methods of compensation, it will be worthwhile to 

know exactly how much and which component of the source power needs to be 

compensated. In other words we need to establish the reference commands for the power 

controllers discussed above. The instantaneous power definitions presented in the next 

section explain how to choose compensation references. 
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Table 2.2: A summary of FACTS controllers’ configurations 

Controller Circuit configuration System functions Control principle 

TCR/TSC - Thyristor 

Controlled or 

Switched Reactor  

• Regulate voltage 

• Improve stability 

VAR control by 

varying L in the  

shunt connection 

TCC/TSC – Thyristor 

Controlled or 

Switched Capacitor  

• Regulate voltage & 

compensate VAR 

• Improve stability 

VAR control by 

varying C in the  

shunt connection 

TSSC – Thyristor 

Switched Series 

Capacitor  

• Control power flow 

• Improve stability 

Power and VAR 

control through 

varying C. 

TCSR – Thyristor 

Controlled Series 

Capacitor  

• Control power flow  

• Improve stability 

• Limit fault current 

Power and VAR 

control through 

varying C & L in 

shunt connection 

TCSR – Thyristor 

Controlled Series 

Reactor  

• Limit fault current 

Current control by 

inserting L in 

series. 

STATCOM   

Static Synchronous 

Compensator 
 

• Regulate voltage & 

compensate VAR 

• Improve stability 

VAR control 

through current 

control in shunt 

connection 

Active Filter 

(Shunt Connected) 

LO
A
D

 

• Harmonic current 

filtering 

Inject canceling 

harmonic current 

into the source 

SSSC – Static Series 

Synchronous 

Compensator 
 

• Control power flow  

• Improve stability 

VAR control 

through series 

voltage control. 
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2.4 Generating Reference Currents Using Instantaneous Power p-q 

Theory  

For single-phase and three-phase power systems with sinusoidal voltages and 

sinusoidal currents, the quantities such as active power, reactive power, active current, 

reactive current, and power factor are based on the average concept [7]. For 

compensating the non-active currents, however, instantaneous power and current 

definitions are required. Akagi et al [8] have introduced an interesting theory of 

instantaneous power in three-phase circuits, without zero sequence currents. The theory is 

also popularly referred to as p-q theory. The concept establishes an effective method to 

compensate instantaneous components of active and reactive power of the three-phase 

system.  

This work is widely regarded as a classical theoretical research and is one of the 

most cited references in the field of reactive power compensation and active filtering [2]. 

Since, it is also the basis for generating reference commands for active compensator 

presented in this thesis, the brief summary of the instantaneous power p-q theory is 

presented below. The three-phase, three-wire system is shown in Figure 2.1. The three-

phase voltages and currents are transformed to d-q coordinates as shown below. 
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Figure 2.1 Three-phase three-wire system 

 

For balanced voltages e1 + e2 + e3 = 0. Thus e0 equals to zero. For balanced 

currents, i0 equals to zero as well. 

The transformation matrix C1 and its inverse matrix C1
-1 are defined as,   
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Using the matrices C1 and C1
-1 we can do following coordinate transformation 
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Note, C1 and C1
-1 are orthogonal matrices, so that,  

C1
T C1 = C1 C1

T = (C1
-1)T C1

-1 = C1
-1 (C1

-1)T = I         (2.5) 

Where, I represent an identity matrix. 
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The instantaneous active power, p, in a-b-c coordinates is defined by, 
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Converting voltages and currents in d-q coordinates, we can write,   
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In the similar way, an instantaneous reactive power q is defined as [9], 

 qddq ieieq −=              (2.8) 

Note that, p, as shown in Equation 2.7 is an instantaneous active power, because it 

is defined as the sum of the product of the instantaneous voltage and instantaneous 

current in the same phase. So, p has dimension of Watt (W). On the contrary, the 

expression for q contains the product of instantaneous voltage in one phase and 

instantaneous current in another phase. Therefore, q cannot have dimension of W, 

instead, a new dimension called as “imaginary watt” will be used [2].  

Combining Equation 2.7 and 2.8, we can write, 
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Alternatively, currents in d-q coordinates can be expressed as: 
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Equation 2.9 can be rewritten as, 
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Where, the p and q components of q-axis and d-axis currents are given by,   
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Next, the instantaneous active power in terms of q-axis power pq, and d-axis 

power pd, is given by, 

 dqddqq ppieiep +=+=               (2.13) 
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The two components of instantaneous active power in Equation 2.14 are referred 

to as, 
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Also note that, 

 ppieieieiepp Lddqqpddpqqpdpq ==+=+=+ ____      (2.16) 

Rqddqqqqdqq pieiepp ==+=+ 0____        (2.17) 
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 As can be seen, pL (eqiq + edid) is the net power delivered to the load while, pR is 

the ripple power oscillating between source and load, such that net pR is zero.  

In similar fashion, we can also write instantaneous reactive power in d-q 

coordinates as, 

qddq ieieq −=    
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The two components of instantaneous reactive power in above equation are referred to as, 
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Note here that, 

Rpqdpdqpdpq qieieqq ==−=+ 0____        (2.20) 

Lqqdqdqqdqq qqieieqq ==−=+ ____        (2.22) 

Equations 2.15 through 2.17 and Equations 2.19 through 2.22 lead to the 

following interesting interpretations of instantaneous real and imaginary power [9]. 

• The instantaneous active power has two components, pL and pR. pL is the active 

power delivered to the load. While, pR is the ripple power which oscillates 

between source and load, such that average pR is zero.  

• Similarly, the instantaneous reactive power can be split in two components, qL 

and qR. qL is the reactive power delivered to the load. While, qR is the ripple 

power which oscillates between source and load, such that average qR is zero. 

• The p-q theory reveals exactly which components of real and reactive power flow 
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to the load and which oscillates between source and load. As required by the 

utility, the particular power/current components can be compensated.  

• Thus a shunt active compensator without energy-storage element can be used to 

compensate a ripple component of reactive power, which is flowing to-and-from 

between source and load. 

• On the other hand, the ripple component of the active power, which is the result 

of harmonic currents, can be compensated by a shunt active filter with energy-

storage element. 

The p-q theory, however, does not take into account zero-sequence currents. A 

generalized theory of instantaneous active and reactive power proposed by Peng et al [10] 

define instantaneous real and reactive power for all scenarios such as, sinusoidal or non-

sinusoidal, and balanced or unbalanced three-phase systems, with or without zero-

sequence currents and/or voltages. 

Based on above generalized power definitions, reactive power compensation 

references are generated for the active front-end drive simulations presented in this thesis. 

 

2.5 Comparison between Traditional Drives and Active Front-End 

Drives 

The discussion so far in this chapter leads us to a couple of interesting scenarios. 

First, the presence of non-linear loads in a power system has been significantly increased, 

and because of their ability to control electric power precisely and efficiently, the 

widespread use of power electronics converters is indispensable. Secondly, utilities are 
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increasing concern about the non-linear currents in power system, resulting into stricter 

harmonic and power quality standards. This situation calls for alternative solutions in the 

form of various compensation techniques. Depending on the compensation objective, 

different topologies as discussed in section 2.3 can be used. 

For large variable speed drives such as those used in mining excavators, the huge 

influx of non-linear currents, seriously affect the power quality at the point of common 

coupling. To ensure power grid compatibility, a reactive compensator such as a capacitor 

bank or a STATCOM device is required for such installations. Alternatively, an induction 

motor drive with an active front-end can be used. It can achieve powerful dynamic 

performance, while providing exceptional compatibility with the line in terms of power 

factor and total harmonic distortion. Figure 2.2 shows the two schemes. 
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Figure 2.2 Comparison between phase-controlled and active front-end rectifiers 
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2.5.1 Traditional Interface with the Power Grid  

As can be seen in Figure 2.2 a rectifier consists of a standard phase-controlled 

thyristor. The drive typically operates near its full load at all the time. The line-side 

rectifier controls need to provide a stable dc-link voltage under all line and load 

conditions or drive performance may suffer.  

Maintaining a stable dc-link voltage in the presence of wide power swings is 

difficult for phase-controlled thyristors because of the poor power factor to the line. Thus, 

when the distribution system voltage is weak, the voltage available for rectification is 

also reduced resulting in poor time response. The poor power factor and limited time 

response of phase-controlled rectifiers require a large amount of capacitance in the dc-

link to minimize the voltage fluctuations seen by the inverter [11]. 

 

2.5.2 Improved Power Grid Interface with Active Front-End Inverter 

The use of high power IGBTs in active front-end inverter (AFE) topology as 

shown in Figure 2.2 eliminates the shortcomings of traditional rectifier front ends. The 

active front end boosts the line voltage to a dc-link voltage higher than normally 

produced with a diode bridge. It takes an advantage of the network’s inherent reactance 

to increase dc-link voltage greater than the peak of the line-to-line supply voltage. The 

line reactance is a disadvantage in a phase-controlled rectifier resulting in voltage 

notching.  

The system can be designed to operate with sufficient control margins so that the 

desired dc-link voltage can be maintained, even in the presence of large dips in the 
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incoming line voltage. The current flow between the line and the active rectifier is 

directly dependent on the voltage difference between line voltage and PWM voltage 

generated by the active rectifier. This voltage difference is applied across the line 

reactance. Adjusting the magnitude and phase of this voltage gives the active rectifier 

continuous control over the current amplitude and phase in all four quadrants of 

operation. 

The controller regulates the dc-link voltage by maintaining the balance of active 

power supplied by the rectifier and the active power required by the inverter/load. At the 

same time, the controller can independently control flow of reactive power allowing unity 

power factor at the primary of the transformer or at any other given point in the network, 

like the point of common coupling that feeds the rectifier. This helps in improving the 

voltage regulations and overall efficiency.  

However, there is a limit on the amount of power that can be transferred to or 

from the grid. The voltage ratio between the line voltage peak and dc-link voltage 

imposes this limit [11]. Additionally, the current rating of active front-end rectifier 

imposes constraints on both the active and reactive power to be transferred to and from 

the power grid. To find out the limits, first the system model is required which is 

presented in Chapter 3. 

 

2.6 Chapter Summary 

 In this chapter, a background material on reactive power compensation and power 

electronics controllers used in utility applications was presented. Power quality standards 

and IEEE guidelines on harmonic distortion were also discussed. 



 32

 A brief review of FACTS devices, their respective circuit configuration, system 

function and operating principle was presented. Further, the instantaneous active and 

reactive power theory was discussed. The power definitions provided by p-q theory are 

the basis of compensation commands generated for the active drive. The benefits of using 

active drive were discussed by comparing it with traditional drive with phase-controlled 

rectifiers. In the next chapter the mathematical model for active drive is derived. Based 

on this mathematical model, a control approach is formulated in Chapter 4. 
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3 System Modeling 

 

3.1 Chapter Overview 

In the previous chapter, the need for compensating non-active currents and a 

detailed review of the compensation methods using power electronic devices were 

discussed. The theoretical background on instantaneous power definitions was also 

presented. In this chapter, a dynamic d-q model, needed for faster transient response of an 

active front end converter will be derived. Later in this chapter, the power loss model to 

estimate the total heat dissipation in a front-end rectifier will be introduced.  

