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ABSTRACT 
 
 
 
This thesis discusses the molecular dynamics simulation to determine the density 

distribution and diffusion coefficient of aqueous electrolytes (CaCl2, NaF, NaCl, NaBr, 

NaI, KCl, CsCl, RbCl) within silica nanochannels at 298K. An atomistic wall model, 

charged Lennard-Jones models for the ions, and the SPC/E model for water have been 

used. The effect of different channel radius and wall charges on divalent CaCl2 

electrolytes solutions is discussed in comparison with the previously studied behavior of 

monovalent NaCl solutions. The comparison of (NaF, NaCl, NaBr, NaI) aqueous 

solutions in 1.0 nm nanochannel reveals the effects of different anion sizes. Likewise, the 

comparison of (KCl, NaCl, CsCl, RbCl) aqueous solutions shows the effects of different 

cation sizes. The effects of ions size were seen to be small compared with the effects of 

doubling the cation charge. The calculations demonstrate that charges on the wall surface 

exert an influence on the density distribution of water molecules and calcium ions. 

Divalent calcium ions also display a different diffusion characteristic from the Fickian 

behavior of the monovalent cations, in which the mean square displacement of calcium 

ions is proportional to the square root of time rather than to the first power of time.  
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1. Introduction and Background 

1.1  Introduction 
 

DNA sequencing has been probed over the past decades. Achieving this goal has required 

around 30 years of efforts, following the initial “Plus and Minus” method introduced by 

Sanger[1], the approach depending on specific chemical degradation of the DNA proposed 

by Maxam and Gilbert[2], and other methods using DNA polymerase with chain-

determining inhibitors[3], etc. Neither of these methods is completely accurate nor very 

efficient in sequencing DNA. Among all of these, the most efficient method can sequence 

~30,000 bases per day per instrument, which costs ~$0.50 per nucleotide for a finished 

sequence[4]. For example, the functional analysis of each mammalian genome, which is 

the same size as the human genome, costs approximately $300 million[5] to sequence 

using the standard Sanger sequencing method[1]. So, although DNA sequencing has 

important medical applications, the present methods of sequencing polynucleotides are 

too slow, costly, inaccurate, and unrealistic[6]. The demand for faster and cheaper 

technology is responsible for spurring development of novel, fast, and inexpensive 

methods aimed at analysis of single macromolecules. 

 

At present, the use of a new nanopore method to characterize DNA could potentially 

determine the base sequence in a single-stranded DNA (ssDNA) molecule at rates 

between 1,000 and 10,000 per second. The characteristic that the scale of the nanopore 

may be the same as the molecules of interest is the reason why nanochannels have been 

explored as the basis for ssDNA sequencing and analysis. For instance, the diameter of 
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ssDNA is approximately 1.3 nm, while the diameter of a nanoscale channel may be 

varied from 1.5 ~ 3.0 nm. When ssDNA passes through such a nanochannel, it must be 

straightened from its coiled native state and must enter and exit the nanochannel in a 

linear fashion. This serial progression of the molecules makes the nanoscale channel very 

attractive for fast ssDNA sequencing[5]. 

 

In principle, through electrophoresis, an electric field can cause individual DNA 

molecules to move through a single nanopore (~2 nm in diameter) on a microsecond or 

millisecond timescale, while each nucleic acid base generates a distinctive electrical 

signal as it enters and passes through the nanochannel. Because the channel is very 

narrow, when ssDNA molecules are drawn into the pore by electrophoresis, they pass 

through the nanochannel in a linear fashion. By recording the translocation, duration, and 

blockade current (magnitude of the reduced ionic flow through the pore), it may be 

possible to monitor the polynucleotide passage and sequence DNA.  

 

Several efforts have been under the way to bring such a nanoscale channel to DNA 

application. Kasianowicz et al.[7] studied ssDNA passing through single ion channels in 

biological membranes. The discovery was that the single purine or pyrimidine nucleotide 

passing through the nanochannel would block the ion current in a manner that reflected 

the molecular size and chemical properties of each nucleotide in a polynucleotide chain. 

This demonstrated a possibility to partially characterize the DNA molecule by measuring 

the variation of electrical current and translation speed. 
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Similarly, Nakane, Akeson, and Marzili[5] have done much experimental work with 

nanopore detection of DNA in using an α -haemolysin (alpha-HL) ion-channel with a ~2 

nm diameter pore, which allowed the translocation of ssDNA. By tracking and analyzing 

the induced ion current in the pore when individual DNA molecules with electrical 

charges are driven through the channel, properties of DNA molecules would be indicated 

including length and base compositions.  

 

Another nanopore approach under development is to sculpt artificial, synthetic pores with 

nanometer-scale dimensions based on a microfabricated device. In 2001, Li et al.[8] 

fabricated a molecular-scale hole, or nanoscale hole in a thin insulating solid-state 

membrane. The authors called the method  “ion-beam sculpting”.  They sculpted a single 

5 nm diameter nanopore in a Si3N4 membrane, which served as a robust electronic 

detector capable of monitoring single DNA molecules in aqueous solution. Also, in 2002, 

Saleh and Sohn[9] used a micromolding technique to embed a nanoscale pore to sense 

single DNA molecules electronically. 

 

However, further development of these strategies is impeded by several technological 

barriers. One is that these ionic measurement methods are not completely capable of 

achieving single-nucleotide resolution. New remedies have been proposed by coupling 

nanochannel technologies with other detection schemes such as electrical dipole 

measurement[10], and near-field spectroscopy[11]. 
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Another problem arises from the pore structure itself. Transmembrane protein pores, 

which are composed of proteins embedded in a lipid bilayer, are intrinsically unstable. 

The instability of biological pores restricts the optimization of the experimental 

conditions and limits the standardization of testing techniques. With synthetic organic 

pores, there are also difficulties in creating an efficient pore or array of pores to stabilize 

for a long period of time. Nanoscopic channels manufactured from more robust material 

such as silica might circumvent this problem.  

 

Further, the lack of molecular level information is also troublesome when DNA in ionic 

solution passes through a nanochannel. How and to what extent different nucleic acids 

block the aperture of pores and affect the electrical current are unknown, and methods to 

monitor the translocation rate need to be implemented.  

 

1.2 Background 

With growing emphasis on nanoscale science and technology, there have been more 

studies in nanoscale channels. Such devices may have very important potential 

applications in the separation of biological molecules such as ssDNA. There has been 

some prior work related to our interest. Marti and Gordillo[12] studied temperature effects 

on the static and dynamic properties of water inside carbon nanotubes. Brodka and 

Zerda[13] published the properties of acetone in silica nanopores. Nakane et al.[5] had 

analyzed the alpha-HL ion channel and its applications to single-molecule detection. 
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However, little attention has been paid to water and ions inside nanochannels, especially 

nanochannels made from silica. Lo et al.[14] simulated ions in a charged capillary, using a 

softly repulsive Lennard-Jones (L-J) interaction for the ion-wall interaction. Lynden-Bell 

and Rasaiah[15] investigated the mobility and solvation of ions in smooth nanochannels.  

 

For DNA sequencing, it is important to understand the properties of DNA and proteins 

and the selective adsorption of metal ions in aqueous environment inside the 

nanochannel. Because of the nanometer size of the channel, the wall surface exerts forces 

upon all the liquid molecules inside the channel. The interfacial region may extend totally 

across the nanochannel, which may result in an obvious difference from bulk aqueous 

electrolytes, and this has not been entirely understood yet. To this end the molecular 

dynamics simulation with aqueous electrolytes in silica nanochannels has been 

undertaken.  

 

In this regard, two years ago, Zhou [16] did a series of runs on (Na+ and Cl-) in silica 

nanochannels with radius ranging from 0.67nm to 1.5nm. In his research, he studied the 

effect of cutoff radius, cr , on density distribution of water and ions and decided to select 

ooσ5  (five times the oxygen-oxygen contact distance in the water model) for use in his 

production calculations, after taking into account the required calculation time and 

simulation accuracy. He also investigated the influence of a charged wall versus an 

uncharged wall on the fluid’s density distribution. Thereafter, the effects were studied of 

nanochannel radius and wall charges on the radial density distribution and axial self-
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diffusivities of water and ions. The wall charges were evenly distributed along the axial 

direction and around the circumference of the nanochannel. It was found that the discrete 

charges of the wall exerted little influence on the distribution of water and negative ions, 

while the strong adsorption of sodium ions was observed. This is because every sodium 

ion only has one positive unit charge so sodium ions were tightly adsorbed to the charge 

sites to neutralize the wall charges. The adsorbed sodium ions retarded the movement of 

water molecules and chloride ions and lowered self-diffusivities of unadsorbed sodium 

ions. 

 

This research has continued the investigation of the properties of water with ions inside 

charged silica nanoscale channels. The effect of wall charges on the behavior of ions and 

water molecules has also been studied since ions are used to buffer and disentangle DNA, 

and a charged channel wall probably enables ssDNA to move electrokinetically through 

the channel. The effects of nanochannel radius ranging from 0.9 nm to 1.5 nm with a 

charged wall upon the radial density distribution and axial self-diffusivities of water 

molecules and additional ions beside NaCl ions have been studied.  Every calcium ion 

has two positive unit charges, which gives rise to different density distributions and self-

diffusivities from those of sodium ions as Zhou[17] found.  To delve further into the 

mechanism of the (Ca2+ and Cl-) aqueous electrolytes, the preliminary examination of 

spatial configurations among oxygen atoms, calcium ions and wall charges has been 

performed. In this work, the negative charges are located at the center of wall atoms. This 

center placement of wall charges differs from the arbitrary placement of charges relative 

to the wall atoms used in the previous work by Zhou[16, 17] and is likely a more realistic 
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wall model.  In addition, a series of runs of monovalent cations and chloride [(Na+ and 

Cl-), (K+ and Cl-), (Rb+ and Cl-), (Cs+ and Cl-)] at fixed nanochannel radius have been 

performed and compared. Similarly and concurrently, simulations were performed of 

sodium and monovalent anions with [(Na+ and F-), (Na+ and Cl-), (Na+ and Br-), (Na+ and 

I-)] at fixed nanochannel radius. 
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2. Simulation Models and Methods 
 

2.1 SPC/E water potential model 

Many effective pair potentials have been used for the simulation of polar liquid water, 

such as the SPC (simple point charge) and the SPC/E (extend simple point charge) 

nonploarizable water models. The SPC/E model stems from the SPC model, but produces 

better agreement with experiment[18]. Water is treated as three point charges on the 

H-O-H atomic centers with L-J interactions between the oxygen atoms.[18] The model 

accounts for the effect of the polarizability of the water molecule at ambient conditions in 

an approximate way by reparameterizing the charges and non-bonded L-J interactions[19].  

