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Abstract 

The forest products industry has seen tremendous growth in recent years and has a 

huge impact on the economies of many countries. For example, in the state of Maine in 

1997, the forest products industry accounted for 9 billion U.S. dollars for that year. In the 

state of Tennessee, for example in 2000, this figure was 22 billion U.S. dollars for that 

year. It has, therefore, become more important in this industry to focus on producing 

higher quality products. Statistical reliability methods, among other techniques, have 

been employed to help monitor and improve the quality of forest products. With such a 

large focus on quality improvement, data is quite plentiful, allowing for more useful 

analyses and examples. 

In this thesis, we demonstrate the usefulness of statistical reliability tools and 

apply them to help assess, manage, and improve the internal bond (IB) of medium density 

fiberboard (MDF). MDF is a high quality engineered wood composite that undergoes 

destructive testing during production. Workers test cross sections ofMDF panels and 

measure the IB in pounds per square inches. IB is a key metric of quality since it 

provides a direct measurement for the strength of MDF, which is important to customers 

and the manufacturers. 

Graphical procedures such as histograms, scatter plots, probability plots, and 

survival curves are explored to help the practitioner gain insights regarding the 

distributions of IB and strengths of different MDF product types. Much information can 

be revealed from a graphics approach. 

Though useful, probability plots can be a subjective way to assess the parametric 
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distribution of a data set. Insightful developments in information criteria, in particular 

Akaike's Information Criteria and Bozdogan's Information Complexity Criteria, have 

made probability plotting more objective by assigning numeric scores to each plot. The 

plot with the lowest score is deemed the best among competing models. In application to 

MDF, we will see that initial intuitions are not always confirmed. Therefore, information 

criteria prove to be useful tools for the practitioner seeking more clarity regarding 

distributional assumptions. We recommend more usage of these helpful information 

criteria. 

Estimating lower percentiles in failure data analysis can provide valuable 

assistance to the practitioner for understanding product warranties and their costs. Since 

data may not be plentiful for the lower tails, estimation of these percentiles may not be an 

easy task. Indeed, we stress times to not even try to estimate the lowest percentiles. If 

samples are large and parametric assumptions are weak or not available, asymptotic 

approximations can be utilized. However, unless the sample size is sufficiently large, 

such approximations will not be accurate. 

Bootstrap techniques provide one solution for the estimation of lower percentiles 

when asymptotic approximations should not be utilized. This computer intensive 

resampling scheme provides a method for estimating the true sampling distribution of 

these percentiles, or any population parameter of interest. This can be used for various 

parametric models or for nonparametric settings, when the parametric model might be 

imperfect or misspecified. The empirical bootstrap distribution can then be used for 

inferences such as determining standard errors and constructing confidence intervals. 

Helpful applications of the bootstrap to the MDF data show this procedure's advantages 
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and limitations in order to aid the practitioner in their decision-making. Graphics can 

readily warn the practitioner when even certain bootstrap procedures are not advisable. 

To be able to say that improvements have been made, we must be able to measure 

reliability expressed in percentiles that allow for statistical variation. We need to make 

comparisons of these reliability measures between products and within products before 

and after process improvement interventions. Knowing when to trust confidence 

intervals and when not to trust them are crucial for managers and users ofMDF to make 

successful decisions. 
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Chapter 1 

Introduction 

Meeker and Escobar (2004) stress the importance of reliability for modem 

products and point out that "manufacturing industries have gone through a revolution in 

the use of statistical methods for product quality. Tools for process monitoring and 

experimental design are much more commonly used today to maintain and improve 

product quality." Consumer expectations and demands for higher quality products are 

growing almost as fast as the technology that makes product development possible. 

Meeker and Escobar ( 1998) indicate "customers expect purchased products to be reliable 

and safe" as well as to "perform their intended function under usual operating conditions, 

for some specified period of time." 

In order to narrow the focus here, it should be mentioned that this growth in both 

technology and customer expectations is certainly familiar to the forest products industry. 

This industry has seen tremendous growth and has an impact on the economies of 

countries around the world plus many states in the United States, e.g., Tennessee, Maine, 

etc. Forest products are present in furniture, shelving, flooring, structural applications, 

and unquestionably many others. 

According to Williams (200 1) and Young and Winistorfer ( 1999), raw materials 

and labor costs were relatively low and inexpensive during the early 20th century. 

Instead, technology proved to be a major limitation for the enhancement of production. 

The quality of final products was of little concern to most forest products industries. This 

has changed drastically with the dawn of the information age and newer technologies. 
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Restrictions and regulations have been enforced that limit the availability of raw 

materials, thus driving prices for these materials higher. Stronger interest has been 

placed on producing more reliable products. Approaches in statistical quality and process 

management have been employed to help improve the quality of forest products. 

In this thesis, as a case study, statistical reliability ideas and tools are applied to 

help assess, manage and improve the strength of a particular forest product, Medium 

Density Fiberboard or simply MDF. This particular product has undergone tremendous 

market growth, and international demands for MDF are steadily increasing. 

During the manufacturing process ofMDF, the product undergoes extensive 

monitoring where many process variables such as fiber-mat weight, line speed, MDF 

width and thickness, etc., are collected automatically via sensors. In particular, the real

time data warehouse used in this thesis stored 2,850 process variables and was obtained 

from a world-class North American MDF manufacturer making 100 million lineal feet of 

MDF per year. A smaller subset of 230 process variables was used throughout this study. 

The data warehouse we used was from March 19th to September 10th, 2002 containing 

1,478 records (data rows). See Young and Guess (2002) for additional details. Compare, 

also, Guess, Edwards, Pickrell, and Young (2003). 

Furthermore, the MDF product also undergoes destructive testing at different time 

periods of production in order to determine the strength ofMDF. If this strength 

complies with the specifications of quality set forth by the manufacturer and consumer, 

the product is shipped. Workers perform this testing by sampling cross sections of MDF 

panels over time. A special measuring device is utilized that pulls the cross section apart 

and measures the strength of internal bond (IB) in pounds per square inches (psi) until 
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failure. In engineering settings, this is often called tensile strength. Internal bond is a 

key metric of quality and unfortunately is not detennined via sensors. It is not 

automatically available, because it requires human labor. This makes reliability 

improvements in MDF more complicated. 

Throughout this thesis, different statistical tools will be presented for analyzing 

and interpreting reliability data for the purposes of improving product quality. As just 

mentioned, the data pertaining to the internal bond of medium density fiberboard will 

serve as a useful example. It is the intent of this author, not to reprove the well-known 

theoretical underpinnings of the statistical methodologies used throughout this thesis, but 

rather to apply them appropriately. This approach will provide a helpful set of tools that 

can be used by practitioners seeking to improve the quality and reliability of their 

respective products. 

Chapter 2 of this thesis is a required literature review that serves the reader as 

brief introductions to the major ideas of the thesis. This chapter also provides a useful set 

of literature that not only develops further and expounds on the concepts offered, but may 

lead the reader to other research insights that will be infonnative. The literature review 

begins with extensive background and work pertaining to the internal bond of medium 

density fiberboard. It is assumed that the reader ( especially those from outside the forest 

products industry) has had little exposure to MDF, its properties, uses, and current 

research around the world. Therefore, key background will be presented here in the 

hopes of creating a more comfortable sense of familiarity for what is to come in the rest 

of this thesis. Next, literature review pertaining to statistical reliability methods and 

studies are presented in the context of demonstrating the practicality of analyzing failure-
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time and strength data. The following segment of the literature review provides an 

approach of using information criteria for the purposes of selecting the "best" underlying 

statistical model for data. 

The final segment of the literature review summarizes the computer intensive 

resampling method known as the bootstrap, its background, and current work utilizing 

this tool. Again, it is assumed that the reader has had little or modest exposure to the 

statistical methodologies presented. Greater efforts in Chapter 2 will be made to ensure 

clear and proper understanding of the background material. 

Chapter 3 applies simple statistical tools to aid in the understanding and 

exploration of the reliability of medium density fiberboard. Further background on MDF 

will be provided along with the method used to categorize different types of MDF used in 

the study. Descriptive statistics and histograms are utilized along with probability plots 

and survival plots (Kaplan-Meier estimates) as a methodology for obtaining more 

information from reliability data. This method also allows for greater ease in 

interpretability. Probability plots help demonstrate how a data set conforms to a 

particular distribution. Survival plots are nonparametric plots that can be utilized when 

parametric models are not justified. 

This thesis demonstrates that graphical exploration is a helpful way for the 

practitioner to understand differences in different MDF product types, e.g., product types 

of MDF may have different densities and thickness. The thesis also explores the sources 

of variation that may influence internal bond. 

Chapter 4 summarizes information criteria that are helpful in objectively 

identifying the underlying parametric distribution of different product types of MDF. It 
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is common to use the models of Weibull, lognormal, and normal in various reliability 

settings on the original data or the transformed data. See Meeker and Escobar (1998). In 

particular, Akaike's Information Criteria (AIC) and further work by Bozdogan (2000) 

with his Information Complexity Criterion (ICOMP) will be presented. The 

identification of a parametric model is essential for many statistical tests and allows for 

better ease in estimating desired population parameters such as percentiles. 

Recall that in Chapter 3, probability plots will be introduced as a graphical 

approach for aiding in the identification of a parametric model. In many cases, they can 

easily identify an underlying statistical distribution for a particular data set. However, 

this method is subjective and thus makes any such model determination more difficult. 

The theory supporting AIC and ICOMP makes probability plotting more objective by 

accounting for the likelihood of the underlying model. They both create a numeric 

"score" for each probability plot. The model with the lowest score is picked as the "best" 

fit of the data. 

In Chapter 5, different bootstrap methods are presented for the purposes of 

constructing confidence intervals for model parameters. In particular, interest lies in 

obtaining confidence intervals for the extreme lower percentiles for the internal bond of 

MDF. In reliability studies, it is generally of most interest to estimate the lower 

percentiles. These lower numbers are more crucial for estimating percent fall out during 

warranty, early failures during normal usage, as well as percent falling out of the 

specification limits. The idea behind bootstrapping is to simulate the sampling process a 

specified (usually large) number of times and obtain an empirical bootstrap distribution 

for the desired parameter. The bootstrap distribution is then used to acquire 
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characteristics about the population parameter such as bias, standard error, and 

confidence intervals. One bootstrap method is completely nonparametric and requires no 

assumptions about the underlying distribution of the data. 

Other methods using the bootstrap do require parametric assumptions. As 

different methods of bootstrap sampling exist, so do different methods for constructing 

bootstrap confidence intervals. In light of many different possibilities, these methods will 

be explored and compared. Draft recommendations will be provided regarding the 

circumstances that dictate which bootstrap methods are most appropriate. Overall, the 

objective of this portion of the thesis is to illustrate the usefulness of the bootstrap tool as 

an alternative to other statistical methods available such as the normal large sample 

approximate confidence intervals and/or the likelihood-based interval. 

The final chapter of the thesis, Chapter 6, summarizes the entire thesis and also 

has concluding remarks. Suggestions for possible future work are referred to and 

explored in this chapter. The work presented in any thesis is by no means complete 

and/or definitive. As with many aspects of life, new ideas and technologies become 

available and work builds upon itself. The bootstrap and its aggressive growth is a 

classical example of this. The reader should note that the author plans future work in this 

field during his career and more work is forthcoming. 
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Chapter 2 

Literature Review 

We now begin a brief literature review that describes other research and current 

issues involving the topics of this thesis. In particular, the subject matter to be discussed 

includes: 

( 1) the background and uses of medium density fiberboard with respect to its internal 

bond, 

(2) reliability data analysis, 

(3) using important information criteria such as Akaike's Information Criteria (AIC) 

and Information Complexity Criterion (ICOMP) to alleviate subjectivity in 

probability plotting, 

and finally 

(4) bootstrapping and its applications. 

Since readers outside of the forest products industry may have little prior knowledge 

of medium density fiberboard, substantial emphasis and background are presented first. 

It is assumed that the reader has some prior knowledge of statistical methods and 

applications. Therefore, there will be less focus in this chapter on literature that pertains 

to research in reliability analysis, information criteria, and bootstrapping. Rather, many 

of the details for this will be presented in Chapters 3, 4, and 5 of this thesis. 
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2.1 MEDIUM DENSITY FIBERBOARD 

The financial impact of the forest products industry on worldwide economies is 

overwhelming. For example, in the state of Maine, the forest products industry 

accounted for approximately 9 billion U.S. dollars per year and in the state of Tennessee 

in 2000, this figure was approximately 22 billion U.S. dollars per year according to 

English, Jensen, and Menard (2004). There are many examples of forest products being 

used in furniture, cabinets, shelving, flooring, paneling, and molding. One product called 

medium density fiberboard (MDF), which is a wood composite, will be the focus of this 

section of the literature review. 

Specifically, MDF is a high quality engineered timber product offering superior 

qualities of consistency of finish and density, freedom from knots and natural 

irregularities, as well as having the characteristics of strength, durability, and uniformity 

are not always found in natural timber. MDF is used by home building and furniture 

manufacturing industries worldwide and is considered an industry leader in quality and 

productivity. 

In fact, international demands for this product are increasing. China is an 

aggressive growth area for MDF and produces the largest amount in the world. For 

example, ten new MDF manufacturing plants are opening in China. Also, to illustrate the 

increasing demands for MDF, one such large producer ofMDF has a capacity in excess 

of 100 million lineal feet per year. Suchsland and Woodson ( 1986) and Maloney ( 1993) 

cover manufacturing practices of MDF. Figure 2. 1 illustrates a comparison between 

MDF and common particleboard. Other illustrative comparisons can be found in Chapter 

3 of this thesis. 
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Figure 2. 1 .  A comparison of common particle board to MDF. 
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A brief literature search on MDF in Web of Science database yielded 160+ 

references. We then focused on MDF papers that dealt with the key variable of internal 

bond (IB ), which yielded a more modest 21 references. IB is a key metric of quality and 

serves as a measure of strength for MDF. It is through destructive testing on MDF that 

IB information is obtained. We will briefly describe these references and others, which 

help provide an indication as to why studying MDF and its IB, are important. Many of 

the journal articles listed below are from forest products researchers from countries as 

varied as Japan, China, Denmark, Sweden, New Zealand, and the United States of 

America. It is important to note that this literature review is not exhaustive and many 

more useful and informative references are available on this topic. 

We begin with Wang, Winistorfer and Young (2004) who investigate the 

"formation characteristics of the vertical density profile of MD F. . .  . Results of 

laboratory studies indicate the vertical density profile ofMDF is formed from a 

combination of actions that occur both during compaction and also after the press has 

reached final position." They assert that methodologies for the formation of density 

profiles for oriented strandboard (OSB) discussed in Wang and Winistorfer (2000a) 

apply, also, to the formation of density profiles for MDF. It was determined that "high

density surface layers are easier to create in MDF than in OSB." 

Widsten, Laine, Tuominen and Qvintus-Leino (2003) study IB being improved by 

higher defibration temperatures. It was seen that other improvements in MDF properties 

were also obtained by this approach. 

We note that van Houts, Winistorfer and Wang (2003) comment, "Acetylation is a 

treatment known to reduce the swelling and water absorption behavior of wood." They 
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found m reliability was reasonable for acetylation treated products. 

Tsunoda, Watanabe, Fukuda and Hagio (2002) "examined the resistance of 

medium density fiberboard treated with zinc borate to fungal and termite attack." They 

observed that this treatment led to no significant loss in m and other MDF properties. 

Rials, Kelley and So (2002) used near infrared spectroscopy for predicting 

various characteristics of MDF samples. One of the characteristics was m. This would 

provide a useful process improvement tool for manufacturing in the future. That is, this 

prediction method may help alleviate some of the destructive testing that is currently 

necessary to obtain m information. 

Young and Winistorfer (200 1) use simple autocorrelation time series and process 

improvement techniques on MDF thickness, rather than m. Wang, Winistorfer, Young 

and Helton (200 1) study MDF produced in the laboratory. They used a technique called 

the "step-closure pressing schedule" which helped increase m in analyzed samples. 

They also observed, "greater core density did not result in higher internal bond strength." 

"Internal bond (IB) strength ... was closely related with carbonate types and level 

used" according to Park, Riedl, Hsu and Shields (200 1 ). They conducted a study to 

"optimize hot pressing time and adhesive content for the manufacture of three-layer 

medium density fiberboard (MDF) through the cure acceleration of phenol-formaldehyde 

(PF) adhesives ... . " In particular, they used three carbonates (propylene carbonate, 

sodium carbonate, and potassium carbonate) in their study. 

Han, Umemura, Zhang, Honda and Kawai (200 1 )  study fiberboard manufactured 

from reed straw or from wheat straw. These MDF's had m ten times higher than 

particleboard. The thickness swelling, however, of the wheat MDF did not meet industry 
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fiberboard standards although all other properties were met. The IB of both reed and 

wheat MDF's did meet industry standards. 

Also, van Houts, Bhattacharyya and Jayaraman (2000) contend that due to "the 

moisture and temperature gradients developed during hot pressing of medium density 

fibreboard (MDF), residual stresses occur within the board as it equilibrates to room 

conditions." They study the measurement of these residual stresses and show how these 

can affect MDF properties. In particular, they studied the effect of residual stresses on 

internal bond. 

In van Houts, Bhattacharyya and Jayaraman (2001a) it was shown that a method 

known as the "Taguchi method of experimental design can be utilized to investigate 

methods for relieving the residual stresses present in medium density fibreboard (MDF)." 

The Taguchi method involves subjecting various MDF panels to varying degrees of heat, 

moisture, and pressure. 

Furthermore, van Houts, Bhattacharyya and Jayaraman (2001b) report on the 

"Taguchi analysis of the internal bond strength, surface layer tensile modulus, surface 

layer tensile strength and thickness swell of the treated specimens. These properties were 

measured to indicate whether the treatments had any effect on panel strength and 

dimensional stability." They find that moisture and heat had little influence on m for 8 

mm MDF. Heat increases IB in 17 mm board but moisture had little effect. 

Chow, Bao, Youngquist, Rowell, Muehl and Krzysik ( 1996) studied the "effects 

of fiber acetylation, resin content, and wax content on mechanical properties of dry

process hardboard made from aspen and pine . . . . " The results from the investigation 

revealed that "Tensile stress parallel to face and internal bond (IB) were generally higher 
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for untreated boards than for acetylated boards." Increases in resin content increased 1B 

while increases in wax content showed a decrease in IB. 

Hsu (1 993) employed a self-sealing steam press system for the effective 

production of phenol-formaldehyde-bonded fiberboard. The relationship between the 

press system and board properties was the focus of the study. It was determined that 6'the 

most significant factor affecting . .  .intemal bond is resin content . . . . Although mat 

consolidation time before steam injection affects other board properties . .  .it has no 

significant effect on . . .  intemal bond." 

Gomez-Bueso, Westin, Torgilsson, Olesen and Simonson (2000) report on 

"Lignocellulosic fibers of different origins . . .  acetylated in large batches. The fibers used 

were of commercial, medium density fiberboard (MDF) pulp quality produced from 

softwood, beech, waste wood (low quality residue from an intermediate forest cutting) 

and wheat straw, respectively. Fiber from de-inked, semi-bleached, recycled paper was 

also included in the study." This composite fiber MDF had great properties such as 

thickness swelling being decreased around 90% and mechanical characteristics were 

modestly enhanced. They performed what is called in reliability circles an "elephant 

test." It involved "cyclic testing according to EN 32 1 ,  (three cycles, each comprising 72 

h water immersion, 24 h freezing at - 1 8  degrees C and 72 h drying at 70 degrees C) show 

that more than 90% of the internal bond, IB, remained after the testing. This value can be 

compared with the corresponding value of30-40% obtained for fiberboard's made from 

unmodified fibers." 

Wang, Chen and Fann (1999) investigated "a compression shear device for easy 

and fast measurement of the bonded shear strength of wood-based materials to replace 
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the conventional method used to evaluate internal bond strength (IB)." They found that 

measuring strength of MDF or particleboard by the suggested compression shear strength 

and by the conventional approach of internal bond strength were significantly correlated. 

This provides an alternative approach to measuring strengths of materials. 

Young and Guess (2002) present modem high technology approaches to 

managing the manufacturing ofMDF and related data with real time process data 

feedback. They employ a useful regression model to predict the MDF strength of internal 

bond by using knowledge on more than 230 process variables. 