In Section 3.2, the system configuration for using active drive as a shunt 

compensator will be presented. The compensation characteristics and the steady-state 

controllability of an active drive will be discussed here. Section 3.3 will introduce the d-q 

theory of transforming three-phase parameters to equivalent two-phase rotating 

coordinate system. In Section 3.4 the d-q theory will be applied to the system differential 

equations to derive the dynamic d-q model. To provide desired reactive power 

compensation, the active and reactive power measurements in d-q coordinates are 

required. These power definitions will be presented in Section 3.5.  

In Section 3.6 the power loss model to estimate conduction and switching losses 

in IGBTs and anti-parallel diodes used in the front-end rectifier will be presented. The 

total heat dissipation estimated using the power loss model can be used in designing an 

appropriate thermal system.  
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3.2 System Configuration 

Consider a simplified power system shown in Figure 3.1. It is assumed that the 

system voltage ES is purely sinusoidal. E1 and E2 are the intermediate line voltages which 

are not sinusoidal, but are distorted at varying degrees. Vpwm is the voltage generated by 

the active front-end converter, while Z1 and Z2 are transmission line impedances. LS is the 

series reactance of an active drive used for boost operation.  

The non-linear load, shown in figure, draws currents with active and non-active 

components. If the non-active currents are not compensated, it will result in source 

voltage distortion. The role of an active front-end converter, in this situation, is to supply 

the non-active currents needed to keep total harmonic distortion (THD) at the desired 

level. At the same time, the converter must draw real current to feed its own load which 

is induction motor. 

 

Non-linear Load

Active Drive
Series

Reactance

Utility Line 1

Utility Line 2

IL1 + ih1

IL2 - ih1

IL1 + iL2

Source Voltage
ES

E2E1

Z1
Z2

LS Vpwm

 

 

Figure 3.1 A simplified power system 
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The fundamental real current drawn by the active drive depends on the 

application. In applications like mine hoists, the drive draws the real power from utility to 

feed the continuously varying mine load. In other applications such as, an induction 

motor connected to an external energy source like a wind powered generator or a micro-

turbine, the inverter may feed net real power back into the network.  

 

3.2.1 Compensation Characteristics of an Active Drive 

As illustrated in Figure 3.1, the active front-end converter represents a shunt-

connected synchronous voltage source (STATCOM), previously described in Chapter 2. 

The active drive can be viewed as a shunt compensator with an energy storage element in 

the form of a dc-link capacitor. Due to energy storage capability, the active drive has 

several beneficial features, which are used to maintain desired power grid compatibility. 

These features are listed below. 

• The maximum attainable compensating current of an active drive is limited only 

by the current ratings of the active switches and by the chosen ratio of peak line 

voltage to dc-link voltage. The active drive can maintain the maximum VAR 

compensation and the desired dc-link voltage, even in the presence of large dips 

in the incoming line voltage [11]. 

• The active front-end converter can be operated over its full current range even at 

the low line voltage levels. Sometime line voltages as low as 20% of the rated can 

also be tolerated. 
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• Operation over full current range help increase the stability margin in case of a 

fault, and thus improves overall transient stability. 

• The response time of an active front-end converter for compensation purposes can 

be as fast as a fraction of a half cycle (~ 10ms) [12]. For thyristor controlled 

reactors, the dynamic response can be as slow as 5 to 6 cycles. Later in Chapter 5, 

the compensator response to the step input is plotted to illustrate this. 

• The decoupled control strategy allows the compensator to exchange reactive as 

well as real power to and from the ac system.  The two power exchanges are 

mutually exclusive. 

• Due to real power exchange capability, the compensator can be used for power 

oscillation damping. 

 

3.2.2 Steady-State Control 

The steady state characteristics as well as differential equations describing the 

dynamics of the front-end rectifier can be obtained independent of an inverter and motor 

load. This is because the dc-link voltage can be viewed as a voltage source, if Vdc is 

maintained constant for the full operating range. The inverter is thus connected to the 

voltage source, whose terminal voltage Vdc, remains unaffected by any normal inverter-

motor operation.  

Furthermore, as shown in Figure 3.2, the rectifier can also be viewed as connected 

to the voltage source Vdc. Thus, the rectifier is able to control magnitude and phase of 

PWM voltages Vabc irrespective of line voltages E123.  
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Figure3.2 A voltage source rectifier 

 

The system is an exact replica of the inverter-motor system. The PWM voltages, 

Vabc, are now excitation voltages similar to the motor terminal voltages. The source 

voltages E123 can be compared to the motor counter emf voltages. Whereas, line 

inductance is similar to the motor leakage reactance! 

During steady state, the system operation can be described using the phasor 

diagram shown in Figure 3.3. As explained earlier in Chapter 1, the real and reactive 

power are represented by,  

L
VEP S ω

δsin3 ⋅=               (3.1) 

L
EVEQ S

S ω
δ −

⋅=
cos

3            (3.2) 

Equations 3.1 and 3.2 suggest that an active rectifier can generate a desired, fixed 

valued reactive power while supplying the variable real power demanded by the motor. 
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Figure 3.3 Steady-state control of PWM rectifier 

 

As shown in Figure 3.3, this can be done by keeping “ δcosV ” constant and 

varying “ δsinV ”. Thus by controlling the magnitude and phase rectifier voltage V, the 

steady state control of active and reactive power is possible. However, the equations fail 

to explain simultaneous control over real and reactive power, which is required for a 

dynamic operation of an active drive.  

Secondly, an important prerequisite for an active drive operation is a constant dc-

link voltage, Vdc. A variable dc-link will introduce undesirable fluctuations in the 

magnitude and phase of PWM voltages generated by the rectifier. It will cause the active 

and reactive currents drawn by the rectifier to vary from the desired values. This will 

further introduce additional noise in the dc-link voltage, since these line currents charge 

and discharge the dc capacitor. To solve this non-linearity and at the same time achieve 
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fast dynamic response, an effective control scheme is needed.  

The voltage source rectifier connected to the utility can be effectively controlled 

using the field oriented approach, same as used for controlling the voltage source inverter 

feeding an induction motor [13]. The rotating reference frame d-q theory is first used to 

obtain a dynamic d-q model of a line side converter. The dynamic d-q model is then used 

to implement field oriented control. The d-q theory is introduced in the next section.  

 

3.3 The d-q Theory 

A system of three-phase, sinusoidal, time-varying voltages can be represented by 

an equivalent two-phase system. Consider a balanced, three-phase, Y-connected voltages, 

E1, E2, E3, which are 120 electrical degrees apart. Consider a stationary, two- axis 

coordinate system, where the q-axis is aligned with E1, and d-axis is orthogonal to the q-

axis. The three-phase voltages have component on both the q and d axes. The q and d 

axis components can be expressed as, 

22
60cos60cos 32

1321
EEEEEEEqs −−=−−=         (3.3) 

2
3

2
330cos30cos0 3232 EEEEEds −=−+=         (3.4) 

In matrix form,  
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         (3.5) 

However, in order that the two coordinate systems are equivalent, the instantaneous 

power in both the coordinate systems should be equal. 
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  123PPdq =              (3.6) 

where P123 is power in three-phase circuit, and Pdq is power in equivalent two-phase 

system. To meet this requirement, the transformation matrix needs to be multiplied by a 

factor of 3/2 . 

The new transformation matrix, C1, is, 
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The Equation 3.5 is rewritten as, 
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         (3.8) 

Note that parameters Eqs, Eds in two-phase stationary reference frame are still 

time-varying. Because most of the electric circuits are associated with inductances, the 

time varying parameters such as sinusoidal currents and voltages tends to make the 

system model complex, and system response is often sluggish. 

R. H. Park proposed in 1920 [1] to transform these variables to a fictitious 

reference frame rotating at some angular speed. If this speed of rotation is the same as the 

angular frequency of time-varying parameters, then all the parameters in this reference 

frame become time invariant or dc quantities. Because the effect of inductances 

associated with varying currents and voltages is removed, the system model is relatively 

simple and system response can be sufficiently fast. 

Figure 3.4 and 3.5 illustrate Park’s transformation.  
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Figure 3.4 Three-phase to two-phase transformation 
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Figure 3.5 Stationary to rotary reference frame, Park’s transformation 
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The orthogonal axes de and qe are rotating at an angular speed of ωe. The θe is the 

angular displacement such that, 

dt
d e

e
θω =              (3.9) 

The new variables in de-qe reference frame are, 
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The Park’s transformation matrix is referred to as C2, 








 −
=

ee

ee
C

θθ
θθ

cossin
sincos
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Note that, both the matrices C1 and C2 are orthogonal matrices such that, 

C1
T C1 = C1 C1

T = I and C2
T C2 = C2 C2

T = I       (3.12) 

where I represents an identity matrix. 

 

3.4 Dynamic d-q Model 

Figure 3.6 shows source voltages E1, E2, E3 as line-to-neutral voltages for each of 

the three phases. The phase voltages and line currents i1, i2, and i3 are given by,  

tEE m ωsin1 = ;    )sin(1 ϕω += tii m   

 )120sin(2 −= tEE m ω ;  )120sin(2 ϕω +−= tii m     (3.13) 

 )240sin(3 −= tEE m ω ;  )240sin(3 ϕω +−= tii m  

The currents lead the source voltages by angleϕ . Em is the maximum line-to-

neutral voltage, while im is the peak line current. 
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Figure 3.6 Circuit representation of system mathematical model 

 

3.4.1 Deriving the d-q Model 

The dynamic equations for each phase can be written as, 
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In matrix form, Equation 3.14 can be written as,  
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Using transformation matrix C1, we can write, 
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Pre-multiplying Equation 3.15 by C1, 
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Since C1 is a constant, it can be taken inside the derivative term.  
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Equation 3.17 represents dynamic model in stationary reference frame. 

Using second transformation matrix, C2, we can write, 









=









ds

qs

de

qe

i
i

C
i
i

2 , and  







=







 −

de

qe

ds

qs

i
i

C
i
i 1

2        (3.18) 

Pre-multiplying Equation 3.17 by C2 and using Equation 3.18,  
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Putting the value of C2, and differentiating with respect to time, 
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where ω = dθe/dt. Expanding Equation 3.19, 

qeqede
qe

qe VRiLi
dt

di
LE +++= ω         (3.20) 

dedeqe
de

de VRiLi
dt

diLE ++−= ω         (3.21) 

Equations 3.20 and 3.21 represent the dynamic d-q model of an active front end 

inverter in a reference frame rotating at an angular speed ofω . In this modelω , iqe, ide 

Eqe, and Ede are state variables while Vqe and Vde are the inputs.  

