
University of Tennessee, Knoxville
Trace: Tennessee Research and Creative
Exchange

Masters Theses Graduate School

12-2009

An Exploration of Monophonic Instrument
Classification Using Multi-Threaded Artificial
Neural Networks
Marc Joseph Rubin
University of Tennessee - Knoxville

This Thesis is brought to you for free and open access by the Graduate School at Trace: Tennessee Research and Creative Exchange. It has been
accepted for inclusion in Masters Theses by an authorized administrator of Trace: Tennessee Research and Creative Exchange. For more information,
please contact trace@utk.edu.

Recommended Citation
Rubin, Marc Joseph, "An Exploration of Monophonic Instrument Classification Using Multi-Threaded Artificial Neural Networks. "
Master's Thesis, University of Tennessee, 2009.
https://trace.tennessee.edu/utk_gradthes/555

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Tennessee, Knoxville: Trace

https://core.ac.uk/display/268808236?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://trace.tennessee.edu
https://trace.tennessee.edu
https://trace.tennessee.edu/utk_gradthes
https://trace.tennessee.edu/utk-grad
mailto:trace@utk.edu

To the Graduate Council:

I am submitting herewith a thesis written by Marc Joseph Rubin entitled "An Exploration of
Monophonic Instrument Classification Using Multi-Threaded Artificial Neural Networks." I have
examined the final electronic copy of this thesis for form and content and recommend that it be accepted
in partial fulfillment of the requirements for the degree of Master of Science, with a major in Computer
Science.

Jens Gregor, Major Professor

We have read this thesis and recommend its acceptance:

James Plank, Bruce MacLennan

Accepted for the Council:
Carolyn R. Hodges

Vice Provost and Dean of the Graduate School

(Original signatures are on file with official student records.)

To the Graduate Council:

I am submitting herewith a thesis written by Marc Joseph Rubin entitled “An Exploration of
Monophonic Instrument Classification Using Multi-Threaded Artificial Neural Networks.” I
have examined the final electronic copy of this thesis for form and content and recommend that it
be accepted in partial fulfillment of the requirements for the degree of Master of Science, with a
major in Computer Science.

Jens Gregor, Major Professor

We have read this thesis
and recommend its acceptance:

James Plank

Bruce MacLennan

Accepted for the Council:

Carolyn R. Hodges
Vice Provost and Dean of the Graduate School

(Original signatures are on file with official student records.)

An Exploration of Monophonic Instrument Classification
Using Multi-Threaded Artificial Neural Networks

A Thesis Presented for the
Master’s of Science Degree of Computer Science

The University of Tennessee, Knoxville

Marc Joseph Rubin
December 2009

ii

Abstract

The use of computers for automated music analysis could benefit several aspects of

academia and industry, from psychological and music research, to intelligent music selection and

music copyright investigation. In the following thesis, one of the first steps of automated

musical analysis, i.e., monophonic instrument recognition, was explored. A multi-threaded

artificial neural network was implemented and used as the classifier in order to utilize multi-core

technology and allow for faster training. The parallelized batch-mode backpropagation

algorithm used provided linear speedup, an improvement to the current literature. For the

classification experiments, eleven different sets of instruments were used, starting with

perceptively dissimilar instruments (i.e., bass vs. trumpet), moving towards more similar

sounding instruments (i.e., violin vs. viola; oboe vs. bassoon; xylophone vs. vibraphone, etc.,).

From the 70 original musical features extracted from each audio sample, a sequential forward

selection algorithm was employed to select only the most salient features that best differentiate

the instruments in question. Using twenty runs for each set of instruments (i.e., 10 sets of a

50/50 cross-validation training paradigm), the test results were promising, with classification

rates ranging from a mean of 76% to 96%, with many individual runs reaching a perfect 100%

score. The conclusion of this thesis confirms the use of multi-threaded artificial neural networks

as a viable classifier in single instrument recognition of perceptively similar sounding

instruments.

iii

Table of Contents

Chapter 1: Introduction 1

1.1 Motivation...1
1.2 Summary of Previous Literature: Automatic Classification of Monophonic Instruments....3
1.3 Overview of Remaining Chapters..7

Chapter 2: Parallelization of an Artificial Neural Network 8

Chapter 3: Experimental Setup 25

3.1 Input ...25
3.2 Computing Involved..26

3.2.1 Feature Extraction ..26
3.2.2 Feature Selection ..31
3.2.3 Training and Testing the Parallel Neural Network ..34

Chapter 4: Results and Analysis 35

4.1 Analysis of Results..48
4.1.1 Breakdown of Classifications ...48
4.1.2 Statistical Analysis ...53
4.1.3 A Look at Selected Features ...56
4.1.4 Further Testing On Larger Sets...56

Chapter 5: Conclusion and Future Direction 59

References 62

Appendices 68

Appendix A: Digital Signal Processing of the Audio Signal: Common Techniques 69

A.1 Spectral Features: ...69
A.2 Temporal Features:...77

Appendix B: Glossary of Extracted Audio Features 80

Vita 87

iv

List of Tables

Table 1: Features extracted from each audio file processed ...30
Table 2: Summary of Classification Results ..38
Table 3: List of selected features for each set of instruments using the SFS algorithm with a p

value of 0.001 ...39
Table 4: Breakdown of all 2-class classification experiments. ...52
Table 5: Results of MANOVA and correlation with classification statistics54
Table 6: Total count of selected features through all experiments..57

v

List of Figures

Figure 1: Logistic sigmoid transfer function is commonly used as the activation function in
neurons ...9

Figure 2: Hyperbolic tangent sigmoid transfer function is another commonly used activation
function in neural networks ...10

Figure 3: Algorithm used for a parallelized implementation of a neural network in batch
mode………………………………………………………………………………………...11

Figure 4: Parallel summation of delta weights. In this picture there are 4 threads, each with its
own calculated weight matrix w0 – w3. Each thread (red, blue, yellow, green) updates a
portion of the global weight matrix, wGlobal, in parallel. ..17

Figure 5: Large XOR dataset, box-plot of time to train (the red line is median)19
Figure 6: Large XOR dataset, calculated speed-up ..20
Figure 7: Large XOR dataset, processor efficiency..21
Figure 8: Mean percent classified for the large XOR dataset per 1, 2, 4 and 8 threads. Note how

the percent classified does not vary as the threads increase ..22
Figure 9: Weight matrices for the final trained neural network for the first run. Note how all the

weight matrices are equal ..23
Figure 10:Mean square error per thread over 10000 epochs. The MSE's for each thread did not

differ, as the 'diff' utility in UNIX did not reveal any differences between the error24
Figure 11: Acoustic bass, before trimming off the psuedo-silence ...27
Figure 12: Acoustic bass, after trimming the pseudo-silence from the beginning and end of signal

..28
Figure 13: Acoustic bass divided into 50% overlapping, 50 ms frames......................................29
Figure 14: The time (in minutes) for the neural network to train, before and after selecting

features using the forward selection algorithm...32
Figure 15: Percentage of samples classified correctly by a neural network trained with all

features (No SFS), and only selected features (SFS) ..33
Figure 16: Group scatter plot of the first three canonical principal components of bass and

trumpet..36
Figure 17: Summary of classifications ..37
Figure 18: Group scatter plot of the first three canonical principal components of a piano, flute,

bass and trumpet ...40
Figure 19: Group scatter plot of the first three canonical principal components of electric and

acoustic guitars..41
Figure 20: Group scatter plot of the first three canonical principal components of celesta,

harpsichord, organ and piano...43
Figure 21: Group scatter plot of the first three canonical principal components of violins vs.

violas ..44
Figure 22: Group scatter plot of the first three canonical principal components of bassoons and

oboes...45
Figure 23: Group scatter plot of the first three canonical principal components of alto and tenor

saxophones..46
Figure 24: Group scatter plot of the first three canonical principal components of flutes and

piccolos...47

vi

Figure 25: Group scatter plot of the first three canonical principal components of trombones and
trumpets ..49

Figure 26: Group scatter plot of the first three canonical principal components of French horns
and trumpets..50

Figure 27: Group scatter plot of the first three canonical principal components of vibraphones
and xylophones ...51

Figure 28: Screen shot showing how a musician could extract of segment of audio that could be
tested on an expert neural network ..60

Figure 29: Discrete Fourier Transform of the synthesized A 440 sine wave for the entire signal70
Figure 30: An artificially generated sine wave with a frequency of 440 Hz71
Figure 31: Raw Signal of Acoustic Bass ...72
Figure 32: Acoustic Bass With 50 ms Frames ...73
Figure 33: Hamming Window used for a 50 ms Frame. If the audio signal has a sample rate of

44100 samples per second, this corresponds to approximately 2205 samples per 50 ms
window. ..74

Figure 34: Spectrogram of Acoustic Bass, calculated using the DFT of 50 ms Frames75
Figure 35: Spectrogram of Trumpet, calculated using the DFT of 50 ms Frames.......................76
Figure 36: Raw Audio Signal of ragtime.wav..78
Figure 37: Envelope Extracted from ragtime.wav Using a Hilbert Transform............................79
Figure 38: Attack slope of an audio signal. (Plot taken from MIRToolbox User's Guide)80
Figure 39: Attack time of a signal. (Plot taken from MIRToolbox User's Guide).......................81
Figure 40: Steps for calculating MFCC's (Figure taken from MIRToolbox user's guide).82
Figure 41: Mel-Frequency Cepstral Coefficients of a Bass ..82
Figure 42: Mel-Frequency Cepstral Coefficients of a Trumpet ..83
Figure 43: Rolloff (85%) of the audio signal. (Plot taken from the MIRtoolbox user's guide). ...84
Figure 44: An estimation of roughness depending on the frequency ratio of each pair of

sinusoids. (Figure taken from MIRToolbox user guide). ..84
Figure 45: Zero-crossings in an audio signal. (Figure taken from MIRToolbox user guide).86

1

Chapter 1: Introduction

1.1 Motivation

About music, the incomparable Kurt Vonnegut put it best: “if I should ever die, God

forbid, let this be my epitaph: The only proof he needed for the existence of God was music.”