 

The SPC/E model has been extensively used in molecular simulation of transport 

properties of charged or uncharged solutes in water in the past few years[20]. The model is 

composed of 3 interaction sites with the OH bond distance of 0.1 nm and HOH angle 

equal to the tetrahedral angle, 109.47°. The charges on the oxygen and hydrogen are 

 –0.8476e and +0.4238e (electronic charge units), respectively. The total potential 

between water molecules includes the Columbic potential between these charges and an 

L-J potential between the oxygen centers on different water molecules. The 

intermolecular interaction between a pair of water molecules is: 

∑∑
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The first term is the L-J potential energy of interaction between the oxygen sites, where 

the L-J core diameter nmoo 3166.0=σ  and well depth KkBoo 168.78/ =ε ; oor  is the 

oxygen-oxygen separation distance; and Bk  is the Boltzmann constant. The second term 

is the sum of electrostatic potential energies of interaction between charges on sites i and 

j on different water molecules, where iq  is the charge on site i , jq  is the charge on site j, 

and ijr  is the distance between the sites i and j[19]. 0ε  is the dielectric constant of vacuum, 

and e is the unit charge. 

 

2.2 SiO2 wall potential model 

Because silica (SiO2) is important geologically and technologically, a number of silica 

potential models have been suggested. There are several important models such as the 

two-body potential model developed by Tsuneyuki et al.[21], the BMH pair potential 

model proposed by Feuston and Garofalini[22], and the BKS model starting from ab inito 

calculations on small clusters[23]. However, a united-atom L-J model for the SiO2 surface 

with σ = 0.3 nm and Bk/ε  = 230K with discretely charged (-1e) sites has been applied in 

this research to approximate the effect of the silica surface on the liquids in contact with 

the wall. In this model, a single layer of close-packed L-J sites, each representing a SiO2 

unit, has been wrapped into a cylinder[17]. For the charged wall, the charges were first 

evenly distributed along the axial direction and around the radius of the nanochannel, 

then were moved to the center of the wall atoms nearest the charges.  
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The interactions between the particles and the wall were modeled as explicit atoms for 

the first layer in the wall interacting with the fluid molecules via the 12-6 L-J potential. 

The additional layers of the wall interact with the fluid particles via the Steele 

Potential[24] The first atomistic layer used in the wall model instead of the smooth wall is 

mainly to eliminate the effect of the smooth wall of the cylindrical symmetry leading to 

unrealistic structure for the fluid[25], which is not a concern in this research.  

 

The Steele potential[24] is used to model the potential between particles and additional 

wall layers (the “particles” here referred to are the anions, cations, or solvent molecules), 

which is given by: 

)]
)61.0(3

()()(
5
2[2)( 3

4
4102

∆+−∆
−

−
−

−
∆=

rRrRrR
ru wfwfwf

wfwfwwf

σσσ
σεπρ  

in which uwf  is the shifted L-J type wall potential[26]. σw and εw are the size and energy 

parameters in the L-J potential, where KkBw 230/ =ε , and 
o

Aw 0.3=σ . The subscripts f 

and w present fluid and wall respectively. wfσ and wfε are obtained in terms of Lorentz-

Berthelot[27] combing rules as: 

2/)( wallfluidwallfluid σσσ +=−  

)(*)(/
B

wall

B

fluid
Bwallfluid kk

k
εε

ε =−  

∆ , the distance between two successive lattice planes of the solids, nm2709.0= . R is the 

radius of the cylinder, and r is the radial position of a fluid molecule. wρ =42.76 nm-3 and 

kB = 1.38066*10-16 erg/K.  
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2.3 Method 

The molecular dynamics simulation numerically solves Hamilton’s equation of motion 

for each particle: 

i

i

i
i m

p
p
Hv

•

=
∂
∂

=  

i
i

i F
r
Hp =
∂
∂

−=
•

 

Where H = Hamiltonian; 

         iF  = force on molecule i; 

 
•

ip = molecular momentum; 

 mi = the mass of molecule; 

 ir  = molecule position; 

 U = total potential energy of molecule i 

 iv = velocity of molecule i = 
•

ir  

The total potential energy: 

Ui = U(interparticle) + U(i, wall) 

Where, 

U(interparticle) = ∑∑
≠≠

− +
ji

columbic
ji

JL jiUjiU ),(),(  

i, j represent either oxygen atoms, hydrogen atoms, cations, or anions.∑
≠

−
ji

JL jiU ),(  

includes L-J potential between the oxygen atoms on different water molecules, L-J 



 12 
 

 

potential between ions and oxygen atoms, and L-J potential between 

ions.∑
≠ ji

columibic jiU ),( is the electrostatic interaction among particles.  

∑ ∑+= − )wall,()wall,()wall,( iUiUiU columbicJL  

)wall,(iU  is the total energy the wall exerts on the particle i. Here i refers to oxygen 

atoms, hydrogen atoms, cations, or anions, as well. The potential interaction between a 

particle inside the nanochannel and the wall is the summation of the interaction between 

every wall site and the particle, including L-J potential (∑ − )wall,(iU JL ) and Columbic 

interaction (∑ )wall,(iU columbic ) between wall charges and electrolyte particles.  

 

Canonical (N,V,T) ensemble molecular dynamics simulations (MD) have been carried 

out. The system, confined within volume, V, is composed of N particles, which is the 

total number of water molecules, anions, and cations. The temperature is maintained at 

298 K by a Berendsen thermostat[28] through rescaling the kinetic energy to be constant 

after each time step. The Verlet method[27] for the ions and the “RATTLE” constrained 

dynamics method[29] for water molecules have been selected to solve Hamilton’s 

equations of motion numerically for the ions and water molecules with a 2.5 fs time step.  

 

All the systems simulated here include a cylindrical nanochannel with an atomistic wall 

in which water molecules, positive ions and negative ions are confined. It has been filled 

with water molecules so that the density of the fluid near the center of the nanochannel is 

close to 1g/cm3. The initial configuration of the system is prepared by creating bulk water 
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at the density 1.0 g/cm3. The ions are placed in the system by replacing water molecules 

at random. Periodical boundary conditions have been applied to the axial direction. 

Equilibration runs are between 7,000 and 12,500 ps in duration. Considering computation 

time and the required accuracy of the calculations, the intermolecular potential is 

truncated at rc = 5.0 ooσ =1.583 nm (rc: potential cutoff, beyond which intermolecular 

potential is set to zero). Because the radius of the nanochannel is very small, the value of 

rc is set so large that it spans the diameter of the nanochannel in this research. Thus, the 

potential cutoff acts only in the axial direction of the nanochannel.  

 

The charges are discretely distributed on the wall surface. Every three electric charges are 

placed on one ring at discrete locations with adjacent rings rotated by o60  to insure the 

discrete charges are distributed uniformly on the surface. Charges locations are 

determined by[30] : 

ϕcos)5.0()( += Rix  

ϕsin)5.0()( += Riy  

)3//()3/)1(()( qnLiiz ×−=  

Where, nq is the number of surface charges, R is the radius of the cylinder, and L is the 

length of the cylinder. Charges are set to positions slightly larger than the wall radius.  

Where, qni ......,,2,1= ,  

 
3/)1(

3/)2,mod(3/)1(2
−=

+−=
ij

ji ππϕ
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Then, these charges are moved to the center of wall surface atoms nearest the charges. 

The FORTRAN code “nearest.f” has been applied to this application and is listed in 

Appendix1.  

 

The density, )(rρ  is a function of the distance from the axis of the nanochannel, and is 

defined as[13]: 

])[(
),()( 22 rrrL

rrrnr
−∆+
>∆+<

=
π

ρ  

Where >< ),( 21 rrn  is the average number of molecules between cylindrical shells of 

radius r1 and r2, and L is the length of the cylinder.  

 

The axial self-diffusion coefficient of water molecules and ions in silica nanochannel is 

calculated according to the Einstein relation[27] : 

>−<=
→→

∞→

2|)0()(|lim
2
1 rtr

dt
dD

t
 

Where the brackets <…> denote the ensemble average of the mean-square axial 

displacement; D is the diffusion coefficient; t is time; and r is position.  

 

For convenience in simulation, reduced units are adopted[27] using the water mass 

parameter m, distance parameter σ, and energy parameter ε, the reduced units are defined 

for temperature as ε/* TkT B= , time tmt 2/12* )/( σε= , and density 3* ρσρ = .  
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3. Results and Discussion 

3.1  Effects of channel radii in CaCl2 aqueous electrolyte systems:  
       -density distribution  
 
 

In this section, the objective is to understand the mechanism of calcium and chloride ions 

density distribution  as well as ion transport in silica nanochannels with radius varying 

from 0.9 to 1.5 nm while the other parameters are kept constant.  

 

A series of runs with (Ca2+ and Cl-) with a charged wall has been performed first to 

compare with the prior work of Zhou[16] on (Na+ and Cl-). The effects of silica 

nanochannel radius and charges on the wall have been investigated upon the radial 

density distribution and axial self-diffusivity of water and ions. Radius is studied at 0.9, 

1.0, 1.1, 1.2, 1.3 and 1.5nm. The chloride density (0.132/nm3) and surface charges 

concentration (0.0957/nm2) are kept constant for all the systems. The fluid density (water 

molecules, positive ions, and negative ions) is ~1 g.cm-3 in the core of the nanochannel. 

 

Also, the nature of the charged surface deserves more careful consideration and may have 

significant effect on radial density profiles and self-diffusivity of water and ions. Unlike 

sodium ions, calcium ions have two positive unit charges. The degree of calcium ions 

adsorbed by the charged surface would be different from that of sodium ions. So is the 

self-diffusivity of calcium ions. 
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The parameters used in the simulation are listed in Tables1-3.  

  

The radial density distributions of water molecules are displayed in Figures 1 through 6. 

The radial density distributions of calcium and chloride ions are shown in Figures 7 

through 12. For different channel radii, the solvent water density distribution exhibits a 

typical behavior which is essentially same for each case. The profiles show that, within 

0.35 nm from the wall, water structure is oscillatory, but near the center, it becomes more 

bulk-like. Further from the wall, the water structure becomes less pronounced and 

appears to be uniform. Because oxygen atoms denote the center of mass of the molecules, 

seeing the oxygen atom distribution, water molecules form a layer with a maximum in 

the probability density just 0.31 nm from the wall, and its height and position is basically 

unchanged as radii increases from 0.9 nm to 1.5 nm. There is room for other layers in the 

nanochannel with lower probability density. The number of distinct layers and the 

corresponding radial positions at different nanochannel radii are listed in Table 4. The 

number of layers of water molecules varies when radius changes. It is attributable to the 

free energy of the system which depends on whether the cylinder size is commensurate 

with the natural separation of the layers[15]. But this issue is not discussed further in this 

research.  

