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Abstract 

Premise plumbing is the part of the drinking water distribution system closest to the point of use. 

Since premise plumbing is characterized by a long residence time, elevated temperature, and 

reduced levels of disinfectant residue, drinking water in premise plumbing typically experiences 

elevated levels of microbial presence as compared to finished water exiting water treatment 

utilities, particularly under stagnation conditions frequently encountered in premise plumbing. 

Thus, stagnant drinking water in premise plumbing may represent an important source of public 

health risk. Therefore, the objective of this study is to identify factors contributing to the 

deterioration of microbiological quality of stagnant drinking water in premise plumbing. Results 

from this study indicated that the service age of premise plumbing system is positively correlated 

to the concentration of microorganisms in stagnant drinking water; Another factor contributing to 

microbial contamination is the usage pattern, with systems experiencing lower levels of water 

consumption exhibiting greater microbial contamination than those having greater water usage 

patterns; Since disinfectant residue is an important determinant of microbial contamination, the 

loss of free chlorine as the most common disinfectant residue was further examined. My results 

demonstrate that pipe material has significant impact on the decay rate of free chlorine, with 

copper pipe showing the greatest chlorine decay rate, and PVC pipe showing the slowest. The 

deposits onto the pipe wall appear to reduce the rate of chlorine decay, likely forming a barrier 
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between the pipe material and water,  which slows down the reaction between the pipe wall and 

the disinfectant. Moreover, pipe diameter and temperature could significantly influence the rate 

of chlorine decay, with greater diameter leading to smaller surface-to-volume ratio and 

subsequently a slower chlorine decay rate. As expected, elevated temperature was shown to 

accelerate chlorine loss. These results provide important insights into the mechanisms of chlorine 

decay in premise plumbing and the factors contributing to the deterioration of the 

microbiological quality of drinking water in premise plumbing, which could facilitate the 

development of effective strategies for controlling water quality in premise plumbing and 

reducing public health risks from waterborne infectious diseases. 
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INTRODUCTION 

Nationwide, 34 billion gallons of drinking water are treated everyday in the United States and 

around 63% is by consumers for end use such as consumption, cleaning and irrigation (NRC, 

2006). Drinking water treatment plants remove or reduce contaminant levels to meet drinking 

water quality standards for the intended use. Treatment processes include physical settling, 

filtration, chemical coagulation and disinfection. Suspended solids, microbes, algae, fungi, 

minerals, fertilizers, and metallic ions are the primary contaminants removed in water treatment 

(Water purification-Wikipedia). Drinking water treatment plants provide treated water to the 

consumer’s tap by the drinking water distribution system, which includes a wide variety of pipes, 

pumps, valves, reservoirs, and other hydraulic components. There are lots of potential issues, 

such as backflow, contamination during installation, maintenance and operation. Thus, 

maintaining the desired water quality during the distribution and transmission processes is 

necessary and essential for human health. Engineers define premise plumbing as the pipe portion 

between service connection line and final pipes of end-use (Kelly A. Reynolds, 2008). As a part 

of the drinking water distribution system, premise plumbing deserves more attention due to its 

longer water residence times, more frequent stagnation conditions, and elevated aqueous 

temperature (NRC, 2006).   
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Researchers determined several unique characteristics of premise plumbing compared to those of 

the main distribution systems (NRC, 2006): 

 Larger surface-to-volume ratio, 

 More pipe materials utilized, 

 Better reservoir for bacterial and potential pathogens growth, 

 Greater water age, 

 Greater accumulation of deposits,  

 Elevated temperature, 

 Disinfectants loss. 

Although drinking water treatment plants do not have direct responsibility for the changes in 

water quality of premise plumbing, customers’ negative feedback could affect the performance 

of treatment plants (Traci Case, 2009).  