(Vonnegut, 2007). As a well-known cynic and atheist, Vonnegut’s words emphasize the

remarkable power music can have on a human listener. With the prevalence and volume of

music in modern culture (e.g., ipods, car stereos, elevator music, commercial jingles, movie

scores, birthdays, weddings, etc.), it is of great interest to better understand how and why music

affects behavior (e.g., how music drives consumerism). Although such research is primarily the

work of psychologists and philosophers (e.g., Janata, 2007), there is the potential for a

tremendous amount of computing: from the calculation of individual musical components (e.g.,

pitch) to fully automated transcription, analysis and classification of the music data (Klapuri &

Davy, 2006). In the following chapters, one of the basic building blocks of automated music

analysis, monophonic instrument identification, is explored with emphasis on making a neural

network approach computationally more feasible through use of multi-core technology.

One of the goals of an automated music analysis tool is to provide precise, objective and

generalizable measurements for research purposes. In any psychological study, one of the

primary hallmarks of a generalizable experimental design is the elimination of the researcher’s

subjective bias from the experiment. With regard to research on music and the mind, such

subjectivity would include the musical background of the researcher. For example, Western

music theory is based on a scale that has twelve tones per octave while Arabic music theory is

based on a 24-tones per octave scale (Farmer, 1988). To a researcher more familiar with

Western based music, the semitones (e.g., a note halfway between a B and C; or two adjacent

2

white keys on a piano) of the Arabic scale may sound completely out-of-tune and may be

presented as such in an experiment; thus basing a portion of the study on the subjective bias of

the researcher.

As another example, knowing that Wolfgang Amadeus Mozart was on his deathbed when

he wrote “Requiem Mass in D Minor” (Cormican, 1991) might lead one researcher to believe the

piece has a stronger negative emotional component (e.g., sadness) than perhaps a less musically

educated investigator may perceive. With such subjective bias, the more musically educated

researcher may use Mozart’s piece as the quintessential mark of “sad” music, while other

researchers may think otherwise. In essence, such subjectivity reduces the ability to generalize

the results to larger populations.

In neuroimaging (i.e., functional Magnetic Resonance Imaging- fMRI) research regarding

music and the brain (Janata, 2009), an automated music analysis tool would be helpful for

researchers to know that at time T, the fMRI image data was F, and the music was M. Such a

system would be very helpful in identifying patterns in how the brain reacts to music, and would

provide more insight into how the brain works with regard to memory, emotion and attention.

Beyond the scope of academia, automated music analysis could be useful in industry.

Such avenues include copyright investigation and protection, intuitive music database access (via

humming or whistling), automatic play-list generation, genre classification, and products for

music transcription. Even today musicians are still hired to analyze and classify music by genre

in a tedious and error-prone process (as found in a phone interview with Adam Robinson, a

former employee of Sound Flavor). The task of music analysis for genre classification (by

humans) involves identification of all instruments present plus a harmonic and temporal analysis

of the music (e.g., major vs. minor, consonance vs. dissonance, tempo, rhythmic structures, key,

3

mode, etc.). One could easily imagine writing software to automate this process using

computers, but it has been found that automated music analysis is quite a complicated and

difficult problem (Klapuri & Davy, 2006).

Despite its complexity, over the years there have been gains made in several avenues of

automated music analysis including: genre classification (Tzanetakis, Essl & Cook, 2001),

polyphonic instrument recognition (Chafe & Jaffe, 1986; Kitahara, Goto, Komatani, Ogata, &

Okuno, 2006) and even mood detection (Lu, Liu, & Zhang, 2006). Although modern automated

music analysis is still in its infancy, there have been significant results made in single

(monophonic) instrument recognition. Before delving into the details of the previous literature

regarding automatic monophonic instrument recognition, the motivated reader is encouraged to

review Appendices A and B for details of the typical digital signal processing techniques used

and a glossary of common timbral features extracted from an audio music file.

1.2 Summary of Previous Literature: Automatic Classification of Monophonic Instruments

Despite the volume of research conducted and books written about psychoacoustics (e.g.,

Sethares, 2004) and the existence of an international standard describing the acoustic features

responsible for perceptual differences of musical instruments (i.e., Multimedia Content

Description Interface or MPEG-7; Salembier, 2002); there does not exist a single, clearly defined

algorithm or set of features for automated instrument identification. The use of computers to

automatically classify musical instruments has been widely researched using a variety of

classification methods (e.g., k-nearest neighbor, neural networks, decision trees, etc.,) on several

different combinations of extracted features (e.g., spectral centroid, kurtosis, flux, inharmonicity,

etc.,) (Herrera-Boyer, Peeters, & Dubnov, 2003). The following is a brief summary of the

4

previous literature involving single instrument classification and provides the grounds the

experiment conducted.

In a large study conducted by Agostini, Longari and Pollastri (2003), several different

classifiers (i.e., quadratic discriminant analysis, canonical discriminant analysis, nearest-

neighbors and support vector machines) were tested on 18 features for each of over 1000 audio

samples of 27 different instruments. The quadratic discriminant analysis and support vector

machines methods performed the best, classifying the single instruments correctly 65% and 70%

of the time, respectively. The study also provided a list of the top nine most discriminating

features, with mean inharmonicity, spectral centroid mean and standard deviation as the top

three. The researchers did not explain how they arrived at the 18 features used, and one is to

assume they used a combination of previous literature plus trial and error. This study suggests

that there is no single classifying methodology that works best for single instrument

classification and that feature selection can be highly researcher dependent.

Eronen and Klapuri (2000) used 43 features and a Gaussian classifier to classify nearly

1500 samples of 30 different monophonic instruments using both hierarchical (e.g., sustained ->

strings -> violin) and non-hierarchical methodology. The researchers were able to classify single

instruments to 80% accuracy in the non-hierarchical method, performing better than the

hierarchical version. The study suggests that a non-hierarchical model of single instrument

classification is the better method (with regard to using class hierarchies), requiring less

computation and allowing for more flexibility in the instrument voicing (e.g., a violin can sound

either pizzicato or sustained, which could confuse a hierarchical classifier).

Zhang and Ras (2007a) used Naïve Bayesian and Decision Tree J48 classifiers to classify

over 3200 instruments into four families: percussive, strings, non-pitched and woodwinds. The

5

authors extracted a set of features in addition to the timbre descriptors listed in the MPEG-7

standard and trained the classifiers with and without the additional features. Their results

indicate that the MPEG-7 standard works well, but adding the additional features not listed in the

MPEG-7 (i.e., tristimulus, brightness, roll-off, flux, MFCC’s, etc.,) made their results more

robust, with as much as an 11% increase in percent classified. From this article, it is clear that

the MPEG-7 standard is a terrific starting point, but can be improved upon with the addition of

other features.

Deng, Simmermacher, and Cranefield (2008) extracted 44 different features from each of

nearly 800 single instrument samples and trained three different classifiers (i.e., k-nearest

neighbor, support vector machine and multi-layer operceptron; k-NN, SVM and MLP

respectively) to classify based on instrument family (i.e., Brass, Strings, Woodwinds, Piano).

Much like the previous article, several additional features were extracted to supplement the

MPEG-7 standard timbre descriptors including the zero crossing, and the mean and standard

deviation of the: zero-crossing rate, spectral centroid, MFCC’s, root mean square, spectral flux,

and bandwidth. The classifiers were each trained with all 44 features and then the first five, 10,

20 and 30 principal components (using a principal component analysis or PCA). The results

show that one of the best classifiers was the MLP, which was able to classify the instruments up

to 95% accuracy with all 44 features. This article provides three key observations: 1) the

importance of extracting features beyond those in the MPEG-7 standard, 2) the MLP can be used

as an effective classifier and 3) reducing the number of features using the PCA does not

significantly deteriorate the results: from 95% accuracy with all 44 features to 86% accuracy

with only the top five principal components.

6

 Zhang and Ras (2007b) used a three-level tree-classifying scheme to classify nearly 1600

recordings of 74 different instruments using more than a dozen audio and statistical features in

addition to the MPEG-7 standard timbre descriptors. The top level of the tree represented the

generalized instrument family (e.g., chordophone, idiophone, aerophone); the second level

represented how the instrument was played (e.g., reed, struck, shaken) and the third level was the

specific instrument class (e.g., flute, piano, etc.). For each level of the classification tree, Zhang

used a logistic regression model with a 99% confidence interval to select the discriminating

features and found it significantly improved the classifier performance when compared to using

all features. Another interesting result of this study was that the list of salient features changed

drastically depending on the level of the tree classifier. Zhang’s research highlights three

observations: 1) the importance of using additional features not listed in the MPEG-7 standard;

2) the significance of applying a “smart” feature selection algorithm to reduce the dimensionality

of the input data; and 3) there is no universal feature set that can discriminate all levels of single

instrument classification.

In reviewing the salient literature and two textbooks on music signal analysis, it is

apparent that there does not exist a clearly defined, standard set of audio features used to

automatically differentiate instruments based on timbre. It is also evident that there are an

exponential number of possible combinations of instruments, features and classification methods

that could be used for automatic classification of single instruments. In addition to the enormous

number of combinations, the result of processing a single audio file could easily yield thousands

of data points. For example, if a five second audio file was divided into 50ms windows, and 100

features were extracted from each window, then that would yield 10,000 data points for a single,

five second audio file! Due to the sheer volume of input data for a classifier to train with, in the

7

following experiment an artificial neural network was used the training process can be made

substantially faster by utilizing threads and multi-core technology.