 

The charges on the wall atoms of the nanochannel set up a static electrical field. The 

movements of the aqueous electrolytes inside the nanochannel are influenced to a 

differing extent. Because there are negative charges distributed discretely at the centers of 
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Table 1   L-J parameters for CaCl2-H2O-SiO2 

Pair σ (nm) Bk/ε  (K) 

Ca-Ca[30] 0.2895 50.32 

Ca-Cl 0.3648 50.32 

Ca-O 0.303 62.72 

O-O[20] 0.3166 78.168 

Cl-Cl[30] 0.4401 50.32 

Cl-O[15] 0.3784 62.72 

Ca-Wall 0.2948 107.6 

Cl-Wall 0.3701 107.6 

Wall-Wall 0.3 230 

 

 

 

 

Table 2   Site charges for CaCl2 aqueous electrolytes solutions 
 

Ions Ca2+ Cl- O H 

Charge +2e -1e -0.8476e +0.4238e 
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Table 3 Calculation parameters for CaCl2-H2O-SiO2 system 

Radius 

(nm) 

Length 

(nm) 

Number 

of water 

Number  

of Ca2+ 

Number  

of Cl- 

Number of 

charges 

0.9 11.087 563 4 2 6 

1.0 6.651 470 3 2 4 

1.1 6.047 523 3 2 4 

1.2 6.929 717 4 3 5 

1.3 6.396 772 4 3 5 

1.5 6.652 1132 6 6 6 

 

 

 

Table 4  Solvation layers of water molecules at different channel radii 

Radius 
(nm) 

Number of layers of water 
molecules 

Radial positions 
(nm) 

0.9 2 0.27, 0.60 

1.0 3 0.00, 0.38, 0.70 

1.1 3 0.14, 0.48, 0.80 

1.2 3 0.22, 0.59, 0.90 

1.3 3 0.31, 0.66, 0.99 

1.5 4 0.24, 0.50, 0.87, 1.19 
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Figure 1: Radial density distribution of oxygen and hydrogen atoms when the radius of 

silica nanochannel is 0.9 nm (CaCl2). The system consists of 563 water molecules, 4 

calcium ions, 2 chloride ions. 6 negative charges are distributed on the wall surface. The 

channel length is 11.087 nm, while the concentration of chloride ions (0.132/nm3) and 

density of charges on the wall (0.0957/nm2) are kept constant. 
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Figure 2: Radial density distribution of oxygen and hydrogen atoms when the radius of 

silica nanochannel is 1.0 nm (CaCl2). The system consists of 467 water molecules, 3 

calcium ions, 2 chloride ions. 4 negative charges are distributed on the center of wall 

atoms. The channel length is 6.651 nm, while the concentration of chloride ions 

(0.132/nm3) and density of charges on the wall (0.0957/nm2) are kept constant. 
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Figure 3: Radial density distribution of oxygen and hydrogen atoms when the radius of 

silica nanochannel is 1.1 nm (CaCl2). The system consists of 523 water molecules, 3 

calcium ions, 2 chloride ions. 4 negative charges are distributed on the center of wall 

atoms. The channel length is 6.047nm, while the concentration of chloride ions 

(0.132/nm3) and density of charges on the wall (0.0957/nm2) are kept constant. 
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Figure 4: Radial density distribution of oxygen and hydrogen atoms when the radius of 

silica nanochannel is 1.2 nm (CaCl2). The system consists of 717 water molecules, 4 

calcium ions, 3 chloride ions. 5 negative charges are distributed on the center of wall 

atoms. The channel length is 6.929 nm, while the concentration of chloride ions 

(0.132/nm3) and density of charges on the wall (0.0957/nm2) are kept constant. 
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Figure 5: Radial density distribution of oxygen and hydrogen atoms when the radius of 

silica nanochannel is 1.3 nm (CaCl2). The system consists of 772 water molecules, 4 

calcium ions, 3 chloride ions. 5 negative charges are distributed on the center of wall 

atoms. The channel length is 6.396 nm, while the concentration of chloride ions 

(0.132/nm3) and density of charges on the wall (0.0957/nm2) are kept constant. 
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Figure 6: Radial density distribution of oxygen and hydrogen atoms when the radius of 

silica nanochannel is 1.5 nm (CaCl2). The system consists of 1132 water molecules, 6 

calcium ions, 6 chloride ions. 6 negative charges are distributed on the center of wall 

atoms. The channel length is 6.652 nm, while the concentration of chloride ions 

(0.132/nm3) and density of charges on the wall (0.0957/nm2) are kept constant. 
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Figure 7: Radial density distribution of calcium and chloride ions when the radius of 

silica nanochannel is 0.9 nm. The system consists of 564 water molecules, 4 calcium 

ions, 2 chloride ions. 6 negative charges are distributed on the center of wall atoms. The 

channel length is 11.087 nm, while the concentration of chloride ions (0.132/nm3) and 

density of charges on the wall (0.0957/nm2) are kept constant.  
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Figure 8: Radial density distribution of calcium and chloride ions when the radius of 

silica nanochannel is 1.0 nm. The system consists of 470 water molecules, 3 calcium 

ions, 2 chloride ions. 4 negative charges are distributed on the center of wall atoms. The 

channel length is 6.651 nm, while the concentration of chloride ions (0.132/nm3) and 

density of charges on the wall (0.0957/nm2) are kept constant. 
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Figure 9: Radial density distribution of calcium and chloride ions when the radius of 

silica nanochannel is 1.1 nm. The system consists of 523 water molecules, 3 calcium 

ions, 2 chloride ions. 4 negative charges are distributed on the center of wall atoms. The 

channel length is 6.047 nm, while the concentration of chloride ions (0.132/nm3) and 

density of charges on the wall (0.0957/nm2) are kept constant. 
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Figure 10: Radial density distribution of calcium and chloride ions when the radius of 

silica nanochannel is 1.2 nm. The system consists of 717 water molecules, 4 calcium 

ions, 3 chloride ions. 5 negative charges are distributed on the center of wall atoms. The 

channel length is 6.929 nm, while the concentration of chloride ions (0.132/nm3) and 

density of charges on the wall (0.0957/nm2) are kept constant.  
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Figure 11: Radial density distribution of calcium and chloride ions when the radius of 

silica nanochannel is 1.3 nm. The system consists of 772 water molecules, 4 calcium 

ions, 3 chloride ions. 5 negative charges are distributed on the center of wall atoms. The 

channel length is 6.396 nm, while the concentration of chloride ions (0.132/nm3) and 

density of charges on the wall (0.0957/nm2) are kept constant. 
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Figure 12: Radial density distribution of calcium and chloride ions when the radius of 

silica nanochannel is 1.5 nm. The system consists of 1132 water molecules, 6 calcium 

ions, 6 chloride ions. 6 negative charges are distributed on the center of wall atoms. The 

channel length is 6.652 nm, while the concentration of chloride ions (0.132/nm3) and 

density of charges on the wall (0.0957/nm2) are kept constant.  
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some wall atoms, hydrogen atoms are attracted closer to the wall, and oxygen atoms 

(water center) are slightly repelled further from the wall. The water structure is arrayed in 

a manner that hydrogen is closer to the wall than oxygen atoms. The number of water 

molecules increases as nanochannel radii increase. Water molecules in different layers 

continually exchange their positions and do not stay in the layer all the time.[16, 17] 

 

The small hydrogen peak closest to the wall and the second peak slightly farther from the 

wall are features that were not apparent in previous simulations of monovalent cationic 

chloride (e.g., NaCl) solutions[16, 17]. Probably, previous simulations[16, 17] are results of 

the surface charges being randomly located with respect to the wall atoms, which would 

result in broadening such small peaks so much that they are not seen. (See sections 3.4 

and 3.5 for monovalent density distribution with surface charges at the center of wall 

atoms.) The peak closest to the wall likely represents configurations in which hydrogen 

atoms are in the valleys between three surface sites (one charged) where they are 

attracted by the wall charge and the L-J interaction with three wall atoms. The second 

small peak, then, likely represents hydrogen atoms between a pair of wall atoms (one 

charged) where they are attracted by the wall charge and the L-J interaction with only 

two wall atoms. The spherical L-J repulsion between the water and each wall atom, then, 

creates two potential energy minima for hydrogen atoms of the first shell water 

molecules: The deeper minimum between three wall atoms, which is located closest to 

the wall, and the shallower one between two wall atoms slightly farther from the wall. 

This geometry is illustrated by the distances and angles between the wall charge, the 

Ca2+, and the near-by hydrogen atoms from two representative configurations shown in 
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Figure 13 and 14. Of course the thermal motions of the atoms lead to the width of these 

peaks.   

 

Similarly, the small peak in the water density curve is from the oxygen atom in the first 

shell water molecule. 

 
By tracing the movement of calcium ions in the nanochannel, it is found that calcium ions 

are attracted and remain adjacent to the point where the wall charges are set. These 

calcium ions do not move freely; some are fixed without intervening water molecules by 

the attraction of charges; some are separated from the wall atoms by water molecules in 

the first hydration shell and just vibrate back and forth at a certain distance due to the less 

strong attraction force from charges. The examples of calcium ions activities are shown 

in Figure 15 and 16. Since there are more surface charges than calcium ions in this 

aqueous electrolytes system, it is always possible for calcium ions to find remaining 

charges to attract them. The adsorption of calcium counter ions on the wall neutralizes 

the charges on the wall surface so that the radial density distribution of chloride ions is 

hardly affected by wall charges. Excess chloride ions move freely in the system and are 

repelled a little bit further from the wall than calcium ions. The FORTRAN subroutine 

“location.f” to track the activities of calcium ions in aqueous solutions has been applied 

to this application and listed in Appendix 2. 

 

The classical Stern theory describes an important concept called the electrical double 

layer, in which the ion distribution near the charge sites consists of an immobile layer of  
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Figure 13: The spatial configuration of charge, calcium ion nearest this charge and 

oxygen atoms around calcium ion within the range of 1.2σCa-Ca in 1.2 nm nanochannel. 

The distances between calcium ion and charge, between charge and oxygen, between 

oxygen and calcium, and the angle of oxygen-charge-calcium are shown. The system 

consists of 717 water molecules, 4 calcium ions, 3 chloride ions, 5 negative charges. This 

corresponds to Figure 15 where adsorbed calcium ion is fixed to the wall sites by the 

attraction of charges.  
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Figure 14: The spatial configuration of charge, calcium ion nearest this charge and 

oxygen atoms around calcium ion within the range of 1.2σCa-Ca in 1.3 nm nanochannel. 

The distances between calcium ion and charge, between charge and oxygen, between 

oxygen and calcium, and the angle of oxygen-charge-calcium are shown. The system 

consists of 772 water molecules, 4 calcium ions, 3 chloride ions, 5 negative charges. This 

corresponds to Figure 16 where calcium ion is separated from the wall atoms by water 

molecules in the first hydration shell. 
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Figure 15: The positions of one calcium ion vs. time (1). This calcium ion is attracted by 

the wall charges and fixed on the surface wall of the nanochannel.  This corresponds to 

Figure 13 where adsorbed calcium ion is fixed to the wall sites by the attraction of 

charges. Note: This is the sampling frequency which expresses frequency of Ca2+ 

vibration every 50 timestep.  
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Figure 16: The positions of one calcium ion vs. time(2). This calcium ion vibrates back 

and forth at certain distance adjacent to the surface wall charges of the nanochannel.  This 

corresponds to Figure 14 where calcium ion is separated from the wall atoms by water 

molecules in the first hydration shell. Note: This is the sampling frequency which 

expresses frequency of Ca2+ vibration every 50 timestep. 
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counterions (Stern layer) at the surface and a diffuse layer of more mobile ions, 

characterized by depleted ion concentration in the interfacial region with further distance 

from the wall[30]. 