Drinking water is delivered through distribution and transmission systems and then enters 

premise plumbing. Based on a variety of chemical, physical and microbial mechanisms, 

contaminants accumulate and are released in water, especially in that of premise plumbing when 

water flow stagnates. Because of bacterial re-growth in the faucet aerator of premise plumbing, 

(Lechevallier, 1980) bacterial density in stagnant water is two to three orders of magnitude 

greater than that in flushing water (Brazos et al., 1985). However, little work has been 
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specifically focused on the high density of heterotrophic bacteria in premise plumbing systems, 

representing an important knowledge gap for the control of waterborne diseases from drinking 

water consumption. Biofilm always exist between the bulk water and pipe wall where microbes 

could grow. For this reason, biofilm may further contribute to the deterioration of the 

microbiological quality of drinking water. Previous research has revealed that 95% of the 

microbes are present on the pipe wall as biofilm, while the remaining 5% are present in bulk 

water (Flemming et al., 2002). Some microbes with pathogenic characteristics may also exist in 

biofilm (Percival et al., 2000). For example, in the biofilms of premise plumbing systems, 

Legionella spp. and nontuberculous Mycobacterium spp. have been detected and thus are 

considered to be potential pathogens (Tobin-D’Angleo et al., 2004; Flannery et al., 2006; Tsitko 

et al., 2006). Therefore, stagnant water is an ecological niche for various microbes and thus 

fosters biofilm production (Snoeyink et al., 2006). Previous research stated the bacterial re-

growth process as following (Caroline Nguyen et al., 2008): 

Organic Carbon + Nitrogen + Phosphate + Trace Nutrients + O2 → Heterotrophic bacteria re-

growth 

Disinfectants are added in treated water to control heterotrophic bacterial re-growth in premise 

plumbing. Most drinking water treatment plants choose free chlorine and chloramine as the main 

disinfectants to protect water quality in treated drinking water. However, free chlorine has been 
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used more widely than chloramine due to its stronger oxidizing property and a variety of benefits 

such as microorganism inactivation, taste and odor control, and metallic ions removal. Based on 

the following chemical reactions, added chlorine forms hypochlorous (HOCl) and hydrochloric 

(HCl) acid and consequently dissociates into H
+ 

and OCl
-
.  

Cl2 + H2O→HOCl + H
+
 + Cl

-
 

HOCl→ H
+
 + OCl

-
 

Chlorine concentration in treated water is not constant in premise plumbing and decreases as 

water residence time increases (Clark et al., 1994). The direct result of disinfectant loss is to 

increase and accumulate microorganisms in the water or on the pipe wall.  

A large range service ages of premise plumbing systems constructed in the United States, even 

the pipes from the late 19
th

 century, are still used at present (NRC, 2006). As pipes age, premise 

plumbing becomes susceptible to corrosion accumulation, biofilm development, and even 

changes in pipe physical and chemical characteristics. Service age of premise plumbing could 

affect water quality (Kelly A. Reynolds et al., 2008). As the age in pipe service increases, the rate 

of disinfectant loss increases (Patrick Asamoah Sakyi1, 2012), resulting in premature water 

stagnation. Thus higher bacterial density could appear if the water was stagnant in premise 

plumbing (Maul et al. 1985; J. Wingender, 2004). Moreover, as pipes age, undesired deposits 

could accumulate in bulk water or on the pipe wall. Recent research determines that the primary 
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deposits in drinking water premise plumbing include minerals, organic matters, corrosion 

products, and biofilm (Vikas Chawla, 2012). These deposits have adverse effects not only on 

flow of water transmission (S.A. Imran, 2005) but also on water quality, because deposits may 

consume free chlorine (B. Kowalska et al., 2006; Zhang et al., 1992; DiGiano and Zhang, 2005).      

Usage of premise plumbing, defined as flushing frequency, is also critical for water quality.  

Flushing strategy, known as usage pattern, could effectively wash away undesired contaminants 

to keep the water clean (Z. Michael Lahlou, 2002). Additionally, 95% of the potential microbial 

contaminations were from biofilm on the inside surface of the pipe: higher usage patterns could 

flush microorganisms and reduce biofilm accumulation, destroying habitats for bacterial re-

growth (J. Wingender, 2004).  