1.3 Overview of Remaining Chapters

In the chapters to follow, the details and speedup of a multi-threaded implementation of

an artificial neural network are discussed (Chapter 2), followed by the design (Chapter 3), results

and analysis (Chapter 4) of a monophonic instrument classification experiment using parallel

neural networks. Chapter five contains conclusions that can be drawn from this thesis as well as

future directions of such research. Appendix A and B contain information about basic music

signal processing and a glossary of common musical features.

8

Chapter 2: Parallelization of an Artificial Neural Network

2.1 Basics of an artificial neural network

Modeled after the human brain, artificial neural networks have been around for decades

and are well known for their ability to classify non-linearly separable data (e.g., XOR in Boolean

algebra: 0 + 0 = 0; 0 + 1 = 1; 1 + 0 = 1; 1 + 1 = 0). The following is a brief summary of the

structure and implementation of a multi-layer artificial neural network (i.e., ANN) and a more

detailed explanation of how parallelization was achieved for the experiment. For a much more

detailed explanation of an artificial neural network, including the mathematics involved, the

reader is encouraged to consult Pattern Classification by Duda, Hart and Stork (2001).

The basic building block of an ANN, much like the human brain, is a neuron or node.

Each of these neurons contains an activation function (e.g., a logistic sigmoid transfer function,

Figure 1 or hyperbolic tangent sigmoid transfer function, Figure 2) that produces a real number

as output and the input is a linear combination of items to be discussed. These neurons are

organized into layers with an input layer, hidden layers and an output layer. The input layer has

the same number of neurons as features in the input data (e.g., two in the classic XOR example

listed above) and the output layer contains one or more neurons, depending on the classification

label (e.g., a binary label requires three nodes for three classes). Although the input and output

layers are clearly defined, the hidden layer(s) allow for much more flexibility. It is generally up

to the experimenter to decide on how many hidden layers and neurons in each hidden layer for a

particular classification task.

The layers of an ANN are connected such that each neuron in a layer is connected to all

neurons in the subsequent layer. Each of these interconnections has a weight associated with

them, which gets included in the linear combination that serves as input to the node’s activation

9

Figure 1: Logistic sigmoid transfer function is commonly used as the activation function in
neurons

10

Figure 2: Hyperbolic tangent sigmoid transfer function is another commonly used
activation function in neural networks

11

function (in addition to the output from the previous node’s activation function). When a neural

network gets trained using the backpropagation algorithm, these connection weights get

systematically adjusted to minimize the classification error.

A highly simplified explanation of the backpropagation algorithm is as follows. First a

training sample with a known class (or target) is presented to the neural network. Next, the

neural network calculates the output by allowing the input to “feed-forward” through all the

layers and neurons in the network using the previously mentioned activation functions. Once the

output of the network is calculated, the error (i.e., difference between the desired target and

actual output) is “propagated” backwards through the network, allowing each layer’s weights to

be adjusted (scaled by the learning rate), to best minimize the error. This process is then

repeated with the entire set of training samples until the network either converges to an allowable

average error (i.e., mean square error or MSE) or trains for a maximum number of epochs (where

each epoch represents a single pass through the entire training set).

 A helpful analogy of the backpropagation algorithm is adjusting the knobs on a

television set (e.g., antennae, contrast, color, brightness, etc.) to get a clear picture. In this case,

the person watching the television has an idea of the target (i.e., a clear picture), and the knobs,

representing the weights, get adjusted accordingly.

When using the backpropagation algorithm to train the network, there are two main

paradigms to choose from: incremental or batch. In the incremental implementation, the weights

get updated after each sample is presented to the neural network. In batch mode, the weights

only get updated to the average weight change after all samples have been presented to the

network (i.e., after each epoch). One of the main advantages to using a batch implementation is

12

that the algorithm can be parallelized to utilize multi-core technology and achieve linear speed-

up of the training process.

2.2 Parallelization of an Artificial Neural Network

Implementing a multi-threaded neural network to achieve faster training is rather

straightforward in batch mode. As previously mentioned, in batch mode the weight matrix only

gets modified to the average weight change at the end of each epoch. In the previous literature,

algorithm speed-up was achieved by using parallelization in a variety of ways: from faster matrix

multiplication of the feed-forward pass using a Message Passing Interface (MPI), to parallel

network structure using Distributed Memory Multi-processors (DMM) in various topologies, to

training level parallelism using threads on Shared Memory Multi-processors (SMM) and Parallel

Virtual Machines (PVM). However, the calculated speedup results of each of these methods are

not linear, and tend to plateau after 4 threads or processors. In this thesis, the training level

parallelism approach was enriched to approximate ideal speedup (e.g., 2 cores are twice as fast)

on an 8-core SMM machine.

Novokhodko and Valentine (2001) implemented parallel matrix arithmetic in C using an

MPI on 4 Sun Ultra 5’s. The authors then used Matlab’s neural network toolbox with their

version of matrix multiplication and attempted to classify over 5000 samples with a large neural

network (20,000 neurons). Though the authors only tested 1 and 4 processors, their best speedup

was a far from ideal 1.46.

Yoon, Nang and Maeng (1990) attempted to speedup training by distributing a single

neural network horizontally amongst a topology of computers, where each processor got a

portion of the input, hidden and output nodes. Parallelization was achieved by simultaneously

broadcasting the delta weights amongst all processors in this DMM setup. A more promising

13

speedup of about 6.0 was reported with 8 processors. However, this approach requires multiple

machines to implement the ring topology, which may not be as portable or practical for a user

with a single machine.

When it comes to training level parallelism, the basic algorithm works by allowing N

threads, each with their own copy of the original (i.e., master) neural network, to train on disjoint

sets of the training data and then update a master network. After the threads accumulate the delta

weights for an epoch, the threads join and one processor sequentially updates the master network

and calculates the MSE (Ahmad, Zulianto & Sanjaya, 1999; Fedorova & Terekhoff, 1999). This

process is repeated until either the master network is trained (i.e., acceptable MSE threshold) or

some maximum number of epochs is achieved.

Ahmad, Zulianto and Sanjaya, (1999) used PVM’s to implement the training level

parallelism algorithm mentioned above. In particular, they relied on PVM software in UNIX to

distribute the training work-load across many computers. Their results show that this method

does not approximate the ideal linear speedup: 1.35 with 2 processors, 1.5 with 3 processors, 1.6

with 4 processors and 1.7 with 6 processors. Perhaps the overhead associated with the message

passing between computers is what slowed this down. Tsaregorodtsev (2005) implemented this

algorithm on a dual-core SMM to utilize threads and avoid the overhead associated with message

passing between computers. The parallel implementation was tested using 1 and 2 threads,

resulting in speedups that were not ideal: between 1.2 and 1.6 with an average of 1.5.

Turchenko and Grandinetti (2009) implemented training level parallelism and tested it

using a variety of network and training data sizes on an 8-core machine with 2 and 8 threads.

They performed an efficiency analysis of the training on 2 and 8 processors, with results showing

that 2 processor were nearly ideal with efficiencies between 90 and 100 percent. However, with

14

8 processors the efficiencies were far from ideal: between 45 and 75 percent. Turchenko and

Grandinetti also make the very strong conclusion that going from 2 to 8 processors is simply too

inefficient for practical use.

Based on the timing, speedup and processor efficiency results of the previous literature, it

is clear that the presented algorithm for training level parallelism on SMM’s does not

approximate an ideal linear speedup between 4 and 8 threads. In particular, the speedup seems to

plateau after four threads. Upon further review of the algorithm, it appears that although the

weight changes are calculated in parallel, much of the required work is still executed sequentially

on a single processor: i.e., calculating the MSE and accumulating the delta weights. In this thesis

a modified version of the parallel training algorithm was implemented to more evenly distribute

the workload and approximate an ideal linear speedup.

2.3 Improved training level parallelism for Shared Memory Multi-processor

In this thesis, two enhancements were made to the aforementioned parallel training

algorithm to avoid the sequential bottlenecks. First, the task of calculating the MSE for the

training set was distributed among threads and second, the delta weights were accumulated in

parallel by utilizing the parallelism inherent in matrix arithmetic. The summary of this enhanced

algorithm is listed in .

The algorithm works as follows: first, the training data is divided into N disjoint subsets,

where N is the number of threads. Next, after initializing the master neural network, all

synchronization primitives and global data structures, N threads are created and started; and they

do not return until convergence is met. Within each thread, first a local weight matrix is

overwritten by the master network’s weights, then the squared error is calculated for the thread’s

training data subset and accumulated in a global structure. After all threads complete this step,

15

Divide data into N disjoint subsets

1. Initialize master network and synchronization primitives
2. Spawn N threads

a. Repeat until convergence: (within each thread)
 i. Overwrite local network with master network
 ii. Calculate local squared error for subset of training data
 iii. Block
 iv. Last thread to finish:

1. Calculates global MSE
2. Checks for MSE convergence

a. Sets flag
3. Broadcasts for threads to resume

 v. Check flag for convergence
1. Exit thread if necessary

 vi. Accumulate weight changes for training subset via batch mode
backpropagation

 vii. Block
 viii. Last thread to finish:

1. Zeros out shared weight matrix
2. Broadcasts for threads to resume

 ix. Sum a portion of shared weight matrix
1. Parallel matrix addition

 x. Block
 xi. Last thread to finish:

1. Updates the master network to average
2. Increments epoch counter
3. Broadcasts for threads to resume

 xii. Check for convergence via epochs
1. Exit thread if necessary

3. Join N threads
4. Write master network to file

Figure 3: Algorithm used for a parallelized implementation of a neural network in batch
mode

16

 they wait on the conditional variable, and the last thread to finish calculates the overall mean

squared error. The last thread then checks the MSE against the threshold set by the user, sets a

global flag and broadcasts on the conditional variable, resuming all blocked threads.