Note that although the iqe and ide components of line currents are orthogonal to 

each other, they are not perfectly decoupled. The dynamics of iqe and ide interfere with 

each other. Based on this dynamic model an effective method of control, one in which the 

two current components are decoupled is proposed in Chapter 4. 

 

3.4.2 Selecting the Rotating Coordinate System 

A better insight into the dynamic behavior of the system is obtained by choosing a 

rotating system of coordinates, where the steady state oscillations disappear. For the 

dynamic model described in Equations 3.20 and 3.21, the pulse-width-modulated rectifier 

voltages serve as actuating voltages, while the line voltages assume the role similar to 

that of rotor induced voltages in induction motor [13]. The PWM voltages control the line 
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current so that desired power factor with respect to the line voltages can be achieved. A 

suitable choice of coordinate system in this case is the one defined by the line voltages. 

A moving coordinate frame formed by the sinusoidal line voltages is shown in 

Figure 3.7. The two-phase voltages are represented by, 

edseqsqe EEE θθ sincos −=  

edseqsde EEE θθ cossin +=  

Eqe and Ede are the projections of the Eqs and Eds components on q and d axis 

respectively.  

The angular speed of rotation of the moving coordinates, ω, is given by,   

dt
d eθω =  

As illustrated in Figure 3.7, select θe such that, Eqe = 0. The Eqs and Eds 

components of source voltage thus form a right angle triangle so as to give, 

ds

qs
e

E
E

=θtan .  

This choice helps to track θe by expressing θe in terms of Eqs and Eds as below,  

22
cos

dsqs

ds
e

EE

E

+

=θ , and 
22

sin
dsqs

qs
e

EE

E

+

=θ  

eθsin and eθcos  are used to rotate parameters at an angular speed of 
dt

d eθω = . 

Since θe is the angular displacement of the source voltages, the above approach ensures 

correct tracking of supply frequency even if it is varying and not constant. 
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Figure 3.7 Tracking θe  

 

3.5 Power Definitions in d-q Coordinate System 

Using the system dynamic model established in previous sections, the control of 

line currents is carried out in a moving reference frame so that the feedback signals are dc 

quantities. This suggests that the current and/or power reference commands also need to 

be defined in a rotating reference frame. For this purpose the instantaneous active and 

reactive power in moving coordinate frame are defined below.  

Refereeing to the generalized instantaneous power theory [10], the instantaneous 

active power P in three-phase coordinates is defined by, 

332211 iEiEiEP ++=  
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where E1, E2, E3 are the source phase-to-neutral voltages, and i1, i2, i3 are the line 

currents. 

In matrix form we can write, 

[ ]









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




⋅=

3
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1
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Converting the parameters to two-phase moving coordinates using transformation 

matrices C1 and C2,    
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Since C1 and C2 are orthogonal, (C1
-1)TC1

-1 = I and (C2
-1)TC2

-1 = I  

 [ ] dedeqeqe
de

qe
deqe iEiE

i
i

EEP ⋅+⋅=







⋅=  

As explained in previous section, Eqe is maintained equal to 0 at all the times, 

resulting in, 

 dede iEP ⋅=            (3.22) 

In the same manner, according to the generalized instantaneous power theory 

[11], the reactive power in three-phase coordinates is given by, 
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 This is an expression for reactive power in two-phase stationary frame for a 

balanced three phase system.  In d-q moving coordinates, the expression is given by, 

 qededeqedqe iEiEQ −=  

Recall that Eqe is always maintained to zero value. 

qededqe iEQ −=            (3.23) 

Equation 3.23 shows that for a positive iqe, Qdqe is negative, implying that the 

active rectifier is feeding the reactive power back to the source. Alternatively for a 

negative iqe, the Qdqe is positive, resulting in net inflow of reactive power from source to 

the load. 

 

3.6 Active Rectifier Power Loss Modeling 

The control scheme based on the dynamic model presented in the previous section 

is used to determine the current and voltage ratings of an active rectifier for a given motor 

load and compensation requirements. Further, to analyze the system performance an 
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effective loss model of an active rectifier is necessary. The loss model will help estimate 

power loss, evaluate the efficiency, and do thermal analysis. 

The heat generated as a result of power loss must be conducted away from the 

power chips and into the environment using a heatsink. If an appropriate thermal 

management system is not used, the power devices will overheat which could result in 

failure [14]. The loss model can also be used for comparing the power loss vis-à-vis 

phase-controlled rectifier. 

 

3.6.1 Estimating Power Loss 

The first step in thermal design is the estimation of total power loss. In an active 

rectifier using IGBTs, the two most important sources of power dissipation are 

conduction losses and switching losses. Conduction losses are the losses that occur while 

the IGBT is on and conducting current. The total power dissipation during conduction is 

computed by multiplying the on-state saturation voltage by the on-state current. In PWM 

applications, the conduction loss should be multiplied by the duty factor to obtain the 

average power dissipated.  

The switching loss is the power dissipated during the turn-on and turn-off 

switching transitions. The most accurate method of determining switching losses is to 

plot the Ic and Vce waveforms during the switching transition. Multiply the waveforms 

point by point and get instantaneous power waveform. The area under the power 

waveform is the switching energy expressed in watt-seconds/pulse. In addition to the 

IGBT losses, the feedback diode conduction and switching losses also needs to be 

considered. 
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3.6.2 Conduction Loss Model 

The switches used in simulation are ideal switches with no forward voltage drop 

and so no power loss is associated with them. But, the switches still carry the rated 

current. To estimate conduction losses in an IGBT, the device on-state saturation voltage 

is required along with the on-state current.  

Once the IGBT is selected based on voltage and current ratings, the corresponding 

collector-emitter saturation voltage characteristics are used to calculate the conduction 

losses. Figure 3.8 shows collector-emitter saturation voltage versus collector current 

curve for a 1200 V, 100 A IGBT manufactured by POWEREX Inc. This curve is 

modeled in MATLAB using a 2nd order curve fitting technique. Given a current, the real 

time saturation voltage can be obtained from the curve. Thus accurate estimation of the 

conduction loss is possible [15]. 

The conduction losses in fast recovery diode are estimated in a similar manner by 

first finalizing the diode ratings. The diode forward characteristics shown in Figure 3.9 

are then modeled in MATLAB. The diode current is measured and voltage drop across 

the diode for a given variable current can be estimated from the device forward 

characteristics. The conduction loss is obtained by multiplying current with the resulting 

voltage, and then averaged within one cycle. 

The total conduction loss is given by, 

IGBTconddiodecondC PPP __ +=          (3.24)  

where diodecondP _  and IGBTcondP _  are average conduction losses for fast recovery diode and 

IGBT respectively.  
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Figure 3.8 Saturation voltage characteristics for a 1200 V, 100 A IGBT  

 

 

Figure 3.9 Forward voltage characteristics for a 1200 V, 100 A diode 
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3.6.3 Switching Loss Model 

To estimate the total switching loss, IGBT switch-on and switch-off losses as well 

as diode reverse recovery losses are considered. However, as the switches used in the 

simulation are ideal, the turn-on and turn-off times are almost instantaneous. In this case, 

switching losses are calculated based on the amount of current to be turned on and off. 

To calculate switching losses in an IGBT, the device switching loss versus 

collector current characteristics shown in Figure 3.10 are used. This curve is modeled in 

MTALAB using a 2nd order curve fitting technique. Further, the reverse recovery loss in a 

diode for a given collector current is calculated by [14], 

swpkCERRRRRR fVtIP ∗∗∗∗= )(25.0         (3.25) 

where IRR is diode peak recovery current, tRR is reverse recovery time; VCE(pk) is the peak 

voltage across diode at the recovery; and  fsw is the switching frequency. The values for 

IRR and tRR can be obtained from the reverse recovery curves shown in Figure 3.11. 

The total switching losses are associated with circuit operating conditions. So, we 

cannot simply add the IGBT switching losses and diode recovery loss to get the total 

switching loss in the circuit. Consider that the IGBT is turned-on when the collector 

current is negative. This means the diode is freewheeling. There is no switching loss 

because the device is at zero potential. Now consider the switch-off operation. If the 

collector current is positive, there will be certain switching-off loss associated with the 

IGBT. However, if the collector current is negative, then anti-parallel diode is carrying 

the load current and not IGBT [15]. In this case the switching loss is basically the diode 

reverse recovery loss computed using Equation 3.25.  
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Figure 3.10 Switching energy characteristics for a 1200 V, 100 A IGBT 

 

 

Figure 3.11 Reverse recovery characteristics for a 1200 V, 100 A diode 
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Based on this discussion the switching loss estimation algorithm is programmed 

in SIMULINK. Using switching loss algorithm along with the switching energy and 

reverse recovery plots mentioned earlier, the total switching loss can be calculated as, 

diodeRRIGBTSWoffIGBTSWonSW PPPP ___ ++=        (3.26)  

where IGBTSWonP _  and IGBTSWoffP _  are the IGBT switching on and off losses. And diodeRRP _  

is the reverse recovery loss for antiparallel diode. 

Finally the total heat dissipation associated with each half leg of an active rectifier 

is calculated as below, 

)()( _____ diodeRRIGBTSWoffIGBTSWonIGBTconddiodecondL PPPPPP ++++=     (3.27) 

 

3.7 Chapter Summary 

In this chapter, several topics were discussed. The system configuration for using 

an active motor drive as a shunt compensator was introduced. The various features of 

active drive useful for compensation objective were listed. Further limitations of steady 

state control to produce better transient performance were discussed. This underlined the 

need for using decoupling control based on d-q theory. 

The details of d-q theory were then introduced. The system dynamic model was 

obtained using d-q theory. The different transformation matrices used to transform three-

phase coordinates to two-phase stationary and moving frame were introduced. Since the 

control will be carried out in moving d-q coordinates the power definitions in d-q 

coordinates are required, which were introduced next. Finally, for evaluating the system 

efficiency and comparing it vis-à-vis diode rectifier front end, the power loss model was 
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presented. The loss model was based on device characteristics curves provided in the 

device datasheet and also circuit operating condition. 

The dynamic model presented in this chapter provides the building block for 

determining suitable control strategies to achieve better transient performance of the 

active front end induction motor drive. The control scheme is introduced in Chapter 5. 
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4 Active Front-End Motor Drive Control 

 

4.1 Chapter Overview 

In the previous chapter, the mathematical model of an active rectifier describing 

the dynamic behavior of the active rectifier was presented. Additionally a power loss 

model to estimate the heat dissipation in a rectifier module was also discussed. The 

purpose of this chapter is to present a suitable approach for controlling the rectifier 

dynamics. Apart from the front-end rectifier, the load-side inverter and induction motor 

are also part of the system configuration. The second half of the chapter is devoted to 

discussions on the mathematical model and field oriented control of induction motor.  