 

As seen from the density distribution of ions in Figures 7 - 12, as radial position varies 

from near the wall to the center, there is an increased ion density (excepting the Ca2+ 

adsorption peak). It may be inferred that ions seem to avoid the region near the wall, 

which is preferentially occupied by layered water molecules[30]. The calcium ions are 

distributed closer to the oxygen sites and chloride ions are distributed closer to hydrogen 

sites of the layered water structure.  

 

The calcium ion distributions, however, displays some interesting features. Take the 

calcium density distribution at radius 1.2 nm and 1.3 nm (Figures 10 and 11) as 

representative cases. In the 1.2 nm nanochannel, the highest peak occurs at 0.40 nm from 

the wall, which is expected for a hydrated calcium ion. (Because the diameter of calcium 

is 0.2895 nm, the diameter of water is approximately 0.30 nm, and the radius of the wall 

atom is 0.30 nm. (0.2895+0.30)/2 + 0.15 = 0.44 nm which basically coincides the 

hydration calcium peak position). Another smaller distinct peak occurs 0.22 nm from the 

wall, which is the effect of the charged sites on the wall, suggesting the direct adsorption 

of calcium ions to the charged sites, according to the classical Stern layer. Calcium ions 

are fixed on the wall charges by the attraction force and have a direct contact with wall 

atoms. The spatial configuration of calcium ions, charges, and water atoms is shown in 

Figure 13. Tracing back the radial density distribution for calcium ions at 1.3 nm radius, 
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the sharp peak occurs at 0.40 nm from the wall, indicating a hydrated calcium ion shell. 

The narrow width and the strong height indicate the nearly fixed positions of the hydrated 

ions.  The spatial configuration of calcium ions, charges, and water atoms is shown in 

Figure 14. The FORTRAN subroutine “cawater.f” has been applied to this application 

and listed in Appendix3. However, these two structures illustrated by Figures 13 and 14, 

in which one represents hydrated calcium ions, another represents directly-adsorbed 

calcium ions, do not represent a real effect of the two of pore sizes; instead, they reflect 

two snapshots from a dynamic equilibrium between adsorption states.The radial 

distributions of chloride ions are very similar for each case in different nanochannel radii, 

which means the negative charges on the wall surface have been screened by the Ca2+ 

ions and associated waters and thus the wall charges have little effect on it.  

 

In addition to the increased ion density at the radial position far away from the wall, the 

calcium density distribution displays peaks that coincide with the valleys of the water 

density distribution. The chloride density distribution is not affected by the water density 

oscillation. Again, density distributions with radius 1.2 nm and 1.3 nm are taken as 

examples (Figure 17 and 18). By sitting in the valleys between two peaks of the oxygen 

distribution, calcium ions increase their hydration number of water molecules and thus 

have a lower potential energy[25]. Because of the smaller-nearest approach, with the small 

size of a calcium ion (σCa-Ca = 0.2895 nm), the nearer distance between calcium ions and 

oxygen atoms, and the larger partial charge on the oxygen (- 0.8476 e), the electrostatic 

attraction between oxygen atoms and calcium ion is stronger and more energetically  
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Figure 17: Density distribution for the water molecules denoted by oxygen atoms (water 

center), calcium ions and chloride ions in 1.2 nm nanochannel. Note that the water 

density distribution is plotted with the left axis and the ions density distribution is plotted 

with the right axis. 
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Figure 18: Density distribution for the water molecules denoted by oxygen atoms (water 

center), calcium ions and chloride ions in 1.3 nm nanochannel. Note that the water 

density distribution is plotted with the left axis and the ions density distribution is plotted 

with the right axis. 
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favorable when calcium ions locate in the valleys between oxygen atoms. This 

phenomenon is not observed for the chloride ion density distribution. Due to the larger 

size of the chloride ions (σCl-Cl = 0.4401 nm) and the smaller partial charge on the 

hydrogen (+ 0.4238 e), the electrostatic attraction between chloride ions and hydrogen 

atoms is weaker.  

 
3.2 Effects of channel radii in CaCl2 aqueous electrolyte systems:  

self - diffusivity  

 

The self-diffusivity of water molecules in the axial direction has been calculated, as 

shown in Figure 19 and Table 5. The self-diffusivity is calculated from the slope of the 

line. In general, self-diffusivity of water molecules tends to increase with the increase of 

the radius of nanochannel. If the increase of the radius can accommodate one new layer 

of water molecules, the self-diffusivity of water molecules increases. If the increase of 

radius is about half or one-and-a-half of the diameter of water molecules, the self-

diffusivity just decreases. Self-diffusivity is calculated at approximately constant core 

water density of 1.0 g/cm3. The self-diffusivity of water molecules in the axial direction 

is close to that of bulk water at ambient conditions. Self-diffusivity is also affected by 

pressure in the fluids. The pressure is not kept constant when radius varies at constant 

density. But pressure calculation in these inhomogeneous, quasi-one-dimensional systems 

is not straightforward[17]. In this research, the effect of pressure on the self-diffusivity is 

minimized by adjusting the number of water molecules in each system so that the central 

density of water in each nanochannel is consistent.  
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Figure 19: The mean square displacement (MSD) of water molecules in aqueous 

electrolyte solution system at different radii of nanochannel. 
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Table 5: Self-diffusivities of water molecules along axial direction of nanochannel  

at different radii 

 
Radius (nm) H2O 

(1× 10-5 cm2/s) 
0.9 3.008  
1.0 3.046  
1.1 3.456  
1.2 3.367  
1.3 3.596  
1.5 3.738  

 
 

Note: Standard deviations for self-diffusivities must be achieved by repeating 

simulations. So they are not included in this simulation. 

 

The mean square displacement (MSD) of calcium ions is directly proportional to the 

square root of time. Figures of MSD vs. the square root of time are shown in Figures 20 

through 26. The values of movement for Ca2+  (units of length2/time0.5) are very small. 

The small magnitude is likely the result of each Ca2+ spending most of the time adsorbed 

to a charged wall site. The one-half power of time might suggest single-file diffusion 

(SFD)[31]. SFD occurs when particles diffuse in a medium with restricted geometry in 

which molecules can not pass each other, therefore mainly move in one dimension[32]. 

Despite almost three decades of research, understanding of SFD is still far from 

complete. SFD should appear as the fluid molecular diameter approaches the effective 
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Figure 20:  The mean square displacement (MSD) of calcium ions in silica nanochannel 

with radius = 0.9 nm. [MSD (nm2) ~  t0.5 (ps0.5)] 

Slope = 2.320 × 10-5 cm2/s0.5 
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Figure 21:  The mean square displacement (MSD) of calcium ions in silica nanochannel 

with radius = 1.0 nm. [MSD (nm2) ~  t0.5 (ps0.5)] 

Slope = 0.0675 × 10-5 cm2/s0.5 
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Figure 22:  The mean square displacement (MSD) of calcium ions in silica nanochannel 

with radius = 1.1 nm. [MSD (nm2) ~  t0.5 (ps0.5)] 

Slope = 5.410 × 10-5 cm2/s0.5 
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Figure 23:  The mean square displacement (MSD) of calcium ions in silica nanochannel 

with radius = 1.2 nm. [MSD (nm2) ~  t0.5 (ps0.5)] 

Slope = 1.321 × 10-5 cm2/s0.5 
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Figure 24: The mean square displacement (MSD) of calcium ion in silica nanochannel 

with radius = 1.3 nm. [MSD (nm2) ~  t0.5 (ps0.5)] 

Slope = 1.956 × 10-5 cm2/s0.5 
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Figure 25:  The mean square displacement (MSD) of calcium ions in silica nanochannel 

with radius = 1.5 nm. [MSD (nm2) ~  t0.5 (ps0.5)] 

Slope = 3.645 × 10-5 cm2/s0.5 
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Figure 26: The mean square displacement (MSD) of calcium ions in aqueous electrolytes 

solution system at different nanochannel radii. 
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channel diameter, where fluid molecules are constrained so as not be able to pass each 

other, like the single-lane road where overtaking is not allowed[33]. However, in this 

research, the effective channel diameter is larger than any of the characteristic minimum 

length scales (Table 1). For instance, twice nmCaCa 579.0=−σ  is still smaller than any 

nanochannel diameter designed, similarly to other parameters. So an ion (calcium or 

chloride) in the nanochannel should easily pass another ion (calcium or chloride) without 

overlap. 

 

The implication is that the characteristic for calcium ions may not be the single-file 

diffusion (SFD). Tracking the mean square displacement of calcium ions (Figure 20-26), 

the MSD values are very small, which confirms again calcium ions in the electrolytes 

solutions do not move much (Figure 13 and 14) as mentioned before. For long periods of 

time Ca2+ ions remain fixed on the points where charges are set or just vibrate back and 

forth close to charges. This gives rise to “anomalous self-diffusion” of calcium ions. One 

additional thing needs to be pointed out: other monovalent cations like Na+[17], Li+, Rb+, 

Cs+ exhibit ordinary self-diffusion along the channel axis, in which MSD is proportional 

to the observation time. This suggests divalent charges from calcium ions might lead to 

the anomalous self-diffusion, while calcium ions are strongly attracted to the charges and 

forbidden to move. But the exact explanation for calcium ions self-diffusion remains 

elusive. Perhaps, because of the similarity of random motion of Ca2+ around the surface 

charges to vibrational molecular motion in single file diffusion, the MSD of Ca2+ displays 

similarity to single-file diffusion in short time. The present simulations are not long 

enough to explore the long-time behavior (Table 6). 
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Table 6: Slopes of MSD vs. Time0.5 at different nanochannel radii 

(CaCl2 solutions) 
 

Radius 
(nm) 

Slopes 
(1× 10-5 cm2/s0.5) 

0.9 2.320  

1.0 0.675  

1.1 5.410  

1.2 1.321  

1.3 1.956  

1.5 3.645  

 

There is also good linearity of fit of the MSD vs. time for chloride ions in different radius 
nanochannels, as shown in Figure 27, demonstrating ordinary self-diffusion for chloride 

ions. The self-diffusivity values are shown in Table 7. Apparently, the calcium ions 

attracted to the wall charges present an obstacle so that chloride ions move somewhat 

slower than in bulk water.  