At this point all threads check the global flag for convergence and exit if appropriate. If

the flag was not set, each thread begins accumulating the necessary weight changes via the feed-

forward backpropagation batch mode algorithm. After each thread completes training on its data

subset, it blocks on the conditional variable, and the last thread to finish zeros out a temporary

global weight matrix and broadcasts to restart all blocked threads.

When the threads resume execution, each thread updates a different portion of the global

weight matrix, accumulating the total weight change over all threads for a particular index range

(Figure 4). Again, after each thread completes this step, it blocks on the condition variable and

the last thread updates the master network as the average of the temporary global weight matrix

and increments a global epoch counter. The last thread then broadcasts on the conditional

variable, resuming the execution of all threads. Finally, each thread checks the global epoch

counter and exits if appropriate.

The implementation was achieved by modifying an open-source neural network library

(i.e., NNF - Neural Net Framework written in C++ by Alessandro Presta, 2005) to support

threads and utilize multi-core technology using the Portable Operating System Interface for Unix

(POSIX threads).

2.4 Testing the parallel network

The implementation of the enhanced parallel training algorithm was tested with one, two,

four and eight threads on an 8-core machine, namely samwise.eecs.utk.edu. One such test,

17

Figure 4: Parallel summation of delta weights. In this picture there are 4 threads, each
with its own calculated weight matrix w0 – w3. Each thread (red, blue, yellow, green)

updates a portion of the global weight matrix, wGlobal, in parallel.

18

training a computer to classify a three input XOR problem, is presented here (i.e., 0 0 0, 0; 0 0 1,

1; etc.,). The XOR data was synthesized to contain 16,000 rows in order to replicate a very large

training database. Although the XOR classification task has been done to no end, it still

successfully simulates the amount of work and time required to train a modest sized network

(i.e., 3 inputs nodes, 10 hidden nodes, and 1 output node) with a substantially large dataset.

For the testing, the parallelized neural network was trained for 10,000 epochs in attempts

to reach a convergence mean square error (MSE) of 0.000001. The extremely high number of

epochs and very low MSE for this relatively simple classification task were used to mimic a

more difficult classification problem such as instrument identification. The results show that as

the number of threads increase from 1 to 8, the time to train decreased dramatically (Figure 5)

and there is almost ideal linear speedup (Figure 6). Also, unlike the previous literature, the

processor efficiency did not drop below 95% (Figure 7).

It is crucial to note that the percent mis-classified did not change when scaled from one

up to eight threads (Figure 8). It is also important to note that the final weight matrices of the

trained neural network did not differ as the number of threads varied (Figure 9). One last

essential observation includes the convergence of the MSE (Figure 10), which shows that, after

each epoch, the neural networks were training in the exact same manner, regardless of the

number of threads.

With the speedup achieved while maintaining performance, a parallelized neural network

provides faster training, which, in turn, allows for larger training sets and more classification

experiments to be completed. As previously mentioned, due to the enormous number of

combinations possible for automatic instrument classification, having a faster classifier is critical

for completing more experiments in a reasonable amount of time.

19

Figure 5: Large XOR dataset, box-plot of time to train (the red line is median)

20

Figure 6: Large XOR dataset, calculated speed-up

21

Figure 7: Large XOR dataset, processor efficiency

22

Figure 8: Mean percent classified for the large XOR dataset per 1, 2, 4 and 8 threads. Note
how the percent classified does not vary as the threads increase

23

Figure 9: Weight matrices for the final trained neural network for the first run. Note how
all the weight matrices are equal

24

Figure 10:Mean square error per thread over 10000 epochs. The MSE's for each thread
did not differ, as the 'diff' utility in UNIX did not reveal any differences between the error

25

Chapter 3: Experimental Setup

Several classification experiments were conducted on many combinations of instrument

samples using the aforementioned parallelized neural network. The experimental design is

broken down into the input to the system, the computing involved, and the results obtained. A

statistical analysis of the results and future direction follows.

3.1 Input

The input to the system consisted of 2 – 15 second audio samples of many different

instruments, from orchestral standards (e.g., violin, oboe, bassoon, etc.) to more contemporary

instruments (e.g., electric guitar, organ, etc.). The instrument samples were taken from the

McGill University Master Samples (i.e., MUMS), a three DVD collection of nearly 6600 audio

(i.e., .wav) files totaling more than 10 gigabytes of audio data. All of the recordings on the

MUMS DVD’s were played by professional musicians and recorded with top of the line audio

equipment and engineers. McGill University created the Master Samples to provide musicians

with a comprehensive set of samples to add to their music, as well as supply researchers with a

standardized set of instrument recordings to use in a variety of experiments, from

psychoacoustics to artificial intelligence.

The audio data in the MUMS DVDs is all-encompassing, covering every possible note

that can be played by the instrument in question, and containing several different voicings of

each instrument. For example, there are over 400 different recordings of a violin, with voicings

that include: bowed, plucked, harmonics and vibrato. The high quality of the audio combined

with the multitude of notes and voicings allow the samples from the MUMS to be highly

generalizable, which provides a solid basis for the experiments presented.

26

3.2 Computing Involved

Every set of musical instruments presented to the multi-threaded neural network was

preprocessed the exact same way. All of the features extracted from the audio file were done so

with the MIRToolbox, an extensive, open-source toolbox for Matlab written by researchers at the

University of Jyvaskyla in Finland (Lartillot & Toiviainen, 2007). MIRToolbox was created to

give researchers an easy to use framework to extract high-level musical features describing the

signal’s tonality, rhythm and timbre with simple and intuitive function calls.

3.2.1 Feature Extraction

The steps involved in preprocessing were as follows. Each audio file was first “trimmed”

which removed any excess noise before and after the instrument played (Figure 11, Figure 12).

The MIRToolbox described this as “trimming the pseudo-silence beginning and end off the

audio file.” In this case, the pseudo-silence is defined as 0.06 * (Medium RMS), where RMS

stands for the root mean square of the segment; a feature that often describes the perceived

loudness of an audio signal (see Appendix B for more details).

After the signal was trimmed of excess noise, the audio was divided into 50%

overlapping, 50 ms frames (Figure 13). Once the signal was divided into frames, 70 features

were extracted to describe the entire signal. The features are listed in Table 1. For a more

detailed explanation of the features, please consult Appendices A and B. Any data rows

containing missing data (i.e., NaN’s) were omitted from the final datasets.

After the audio file is preprocessed, an identifying label is assigned (i.e., a binary label),

and the row of data is appended to the data set in question (e.g., bass vs. trumpet, violin vs. viola,

etc.,). The binary label is not a true binary representation; for example, a three-class problem

would have labels 0 0 1, 0 1 0 and 1 0 0. Once all the instruments have been preprocessed, each

27

Figure 11: Acoustic bass, before trimming off the psuedo-silence

28

Figure 12: Acoustic bass, after trimming the pseudo-silence from the beginning and end of
signal

29

Figure 13: Acoustic bass divided into 50% overlapping, 50 ms frames

30

Features Extracted From Each Audio File

Computed From Entire Signal:
Total Zero-crossings
Fundamental Frequency

Mean and Standard Deviation of all Frames of the Following:
Attack Slope
Brightness
Event Density
Inharmonicity
Log Attack Time
Mel-Frequency Cepstral Coefficients (13 total bands)
Regularity
Rolloff (85%)
Root Mean Square
Roughness
Spectral Centroid
Spectral Flatness
Spectral Flux
Spectral Kurtosis
Spectral Skewness
Spectral Spread
Temporal Centroid
Temporal Flatness
Temporal Kurtosis
Temporal Skewness
Temporal Spread
Zero-crossing Rate

Table 1: Features extracted from each audio file processed

31

feature column is scaled by dividing each element by the maximum value in that column, leading

to a dataset that is between –1.0 and 1.0. This scaling is performed because neural networks

typically train faster and more thoroughly with more normalized datasets (Sola & Sevilla, 1997).

3.2.2 Feature Selection

After the feature extraction completes for a particular set of instruments (e.g., bass vs.

trumpet samples), the result is a dataset that may have extraneous features, columns that do not

help differentiate the instruments in question. In order to select only the most salient features

that separate the instruments, a sequential forward selection (SFS) algorithm is applied to the

dataset, with a p value of 0.001. SFS is an automatic procedure that systematically adds the

columns that most best describe the targets (Koutroumbas & Theodoridis, 1999). The sequential

feature selection algorithm is as follows: SFS starts with the feature most highly correlated with

the targets and adds new columns which, combined with the old one(s), most accurately predict

the targets. The algorithm halts when a new feature does not significantly reduce the prediction

error where the statistical significance is measured by a partial F-test. In this experiment, an

open-source feature selection toolbox in Matlab from Oxford’s Pattern Analysis and Machine

Learning Group was used (i.e., the FSBOX written by the Pattern Analysis & Machine Learning

Research Group of Oxford University 1999).

Using the SFS algorithm to reduce the dimensionality of the data had two benefits: 1) it

drastically reduced the time to train for the parallelized neural network (Figure 14), and 2) it

improved the classification performance of the trained neural network (Figure 15).

32

Figure 14: The time (in minutes) for the neural network to train, before and after
selecting features using the forward selection algorithm

33

Figure 15: Percentage of samples classified correctly by a neural network trained with all
features (No SFS), and only selected features (SFS)

34

3.2.3 Training and Testing the Parallel Neural Network

Each classification experiment utilized a 50/50 cross validation paradigm, where 50% of

the input data was used for training the neural network, and 50% was used for testing; after

which the training and testing sets were swapped and the training/testing was repeated with the

new sets and fresh neural networks. This process was repeated ten times for each set of

instruments, using a different starting seed to randomly initialize the weight matrix on each run.

For the testing phase, if the neural network’s output was within 0.4 of the target, it was counted

as correctly classified.