In Section 4.2 the ac side per-phase equivalent circuit and dc side equivalent 

circuit of the line-side converter will be discussed. The equivalent circuits are based on 

the system differential equations. In Section 4.3 a high gain feedback controller for 

controlling line currents will be introduced. A scheme for estimating angular frequency 

of source voltages in real time will also be discussed in this section. In Section 4.4 an 

input-output linearization controller to counteract the dc-link variations will be presented.  

For achieving better transient performance a feed-forward controller will be 

presented in Section 4.5. In Section 4.6, the complete control scheme and parameter 

measurements will be discussed. In Section 4.7 a mathematical model of an induction 

machine will be introduced. Further, a classical field-oriented controlled for induction 

motor will be discussed.      
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4.2 Dynamic Equations for an Active Front-End Converter 

For the purpose of fast response, the control is carried out in the d-q reference 

frame. This type of control is referred to as ‘field-oriented’ control. The starting point of 

the control is the system of non-linear differential equations which characterizes its 

behavior. As derived previously, the dynamics of an active front-end converter are given 

by a system of differential equations stated below, 

qeqedeqe
qe VRiLiE

dt
di

L −−−= ω           (4.1) 

dedeqede
de VRiLiE

dt
diL −−+= ω           (4.2)    

The differential equation governing dc-link voltage also needs to be added to the 

above set of system equations to completely define system dynamics. 

Mdc
dc ii

dt
dVC −=             (4.3) 

where, idc is the total dc-link current supplied by the rectifier, while iM is the load-side dc 

current which is the result of induction motor operation. The idc and iM currents are shown 

in Figure 4.1. Figure 4.2 and 4.3 show ac and dc side equivalent circuits respectively.  

The dc current, iM, can be viewed as a noise in dc-link voltage Vdc [13]. A positive 

iM (motoring-mode) will discharge the dc-link, while a negative iM (regeneration-mode) 

will charge the dc-link to a higher potential. If the dc-link current idc supplied by the line-

side converter equals to iM, then we have,  

0
dt

dVC dc = .   

In other words, dc-link voltage remains constant. 
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Figure 4.1 DC-link dynamics controlled by line-side converter 
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Figure 4.2 AC-side per-phase equivalent circuit 
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Figure 4.3 DC-side equivalent circuit of an active drive 
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In Equation 4.1, the terms Eqe and Ede are computed from source voltages, E1, E2, 

and E3. Since line voltages are known, the angular frequency, ω, can be easily estimated. 

The PWM voltages Vqe and Vde are the two inputs to the system which are generated 

using the sine-triangle PWM controller. LS and R represent series impedance. 

Figure 4.2 illustrates ac-side per-phase equivalent circuit representation of 

Equation 4.1. Vdqe appears as a controlled voltage-source which is a function of a 

modulation index and dc-link voltage Vdc. On the other hand, Figure 4.3 shows dc-side 

equivalent circuit representation of Equation 4.2. The dc-link current, idc, appears as a 

current source, which controls the capacitor voltage while supplying the current required 

by the motor load [16]. 

 

4.3 Control of Active Drive 

The above discussion sets up the non-linear control problem. The system to be 

controlled is basically multiple-input-multiple-output (MIMO) type system. The PWM 

voltage commands, Vqe and Vde, are the two inputs to the system. The resultant iqe, and ide 

currents are the output of the system. 

These two output currents are utilized for two different purposes. The iqe 

component is assigned to produce the desired reactive power ( qedeiEQ −= ). Thus, iqe is 

considered as a reactive compensation command. Further, the real component of line 

currents is required to maintain constant voltage across dc-link capacitor, and also to 

drive a physical load connected to the motor. Thus, ide is assigned to supply the desired 

real power ( dedeiEP = ) to the system.  
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The control problem is to choose Vqe and Vde in such a way as to force iqe and ide 

to track the respective reactive and real power reference trajectories.  

 

4.3.1 Feed-Back Control 

The suitable control strategy for the above mentioned non-linear system is the one 

which effectively eliminates the coupling between the two current components. This is 

done by forcing the system into current-command mode using high gain feedback. 

Firstly, the current reference commands need to be generated. 

To ensure constant dc-link voltage, the PI control loop is applied to the dc-link 

voltage error, resulting in the current reference command, ide*. The dc current, iM, fed to 

the load through an inverter is added to ide* to form a new current reference command as, 

MdcrefdcdPdcrefdcdIde iVVKdtVVKi +−+−= ∫ )(')('*
__        (4.4) 

Secondly, the reactive power compensation algorithm will generate a second 

current reference command iqe*. The PI controllers shown in Figure 4.4 are then applied 

directly to the error between current reference and actual values, as shown below.   

)*()*(*
dededPdededIde iiKdtiiKV −+−= ∫          (4.5) 

)*()*(*
qeqeqPqeqeqIqe iiKdtiiKV −+−= ∫          (4.6) 

By appropriately choosing the gains of the PI controllers, iqe and ide can be made 

to track iqe* and iqe* respectively. Consequently the new references, *
deV  and *

deV  for the 

PWM controller are generated. The PWM controller, if not saturated, will produce a 

switching pattern such that desired active and reactive power can be provided. 
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Figure 4.4 High-gain feedback controller for line-side converter 

 

4.3.2 Estimating Angular Frequency of Source Voltages 

A suitable choice of coordinate system, defined by the source voltages, is made in 

Chapter 3 to achieve better transient performance. The three-phase source voltages, 

separated by 120 electrical degrees, rotate at an angular speed of ω radians per second. 

Since the control is carried out in moving coordinates, all the variables must be converted 

to the moving coordinate system, rotating at an exact same angular speed of ω rad/ sec. 

The source voltage frequency usually remains unchanged during normal operation 

of the power system. However, even a small variation in ω will cause error in all the 

parameters that are transformed into the rotating coordinate system. This will result in 
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erroneous feedback and consequently affect the performance of the system. For this 

reason, the supply frequency needs to be tracked and continuously estimated in real time.   

Recall, for a given supply frequency, we choose d-q axes such that Eqe component 

always remains zero. Now if the supply frequency changes, Eqe will no longer be zero. 

The error in Eqe can be minimized by a PI controller to track ω in real-time as,  

)0()0( qePqeI EKdtEK −+−= ∫ω           (4.7) 

The new angular displacement θe, is then given by, 

∫ ⋅= dte ωθ              (4.8) 

By choosing appropriate gains for the PI controller the variations in supply 

frequency can be tracked accurately. This is illustrated in Fig 4.5 
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Figure 4.5 Supply voltage frequency estimation 
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4.4 Input-Output Linearization Control 

For a relatively constant Vdc, the field oriented high-gain feedback control 

scheme, explained in the previous section, removes the coupling effect. In other words, 

the current equations are decoupled, and the equations are linear as long as dc-link 

voltage is constant. Recall the system dynamic equations, 

qeqedeqe
qe VRiLiE

dt
di

L −−−= ω         

dedeqede
de VRiLiE

dt
diL −−+= ω           (4.9) 

Mdc
dc ii

dt
dVC −=  

The PWM voltages Vqe and Vde can be represented in terms of modulation index 

and dc-link voltage as, 

dcqeqe VMGV ⋅⋅=            (4.10) 

dcdede VMGV ⋅⋅=               (4.11) 

Where G is the PWM controller gain and Mqe and Mde are modulating vectors in 

d-q coordinates. For large variations in dc-link voltage; however, the equations are no 

longer linear. This situation arises when the motor load changes suddenly or during high 

acceleration and decelerations (regeneration) of motor shaft. 

During dc-link variations, the ide current reference varies as a function of Vdc. The 

dynamics of ide then interfere with the dynamics of iqe, resulting into unsatisfactory 

performance. This coupling of currents can be effectively eliminated by considering an 

input-output linearization controller. 
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In dynamic equations (4.9), Vqe and Vde are the inputs, controlled in such a way as 

to generate desired currents. Now define new variables '
qeV  and '

deV  such that, 

RiLiEVV qedeqeqeqe ++−= ω'         (4.12) 

RiLiEVV deqededede +−−= ω'         (4.13) 

So that the new system dynamic equations become, 

'
qe

qe V
dt

di
L −=             (4.14) 

'
de

de V
dt

diL −=            (4.15)  

In equations 4.14-4.15, the dynamics of ide and iqe are decoupled. The high gain 

feedback controller is then applied to these currents to generate new voltage commands.  

The final voltage commands however, should account for the substitution made in 

equations 4.12 and 4.13. Thus new voltage references are given by [12], [17]:   

RiLiEVV qedeqeqeqe −−+= ω'**          (4.16) 

RiLiEVV deqededede −++= ω'**         (4.17) 

 

4.5 Feed-Forward Compensation 

The linearization controller explained in the previous section decouples the two 

current controllers effectively, and allows the system operation during variable dc-link. 

However, the system still suffers from slow response.  
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Refer to the Figure 4.1 again, and consider following sequence of events. If the 

motor load changes suddenly, dc current iM will rise sharply, resulting in a dip in dc-link 

voltage. The linearization controller now tries to restore the dc-link voltage back to its 

reference value. If the rate of rise of dc current iM is faster than rate of restoration of dc-

link voltage, the Vdc will continue to decrease until it reaches zero potential. 

Alternatively, the rate of rise of iM can be restricted to avoid considerable decrease in dc-

link voltage. In other words the system time response would be slow. 

A better dynamic response is achieved by employing feed-forward compensation 

[18]. The power required to generate the desired electromagnetic torque is measured in 

the dc-link using dc voltage and current sensors. This power needs to be supplied from 

the source. Thus, the feed-forward compensation current id_f can be obtained from [17], 

de

dcdc
fd E

iV
Ki ⋅= 1_            (4.18)  

where, Ede is source voltage and K1 is proportional gain in feed-forward loop. K1 is 

allowed to vary to maintain the stability in the current loop, and it is also dependent on 

line voltage fluctuations. 

Figure 4.6 illustrates feed-forward compensation with input-output linearization 

controller. 

 

4.6 Complete Control Scheme for Active Front-End Converter 

Based on above discussions the complete control scheme for control of active 

front-end converter is implemented using two ac voltage sensors, three line current 

sensors, one dc current sensor, and one dc voltage sensor 
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Figure 4.6 Feed-forward compensation for input-output linearization controller 

 

Figure 4.7 illustrates the control of front-end converter. The two ac voltage 

sensors are connected to the source voltage. From these line sensors, the three source 

voltages (phase-neutral) are available for use. These voltages are further transformed into 

equivalent two-phase moving coordinates Eqe and Ede. The de-qe axes are aligned such 

that the Eqe component of the source voltages always remains at zero value. 