 

3.3 Charged vs. uncharged surface at fixed channel radius of 1.0 nm 
 

The radius of the silica nanochannel is 1.0 nm and length is 6.651nm. The fluids in the 

charged channel consist of 467 water molecules, 3 calcium ions, 2 chloride ions. 4 

negative charges are distributed at the center of wall atoms. The fluid molecules in the 

uncharged channel consist of 474 water molecules, 0 calcium ions, 2 chloride ions. There 

are no charges on the wall of the nanochannel. The results are shown from Figure 28-30.  
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Figure 27: The mean square displacement (MSD) of chloride ions in aqueous electrolytes 

solution systems at different nanochannel radii.  
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Figure 28: Radial density distribution of oxygen atoms in charged system vs. uncharged 

system. The radius of silica nanochannel length is 1.0 nm and length is 6.651nm. The 

fluid of the channel with charged wall consists of 467 water molecules, 3 calcium ions, 2 

chloride ions. 4 negative charges are distributed on the center of wall atoms. The fluid in 

the channel with the uncharged wall consists of 474 water molecules, 0 calcium ions, 2 

chloride ions. There are no charges on the wall of the nanochannel. 
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Figure 29: Radial density distribution of hydrogen atoms in charged system vs. 

uncharged system. The radius of silica nanochannel length is 1.0 nm and length is 

6.651nm. The fluid of the channel with charged wall consists of 467 water molecules, 3 

calcium ions, 2 chloride ions. 4 negative charges are distributed on the center of wall 

atoms. The fluid in the channel with the uncharged wall consists of 474 water molecules, 

0 calcium ions, 2 chloride ions. There are no charges on the wall of the nanochannel. 
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Figure 30: Radial density distribution of chloride ions in charged system vs. uncharged 

system. The radius of silica nanochannel length is 1.0 nm and length is 6.651nm. The 

fluid of the channel with charged wall consists of 467 water molecules, 3 calcium ions, 2 

chloride ions. 4 negative charges were distributed on the center of wall atoms. The fluid 

in the channel with the uncharged wall consists of 474 water molecules, 0 calcium ions, 2 

chloride ions. There are no charges on the wall of the nanochannel.  
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Table 7: Self-diffusivities of chloride ions along axial direction of nanochannel  

at different radii (CaCl2 solution) 

 
Radius  
(nm) 

Cl- 

(1× 10-5 cm2/s) 
0.9 0.647  

1.0 0.633  

1.1 1.085  

1.2 0.961  

1.3 1.015  

1.5 1.039  

 

Note: Standard deviations for self-diffusivities must be achieved by repeating 

simulations. So they are not included in this simulation 

 

Comparing the density distribution of oxygen atoms in the charged nanochannel with that 

in the uncharged nanochannel, the profiles show basically similar distribution except 

there are two small peaks near the wall surface in the charged nanochannel. As explained 

before, those two small peaks are caused by the interactions between wall atoms and 

water molecules in the valleys of wall atoms, under the effect of both L-J and 

electrostatic forces. Correspondingly, without the influence of charges, the two small 

peaks disappear, as shown in the profile of the uncharged channel. This evidence 

supports the earlier interpretation of the small peaks near the wall. 
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The density distributions of hydrogen atoms in charged and uncharged nanochannels are 

similar. There are three density shells in both distributions with same peak height at 0.70 

nm, 0.38 nm and 0.00 nm from the center, and the distance between peaks is around the 

diameter of water molecules (0.30 nm). 

 
 
The radial density distribution of chloride ions differs little in charged and uncharged 

channels, suggesting wall charges have little influence on chloride ions because of the 

screening effects on the wall charges by the adsorbed Ca2+ ions and their associated 

waters.  

 

In comparison, the axial self-diffusivity of water molecules and chloride ions is decreased 

by 10.75 % and 68.80 % in the charged nanochannel. The values are compared and listed 

in Figure 31-32 and Table 8. Probably, this is attributable to the obstacle of calcium ions 

adsorbed on the wall charge sites. 

 

Table 8 Comparison of self-diffusivity for charged and uncharged aqueous solutions 

Radius (nm) Water molecules 
(1× 10-5 cm2/s) 

Chloride ions 
(1× 10-5 cm2/s) 

1.0 (charged) 3.046 0.633 

1.0 (uncharged) 3.413 2.029 

 

Note: Standard deviations for self-diffusivities must be achieved by repeating 

simulations. So they are not included in this simulation. 
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Figure 31: Self-diffusivity of water molecules ions in charged system vs. uncharged 

system. The radius of silica nanochannel length is 1.0 nm and length is 6.651nm. The 

fluid of the channel with charged wall consists of 467 water molecules, 3 calcium ions, 2 

chloride ions. 4 negative charges are distributed on the center of wall atoms. The fluid in 

the channel with the uncharged wall consists of 474 water molecules, 0 calcium ions, 2 

chloride ions. There are no charges on the wall of the nanochannel.  
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Figure 32: Self-diffusivity of chloride ions in charged system vs. uncharged system. The 

radius of silica nanochannel length is 1.0 nm and length is 6.651nm. The fluid of the 

channel with charged wall consists of 467 water molecules, 3 calcium ions, 2 chloride 

ions. 4 negative charges are distributed on the center of wall atoms. The fluid in the 

channel with the uncharged wall consists of 474 water molecules, 0 calcium ions, 2 

chloride ions. There are no charges on the wall of the nanochannel.  



 61 
 

 

3.4 Comparison of NaF, NaCl, NaBr, NaI in a 1.0 nm nanochannel 

The behavior of anions F-, Cl-, Br-, I- has been investigated at a single radius of the 

nanochannel at 298K using SPC/E water model. For all the aqueous electrolytes solutions 

systems, the radius of the nanochannel is kept at 1.0 nm and length is 6.651 nm, where 

470 water molecules, 6 sodium ions, and 2 anions are confined. 4 negative charges are 

distributed on the center of wall atoms. The concentration of anions (0.132/nm3) and 

density of charges on the wall (0.0957/nm3) are in accordance with CaCl2 systems studied 

before. The core water density is fixed at 1.0 g/cm3. The density distribution and self-

diffusivities of water molecules, cations, and anions have been compared in these four 

aqueous solutions [(Na+ and F-), (Na+ and Cl-),  (Na+ and Br-), (Na+ and I-)].   

 
All ions are represented by a point charge centered in an L-J sphere. The potential 

parameters for ion-water, ion-ion, ion-wall, and water-wall interactions in these MD 

simulations, are listed in Tables 9-12. The radial density distribution of water molecules 

is displayed in Figures 33 through 36. The radial density distributions of sodium and 

anions are shown in Figures 39 through 42. 

 

As seen from Figure 37 and Figure 38, the density distribution profiles for oxygen and 

hydrogen atoms are very similar in these four aqueous electrolytes systems, except that 

NaCl solutions exhibit a little bit lower density distribution. Water molecules form three 

distinctive layers when radial position varies from the channel center to the area close to 

the wall. The layer with highest probability is 0.30 nm from the wall; the second layer 

with less probability density is 0.61 nm from the wall, and in the center of nanochannel  
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Table 9   L-J parameters for NaF-H2O-SiO2 

Pair σ (nm) Bk/ε  (K) 

Na-Na[32] 0.273 43.00 

Na-F 0.2925 62.38 

Na-O[15] 0.2876 62.73 

O-O[16] 0.3166 78.168 

F-F 0.312 90.50 

F-O[15] 0.3143 84.11 

Na-Wall 0.2865 99.45 

F-Wall 0.306 144.27 

Wall-Wall 0.3 230 

 

 

Table 10   L-J parameters for NaCl-H2O-SiO2 

Pair σ (nm) Bk/ε  (K) 

Na-Na[34] 0.273 43.00 

Na-Cl 0.387 20.51 

Na-O[15] 0.2876 62.73 

O-O[18] 0.3166 78.168 

Cl-Cl 0.486 20.19 

Cl-O[15] 0.378 62.72 

Na-Wall 0.2865 99.45 

Cl-Wall 0.393 68.14 

Wall-Wall 0.3 230 
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Table 11   L-J parameters for NaBr-H2O-SiO2 

Pair σ (nm) Bk/ε  (K) 

Na-Na[34] 0.273 43.00 

Na-Br 0.3636 46.53 

Na-O[15] 0.2876 62.73 

O-O[18] 0.3166 78.168 

Br-Br[35] 0.4542 50.36 

Br-O[15] 0.3854 62.74 

Na-Wall 0.2865 99.45 

Br-Wall 0.3771 107.62 

Wall-Wall 0.3 230 

 

 

Table 12   L-J parameters for NaI-H2O-SiO2 

Pair σ (nm) Bk/ε  (K) 

Na-Na[34] 0.273 43.00 

Na-I 0.395 46.53 

Na-O[15] 0.2876 62.73 

O-O[18] 0.3166 78.168 

I-I[35] 0.517 50.36 

I-O[15] 0.4168 62.74 

Na-Wall 0.2865 99.45 

I-Wall 0.4085 107.62 

Wall-Wall 0.3 230 
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Figure 33: Radial density distribution of oxygen and hydrogen atoms when the radius of 

silica nanochannel is 1.0 nm (NaF). The system consists of 467 water molecules, 6 

sodium ions, 2 chloride ions. 4 negative charges are distributed on the wall surface. The 

channel length is 6.651 nm, while the concentration of chloride ions (0.132/nm3) and 

density of charges on the wall (0.0957/nm2) are kept constant.  



 65 
 

 

 
 
 
 

radial density distribution of H2O at NaCl system
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Figure 34: Radial density distribution of oxygen and hydrogen atoms when the radius of 

silica nanochannel is 1.0 nm (NaCl). The system consists of 467 water molecules, 6 

sodium ions, 2 chloride ions. 4 negative charges are distributed on the wall surface. The 

channel length is 6.651 nm, while the concentration of chloride ions (0.132/nm3) and 

density of charges on the wall (0.0957/nm2) are kept constant.  
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Figure 35: Radial density distribution of oxygen and hydrogen atoms when the radius of 

silica nanochannel is 1.0 nm (NaBr). The system consists of 467 water molecules, 6 

sodium ions, 2 chloride ions. 4 negative charges are distributed on the wall surface. The 

channel length is 6.651 nm, while the concentration of chloride ions (0.132/nm3) and 

density of charges on the wall (0.0957/nm2) are kept constant.  
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Figure 36: Radial density distribution of oxygen and hydrogen atoms when the radius of 

silica nanochannel is 1.0 nm (NaI). The system consists of 467 water molecules, 6 

sodium ions, 2 chloride ions. 4 negative charges are distributed on the wall surface. The 

channel length is 6.651 nm, while the concentration of chloride ions (0.132/nm3) and 

density of charges on the wall (0.0957/nm2) are kept constant.  
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Figure 37: Radial density distribution of oxygen atoms in NaF, NaBr, NaCl, NaI aqueous 

solutions respectively. For every aqueous system, it consists of 467 water molecules, 6 

cation ions, 2 chloride ions in the same size nanochannel with 1.0 nm radius and 6.651 

nm cell length in the axial direction. 4 negative charges are distributed on the center of 

wall atoms nearest these charges. The concentration of anions (0.132/nm3) and density of 

charges on the wall  (0.0957/nm2) are kept constant. 
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Figure 38: Radial density distribution of hydrogen atoms in NaF, NaBr, NaCl, NaI 

aqueous solutions respectively. For every aqueous system, it consists of 467 water 

molecules, 6 cation ions, 2 chloride ions in the same size nanochannel with 1.0 nm radius 

and 6.651 nm cell length in the axial direction. 4 negative charges are distributed on the 

center of wall atoms nearest these charges. The concentration of anions (0.132/nm3) and 

density of charges on the wall  (0.0957/nm2) are kept constant. 
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Figure 39: Radial density distribution of sodium and fluoride ions when the radius of 

silica nanochannel is 1.0 nm. The system consists of 467 water molecules, 6 sodium ions, 