In order to reduce the number of combinations of possible training parameters (i.e.,

learning rate, number and size of hidden layers, maximum epochs, convergent mean square

error), an attempt was made to keep the training parameters equal throughout all the

classification experiments. The learning rate was set to 0.7, the maximum number of epochs was

10,000 and the convergent average mean square error was 0.01.

The number of neurons in each layer slightly differed between various sets of instruments

based on the number of features selected and the number of classes. In order to combat this, in

all cases the hidden layers were arranged as follows: the first hidden layer was twice as large as

the input layer, and each subsequent hidden layer was half as big (i.e., using integer division with

no remainders) as the previous, until the number of neurons equaled the number of output nodes

or classes.

35

Chapter 4: Results and Analysis

Several experiments regarding automatic instrument recognition were conducted, starting

with instruments that sound notably different and leading to musical sounds that are similar: i.e.,

in the same family of instruments (e.g., strings) and are perceptively similar (e.g., violin, viola).

Since the majority of the previous literature classified the instruments based on instrument

family, (e.g., Woodwinds, Brass, Strings), there was little need to explore it again here. Please

note that the group scatter plots below are of the three canonical principal components (from a

principal component analysis) of the entire dataset and are used for the purpose of visualization

only.

Starting with notable different sounding instruments, 288 total audio samples of a 155

basses and 133 trumpets (Figure 16) were tested using the aforementioned computational

process. The results provided a good start, with a median classification rate of 96% (Figure 17,

Table 2). The SFS algorithm selected 16 features (listed in Table 3).

To make training a bit more difficult, two more instruments were thrown into the mix: a

flute and a piano. On this test, 547 total instruments were processed and tested (Figure 18). The

neural network was able to classify the correct instrument 80% of the time and the SFS algorithm

selected 13 features.

After attempting to classify instruments that were notably and markedly different

(perceptually), a set of similar sounding instruments were tested from each family or class of

instruments (i.e., guitars, keyboards, strings, woodwinds, brass and percussion). The first set of

similar sounding instruments consisted of guitars: acoustic vs. electric guitar. The data consisted

of 195 total audio samples: 157 electric and 38 acoustic (Figure 19). The classification test

resulted in a median percent classified of nearly 95% of novel stimuli for six selected features.

36

Figure 16: Group scatter plot of the first three canonical principal components of bass and
trumpet

37

Figure 17: Summary of classifications

38

Percent Classified Correctly

Instruments MeanMedianStandard DeviationMinimumMaximum
Bass vs. Trumpet 87.33 96.18 29.92 0.00 100.00
Piano, Flute, Bass, Trumpet 74.20 75.73 13.36 52.75 89.78
Electric vs. Acoustic Guitar 91.38 94.36 6.87 76.29 95.92
Piano, Harpsichord, Celesta, Organ 92.23 95.31 6.81 67.22 96.25
Violin vs. Viola 77.99 79.63 5.12 68.89 84.44
Oboe vs. Bassoon 96.45 100.00 10.94 63.16 100.00
Alto vs. Tenor Saxophone 82.70 91.07 28.51 0.00 98.18
Flute vs. Piccolo 97.28 97.46 1.35 94.93 99.28
Trombone vs. Trumpet 89.88 94.61 12.82 52.89 98.35
French Horn vs. Trumpet 93.58 97.00 9.60 66.00 100.00
Vibraphone vs. Xylophone 91.47 88.24 5.46 84.00 100.00

Average of all instruments 88.59 91.78 11.89 56.92 96.56

Table 2: Summary of Classification Results

39
Selected Features for Each Set of Instruments using SFS algorithm

Bass vs Trumpet Piano, Organ, Harpsichord, Celesta Alto vs. Tenor Saxophone
event_density_mean brighness_mean mfcc_mean_02
flux_mean flux_std mfcc_mean_05
mfcc_mean_01 mfcc_std_01 mfcc_mean_06
mfcc_mean_02 mfcc_std_03 mfcc_mean_07
mfcc_mean_04 regularity_mean mfcc_mean_08
mfcc_mean_08 rms_std regularity_std
mfcc_mean_11 rolloff_mean roughness_std

mfcc_mean_13 rolloff_std

mfcc_std_01 roughness_std Trumpet vs. Trombone
mfcc_std_02 spectral_centroid_std log_attack_time_mean
mfcc_std_05 spectral_flatness_mean mfcc_mean_01
mfcc_std_12 spectral_kurtosis_std mfcc_mean_02
rms_std spectral_skewness_mean mfcc_mean_04
spectral_centroid_mean spectral_spread_mean mfcc_mean_05
spectral_kurtosis_mean spectral_spread_std mfcc_mean_06
temporal_spread_mean temporal_kurtosis_std mfcc_mean_09

 temporal_spread_mean mfcc_std_04

Piano, Flute, Bass, Trumpet temporal_flatness_std

attack_slope_mean Violin vs. Viola

flux_mean event_density_mean French Horn vs. Trumpet
mfcc_std_01 log_attack_time_std mfcc_mean_01
mfcc_std_02 mfcc_mean_02 mfcc_mean_03
mfcc_std_03 mfcc_mean_04 mfcc_mean_04
mfcc_std_11 mfcc_mean_11 mfcc_mean_05
roughness_mean mfcc_std_01 mfcc_mean_09
spectral_flatness_std regularity_std mfcc_std_08
spectral_spread_std spectral_spread_mean mfcc_std_09
temporal_centroid_mean temporal_centroid_mean spectral_kurtosis_std

temporal_centroid_std temporal_centroid_mean

temporal_kurtosis_mean Oboe vs. Bassoon

temporal_spread_mean mfcc_mean_01 Vibraphone vs. Xylophone

 mfcc_mean_02 temporal_flatness_mean

Acoustic vs. Electric Guitars spectral_flatness_mean temporal_flatness_std

brightness_std temporal_centroid_std

flux_std Flute vs. Piccolo spectral_flatness_std
mfcc_std_03 mfcc_mean_01 temporal_spread_std
regularity_mean mfcc_mean_02 temporal_spread_mean
spectral_spread_mean spectral_flatness_mean
zero_crossing_std flux_mean

 mfcc_std_02

Table 3: List of selected features for each set of instruments using the SFS algorithm with a
p value of 0.001

40

Figure 18: Group scatter plot of the first three canonical principal components of a piano,
flute, bass and trumpet

41

Figure 19: Group scatter plot of the first three canonical principal components of electric
and acoustic guitars

42

The next set of similar sounding instruments is keyboards: a piano, organ, celesta and

harpsichord. In this set, 959 audio samples were used: 223 pianos, 644 organs, 77 harpsichords

and 15 celestas (Figure 20). The classification test resulted in a median of nearly 95% novel

instruments classified correctly from 17 selected features.

Next, two very similar stringed instruments, a violin and viola were tested. In this case,

541 total audio samples were presented to the neural network: 373 violins and 168 violas (Figure

21). The testing revealed a median classification rate of nearly 80%, which is rather impressive

given the striking similarity between violins and violas. The SFS algorithm selected nine

features.

The next family of instruments tested was the double reed woodwinds. For this test, 76

total samples of an oboe and bassoon were used: 27 oboes and 49 bassoons (Figure 22). The

neural network was able to train effectively on these instruments, resulting in a median

classification rate of 100% correct. It should be noted that there were only four runs (out of 20)

not with 100% classification accuracy on three selected features.

The next set of instruments comes from the single reed woodwind family. In this case,

111 audio samples of saxophones were tested with: 57 alto and 54 tenor (Figure 23). The results

indicate a median percent classified of roughly 91% accuracy from seven selected features.

The final set of instruments from the woodwind family contains no reeds at all. In this

set, 276 audio samples were used: 218 flutes and 58 piccolos (Figure 24). The results show a

median classification rate of nearly 98% accuracy from five selected features, even with two

very similar sounding instruments.

43

Figure 20: Group scatter plot of the first three canonical principal components of celesta,
harpsichord, organ and piano

44

Figure 21: Group scatter plot of the first three canonical principal components of violins
vs. violas

45

Figure 22: Group scatter plot of the first three canonical principal components of bassoons
and oboes

46

Figure 23: Group scatter plot of the first three canonical principal components of alto and
tenor saxophones

47

Figure 24: Group scatter plot of the first three canonical principal components of flutes
and piccolos

48

Moving on to the brass instrument family, two sets of instruments were tested: first, a

trumpet vs. a trombone and then a trumpet vs. a French horn. In the first set, 241 audio samples

of trumpets and trombones were presented, with 133 trumpets and 108 trombones (Figure 25).

The results were outstanding, with a median classification rate of 94% from nine selected

features.

The second set of brass instruments tested were trumpets vs. French horns. In this test,

201 total audio samples were used: 133 trumpets and 68 French horns (Figure 26). The results

indicate a median classification accuracy of about 96% from nine selected features.

The final set of similar instruments tested was from the percussion family. In this case,

101 audio samples were used: 89 vibraphones and 12 xylophones (Figure 27). The median

classification rate in the case was nearly 89% on six selected features. It is interesting to note

that even though the principal component analysis revealed separable instrument classes, the

neural network still performed well below perfection.

4.1 Analysis of Results

4.1.1 Breakdown of Classifications

The classification results were broken down further by comparing the expected class

versus the neural network’s output in more detail (Table 4) over all ten runs. Such breakdown

was computed to provide more insight as to how each set of trained neural networks performed.