The survey of AWWA (2002) indicates that premise plumbing mainly uses polyethylene, 

galvanized steel, PVC and copper pipes for different purposes. Older premise plumbing uses lead 

service joints and brass pipes with high lead concentration, while newer systems often use raw 

materials (Traci Case, 2009). Although around 90% of drinking water premise plumbing use 

copper pipes (Juneseok Lee, 2008), the pitting corrosion of copper pipes is considered expensive 

to maintain and repair (Traci Case, 2009). EPA (2006) reported that copper corrosion could 

increase copper leaching in drinking water, which may cause health risks such as nausea, 

diarrhea, and stomach cramps, but alternative choices of corrosion inhibition can be used, like 



6 

 

plastic pipes (e.g. CPVC, PEX) and stainless or coated steel pipes (Juneseok Lee, 2008). 

Additionally, pipe wall materials affect chlorine decay. Powers (2000) and Nguyen (2005) 

determined that chlorine decay is more rapid in copper and brass pipes, but chlorine decays at a 

similar slow rate in PVC and lined ductile iron pipes (Jorge Arevalo et al., 2007). Recent 

research indicated that unlined iron refers to high activity materials, while PVC, MDPE, and 

cement-lined ductile iron refer to low activity materials (N.B Hallam, 2002).  

The size of pipe systems for drinking water transmission depends on the water use conditions. 

Basically, the diameter of premise plumbing is relatively smaller than that of the main 

distribution system, resulting in a larger surface-to-volume ratio. Chlorine decay rate could vary 

with different sizes of pipelines (Sharp et al., 1991). Furthermore, premise plumbing systems are 

subject to extreme temperatures (Rushing and Edwards, 2004). Chemical reaction and chlorine 

decay rates in piped water, could increase with temperature (Kiene et al., 1998; Wable et al., 

1991).  

The first-order equation below describes chlorine decay at various times in drinking water 

premise plumbing (Wable et al., 1991; Biswas et al., 1993; Rossman et al., 1994): 

dC/dt = -kc 

where k is the chlorine decay constant (h
-1

), and varies with different pipe properties (e.g. 

diameter, pipe wall material) and the conditions inside the pipe wall (e.g. deposits, water flow 
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rates, nutrients). This equation is important for designing premise plumbing and replacing re-

chlorination equipment; it can also be applied to predict the required chlorine concentration 

(Andreas Richter, 2001). 
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CHAPTER 1 

Effects of Service Age and Usage Pattern on Microbiological Quality of Drinking Water 

after Stagnation in Premise Plumbing 

1.0 INTRODUCTION 

The World Health Organization (WHO) defines drinking water as “suitable for human 

consumption and for all usual domestic purposes including personal hygiene;”, thus, making our 

drinking water safe to drink and not polluted has been the primary requirement for health and 

sustainable life. Worldwide, million of miles of drinking water distribution pipes provide treated 

drinking water to final customers (USEPA). Ideally, treated water from treatment plants should 

not have changes in quality until it is consumed or used by the consumer, but in reality, 

substantial changes could occur with complex physical, chemical, or biological processes (NRC, 

2006). Therefore, as the critical infrastructure that people rely on all the time, water distribution 

systems deserve much more attention. The U.S. Environmental Protection Agency (EPA) states 

that thanks to the efforts of localities and their drinking water treatment plants devoted to solving 

the health and safety issues from water distribution systems, potable water in the United States is 

treated and monitored well compared to those in third-world countries. However, what happens 

to the drinking water quality in the pipes at end-used sites, known as premise plumbing?  
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A report indicated several characteristics in premise plumbing (NRC, 2006): 

(1) High surface-to-volume ratio results in more leaching and permeation, 

(2) Various periods of residence time, 

(3) Disinfection loss, 

(4) Elevated temperature, 

(5) Higher microbial contaminants and potential pathogen risk.  