Guess, Edwards, Pickrell and Young (2003) apply statistical reliability tools to 

manage and seek improvements in the internal bond ofMDF. As a part of the MDF 

manufacturing process, the product undergoes destructive testing at various intervals to 

determine compliance with customer's specifications. Workers perform these tests over 

sampled cross sections of the MDF panel to measure the IB in pounds per square inches 

until failure. They explore both graphically and statistically this "pressure-to-failure" of 

MDF. 

For other references and work that connect to MDF and internal bond among 

many others, see Park, Riedl, Hsu and Shields ( 1998), Ogawa and Ohkoshi ( 1997), Xu, 

Winistorfer and Moschler (1996), Yusuf, Imamura, Takahashi and Minato (1995), Xu 

and Winistorfer (1995), Hashim, Murphy, Dickinson and Dinwoodie (1994), Labosky, 

Yobp, Janowiak and Blankenhom (1993), Chow and Zhao (1992), Butterfield, Chapman, 

Christie and Dickson (1992), and Rowell, Youngquist, Rowell and Hyatt (1991). 

For more general and specific information, see also the following websites: 

http :/ /web.utk.edu/�tfpc/ and http:/ /www.spcforwood.com. 
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2.2 RELIABILITY 

We now do a brief review of reliability literature. Reliability data analysis along 

with studying the 1B ofMDF is the core of the rest of this thesis. Currently, the best 

single source of statistical reliability analysis is Meeker and Escobar (1998). This 

"excellent and comprehensive book on reliability methods and their applications" was 

listed as number one in the top five recommended books for statisticians by Ziegel (2003) 

in the September 2003 edition of Amstat News. 

According to Meeker and Escobar (1998), "Reliability is often defined as the 

probability that a system, vehicle, machine, device, and so on will perform its intended 

function under operating conditions, for a specified period of time." They also list some 

of many reasons for collecting reliability data such as "assessing characteristics of 

materials over a warranty period or over the product's design life", "predicting product 

warranty costs", and "tracking the product in the field to provide information on causes 

of failure and methods of improving product reliability." Meeker and Escobar ( 1998) 

provides an excellent and thorough treatment of the Weibull distribution, other reliability 

functions, and validating/exploring graphically these models. 

For reliability studies and in particular for the case of analyzing strengths of 

materials, it is common to first consider the standard Weibull distribution as the 

underlying model. According to Cox and Oakes (1984), it was Fisher and Tippett (1928) 

that introduced the Weibull distribution when working with the extreme value 

distribution. In fact, even Weibull himself analyzed strengths of materials during the 

1930's and found that the standard normal distribution did not fit his examples well. See 

Weibull (1939) as well as Chapter 3 of this thesis for more information on this famous 
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distribution. Also, see Cox and Oakes (1984) for more on the Weibull distribution as 

well as the analysis of reliability data in general. Extreme values have been studied by 

the Russians also, independently of Weibull. 

Guess, Edwards, Pickrell, and Young (2003) shows that in the case of analyzing 

the strength of the internal bond of medium density fiberboard, it was natural to first 

consider the Weibull distribution. Although it sometimes fit parts of the IB data, it was 

surprisingly not a valid model for the total range of the internal bond. It was determined 

that other parametric distributions for strengths be investigated and ultimately, a 

nonparametric approach was needed. For more on specific parametric and/or 

nonparametric reliability models, see Meeker and Escobar (1998). Hollander and Wolfe 

(1973) provide an insightful and thorough coverage ofnonparametrics in general. 

Young and Guess (2002) "focuses on how modem data mining can be integrated 

with real-time relational databases and commercial data warehouses to improve reliability 

in real-time" for forest products. In particular, interest lies in improving reliability in the 

manufacturing of medium density fiberboard. This improvement is called for since the 

"cost of unacceptable MDF was as large as 5% to 10% of total manufacturing costs" and 

"prevention can result in annual savings of millions of U.S . . .  " 

In Walker and Guess (2003), the reliability of the bursting strengths of two 

designs for polyethylene terephthalate bottles were compared. It was determined that 

neither design was more reliable than the other. Furthermore, they stress "( 1) the need of 

operational clear definitions for reliability, (2) the need of graphical exploratory analysis 

to discover anomalies in the data, (3) the value of nonparametric methods, and (4) the 

problems of using parametric techniques when the assumptions are violated." 

16 



Urbanik ( 1998) presents "multiple load levels" for corrugated fiberboard and 

"related them to the probability of time to failure." A reliability analysis was conducted 

for the logarithm of failure time data varying with load level. The "results were used to 

(a) quantify the performance of two corrugated fiberboards having significantly different 

components and (b) show that a safe-load-level test using multiple load levels and cyclic 

humidity is more sensitive to material strength differences than a dynamic edgewise 

compression test at standard atmospheric conditions." 

Kim, Guess and Young (2004) discuss the usage of data mining tools in reliability 

applications. Caution is given for the use of decision trees in such applications and a new 

tool known as GUIDE is utilized for the purposes of comparison to regression techniques. 

They present a case study that focuses on predicting the internal bond of medium density 

fiberboard based on product specifications such as density, thickness, and width. 

Many other excellent sources of information on reliability and its applications 

exist. Guess, Walker and Gallant ( 1992) focus on how different measures of reliability 

such as means, medians, percentiles, etc. can be interpreted and used. For a thorough 

treatment of the underlying theory of reliability and life testing, see Barlow and Proschan 

(1965, 1974, and 1981). See also and compare texts by Lawless (2003), O'Connor 

( 1985), and Mann, Schafer and Singpurwalla (1974). 

2.3 INFORMATION CRITERIA 

More details and specifics regarding information criteria will be presented in 

Chapter 4 of this thesis. The focus is not broad and we present only several of many 

excellent sources on information criteria. Recall that probability plots provide a 
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graphical demonstration of how a particular data set conforms to a specific probability 

distribution. That is, the data are ordered and then plotted against the theoretical order 

statistics for the desired distribution. If the data set "conforms" to that particular 

distribution, the points will form roughly a straight line. More information on probability 

plotting can be found in Chapter 6 of Meeker and Escobar (1998). 

Many statistical techniques, such as probability plotting just described, are very 

subjective and allow for decisions to be made based on someone's own personal 

assessment. However, choosing a model based on information criteria is much more 

objective and helps relieve much of the ambiguity that is present when looking solely at a 

probability plot. See the excellent review article ofBozdogan (2000) and the lecture 

notes ofBozdogan (2001). For additional comments, also compare for example 

Bozdogan and Bearse (2003), Urmanov, Gribok, Bozdogan, Hines and Uhrig (2002), and 

Bozdogan and Haughton (1998). See these papers and their extensive references plus 

Professor Bozdogan's helpful website where his lecture notes are available: 

http:/ /web.utk.edu/---bozdogan/Stat563 2003 . 

This approach greatly helps remove the subjectivity in analyzing plots. It allows 

an objective score where the model with the lowest score wins as the best. We urge this 

as an important additional tool for practitioners and engineers in deciding on a parametric 

model. In our Chapter 4, we will discuss these in greater detail. 

2.4 BOOTSTRAPPING 

According to Efron and Tibshirani (1993), "the bootstrap is a data-based 

simulation method for statistical inference. .  . . The use of the term bootstrap derives from 
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the phrase to pull oneself up by one 's bootstrap." Efron's bootstrap is a Monte Carlo 

simulation that requires no parametric assumptions about the underlying population from 

which the data is drawn. It is a computationally intensive statistical method that can 

require a large number of iterations and hence usually requires the use of the computer. 

More recently, Chernick (1 999) is another excellent book that provides a thorough 

and insightful treatment of many bootstrap methods and their applications. A student, 

practitioner, or others beginning to learn more about bootstrapping would do well to start 

here. Chernick (1999) has an extensive helpful bibliography, also. We follow the 

approach of Meeker and Escobar (1998) who use bootstrapping to estimate percentiles 

while others might consider cross-validation or jackknifing as in Giudici (2003). 

Hall (2003) provides a brief and useful prehistory of the bootstrap. The idea is to 

further explore past connections with the bootstrap that may not be as well known. That 

is, "the relationship of bootstrap techniques to certain early work on permutation testing, 

the jackknife and cross-validation is well understood. Less known, however, are the 

connections of the bootstrap to research on survey sampling for spatial data in the first 

half of the last century or to work from the 1940s to the 1970s on subsampling and 

resampling." 

For further readings on bootstrap methodology, theory, and applications, 

including some ofEfron's earlier work, see Efron (2003), Efron and Tibshirani ( 1991), 

Efron and Gong (1 983), and Diaconis and Efron ( 1983) among many others. 

Meeker and Escobar ( 1998) present bootstrapping related directly to reliability 

data analysis. Also, see the helpful insights and comments on limitations of the bootstrap 

in Ghosh, Parr, Singh and Babu (1 984). In addition, compare Parr (1 983, 1985a, and 
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1985b). 

A completely nonparametric bootstrap, or Efron's bootstrap is conducted as 

follows according to Martinez and Martinez (2002): 

1 .  Beginning with a random sample denoted by x ,  calculate an estimate for some 

parameter, 0 .  

2. Sample with replacement from x to obtain x *b, where b represents the bth 

bootstrap replicate. 

3. Using x *b, calculate an estimate for0 . 

4. Repeat steps 2 and 3 a large number of times. 

5. Use the distribution of the estimates for 0 to obtain desired characteristics such 

as standard error, bias, and confidence intervals. 

Other forms of the bootstrap and methods of implementation have since emerged 

from Efron' s earlier work. The above nonparametric method, other bootstrap methods, 

and the general bootstrap methodology for constructing bootstrap confidence intervals 

will be described in greater detail in this thesis' Chapter 5 .  

Chapter 9 of Meeker and Escobar (1 998) provides a useful treatment ofbootstrap 

methods and applications for reliability data. They present two methods of bootstrap 

sampling, ( 1)  the fully parametric bootstrap that includes parametric sampling for 

parametric inference and (2) nonparametric bootstrap sampling for parametric inference. 

In both cases, it is necessary to first determine the underlying parametric distribution of 

the data. Applications of these methods to the construction of confidence intervals are 

presented in large detail and in particular, the bootstrap-t method for constructing 

confidence intervals is dealt with thoroughly. For an excellent treatment of the 
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construction of confidence intervals and other statistical intervals in general, see Hahn 

and Meeker ( 199 1 ). 

Pages 2 17-220 of Chapter 9 in Meeker and Escobar ( 1998) reviews the same 

fully nonparametric bootstrap method as presented in Efron and Tibshirani ( 1993) as it 

applies to analyzing reliability data. They capture some of the limitations and present 

warnings for the use of this fully nonparametric bootstrap. Recall, also, Ghosh, Parr et al. 

( 1984). 

For example, Meeker and Escobar ( 1998) contend that the ''justification for the 

bootstrap is based on large-sample theory. Even with large samples, however, there can 

be difficulties in the tails of the sample. For the nonparametric bootstrap, there will be a 

separate bootstrap distribution at each time for which there were one or more failures in 

the original sample." This would not pose a problem outside the tails of the original data 

where the bootstrap distribution will be approximately continuous. However, in the 

extreme tails of the original data, there may be only a small number of failures or 

outcomes. In this case, the bootstrap distribution may be anything but continuous. As 

can be seen by the examples presented, when the extreme tails 'are of interest (as is often 

the case in reliability studies), the standard fully nonparametric bootstrap methods are not 

as useful as other bootstrap methods. Rather the standard bootstrap methods have a place 

when estimating parameters such as the quartiles (25th or 75th percentiles). 

Chapter 3 of Chernick ( 1999) mentions several different methods for the 

construction of bootstrap confidence intervals. These include the standard percentile 

method, the bias corrected and accelerated percentile method, the iterated bootstrap, and 

the bootstrap-t. The aforementioned methods are described concisely and their ranges of 
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applicability as well as limitations are discussed. The last chapter provides information 

on the overall limitations of the bootstrap and when the bootstrap fails. These include, 

but are not limited to, (1) a sample size that is too small and (2) when attempting to 

estimate extreme values. Also, compare with Efron and Tibshirani (1993) and Davison 

and Hinkley (1997) as they provide further and extensive information on bootstrap 

theory, methods, and limitations. 

Recall that the bootstrap is a computer intensive statistical method. Martinez and 

Martinez (2002) devote Chapter 6 to the bootstrap, including estimation of standard error, 

bias, and confidence intervals, using MATLAB. Several routines are provided along 

with examples to aid the reader in getting started. Other Monte Carlo techniques such as 

the jackknife are also discussed. 

Lunneborg (2000) shows how to construct bootstrap confidence intervals using 

Resampling Stats and/or S-PLUS statistical programming packages. This thorough work 

provides step-by-step algorithms for implementation of many resampling methods for the 

purposes of analyzing data. 

DiCiccio and Efron (1 996) is devoted to bootstrap confidence intervals and 

provides a useful survey of many such intervals ( standard, percentile, bootstrap-t, etc.). 

Its focus is to "improve by an order of magnitude upon the accuracy of the standard 

intervals . .  .in a way that allows routine application even to very complicated problems. " 

Examples for each method are provided and the underlying theory is also presented. 

Polansky (1999) shows that bootstrap confidence intervals constructed using 

percentile methods "have bounds on their finite sample coverage probabilities. 

Depending on the functional of interest and the distribution of the data, these bounds can 
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be quite low." It is said that the "bounds are valid even for methods that are 

asymptotically second-order accurate." 

Boos (2003) gives his own thoughts on bootstrapping. In particular, he contends 

that "the real reason the bootstrap was so path-breaking and has remained so popular is 

that Efron described it mainly in terms of creating a 'bootstrap world,' where the data 

analyst knows everything." In a sense, any population parameter of interest can be 

estimated simply through simulation. For example, "if the variance of a complicated 

parameter estimate in this world is desired, just computer generate B replicate samples 

(bootstrap samples or resamples), compute the estimate for each resample and then use 

the sample variance of the B estimates as an approximation to the variance." Thus, "In 

effect this bootstrap world simulation approach opened up complicated statistical 

methods to anybody with a computer and a random number generator." 
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Chapter 3 

Exploring Graphically and Statistically the Reliability of Medium 
Density Fiberboard 

This chapter is a slightly revised version of a paper by the same name published in the 
International Journal of Reliability and Applications in 2003 by Frank M. Guess, David 
J. Edwards, Timothy M. Pickrell, and Timothy M. Young: 

Guess, F. M., Edwards, D. J., Pickrell, T. M., and Young, T. M. (2003). Exploring 
Graphically and Statistically the Reliability of Medium Density Fiberboard. International 
Journal of Reliability and Applications, 4(4), 97-110. 

My primary contributions to this paper include (1) all of the computer work (charts, 
graphs, etc.), (2) many of the interpretations presented, and (3) portions of the writing. 

3.1 INTRODUCTION AND MOTIVATION 

Medium Density Fiberboard (MDF) is used internationally in a host of building 

needs and furniture construction. It is a superior engineered wood product with great 

strength, reliability and grooving ability for unique designs. In addition, MDF offers 

superior qualities on consistency of finish and density, plus freedom from knots and 

natural irregularities. 

MDF has characteristics of strength, durability and uniformity not always found 

in natural timber or standard particleboard. It has excellent machinability due to its 

homogenous consistency and smaller variation in needed characteristics compared to 

natural wood. These features make MDF particularly suited for use in flooring, paneling, 

and manufacturing of furniture, cabinets, and moldings. It, also, has environmentally 

friendly properties of using wood waste to manufacture useful byproducts. This does not 

happen as easily with traditional wood products. 

Figure 3. 1 and Figure 3.2 demonstrate the marked differences between 
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Figure 3 . 1 .  Cross sections of forest products from width view. Top is particleboard, 
middle is natural wood, and bottom is MDF. 

Figure 3.2. Cross sections of forest products from diagonal view. Top is 
particleboard, middle is natural wood, and bottom is MDF. 
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particleboard, natural timber, and MDF. We have observed the common usage in writing 

particleboard or fiberboard ( or fibreboard). This is used by most companies or timber 

associations, which we sampled. Our sample ranged from Georgia-Pacific, Sabah 

Timber Industries Association of Malaysia, to an Association of New Zealand Forestry 

Companies. In some settings, however, you will see it written as two words "particle 

board." We followed the more typical industrial usage of writing as one word 

"particleboard" or "fiberboard." 

Suchsland and Woodson (1986) and Maloney (1993) cover manufacturing 

practices ofMDF. See, also, for more general and specific information: 

http:! /web. utk.edu/-tfpc/ and http://www.spcforwood.com. 

Young and Guess (2002) present modem high technology approaches to 

managing the manufacturing of MDF and related data with real time process data 

feedback. They employ regression prediction of MDF strengths using knowledge on 

more than 230 process variables. 

Here, we are interested in the statistical reliability properties of the strength to 

failure as opposed to the time to failure. The strength to failure data will give us a clear 

idea of the utility of the product. It allows the producer to make assurances to customers 

about the useful life of the product. The key measure ofMDF's reliability and quality is 

its internal bond (IB ), which is measured in pounds per square inch (psi) until breaking. 

Note that one psi is equivalent to 0.07 kilograms per square centimeter. 

For a number of reasons, testing the MDF product types over any extended time, 

under a variety of operating conditions is not economically feasible. Instead of an 

elaborate procedure of designing and implementing life tests, a "pull apart" destructive 
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approach provides an instantaneous measurement of the IB. Destructive "pull apart" test 

samples are taken periodically to determine IB. Due to the cost and loss of products from 

destructive testing, manufacturers obviously want to keep such tests to a minimum. 

Another advantage to destructive testing is immediate feedback into the 

manufacturing process leading to rapid process improvement. Also, it can help modify or 

stop the manufacturing process; thus, preventing great waste of materials. The cost of 

unacceptable MDF was as large as 5% to 10% of total manufacturing costs, which can 

result in 10  to 1 5  million dollars per plant per year. In 2003 to 2004, ten such high 

production plants are anticipated to be built in Asia. 

We present new results on different m data regarding the statistical distributions 

for various product types of m. This is important for studying potential warranty issues, 

understanding wearing over time, failure of products under misuse, and variation in IB 

between product types. This is, also, needed within particular product types ofMDF. 

Our data covers the time period from March 19, 2002 to September 10, 2002. 

We explore graphically and statistically the distributions of the strengths of this 

material. It would be natural to consider first the standard Weibull model for strengths of 

materials. Indeed, the researcher Weibull himself first analyzed strengths of different 

materials, ranging from cotton to metal. From his data sets, he found the primary 

available distribution of the normal did not fit his examples well in the 1930's. The 

alternative parametric model he originally proposed is what we now call the "three 

parameter'' Weibull. See Weibull ( 1 939 and 195 1  ). 

The original three parameter Weibull is often reduced and written today as a two 

parameter distribution. Recall this two parameter Weibull density function can be written 
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in the following parameterization as 

f(x) = ;.,pxP-te<-V> (3. 1 )  

where x � 0 ( and f(x) = 0, for x < 0), while the reliability function is 

F(x) = e<-V> (3.2) 

where x � 0 (and F (x) = 1 for x < 0). Another common reason for modeling data with a 

Weibull distribution is that it may be suitable for either increasing, constant (i.e., an 

exponential) or decreasing hazard functions. For MDF subject to destructive "pull apart" 

tests, we would conjecture an increasing failure rate. This would lead us to hypothesis, a 

priori, that the shape parameter p > 1 for any MDF product type that might be Weibull. 

See, for example, the excellent book of Meeker and Escobar ( 1998) for a 

thorough treatment of the Weibull, other reliability functions and validating/exploring 

graphically these models. Also, compare texts by O'Connor (1985), Barlow and 

Proschan ( 198 1  ), etc. 

Although the Weibull can sometimes fit parts of our m data for some categories 

of MDF, it is surprisingly not a valid model for this data for the total m range. Other 

parametric distributions of strengths are employed and a nonparametric approach is 

needed. See Meeker and Escobar ( 1998) for reliability parametric/nonparametric models 

and the insightful Hollander and Wolfe ( 1999) on nonparametrics, in general. 

The spirit of this chapter is that of an exploratory analysis via graphs, descriptive 

statistics, and tests. See the excellent overview on graphics by Scott (2003) and his 

references. Section 3 .2 covers the types ofMDF and ways these types are determined. 

Section 3.3 explores both graphically and statistically particular types ofMDF, while 
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Section 3 .4 provides concluding comments. 