The columns of the table are as follows: “c1, c1” and “c2, c2” indicate the percentage classified

correctly: i.e., the network was given an audio sample of class 1 (or 2) as input and the neural

network correctly identified the sample. The columns labeled “c1, c2” and “c2, c1” represent the

49

Figure 25: Group scatter plot of the first three canonical principal components of
trombones and trumpets

50

Figure 26: Group scatter plot of the first three canonical principal components of French
horns and trumpets

51

Figure 27: Group scatter plot of the first three canonical principal components of
vibraphones and xylophones

52

 Classes
Percentage of Output in Each Set
(expected result, neural network output)

Experiment c1 c2 c1, c1 c1, c2 c1, no class c2, c2 c2, c1 c2, no class total correct

Bass vs. Trumpet Bass Trumpet 87.226 2.000 10.774 85.113 3.308 11.579 86.250

Acoustic vs. Electric Guitar Acoustic Electric 58.158 20.263 21.579 97.516 1.147 1.338 89.846

Violin vs. Viola Violin Viola 88.204 10.295 1.501 54.524 43.393 2.083 77.745

Oboe vs. Bassoon Oboe Bassoon 99.796 0.000 0.204 89.630 10.000 0.370 96.184

Alto vs. Tenor Saxophone Alto Tenor 80.185 7.407 12.407 84.035 5.263 10.702 82.162

Flute vs. Piccolo Flute Piccolo 97.890 1.239 0.872 91.552 5.000 3.448 96.558

Trombone vs. Trumpet Trombone Trumpet 84.630 4.537 10.833 92.481 5.489 2.030 88.963

French Horn vs. Trumpet French horn Trumpet 84.412 13.529 2.059 96.165 2.632 1.203 92.189

Vibraphone vs. Xylophone Vibraphone Xylophone 99.101 0.225 0.674 24.167 71.667 4.167 90.198

Table 4: Breakdown of all 2-class classification experiments.

cases where the neural network was presented with an audio sample of class 1 (or 2) and the

neural network incorrectly identified the instrument as the other class (i.e., class 2 and 1

respectively). The remaining columns (i.e., “c1, no class”, “c2, no class”) correspond to the

instances where the neural network could not classify the audio sample as either instrument: a

total mis-classification. The “total percent classified correctly” indicates the total number of

instruments correctly classified over all 20 runs of each set.

The results show that given the nine sets of 2-class experiments, the trained neural

networks seemed to have the most difficulty identifying the acoustic guitar, viola and xylophone.

It is interesting to point out that, although over 70% of the xylophones presented to the trained

neural network were incorrectly classified as vibraphones, less than 1% of the vibraphones were

incorrectly classified as xylophones. However, the high error rate of the xylophone recognition

did not seem to drastically affect the overall performance of that instrument set. This was a

common theme with violas and acoustic guitars as well, with one class being more often

recognized than the other (i.e., electric vs. acoustic, violin vs. viola).

53

Perhaps the misclassifications of the above mentioned instruments occurred due to

overtraining the neural network to identify the more prevalent instrument (i.e., vibraphone, violin

and electric guitar). The xylophones contributed only 11% of the total number of audio samples

for that set, the violas were 30% of its samples and the acoustic guitars were roughly 20% of the

samples. It is interesting to note that in the case of flute vs. piccolo, with piccolo containing only

21% of the samples, the piccolo was still identified correctly over 91% of the time. In future

tests, scaling the network update inversely proportional to the sample size will help reduce the

effect of biased training.

One could speculate that the misclassifications of the previously mentioned instruments

were due to the striking perceptual similarities between the instruments in question. Even

though the sequential forward selection algorithm attempts to select the features that best

differentiate the classes, perhaps it is the case that the instruments sound so similar that even a

human cannot out-perform this computerized classification paradigm. It would be interesting to

test humans on the above instruments to see how it would compare.

4.1.2 Statistical Analysis

In attempts to further understand the results and better predict future tests, an extended

multivariate analysis of variance (MANOVA) was performed on each set of instruments and

correlated with the original classification results. The outcome of this test is summarized in

The columns of are as follows. In the results in Table 5, the “SFS count” is simply the

number of features selected for each set of instruments using the sequential forward selection

algorithm with a p of 0.001. The next column in, “Within”, represents the trace of the within-

groups sum of squares divided by the total within-group degrees of freedom; a measure that

54

Instruments SFS count Within Between Lambda Chisq mdist (mean) mdist (min) mdist (max) gmdist

Bass vs. Trumpet 16.00 0.78 122.88 0.07 46.43 15.89 1.87 63.51 53.84

Piano, Flute, Bass, Trumpet 13.00 0.16 11.59 0.21 29.65 12.91 1.23 453.78 34.97

Electric vs. Acoustic Guitar 6.00 0.12 2.39 0.29 38.99 5.94 0.32 66.94 15.30

Piano, Harpsichord, Celesta, Organ 17.00 0.30 20.57 0.27 40.27 16.93 2.14 256.93 76.02

Violin vs. Viola 9.00 0.64 27.40 0.58 32.70 8.97 1.01 41.34 3.42

Oboe vs. Bassoon 3.00 0.10 48.90 0.04 78.90 2.92 0.18 16.85 107.02

Alto vs. Tenor Saxophone 7.00 3.92 30.45 0.12 31.66 6.87 1.04 27.20 28.19

Flute vs. Piccolo 5.00 0.83 39.17 0.23 80.08 4.96 0.82 31.54 20.16

Trombone vs. Trumpet 9.00 1.25 39.21 0.16 47.61 8.93 1.50 46.43 20.92

French Horn vs. Trumpet 9.00 0.76 45.22 0.14 42.01 8.91 0.40 71.25 26.47

Vibraphone vs. Xylophone 6.00 0.11 1.36 0.10 36.16 5.88 0.48 78.31 80.34

Correlation SFS count Within Between Lambda Chisq mdist (mean) mdist (min) mdist (max) gmdist

mean -0.37 -0.22 0.12 -0.43 0.71 -0.37 -0.30 -0.51 0.39

median -0.21 0.05 0.41 -0.53 0.65 -0.21 -0.11 -0.58 0.33

std 0.34 0.62 -0.19 -0.47 -0.26 0.33 0.37 -0.05 0.04

min -0.40 -0.65 -0.60 0.35 0.31 -0.39 -0.44 0.03 0.01

max -0.21 0.14 0.33 -0.85 0.47 -0.22 -0.15 -0.40 0.45

Table 5: Results of MANOVA and correlation with classification statistics

55

represents the similarity of each group’s data. The “Between” column is the trace of the

between-group sum of squares divided by the total between-group degrees of freedom; a

measure that represents that difference between groups. The next column, “Lambda”, is Wilk's

lambda test statistic that can be used to determine if there are differences between group means

on a combination of dependent variables. Following that is “Chisq”, which was computed as the

transformation of Lambda to an approximate Chi-Square distribution (MATLAB 7.7). The next

three columns are the mean, minimum and maximum Mahalanobis distances (i.e., “mdist”) from

each point to the mean of its group. The last column (i.e., “gmdist”) is the Mahalanobis

distances between each pair of group means.

Although correlation does not imply causality, a few correlations are worth mentioning

because they seem to highlight how and why certain datasets performed better than others. The

strongest correlation found was between the calculated Lambda value and the max classification

rate, with a strong negative correlation between the two. This result suggests that, as the Lambda

value gets smaller, the maximum percent classified correctly gets larger. Such an occurrence is

not too surprising, seeing that Wilk’s lambda measures group separability. In the same vein,

another strong correlation was found between the mean classification rate and the Chi-squared

test. In future studies, perhaps the dataset in question can be analyzed using Wilk’s lambda and

the resultant Chi-square approximation to determine if an appropriate classification is possible.

The within-class sum of squares was moderately correlated (negatively) with the minimum

classification rate; suggesting that the more separable that data is within group, the lower the

worst score. This seems intuitive: the more voicings an instrument has, the harder time a neural

network will have identifying the instrument. With regard to between-class sum-of squares,

there was a smaller positive correlation between it and the median percent classified, suggesting

56

that as the classes of instruments become more separable, the better than neural network trained

and performed.

Lastly, an interesting result is that the number of features selected by the SFS algorithm

was moderately correlated (negatively) with the mean classification rate. This suggests that as

the number of features selected by the SFS algorithm increases, the ability for the neural network

to train and classify the instruments decreases. Perhaps this is because more features leads to

noisier data, which may make it harder for the neural network to train effectively.

4.1.3 A Look at Selected Features

To better determine which features out of the original 70 were the most important, the

total number or count of the features selected is noted in Table 6. Future statistical directions

would include testing combinations of selected features to determine which features really are

the most salient. It is interesting to note the features that were not selected (i.e., Count = 0) in the

experiments. For example, the mean 2nd band of the MFCC was the most selected feature, while

the means of the 10th and 12th Mel-Bands were not used at all. It is also interesting to point out

that pitch (i.e., note) was not selected for in any experiment, even though pitch is a

straightforward way for humans to differentiate instruments (e.g., basses have low pitches while

trumpets have much higher notes). One last feature not used in any experiment was the mean

and standard deviation of the inharmonicity, which was used in almost every experiment

consulted for this thesis.