Basically, microbial re-growth could occur by excess residence time of drinking water, the time 

drinking water is stagnated in the premise plumbing before it flows again through the pipelines 

for consumer use (Caroline Nguyen, 2008). Stagnant conditions of drinking water are frequent in 

premise plumbing (Table 1), and may represent important ecological niches for a wide variety of 

microbes in order to cause public health risks (Snoeyink et al., 2006). Other research also 

indicated that bacteria can re-grow in premise plumbing to several orders of magnitude higher 

than that in distribution systems (Edward et al., 2005). Thus, chapter 1 focuses on the microbial 

contamination of stagnant water in premise plumbing.  
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Table 1. Comparison of U.S. Public and Premise Plumbing Systems (Nguyen, C., 2008) 

 

 

A large range of service ages of premise plumbing systems has been constructed in the United 

States, and even the pipes from the late 19
th

 century are still used at present (NRC 2006). Reports 

indicate that service age of premise plumbing could affect water quality (Kelly A. Reynolds et al., 

2008). As pipe service age increases, disinfectant loss rate increases (Patrick Asamoah Sakyi1, 

2012) and then results in premature water stagnation, thus higher bacterial density would appear 

under such stationary water conditions in premise plumbing (Maul et al. 1985; J. Wingender, 

2004). Therefore, as pipe service age increases, microbial contamination levels may increase.  
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In addition to service age, the service age, usage pattern of premise plumbing is another 

important factor for water quality. The definition of usage pattern is based on flushing frequency 

through the premise plumbing. Reports indicate that the change of flow rate by quickly opening 

or closing a faucet could wash away the tubercles and deposits on pipe inner surfaces. These 

contaminants may flow back and worsen water quality. However, flushing strategy, known as 

usage pattern, can effectively remove these undesired contaminants to keep the water clean (Z. 

Michael Lahlou, 2002).  Moreover, 95% of the potential microbiological contaminations was 

from biofilm on the pipe surface, but higher usage patterns could flush microorganisms and 

reduce biofilm accumulation thereby destroying habitats for bacterial re-growth (J. Wingender, 

2004).    

Heterotrophic plate counts (HPC) is a biological method to characterize bacteria density in order 

to test water quality from premise plumbing systems, particularly for tap water. Although there is 

no direct correlation between HPC levels and waterborne pathogens or health diseases (WTO, 

2002), HPC is still a reliable method to determine the level of undesirable microbial re-growth in 

premise plumbing system (Nguyen, C., 2005).   

Overall, both pipe service age and usage pattern may greatly affect microbial contamination 

(HPC levels) in stagnant water. However, few researchers has investigated this linkage. 
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Therefore, chapter one provides an investigation on how the pipe age and usage pattern affect 

microbial contamination under stagnant water conditions of premise plumbing. 

1.1 MATERIALS AND METHODS  

1.1.1 Sampling  

This research focused on the relationship between pipe service age and usage patterns on HPC 

levels under stagnation conditions of premise plumbing. In order to accomplish the aim of this 

survey, samples were collected from janitor rooms and bathrooms in various buildings of 

University of Tennessee, Knoxville. Table 2 below lists the stagnant water sampling sites that 

were listed for performing the experimental work. Every building on campus received the same 

treated drinking water from a traditional water treatment plant; tap water was allowed to stagnate 

in pipes overnight (>12 hours) in order to get rid of free chlorine residual and increase microbial 

counts. For each water sample, the first 30 ml of stagnant water for each site was collected by 

using sterile polypropylene centrifuge tubes, and then 5ml were taken out from the centrifuge 

tubes, Orbeco-Hellige Aqua Comparator test kits were used to quantify the chlorine residual in 

order to determine whether it had already been depleted (< 0.05 mg/L). All of the pipe material 

used in this study was copper with a nominal diameter of 0.5 inch. All samples were kept on ice 
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in a cooler until further testing was possible, and all microbial testing was performed within 8 

hours of sampling.   