3.2 CATEGORIZING TYPES OF MDF 

We begin the analysis by sorting the IB data by three key characteristics: 

• density (lbs/ft3) 

• thickness (inches) 

• and width (inches). 

These three characteristics differentiate the MDF's for various applications. Since MDF 

in this particular study was produced in continuous length of sheets, length was not a 

crucial variable for our purposes. Further, for the purpose of analysis, the MDF was 

separated into two main groups: 

• Group I: standard density 

• Group II: high density. 

The high density type is MDF with densities on the upper end of the scale 47-48 pounds 

per cubic foot (752.86-768.88 kg/m3). The standard density type is the MDF with 

densities ranging from 45-46 pounds per cubic foot (720.83-736.85 kg/m3) .  

Within each group the m was measured in accordance with classification by 

density, thickness and width. The type numbers (with density, thickness, and width after 

each type number) are listed in Table 3. 1 .  

Since there were a number of types in each group, we select the primary types, 

which sold the most, for a more detailed analysis. These were Types 1 and 3 from Group 

I (standard density) and Types 2 and 5 from Group 2 (high density). See Table 3. 1 for 

more details. 
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Table 3. 1. Group and type numbers for different MDF products with (A, B, C) where A =  
density, B = thickness, and C = width where for example Type 1 in Group I represents A 

= 46 pounds per cubic foot, B = 0.625 inches thickness, and C = 61  inches ( or the 
. 1 . . ) eqmva ent metnc umts . 

Group I: standard density Group II: high density 
Type # Type # 

1 ( 46,0 .625,61) 2 (48,0 .75,61) 
3 (46, 0 .75,49) 5 (48,0 .625,61) 
4 ( 46,0 .  75,61) 9 (48,0.75,49) 
6 (45 ,1 ,61) 10 (48,0.375,61) 
7 ( 46,0.625,49) 1 1  (48,0.5,61) 
8 (45, 1 ,49) 14 ( 48,0 .5,49) 
12 (46,0.688) 15 ( 48,0.625,49) 
13 ( 46,0 .688,49) 16 ( 47, 1,6 1) 
17 ( 45, 1. 125,6 1) 18  ( 48,0.4379,49) 
20 ( 46,0 .875,61) 19 ( 48,0.375,49) 
22 (45 , 1 . 12549) 2 1  (48,0.563,61) 

23 (48,0.4379,61) 
24 ( 48,0.688,61) 
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Another reason behind our splitting into two distinct groups was that the 

destructive testing of the MDF is concerned mainly with the m strength. A priori, this is 

reasonably hypothesized to be mainly a function of density. Furthermore, from the 

nature of the destructive testing, which involved the cutting of many cross sections from 

different pieces ofMDF, the lengths and widths were not the major factors effecting 

strengths. In the next section graphs and statistical tests will demonstrate strikingly this 

hypothesis to be true. 

3.3 EXPLORING GRAPHICALLY AND STATICALLY IB IN TYPES OF MDF 

The initial analysis began with the assessment of the underlying distribution of the 

internal bond strengths, categorized by the density, thickness and width measurements. 

We want to first understand means, medians, and percentiles of the strengths of MDF. 

See, for example, Guess, Walker, and Gallant (1 992) for more on these measures. 

Table 3.2 provides a descriptive statistics comparison of product Types 1 and 2. 

These numbers have been rounded to one decimal place. Note that both the mean and 

median in Type 1 are 1 20.2, while for Type 2 the mean and median are close at 1 80.0 and 

1 79.0. Type 1 has less variation as measured by the IQR and standard deviation, but 

Tabl 3 2 D e . .  escnpttve statistics companson o fT  ypes 1 d 2. an 
Type 1 IB (psi) Type 2 IB (psi) 

Mean 120.2 1 80.0 
Median 120.2 1 79.0 

Std. Dev. 9.9 12.3 
IQR 12.3 1 7.6 
Min 87.2 140.6 
Max 164.5 2 14.5 
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Type 1 has a bigger range of 77.3 when compared to Type 2 being 73 .9. This bigger 

range for Type 1 can be understood by its outliers, boxplots, and the histograms in 

Figures 3 .3 and 3.4. 

From the histogram in Figure 3 .3, we see that the distribution of the primary 

product, Type 1 ,  is approximately normal. Recall the mean and median being the same. 

Figure 3.4 suggests that we explore the reasons behind the weakness of the units in the 

140 to 1 50 psi bins, plus understand the much better strengths in the higher bins overall, 

especially for the 190 to 2 1  o+ psi bins, in order to improve the reliability. 

Recall the exploratory flavor of Tukey of examining many views of the same 

data. See, also, Scott (2003). Figure 3.5 is an overlay plot that gives another look at the 

differences and similarities between Types 1 and 2. Notice it can be a little misleading 

when compared to the actual raw data or the histogram. The plot shows quite a distinction 

between the two product types, providing evidence that Type 2 is much stronger than 

Type 1 .  That is, heavier products or products requiring more load bearing strength, such 

as shelving, would make use of Type 2 MDF. Type 1 ,  with less strength, would be used 

more extensively in products not requiring large strength, such as picture frames. 

Probability plots were used extensively in this analysis because they give a clear 

demonstration of how a particular data set conforms to a specific candidate probability 

distribution. The data are ordered and then plotted against the theoretical order statistics 

for a desired distribution. If the data set "conforms" to that particular distribution, the 

points will form a straight line. Simultaneous confidence bands provide objective 

bounds of deviation from the line or not. Those data points outside the confidence bands 

are shown to deviate from the candidate probability distribution in question. See 
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Figure 3.3 .  Histogram and Boxplot of Primary Product (Type 1) from JMP. 
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Figure 3.4. Histogram and Boxplot of Type 2 from JMP. 
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Chapter 6 of Meeker and Escobar (1998) for further information. Normal and Weibull 

probability plots were produced for Types 1 and 2 as shown in Figures 3.6 and 3.7. 

In Figure 3 .6(a) for Type 1 ,  there is clear departure from the Weibull in the upper 

tail, but appears to be following this distribution in the middle and the lower tail. Fitting 

in the lower tail can be important for estimating percent fall out of specification limits. 

Figure 3 .6(b) for Type 2 shows clear departure from the Weibull distribution overall. 

The snake-like meandering is a systemic pattern that strongly suggests the Weibull does 

not fit at all for Type 2. 

Recall that the histogram of Type 1 as well as the mean and median being the 

same provides some evidence for normality. Figure 3.7(a) shows a normal plot with 

points that fall mostly within the simultaneous bounds, except for some outliers. There 

is some clear departure in the tails that may not be following so perfectly a normal 

distribution. Again, recall the lower tail is important in estimating lower percentiles. 

Thus, as shown in Figure 3.6(a), the Weibull may prove to be a better model for 

estimating these lower percentiles for Type 1 .  However, this is only a conjecture and we 

will see in Chapter 4 that such subjective conjectures may not always hold. 

Figure 3.7(b) shows less departure from normality and certainly appears to be a 

better fit of the data than the corresponding Weibull distribution for Type 2. In fact, as 

we will see later, large p-values will not allow for normality to be rejected for Type 2. 

Overall, neither model appears to be the best, thus; a nonparametric approach may be 

more appropriate. 

As seen, the probability plots have been a very visual and indeed subjective 
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Figure 3.6. NCSS Weibull Probability Plots. (a) Weibull plot for Type 1 ;  (b) 
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method for assessing the underlying distribution for the different product types. In 

particular, the normal distribution was determined to be the reasonable fit compared to 

Weibull for some product types. We do not show all types here to save space in the 

thesis. Therefore, it is natural to ask if the data truly follows a normal distribution and if 

this is statistically significant by testing. Tests such as the Shapiro-Wilk, Kolmogorov

Smimov, and others exist to help answer these questions more objectively. These tests 

will produce different p-values, as seen in the Tables 3.3 and 3.4. 

For Type 1, we clearly reject normality using the Shapiro-Wilk and Anderson

Darling test for alpha level of 0.05. The Kolmogorov-Smimov test has bigger p-values, 

but recall it tends to have low power. Notice that four different software packages (SAS, 

JMP, NCSS, and Minitab) were used for checking the consistency of the tests statistics 

and p-values. Table 3.4 with its larger p-values for all three tests shows we can not reject 

normality for any reasonable alpha levels. Still we may want to seek better 

understanding by other plots. Walker and Guess (2003) stress the need for more 

nonparametric plots and analysis, when the parametric models may be weak or not the 

strongest. Nonparametric plots known as Kaplan-Meier estimators, survival plots, or 

reliability plots will now be shown for various product types. 

Immediately, one should notice the large gap present between Type 1 and 2 in the 

Kaplan-Meier nonparametric survival plots in Figure 3.8. Recall further that the medians 

are very different. That is, 120.3 and 179.0 psi for Types 1 and 2, respectively. Based on 

this, Type 2 has even more evidence of being significantly stronger than Type 1. A two 

sample t-test was conducted with variances assumed unequal. This assumption was 

based on a test for unequal variances provided by SAS, which yielded a p-value of 
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Software / Test 
JMP 
SAS 

Minitab 
NCSS 

Software / Test 
JMP 
SAS 

Minitab 
NCSS 

T bl 3 3 N a e . .  r ti T 1 orma 1ty test compansons or ype . 
Test Statistic I p-value 

Shapiro-Wilk Kolmoeorov-Smirnov Anderson-Darlin2 
0.97947 I <0.0001 NIA NIA 

0.97947 I <0.0001 0.0357 I >0. 15 0.80213 I 0.0393 
0.9880 I <0.01 0.035 I >0. 15 0.802 I 0.038 

0.97947 I 0.00002 0.03317 I NIA 0.80213 I 0.03787 

T bl 3 4 N a e . .  orma 1 ·� , es compansons or ype . rt t t ti T 2 . 
Test Statistic I p-value 

Shapiro-Wilk Komogorov-Smirnov Anderson-Darling 
0.990482 I 0.2514 NIA NIA 

0.990482 I 0.2514 0.044945 I >0. 15 0.485528 I 0.2311 
0.9947 / >0. 1 0.045 I >0. 15 0.485 I 0.224 

0.99048 I 0.25142 0.0449 / NIA 0.48526 I 0.2268 
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Figure 3.8. Survival Plot of Types 1 and 2 from JMP. 
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p=0.0004. This is quite a significant result and allows us to proceed with the stated t-test. 

In particular, the t-test gives a small p-value less than 0.0001, which is also highly 

statistically significant and allows for the conclusion that Types 1 and 2 are significantly 

different and thus, Type 2 is significantly stronger than Type 1. 

It is appropriate to take a moment to provide the practitioner unfamiliar with 

survival plots with an explanation of the interpretability of these curves. Consider Figure 

3.8 showing Types 1 and 2. The survival plot has the internal bond strength shown on 

the horizontal axis and the percentage of product surviving along the vertical axis. If we 

are interested in the internal bond strength where 50% of Type 1 MDF is surviving (or 

equivalently, where 50% have failed), simply find 0.5 on the vertical axis and move 

horizontally until reaching the survival curve for Type 1. Reading the horizontal axis at 

this point on the curve gives 120.3 psi, which is the median internal bond for Type 1 and 

what we would expect to obtain. Other examples follow similarly. Chapter 3 of Meeker 

and Escobar (1998) provides a thorough and helpful treatment of the construction and 

interpretation of survival curves. 

Suppose that interest lies in comparing two product types of the same thickness, 

but with a different density. Here, we compare product Types 1 and 5. That is, Type 1 

has a smaller density of 46 lbs/ft3 while Type 5 has a higher density of 48 lbs/ft3• 

However, they both have a thickness of 0.625 inches. The survival plot comparing these 

two products is shown in Figure 3.9. As with Figure 3.8, notice the large gap separating 

the two product types allowing for evidence that Type 5 is a much stronger product. 

Thus, we are seeing that product types of a higher density appear to be stronger than 

those at a lower density. 

39 



40 

Survival Plot 

1 .0 --,------==--,--------------r:----------; 

0.9 � �-
0.8 

\.,._ 0.7 
� g> o.6 '\ :� 0 .5 

\ � 0.4 \ 0.3 
\ 0.2 

0 . 1  
0 .0 ---��-���-----=;,-..........,-����-�...,....:c...J------1-

80 90 100 120 140 160 180 200 220 

· tnternat_Bond 
Figure 3.9. Survival Plot for Types 1 and 5 from JMP. 

1 
5 



Instead, suppose that interest lies in comparing product types of the same density, 

but with a different thickness. Then, in this case, comparison is between product Types 1 

and 3 .  Types 1 and 3 both have a density of 46 lbs/ft:3
, but Type 1 has a thickness of 

0.625 inches and Type 3 has a thickness of 0.75 inches. The survival plot showing this 

comparison is shown in Figure 3. 10. 

Notice that the gap we have been seeing in the plots is no longer present. This 

provides evidence that there are no differences among these two product types. That is, 

when density is held constant, thickness does not appear to have any effect on IB. 

However, it is important to verify this statistically. Figure 3 . 1 1 is an overlay plot of 

Types 1 and 3 .  A two-sample t-test was conducted (again, assuming unequal variances) 

and a p-value of 0. 1988 was obtained. Thus, our suspicions are confirmed and it can be 

concluded that there are no statistically significant differences between Types 1 and 3 at 

particular levels. 

A summary survival plot showing Types 1 ,  2, 3, and 5 is shown in Figure 3 . 1 2. 

From this plot, it is relatively easy to see which product types had the higher density and 

which had a lower density. However, it is not as obvious which product types had the 

higher or lower thickness making it clear that density is the main driver in determining 

MDF strength whereas thickness is not a large contributor to IB. 

One noticeable attribute of the survival plot shown in Figure 3 . 12  is that the 

survival curves at the same density are crossing each other at some point. The 

explanation is quite simple. The significance of this crossing is that one product has a 

greater strength at lower pressures whereas the other product will surpass at higher 

pressures. For example, Type 2 starts out with a greater strength than Type 5 at the 
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Figure 3 .10. Survival Plot for Types 1 and 3 from JMP. 
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Figure 3. 12. Summary Survival Plot for Types 1 ,  2, 3, and 5 from JMP. 
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extreme lower pressures. However, as pressure increases, we see the survival curve for 

Type 5 cross that of Type 2 and thus, surpass it in strength at the higher pressures. This 

crossing of survival plots may be helpful to note for manufacturers ofMDF when 

developing new products. 

3.4 SUMMARY 

In conclusion, we find that exploring graphically and statistically the MDF's 

reliability as measured by IB means, medians, and other percentiles readable from 

survival plots are helpful ways for understanding each product type better. Recall Type 1 

had more outliers, which suggests more need for process improvements there. Density is 

a key driver in improving IB average. In fact, it was the key source of variation in IB. 

Changes in thickness (or width) do not affect IB as much as changes in the density. 

One should be aware that quality and reliability are more than just one number 

(not just the mean or median). We need to explore these and other descriptive statistics 

as well as graphs of the data. Also, be careful of potential software differences on some 

tests, which may be mild or sometimes severe in certain instances. Validation with a 

different software package than the first software analysis might be advisable. Besides 

histograms, survival curves are a very helpful and insightful way to view your data. 

These different views may surprise you, suggesting places for real world process 

improvements. Compare Deming (1986 and 1993). Future work on estimating C.l.' s  on 

the lower percentiles and other sources of variation will be explored later. 
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Chapter 4 

Using Helpful Information Criteria to Improve 
Objective Evaluation of Probability Plots 

4.1 INTRODUCTION AND MOTIVATION 

In Chapter 3, the reliability of the internal bond (1B) of medium density 

fiberboard (MDF) was explored graphically and statistically comparable to the approach 

in Meeker and Escobar ( 1998). In particular, probability plots and survival (reliability 

function) plots were utilized to allow for greater ease in obtaining the most information 

from the IB data and for ease in interpretability. Probability plots were discussed as a 

method for determining the underlying distribution of a particular data set. Recall that if 

the data set "conforms" to a distribution, the points on the plot will form a straight line. 

A shortcoming of this method, however, is the extreme subjectivity, i.e., for any given 

probability plot, different people may have conflicting conclusions. Chapter 6 of Meeker 

and Escobar (1998) provides examples of probability plots based on repeated samples of 

the same size. Their graphs can serve as a strong illustration of the subjectivity of plots 

alone. 

Consider the following comparison example as shown in Figures 4. 1-4.3. For this 

example, we make use of Type 1 MDF data. Recall that Type 1 is the primary product 

and is therefore richer in data than other product types. Figure 4. 1 fits the normal, 

lognormal, and Weibull distributions using JMP Statistical Discovery Software. Figures 

4.2 and 4.3 fit these same distributions, but use respectively SAS and S-PLUS software 

packages. 
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Figure 4. 1. Comparing Probability Plots for Type 1 MDF using JMP. (a) Normal, 

(b) Lognormal, and ( c) Weibull probability plots. 
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Figure 4.2. Comparing Probability Plots for Type 1 MDF using SAS. (a) Normal, 

(b) Lognormal, and ( c) Weibull probability plots. 
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Based solely on the plots shown in Figure 4. 1-4.3, the choice between the normal, 

lognormal, and Weibull distributions for the m of Type 1 MDF may be anything but 

straightfotward. The comparisons of the packages shows that we must concern ourselves 

with comparing one set of probability plots within a particular statistical software 

package. In addition, we must examine the visual impressions between software 

packages. In particular, the placement of simultaneous confidence bands does not appear · 

to agree for all three software packages. Again, we emphasize, as others, the subjectivity 

of graphical approaches without information criteria. Later in this section we will discuss 

these very helpful criteria. 

Hypothetically, one may look at Figure 4. 1 and suggest that the normal model 

provides the best fit. Likewise, a look at Figure 4.2 may suggest that the lognormal 

model is the best fit. Because of different scaling in the software packages, the 

placement of obvious outliers are different, which may also have an affect on which plot 

is chosen to best represent the data. It should be emphasized, also, that in many cases, 

probability plots are very useful and can easily identify an underlying statistical 

distribution for a particular data set. However, it is again further stressed that this method 

is subjective and thus makes model determination difficult. 

Fortunately, modem developments have produced more objective approaches for 

determining the best candidate model for data than subjective probability plots, i .e., 

information criteria or model evaluation criteria. According to Bozdogan (2000), the 

"necessity of introducing the concept of model evaluation has been recognized as one of 

the most important technical areas, and the problem is posed on the choice of the best 

approximating model among a class of competing models by a suitable model evaluatfon 
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criteria given a data set. Model evaluation criteria are figures of merit, or performance 

measures, for competing models." In particular, Bozdogan (2000) reviews the basic 

ideas surrounding Akaike ( 1973) Information Criterion or AIC and then presents further 

work based on his Information Complexity Criterion (ICOMP) which is a new entropic 

model selection criteria. The theory supporting AIC and ICOMP makes probability 

plotting more objective by accounting for the likelihood of the underlying model, which 

creates a numeric "score" for each probability plot. The model with the lowest score is 

picked as the "best" fit of the data. See Bozdogan and Bearse (2003), Bozdogan and 

Haughton (1998), Urmanov, Gribok et al. (2002), Bozdogan (1990), and Bozdogan and 

Sclove (1984) who show how information criteria plays an important role in simple and 

multivariate regression analysis, cluster analysis, the detection of influential observations, 

etc. 

The spirit of Chapter 4 of this thesis is to provide the reader with the essential 

background to wisely apply AIC and ICOMP. Also, we show how using these helpful 

information criteria can aid in the important selection of a better parametric model for the 

internal bond. Section 4.2 introduces and further develops the ideas behind AIC and 

ICOMP as it applies for use in probability plotting. Section 4.3 uses the IB data on MDF 

as a brief case study and shows probability plots along with their information criteria 

"scores" for the normal, lognormal, and Weibull distributions. It is the intent of this 

section to choose better underlying parametric distributions for the different MDF 

product types previously mentioned, i.e., Types 1, 2, 3, and 5. Section 4.4 provides 

concluding remarks, plus potential future work that may be conducted in the use of 

information criteria for quantile modeling. 
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4.2 A BRIEF SUMMARY OF AIC AND ICOMP 

Bozdogan (2001) is an excellent place to start for very helpful background 

information on AIC, I COMP, and their many applications. In this section, it is reviewed 

how these information criteria can be used with probability plotting to prevent the 

subjectivity when only using the plots. 

Akaike's Information Criterion (AIC), like other model-selection methods, takes 

the form of a lack of fit term (such as minus twice the log likelihood) plus a penalty term. 