4.1.4 Further Testing On Larger Sets

In attempts to extend the previously described experiment, 670 audio samples of 7

different Woodwind instruments (i.e., bassoon, clarinet, flute, piccolo, oboe, English horn and

57

Table 6: Total count of selected features through all experiments

Feature Count Feature Count
mfcc_mean_2 6 mfcc_std_4 1
mfcc_mean_1 5 mfcc_std_5 1
mfcc_mean_4 4 mfcc_std_8 1
mfcc_std_1 4 mfcc_std_9 1
temporal_spread_mean 4 mfcc_std_11 1
flux_mean 3 mfcc_std_12 1
mfcc_mean_5 3 rolloff_mean 1
mfcc_std_2 3 rolloff_std 1
mfcc_std_3 3 roughness_mean 1
spectral_flatness_mean 3 spectral_centroid_mean 1
spectral_spread_mean 3 spectral_centroid_std 1
temporal_centroid_mean 3 spectral_kurtosis_mean 1
event_density_mean 2 spectral_skewness_mean 1
flux_std 2 temporal_flatness_mean 1
mfcc_mean_6 2 temporal_kurtosis_mean 1
mfcc_mean_8 2 temporal_kurtosis_std 1
mfcc_mean_9 2 temporal_spread_std 1
mfcc_mean_11 2 zero_crossing_std 1
regularity_mean 2 attack_slope_std 0
regularity_std 2 event_desity_std 0
rms_std 2 inharm_mean 0
roughness_std 2 inharm_std 0
spectral_flatness_std 2 mfcc_mean_10 0
spectral_kurtosis_std 2 mfcc_mean_12 0
spectral_spread_std 2 mfcc_std_6 0
temporal_centroid_std 2 mfcc_std_7 0
temporal_flatness_std 2 mfcc_std_10 0
attack_slope_mean 1 mfcc_std_13 0
brighness_mean 1 rms_mean 0
brightness_std 1 spectral_skewness_std 0
log_attack_time_mean 1 temporal_skewness_mean 0
log_attack_time_std 1 temporal_skewness_std 0
mfcc_mean_3 1 zero_crossings_total 0
mfcc_mean_7 1 zero_crossings_mean 0
mfcc_mean_13 1 pitch 0

58

saxophone) were trained and tested with the threaded neural network. The results were

mediocre, with a mean classification rate of just 52% from 12 selected features. In a similar

vein, 927 audio samples of 4 String instruments (i.e., bass, cello, viola and violin) were trained

and tested on, resulting in a mean classification rate of just above 43% on 6 selected features.

Although the system performed above chance when classifying the Woodwinds and

Strings, it is evident that much more work needs to be done to achieve a more universal

classifying system. In particular, perhaps more features could be extracted, a better feature

selection algorithm could be used or a different classifying paradigm could be employed. All in

all, the multi-threaded neural network paired with the sequential forward selection algorithm

provides a quick and powerful way to classify limited sets of perceptively similar sounding

instruments.

59

Chapter 5: Conclusion and Future Direction

In the previous experiment, the first step of automatic music analysis, i.e., monophonic

instrument recognition, was explored. First a feed-forward, backpropagation neural network was

sped up by modifying the implementation of a batch mode training method to support threads

and multi-core technology. Next, 11 sets of instruments were trained and tested using the

parallelized neural network; starting with two sets of perceptively different sounding instruments

and leading to subjectively similar sounding ones. With each set of instruments, 70 features

were initially extracted and then paired down using the sequential forward selection algorithm.

The results were promising, showing that a neural network can be used to classify similar

sounding instruments.

Such a tool could be useful in the following way. Suppose there’s a musician who wants

to transcribe a musical piece but is having trouble telling the difference between instruments

during a solo phase (e.g., a saxophone solo in a jazz piece). Instead of spending time researching

what instruments the particular band used in the recording, the musician could use an audio

segmentation tool (Figure 28) and feed the segment to an “expert” neural network that can

differentiate the instrument in question (e.g., alto from tenor saxophones). Although limited in

scope, such a system represents the proverbial “tip of the iceberg” of automated music analysis.

As for future research directions of monophonic instrument recognition, with the sheer

number of instruments and voicings out there, a logical next step would include training and

testing many more combinations with the system described above. Another avenue to explore

would include the feature selection phase, where several other feature selection and clustering

methods could be substituted and tested (e.g., Principal Component Analysis, Non-Negative

Matrix Factorization, Sequential Backward Selection, etc.,). In addition to pair-wise training and

60

Figure 28: Screen shot showing how a musician could extract of segment of audio that
could be tested on an expert neural network

61

testing, another direction would be to attempt to build a “universal” classifier that is capable of

identifying any instrument presented to it. Such a system could be implemented as a “panel of

experts,” where several smaller neural networks are all presented with the same data and the

“best” result is used.

62

References

63

Agostini, G., Longari, M., & Pollastri, E. (2003). Musical instrument timbres classification with

spectral features. EURASIP Journal on Applied Signal Processing, 2003, 5-17.

Ahmad, A., Zulianto, A., & Sanjaya, E. (1999). Design and Implementation of Parallel Batch-

mode Neural Network on Parallel Virtual Machine. Proceedings from the Industrial

Electronic Seminar. Graha Institut Teknologi Supuluh Nopember, Surabaya.

Analysis & Machine Learning Research Group. (1999). FSBOX. Retrieved July 11, 2009, from

http://www.robots.ox.ac.uk/~parg/software.html

Chafe, C. & Jaffe, D. (1986). Source Separation and Note Identification in Polyphonic Music.

Proceedins from the IEEE Conf. Acoust. Sp. and Sig. Proc., Tokyo, Japan.

Cormican, B. (1991). Mozart's Death - Mozart's Requiem: An Investigation. Portland: Amadeus

Press.

Deng, J., Simmermacher, C., & Cranefield, S. (2008). A Study on Feature Analysis for Musical

Instrument Classification. Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE

Transactions on, 38(2), 429-438.

Duda, R. O., Hart, P. E., & Stork, D. G. (2001). Pattern Classification (2nd Edition). New York:

Wiley-Interscience.

64

Eronen, A., & Klapuri, A. (2000). Musical instrument recognition using cepstral coefficients and

temporal features. Acoustics, Speech, and Signal Processing, 2000. ICASSP '00.

Proceedings. 2000 IEEE International Conference on, 2, II753-II756 vol.2.

Farmer, H. G. (1988). Historical Facts for the Arabian Musical Influence. New York: Beaufort

Books.

Fedorova, N., & Terekhoff, S. (1999). Parallel MPI implementation of training algorithms for

Medium-Size Feed-Forward Neural Networks. Neural Networks, IJCNN '99.

International Joint Conference on, 4, 2378-2379. Washington, DC.

Herrera-Boyer, P., Peeters, G., & Dubnov, S. (2003). Automatic Classification of Musical

Instrument Sounds. Journal of New Music Research, 32(1), 3-21.

Janata, P. (2009). The Neural Architecture of Music-Evoked Autobiographical Memories.

Cerebral Cortex.

http://cercor.oxfordjournals.org/cgi/content/full/bhp008?ijkey=odjcdhE8j4ugMRU&key

type=ref1

Janata, P., Tomic, S., & Rakowski, S. (2007). Characterisation of music-evoked autobiographical

memories. Memory, 15(8), 845-860.

Kitahara, T., Goto, M., Komatani, K., Ogata, T., & Okuno, H. (2005). Instrument Identification

65

in Polyphonic Music: Feature Weighting with Mixed Sounds, Pitch-dependent Timbre

Modeling, and Use of Musical Context. Proceedings from the Int'l Conf. Music

Information Retrieval (ISMIR), London, UK.

Klapuri, A. & Davy, M. (2006). Signal Processing Methods for Music Transcription. New York:

Springer.

Koutroumbas, K., & Theodoridis, S. (1999). Pattern Recognition. Toronto: Academic Press.

Lartillot, O. (2009). MIRtoolbox 1.2 User’s Manual, Finnish Centre of Excellence in

Interdisciplinary Music Research, University of Jyväskylä, Finland.

Lartillot, O., & Toiviainen, P. (2007). A Matlab Toolbox for Musical Feature Extraction From

Audio. Proceedings from the International Conference on Digital Audio Effects. Bordeaux,

France.

Lu, L., Liu, D., & Zhang, H. (2006). Automatic mood detection and tracking of music audio

signals. Audio, Speech, and Language Processing, IEEE Transactions on, 14(1), 5-18.

Opolko, F., & Wapnick, J. (1991). McGill University Master Samples. Montreal, Quebec,

Canada.

Peeters (2004). A large set of audio features for sound description (similarity and classification)

66

in the cuidado project. Technical report, CUIDADO I.S.T. Project Report.

http://recherche.ircam.fr/equipes/analyse-

synthese/peeters/ARTICLES/Peeters_2003_cuidadoaudiofeatures.pdf

Presta, A. (2005). NNF - Neural Net Framework. Retrieved June 2, 2009, from

http://nnf.sourceforge.net/

Salembier, P. (2002). Introduction to MPEG 7: Multimedia Content Description Language. New

York, NY: Wiley.

Sethares, W. A. (2004). Tuning, Timbre, Spectrum, Scale. New York: Springer.

Sola, J., & Sevilla, J. (1997). Importance of input data normalization for the application of neural

networks to complex industrial problems. Nuclear Science, IEEE Transactions on,

44(3), 1464 - 1468.

Terasawa, H., Slaney, M., & Berger, J. (2005). The thirteen colors of timbre. Applications of

Signal Processing to Audio and Acoustics, 2005. IEEE Workshop on, N/A, 323-326.

Tsaregorodtsev, V.G. (2005). Parallel implementation of back-propagation neural network

software on SMP computers. Proceedings from Parallel Computing Technologies, 8th

International Conference, PaCT 2005, Krasnoyarsk, Russia, September 5-9, 186-192.

67

Tzanetakis, G., Essl, G., & Cook, P. (2001). Automatic Musical Genre Classification of Audio

Signals. Proceedings from International Symposium on Music Information Retrieval

(ISMIR), Bloomington Indiana.

Turchenko, V. & Grandinetti, L. (2009). Efficiency analysis of parallel batch pattern NN

training algorithm on general-purpose supercomputer. Distributed Computing, Artificial

Intelligence, Bioinformatics, Soft Computing, and Ambient Assisted Living, 5518/2009,

223-226.

Vonnegut, K. (2007). A Man Without a Country. New York: Random House Trade Paperbacks.

Yoon, H., Nang, J.H. & Maeng, S.R. (1990). A distributed backpropagation algorithm of neural

networks on distributed-memory multiprocessors. Proceedings, 3rd Symposium on the

Frontiers of Massively Parallel Computation, 358-363.