The next step is to generate current references. The ide reference is formed as a 

function of dc-link voltage variations and feed-forward compensation. The dc current iM, 

is measured by the dc current sensor placed on load-side of the capacitor. The iqe 

reference current is generated from the reactive power compensation command. In 

current-command control mode, the actual currents iqe and ide are forced to follow the 

reference commands using high-gain feedback and input-output linearization controller.  
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Figure 4.7 Complete control scheme for front-end converter 
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The new input for the system, Vqe and Vde, are fed to PWM controller to provide 

required switching pulses using either sine-triangle or space-vector PWM algorithm. The 

instantaneous values of currents iqe and ide, can be measured using three current sensors. 

Alternatively, they are estimated using the system dynamic model shown in Equation 4.9. 

In the model, L, ω, Eqe and Ede are all known; Vqe and Vde are unknown. The 

instantaneous values of PWM voltages are estimated from the switching signals to IGBT 

devices, and the dc-link voltage as shown below, 

)2(
4 321 SSSVV dc

qs −−=          (4.19) 

And  

)(3
4 32 SSVV dc

ds −⋅=          (4.20) 

where S1, S2, S3 are integer variables which cannot assume any values other than +1 and -

1.  

When the IGBT in the upper half of the first leg of the rectifier-bridge is switched 

on, + Vdc is connected to the phase-1 of the supply. Thus, S1 assumes value equal to 1. 

When this IGBT is switched off, - Vdc is connected to the phase-1 of the supply. Thus, S1 

assumes value equal to -1. In the same manner S2 and S3 assume value equal to either 1 or 

-1. This approach measures instantaneous values of PWM voltages without needing to 

employ three current sensors. 
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4.7 Induction Motor Control 

The field of induction motor control is well established today. The major 

challenges in controlling induction motors are: non-linear system dynamics, inability to 

measure control variables such as rotor flux and rotor current physically, and the motor 

parameters variations with heating such as variations in rotor resistance value. Taking 

these challenges into account, the universally accepted approach for controlling an 

induction motor is the field-oriented approach also referred to as vector control [19]. 

The field-oriented control deals with rewriting the system dynamic equations in a 

moving coordinate system that is rotating with the rotor flux vector. In this new 

coordinate system, the dynamics in motor torque and speed becomes linear, provided the 

rotor flux magnitude is kept constant. For a variable rotor flux, an input-output 

linearization controller is used that decouples the speed and rotor flux magnitude. 

 

4.7.1 Induction Motor Dynamic Model 

For field oriented control, the new coordinate system rotates with the rotor flux. 

Since rotor flux or rotor currents are not available for measurements, the rotor flux is 

estimated using a flux observer. The rotor flux linkages in a two-phase stationary 

reference frame are expressed as [19],  
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where, Raψ and Rbψ  are rotor flux linkages, pn is number of pole-pairs of induction 

motor, M is coefficient of mutual inductance between stator and rotor windings, RR  and 

RL  are rotor resistance and leakage reactance respectively. ω is the speed of rotation of 

rotor. iSa and iSb are the line currents in stationary two-phase coordinates. 

The motor currents can be measured using current sensors, which are then 

transformed to equivalent two-phase values iSa and iSb. A simple way to estimate rotor 

flux linkages is then to solve Equations 4.21 and 4.22. Once rotor flux linkages are 

known, the angular position in the moving coordinate system can be defined as,  

)(tan 1

Ra

Rb

ψ
ψρ −=           (4.23) 

22
RbRad ψψψ +=           (4.24) 

where dψ  is called the magnitude of rotor flux linkage and ρ  is the angle of rotor field 

flux. The motor currents and voltages are then rewritten in the moving coordinate system 

as, 
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where VSa and VSb are motor terminal voltages in an equivalent two-phase stationary 

reference frame. id, iq and Vd, Vq are the motor currents and terminal voltages in the 

moving reference frame, along d and q axis respectively. 

Using the above mentioned coordinate transformation, a mathematical model of 

an induction motor with state variables expressed in moving coordinates is given by, [19] 
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ωθ =
dt
d                        (4.26) 
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where ω is the angular velocity of the rotor, 
dt
dω  is angular acceleration, J is moment of 

inertia of the rotor, TL is load torque, and D is coefficient of friction. The electromagnetic 

torque developed is thus given by, qde iJT µψ= . RS and LS are stator resistance and 

leakage reactance respectively, while the motor constants are defined as, 
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This model is then used to develop an effective method of control. 

 

4.7.2 Feed-Back Control 

The effect of non-linear terms appearing in the dynamic model is eliminated using 

the high-gain feedback. For this, the first step is to find the current references. Desired 

rotor acceleration and load torque will decide how much electromagnetic torque needs to 

produced. The current reference iq* can be assigned to generate required electromagnetic 
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torque. Secondly, as explained before, for the torque and speed dynamics to remain 

linear, ψd should be kept constant. The second current command, id*, can be assigned the 

job of keeping ψd constant. The two current references are then given by, 

 010 /)().(*
drefrefq J

DKdtKi µψωωωωω






 +−+−= ∫      (4.32) 

000 )().(*
dddPddId iKdtKi +−+−= ∫ ψψψψ ψψ       (4.33) 

These new inputs iq* and id* are then given PI controllers to produce required 

motor terminal voltage references as below, 

)*()*(*
dddPdddId iiKdtiiKV −+−= ∫        (4.34) 

)*()*(*
qqqPqqqIq iiKdtiiKV −+−= ∫        (4.35) 

By proper choice of proportion and integral gains, id an iq can be forced to track 

their corresponding references. The resultant Vd* and Vq* commands are given to the 

inverter PWM controller, to produce required switching pulses for the IGBTs.  

The new motor terminal voltages, thus generated, will produce the 

electromagnetic torque, essential to drive the load at desired acceleration. At the same 

time the motor terminal voltages are such that the rotor flux magnitude is maintained 

constant. The complete motor control scheme is illustrated in Figure 4.8.  

 

4.8 Chapter Summary 

In this chapter, the control methods for a front-end converter and an induction 

motor were examined. The system dynamics on ac side and dc-side were discussed with 

the help of equivalent circuit representations. 



 74

 

 

Induction
Motor

Flux
Observer

IDQ DQ

Vq*

V3

V2

V1

iqs

ids

ρ ψd

θ
ω

iq

id

id* iq*

id*

iq*

ω θ

ρ

ψd

ψdrefωref idref

Vd*

Vq*

Vd*

iqs

ids

θ

)*()*(*
dddPdddId iiKdtiiKV −+−= ∫
)*()*(*

qqqPqqqIq iiKdtiiKV −+−= ∫

010 /)().(*
drefrefq J

DKdtKi µψωωωωω






 +−+−= ∫

000 )().(*
dddPddId iKdtKi +−+−= ∫ ψψψψ ψψ

 

 

Figure 4.8 Block diagram of motor controller 
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The feedback control strategy for the front-end converter was introduced next. 

Tracking the angular frequency of supply voltages was also discussed. Further, input-

output linearization controller was introduced to obtain satisfactory system performance 

under varying dc-link voltage. For better transient performance a feed-forward 

compensation loop was added to the linearization controller. The advantages of feed-

forward compensation were discussed. A block diagram of the complete control scheme 

was presented, and various inputs and outputs to the system were discussed. Further, the 

induction motor dynamic model was analyzed. The field-oriented control of induction 

motor with high-gain feedback was discussed. 

The control strategies to achieve better transient performance discussed in this 

chapter are used in next chapter to simulate various scenarios. 
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5 Simulation Results 

 

5.1 Chapter Overview 

The previous two chapters introduced the theory behind the research presented in 

this thesis. In this chapter, the simulation results will be presented. In Section 5.2, a 

methodology used in the research will be presented. The steps performed in simulating 

the various modes of operation and in evaluating the system performance will be listed. 

In Section 5.3 the simulation set-up and the software configuration will be discussed. 

In Section 5.4, the active drive operation with and without motor load will be 

simulated. The different features of an active drive, such as variable power factor and 

better control over dc-link voltage will be verified. In Section 5.5, the drive performance 

will be analyzed in detail. The simulation data will be used to address design issues, such 

as device rating, power loss, power quality, and thermal management system. Further, the 

drive will be simulated to define limits on the amount of reactive power that can be 

compensated.  

 

5.2 Methodology used in Research 

To evaluate the performance of active front-end drive by accurate simulations and 

to establish the limits on amount of reactive power that can be compensated was the main 

objective behind this work. The application targeted was a 50 hp induction motor driving 

a conveyor load and supplying maximum possible VARs to the utility.  

The broad task was organized into three major tasks:  
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• Present theoretical modeling and effective control strategy. 

• Accurately simulate system modes of operation.  

• Analyze system performance from point of view of device ratings, power losses, 

and power quality. 

The first step dealt with deriving the mathematical model of front-end converter 

connected to the utility. The d-q theory presented in Chapter 3 was used to derive the 

system model. Further, the different control principles suitable for independently 

controlling real and reactive power supplied to or consumed by the drive were presented 

in Chapter 4. Based on these discussions a comprehensive control scheme was developed. 

The remaining two tasks, outlined above, are elaborated in this chapter. 

 

5.2.1 Steps Performed in Simulating System Modes of Operation 

The simulations to demonstrate different modes of operation were divided in two 

stages. During the first stage, the load-side inverter and the induction motor was 

disconnected from the rest of the system. The front-end converter was then controlled to 

provide unity, leading, and lagging power factor to the utility, while dc-link variations 

were monitored. The magnitude of dc-link ripples and the step response to the reactive 

power command were used to gauge the effectiveness of the control scheme.  

Once the stability of the controllers and satisfactory system response was 

ascertained, the load-side inverter and motor load were connected to the dc-link. In the 

second stage, different operating scenarios were simulated. These include unity power 

factor operation and reactive compensation during motor acceleration and deceleration. 
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5.2.2 Steps Performed in Analyzing System Performance 

The task here was to use the modeling and simulations to analyze the drive 

performance for a given application. The application under consideration was: active 

front-end induction motor drive providing reactive power compensation to the utility. The 

analysis was carried out with regard to: 

1. Determining device voltage and current ratings. 

2. Amount of reactive compensation possible under different load conditions. 

3. Device power losses and thermal design considerations. 

4. Power quality issues such as total harmonic distortion (THD), during VAR 

compensation. 

First, the application specifications such as motor power rating and line-side 

power specification were determined. Appropriate dc-link voltage, capacitor and line-side 

inductance were chosen. The electrical parameters of the induction motor were identified. 