The penalty term is a "compensation for the bias in the lack of fit when the maximum 

likelihood estimators are used" according to Bozdogan (2001 ). AIC has the following 

form: 

A I C ;:: -2 lo g L ( O )  + 2 k  (4. 1)  

where L( 8) is the maximized likelihood function for a particular population parameter 

IJ ( either scalar or vector valued) and k is the number of parameters in the model. For 

example, if we consider the normal model with the parameters µ and a2 
, then k = 2. 

Recall that the model with these lowest information criteria score is chosen as the 

best fit of the data. In order to better understand why we take minus twice the log 

likelihood as the lack of fit term, we take a heuristic approach of reasoning by extremes 

and exponentials, in the spirit of Frank Proschan. 

Consider an exponential model with failure rate parameter l and a data set with 

the sole observation of x = 0. Here we have X rv Exp( l) where the density is 

f(x) = k-.tx for x � 0 and l >O (and /(x) =0  for x < 0). Our data has n = l and x = 0. 

This means our likelihood is simply L(l) = k-.tx and then plugging in x = 0, we 
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get L(l) = le-.t<o> = l .  

Recall that the sample mean here is 0, and the failure rate is the reciprocal of the 

mean. Thus, for this Proschan style heuristic, allowing the failure rate to be infinity we 

have i = + oo.  This yields L(i) = oo and therefore, -2 logL(i) = -oo. Then, AIC 

=-oo + 2(1) = -oo .  

Thus, a model with infinite likelihood will obtain a score of negative infinity and 

prove to be the "best" underlying model ( or at least tied for "best" model) for this given 

data set. Professor Frank Proschan would use such extreme heuristics to demonstrate the 

essentials of important concepts and methods in reliability and elsewhere. 

In comparison to AIC, Bozdogan's ICOMP includes first the same lack of fit 

term. However, in contrast, the penalty term is substantially different. This penalty term 

takes into account the asymptotic properties of the maximum likelihood estimators as 

well as the "complexity" of the inverse Fisher information matrix, !J-1
, of the proposed 

model. 

Basically, rather than twice the number of parameters in the model, I COMP takes 

on a penalty term that is viewed as the "degree of interdependence among the 

components of the model" and has the goal of providing a "more judicious penalty term 

than AIC and other AIC-type criteria, since counting and penalizing the number of 

parameters in the model is necessary but by no means sufficient" according to Bozdogan 

(2000). 

Since the complexity term takes into account the interdependence of the 

parameters in the model, ICOMP can only be used for models with two or more 
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parameters. As with AIC, the model with the lowest ICOMP score is considered the best 

among all competing models. 

We now present the generalized formula for ICOMP, which is as follows: 

(4.2) 

where C
1
(9-1 (0)) is a measure of complexity of the inverse Fisher information matrix 

and is given by: 

(4.3) 

where r is the rank of the inverse Fisher information matrix and l•I denotes the 

determinant. For those interested in the details of the theory underlying AIC and 

ICOMP, the reader should turn to Bozdogan (1987, 1988, and 1996) and Bozdogan and 

Haughton (1998), among others. 

We now focus on the use of AIC and ICOMP in association with probability 

plotting for the purposes of choosing the best plot that represents the data. Chapter 6 of 

Bozdogan (2001) provides extensive information on quantile modeling and how to 

incorporate AIC and ICOMP into this graphical approach. Recall, first, that in 

probability plotting, the data are ordered and then plotted against the theoretical order 

statistics for a desired distribution. In order to make use of the information criterion 

previously discussed, it is necessary to fit a regression model through the plotted points. 

To do this, we make use of a first order approximation of the form: 

Y; = Po + P1x; + &; i = 1, 2, ... n (4.4) 

where Y; represents the ordered data, x1 represents the theoretical quantiles, and &; 
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corresponds to the error associated with using the first order approximation. We must 

also assume that the errors are approximately normally distributed with constant error 

variance in order to carry out least squares regression. That is, &; rv N(O,u2
) .  

It is without question that another regression model other than that shown in (4.4) 

above may be considered for use here. Furthermore, a more complex model that does not 

assume a constant error variance can certainly be utilized and may prove to be more 

appropriate. In particular, further research in this area may be conducted later. However, 

given the usefulness of this methodology for the practitioner, we choose a rough and 

quick approximation in the spirit of Frank Wilcoxon in order to aid in the ease of carrying 

out the use of information criteria in quantile modeling. We employ the derived formulas 

of AIC and ICOMP that will be useful for this application as follows: 

AIC = n In(21l') + n In(o-2 ) + n + 2(2) (4.5) 

where k = 2 since we are estimating Po and p1 for the regression model. Some may 

argue that k = 3 since we also include the parameter u2 in the likelihood equation. 

However, letting k = 2 is the traditional approach in regression analysis, especially in the 

construction of confidence intervals. See our resident expert, Professor Bozdogan, and 

his papers cited in this chapter for helpful comments on this and other insights below. 

For more on regression analysis in general, see Neter, Kutner, Nachtsheim and 

Wasserman (1996) and Montgomery, Peck and Vining (2001). These, among others, 

provide a thorough reference and would be helpful for the practitioner and those 

interested in learning more about the fundamentals and applications of linear regression 

models. 
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The derived formula for ICOMP is: 

(4.6) 

0 

where 
"-1 2 Lx/ g (Po ,P. ,u  ) = i=1 (4.7) 

0 
n 

Without question, one may expect that since the inverse Fisher information matrix shown 

in (4 .7) takes into account three parameters, then the form of l-1 (p0, p1 , u
2

) would be a 

3x3 matrix. However, recall that we estimate u2 = !. f e/ where &; = Y; - Po - Pix; 
n ;.1 

when we allow the intercept term, Po , to not equal zero. Note that &; = Y; - Pix; when the 

intercept term is set equal to zero, i.e., Po = 0. Therefore, whether we are dealing with a 

linear model with an intercept term or not (i.e. Po = 0 or not) will have no affect on the 

form of the inverse Fisher information matrix since the intercept term is included in the 

estimation of u2 • 

This is important since in some applications ( e.g., engineering and industrial 

applications) the intercept term does need to be constrained to zero. Therefore, we 

simply fit the simple regression model that is the most appropriate and calculate the 

estimated error variance using the residuals of the fitted model. Then, substitute the 

calculated estimate of the error variance into the inverse Fisher information matrix given 

in (4.7). For more on the derivation of the formulas for AIC, ICOMP, and the inverse 
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Fisher information matrix shown in formulas ( 4.5), ( 4.6), and ( 4. 7) respectively, see the 

chapter on the theory of linear models in Bozdogan (2001). This chapter further 

illustrates the necessary technical details and shows how ( 4. 7) is the same for both a 

model with or without an intercept term. 

Let us next move to show how this can be used in application. In particular, we 

return to our data on the IB ofMDF. Types 1, 2, 3, and 5 will be used and the best 

parametric distribution will be determined by scoring AIC and I COMP. 

4.3 USING AIC AND ICOMP WITH PROBABILITY PLOTS TO 
DETERMINE THE PARAMETRIC DISTRIBUTION OF THE INTERNAL 

BOND OF MEDIUM DENSITY FIBERBOARD 

Using the helpful MATLAB programming language, a routine was constructed to 

calculate the quantiles, plot them, and score AIC and ICOMP for each of the normal, 

lognormal, and Weibull distributions. This was done for each of Type 1, 2, 3, and 5 

MDF product types as an illustration and for useful comparison. Recall that product 

Types 1 and 3 have the same density of 46 lbs/ft3 and a different thickness of 0.625 and 

0.750 inches, respectively. Likewise, product Types 2 and 5 have the same density of 48 

lbs/ft3 and a different thickness of 0. 750 and 0.625 inches, respectively. Recall Table 3.1. 

We begin with Type 1 MDF. Figure 4.4 shows the three probability plots for the 

normal, lognormal, and Weibull distribution for Type 1 as produced by MATLAB. A 

close look at these plots clearly reveals their subjectivity. Two practitioners may not be 

able to agree on the best fit. Further, Table 4. 1 shows the AIC and ICOMP scores for 

each plot. Based on the minimum values of AIC and !COMP of 1428.6 and 1439.5, 
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0 0 

(a) (b) (c) 
Figure 4.4. Type 1 probability plots by MATLAB. (a) normal, (b) lognonnal, and (c) 

Weibull probability plots. 

T bl 4 1 AIC d I COMP ii T 1 b b T t 1 t a e . .  an or ype pro a 1 u y  p o s. 
Distribution AIC ICOMP 

Normal 1428.6 1439.5 
Lognormal 1487.3 1498. 1 

Weibull 1678. 1 1687.5 
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respectively, the normal distribution appears to be the best fit of the Type 1 internal bond 

data. As will be seen further in Chapter 5 of this thesis, having knowledge of the 

parametric distribution enables the better estimation of population 

characteristics/parameters of interest. Knowing that Type 1 follows roughly a normal 

distribution helps in conducting statistical tests (such as the analysis of variance 

(ANOVA)) where the assumption of normality is required. 

Figure 4.5 shows the probability plots for Type 2 MDF as produced in MATLAB 

and Table 4.2 gives the AIC and ICOMP scores for each plot. Given, the minimum 

values of AIC and ICOMP of 571. 12 and 584. 11, respectively, choose the lognormal 

distribution as the best fit for the internal bond of Type 2 MDF. Recall that if 

T l"V Lognormal(µ, o-) then Y = log(T) l"V Normal(µ, o-) . In the case of the lognormal, 

we define the parameter µ as the mean of the logarithm of T and o- as the standard 

deviation of the logarithm of T .  That is, the lognormal parameters are the mean and 

standard deviation of the transformed data. This distribution appears commonly in 

reliability data and falls into the location-scale family of distributions. For more 

information on the lognormal distribution, such as formulas for the expected value, 

variance, and quantiles, see Meeker and Escobar ( 1998). 

Figure 4.6 and Table 4.3 give the probability plots and the AIC and ICOMP 

scores for Type 3 MDF, while Figure 4. 7 and Table 4.4 show the probability plots and 

AIC and ICOMP scores for Type 5 MDF. Although the Type 3 AIC and ICOMP scores 

for the normal and lognormal were extremely close, the minimum value ''wins," and thus, 

the normal distribution is chosen as the best fit for the internal bond of Type 3 MDF. For 

Type 5, we also will find that the normal distribution proves to be the best fit of internal 
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(a) (b) (c) 
Figure 4.5. Type 2 probability plots by MATLAB. (a) normal, (b) lognormal, and (c) 

Weibull probability plots. 

T bl 4 2 AIC d CO a e . .  an I 
Distribution 

Normal 
Lognormal 

Weibull 

MP for Type 2 probability plots. 
AIC ICOMP 

614.47 627.24 
571.12 584.1 1  
933.96 944.57 

(a) (b) (c) 
Figure 4.6. Type 3 probability plots by MATLAB. ( a) normal, (b) lognormal, and ( c) 

Weibull probability plots. 

T bl 4 3 AIC d I COMP f4 T 3 b b T I a e . .  an or ype pro a 1 1ty p ots. 
Distribution AIC ICOMP I 

Normal 542.36 553.1 1 I I 
Lognormal 543.14 553.84 I 

Weibull 711.85 721.05 I 
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(a) (b) (c) 
Figure 4. 7. Type 5 probability plots by MATLAB. ( a) normal, (b) lognormal, and ( c) 

Weibull probability plots. 

T bl 4 4 AIC d I COMP ti T 5 b b T 1 a e . .  an or ype pro a 1 tty p ots. 
Distribution AIC ICOMP 

Normal 305.54 315.14 
Lognormal 342.47 351.57 

Weibull 321.08 330.24 
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bond. There was no conclusive evidence to suggest that the Weibull distribution was the 

best underlying distribution for the top four MDF product types. 

This might be surprising since the Weibull is often the first choice when studying 

the strengths of materials. Indeed, the researcher Dr. Weibull himself first analyzed 

strengths of different materials, ranging from cotton to metal. From his data sets, he 

found the primary available distribution of the normal did not fit his examples well in the 

1930's. The alternative parametric model he originally proposed is what we now call the 

"three parameter" Weibull. Compare Weibull (1939 and 1951). 

The internal bond ofMDF is an example of how important the information 

criteria are to find the parametric distribution for a data set. After all, our data surprises 

us and our intuition may not always be confirmed. These criteria let the data speak 

objectively for the "best" model. 

4.4 SUMMARY 

It cannot be reiterated enough that probability plotting is an extremely useful way 

to aid in the determination of the parametric distribution of a particular data set. In many 

cases, when comparing plots of different candidate distributions, little ambiguity is 

present and the choice of distribution is not difficult. However, this method is subjective 

and when ambiguity among candidate distribution probability plots is present, two or 

more variant conclusions may be reached. 

Akaike's Information Criterion (AIC) and Bozdogan's Information Complexity 

Criterion (ICOMP) rescues practitioners from such subjectivity. These two forms of 

information criteria, among others, have a lack of fit term (minus twice the log 
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likelihood) plus a penalty term that accounts for the number of parameters in the 

respective model. Building on the fundamental ideas behind probability plotting, AIC 

and ICOMP make it much more objective by creating a numeric score for each plot. The 

plot with the lowest score is considered to be the best fit of the data set under 

consideration. This is great to explain to practitioners, who may not have much statistical 

training. 

When applied to the different product types ofMDF, it was discovered that the 

normal distribution is technically the best fit for Types 1, 3, and 5, while the lognormal 

distribution is the best fit for Type 2. Of course for Type 3, the lognormal was extremely 

second which might also be considered in that specific case. Thus, even though the 

Weibull distribution might be an intuitive choice when studying the strengths of 

materials, the actual data analysis of the internal bond ofMDF does not support this first 

intuition. As stated in Chapter 3, data has a way of producing unexpected results in the 

light of intuition, exploration and theory. 

Note that future work in the area of information criteria might include using 

another model different than this helpful first order approximation assuming normal 

errors with constant variance. Also, information criteria are certainly not limited to 

applications in probability plotting. Other considerations include their use in regression 

analysis, statistical process control, etc. 
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Chapter 5 

Applying Bootstrap Techniques for Estimating Percentiles 
of the Internal Bond of Medium Density Fiberboard 

S.1 INTRODUCTION AND MOTIVATION 

In reliability studies, it is generally of high interest to estimate percentiles. In 

particular, interest usually lies in the estimation of the lower percentiles. These lower 

numbers are helpful for warranty analysis, understanding early failures during normal 

usage, plus improving the specification limits. Meeker and Escobar (1998) observe that 

the "traditional parameters of a statistical model ( e.g., mean and standard deviation) are 

not of primary interest. Instead, design engineers, reliability engineers, managers, and 

customers are interested in specific measures of product reliability or particular 

characteristics of a failure-time distribution ( e.g., failure probabilities, quantiles of the life 

distribution, failure rates)." See, also, Meeker and Escobar (2004). 

Nelson (1990) further mentions that with "life data work, one often wants to know 

low percentiles such as the 1 % and 10% points, which correspond to early failure. The 

50% point is called the median and is commonly used as the 'typical' life." The first and 

third quartiles are also useful in studying the life of a product. We note that for some 

lower percentiles, samples sizes need to be adequately large. If samples are small, the 

lower percentiles should be avoided and the quartiles should be used instead. Recall the 

median is the second quartile. Compare the comments from Polansky ( 1999) warning to 

have sufficient sample size for the lower percentiles. 

To be able to say that improvements have been made, we must be able to measure 
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reliability expressed in percentiles that allow for statistical variation. We need to make 

comparisons of these reliability measures between products and within products before 

and after process improvement interventions. Knowing when to trust confidence 

intervals and when not to trust them are crucial for managers and users of MDF to make 

successful decisions. 

Chapter 5 is devoted to the estimation of percentiles of IB and their respective 

confidence intervals. In particular, the bootstrap will be presented as a useful method for 

obtaining the aforementioned estimates and confidence intervals. We next provide the 

reader with some useful background infonnation on percentiles, its consistency, and 

asymptotic distribution. 

Serfling (1980) defines the 100 pth percentile or pth quantile as 

tP = inf{t : F(t) � p} where F represents the distribution function. That is, the 

pth quantile is the greatest lower bound of the set of all values, t, such that F(t) is 

greater than or equal to a specified value of p where 0 � p � 1. In practice, we take the 

infimum of the set since it is possible for the distribution function, F, to yield a set 

where the minimum does not exist, but the "inf' does. For example, the open interval (0, 

1) has an inf of 0, but the min does not exist. 

For a sample of n observations, {t1 , t2 , . . .  tn } on F, the sample pth quantile, 

denoted by i
P is "defined as the pth quantile of the sample distribution function", or as 

p-t (p) . Furthennore, it has been shown that i
P is a consistent estimator of t P . That is, 

as the sample size increases, the estimate of the quantile gets closer and closer to the true 

value. This asymptotic property is "such a fundamental property that the worth of an 
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inconsistent estimator should be questioned ( or at least vigorously investigated)" 

according to Casella and Berger (2002). Thus, consistency is certainly a desirable 

property for an estimator. Stated statistically, for any small & > 0, it follows that 

P(sup li
P 

- t
P
I > &) --+ 0 as the sample size n approaches infinity. Equivalently, this can 

be written as P(sup ji
P 

- t
P
I S &) --+ 1 as n approaches infinity. In particular, it should be 

noted that this convergence rate is exponential. 

Serfling (1980) also thoroughly examines the asymptotic distribution of the 

sample quantile. In particular, under mild requirements (i.e. smoothness of the 

distribution function), the sample quantiles are asymptotically normal. We state the 

following theorem and corollary from Serfling (1 980) without proof, which for more 

extensive details, see his book. 

Theorem: Assume that the left and right hand derivatives of F exist at t P and 
that F is continuous at t

P
. Then, if the left hand derivative, denoted by F '(t

P
-), 

is greater than 0, then for t < 0, 

J;(i - t  ) limP( P P S t) =  <l>(t) . 
n-+ao Jp(l - p) I F '(t

p
-) 

(5. 1 )  

Furthermore, if  the right hand derivative, denoted by F '(t P + ) ,  is greater than 0, 
then for t > 0, 

J;(i - t  ) lim P( P P S t) =  <l>(t) . 
n-+ao J p(1 - p) / F '( t 

P 
+) 

Finally, for t = 0, (5. 1 )  and (5.2) can be simplified as, 

lim P(.j°;(i
P 

-t
P
) S 0) = <l>(0) = 0.5 . 

n-+ao 

(5.2) 

(5.3) 
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Corollary: Assuming F is differentiable at t P and F '( t P ) > 0, then 

(5.4) 

where AN stands for "asymptotically normal". 

For further details and an extensive proof of the above theorem and corollary, see 

Serfling ( 1980). This is a useful result since by possessing asymptotic normality; we can 

construct asymptotic normal confidence intervals for the pth quantile of a distribution. 

· Chapter 8 of Meeker and Escobar ( 1998) provides very helpful information regarding the 

construction of such intervals for the location-scale distributions used commonly in 

reliability data analysis. In particular, a normal approximate confidence interval for t P is 

given by: 

(5.5) 

where �i
p 
is the standard error of the estimate and is given by: 

which is derived using the delta method and <1>-1 represents the inverse of the cumulative 

standard normal distribution. Vai-(µ), -ra,.(6-), and Cov(µ, 6-) are obtained from the 

variance-covariance matrix or inverse Fisher information matrix, 5-t . To compute these 

intervals by hand can, without question, be very tedious and time consuming. 

Fortunately, statistical software packages such as SAS have the capabilities (i.e. PROC 

RELIABILITY) to produce these confidence intervals for desired quantiles. 

When the sample size is sufficiently large, the asymptotic normal intervals 
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provide very good approximations. Even though these intervals are approximations, they 

are usually good enough for practice. However, for small samples, these intervals may 

not provide accurate approximations. It is in this case that another method, whether it be 

parametric or nonparametric, is necessary to obtain better confidence intervals for desired 

quantiles. Bootstrap methods provide one possibility for better estimation given 

reasonable sample sizes. 

Bootstrapping is a computer intensive statistical method where the basic idea is to 

simulate the sampling process a specified (usually large) number of times and obtain an 

empirical bootstrap distribution for a desired population parameter. This empirical 

bootstrap distribution is then used to acquire characteristics about the population 

parameter. These include, but are not limited to, the standard error, .an estimate of bias, 

and confidence intervals. Some bootstrap methods are nonparametric and therefore do 

not require any parametric assumptions regarding the underlying distribution of a 

particular data set. Other methods using the bootstrap are parametric. These methods 

will be discussed and compared in detail later on in this chapter. 