2 chloride ions. 4 negative charges are distributed on the wall surface. The channel length 

is 6.651 nm, while the concentration of chloride ions (0.132/nm3) and density of charges 

on the wall (0.0957/nm2) are kept constant.  
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Figure 40: Radial density distribution of sodium and chloride ions when the radius of 

silica nanochannel is 1.0 nm. The system consists of 467 water molecules, 6 sodium ions, 

2 chloride ions. 4 negative charges are distributed on the wall surface. The channel length 

is 6.651 nm, while the concentration of chloride ions (0.132/nm3) and density of charges 

on the wall (0.0957/nm2) are kept constant.  
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Figure 41: Radial density distribution of sodium and bromide ions when the radius of 

silica nanochannel is 1.0 nm. The system consists of 467 water molecules, 6 sodium ions, 

2 chloride ions. 4 negative charges are distributed on the wall surface. The channel length 

is 6.651 nm, while the concentration of chloride ions (0.132/nm3) and density of charges 

on the wall (0.0957/nm2) are kept constant.  
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Figure 42: Radial density distribution of sodium and iodine ions when the radius of silica 

nanochannel is 1.0 nm. The system consists of 467 water molecules, 6 sodium ions, 2 

chloride ions. 4 negative charges are distributed on the wall surface. The channel         

length is 6.651 nm, while the concentration of chloride ions (0.132/nm3) and density                

of charges on the wall (0.0957/nm2) are kept constant.  

 



 74 
 

 

there is a third distinctive peak. Under the effect of charges distributed on the wall atoms, 

water structure is distributed in a way that hydrogen is closer to the wall than oxygen. 

There are also very small peaks adjacent to the wall, similarly to CaCl2 aqueous systems, 

indicating again by sitting between the valleys of wall atoms, water molecules are subject 

to both electrostatic and L-J interactions from the wall charges. (See section 3.1 for 

discussion of these small peaks). 

 

From Figure 43, the density distribution of sodium ions is very similar for every case. 

There is a distinct sharp peak of the sodium ions 0.2 nm from the wall, suggesting the 

adsorption of sodium ions to the charged sites. Unlike calcium ions, every sodium ion 

only has one positive charge, so when the negative unit charge on the surface captures a 

sodium ion there is little to hold the first shell of water molecules around the ion and the 

ion adsorbs directly to the surface charge site. As discussed earlier by Zhou[16], 4 sodium 

ions are attracted to the charge sites and other 2 sodium ions move freely in the system. 

The attachment of these 4 sodium ions neutralizes the wall charges so that the radial 

density distributions of other ions are hardly affected by the wall charges.  

 

The radial density distribution of anions is shown in Figure 44. The height of peaks 

closest to the wall varies with the size of anions. As the size of the anion increases from 

F-, Cl-, Br- to I-, the height of peaks increases too. This order at first seems 

counterintuitive, but the anions carry the same charge as the wall atoms. So, the repulsive  
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Figure 43: Radial density distribution of sodium ions in NaF, NaCl, NaBr, NaI aqueous 

solutions respectively. For every aqueous system, it consists of 467 water molecules, 6 

cation ions, 2 chloride ions in the same size nanochannel with 1.0 nm radius and 6.651 

nm cell length in the axial direction. 4 negative charges are distributed on the center of 

wall atoms nearest these charges. The concentration of anions (0.132/nm3) and density of 

charges on the wall  (0.0957/nm2) are kept constant.  
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Figure 44: Radial density distribution of anions in NaF, NaCl, NaBr, NaI aqueous 

solutions respectively. For every aqueous system, it consists of 467 water molecules, 6 

cation ions, 2 chloride ions in the same size nanochannel with 1.0 nm radius and 6.651 

nm cell length in the axial direction. 4 negative charges are distributed on the center of 

wall atoms nearest these charges. The concentration of anions (0.132/nm3) and density of 

charges on the wall  (0.0957/nm2) are kept constant.  
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force between wall charges and ions increases with decreasing ion size and the larger ions 

are repelled less strongly. 

 

The self-diffusivities of water molecules, sodium ions, and anions all have an excellent fit 

of MSD vs. the observation time, as shown in Figure 45 to 47. The self-diffusivities for 

water, sodium ions, and anions are listed in Table 13. These values vary just slightly. 

Different anion sizes seem to have no effects on the determination of axial self-diffusivity 

of water or sodium. The anion self-diffusivity increases slightly with anion size. 

Compared with the published self-diffusivity values of F-, Cl-, Br-, I- at 298K in 

uncharged bulk water solutions[36], here, the self-diffusivity of  F-, Cl-, Br-, I- is decreased 

by 25.23%, 38.84%, 43.76%, and 30.48 % respectively. That is because all the 

electrolytes simulated here are confined in the charged nanochannel. The sodium ions 

adsorbed to the wall charges present an obstacle, retarding the movement of anions and 

lowering their self-diffusivities.  

Table 13: Self-diffusivities along axial direction of nanochannel 

 in NaF, NaCl, NaBr, NaI aqueous electrolytes systems  

 
Systems H2O 

(1× 10-5 cm2/s) 
Na+ 

(1× 10-5 cm2/s) 
Anions 

(1× 10-5 cm2/s) 
NaF 3.313  0.332  0.972  
NaCl 3.124  0.372  1.058  
NaBr 3.080  0.366  1.063  
NaI 3.103  0.304  1.168  

 
Note: Standard deviations for self-diffusivities must be achieved by repeating 

simulations. So they are not included in this simulation. 
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Figure 45: The mean square displacement (MSD) of water molecules versus time within 

silica nanochannel in NaF, NaCl, NaBr, NaI aqueous solutions. For every aqueous 

system, it consists of 467 water molecules, 6 cations, 2 chloride ions in the same size 

nanochannel with 1.0 nm radius and 6.651 nm cell length in the axial direction. 4 

negative charges are distributed on the center of wall atoms nearest these charges. The 

concentration of anions (0.132/nm3) and density of charges on the wall  (0.0957/nm2) are 

kept constant. 
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Figure 46: The mean square displacement (MSD) of sodium ions versus time within 

silica nanochannel in NaF, NaCl, NaBr, NaIl aqueous electrolytes solutions. For every 

aqueous system, it consists of 467 water molecules, 6 cations, 2 chloride ions in the same 

size nanochannel with 1.0 nm radius and 6.651 nm cell length in the axial direction. 4 

negative charges are distributed on the center of wall atoms nearest these charges. The 

concentration of anions (0.132/nm3) and density of charges on the wall  (0.0957/nm2) are 

kept constant. 
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Figure 47: The mean square displacement (MSD) of anions versus time within silica 

nanochannel in NaF, NaCl, NaBr, NaI aqueous solutions. For every aqueous system, it 

consists of 467 water molecules, 6 cations, 2 chloride ions in the same size nanochannel 

with 1.0 nm radius and 6.651 nm cell length in the axial direction. 4 negative charges are 

distributed on the center of wall atoms nearest these charges. The concentration of anions 

(0.132/nm3) and density of charges on the wall  (0.0957/nm2) are kept constant. 
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3.5 Comparison of NaCl, KCl, CsCl, RbCl in a 1.0 nm nanochannel 
 
 

A series of molecular dynamics simulations of the alkali metal ions Na+, K+, Rb+, Cs+ has 

been implemented at a single radius of the nanochannel at 298K using the SPC/E water 

model. For all the aqueous electrolytes solutions, the radius of nanochannel is kept at 1.0 

nm and length is 6.651 nm, where 470 water molecules, 6 cations, 2 chloride ions are 

confined. 4 negative charges are distributed on the center of wall atoms. The 

concentration of chloride ions (0.132/nm3) and density of charges on the wall 

(0.0957/nm3) are in accordance with CaCl2 systems studied before. The core water 

density is fixed at 1.0 g/cm3. The density distribution and self-diffusivities of water 

molecules, cations, and chloride ions have been compared in these four aqueous solutions 

[(Na+ and Cl-), (K+ and Cl-),  (Cs+ and Cl-), (Rb+ and Cl-)].   

 

The L-J potential parameters are listed in Table10, and Tables 14-16. The site charges are 

listed in Table 17. The radial density distribution of water molecules is displayed in 

Figures 48 through 51. The radial density distributions of cations and chloride are shown 

in Figures 54 through 57. 

 

As seen in Figures 52 and 53, the density distributions or oxygen and hydrogen atoms are 

very similar in these four aqueous electrolytes systems. The RbCl distribution exhibits a 

little higher peak than others. Similarly to NaF, NaCl, NaBr, NaI systems, here water 

molecules form three distinctive layers when radial position varies from the channel 

center to the area close to the wall. The layer with highest probability is 0.30 nm from the  
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Table 14   L-J parameters for KCl-H2O-SiO2 

Pair σ (nm) Bk/ε  (K) 

K-K 0.3334 50.34 

K-Cl 0.3868 50.33 

K-O[15] 0.3250 62.73 

O-O[16] 0.3166 78.168 

Cl-Cl[24] 0.4401 50.32 

Cl-O[15] 0.3784 62.72 

K-Wall 0.3167 107.60 

Cl-Wall 0.3701 107.60 

Wall-Wall 0.3 230 

 
 

 

Table 15   L-J parameters for CsCl-H2O-SiO2 

Pair σ (nm) Bk/ε  (K) 

Cs-Cs 0.3886 50.36 

Cs-Cl 0.4144 50.34 

Cs-O[31] 0.3526 62.74 

O-O[16] 0.3166 78.168 

Cl-Cl[24] 0.4401 50.32 

Cl-O[15] 0.3784 62.72 

Cs-Wall 0.3443 107.62 

Cl-Wall 0.3701 107.6 

Wall-Wall 0.3 230 
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Table 16   L-J parameters for RbCl-H2O-SiO2 

Pair σ (nm) Bk/ε  (K) 

Rb-Rb 0.353 50.38 

Rb-Cl 0.3965 50.35 

Rb-O[31] 0.3348 62.756 

O-O[16] 0.3166 78.168 

Cl-Cl[24] 0.4401 50.32 

Cl-O[15] 0.3784 62.72 

Rb-Wall 0.3265 107.64 

Cl-Wall 0.3701 107.6 

Wall-Wall 0.3 230 

 
 