Accordingly, the motor field-oriented controller was carefully tuned to provide 

satisfactory variable speed operation. The induction motor was accelerated to the full 

load, while line-side power factor was maintained at unity. 

The currents carried by the devices and the voltage waveforms across the devices 

were analyzed to determine the ratings of IGBTs and anti-parallel diodes. Once the 

switches were selected, the characteristic curves of the respective switches were modeled 

to estimate the total power loss. The line-side power factor was maintained at unity and 

the motor load was varied in steps. The total harmonic distortion of line currents and 

power losses in active front-end converter were plotted.  
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Further, the reactive compensation command and the motor load were increased 

in steps in such a way that peak line current remained below the rated value. The 

maximum VAR compensated at each step thus defined the limit on amount of reactive 

power that can be compensated to the source. These limits are valid for a given ratio of 

dc-link voltage to the line voltage peak, and the current rating of the active switches. To 

ascertain the power quality at the line-side, total harmonic distortion of line currents was 

calculated in each step. 

 

5.3 Simulation Set-up 

Two three-phase, two-level converters were needed to implement the active drive 

configuration. One of the converters was connected to the three-phase, wye-connected 

source while, other was operated as a load-side inverter.  The power electronics switches 

employed in the simulations were ideal IGBTs, with no forward voltage drop and almost 

instantaneous switching times.  

The PSIM software package from Powersim Inc. was used to implement the 

active drive configuration with motor load. Figure 5.1 shows the complete circuit 

schematic. The complete hardware and sensors were implemented in PSIM. Secondly, 

Simulink, an extension to MATLAB, was used to implement the control functions. The 

“Simcoupler” module, provided by PSIM was used to interface control and power signals 

between PSIM and Simulink. Thus hardware configuration was separated from the 

system control functions. The simulation step-size in Simulink and PSIM was chosen to 

be 1 µs for better results. All the reference commands for desired operation and various 

control functions were generated in Simulink. Figure 5.2 illustrates the Simulink model.
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Figure 5.1 The hardware configuration 
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Figure 5.2 SIMULINK model for active front-end drive control 
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5.4 Demonstrating System Modes of Operation 

As mentioned before, two scenarios were considered to simulate different modes 

of operation. In the first case, there was no motor load connected to the dc-link while in 

the second case, the motor was operating at full load. The front-end converter was 

connected to the three-phase, wye-connected, 110 V (line-to-line), 60 Hz supply. The 

series inductance was chosen to be 10 mH. The dc-link voltage was maintained constant 

at 500 V to provide sufficient margin for current control. The dc capacitor was 700 µF. 

 

5.4.1 Without Motor Load 

In d-q coordinates the reactive power is given by, 

qede iEQ ⋅=              (5.1) 

Since the sign of Ede is chosen to be negative, a positive valued iqe results in 

leading line currents while, a negative valued iqe causes lagging line currents. Figure 5.3 

shows the  iqe component of line current following the step change in reference command. 

Accordingly, the line-side power factor changes from unity to leading and then lagging. 

This is shown in Figure 5.4. Note the time response to step change in compensation 

command. The transition from leading to lagging reactive current took only a few 

milliseconds. Figure 5.5 shows the effect of compensation on dc-link voltage. The 

maximum ripple magnitude was found to be 5 V, which is 1% of total dc-link voltage 

(500 V). The ide current reference changes according to the dc-link voltage variations so 

that the dc-link voltage ripple can be kept to the minimum value. Figure 5.6 shows the ide 

component of line current tracking the reference.  
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Figure 5.3 iqe component of line current tracking the compensation command 

 

 

Figure 5.4 Reversal of line current 
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Figure 5.5 DC-link variations during compensation 

 

Figure 5.6 ide tracking the reference to maintain constant Vdc 
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One important feature of an active-front end rectifier is the better control over dc-

link voltage. The step response of the dc-link controller to the step-change in dc-link 

voltage reference, shown in Figure 5.7, demonstrates this feature. As can be seen, it took 

a little more than one cycle (20 ms) for the Vdc to reach to the new reference value. 

The change in dc-link reference resulted in brief active current component for 

charging the dc-link capacitor, while the reactive current component remained nearly 

undisturbed. Figure 5.8 shows active and reactive current components. As can be seen, 

the decoupling control was clearly effective. 

The ability of the active front-end converter to smoothly control the dc-link 

voltage can be used in improving efficiency of large power motor drives. Traditionally 

the variable output power from motor drive is achieved by varying the modulation index 

and keeping the dc-link voltage constant. As pointed out in [20], the amplitude of 

modulation index affects the amount of current that flows through active devices in two-

level PWM inverter. Consequently, at low modulation indices the power loss in the 

inverter is considerably high when compared to output power resulting in low efficiency. 

The active rectifier, on the other hand, can provide variable output power by controlling 

the dc-link voltage to keep the modulation index close to one.  

Further, the percentage core losses in an induction motor are minimized when the 

inverter is operating at modulation index close to one [21]. In this case an active front-

end converter can improve the overall efficiency of the motor by varying the dc-link 

voltage and allowing the load-side inverter to be operated at higher modulation indices. 

The choice of variable dc-link operation is not available for the rectifier with phase-

controlled thyristors, due to the complexity of control and slow dynamic response [21]. 
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Fig 5.7 Step response of dc-link voltage controller 

 

Fig 5.8 Decoupled control of active and reactive current components 
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5.4.2 With Motor Load 

The effectiveness of decoupling control also needs to be proven when operating 

under full motor load. This was done by connecting the load-side inverter to a 110 V, 3 

hp, 6-pole induction motor. The motor fed a conveyor type load. The torque for the 

conveyor load varies linearly with angular speed of rotation. 

Since the motor will be used for a variable speed operation, the speed reference, 

ω, was set as an input to the motor controller. For the rectifier controller, iqe reference 

was set to provide desired reactive compensation during motor acceleration, deceleration, 

and constant speed operation. The motor load was 40 Nm. 

Figure 5.9 shows the speed command for motor controller and the reactive 

compensation reference for the rectifier controller. The motor was first accelerated to a 

speed of 120 rpm (revolutions per minute) in 0.5 seconds. The compensation started 

during constant speed operation at time, t = 0.6 seconds. At time, t = 0.7 seconds, the 

motor began decelerating.  

Figure 5.10 illustrates line current at unity power factor and later at leading power 

factor with respect to the line voltage. As can be seen in Figure 5.11, the iqe component of 

line current followed the reactive compensation reference while, ide component provided 

real power required for acceleration and deceleration. The two current components 

remained unaffected by each other, thereby illustrating independent control over real and 

reactive power. The actual currents drawn by the motor are shown in Figure 5.12 

emphasizing healthy operation of motor.  
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Figure 5.9 Reactive compensation and Motor Speed commands 

 

 

Figure 5.10 Unity and leading power factor at the source 
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Figure 5.11 Decoupled control during motoring operation 

 

Figure 5.12 Motor currents during the motor acceleration and deceleration 
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5.5 Active Front-End Inverter System Design and Analysis Issues 

A 50 hp induction motor was considered to analyze performance of an active 

front-end drive and to discuss the design issues. First step was to select system 

parameters such as converter power rating, dc-link voltage, dc capacitance, reactance of 

line-side inductor. Further, induction motor parameters needed to be identified to achieve 

satisfactory performance from the field-oriented controller. 

 

5.5.1 System Specifications 

The induction motor specifications were: 50 hp, 480 V, 60 Hz, 6-pole, with base 

speed of 1200 rpm. The mechanical load connected to the motor was conveyor type load. 

The torque for the conveyor load, TL is defined by, 

ω⋅= KTL  Nm              (5.2)  

where, K is a torque constant and ω is motor speed in radians per second. 

The torque constant is chosen to be equal to 2.8 so that the mechanical torque at 

1100 rpm would be, 

 53.3221100
60
28.2 =∗∗= π

LT  Nm          (5.3) 

The steady state motor output power would be, 

153.3753.3221100
60
2 =∗∗= π

mechP  kW         (5.4) 

Further, the parameters for an equivalent circuit model of the induction motor 

used in the simulations were: 

Stator resistance, Rs = 0.294 Ω; 
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Stator Reactance, Ls = 1.39 mH; 

Rotor resistance, Rr = 0.156 Ω;  

Rotor Reactance, Lr = 0.74 mH; 

Magnetizing Reactance, Lm = 41 mH; 

The motor parameters were assumed to be known. In practice however, the 

equivalent-circuit parameters can be estimated using laboratory tests [22]. The tests 

generally performed are a dc test, no-load test, and a blocked rotor test. Stator resistance 

can be found by a dc test. The remaining parameters can be determined by performing the 

no-load test and blocked-rotor test. 

The supply side had a three-phase, wye-connected, 480 V (line-to-line), 60 Hz 

source. The dc-link voltage needs to be chosen as shown in Equation 5.4, so that the 

front-end rectifier can generate sinusoidal PWM voltages [1]. 

23
2 dcll VE

≤∗             (5.5) 

where E11 is line-to-line supply voltage and Vdc is dc-link voltage. 

A higher Vdc is desired, because the voltage ratio between the E11 and Vdc imposes 

a limit on amount of reactive power that can be compensated [11]. However, higher Vdc 

means the active devices have a higher voltage rating. The dc-link voltage is selected to 

be equal to 1000 V as a trade off between reactive compensation capabilities and the 

device voltage rating. This choice obviously satisfies the condition laid down by 

Equation 5.5. The line-side resistance, R, was equal to 1 Ω while, the line reactance, L, 

was chosen as 10 mH. The dc-link capacitor was selected to be equal to 1000 µF so that 

dc-link voltage ripples could be kept to the minimum level.   
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5.5.2 Device Power Rating Considerations 

To define device voltage and current ratings, the induction motor needed to be 

driven at full load. As explained in Chapter 4, the KP and KI gains for the field-oriented 

controller were properly chosen based upon the induction motor parameters. The motor 

was accelerated to 1100 rpm. The line current was maintained at unity power factor with 

respect to supply voltage. 

The maximum voltage that the IGBT and anti-parallel diode have to block is Vdc 

(1000 V). As a result, the voltage rating of switches in both the front-end converter and 

line-side inverter was selected to be 20% more than the dc-link voltage i.e. 1200 V. It 

was later shown that when the motor load was varied in steps and reactive compensation 

limit set at different levels, the maximum fluctuations in dc-link voltage remained less 

than 3% (30 V). Thus, the 20% margin in device voltage rating was considered to be 

sufficient. For any dc-link voltage swings, greater than 15% (150 V) the converter 

operation would be halted. 