According to Chernick ( 1999), the "bootstrap is a form of a larger class of 

methods that resample from the original data set and thus are called resampling 

procedures. Some resampling procedures similar to the bootstrap go back a long way . . . . 

However, it was [Bradley] Efron who unified ideas and connected the simple 

nonparametric bootstrap, which 'resamples the data with replacement' with earlier 

accepted statistical tools for estimating standard errors such as the jackknife and the delta 

method." 

Boos (2003) describes the bootstrap as a technique that "has made a fundamental 
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impact on how we carry out statistical inference in problems without analytic solutions. " 

Davison and Hinkley ( 1997) tell us that the bootstrap is called so since ''to use the data to 

generate more data seems analogous to a trick used by the fictional Baron Munchausen, 

who when he found himself at the bottom of a lake got out by pulling himself up by his 

bootstraps. " They further assert the necessity of careful reasoning and investigation of 

the problem at hand despite the usefulness of bootstrap methods. It is contended that 

"unless certain basic ideas are understood, it is all too easy to produce a solution to the 

wrong problem, or a bad solution to the right one. " 

Efron and Tibshirani (1993) is an excellent starting point and a way to get 

acquainted with the fundamental concepts and applications of the bootstrap. Much of 

their work is written without rigorous technical details in order to focus on ideas rather 

than justification. Those details can be found in some of their later chapters as well as 

other works. 

DiCiccio and Efron (1996) is devoted to the construction of bootstrap confidence 

intervals. Here, different methods are presented as well as the theoretical underpinnings. 

We adopt next the notation of Martinez and Martinez (2002), which is also similar 

to Efron and Tibshirani (1993). In general, the basic nonparametric bootstrap procedure 

(Efron's bootstrap) can be summarized as follows. For a given data set, x = (xi ,x2 , • • •  ,xn ) 

of size n, we estimate a population parameter, say 0, by 0. We then sample with 

replacement from the original data set to obtain a bootstrap sample of size n denoted by 

*b ( •b •b •b ) Th" 1 ·  . h 1 . d b f . x = x1 , x2 , • • •  xn . 1s resamp mg wit rep acement 1s one a large num er o times 

and for each bootstrap sample we calculate the estimate of 0, which is denoted by i)•b 
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where b stands for the bth bootstrap estimate of a total of B bootstrap replications. The 

empirical bootstrap distribution of {l
, is defined and used as an estimate to the true 

distribution of 0. 

The fundamental idea behind the bootstrap is that the empirical bootstrap 

distribution provides an approximation to the theoretical sampling distribution of the 

desired population parameter as the sample size increases. In particular, as n approaches 

infinity, the bootstrap distribution becomes more normal for most cases. The bootstrap 

has a wide range of applications and has enjoyed more growth in use in recent years. 

However, as with any statistical method, the bootstrap does have its limitations. 

Beran (2003) emphasizes that "Success of the bootstrap . .  .is not universal. 

Modifications to Efron's definition of the bootstrap are needed to make the idea work for 

modem procedures that are not classically regular." 

As also described in Chapter 2 of this thesis, Meeker and Escobar ( 1998) contend 

that the "justification for the bootstrap is based on large-sample theory. Even with large 

samples, however, there can be difficulties in the tails of the sample. For the 

nonparametric bootstrap, there will be a separate bootstrap distribution at each time for 

which there were one or more failures in the original sample." This would not pose a 

problem outside the tails of the original data where the bootstrap distribution will be 

approximately continuous. However, in the extreme tails of the original data, there may 

be only a small number of failures or outcomes. In this case, the bootstrap distribution 

may be anything but continuous. As can be seen by the examples presented, when the 

extreme tails are of interest ( as is often the case in reliability studies), the fully 
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nonparametric bootstrap methods may not prove to be as useful. Rather the standard 

bootstrap methods have a place when estimating parameters such as the quartiles (25th' 

50th or 75th percentiles). 

We will see the above limitation of the bootstrap when applied to the estimation 

of lower percentiles for the internal bond of medium density fiberboard. The sample size 

also plays a key role in the accuracy of bootstrap methods. Further limitations are 

described, for example, in Chernick (1999) and Ghosh, Parr et al. (1984). 

In section 5 .2  coming, different methods for constructing bootstrap confidence 

intervals will be introduced. These include the standard normal, bootstrap-t, percentile, 

and bias-corrected percentile intervals. However, for each method of creating bootstrap 

confidence intervals, there is also more than one way to create bootstrap samples. In 

particular we discuss the completely nonparametric bootstrap, the completely parametric 

bootstrap, and finally a "nonparametric" bootstrap for parametric inference as described 

in Meeker and Escobar (1998). Each of these methods for creating bootstrap samples 

will be presented along with the above methods for producing confidence intervals. 

Section 5.3 will apply what was presented in section 5 .2 to the MDF data for 

estimating the lower percentiles of the internal bond. The asymptotic normal intervals 

will be compared with the bootstrap confidence intervals. Furthermore, the bootstrap 

confidence intervals will be compared among themselves with respect to sampling and 

construction method. Section 5 .4 provides a summary and concluding comments with 

loose recommendations for which situations dictate which bootstrap method to use. Also, 

possible future work will be presented here. 
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5.2 A BRIEF INTRODUCTION TO BOOTSTRAP SAMPLING METHODS AND 
BOOTSTRAP CONFIDENCE INTERVALS 

5.2.1 Methods of Bootstrap Sampling 

Already in section 5. 1 ,  we introduced the completely nonparametric bootstrap or 

Efron' s bootstrap. That is, no assumptions are made about the underlying parametric 

distribution of a data set of size n. The desired population parameter is estimated 

nonparametrically from the initial data. Then, sampling is done with replacement 

(usually a large number of times). For each sample of size n obtained, we 

nonparametrically estimate the population parameter. These estimates of the desired 

parameter are used to form the empirical bootstrap distribution that will be useful for 

inference. This empirical distribution is a discrete distribution that assigns a probability 

of l /n to each value of x. This method of sampling is helpful since it has the advantage 

of no distributional assumptions. When it is not possible or feasible to make such an 

assumption, the completely nonparametric bootstrap sampling method should be 

employed. The next two methods of sampling below do require a parametric 

distributional assumption. 

The completely parametric bootstrap is described briefly in Efron and Tibshirani 

(1993), as well as Chernick (1999) and Meeker and Escobar (1998). A parametric 

distribution is assumed and the initial data of size n is utilized only to obtain maximum 

likelihood estimates of the model parameters. From there, one must simulate a specified 

number of samples of size n from the parametric distribution. The population parameter 

is then estimated parametrically from each of the simulated samples, which then helps us 

create the desired bootstrap distribution necessary for inference. 
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Chernick (1999) interestingly notes that the "parametric form of bootstrapping is 

equivalent to maximum likelihood. However, in parametric problems, the existing theory 

on maximum likelihood estimation is adequate and the bootstrap adds little or nothing to 

the theory. Consequently, it is uncommon to see the parametric bootstrap used in real 

problems." However, Efron and Tibshirani (1993) argue that when the fully parametric 

bootstrap is used, it "provides more accurate answers than textbook formulas, and can 

provide answers in problems where no textbook formulae exist. . .  The parametric 

bootstrap is useful in problems where some knowledge about the form of the underlying 

population is available, and for comparison to nonparametric analyses." 

Meeker and Escobar (1998) points out that the parametric bootstrap has a 

disadvantage in reliability data problems. That is, the complete censoring process must 

be specified given that we are simulating data. This may seem to be unproblematic in 

simple examples where such specification is easy. However, this can be "more difficult 

for complicated systematic or random censoring. Often the needed information may be 

unknown." An alternative to this method requiring parametric assumptions is described 

next. 

Meeker and Escobar (1998) describe and illustrate applications of a 

"nonparametric" bootstrap sampling method for parametric inference, which we denote 

as NBSP for nonparametric bootstrap sampling for parametric models. They contend, 

"This method is simple to use and generally, with moderate to large samples, provides 

results that are close to the fully parametric approach." This sampling scheme does 

require parametric assumptions. However, rather than simulating data, we sample with 

replacement from the original data. For each sample of size n, maximum likelihood 
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estimates are obtained based on the assumed parametric model. Then, the MLEs are used 

to parametrically estimate the population parameter of interest. 

The distribution of estimates allows us to conduct the desired inferences. See 

Chapter 9 of Meeker and Escobar (1998) for more details on this method of bootstrap 

sampling. We move now to see how the aforementioned sampling schemes and the 

resulting empirical distributions allow us to construct bootstrap confidence intervals for 

population parameters. 

5.2.2. Bootstrap Confidence Intervals 

Different algorithms/methods are available for constructing bootstrap confidence 

intervals for population parameters. These include, but are certainly not limited to, the 

bootstrap standard confidence interval, bootstrap-t confidence interval, bootstrap 

percentile interval, and bias-corrected bootstrap percentile interval. We describe these 

briefly here and omit much of the theoretical details here. For those interested in the 

theoretical underpinnings and additional topics, many good books and articles exist. See, 

among others, Efron and Tibshirani (1993), DiCiccio and Efron (1996), Davison and 

Hinkley (1997), and Polansky (1999). 

The bootstrap standard confidence interval is by far the easiest to implement. 

Efron and Tibshirani (1993) and others use the phrase "bootstrap standard confidence 

interval" while is it also known as the normal approximation bootstrap confidence 

interval. These intervals are based on the following asymptotic result: 

0 - 0  
Z = -;::;s:::- rv N(O, l) . (5.7) 

se
9 
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Then, the standard confidence interval is given by: 

( 5.8) 

where ;; simply the standard deviation of the bootstrap is estimates of (} and z<012> is 

the a I 2th quantile of the standard normal distribution. That is, for example, z<0·025> = 

- 1 .96 . 

Although this method is easy to use, (5 . 7) "is only an approximation in most 

problems, and the standard interval is only an approximate confidence interval, though a 

very useful one in an enormous variety of situations" according to Efron and Tibshirani 

( 1993). This interval can be used when the asymptotic normality is valid. 

Another useful method is the bootstrap-t confidence interval. For each of B 

(some large number of choice for B; usually larger than 1000) bootstrap samples, we 

compute: 

(5.9) 

where � is the standard error of o•b for a particular bootstrap sample. The difficulty 

arises in the computation of this estimate standard error. In many situations, a nice 

closed formula does not exist. To remedy this, a possible solution is to bootstrap each 

bootstrap sample and then take se 9.b to be the standard deviation of the "bootstrapped" 

bootstrap sample. Basically, one performs a double bootstrap to obtain the desired 

estimate of the standard error. 

The only problem with this is the amount of computer power required to perform 
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such a large number of bootstrap replications. For example, ifwe want to obtain 2000 

bootstrap samples and bootstrap each of those 50 times to obtain the sample estimate's 

standard error, then this requires 100,000 iterations. 

After obtaining the B values of z•b, order them and calculate the a 12th and 

1 - (a l2)th quantiles of the distribution of z•b values which will be denoted by 

i<a12> and i(l-ati> respectively. This is finding the appropriate percentiles of the sampling 

distribution, which is to be distinguished clearly from the percentiles of the original 

population data. At this point, the bootstrap-t confidence intervals can be computed. 

Then, a 100( 1- a ) % bootstrap-t confidence interval is given by: 

(5. 10) 

The bootstrap-t confidence intervals are second-order accurate ( error goes to zero at a 

rate of 1/n), which makes them a popular choice in practice. 

However, Efron and Tibshirani (1993) warn that the "bootstrap-t can give erratic 

results, and can be heavily influenced by a few outlying data points. The percentile based 

methods ... are more reliable." Polansky (2000) "investigates two methods for stabilizing 

the endpoints of bootstrap-t intervals in the case of small samples. In those cases, this 

would be an approach for others to use. Two of the percentile-based methods will now 

be discussed. 

Perhaps one of the most obvious ways to construct a confidence interval is to base 

it on the quantiles of the bootstrap distribution of estimates. Constructing a bootstrap 

confidence interval in this manner is known as the standard percentile method. Martinez 

and Martinez (2002) and Efron and Tibshirani (1993) maintain that "this technique has 
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the benefit of being more stable than the bootstrap-t, and it also enjoys better theoretical 

coverage properties." In particular, this method works well when a monotone 

transformation, </J = g( 0) exists such that J = g( 0) possesses an approximate normal 

distribution with mean </J and a standard deviation, r , which is constant. After 

obtaining B bootstrap samples and estimating the desired population parameter, calculate 

the a/2th and 1-(a/2)th quantiles of the distribution of o· denoted by 

iJ•<a 12> and iJ-<1-a 12> respectively. Then, a 100(1- a)% confidence interval for 0 is given 

by: 

(5.1 1) 

For example, in order to construct a 95% confidence interval, we simply calculate 

the 2.5th and 97.Sth percentiles of the bootstrap distribution for the parameter of interest. 

It is generally recommended that the number of bootstrap replications be equal to or 

greater than 1000 for this method to produce accurate results. 

Though the standard percentile method is easy to implement, Chernick ( 1999) 

points out that "the percentile method works if exactly 50% of the bootstrap distribution 

of o· is less than iJ " which may certainly not always be the situation and that "in the 

case of small samples, the percentile method does not work well." Furthermore, a two

sided 100(1- a)% confidence interval should have the probability of not covering the 

true value of a parameter, either above or below, of a I 2 . The standard bootstrap 

percentile intervals are first order accurate ( error goes to zero at a rate of n-112) which 

means that the error in getting exactly the desired a /2 probability is an order of 

magnitude greater than that of the bootstrap-t intervals which, one can recall, are second 
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order accurate. Fortunately, there are methods that help improve on the standard 

percentile method and one such will be shown next. 

The final method for constructing bootstrap confidence interval that will be 

presented here is called the bias-corrected percentile interval. This method was 

introduced in Efron ( 198 1) and discussed further in Efron ( 1987). The method is 

described there in greater length along with the needed theoretical details. The bias

corrected percentile method ( or BC) works best when a monotone transformation, 

</J = g(0), exists so that � 
= g(O) is roughly normal with mean of (/J - z0r where z0 is the 

bias correction constant and r is the constant standard deviation of � . 

Assuming, again, that the aforementioned transformation exists, Efron ( 1987) 

shows that the transformation leads to the "obvious confidence interval (� + rz0) ± rz<a> 

for </J , which can then be converted back to a confidence interval for 0 by the inverse 

transformation 0 = g-1 (</J). The advantage of the BC method is that all of this is done 

automatically from bootstrap calculations, without requiring the statistician to know the 

correct transformation g." 

The bias correction constant is defined as the amount of difference between the 

median of the bootstrap distribution of estimates and the estimate, 0 from the original 

sample. That is, if we take the bias to be bias = 8 -o:.s , then o:.s = 8 -bias . This is 

explained further in Chernick ( 1999). Explicitly, we define the estimate of the bias 

correction constant, denoted by z0 , simply as: 

(5. 12) 
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where <1>-1 represents the inverse cumulative normal distribution and p• is the 

cumulative bootstrap distribution for the parameter of interest. 

Alternatively, in other words, we can express (5. 12) as the inverse cumulative 

normal distribution of the number of bootstrap estimates, o·b ' that are less than the 

original sample estimate, 0, divided by the number of bootstrap replicates, B. That is, 

we rewrite (5. 12) as: 

"•b ,. 
,. - "'-1 (#(8 < 0) ) Zo - "' B 

Then, a 100(1 - a)% confidence interval for (} is given by: 

where a1 and a2 are the new quantities on which to base the percentile confidence 

(5 . 1 3) 

(5 . 14) 

interval endpoints. Martinez and Martinez (2002) explain that "instead of basing the 

endpoints of the interval on the confidence level of 1- a, they are adjusted using 

information from the distribution of bootstrap replicates." These quantities are the lower 

and upper bias-corrected cut-off percentages and are defined as: 

and 

a - <l>(2z + z<a12 > ) 1 - 0 (5 . 1 5) 

(5 . 16) 

where <1> is the cumulative standard normal distribution and z<a12 > is the a I 2th quantile 

of the standard normal distribution. The bias-corrected percentile intervals have been 

found to be second-order accurate, which certainly improves on the standard percentile 

interval. The method does have the drawback of not being monotone in coverage. That 
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is, if we decrease the confidence level, we do not necessarily get a shorter interval than 

that obtained at a higher level of confidence. In general, the percentile and bias-corrected 

percentile methods give more conservative confidence intervals than the bootstrap-t. 

In summary, Martinez and Martinez (2002) point out that the "bootstrap-t interval 

has good coverage probabilities, but does not perform well in practice. The bootstrap 

percentile interval is more dependable in most situations, but does not enjoy the good 

coverage property of the bootstrap-t interval." 

Recall, rather, that the percentile interval possesses good theoretical coverage 

properties, which may not actually hold in practice. The bias-corrected percentile 

interval helps to remedy this by being both dependable and having good coverage 

properties. Efron (2003) further points out that even though the bootstrap-t and the _bias

corrected intervals are second-order accurate, they are not widely used in application. 

Instead, researchers and even seasoned statisticians "seem all too happy with the standard 

intervals" which may certainly be due to its theoretical simplicity and ease in 

construction. 

Other possibilities for bootstrap confidence intervals, which will not be described 

here, include the iterated or double bootstrap and the bias-corrected and accelerated (BCa) 

percentile interval, among others. The iterated bootstrap requires the user to bootstrap 

the B 1 bootstrap samples, B2 times. The price to pay here is an extremely large increase 

in iterations. For example, if B 1
=B2

=B, then one must go through B2 iterations, which 

can obviously take up a large amount of computing power. The bias-corrected and 

accelerated interval is built upon the bias-corrected interval described above. It requires 

the calculation of an acceleration constant when the standard deviation of the 
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transformation is not independent of the transformation. This constant, however, can 

prove to be difficult to determine and the reader is directed to Efron (1987) and Efron and 

Tibshirani (1993) for more on the BCa method. 

After this degree of introduction, we move next (in section 5.3) to demonstrate 

how these bootstrap sampling methods and confidence intervals can be applied for the 

purposes of estimating percentiles (especially lower percentiles) of the internal bond of 

medium density fiberboard. It should be emphasized here again that the estimation of 

lower percentiles is very important in reliability studies for strengths of failure. This 

helps manufacturers gauge process improvements, warranties, proportion of product 

falling out of spec, etc. Also, there are clear economic advantages to exploring these 

lower percentiles. 

5.3 EXPLORING BOOTSTRAP METHODS AND CONFIDENCE INTERVALS 
FOR PERCENTILES OF THE INTERNAL BOND OF MDF 

In this section, we review the methods of bootstrap sampling and for constructing 

confidence intervals in the context of estimating percentiles for the internal bond of 

medium density fiberboard. We also observe how they weigh against each other. For 

each method of sampling, the standard normal, bootstrap-t, standard percentile, and bias

corrected percentile intervals will be constructed and compared for the 1st
, 10th

, 25th
, and 

50th percentiles for MDF product Types 1 and 5. These two types were chosen to aid in 

the illustration of the benefits and limitations of the bootstrap. Type 1 MDF has n=396 

observations while Type 5 MDF has n=74. We will thus be able to see ·how a smaller 

sample size compares to that of a sample that is sufficiently large to obtain relatively 
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accurate results. For each method of sampling, B=2000 bootstrap samples of the same 

size as the original sample were created. In many cases, but not always, this should be a 

sufficient number of bootstrap samples to create the confidence intervals. The 

asymptotic normal confidence intervals will also be provided in order to compare with 

the bootstrap results. 

Furthermore, along with each method of bootstrap sampling, histograms of the 

empirical bootstrap distribution will be shown for each percentile. The fully 

nonparametric intervals will be shown first, followed respectively by the fully parametric 

intervals and the NBSP intervals described by Meeker and Escobar ( 1998). This is 

important for practitioners who may not have the luxury of developing or assuming 

certain parametric distributions due to their intense time pressures. Also, this protects 

them more from misspecified parametric models. 

MATLAB was utilized as the program of choice for this author in order to 

construct these intervals. Certainly other software packages exist with capabilities of 

producing bootstrap confidence intervals. The SPLIDA add-on for S-PLUS developed 

by William Meeker plus Resampling Stats have such capabilities. 