Table 2.  Sampling Sites 

Janitor Room locations 
Pipe 

Age 
Floor 

Floor Capacity
a
 

(Person/floor) 

HPC (CFU) 

Mean Stdev 

Earth and Planetary 

Sciences Building 
84 

2 88 441.5 34.18 

3 187 273 83.79 

Ferris Hall 83 
3 66 437.6 36.03 

5 206 230.1 34.18 

Perkins Hall 65 
1 110 299.8 89.3 

2 188 134 92.69 

Howard H.  Baker 

Jr.  Center 
6 

3 43 89.3 21.02 

2 113 62.32 26.29 

James A.  Haslam 

Business Building 
4 

5 160 170.2 56.41 

2 424 147.2 48.11 

Min H.  Kao Electrical 

Engineering & Computer 

Science 

2 
3 15 69.92 35.77 

1 247 50.4 30.69 

 

Bathroom Locations 
Pipe 

Age (yr) 
Floor 

Floor Capacity
b
 

(Person/floor) 

HPC (CFU) 

Mean 
Std.  

Dev 

Melrose Hall 113 

1 6 561 46.29 

2 16 550 97.65 

3 7 568 42.52 

4 9 537 80.07 

Estabrook Hall 110 
1 188 384 78.94 

B 157 351 38.50 

Pasqua Nuclear 

Engineering Building 
88 

2 112 272 29.82 

3 130 334 78.00 

Jessie W.  Harris 

Building 
87 

1 171 263 51.64 

2 220 283 36.12 
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Table 2. Continued. 

  3 80 378 57.47 

Earth and Planetary 

Sciences Building 
84 

1 88 324 48.86 

2 125 248 39.87 

3 187 194 36.02 

4 173 275 62.25 

Ferris Hall 83 
3 244 270 65.78 

4 488 190 57.97 

College of Nursing 42 

1 280 119 50.40 

2 297 79 22.12 

3 115 205 8.02 

Student Services 

Building 
42 

1 172 151 34.86 

2 118 134 46.02 

3 60 265 61.66 

4 118 109 52.28 

Stokely Management 

Center 
40 

2 63 154 50.1 

3 83 183 41.1 

4 76 157 57.8 

5 66 196 29.0 

6 85 253 65.9 

7 92 188 64.5 

M 6 361 65.93 

John C Hodges Library 26 

1 269 31 13.4 

2 345 28 24.3 

3 351 37 22.6 

4 198 166 53.3 

5 160 237 62.1 

6 105 284 90.2 

Science and Engineering 

Building 
16 

2 202 92 28.1 

3 353 95 21.3 

4 229 60 22.7 

5 153 112 17.6 

6 90 150 42.6 

7 121 180 54.8 

Howard H.  Baker 

Jr.Center 
6 

1 200 97 37.7 

2 113 229 66.0 

3 43 222 24.8 

4 118 176 58.6 
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a. Unit is person per floor which was proportional to the floor area that needed to be 

cleaned by janitors. 

b. Unit is person per floor which was proportional to usage pattern of flooring tap in 

bathrooms. 

 

Table 2. Continued. 

  
5 137 154 46.5 

6 72 221 83.7 

Min H.  Kao Electrical 

Engineering & 

Computer Science 

2 

1 15 369 69.4 

2 211 170 57.0 

3 124 129 50.1 

4 237 138 52.5 

5 179 123 39.7 

6 151 165 77.6 

1.1.2 Heterotrophic Plate Counts (HPC) 

A low-nutrient media (R2A) was used since it has been determined to work well for 

heterotrophic bacteria in tap water systems (Martin J. Allen etc al.,2002). For each water sample, 

0.2mL was spread on the surface of an R2A agar plate (Reasoner and Geldreich, 1985), and 

colony-forming units (Cfu) were counted after incubation at 28 
o
C for seven days.   

1.1.3 Additional Water Quality Parameters 

Free chlorine concentration (Orbeco-Hellige Aqua Comparator test kits with DPD method) and 

conductivity were measured on site. A digital thermometer was used to determine the water 

temperature in premise plumbing systems.  
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1.1.4 Statistical Analysis 

JMP Pro 9.0 was primarily used for statistical analysis. Samples were separated into different 

categories by pipe service age and usage pattern, and then compared using an analysis of 

variance (ANOVA).  Comparisons for all pairs using Tukey-Kramer HSD were also necessary to 

test the differences between groups. Significant level (p-value) was the most important indicator 

with p<0.05. Correlations (PEARSON formula from Excel) were performed to show 

relationships, while R
2
 values and related p-values show the level of the relationships. 