The peak current that flows through the switches in front-end converter is the 

peak line current. Figure 5.13 shows that the peak current of 100 A was carried by IGBT 

and feedback diode at full load. Consequently, the current rating for the switches was 

selected to be 150 A, with 50% overcurrent margin. Similarly as seen in Figure 5.14, for 

a 480 V motor, the peak current to drive a 50 hp load was 85 A. This suggests the same 

devices used for front-end converter can be used for load-side inverter as well. As a result 

there is an opportunity for a modular design with simplified assembly and repair.   
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Figure 5.13 Current flowing through IGBT and anti-parallel diode at full motor load 

 

Figure 5.14 Motor currents for 322 Nm load at 1100 rpm (50 hp) 
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Further, to ensure correctness of simulated values of currents and voltages, a 

power balance at the source and load side needs to be verified. Accordingly, power at the 

input and output terminals of motor is given by, 

φcos3 ⋅⋅⋅= IVPin  And Lout TNP ⋅⋅=
60

2π          (5.6) 

where, the motor power factor is 0.86 and the load torque, TL = 322.54 Nm. 

Thus, the real power at the input and output of the motor is,    

4297386.0
2

854803 =∗∗∗=inP  W          (5.7) 

3715354.322
60

11002 =⋅⋅= πoutP  W           (5.8) 

The motor copper losses, core losses and friction losses accounted for the 

remaining (Pin - Pout) 5820 watts. Figure 5.15 shows real and reactive currents. 

 

Figure 5.15 Real and reactive current components 
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Similarly power on the supply side can be calculated. Figure 5.15 shows the real 

component of line current to be equal to 119 A, while the reactive current component is 

zero. Recall that real and reactive power in d-q coordinates are given by,  

dedell iEIEP ⋅=⋅= ϕcos3             (5.9) 

qedell iEIEQ ⋅=⋅= ϕsin3          (5.10) 

From Equation 5.9 and 5.10, we can write,  

22  
cos

qede

de

ii

i

+
=ϕ           (5.11) 

Further, the line-to-line supply voltage, Ell, is given by, 

22
qedell EEE +=            (5.12) 

Since, Eqe = 0, the Ede component would be 480 V. Thus, the real power supplied 

by the converter was,  

57120119480 =∗=P  W.          (5.13) 

From Figure 5.13, the peak line current was found to be 98 A. So, for the line side 

resistance of 1 Ω, the power at the input of the rectifier, Prect, was,   

4271414406571203 2 =−=⋅−= RIPPrect  W       (5.14) 

Because the switches used in the simulation were all ideal devices, there was no 

power loss in the rectifier, dc-link, or inverter. Thus the power at the input of rectifier 

should be equal to the power at the input of the motor. From Equation 5.6 and 5.7 we 

have inrect PP ≈  ( 4271442973 ≈ ). This illustrates power balance between source and a 

load. The small difference in Prect and Pin is an error in ide and line current measurements.  
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5.5.3 Thermal Management System Issues 

Based on the voltage and current requirements for the front-end converter, the 

switching device recommended was: 1200 V, 150 A, IGBT module (Module No: 

CM150DY-24NF) with built in free-wheeling diode, supplied by POWEREX Inc. 

The thermal loss model discussed in Chapter 3 was used to estimate power losses. 

Depending upon how much heat needs to be dissipated, a suitable thermal management 

system will be recommended. First, the characteristic plots for the selected device were 

modeled in MATLAB. Figure 5.16 shows IGBT collector-emitter saturation voltage 

characteristics provided in device datasheet while, Figure 5.17 shows the actual 

characteristics modeled in MATLAB using curve-fitting techniques. In a similar way, 

IGBT switching loss characteristics, free-wheeling diode forward, and reverse recovery 

characteristics were also plotted.  

The switching loss curves provided in the device data-sheet assume a common dc-

link voltage of 600 V. Moreover, the switching energy is expressed in units of mJ/Pulse. 

The term, “Pulse”, constitutes one period of a switching cycle. So the actual switching 

losses for a 1000 V dc-link voltage and a switching frequency of 4 kHz were calculated 

as [15], 

600
1000

__ ∗∗= swonratedswonsw fEE  W        (5.15) 

600
1000

__ ∗∗= swoffratedswoffsw fEE  W        (5.16) 

where, Esw_onrated and Esw_offrated are switch-on and switch-off energy losses in mJ per 

pulse at 600 V.  
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Figure 5.16 IGBT collector-emitter characteristics provided by the device data-sheet 

 

Figure 5.17 IGBT collector-emitter curve modeled in MATLAB 
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To estimate the maximum heat dissipation, the front-end converter was operated 

to the full capacity at unity power factor. The conduction and switching losses for one 

IGBT module at the peak line current of 98 A are shown in Figure 5.18. The conduction 

and reverse recovery losses in the free-wheeling diode are shown in Figure 5.19.  

The average total power loss per switching device (IGBT + diode) is given by, 

)()( _____ diodeRRIGBTSWoffIGBTSWonIGBTConddiodeCondL PPPPPP ++++=    (5.17) 

From Figure 5.18 and 5.19, the average power loss per device, PL, was:  

946453211 =+++=LP  W         (5.18) 

 The amount of heat that can be taken away from the device junction to ambient is 

given by [23], 

sacsjc

aj
L RRR

TT
P

θθθ ++
−

=          (5.19)   

where, Rθjc is the device junction-to-case thermal resistance, Rjcs is the case-to-heat sink 

thermal resistance, and Rθsa is the heat sink-to-air thermal resistance. The thermal 

resistance is expressed as °C/W. 

From the device data-sheet, Rθjc is 0.25 °C/W and Rjcs is 0.093 °C/W. The 

maximum junction temperature recommended is 125 °C. Considering the worst case 

ambient temperature of 50 °C, we can calculate Rθsa as,  

saRθ++
−=
093.025.0

5012594 ; Thus, 45.0=saRθ  °C/W      (5.20) 

It is not possible to get an appropriate sized heat sink with natural convection 

which provides Rθsa as low as 0.45 °C/W [23]. Thus for this application, a heat sink with 

forced air cooling is recommended. 



 99

  

Figure 5.18 IGBT power losses at peak load 

 

Figure 5.19 Free wheeling diode power losses at peak load 
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5.5.4 Power Quality Considerations 

As mentioned before in Chapter 2, the motor drive with an active front-end 

provides a much improved interface with power grid. By drawing line currents at unity 

power factor it eliminates the need for installing a reactive compensator. However, the 

line current distortions still need to be monitored. Because, highly distorted line currents 

at unity power factor will introduce harmonics in line voltage, thereby affecting the other 

loads connected to the system.  

To monitor power quality, a motor load is changed from full load to no load in 

steps of 10%. At each step, total harmonic distortion was monitored. Table 5.1 shows line 

currents, real and reactive power, current THD and power losses for each step. Based on 

this data, a current THD is plotted against % of motor load as shown in Figure 5.20.     

 

Figure 5.20 Total harmonic distortions in line current at unity power factor 
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Table 5.1 Drive parameters at different motor loads 

 

Motor 

Load 

Ide 

(A) 

Iqe 

(A) 

I_line 

Peak (A) 

Ede ide 

(kW) 

THD in line 

current (%) 

Total Power 

losses (W) 

100% 120 0 97 57.6 2.4 564 

90% 99 0 80 47.5 2.5 480 

80% 84 0 68 40.3 3.3 420 

70% 72 0 59 34.5 3.5 348 

60% 58 0 49 27.8 4.5 300 

50% 48 0 40 23 5.0 252 

40% 37 0 31 17.7 7.0 198 

30% 27 0 22 12.9 10.0 150 

20% 19 0 17 9.12 16.0 108 

10% 10 0 9 4.8 30.0 72 
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5.5.5 Limits on Reactive Compensation 

In this section the amount of reactive power that the active drive can compensate 

at different load levels is investigated. Again, the motor load was varied from 100% to 

10% in ten steps. For each step the reactive compensation command was selected such 

that the peak line current remained within the rated value of 100 A. 

From Equation 5.9 and 5.11 we can write,  

de

qede

ll E
ii

IE
=

+

⋅
22  

3            (5.21) 

where, I is the RMS line current.  

Since Ell = Ede, the line current peak, Ipeak,  is given by, 

22  
2
3

qedepeak iiI +∗=          (5.22) 

Note that, for the same motor load, the ide current drawn by the rectifier during 

reactive compensation will be different from the ide current drawn without reactive 

compensation. The reason for this is that during reactive compensation the dc-link 

variations will be different from the variations at unity power factor operation. As a 

result, more real power in the form of dede iE ⋅  will be needed to restrict dc-link variations 

to the minimum level. 

Table 5.2 shows real power, reactive power limits, and the corresponding line 

current peak value. The table also shows the line current THD, power losses, and 

maximum change in dc-link voltage, ∆Vdc at each step. The total power loss, PT, was 

further split into switching loss, Psw, and conduction loss, Pc.  
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Table 5.2 Drive parameters during reactive compensation at different motor loads 

Motor 

Load 

Ide 

(A) 

Iqe 

(A) 

I_line 

peak (A)

Ede ide 

(kW) 

Reactive 

compensation 

Ede iqe (kVAR) 

Line 

current 

THD (%) 

DPF at 

line side 

Power 

Loss 

(W) 

∆Vdc 

(V) 

100% 120 0 98 57.6 0.00 2.34 1.0 570 23 

90% 110 50 99.5 52.8 24.00 2.35 0.910 588 21 

80% 101 65 99 48.48 31.2 2.45 0.841 582 20 

70% 92 78 99 44.16 37.44 2.40 0.763 585 20 

60% 84 86 98.5 40.32 41.28 2.45 0.698 570 20 

50% 76 95 99.3 36.48 45.6 2.7 0.624 582 15 

40% 65 101 98 31.2 48.48 3.15 0.537 588 18 

30% 58 106 98.5 27.84 50.88 3.5 0.480 600 20 

20% 50 110 99 24.00 52.8 3.7 0.414 594 22 

10% 44 115 99.7 21.12 55.2 4.5 0.344 630 25 
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The peak line current, real power, and the maximum possible reactive power 

compensation at each load step are shown in Figure 5.21. As can be seen, with increase in 

motor load, the maximum allowable reactive compensation decreases, so that the peak 

line current can be kept below rated value.  

The front-end converter, when operating at full load at unity power factor, draws 

57.6 kW active power. At 90 % motor load, the active power drawn by the front-end 

converter was 52.8 kW (91.67 %) while, the reactive power compensated was 24 kVAR 

(41.67 %). Note, that at 90% motor load, the maximum change in dc-link voltage, ∆Vdc, 

was 20 V. Since the power devices used in the simulation were ideal switches with no 

power loss, all the additional real power (kW) drawn by the front-end converter was 

utilized for charging the dc-link capacitor, so that ∆Vdc could be reduced to zero. 