We begin, as before, with Type I MDF. One should recall from Chapter 4 that 

through the use of information criteria in conjunction with probability plotting, it was 

determined that the underlying parametric distribution for Type 1 MDF is better modeled 

by the normal, than Weibull or lognonnal. This assumption will not be necessary for the 

fully nonparametric bootstrap intervals. However, it will be essential for constructing the 

fully parametric confidence intervals and the NBSP method described by Meeker and 

Escobar (1998) that involves nonparametric sampling for the purposes of parametric 
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inference. Again, this particular product type has a large sample size and this will help 

alleviate some of the limitations of the bootstrap based on sample size. Table 5 .1 

provides the 95% asymptotic normal confidence intervals for Type 1 MDF, while Table 

5 .2 shows the fully nonparametric 95% bootstrap confidence intervals. In the tables that 

follow, LCL stands for lower confidence limit, while UCL stands for upper confidence 

limit. The units for the point estimates and confidence limits are pounds per square 

inches (psi) as the reader will recall are the units for measuring internal bond. This is 

followed by Figure 5.1, which displays the nonparametric empirical bootstrap sampling 

distribution for each of the four quantiles. 

An initial look at the bootstrap sampling distributions shown in Figure 5.1 shows 

that the bootstrap distribution becomes narrower and more peaked as the percentiles 

increase from 1 to 50, reflecting the standard errors being smaller as the numbers get 

larger. This is what your intuition would expect. It is advantageous to note that based on 

the histograms and given the relatively large sample size; the bootstrap distributions for 

Type 1 MDF roughly appear continuous rather than discrete (i.e. no holes are present in 

the histogram). Recall that this problem was described above and does occur frequently 

with small sample sizes. 

The intervals for the 1st percentile of Type 1 MDF are rather wide. They are, in 

fact, wider than the asymptotic normal intervals. This, again, is to be expected given the 

limited amount of data in the extreme lower tail of the IB data. Users might consider not 

using them. This is a healthy warning of the dangers of using the bootstrap without 

thinking! 

When we employ the fully nonparametric bootstrap, which samples with 
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T bl 5 1 95¾ A a e . .  0 t f 1 fid symp o 1c norma con . t 1 6 T 1 MDF ence m erva s or ype 
p i, = quantile LCL UCL 

.01 97.2746 95 .4023 99. 1470 

. 10 1 07.5921 106.2795 1 08.9046 

.25 1 1 3.5868 1 12.5093 1 14.6644 

.50 120.2475 1 19.2749 12 1 .2201 

T bl 5 2 F 11 t .  95¾ b t t fid . t 1 6 T 1 MDF a e . .  u y nonparame nc o oo s rap con 1 ence m erva s or ype 
p i, = quantile Interval Type LCL UCL 

.01 94.4307 Standard 87.2652 100.4228 

Bootstrap-t 88.4673 99. 1082 

Percentile 87.2000 1 00.6300 

Bias-Corrected 87.2000 99.2800 

.10 107.6854 Standard 1 05.6784 109.521 6  

Bootstrap-t 1 06. 1 1 58 108.7768 

Percentile 105.9300 109.7600 

Bias-Corrected 105 .9008 1 09.4300 

.25 1 14.3420 Standard 1 13.4248 1 1 5.3752 

Bootstrap-t 1 1 3.7840 1 1 5.03 14 

Percentile 1 1 3.4000 1 1 5 .4000 

Bias-Corrected 1 12.8000 1 1 5 . 1 500 

.50 120.2993 Standard 1 19. 1490 1 2 1 .25 1 0  

Bootstrap-t 1 1 9.2056 120.7486 

Percentile 1 19.4000 12 1 .6500 

Bias-Corrected 1 19.3000 121 .6000 

8 1  



82 

(a) 

(c) (d) 
Figure 5 . 1 .  Sampling distribution of percentiles for Type 1 MDF under the fullr 
nonparametric bootstrap sampling method. (a) 1 s1, (b) 1 0th, ( c) 25th

, and ( d) sot . 



replacement, to obtain a new data set of n=396 observations, it may or may not select any 

of the few failures that occur in the extreme tails. This certainly proves to be an extreme 

limitation when our goal is to estimate the 1st percentile. We would expect only 4 out of 

about 400 to be below the 1st percentile. 

On the other hand, the bootstrap is designed to simulate the sampling process and 

such variability present, as that in Figure 5 .1 (a) is certainly possible. Furthermore, these 

wide bootstrap intervals may be providing more useful information (warnings on 

uncertainty) to the engineer and/or practitioner regarding the variability present in the 

destructive sampling process. Note that the asymptotic normal intervals, which are 

theoretical, may be too narrow to capture all the information desired about the 1st 

percentile. I.e., they may be overly optimistic about the standard errors being smaller. 

For example, the asymptotic interval for the 1st percentile was [95.40 , 99.15] while the 

standard interval was [87.27 , 100.42]. This is quite an obvious difference! 

As the percentiles increase and the "relative" 1B data becomes more plentiful, the 

bootstrap confidence intervals are more closely matching the asymptotic intervals. For 

example, the standard bootstrap interval for the 50th percentile was [ 119 .15 , 121.25] 

while the asymptotic interval was [119.27 , 121.22]. Also, it is useful to acknowledge 

that the different methods for constructing the bootstrap confidence intervals yielded very 

similar results. This supports that Figure 5.1 yields plots reasonably close enough to 

normality for all of these four intervals to be in agreement. 

The reader need only briefly compare the intervals in Table 5.2 to see this result. 

This type of agreement can be expected when the sample size is sufficiently large since 

the bootstrap distributions will tend usually to be approximately normally distributed. 
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Thus, any of the proposed methods for the construction of bootstrap confidence intervals 

would prove to be useful here. As will be seen shortly, such agreement may not occur 

when the sample size is much smaller. 

Table 5.3 and Figure 5.2 display the fully parametric bootstrap confidence 

intervals and the bootstrap sampling distributions for each percentile for Type 1 MDF, 

respectively. In this situation, the assumption of normality of Type 1 MDF is required. 

Here, the normal parameters were estimated from the original data and then used to 

simulate samples of size n=396. 

A glance at the sampling distributions in Figure 5.2 reveals immediately its 

differences to the nonparametric sampling distributions of Figure 5. 1 .  Notice that the 

distribution of the 1 st percentile follows a normal distribution quite well in this larger 

sample case. Due to this, the intervals we obtain match very closely the asymptotically 

normal confidence intervals. Thus, rather than providing much more information about 

the IB percentiles, they help to confirm the accuracy of the asymptotic intervals. This 

can be a useful double check or potential warning, when needed. As with the 

nonparametric intervals for Type 1 ,  there appear to be little differences between the 

methods for constructing bootstrap intervals. 

Table 5 .4 and Figure 5.3 show the confidence intervals and sampling distribution, 

respectively, for Type 1 MDF based on the NBSP sampling method described by Meeker 

and Escobar (1998). Recall that the sampling was done from the original data with 

replacement just as was done in the fully nonparametric method. The difference is that 

we must also assume the normal distribution as was done in the fully parametric case. 

Then, for each bootstrap sample, we estimate the normal parameters and use them to 
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T bl 5 3 F 11 t . 95o/c b t t fid . t 1 fi T 1 MDF a e . .  u 1y parame nc o oo s rap con 1 ence m erva s or ype 
p i, = quantile Interval Type LCL UCL 

.01 97.2830 Standard 95.3632 99. 1280 
Bootstrap-t 95.8696 98.5501 
Percentile 95.4033 99. 1 887 

Bias-Corrected 95.3767 99. 1410 
. 10  107.591 7  Standard 106.27 12 108.8809 

Bootstrap-t 106.6612  108.5 103 
Percentile 106.2543 108.8704 

Bias-Corrected 106.2201 108.8598 
.25 1 1 3.5573 Standard 1 12.4981 1 14.6588 

Bootstrap-t 1 12.8016  1 14.3739 
Percentile 1 12.4541 1 14.6764 

Bias-Corrected 1 12.5 109 I 1 14.7343 
.50 120.2372 Standard 1 1 9.3 1 35 12 1 . 1 804 

Bootstrap-t 1 19.6273 120.9105 
Percentile 1 1 9.288 1 12 1 . 1449 

Bias-Corrected 1 19.2973 12 1 . 1 502 
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(a) 

101 I 

1 5 

(b) 

(c) (d) 
Figure 5.2. Sampling distribution of percentiles for Type 1 MDF under the fully 

parametric bootstrap sampling method. (a) 1 s1, (b) 10th, (c) 25th, and (d) 50th. 



T bl 5 4 NBSP 95'¼ b t t a e . .  o oo s rap con fid . t 1 fi T 1 MDF ence m erva s or ype 
p i, = quantile Interval Type LCL UCL 

.01 97.3 126 Standard 94.8629 99.6282 
Bootstrap-t 95.498 1 98.9364 
Percentile 94.8999 99.6350 

Bias-Corrected 94.6364 99.4291 
.1 0 107.6269 Standard 106.0747 109.0774 

Bootstrap-t 106.5334 108.6309 
Percentile 106.0586 109. 1413 

Bias-Corrected 105.9957 109.0460 
.25 1 1 3.6049 Standard 1 12.4488 1 14.7080 

Bootstrap-t 1 12.7936 1 14.3879 
Percentile 1 12.4553 1 14.6907 

Bias-Corrected 1 12.3902 1 14.6478 
.50 120.2417  Standard 1 1 9.2569 12 1 .238 1  

Bootstrap-t 1 1 9.5950 120.95 1 7  
Percentile 1 1 9.2832 121 .2338 

Bias-Corrected 1 1 9.3 141  1 2 1 .3019  
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(a) (b) 

(c) (d) 
Figure 5.3. Sampling distribution of percentiles for Type 1 MDF under the NBSP 

method. (a) 1 51
, (b) 101

\ (c) 25 1
\ and (d) 50th

• 



parametrically estimate the percentiles of interest. 

Therefore, this method proves to be a combination of the two aforementioned 

bootstrap methods and is in fact the method of choice for Meeker and Escobar ( 1 998) for 

analyzing reliability data. As previously mentioned, they argue that a downside of the 

fully parametric bootstrap requires complete knowledge of the censoring mechanisms 

involved and must be taken into consideration when simulating the bootstrap samples. 

Furthermore, the fully nonparametric method can lead to sampling distributions 

that are discrete, especially in the case of smaller sample sizes. Thus, they use the NBSP 

method, which does not require knowledge of the censoring mechanisms, and also does 

not give discrete sampling distributions with a reasonable sample size (i.e. n=7 or more). 

The sampling distributions shown in Figure 5 .3 are also normal for each of the 

percentiles. Again, we observe that the intervals are similar to the asymptotic intervals as 

well as similar among themselves. 

Table 5.5 provides the 95% asymptotic normal intervals for Type 5 MDF. Table 

5.6 and Figure 5.4 display the fully nonparametric intervals and sampling distributions, 

respectively, for Type 5 MDF percentiles. The sampling distributions shown provide an 

example of a limitation of the fully nonparametric bootstrap. When the sample size is 

relatively small, as is the case of Type 5 MDF, the sampling distributions are more 

discrete. Figure 5.4(a) and 5.4(b) show this clearly. Furthermore, the sampling 

distribution for the 1 st percentile is very much skewed to the right. As the percentiles 

increase, the distribution becomes more symmetric (more normal) and has a more 

continuous appearance. Here, more differences among the various confidence intervals 

emerge. 
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T bl 5 5 95¾ A a e . .  0 

p 
.01 
.10 
.25 
.so 

t f 1 fid . t 1 f4 T 5 MDF symp o 1c nonna con 1 ence m erva s or ype 
iP = quantile LCL UCL 

150.4675 144.2243 156.7108 
165.3393 160.9623 169.7159 
173.9803 170.3872 177.5734 
183.58 11 180.3380 186.8242 

Table 5.6. Fun,, nonparametric 95% bootstrap confidence mtervals for Type 5 MDF 
P iP = quantile Interval Type LCL UCL 
.01 149.3956 Standard 138.6630 155.0410 

Bootstrap-t 136.5856 147.2492 
Percentile 146.3000 161. 1200 

Bias-Corrected 146.3000 150.7120 
.10 165.3361 Standard 159.3674 169.4326 

Bootstrap-t 161.4890 166.6291 
Percentile 161.0000 168.9000 

Bias-Corrected 157.4000 168.2900 
.25 172.8687 Standard 166.6393 177.9606 

Bootstrap-t 167.8679 175.4658 
Percentile 168.3000 177 .8000 

Bias-Corrected 168.3000 177 .6000 
.SO 185.2743 Standard 181. 1404 189.9596 

Bootstrap-t 182.8249 190.2666 
Percentile 178.8000 189.0000 

Bias-Corrected 178.5433 188.8567 



(a) (b) 

(c) (d) 
Figure 5 .4. Sampling distribution of percentiles for Type 5 MDF under the fulll 
nonparametric bootstrap sampling method. ( a) 1 s1, (b) 1 0th, ( c) 25th

, and ( d) sot . 
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For example, for the 1 st percentile, the standard interval is extremely wide 

covering a range from 138.66 to 1 55.04. The percentile interval, in this case, simply cuts 

the distribution at the 2.5th percentile and 97 .5th percentile. It therefore, does not take the 

right skewness of the distribution into account and gives us a confidence interval of 

[ 1 46.3 , 1 61 . 1 2]. The bias-corrected interval provides significant help in this situation by 

correcting for the skewness present. Here, we obtain a much smaller interval of [ 1 46.3 , 

1 50.71 ]. By looking at the histogram, the interval appears to better capture the 

information regarding the 1 st percentile for Type 5 MDF. The bootstrap-t also appears to 

help account for the skewness present giving an interval of [ 1 36.59 , 1 47.25]. However, 

we would not trust the bootstrap-t given that it does not even contain the point estimate 

for the 1 st percentile of 1 49.4. The interval types for the other percentiles in Table 5.6 are 

much more agreeable to each other. Workers and managers are given warning to not 

trust only one set of intervals in such cases. It provides a reality check. The histogram, 

also, present healthy warning signs to the user. 

Practitioners are advised that when these histograms are discrete or appear 

"snaggle-toothed" to up the resampling size to, say, B=5000. If it no longer has a 

"snaggle-toothed" appearance, then the larger resampling size has helped. If it still, 

however, appears "snaggle-toothed" then practitioners are advised not to use the fully 

nonparametric approach for constructing bootstrap confidence intervals, at least not for 

the extreme lower percentiles. Instead, the three quartiles are likely safer or even just the 

median. Note well the warning of Polansky ( 1 999) when the percentiles are very small 

such as 1 % or 5% to not use bootstrap estimates. 

In order to practice what we preach, since the histograms for the lower percentiles 
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in Figure 5.4 do appear "snaggle-toothed", the fully nonparametric bootstrap intervals 

were reconstructed using B=5000 bootstrap samples. What resulted were confidence 

intervals very similar to those in Table 5.6 and histograms that continued to have a 

"snaggle-toothed" appearance. Thus, even though the bias-corrected and bootstrap-t 

intervals have helped our situation a little, it is advised that the practitioner not use the 

lower percentile estimates here. It is very fortunate to have a graphical warning. 

As more than likely suspected, the fully parametric intervals types shown in Table 

5.7 are all agreeable to each other. Furthermore, they match very closely to the 

asymptotic normal intervals. Stated before, the usefulness of this would mainly be to 

assist in confirming the asymptotic intervals. Recall, from Chapter 4, that it was 

determined that Type 5 MDF follows a normal distribution. Figure 5.5 shows the 

sampling distributions, which are continuous and follow a normal distribution nicely. 

Placing a lot of faith in these parametric intervals may cause an incorrect inference about 

the Type 5 percentiles, especially if the distribution has been misspecified. It is essential 

to also point out that if the sample size had been larger, it is possible (and likely) that the 

bootstrap sampling distribution would approach a normal distribution making life in the 

bootstrap world much easier. The NBSP method intervals and sampling distributions are 

shown in Table 5.8 and Figure 5.6 respectively. 

Comments analogous to the parametric intervals for Type 5 MDF described above 

apply to the NBSP method described by Meeker and Escobar ( 1998). That is, the 

intervals types are in greater agreement and the sampling distributions are normally 

distributed for each percentile. The plots are very helpful diagnostics. 

Sampling using the NBSP method described by Meeker and Escobar ( 1998) may 
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T bl 5 7 F 11 t . 95o/c b t t fid . t 1 £ T 5 MDF a e . .  u y parame nc o oo s rap con 1 ence m erva s or ype 
p i

P 
= quantile Interval Type LCL UCL 

.01 150.3468 Standard 143.9692 156.5137 
Bootstrap-t 145.6272 154.7383 
Percentile 143.8976 156.3403 

Bias-Corrected 143.2824 156.0068 
.10 165.2401 Standard 160.9071 169.5224 

Bootstrap-t 161.9716 168.2961 
Percentile 161.0064 169.5044 

Bias-Corrected 161.0522 169.5169 
.25 173.9953 Standard 170.2529 177.5766 

Bootstrap-t 171.2273 176.4632 
Percentile 170.4550 177.8767 

Bias-Corrected 170.3784 177.7188 
.50 183.5092 Standard 180.3048 186.8574 

Bootstrap-t 181.2664 185.8846 
Percentile 180.2122 186.7233 

Bias-Corrected 180.3048 186.8574 
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(a) (b) 

(c) (d) 
Figure 5.5. Sampling distribution of percentiles for Type 5 MDF under the fully 

parametric bootstrap sampling method. (a) 1 51
, (b) 10th, (c) 25th, and (d) 50th

• 
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T bl 5 8 NBSP 95o/c b t tr fid . t I fi T 5 MDF a e . .  o oo s ap con 1 ence m erva s or ype 
p iP = quantile Interval Type LCL UCL 
.01 150 .5676 Standard 143.8357 156.6472 

Bootstrap-t 145 .2324 154.9846 
Percentile 144.2618 157.0768 

Bias-Corrected 143 .5739 156.530 1 
.10 165.3426 Standard 160.4306 169 .9989 

Bootstrap-t 16 1 .6941 168 .508 1 
Percentile 160 .7296 170 .0846 

Bias-Corrected 160 .6547 169 .9636 
.25 173 .9540 Standard 170 .0271 177.8024 

Bootstrap-t 171 .2549 176.5879 
Percentile 170 .0607 177.745 1 

Bias-Corrected 169 .9757 177.7 1 1 1  
.so 183.5619 Standard 180.3897 186.7724 

Bootstrap-t 18 1 . 1307 185 .9261 
Percentile 180.2257 186.6669 

Bias-Corrected 180. 1838 186.55 17 



(a) (b) 

�) �) 
Figure 5 .6 . Sampling distribution of percentiles for Type 5 MDF under the NBSP 

method. (a) 1 s1, (b) 10th
, (c) 251

\ and (d) 50th
• 
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be a more sensible choice when the sample size is small, provided you have confidence in 

the underlying parametric model. This NBSP method of Meeker and Escobar (1998) 

does require a parametric assumption to build upon, but samples the original data with 

replacement. For reliability data, which is our concern here, this allows for no 

assumptions to be made on the censoring mechanism in the data, which is required for the 

fully parametric approach. 

S.4 SUMMARY AND CONCLUSIONS 

This chapter has given the reader an opportunity to explore briefly the basic ideas 

surrounding bootstrap methods, the construction of bootstrap confidence intervals, and 

how it can be applied to the estimation of percentiles. In particular, we continued our 

study of the internal bond of particular product types of medium density fiberboard. 

The different meihods described for obtaining bootstrap samples include the fully 

parametric, fully nonparametric, and a mix between the parametric and nonparametric 

methods. Along with the different sampling methods, four different types of bootstrap 

confidence intervals were discussed. These include the standard interval, bootstrap-t 

interval, percentile, and bias-corrected percentile interval. For Type 1 and Type 5 MDF, 

bootstrap confidence intervals for each of the described sampling methods were 

constructed for the 1st
, 10th

, 25th
, and 50th percentiles. The asymptotic normal intervals 

were shown to aid in the comparison. 

For a sufficiently large sample size, as is the case for Type 1 MD�, the bootstrap 

sampling distributions appear continuous (i.e. does not have any holes) and follow 

roughly a normal distribution. In this case, it is relatively a matter of preference as to 
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which of the bootstrap interval types is used. They all provide very similar and accurate 

results as was easily observed. This is even the case using the fully nonparametric 

approach, although some care should be taken when examining the 1 st percentile. Also, 

this is useful since no distributional assumptions are required and the worry of 

misspecification of the model is alleviated. 