Zhang, X. & Ras, Z.W. (2007a). Analysis of Sound Features for Music Timbre Recognition. Proceedings

from the IEEE CS International Conference on Multimedia and Ubiquitous Engineering, Seoul,

Korea.

 Zhang, X. & Ras, Z.W. (2007b). Discriminant feature analysis for music timbre recognition. Proceedings

from the ECML/PKDD Third International Workshop on Mining Complex Data (MCD),

University of Warsaw, Poland.

68

Appendices

69

Appendix A: Digital Signal Processing of the Audio Signal:

Common Techniques

To better understand the previous literature and presented experiment involving single

instrument classification, a brief background of audio signal processing and a glossary of terms

(Appendix B) is presented. Typically, features from the audio signal used in classifications

experiments are extracted from the frequency and time domain. Please see Klapuri and Davy’s

(2006) excellent and thorough book on music signal processing for the complete details of the

mathematics and calculations involved.

A.1 Spectral Features:

To transform an audio signal from the time to frequency domain, the Fourier transform is

often used (Klapuri & Davy, 2006). Figure 29 shows the result of taking the discrete Fourier

transform on the synthesize A 440 audio signal (Figure 30). The discrete Fourier transform of

the audio signal is one of the primary first steps in music analysis.

Since the music signal can vary significantly over time (e.g., a 12-bar blues chord

progression), a windowing technique of the audio signal has been widely accepted throughout

the literature (Klapuri & Davy, 2006). In this model, the raw audio signal (Figure 31) is divided

up into 20-100 ms windows or frames (Figure 32) where each subsequent frame overlaps

typically 50% with the previous window. Usually a Hamming (Figure 33), Gaussian or Hanning

window is applied to each frame of the raw audio signal, and the Fourier spectrum is then

computed for each individual frame to create a spectrogram (Figure 34 and Figure 35) of the

entire signal. As an important aside, the lowest frequency that can thus be computed within, for

example, each 50ms frame is 20 Hz (1 cycle per 0.0050 seconds = 20 cycles/second or 20Hz).

70

Figure 29: Discrete Fourier Transform of the synthesized A 440 sine wave for the entire

signal

71

Figure 30: An artificially generated sine wave with a frequency of 440 Hz

72

Figure 31: Raw Signal of Acoustic Bass

73

Figure 32: Acoustic Bass With 50 ms Frames

74

Figure 33: Hamming Window used for a 50 ms Frame. If the audio signal has a sample
rate of 44100 samples per second, this corresponds to approximately 2205 samples per 50

ms window.

75

Figure 34: Spectrogram of Acoustic Bass, calculated using the DFT of 50 ms Frames

76

Figure 35: Spectrogram of Trumpet, calculated using the DFT of 50 ms Frames

77

After the audio signal is transformed into the frequency domain, several descriptors are

computed from the spectrum and spectrogram, including the spectral centroid, skewness, spread,

kurtosis, flatness, flux, irregularity, roll-off and Mel-Frequency Cepstral Coefficients (MFCC)

(Zhang & Ras, 2007; Tzanetakis, Essl, & Cook, 2001). Other descriptive features that can be

generated from the spectrum include brightness, pitch and roughness. Many of these descriptors

have been standardized in the MPEG-7 Standard (Salembier, 2002). Appendix B contains brief

descriptions of the features used in this experiment.

A.2 Temporal Features:

Aside from the spectral features, several temporal descriptors are used as well. Another

technique often used in music signal processing is the extraction of the audio envelope for

further analysis. The audio envelope has been described as the “global outer shape” of the

musical signal (Lartillot, 2009) and provides loads of information about the onset, duration, and

decay of the signal in question. Figure 36 is the raw signal of a short musical excerpt of ragtime

piano, and Figure 37 is its audio envelope. From the audio envelope, several temporal

descriptors can be calculated including the temporal centroid, flatness, kurtosis, skewness,

spread; the attack time and slope, event density and zero crossings.

For more details of both temporal and spectral features, please consult Appendix B.

78

Figure 36: Raw Audio Signal of ragtime.wav

79

Figure 37: Envelope Extracted from ragtime.wav Using a Hilbert Transform

80

Appendix B: Glossary of Extracted Audio Features

The following is a list and brief description of all extracted features used in the

experiment. All definitions are paraphrased from the work of Klapuri & Davy (2006), Lartillot

(2009), Peeters (2006) and Salembier (2002). For more details on the mathematics involved in

the calculations, please consult the previously mentioned literature (Appendix A). The following

plots, figures and graphs were either generated in Matlab 7.7 using the open-source MIRToolbox

(Lartillot & Toiviainen, 2007) or taken from the MIRToolbox’s user guide (Lartillot, 2009). It is

important to note that every feature listed can be easily extracted in Matlab using functions from

the MIRToolbox.

Attack Slope- estimates the average slope of each note attack (Figure 38) (Lartillot, 2009).

Figure 38: Attack slope of an audio signal. (Plot taken from MIRToolbox User's Guide)

Attack Time, Log- also known as “rise time” of the signal, and is the log of the time interval

between the point the audio signal reaches 20% to 80% of its maximum value (Figure 39)

(Klapuri & Davy, 2006).

81

Figure 39: Attack time of a signal. (Plot taken from MIRToolbox User's Guide)

Brightness- the amount of spectral energy corresponding to frequencies higher than a given cut-

off threshold (i.e., 1500 Hz). (Lartillot, 2009).

Event Density- estimates the average frequency of events, i.e., the number of note onsets per

second (Lartillot, 2009).

Inharmonicity- the amount of partials that are not multiples of the fundamental frequency, as a

value between 0 and 1. (Lartillot, 2009).

Mel-Frequency Cepstral Coefficients (MFCC)- often used in speech recognition, MFCC’s

represent a summary of the spectrum at each frame, across 13 Mel-frequency bands

(Klapuri & Davy, 2006). The processing involved is depicted in Figure 40. The MFCC’s

of a Bass and Trumpet are in Figure 41 and Figure 42, respectively.

82

Figure 40: Steps for calculating MFCC's (Figure taken from MIRToolbox user's guide).

Figure 41: Mel-Frequency Cepstral Coefficients of a Bass

83

Figure 42: Mel-Frequency Cepstral Coefficients of a Trumpet

Pitch (or Fundamental Frequency)- the musical note, represented in Hz, found in the signal

(e.g., A4 is 440 Hz) (Klapuri & Davy, 2006).

Regularity- the degree of variation of successive peaks of the spectrum (Lartillot, 2009).

Rolloff (85%)- the frequency at which a certain fraction (i.e., 85%) of the total energy is

contained below that frequency (Figure 43) (Lartillot, 2009).

84

Figure 43: Rolloff (85%) of the audio signal. (Plot taken from the MIRtoolbox user's

guide).

Root Mean Square (RMS)- the global energy of the signal. Computed by taking the root

average of the square of the amplitude, also called root-mean-square (Lartillot, 2009).

Roughness- an estimation of the sensory dissonance, or roughness, related to the beating

phenomenon whenever pair of sinusoids are closed in frequency (Figure 44) (Lartillot,

2009).

Figure 44: An estimation of roughness depending on the frequency ratio of each pair of

sinusoids. (Figure taken from MIRToolbox user guide).

85

Spectral Centroid- has been described as the “center of gravity”, “center of mass” and

“barycenter” for the spectrum (Lartillot, 2009; Peeters, 2006).

Spectral Flatness- indicates whether the distribution is smooth or spiky, with low values

indicating noisy sound. (Lartillot, 2009)

Spectral Flux- measures the local spectral change between the current and previous frames.

(Lartillot, 2009)

Spectral Kurtosis- describes the “peakiness” of the spectrum; the smaller the kurtosis, the flatter

the spectrum (Klapuri & Davy, 2006).

Spectral Skewness- describes the asymmetry of the frequency distribution about the spectral

centroid (Klapuri & Davy, 2006).

Spectral Spread- represents the bandwidth of the spectrum (Klapuri & Davy, 2006).

Temporal Centroid- a time-based centroid of the signal envelope; often used to help distinguish

percussive from sustained sounds (Peeters, 2006).

Temporal Flatness- indicates whether the audio envelope is smooth or spiky, with low values

indicating noisy sound. (Lartillot, 2009)

Temporal Kurtosis- measures the “peakiness” of the audio envelope (Klapuri & Davy, 2006).

Temporal Skewness- measures the asymmetry of the audio envelope about the temporal

centroid (Klapuri & Davy, 2006).

Temporal Spread- measures the distance from the largest specific loudness value to the total

loudness (Peeters, 2006).

Zero-crossing- the number of times the signal crosses the X-axis or changes sign (Figure 45)

(Lartillot, 2009).

86

Figure 45: Zero-crossings in an audio signal. (Figure taken from MIRToolbox user guide).

Zero-crossing Rate- the rate of zero crossings per a fixed time interval (usually per second)

(Lartillot, 2009).

87

Vita

Marc Rubin was born November 2, 1982 in Houston, TX where he graduated from

Memorial High School in May of 2001. In May of 2005, Marc completed his Bachelor’s of Arts

in Psychology with a minor in Music. After working in a neuroimaging laboratory in

Sacramento, California as a research assistant, Marc quickly became interested in understanding

the mechanics of the computers that rendered all the fMRI graphics on the screen. After moving

to Knoxville, TN in 2006, Marc began learning about computer science, both in academia and in

industry.

Marc is currently pursuing a Master’s of Science in Computer Science from the University

of Tennessee and plans on pursuing a Ph.D. in Computer Science as well.

	University of Tennessee, Knoxville
	Trace: Tennessee Research and Creative Exchange
	12-2009

	An Exploration of Monophonic Instrument Classification Using Multi-Threaded Artificial Neural Networks
	Marc Joseph Rubin
	Recommended Citation

	Marc_Rubin_Thesis_THIS_ONE.doc