 

Figure 5.21 Reactive compensation limits for active drive 
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Figure 5.22 illustrates line current THD at different compensation levels. The 

maximum distortion, 4.5 %, occurred at 10% load. As motor load increases to its rated 

value, the ide component of line current becomes dominant. Consequently, the 

displacement power factor approaches to unity while total harmonic distortion also 

reduces. 

Figure 5.23 shows the total power loss and switching loss along with conduction 

losses in IGBT and diode. During the load and reactive power changes, the switching loss 

remained constant. Further, as displacement power factor moves from highly leading 

towards unity, the IGBT conduction loss increases while, conduction loss in the free-

wheeling diode reduces. Consequently, the total power loss also decreases by a small 

amount.       

Further, it can be seen from Table 2.2 that, at all operating conditions, the 

maximum decrease in the dc-link voltage was about 25 V (< 3%). The less ripple in dc-

link means a dc capacitor with lower capacitance can be used.  

 

5.6 Chapter Summary 

In this chapter several topics were discussed. A methodology used in the research 

was presented first. Three main tasks attempted in this research were: theoretical 

modeling and control of active front-end drive, simulation of system modes of operation, 

and performance analysis. The simulation setup and software configuration used was then 

presented.  
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Figure 5.22 Line current THD and displacement power factor during compensation 

 

Figure 5.23 Device power losses during compensation 
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Some of the simulation results obtained from active front-end drive operating 

with and without motor load were then presented. Further, the modes of operation such as 

variable power factor operation and dynamic control over dc-link voltage were 

demonstrated. Based on simulation data, several design related issues such as device 

rating, power loss, power quality, and thermal management system were discussed. In the 

end, the simulations performed to define reactive compensation limits were discussed. 

In the next chapter, a brief summary of the thesis will be given. From this 

summary, some conclusions regarding the research will be made. Finally, some 

suggestions on future research will be given.    
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6 Summary and Conclusions 

 

6.1 Chapter Overview 

In this chapter some concluding remarks regarding the research will be provided.  

In Section 6.2 a brief summary of the thesis will be given. Based on the simulation results 

presented in Chapter 5, some conclusions regarding the research will be made in Section 

6.3. The key features of an active rectifier useful in certain applications were also 

discussed in this section. Section 6.4 will provide suggestions for possible future research 

in the area of active front-end drive for VAR compensation and harmonic filtering.  

 

6.2 Thesis Summary 

To investigate reactive compensation capabilities of an active front-end drive by 

accurate simulations was the principal motivation behind this thesis work. The 

mathematical model of the front-end converter was established. A suitable control 

strategy for decoupled control of real and reactive power was formulated. The 

simulations were performed to evaluate system performance. Based on simulation results, 

the limits on reactive power compensation were established. 

Chapter 1 and 2 served to provide an introduction to the active front-end 

technology used in drives and also some background information regarding the power 

compensation techniques used in the power system. In Chapter 1, a brief summary of 

research to be presented in the thesis was first provided. A circuit topology used for 

reactive power compensation comprising a front-end rectifier, a load-side inverter, and an 
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induction motor was presented. Further, basic operating principle and modes of operation 

of active drive were discussed. The research goals and the thesis outline were also 

presented. 

In Chapter 2, a detailed background pertaining to reactive power compensation in 

the power system and power quality issues such as sources of harmonics and their effects 

was given. The role of power electronics in improving the ac grid power was reviewed. 

The interpretations of instantaneous real and reactive power were also discussed. A 

comparison between traditional drives with phase-controlled rectifiers and drives with 

active front-ends was presented. 

Chapter 3 and 4 discussed theory behind modeling and control of active front-end 

inverter. In Chapter 3, a dynamic d-q model, needed for a fast transient response of an 

active drive was derived. Since the control was to be carried out in d-q coordinates, the 

real and reactive power definitions in d-q coordinates were presented. The compensation 

characteristics and the steady state controllability of the active front-end converter were 

also discussed. Further, the power loss model to estimate the conduction and switching 

losses in IGBTs and free-wheeling diodes was presented. The total heat dissipation 

estimated from the loss model was used in Chapter 5 to recommend a suitable thermal 

management system for a high power active drive.         

In Chapter 4, an effective approach for controlling the rectifier dynamics was 

derived. Based on system differential equations, an ac-side per-phase equivalent circuit 

and a dc-side equivalent circuit models for the front-end converter were introduced. A 

high gain feedback controller for controlling the magnitude and phase of the line currents 

was then discussed. A scheme for estimating angular frequency of source voltages in real 
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time was also discussed.  

An input-output linearization controller to effectively decouple the real and 

reactive current components during the dc-link variations was discussed next. For 

achieving better transient performance, a feed-forward controller was also presented. In 

addition to the front-end rectifier, the control of the load-side inverter and induction 

motor also needed to be discussed. In the later part of Chapter 4, a mathematical model of 

an induction motor was introduced. Further, a classical field oriented control of induction 

motor was discussed in detail. 

In Chapter 5, the simulation results were presented. The simulation set-up and the 

software configuration used were discussed first. The steps performed in simulating 

various modes of operation and in evaluating the system performance were listed as well. 

The active drive was simulated with and without motor load, and the different key 

features of the drive, such as variable power factor and better control over dc-link 

voltage, were demonstrated.  

Further, the drive performance was analyzed under different load scenarios to 

address design issues such as device rating, power loss, power quality, and thermal 

management system. The simulation data was interpreted to determine the maximum 

reactive power that can be compensated for a given motor load.  

 

6.3 Conclusions from Research 

Compared to conventional AC drives with phase-controlled rectifiers, the active 

front-end drives provide faster dynamic response, better control over dc-link voltage, and 
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improved power grid interface with minimum harmonic distortions. The active front-end 

drives also have integrated line regeneration capability.     

This thesis presented a methodic approach to analyze the performance of an active 

front-end induction motor drive. By establishing the expected performance, technical 

risks in actual development will be reduced. Further, the research also helps identify the 

device selection and system design issues prior to the actual design itself.  

A controller for the active rectifier was presented which consists of an outer dc-

link voltage regulation loop and inner current regulation loop. A faster dynamic response 

is obtained by including the load power feed-forward compensation.  

The decoupled control presented allows independent control over real and 

reactive power. This makes variable power factor operation possible. The simulation 

results demonstrated faster time response of the current controllers to the step change in 

compensation command. 

The simulation results also show that the active power drawn by the rectifier is 

more than the power required to drive the motor load. The additional active power is used 

to charge a dc-link capacitor. Thus, the maximum reactive compensation depends upon 

the amount of active motor load as well as the maximum ripple in the dc-link voltage. 

This compensation limit is valid for a specified ratio of peak line voltage to dc-link 

voltage, and also for a specified current rating of active switches. 

A fast dynamic response of the active rectifier helps regulate the dc-link voltage 

to a desired value and makes it immune to the load and line variations. The maximum dc-

link ripple at different operating conditions was found to be below 3 %. Thus, the dc-link 

capacitance can be significantly lowered and there is possibility of using film capacitors 
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instead of expensive electrolytic capacitors [24]. This will result in less number of 

failures, thereby improving the reliability of the drive measured in terms of the mean-

time-between-failures (MTBF).  

The current and voltage rating of the active devices used in inverter and rectifier 

was found to be identical. Thus the same devices and the associated gate drivers can be 

used for both inverters and rectifiers. This presents an opportunity for modular design, 

resulting in simplified assembly and repair. 

The power loss in switching devices was found to be considerably high. Even 

with a low switching frequency of 4 kHz, a heat sink with forced cooling system was 

required. With increase in power rating or switching frequency, the water cooled thermal 

management system would be necessary to dissipate the extra heat generated. 

Alternatively, emerging devices such as silicon carbide based IGBTs or MOSFETs with 

high temperature handling capabilities need to be investigated for such high power 

applications. 

Unlike traditional phase-controlled rectifiers, the active rectifiers do not draw 

lagging currents from the utility, eliminating the need for additional VAR compensator 

for high power applications. Secondly, the line current total harmonic distortion at the 

supply-side was below 5 % even for highly leading power factor. The improved power 

grid interface argues well for using active front-end rectifier not only for the high power 

drives, but also for providing utility interface to the distributed energy sources such as 

micro-turbine generators and wind power generators. 

One obvious drawback of the active front-end drives is the high cost on account 

of extra active devices used in the rectifier. This restricts the use of active front-end 
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drives for large power applications where the extra cost is justified either by operating at 

unity power factor, providing integrated line regeneration capabilities, or supplying 

reactive power compensation to the utility. 

 

6.4 Future Research 

One interesting area for the future research would be to extend the capabilities of 

active drive for harmonic elimination [25]. In the research presented in this thesis, the 

reference command for reactive power compensation, iqe, was considered to be a dc 

value. This is because, the sinusoidal line currents with angular frequency of ω, are 

transformed into the dc quantities in the d-q coordinate system rotating at the same 

angular frequency, ω. Thus the compensation achieved in this case was the fundamental 

frequency reactive compensation. Alternatively, a new iqe reference can be generated 

which is the combination of fundamental frequency as well as the harmonic frequency 

components of line current. By using the same decoupled control principle that was used 

for VAR compensation, the resultant line currents can be made to eliminate the harmonic 

components from the source. The active drive thus can also provide harmonic filtering. 

Another suggestion for future research concerns dynamically controlling dc-link 

voltage to keep inverter modulation index close to one. For two level inverters, keeping 

the amplitude of modulation index close to one reduces the power loss and improves the 

efficiency [20]. Similarly for induction motor this results into reduced core losses [21]. In 

future research, this idea of changing the dc-link voltage dynamically to maintain 

modulation index close to one can be explored.   
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For the input-output linearization controller used in this research, the exact values 

of line inductor, resistor and angular frequency are required. The angular frequency is 

estimated in real time, so it is known accurately. Further, as the voltage drop across the 

series impedance and the line currents are known, it should be possible to estimate the 

series inductor and resistor values. The series impedance at the supply side does not 

change in the same manner as induction motor parameters. However, estimating the 

series impedance value would eliminate the need to tune the controller for every little 

change made in system configuration, thus making the controller more robust. 

Most often the active front-end drive is considered for high power applications. 

At such high power ratings the amount of current that can be handled by the IGBTs used 

in two-level inverter, the dc-link voltage level, and also the switching losses impose a 

limit on the amount of reactive power that can be compensated. Alternatively, in future 

research, a cascaded multilevel inverter can be studied for providing reactive 

compensation while also driving the induction motor load. 

 

6.5 Chapter Summary 

The purpose of this chapter was to provide concluding remarks. A brief summary 

of the thesis was first provided. Following this summary, some conclusions regarding the 

research were then made. Some topics concerning future research in the area of 

multilevel inverters were also discussed. 
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