Furthermore, with a large sample size, the bootstrap sampling distribution appears 

continuous, allowing for reliable results. Note the reader can understand it being 

recommended that when the sample size is large, nonparametric sampling is an 

appropriate safer choice and can be used more confidently. A large sample size helps to 

make up for information that is lost when not assuming a parametric distribution. Again, 

we repeat that any of the described interval types would be useful in this environment. 

They were all approximately the same, which is reassuring for the practitioner. 

It was shown that when the sample size is sufficiently large, the methods for 

constructing bootstrap confidence intervals were comparable to the asymptotic intervals 

as would be expected. As the percentiles increased from 1 to 50, the confidence intervals 

became narrower, given the larger quantities of observed failure data. I.e., the standard 

errors grew smaller. This is especially seen with the fully nonparametric case. The 

interval for the 1st percentile is much wider than the intervals for the 1 0th, 25th, and 50th 

percentiles. However, this result follows naturally from the sampling method and the 

lack of observed failure data in the extreme lower tail. Although this occurs, the 

nonparametric bootstrap can provide accurate results when the sample size is large and is 

recommended when the parametric assumptions are suspect. 

Conversely, when the sample size is much smaller, as is the case for Type 5 MDF, 
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and when sampling is done using the fully nonparametric method, the bootstrap sampling 

distributions can be anything but continuous and may or may not follow a normal 

distribution. Recall to always check the plots. Furthermore, the nonparametric bootstrap 

does not yield intervals that are similar. Naturally, this adds complications and requires 

other considerations than those recommended for the large sample case. 

If no distributional assumptions can be made, it is recommended that the 

practitioner make use of the bootstrap-t intervals or perhaps as a first choice the bias

corrected percentile intervals with great humility. Doing this can still produce roughly 

accurate results for the median or quartiles using the nonparametric method when the 

sample size is small. These intervals help to alleviate some of the frustration that can be 

caused by having a sampling distribution that does not follow, at least roughly, a normal 

distribution. Furthermore, they are both second-order accurate intervals. However, we 

would recommend not using confidence intervals for the lower percentiles and instead 

resort to another approach. Thus, we should place little faith in the confidence intervals 

for the 1st or 10th percentiles of Type 5 MDF shown in Table 5 .6. Recall the warnings of 

Polansky (1999) to not even estimate the lower percentiles when the plots appear discrete 

or "snaggle-toothed." Also, note Polansky (2000) and his helpful insights into using 

kernel smoothing to better estimate lower percentiles in smaller samples. 

Ideally, the best answer to estimating lower percentiles realistically is to have a 

larger sample. Note that the 1st percentile is not robust in any sample less than 100 

because by just changing the minimum, we can make the 1st percentile virtually any 

number less than the old minimum up to the second order statistic. We want to stress the 

non-robustness of the 1st percentile in samples like Type 5 with n=7 4. It is recommend 
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that at least a sample of size 200 or more be used. Further study might be done in the 

future to investigate this in more detail. Next, three alternatives are suggested to get 

around this difficulty if cost is prohibitive. 

First, as an alternative, we need to study the outliers, which can be classified as 

outliers due to measurement error or due to statistical variation. One might do 

bootstrapping in a way that takes into account the few or many outliers in any particular 

data set. We leave that for a future study. 

Another approach to estimating lower percentiles with a small sample would be to 

use the multiple regression equation in Young and Guess (2002) for estimating IB for a 

much larger sample. Then, use that larger sample to get more realistic estimates on the 

lower percentiles. This would save money and time but would need to be continuously 

validated as an appropriate model by actual destructive sampling. Alternatively, 

engineering judgment and experiences could be incorporated into a helpful Bayesian 

approach to get more realistic estimates on the lower percentiles when the data is small. 

Chapter 14 of Meeker and Escobar ( 1998) provides a thorough treatment of Bayesian 

methods for reliability data. 

Sampling using the NBSP method described by Meeker and Escobar ( 1998) may 

be a more sensible choice when the sample size is small, provided you have confidence in 

the underlying parametric model. Recall the information criteria discussed in chapter 4 

combined with Q-Q plots help with such needed parametric assessments with less data. 

By constructing intervals in this manner, the bootstrap sampling distributions appear 

continuous and roughly follow a normal distribution. In this case, the confidence interval 

construction methods produced similar intervals. Although requiring at least 
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approximate parametric assumptions, this method was useful in constructing intervals for 

the extreme lower percentiles. 

This NBSP method of Meeker and Escobar ( 1998) does require a parametric 

assumption to build upon, but samples the original data with replacement. For reliability 

data, which is our concern here, this allows for no assumptions to be made on the 

censoring mechanism in the data, which is required for the fully parametric approach. 

For our data here, we had no censoring. 

As a brief aside, let us recall the dangers when a user may misspecify a model 

mentioned previously in the thesis. The distributions of 1B appear continuous and 

following normal distributions approximately, but not perfectly. If it was perfectly 

normal, one can do exact confidence intervals. See, for example, Lawless (1982). Our 

approach with the nonparametric bootstrap protects the user from assuming a perfect 

normal distribution and still applies then, whereas the exact procedure would not be 

completely exact. Also, the reader will note that the bootstrap-t would approximate very 

well those exact confidence intervals in the perfectly normal world. This is a nice feature 

and extra validation in practice. When, however, exact procedures are not available we 

can still do bootstrapping. 

The bootstrap sampling distributions from the important diagnostic graphs for the 

NBSP method appear normal. They should always be checked to prevent the misuse of 

bootstrap inappropriately. There is never getting something for nothing. The different 

bootstrap intervals produce relatively similar results and the choice of interval for use can 

be based on preference because of the normality of the sampling distributions. It is, then, 

recommended that when a small sample size cannot be avoided and when one has 
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confidence in parametric assumptions, that one should make use first of the NBSP 

method from Meeker and Escobar (1 998). 

The fully parametric bootstrap is useful for verifying classical results using the 

familiar textbook formulas. Otherwise, there is no significant advantage for using the 

parametric bootstrap over the commonly known classical formulas, except for double

checking. Recall previous related comments. 

Overall, sample size is the key player in our game of bootstrapping. A large 

sample size allows for more promising results when no distributional assumptions are 

made. Smaller sample sizes give way to needed limitations. Chernick ( 1 999) tells us that 

"the main concern in small samples is that with only a few values to select from, the 

bootstrap sample will under represent the true variability as observations are frequently 

repeated and the bootstrap samples themselves repeat." This does not mean that the 

bootstrap should not be used with small sample sizes. Rather, much greater care should 

be taken when analyzing the results and their accuracy. It has been recommended that in 

the case of constructing confidence intervals, that more than 1000 bootstrap samples 

should be generated. This number can be and should be increased even more when the 

sample size is small. 

It is standard practice to create bootstrap samples the same size as the original 

data being sampled from, as we have done in our MDF examples. The practitioner, 

however, may find it useful to create bootstrap samples as large as the data with the most 

observations. For illustration, since Type 1 MDF had n=396 observations, we resampled 

from this data to create bootstrap samples of size n=396. However, for Type 5 MDF with 

n=7 4 observations, we would recommend a future practitioner resample from this data 
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and create bootstrap samples also of size n=396. By creating bootstrap samples in this 

manner, one is able to control the overall sampling variation and focus instead on other 

sources of variation that are of greater interest to the practitioner. This was done for the 

fully nonparametric bootstrap and a percentile interval was constructed for the 1st 

percentile. The results yielded [ 146.3 , 148.6] which, as expected, had a smaller length 

than that previously shown. Compare with Table 5.6 above. Even though what we have 

done is very standard currently, we recommend this alternative highly for practitioners. 

We thank Seaver (2004) for these helpful insights. 

It is the hopes of this author that the reader will take away a general knowledge 

of the bootstrap and find it to be a useful and helpful tool for analyzing data (reliability 

data, in particular). The common and practical use of the computer and ease of 

implementing the bootstrap algorithms make it a good candidate for conducting statistical 

inference. Possible future work with respect to bootstrapping and MDF includes 

observing differences in percentiles over time and shift. Efron (2003) remarks, "These 

days statisticians are being asked to analyze much more complicated problems . . . . I 

believe, or maybe just hope, that a powerful combination of Bayesian and frequentist 

methodology will emerge to deal with this deluge of data and that computer-intensive 

methods like the bootstrap will facilitate the combination." 
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Chapter 6 

Summary and Concluding Remarks 

It has been the purpose of this thesis to introduce and illustrate useful methods for 

analyzing reliability data. The discussions in the previous chapters have been concise for 

the purpose of creating a setting conducive for the practitioner and to keep the thesis from 

being too long. However, if interested, the reader is encouraged to refer to the 

appropriate cited sources, among others that these authors cite, to obtain extra details. By 

presenting the subject in this manner, it is hopeful that the practitioner will be able to 

easily understand and implement these methods without having to sift through excessive 

theoretical discussions. Applications of these methods in the forest products industry 

were used throughout. 

The forest products industry was an appropriate choice for demonstration since it 

has seen tremendous growth in recent years and impacts the economies of many 

countries. Recall the state of Tennessee has an annual impact of all forest products on the 

order of $22 billion per year, compared to Maine of around $9 billion per year. 

With government regulations being enforced that limit the amount of available 

raw materials; it has become more important to focus on environmental issues and 

producing higher quality products. Statistical reliability and quality control methods, to 

name a few, have been employed more to monitor the quality of forest products. With 

significant research and applied efforts devoted to this area, data is plentiful. This 

certainly allows for many helpful examples and case studies to illustrate specific 

statistical methods. In particular, this thesis focused on applying reliability methods, 
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information criteria, and bootstrapping to better understand the strength to failure of the 

internal bond (IB) of medium density fiberboard (MDF). Recall that MDF is a high 

quality engineered timber product. m, measured in pounds per square inch (psi), is one 

of the key metrics of quality that is obtained during destructive testing. Basically, m is 

one measurement for the strength of MDF. 

Chapter 2 reviewed current literature with a large focus on MDF, IB research, and 

its improvement. Recall as an example that Wang, Chen et al. (1999) investigated "a 

compression shear device for easy and fast measurement of the bonded shear strength of 

wood-based materials to replace the conventional method used to evaluate internal bond 

strength (IB)." They found that measuring strength ofMDF or particleboard by the 

suggested compression shear strength and by the conventional approach of internal bond 

strength were significantly correlated. This provides an alternative approach to 

measuring strengths of materials. Mentioning again the above reference helps to 

illustrate the importance of understanding the strength of the 1B. Other helpful resources 

regarding m can be found in Chapter 2. 

Additionally, Chapter 2 delves into the statistical literature pertaining to 

reliability, information criteria, and bootstrapping. The cited references are helpful in 

obtaining more thorough discussions of the topics covered in this thesis. Reliability data 

analysis, along with MDF, is the recurrent theme of this thesis. As previously mentioned, 

reliability data refers to survival or failure time data and the analysis of this data is an 

important topic for industry and government. Many great books are devoted to this topic, 

including the classic Meeker and Escobar (1 998). 

In Chapter 3, exploratory data analysis techniques were utilized to examine the m 
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ofMDF and to draw useful initial conclusions. It, also, helped motivate the need for 

Chapter 4 using information criteria. Histograms and scatter plots were shown first in 

Chapter 3 to gain preliminary insight on the distributions of the MDF product types with 

respect to m. In particular, histograms for Types 1 and 2 revealed a symmetric 

distribution, which certainly can provide us with useful information regarding variability 

in the data plus insight on the underlying parametric distribution. Recall additional 

comments in Chapter 3. The scatter plot of each type intuitively tells us that Type 2 is a 

stronger product than Type 1 .  A t-test confirmed this with p<0.0001. Thus, Type 2 

would more likely be used in shelving, for example, than Type 1 .  

The use and helpfulness of probability plots to characterize the underlying 

distribution of the 1B for different product types were also described. The points on the 

plot will form an approximate straight line if the data set "conforms" to a particular 

distribution. Thus, these plots, in many instances, can correctly identify the parametric 

distribution. Meeker and Escobar (1998) illustrate instances, however, where these plots 

may not correctly identify the parametric distribution. This misspecification is largely 

based on sample size and subjective visualization. Quite obviously, then, these plots do 

have subjectivity to them and one must be aware of this. Probability plots are useful 

tools, but the results produced should not always be taken to be concrete and definitive. 

When the parametric model assumption is weak or absent, nonparametric plots 

known as the Kaplan-Meier estimators, survival plots, or reliability plots provide another 

useful way to explore reliability data. These plots can provide useful insight and show 

surprising results from the data. For the different MDF product types, the survival plots 

clearly indicated that Type 2 is stronger than Type 1 MDF. 
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What is interesting to note here is that Typ·e 2 has a higher density of 48 lbs/ft3 

than Type 1 with a density of 46 lbs/ft3• When, product types of the same density but 

different thickness were compared, little to no differences was evident from the plots. 

Therefore, density appears to be a key driver in IB variability. This information was 

determined based on the plots rather than a particular statistical test. It is remarkable the 

amount of information that can be extracted from the data based on graphical procedures ! 

Often, though, we do wish to know the parametric distribution with more statistical 

assurance. More exact inferences can follow from having this parametric model, when 

valid. 

Probability plots were discussed in Chapter 3 and above in an exploratory data 

analysis context. They were revealed as a helpful yet subjective tool that can provide the 

practitioner with an appropriate starting point for determining the parametric distribution 

of a particular data set. Rather than dispensing with these plots, Chapter 4 presented 

tools that make probability plots more objective and allow the choice of parametric 

distribution to be much clearer. This is accomplished through the use of information 

criteria that assign a numeric score to each plot. The distribution characterized by the 

probability plot with the lowest score is considered to be the best among competing 

models. This is a great help to practitioners. 

The particular information criteria discussed in Chapter 4 include Akaike's 

Information Criteria (AIC) and Bozdogan's Information Complexity Criterion (ICOMP). 

These criteria have a lack of fit term that accounts for the likelihood of the proposed 

model as well as a term that accounts for the number of parameters/complexity in the 

model. A first order approximate model was fit through the points on the probability plot 
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in order to score them using AIC and I COMP. The background is provided for these two 

criteria as well as for how the probability plot scores were obtained. However, more 

references are provided to point the reader to more extensive information. 

An example using MDF product Types 1, 2, 3, and 5 was shown to illustrate the 

usefulness of AIC and I COMP. In particular, probability plots for the normal, lognormal, 

and Weibull distributions were constructed and shown along with their corresponding 

AIC and ICOMP scores. For example, Type 1 MDF probability plots had ICOMP scores 

of 1439.5, 1498. 1, and 1687.5 for the normal, lognormal, and Weibull distributions, 

respectively. It is quite easy to see that the lowest score of 1439.5 corresponds to the 

normal distribution. Therefore, we determined that among the competing models, the 

normal distribution provided the best fit for Type 1 MDF. Recall that this was suspected 

based on the exploratory graphics developed in Chapter 3. However, information criteria 

make this assumption more plausible. Furthermore, Type 2 was determined to follow the 

lognormal distribution while Types 3 and 5 follow a normal distribution. 

Aside from knowing the parametric distribution, percentiles are often of key 

importance in reliability studies. Reliability engineers are frequently interested in the 

time at which 10% ( or even 1 % ) of a particular product will fail. Specifically, percentiles 

can help in understanding product warranties and their costs. The mean or standard 

deviation of failure time data is not usually of concern and would not provide as much 

information as the percentiles in this context. Recall, again, Meeker and Escobar (1998). 

One of the difficulties in estimating the percentiles (in particular, lower 

percentiles) is that the data may not be plentiful in the lower tail of the distribution. 

Therefore, if the parametric distribution is available and is considered strong, then 
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estimating the percentiles parametrically can provide accurate results. 

If the parametric distribution is not available, asymptotic approximations can be 

utilized. In particular, the sample percentiles have been shown to be asymptotically 

normal. However, unless the sample size is sufficiently large, these asymptotic intervals 

will not necessarily yield accurate results. It then becomes important to search for 

another method for estimating these desired characteristics. Bootstrapping methods were 

presented in Chapter 5 as a useful method for constructing confidence intervals for 

percentiles. Histograms provide a diagnostic to warn of the misuse of this method in 

some cases. As always, the practitioner/user must check procedures for appropriateness 

of use. 

Chapter 5 presents several methods for resampling the data along with different 

methods for constructing bootstrap confidence intervals. Bootstrap sampling methods 

described included nonparametric, parametric, and mixed (i.e. nonparametric sampling 

for parametric inference or NBSP). The confidence interval methods included the 

standard, bootstrap-t, percentile, and bias-corrected percentile intervals. Sufficient 

background information was provided in order for the practitioner to implement the 

methods presented. 

An application of these methods to the MDF data was shown also in Chapter 5. 

Bootstrap confidence intervals for the 1st, 10th, 25th, and 50th percentiles were constructed 

for Types 1 and 5 MDF. These two product types were chosen as they would aid in 

illustration and provide a useful contrast. Type 1 is a rather large sample size of n=396 

m observations while Type 5 is much smaller with n=74 m observations. 

It was shown that when the sample size is sufficiently large, the methods for 
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constructing bootstrap confidence intervals all produced similar results and were 

comparable to the asymptotic intervals as would be expected. As the percentiles 

increased from 1 to 50, the confidence intervals became narrower, given the larger 

quantities of observed failure data. I.e., the standard errors grew smaller. This is 

especially seen with the fully nonparametric case. The interval for the 1st percentile is 

much wider than the intervals for the 10th, 25th, and 50th percentiles. However, this result 

follows naturally from the sampling method and the lack of observed failure data in the 

extreme lower tail. Although this occurs, the nonparametric bootstrap can provide 

accurate results when the sample size is large and is recommended when the parametric 

assumptions are weak. 

When the sample size is small, the nonparametric bootstrap does not yield 

intervals that are similar. In this case, the bootstrap sampling distributions can be discrete 

and standard methods are not usually recommended. To partly remedy this, it is loosely 

recommended that the bootstrap-t or the bias-corrected percentile methods be utilized. 

Doing this can still produce roughly accurate results for the median or quartiles using the 

nonparametric method when the sample size is small. These intervals help to alleviate 

some of the frustration that can be caused by having a sampling distribution that does not 

follow, at least roughly, a normal distribution. Furthermore, they are both second-order 

accurate intervals. However, we would recommend not using confidence intervals for the 

lower percentiles and instead resort to another approach such as imputation and/or 

Bayesian methods. 

It is thus recommended, but not always, that when the sample size is small, that 

the practitioner makes use of the NBSP method described thoroughly by Meeker and 
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Escobar (1998). The plots can give warning when not to use this approach. As 

described, this method does require parametric assumptions, but samples the data as done 

in the fully nonparametric case. By constructing intervals in this manner, the bootstrap 

sampling distributions appear continuous and roughly follow a normal distribution. In 

this case, the confidence interval construction methods produced similar intervals. 

Although requiring at least approximate parametric assumptions, this method was useful 

in constructing intervals for the extreme lower percentiles. 

As already mentioned several times before, to be able to say that improvements 

have been made, we must be able to measure reliability expressed in percentiles that 

allow for statistical variation. We need to make comparisons of these reliability measures 

between products and within products before and after process improvement 

interventions. Knowing when to trust confidence intervals and when not to trust them are 

crucial for managers and users ofMDF to make successful decisions. 

Through all the explanations, illustrations, and summaries, it is hopeful that the 

reader will come away with some insight on practically analyzing reliability data and will 

be able to implement the statistical methods presented into their own research. At this 

point, it is common to wonder what might come next. With regards to the 1B ofMDF, 

future work on studying other sources of variation present is a possibility. 

In general, other work is helpful regarding information criteria and bootstrapping. 

In Chapter 4, the model fit to the probability plots was a simple first order approximation 

that assumed normal errors with constant variance. It is possible and likely that another 

model would provide a better fit. Certainly, it is also feasible to assume that the error 

variation is not constant and rather, instead, varies with the data. We leave that work to 
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another time. 

With respect to bootstrapping, the methods presented in Chapter 5 are not 

exhaustive. Other methods for constructing intervals certainly exist and these may be 

explored in greater detail. Furthermore, more percentiles may be estimated for the MDF 

data to compare them over time, by shift, month, etc. Bootstrapping is receiving much 

more attention in recent years than it ever has. It is likely that bootstrap methods will be 

further developed, refined, and built upon to better suit the practitioner's needs. See 

comments in Chapter 5 about Type 5 MDF for alternative approaches for estimating 

lower percentiles as possible future work. 