 

 
Table 17   Site charges 

 
Ions Ca2+ Cl- Na+ K+ Rb+ 

Charge +2 -1 +1 +1 +1 
Ions F- Br- I- O2- H+ 

Charge -1 -1 -1 -0.8476 +0.4238 
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Figure 48: Radial density distribution of oxygen and hydrogen atoms when the radius of 

silica nanochannel is 1.0 nm (NaCl). The system consists of 467 water molecules, 6 

sodium ions, 2 chloride ions. 4 negative charges are distributed on the wall surface. The 

channel length is 6.651 nm, while the concentration of chloride ions (0.132/nm3) and 

density of charges on the wall (0.0957/nm2) are kept constant.  
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Figure 49: Radial density distribution of oxygen and hydrogen atoms when the radius of 

silica nanochannel is 1.0 nm (KCl). The system consists of 467 water molecules, 6 

sodium ions, 2 chloride ions. 4 negative charges are distributed on the wall surface. The 

channel length is 6.651 nm, while the concentration of chloride ions (0.132/nm3) and 

density of charges on the wall (0.0957/nm2) are kept constant.  
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Figure 50: Radial density distribution of oxygen and hydrogen atoms when the radius of 

silica nanochannel is 1.0 nm (RbCl). The system consists of 467 water molecules, 6 

sodium ions, 2 chloride ions. 4 negative charges are distributed on the wall surface. The 

channel length is 6.651 nm, while the concentration of chloride ions (0.132/nm3) and 

density of charges on the wall (0.0957/nm2) are kept constant.  
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Figure 51: Radial density distribution of oxygen and hydrogen atoms when the radius of 

silica nanochannel is 1.0 nm (CsCl). The system consists of 467 water molecules, 6 

sodium ions, 2 chloride ions. 4 negative charges are distributed on the wall surface. The 

channel length is 6.651 nm, while the concentration of chloride ions (0.132/nm3) and 

density of charges on the wall (0.0957/nm2) are kept constant.  
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Figure 52: Radial density distribution of oxygen atoms in NaCl, KCl, RbCl, CsCl 

aqueous solutions respectively. For every aqueous system, it consists of 467 water 

molecules, 6 cations, 2 chloride ions in the same size nanochannel with 1.0 nm radius and 

6.651 nm cell length in the axial direction. 4 negative charges are distributed on the 

center of wall atoms nearest these charges. The concentration of anions (0.132/nm3) and 

density of charges on the wall  (0.0957/nm2) are kept constant. 
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Figure 53: Radial density distribution of hydrogen atoms in NaCl, KCl, RbCl, CsCl 

aqueous solutions respectively. For every aqueous system, it consists of 467 water 

molecules, 6 cations, 2 chloride ions in the same size nanochannel with 1.0 nm radius and 

6.651 nm cell length in the axial direction. 4 negative charges are distributed on the 

center of wall atoms nearest these charges. The concentration of anions (0.132/nm3) and 

density of charges on the wall  (0.0957/nm2) are kept constant. 
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Figure 54: Radial density distribution of sodium and chloride ions when the radius of 

silica nanochannel is 1.0 nm. The system consists of 467 water molecules, 6 sodium ions, 

2 chloride ions. 4 negative charges are distributed on the wall surface. The channel length 

is 6.651 nm, while the concentration of chloride ions (0.132/nm3) and density of charges 

on the wall (0.0957/nm2) are kept constant.  
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Figure 55: Radial density distribution of potassium and chloride ions when the radius of 

silica nanochannel is 1.0 nm. The system consists of 467 water molecules, 6 sodium ions, 

2 chloride ions. 4 negative charges are distributed on the wall surface. The channel length 

is 6.651 nm, while the concentration of chloride ions (0.132/nm3) and density of charges 

on the wall (0.0957/nm2) are kept constant.  
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Figure 56: Radial density distribution of rubidium and chloride ions when the radius of 

silica nanochannel is 1.0 nm. The system consists of 467 water molecules, 6 sodium ions, 

2 chloride ions. 4 negative charges are distributed on the wall surface. The channel length 

is 6.651 nm, while the concentration of chloride ions (0.132/nm3) and density of charges 

on the wall (0.0957/nm2) are kept constant.  
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Figure 57: Radial density distribution of cesium and chloride ions when the radius of 

silica nanochannel is 1.0 nm. The system consists of 467 water molecules, 6 sodium ions, 

2 chloride ions. 4 negative charges are distributed on the wall surface. The channel length 

is 6.651 nm, while the concentration of chloride ions (0.132/nm3) and density of charges 

on the wall (0.0957/nm2) are kept constant.  
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wall; the second layer with less probability density is 0.61 nm from the wall, and in the 

center of nanochannel there is a distinctive third peak. There are also very small peaks 

adjacent to the wall, similarly to CaCl2 aqueous systems, indicating again by sitting in the 

valleys between wall atoms, water molecules are subject to both electrostatic and L-J 

interactions from the wall charges. 

 

As shown in Figure 58, the density distribution of cations is worthy of notice. Although 

there is a distinct sharp peak close to the wall for every cation’s distribution, which is the 

adsorption of cations to the wall charges, the position of adsorption peak varies with the 

size of cations. The smaller of the cation’s size, the closer of the adsorption peak to the 

wall. Due to the smaller-nearest principle, when the size of ions is smaller, the 

electrostatic attraction between cations and charges is stronger, thus the adsorption peak 

is closer to the wall. Within these four cations, sodium has the minimum diameter and it 

is closest to the wall. In contrast, cesium adsorption peak is the farthest from the wall 

with maximum size. The data are shown in Table 18. The radial distributions of chloride 

are similar for every system, as shown in Figure 59. 
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Figure 58: Radial density distribution of cations in NaCl, KCl, RbCl, CsCl aqueous 

solutions respectively. For every aqueous system, it consists of 467 water molecules, 6 

cations, 2 chloride ions in the same size nanochannel with 1.0 nm radius and 6.651 nm 

cell length in the axial direction. 4 negative charges are distributed on the center of wall 

atoms nearest these charges. The concentration of anions (0.132/nm3) and density of 

charges on the wall  (0.0957/nm2) are kept constant.  
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Figure 59: Radial density distribution of chloride ions in NaCl, KCl, RbCl, CsCl aqueous 

solutions respectively. For every aqueous system, it consists of 467 water molecules, 6 

cations, 2 chloride ions in the same size nanochannel with 1.0 nm radius and 6.651 nm 

cell length in the axial direction. 4 negative charges are distributed on the center of wall 

atoms nearest these charges. The concentration of anions (0.132/nm3) and density of 

charges on the wall  (0.0957/nm2) are kept constant.  
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Table 18 Distance between adsorption peak and the wall 

for different sizes of cations (Na+, K+, Cs+, Rb+) 

 
cations diameter (nm) the distance adsorption 

peak from the wall(nm) 
Na+ 0.273 0.18 

K+ 0.3334 0.21 

Rb+ 0.353 0.23 

Cs+ 0.3886 0.26 

 

 

The self-diffusivities of water molecules, cations, and chloride all have an excellent fit of 

MSD vs. the observation time, as shown in Figures 60 to 62. The self-diffusivities for 

water, sodium ions, and anions are listed in Table 19. These values vary a little but in a 

certain range. Different cation sizes seem to have no effect on the determination of axial 

self-diffusivity. Compared with the published self-diffusivity value of Na+, K+, Rb+, and 

Cs+ at 298K in uncharged bulk water systems[36], here the self-diffusivity of Na+, K+, Rb+, 

and Cs+ is decreased by 69.51%, 76.58%, 78.01%, 49.85 % respectively. Because there 

are 4 negative charges distributed on the wall surfaces, monovalent cations are attracted 

to the wall charges and do not move freely (4 ions are fixed to the wall charges and 2 ions 

move freely), restraining the movement of unadsorbed cations.  
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Table 19: Self-diffusivities along axial direction of nanochannel  

in NaCl, KCl, RbCl, CsCl aqueous electrolytes systems  

 
Systems H2O 

(1× 10-5 cm2/s) 
Cations 

(1× 10-5 cm2/s) 
Cl- 

(1× 10-5 cm2/s) 
NaCl 3.124  0.372  1.058  

KCl 3.165  0.473  0.9187  

RbCl 3.165  0.464  1.107  

CsCl 3.160  1.003  1.116  

 
Note: Standard deviations for self-diffusivities must be achieved by repeating 

simulations. So they are not included in this simulation. 
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Figure 60: The mean square displacement (MSD) of water molecules versus time within 

silica nanochannel in NaCl, KCl, RbCl, CsCl aqueous solutions respectively. For every 

aqueous system, it consists of 467 water molecules, 6 cations, 2 chloride ions in the same 

size nanochannel with 1.0 nm radius and 6.651 nm cell length in the axial direction. 4 

negative charges are distributed on the center of wall atoms nearest these charges. The 

concentration of anions (0.132/nm3) and density of charges on the wall  (0.0957/nm2) are 

kept constant. 
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Figure 61:The mean square displacement (MSD) of cations versus time within silica 

nanochannel in NaCl, KCl, RbCl, CsCl aqueous solutions respectively. For every 

aqueous system, it consists of 467 water molecules, 6 cations, 2 chloride ions in the same 

size nanochannel with 1.0 nm radius and 6.651 nm cell length in the axial direction. 4 

negative charges are distributed on the center of wall atoms nearest these charges. The 

concentration of anions (0.132/nm3) and density of charges on the wall  (0.0957/nm2) are 

kept constant. 
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Figure 62: The mean square displacement (MSD) of chloride ions versus time within 

silica nanochannel in NaCl, KCl, RbCl, CsCl aqueous solutions respectively. For every 

aqueous system, it consists of 467 water molecules, 6 cations, 2 chloride ions in the same 

size nanochannel with 1.0 nm radius and 6.651 nm cell length in the axial direction. 4 

negative charges are distributed on the center of wall atoms nearest these charges. The 

concentration of anions (0.132/nm3) and density of charges on the wall  (0.0957/nm2) are 

kept constant. 
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4. Conclusions 
 
This thesis helps improve our understanding of aqueous electrolytes in nanochannel. The 

properties of density distribution and self-diffusitivity of CaCl2, NaF, NaCl, NaBr, NaI, 

KCl, RbCl, CsCl have been investigated. Since ions are used to buffer and disentangle 

DNA, and a charged wall enable ssDNA to move into nanochannel electrokinetically, 

therefore, this research advances progress toward nanochannel method for ssDNA 

sequencing. 

 
For CaCl2 aqueous electrolytes, in nanochannels with radii ranging from 0.9nm to 1.5nm, 

water molecules exhibit density oscillations within 0.35 nm from the wall and become 

bulk-like near the center. Water molecules form different layers. In general, with the 

radius increasing, the fluids’ self-diffusivities tend to increase too. However, when the 

increment of radius is not large enough to hold one new layer of molecules, the self-

diffusivities tend to decrease. The small peaks closest to the wall seen in the density 

distribution of water molecules, are attributable to the interactions between hydrogen 

atoms and charges set on the wall atoms, when water sits in the valleys between wall 

atoms.  