In any case, more research is always possible and likely to appear in future works. 

Other possibilities than those listed above are certain to be explored. Reliability data 

analysis has rich theoretical foundations as can easily be seen in excellent works such as 

Barlow and Proschan (1975) and Meeker and Escobar (1998). However, the theory leads 

to many applications that are of interest to engineers, researchers, and other practitioners 

in industry, government, academia, etc. It is for these applications that this thesis is 

written. 

While focusing on the forest products industry and application to MDF, the 

methods discussed and illustrated flow easily into a plethora of other worlds. We close, 

appropriately, with words from Meeker and Escobar (1998) who assert that "reliability is 

being viewed as the product feature that has the potential to provide an important 

competitive edge. A current industry concern is in developing better processes to move 

rapidly from product conceptualization to a cost-effective highly reliable product. A 

reputation for unreliability can doom a product, if not the manufacturing company." 

113 



Bibliography 

114 



Akaike, H. (1973 ). Information Theory and an Extension of the Maximum Likelihood 
Principle. Second international symposium on information theory, Budapest, 
Academiai Kiado. 

Barlow, R. E. and Proschan, F. (1965). Mathematical Theory of Reliability. Wiley, New 
York, NY. 

Barlow, R. E. and Proschan, F. (1974). Statistical Theory of Reliability and Life Testing: 
Probability Models. Holt Rinehart and Winston, New York, NY. 

Barlow, R. E. and Proschan, F. (1981). Statistical Theory of Reliability and Life Testing: 
Probability Models. To Begin With, Silver Spring, MD. 

Beran, R. (2003). The Impact of the Bootstrap on Statistical Algorithms and Theory. 
Statistical Science, 18(2), 17 5-184. 

Boos, D. D. (2003). Introduction to the Bootstrap World. Statistical Science, 18(2), 168-
174. 

Bozdogan, H. (1987). Model Selection and Akaike's Information Criteria (AIC): The 
General Theory and Its Analytical Extensions. Psychometrika, 52, 345-370. 

Bozdogan, H. (1988). ICOMP: A New Model Selection Criterion. Classification and 
Related Methods of Data Analysis. In Hans H. Bock (Ed.), Amsterdam, North
Holland, Springer, 599-608. 

Bozdogan, H. (1990). On the Information-Based Measure of Covariance Complexity and 
Its Application to the Evaluation of Multivariate Linear-Models. Communications 
in Statistics-Theory and Methods, 19(1), 221-278. 

Bozdogan, H. (1996). A New Informational Complexity Criterion for Model Selection: 
The General Theory and Its Applications. Invited Paper presented in the Session 
on Information Theoretic Models & Inference of the Institute for Operations 
Research & the Management Sciences (INFORMS), Washington, D.C. 

Bozdogan, H. (2000). Akaike's Information Criterion and Recent Developments in 
Information Complexity. Journal of Mathematical Psychology, 44(1), 62-91. 

Bozdogan, H. (2001). Professor Bozdogan 's Class Notes of Statistics 563-564: 
Mathematical Statistics at the University of Tennessee, Knoxville. Copyright 
Professor H. Bozdogan. 

1 15 



Bozdogan, H. and Bearse, P. (2003). Information Complexity Criteria for Detecting 
Influential Observations in Dynamic Multivariate Linear Models Using the 
Genetic Algorithm. Journal of Statistical Planning and Inference, 1 14(1-2), 31-
44. 

Bozdogan, H. and Haughton, D. M. A. (1998). Informational Complexity Criteria for 
Regression Models. Computational Statistics & Data Analysis, 28(1), 51-76. 

Bozdogan, H. and Sclove, S. L. (1984). Multi-Sample Cluster-Analysis Using Akaike's 
Information Criterion. Annals of the Institute of Statistical Mathematics, 36(1), 
163-180. 

Butterfield, B., Chapman, K., Christie, L., and Dickson, A. (1992). Ultrastructural 
Characteristics of Failure Surfaces in Medium Density Fiberboard. Forest 
Products Journal, 42(6), 55-60. 

Casella, G. and Berger, R. L. (2002). Statistical Inference. Duxbury/Thomson Learning, 
Pacific Grove, CA. 

Chernick, M. R. (1999). Bootstrap Methods: A Practitioner's Guide. Wiley, New York, 
NY. 

Chow, P ., Bao, Z., Youngquist, J. A., Rowell, R. M., Muehl, J. H., and Krzysik, A. M. 
(1996). Properties of Hardboards Made from Acetylated Aspen and Southern 
Pine. Wood and Fiber Science, 28(2), 252-258. 

Chow, P. and Zhao, L. (1992). Medium Density Fiberboard Made from Phenolic Resin 
and Wood Residues of Mixed Species. Forest Products Journal, 42(10), 65-67. 

Cox, D. R. and Oakes, D. (1984). Analysis of Survival Data. Chapman and Hall, London. 

Davison, A. C. and Hinkley, D. V. (1997). Bootstrap Methods and Their Application. 
Cambridge University Press, Cambridge; New York, NY. 

Deming, W. E. (1986). Out of the Crisis. Massachusetts Institute of Technology's Center 
for Advanced Engineering Design, Cambridge, MA. 

Deming, W. E. (1993). The New Economics. Massachusetts Institute of Technology's 
Center for Advanced Engineering Design, Cambridge, MA. 

Diaconis, P. and Efron, B. (1983). Computer-Intensive Methods in Statistics. Scientific 
American, 248( 5), 116-130. 

DiCiccio, T. J. and Efron, B. (1996). Bootstrap Confidence Intervals. Statistical Science, 
1 1(3), 189-212. 

116 



Efron, B. (1981  ) .  Nonparametric Standard Errors and Confidence Intervals. Canadian 
Journal of Statistics, 9, 139-172. 

Efron, B. (1987). Better Bootstrap Confidence Intervals. Journal of the American 
Statistical Association, 82(397), 171-185. 

Efron, B. (2003). Second Thoughts on the Bootstrap. Statistical Science, 1 8(2), 135-140. 

Efron, B. and Gong, G. (1983) .  A Leisurely Look at the Bootstrap, the Jackknife, and 
Cross-Validation. American Statistician, 37(1 ), 36-48. 

Efro� B. and Tibshirani, R. (1991 ). Statistical-Data Analysis in the Computer-Age. 
Science, 253(5018), 390-395. 

Efron, B. and Tibshirani, R. (1993). An Introduction to the Bootstrap. Chapman & Hall, 
New York, NY. 

English, B., Jensen, K. and Menard, J. (2004). Tennessee's forest and forest products 
industry and associated economic impacts for 2000. The University of Tennessee 
Agricultural Experiment Station Research Series. 61 p. 

Fisher, R. A. and Tippett, L. H. C. (1928). Limiting Fonns of the Frequency Distribution 
of the Largest or Smallest Member of a Sample. Proc. Camb. Phil. Soc. , 24, 180-
190. 

Ghosh, M., Parr, W. C., Singh, K., and Babu, G. J. (1984). A Note on Bootstrapping the 
Sample Median. Annals of Statistics, 12(3), 1130-1135. 

Giudici, P. (2003). Applied Data Mining: Statistical Methods for Business and Industry. 
John Wiley and Sons, New York, NY. 

Gomez-Bueso, J., Westin, M., Torgilsson, R., Olesen, P. 0., and Simonson, R. (2000). 
Composites Made from Acetylated Lignocellulosic Fibers of Different Origin -
Part I. Properties ofDry-Fonned Fiberboards. Holz Als Roh-Und Werkstoff, 58(1-
2), 9-14. 

Guess, F. M., Edwards, D. J., Pickrell, T. M., and Young, T. M. (2003). Exploring 
Graphically and Statistically the Reliability of Medium Density Fiberboard. 
International Journal of Reliability and Applications, 4(4), 97-1 10. 

Guess, F. M., Walker, E., and Gallant, D. (1992). Burn-in to Improve Which Measure of 
Reliability? Microelectronics and Reliability, 32, 759-762. 

117 



Hahn, G. J. and Meeker, W. Q. (1991). Statistical Intervals: A Guide for Practitioners. 
Wiley, New York, NY. 

Hall, P. (2003). A Short Prehistory of the Bootstrap. Statistical Science, 18(2), 158-167. 

Han, G. P., Umemura, K., Zhang, M., Honda, T., and Kawai, S. (2001). Development of 
High-Performance Uf-Bonded Reed and Wheat Straw Medium-Density 
Fiberboard. Journal of Wood Science, 47(5), 350-355. 

Hashim, R., Murphy, R. J., Dickinson, D. J., and Dinwoodie, J. M. (1994). The 
Mechanical-Properties of Boards Treated with Vapor Boron. Forest Products 
Journal, 44(10), 73-79. 

Hollander, M. and Wolfe, D. A. (1973). Nonparametric Statistical Methods. Wiley, New 
York, NY. 

Hsu, W. E. (1993). Cost-Effective Pf Bonded Fiberboard. Proceedings of the twenty
seventh Washington State University international particleboard/composite mater. 

Kim, H., Guess, F. M., and Young, T. M. (2004). Using Data Mining Tools of Decision 
Trees in Reliability Applications. Submitted to a Professional Journal. For a Copy 
of This Paper, Send an Email to Timothy Young at Tmyoungl @Utk.Edu. 

Labosky, P., Yobp, R. D., Janowiak, J. J., and Blankenhorn, P. R. (1993). Effect of Steam 
Pressure Refining and Resin Levels on the Properties ofUf-Bonded Red Maple 
MDF. Forest Products Journal, 43(11-12), 82-88. 

Lawless, J. F. (1982). Statistical Models and Methods for Lifetime Data. Wiley
Interscience, Hoboken, N.J. 

Lunneborg, C. E. (2000). Data Analysis by Resampling: Concepts and Applications. 
Duxbury, Australia; Pacific Grove, CA. 

Maloney, T. M. (1993). Modern Particleboard and Dry-Process Fiberboard 
Manufacturing. Miller Freeman Inc., San Francisco, CA. 

Mann, N. R., Schafer, R. E., and Singpurwalla, N. D. (1974). Methods for Statistical 
Analysis of Reliability and Life Data. Wiley, New York, NY. 

Martinez, W. L. and Martinez, A. R. (2002). Computational Statistics Handbook with 
MATLAB. Chapman and Hall/CRC, Boca Raton, LA. 

Meeker, W. Q. and Escobar, L. A. (1998). Statistical Methods for Reliability Data. 
Wiley, New York, NY. 

118 



Meeker, W. Q. and Escobar, L. A. (2004). Reliability: The Other Dimension of Quality. 
Quality Technology & Quantitative Management, 1(1), 1-25. 

Montgomery, D. C., Peck, E. A., and Vining, G. G. (2001). Introduction to Linear 
Regression Analysis. Wiley, New York, NY. 

Nelson, W. (1990). Accelerated Testing: Statistical Models, Test Plans, and Data 
Analyses. John Wiley and Sons, New York, NY. 

Neter, J., Kutner, M. H., Nachtsheim, C. J., and Wasserman, W. (1996). Applied Linear 
Regression Models. Irwin, Chicago, IL. 

O'Connor, P. D. T. (1985). Practical Reliability Engineering, 2nd Ed. Wiley, Chichester, 
Great Britain. 

Ogawa, T. and Ohkoshi, M. (1997). Properties of Medium Density Fiberboards Produced 
from Thermoplasticized Wood Fibers by Allylation without Adhesives. Mokuzai 
Gakkaishi, 43(1), 61-67. 

Park, B. D., Riedl, B., Hsu, E. W., and Shields, J. (1998). Effects of Weight Average 
Molecular Mass of Phenol-Formaldehyde Adhesives on Medium Density 
Fiberboard Performance. Holz Als Roh-Und Werkstoff, S6(3), 155- 161. 

Park, B. D., Riedl, B., Hsu, E. W., and Shields, J. (2001). Application of Cure
Accelerated Phenol-Formaldehyde (Pt) Adhesives for Three-Layer Medium 
Density Fiberboard (MDF) Manufacture. Wood Science and Technology, 3S(4), 
311-323. 

Parr, W. C. (1983). A Note on the Jackknife, the Bootstrap and the Delta Method 
Estimators of Bias and Variance. Biometrika, 70(3), 719-722. 

Parr, W. C. (1985a). The Bootstrap - Some Large Sample Theory and Connections with 
Robustness. Statistics & Probability Letters, 3(2), 97-100. 

Parr, W. C. (1985b). Jackknifing Differentiable Statistical Functionals. Journal of the 
Royal Statistical Society Series B-Methodological, 47(1), 56-66. 

Polansky, A. M. (1999). Upper Bounds on the True Coverage of Bootstrap Percentile 
Type Confidence Intervals. The American Statistician, S3(4), 362-369. 

Polansky A. M. (2000). Stabilizing Bootstrap-t Confidence Intervals for Small Samples. 
The Canadian Journal of Statistics. 28(3), 501-526. 

119 



Rials, T. G., Kelley, S. S., and So, C. L. (2002). Use of Advanced Spectroscopic 
Techniques for Predicting the Mechanical Properties of Wood Composites. Wood 
and Fiber Science, 34(3), 398-407. 

Rowell, R. M., Youngquist, J. A., Rowell, J. S., and Hyatt, J. A. ( 1991 ). Dimensional 
Stability of Aspen Fiberboard Made from Acetylated Fiber. Wood and Fiber 
Science, 23(4), 558-566. 

Scott, D. W. (2003). The Case for Statistical Graphics. AmStat News, 315, 20-22. 

Seaver, W. (2004). Personal Communication. wseaver@utk.edu. 

Serfling, R. J. (1980). Approximation Theorems of Mathematical Statistics. Wiley, New 
York, NY. 

Suchsland, 0. and Woodson, G. E. ( 1986). Fiberboard Manufacturing Practices in the 
United States. U.S. Department of Agriculture Forest Service's Agriculture 
Handbook No. 640, Washington, D.C. 

Tsunoda, K., Watanabe, H., Fukuda, K., and Hagio, K. (2002). Effects of Zinc Borate on 
the Properties of Medium Density Fiberboard. Forest Products Journal, 52(11-
12), 62-65. 

Urbanik, T. J. (1998). Strength Criterion for Corrugated Fiberboard under Long-Term 
Stress. Tappi Journal, 81(3), 33-37. 

Urmanov, A. M., Gribok, A. V., Bozdogan, H., Hines, J. W., and Uhrig, R. E. (2002). 
Information Complexity-Based Regularization Parameter Selection for Solution 
of lll Conditioned Inverse Problems. Inverse Problems, 18(2), Ll -L9. 

van Houts, J. H., Bhattacharyya, D., and Jayaraman, K. (2000). Determination of 
Residual Stresses in Medium Density Fibreboard. Holzforschung, 54, 176-182. 

van Houts, J. H., Bhattacharyya, D., and Jayaraman, K. (2001a). Reduction of Residual 
Stresses in Medium Density Fibreboard, Part 1. Taguchi Analysis. Holzforschung, 
55, 67-72. 

van Houts, J. H., Bhattacharyya, D., and Jayaraman, K. (2001b). Reduction of Residual 
Stresses in Medium Density Fibreboard, Part 2. Effects on Thickness Swell and 
Other Properties. Holzforschung, 55, 73-81. 

van Houts, J. H., Winistorfer, P. M., and Wang, S. Q. (2003). Improving Dimensional 
Stability by Acetylation of Discrete Layers within Flakeboard. Forest Products 
Journal, 53(1), 82-88. 

120 



Walker, E. and Guess, F. M. (2003). Comparing Reliabilities of the Strength of Two 
Container Designs: A Case Study. Journal of Data Science, l, 185-197. 

Wang, S. and Winistorfer, P. M. (2000a). Fundamentals of Vertical Density Profiles 
Formation in Wood Composites. Part 4. Methodology of Vertical Density 
Formation under Dynamic Condition. Wood and Fiber Science, 32(2), 220-238. 

Wang, S., Winistorfer, P. M., and Young, T. M. (2004). Fundamentals of Vertical 
Density Profile Formation in Wood Composites. Part Iii. MDF Density Formation 
During Hot-Pressing. Wood and Fiber Science, 36(1 ), 17-25. 

Wang, S., Winistorfer, P. M., Young, T. M., and Helton, C. (2001 ). Step-Closing 
Pressing of Medium Density Fiberboard - Part 2. Influences on Panel 
Performance and Layer Characteristics. Holz Als Roh-Und Werkstoff, 59(5), 311-
318. 

Wang, S. Y., Chen, T. Y., and Fann, J. D. (1999). Comparison of Internal Bond Strength 
and Compression Shear Strength of Wood-Based Materials. Journal of Wood 
Science, 45(5), 396-401. 

Weibull, W. ( 1939). A Statistical Theory of the Strengths of Materials. Ing. Vetenskaps 
A/cad. Handll, 151(1), 1-45. 

Weibull, W. (1951). A Statistical Distribution Function of Wide Applicability. Journal of 
Applied Mechanics, 18(1), 293-297. 

Widsten, P., Laine, J. E., Tuominen, S., and Qvintus-Leino, P. (2003). Effect of High 
Defibration Temperature on the Properties of Medium-Density Fiberboard (MDF) 
Made from Laccase-Treated Hardwood Fibers. Journal of Adhesion Science and 
Technology, 17(1), 67-78. 

Williams, T. N. (2001 ). A Modified Six Sigma Approach to Improving the Quality of 
Hardwood Flooring. Department of Forestry, Wildlife, and Fisheries, University 
of Tennessee, Knoxville, 190. 

Xu, W. and Winistorfer, P. M. (1995). Layer Thickness Swell and Layer Internal Bond of 
Medium Density Fiberboard and Oriented Strandboard. Forest Products Journal, 
45(10), 67-71. 

Xu, W., Winistorfer, P. M., and Moschler, W. W. (1996). A Procedure to Determine 
Water Absorption Distribution in Wood Composite Panels. Wood and Fiber 
Science, 28(3), 286-294. 

121 



Young, T. M. and Guess, F. M. (2002). Mining Information in Automated Relational 
Databases for Improving Reliability in Forest Products Manufacturing. 
International Journal of Reliability and Applications, 3(4), 1 55-1 64. 

Young, T. M. and Winistorfer, P. M. ( 1999). Statistical Process Control and the Forest 
Products Industry. Forest Products Journal, 49(3), 1 0- 17. 

Young, T. M. and Winistorfer, P. M. (2001 ). The Effects of Autocorrelation on Real
Time Statistical Process Control with Solutions for Forest Products 
Manufacturers. Forest Products Journal, 51(1 1 - 12), 70-77. 

Yusuf, S., Imamura, Y., Takahashi, M., and Minato, K. ( 1995). Property Enhancement of 
Albizzia Waferboard by formaldehyde Treatment. Mokuzai Gakkaishi, 41(2), 
223-228. 

Ziegel, E. (2003). Top Five Books for Statisticians. AmStat News, 315, 25. 

122 



Vita 

David J. Edwards is a graduate research assistant in statistics for the Tennessee 

Forest Products Center at the University of Tennessee. He received a B.S. in 

Mathematics with a minor in Statistics from Virginia Polytechnic Institute and State 

University and is currently pursuing an M.S. in Statistics from the University of 

Tennessee with plans to graduate in May 2004. David received two Hatcher Scholarships 

in Mathematics while attending Virginia Tech. He is a member of Golden Key 

International Honor Society, Phi Beta Kappa National Honor Society, Pi Mu Epsilon 

National Mathematics Honor Fraternity, and Alpha Phi Omega National Service 

Fraternity. David was a speaker at the 57'h Annual Forest Products Society conference in 

Seattle, WA in June 2003. He presented further work at the Massachusetts Institute of 

Technology's International Conference on Information Quality in November 2003. He 

served as a Statistics Instructor for the Ronald McNair Post-Baccalaureate Achievement 

Program during summer 2003. After obtaining a Master's degree, David will pursue a 

Ph.D. in Statistics from Virginia Tech and intends to remain in an academic setting in 

order to teach and conduct research. 

1 23 




	University of Tennessee, Knoxville
	Trace: Tennessee Research and Creative Exchange
	5-2004

	An Applied Statistical Reliability Analysis of the Internal Bond of Medium Density Fiberboard
	David Joesph Edwards
	Recommended Citation


	tmp.1501688931.pdf.Wlg7X