 

Except near surface charges, ions seem to avoid the region near the wall, which is 

preferentially occupied by orderly layered water molecules. Calcium ions are attracted to 

the wall charges so that they do not move freely or just vibrate back and forth. For 

calcium ions, a sharp density peak occurs 0.22 nm from the wall is attributed to the direct 

adsorption of counter-ions at the charge sites. Another high peak 0.4nm from the wall 
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shown in some calcium density distributions is attributed to adsorption of hydrated 

calcium ions. The calcium density distribution displays peaks that coincide with the 

valleys of the water density distribution. By sitting in the valleys between two peaks of 

the oxygen distribution, calcium ions increase their hydration number of water molecules 

and thus are energetically favorable.  

 

The mean square displacement (MSD) of calcium ions is directly proportional to the 

square root of time. It is not certain whether or not this results are from single-file 

diffusion, because there is enough spatial room for calcium ions to pass each other in the 

nanochannel diameter. Subject to the attraction from wall charges, calcium ions diffuse 

much more slowly than in bulk water at ambient conditions. Water molecules and 

chloride ions display ordinary diffusion.  

 

Calcium ions attracted to the wall charges present an obstacle inside the nanochannel, 

retarding the movement of fluids. The self-diffusivities of fluids in a charged 

nanochannel are smaller than those in an uncharged nanochannel. 

 

For four aqueous solutions [(Na+ and F-), (Na+ and Cl-),  (Na+ and Br-), (Na+ and I-)], the 

density distributions of water molecules are very similar. Water molecules form three 

distinctive layers when radial position varies from the channel center to the area close to 

the wall. The distinct sharp peak of the sodium ions, which is 0.2 nm from the wall, is the 

adsorption of sodium ions to the charged sites. Different anion sizes seem to have no 
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effects on the axial self-diffusivity of water or sodium. The anion self-diffusivity 

increases slightly with anion size. 

 

For four aqueous solutions [(Na+ and Cl-), (K+ and Cl-),  (Cs+ and Cl-), (Rb+ and Cl-)], the 

smaller the cation’s size, the closer of the adsorption peak of cations to the wall. Due to 

the smaller-nearest principle, when the size of ions is smaller, the electrostatic attraction 

between cations and charges is stronger, thus the adsorption peak is closer to the wall. 

Different cation sizes seem to have no effect on the determination of axial self-

diffusivity. 
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5 Further Research 

The understanding of self-diffusion of Ca2+ in a charged nanochannel is still 

incomplete, because the current simulation has not been running for a long enough 

period. It is recommended to perform long-time simulation to explore more precisely 

the behavior of Ca2+ in the future.  
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Appendix 1. 
  

FORTRAN code to remove the charges to the center of wall atoms nearest charges 
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        subroutine nearest 
        include 'water.inc' 
        integer jatm_min,i,j 
        double precision dist(20,1000), distan(20,1000), dmin, dmin_old 
 
        open (7,file='nearest.fmt', form='formatted', status='unknown') 
 
        do 120 i=1,nqsurf 
        dmin = cube 
        dmin_old = cube 
 
        do 150 j=1, nsfmol 
        dist(i,j)=(xq(i)-xsf(j))**2+(yq(i)-ysf(j))**2+(zq(i)-zsf(j))**2 
        distan(i,j) = sqrt(dist(i,j)) 
 
        dmin = min(distan(i,j),dmin) 
 
        if (dmin .lt. dmin_old) then 
        jatm_min = j 
        dmin_old = dmin 
        endif 
150  continue 
 
 
        xq(i) = xsf(jatm_min) 
        yq(i) = ysf(jatm_min) 
        zq(i) = zsf(jatm_min) 
        write(7,*) 'for i=',i,'j=',jatm_min 
        write(7,*) 'xsf=', xsf(jatm_min) 
        write(7,*) 'ysf=', ysf(jatm_min) 
        write(7,*) 'zsf=', zsf(jatm_min) 
        write(7,*) 'xq =', xq(i) 
        write(7,*) 'yq =', yq(i) 
        write(7,*) 'zq =', zq(i) 
 
120  continue 
        close(7) 
  
        return 
        end 
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Appendix 2 
 

FORTRAN code to track the activities of calcium ions in aqueous electrolytes solution 

system 
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  subroutine location 

 include 'water.inc' 
  
 integer i,M,im 
 
 if (kb.gt.5030000) then 
 if (mod(kb,50).eq.0) then 
 M = M +1 
            if (M.gt.401) stop 
 
 im = 1 
 
 do 20 i=1,natom 
 
 write(6,100)im,M,x0(i,im),y0(i,im),z0(i,im) 
100      format(1x,i6,1x,i6,3(1x,f10.4)) 
 
20  continue 
 
 endif 
 endif 
 return 
 end 
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Appendix 3. 
  

FORTRAN code to construct the spatial configuration between charge, calcium ion 

nearest charge and oxygen atoms within 1.2σCa-Ca distance with calcium ion 
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 subroutine cawater 
 include 'water.inc' 
 
 integer i,j,jm,N,k,jatm_min 
 double precision rx,ry,rz,rsq,rxx,ryy,rzz,rsqq 
 double precision dmin, dmin_old,rsqx 
            double precision rxl,ryl,rzl,rsql,interim,ang         
 
 N= N+1 
  
 open(unit=7,file='cawater.fmt',form='formatted',status='unknown') 
            rewind (unit=7) 
  
 do 20 i=1,npion 
  
 do 40 jm=1,nm 
 rx = x0(1,i) - xo(1,jm) 
 ry = y0(1,i) - yo(1,jm) 
 rz = z0(1,i) - zo(1,jm) 
 rz = rz - cubez*nint(rz/cubez) 
 rsq = rx*rx + ry*ry + rz*rz 
 
 if ((sqrt(rsq) .lt. 1.0973).and.(N .eq. 1))  then 
 
 write (7,200) i, jm 
 
200 format(///,1x, 'ca2+=', i6, 
     &      /, 1x, 'water=', i6) 
 
 write (7,300) x0(1,i),y0(1,i),z0(1,i),xo(1,jm),yo(1,jm), 
     &                zo(1,jm), sqrt(rsq) 
 
300     format ( 1x, 'ca(x)= ', f14.4, 8x, 'ca(y)= ', f14.4, 
     &          /, 1x, 'ca(z)= ', f14.4, 8x, 'water(x)= ', f14.4, 
     &          /, 1x, 'water(y)= ', f14.4, 5x, 'water(z)= ', f14.4 
     &          //, 1x, 'dis_Ca_O= ', f14.4) 
 
 write(7,270) 
270     format() 
 
 dmin = cube 
 dmin_old = cube 
 
 do 50 k=1, nqsurf 
 rxx = xq(k) - xo(1,jm) 
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 ryy = yq(k) - yo(1,jm) 
 rzz = zq(k) - zo(1,jm) 
 rzz = rzz - cubez*nint(rzz/cubez) 
 rsqq = rxx*rxx + ryy*ryy + rzz*rzz 
 rsqx = sqrt(rsqq) 
 
 
 dmin = min(dmin, rsqx) 
  
 if (dmin .lt. dmin_old) then 
  
 jatm_min = k 
 dmin_old = dmin 
  
 endif 
 
50 continue 
 
 
 write (7,400) dmin, jatm_min 
400      format(1x, 'min_dis_O_charge=', f14.4, 
     &       /,1x, 'this charge is #', i6) 
 
 write (7,450) xq(jatm_min), yq(jatm_min), zq(jatm_min) 
 
450      format(/,1x,'charge(x)= ',f14.4, 
     &         /,1x,'charge(y)= ',f14.4, 
     &         /,1x,'charge(z)= ',f14.4)   
 
  
 rxl = x0(1,i) - xq(jatm_min) 
 ryl = y0(1,i) - yq(jatm_min) 
 rzl = z0(1,i) - zq(jatm_min) 
 rsql = rxl*rxl + ryl*ryl + rzl*rzl 
 write(7,500) sqrt(rsql) 
500 format(/,1x,'dis_ca_charge=', f14.4) 
 
 interim = dmin*dmin + (sqrt(rsql))*(sqrt(rsql)) 
     &            - (sqrt(rsq))*(sqrt(rsq)) 
 interim = interim/(2*dmin*sqrt(rsql)) 
 ang = acos(interim) 
 ang = 180*ang/pi 
 
 
 write (7,510) ang 
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510     format(/,1x,'angle_O_charge_ca=', f14.4,1x,'degree') 
 
 endif 
 
40 continue 
 
20 continue 
 close (unit=7) 
 return 
  
 end 
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Appendix 4. 
  

FORTRAN code to construct three dimensions and two dimensions profiles between 

calcium ions and wall charges 
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 subroutine  dis3D 
 include 'water.inc' 
 
 integer i, j, jm, ir 
 
            double precision grfac, smpfac, denfac, rsq, rx, ry, rz 
 
  
 do 10 i =1, nqsurf 
 do 20 j =1, natom 
 do 30 jm =1, npion 
 rx = xq(i) - x0(j,jm) 
 ry = yq(i) - y0(j,jm) 
 rz = zq(i) -  z0(j,jm) 
 rz = rz - cubez* nint(rz/cubez) 
 rsq =  rx*rx + ry*ry + rz*rz 
 ir = nint(sqrt(rsq)*100) + 1 
 if ( ir .le. maxcnt ) then 
 grsion(1, j, ir) =  grsion(1, j, ir) + 1.0d0 
 endif 
30      continue 
20      continue 
10      continue 
 
 
 do 15 i =1, nqsurf 
 do 25 j =1, natom 
 do 35 jm =1, npion 
 rx = xq(i) - x0(j,jm) 
 ry = yq(i) - y0(j,jm) 
 rsq =  rx*rx + ry*ry  
 ir = nint(sqrt(rsq)*100) + 1 
 if ( ir .le. maxcnt ) then 
 grsion(2, j, ir) =  grsion(2, j, ir) + 1.0d0 
 endif 
35 continue 
25 continue 
15 continue 
 
 igcnt = igcnt + 1 
 
 if (mod(kb, kproc) .eq. 0) then 
 open (unit=7,file='dis3D.fmt',form='formatted',status='unknown') 
 rewind (unit=7) 
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 do 40 ir =1, maxcnt 
 smpfac = float(igcnt) 
 denfac = cubez*pi*0.01**2 
 denfac = denfac * (ir**2 - (ir-1)**2) 
 grfac = smpfac*denfac 
 
 write(7,100) ir, grsion (1,1,ir), grsion (1,1,ir)/grfac,  
     &                 grsion (2,1,ir), grsion (2,1,ir)/grfac 
40 continue 
 close (unit=7) 
 endif 
100     format(1x, i6, 4(1x, f10.4)) 
 return 
 end 
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