17 

 

1.2 RESULTS AND DISCUSSIONS 

1.2.1 Analysis of Water Quality In Janitor Rooms 

 

 

 

 

 

Janitor rooms were used once per day for cleaning, maintenance, and security responsibilities. It 

was therefore assumed that the taps in each janitor room had the same usage pattern. Stagnant 

water samples were consistently collected from taps of janitor rooms approximately 19hrs after 

their previous use. Measurements of viable heterotrophic bacteria counts (HPC) characterized 

general surface colonization. As pipes age, chlorine decay rate increases may result in increased 

microbial levels (A.O. Al-Jasser, 2006). In this study, the same results appeared, showing a 

Figure 1.  HPCs from Stagnant Water of Premise Plumbing in 

Different Aged Pipe Systems (p<0.05) by ANOVA 



18 

 

135648283
0

50

100

150

200

250

300

350

400

450

500

Pipe Age (year)

H
P

C
 (

cf
u

)

A Floor

B Floor

significant difference of HPC levels between different aged pipe systems (Figure 1).  

Additionally, as pipe service age increased, HPC levels increased as well. 

After separating the whole data by flooring samples, results showed significant differences 

between flooring samples in each of the older plumbing systems (Figure 2): the significant levels 

of HPC ranged from 0.002 to 0.019 (all p<0.05), but there were no significant differences 

between different flooring samples of HPC from newer pipes (Table 3).   

 

 

 

 

 

 

 

 

Although the initial assumption was to determine that the usage pattern of janitor taps was the 

same (that is, different flooring samples should have similar HPC levels in each of the aged 

buildings), the surprising results for each of the older flooring samples may be due to the 

 Figure 2.  HPC Levels (Cfu/200ul) of Different Flooring Samples in 

Various Aged Janitor Rooms 
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particular usage pattern in reality, like different water volumes used and flushing times kept by 

various behaviors of janitors. Maximum floor capacity (person/floor) was assumed to be 

proportional to the floor area that needed to be cleaned, known as usage pattern (Table 2). In 

other words, if there were more classrooms on a floor, the maximum floor capacity could 

increase, and then the cleaning area would therefore increase, and more water volume and longer 

flushing time would be required in the janitor room for that floor. Different usage patterns of 

pipes may affect environmental conditions of the inner plumbing, that is, greater water volume 

use, higher usage of taps and even longer flushing time could remove unwanted microbial 

contaminants or deposits inside the premise plumbing, thereby reducing the potential of bacteria 

re-growth and accumulation. In general, my speculation is that different and specific floor 

conditions may lead to different usage patterns, which affect microbial survival and plays a 

greater role on HPCs of older flooring samples. However, based on the comparison with older 

systems, specific flooring usage pattern did not affect HPCs as much in each of the newer 

systems (all p>0.05). 

Furthermore, according to the correlation between usage pattern and HPCs, there was the 

negative value (-0.896) in older premise plumbing systems, while there were no such significant 

correlations (0.177) in newer systems.   
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Table 3.  Significant Level of HPCs from Different Flooring Samples in Each Aged Premise 

Plumbing System                                                                

Pipe Age 
Building 

List 
Pipe Age (yr) Floor 

Floor Capacity
b
 

(Person/floor) 

Mean Stdev Sig.
*
 

Old 

E & P 84 
2 88 441.5 34.2 

0.016 
3 187 273.0 83.8 

F 83 
3 66 437.6 36.0 

0.002 
5 206 230.1 34.2 

P 65 
1 110 299.8 89.3 

0.019 
2 188 134.0 92.7 

New 

B 6 
3 43 89.3 21.0 

0.216 
2 113 62.3 26.3 

H 4 
5 160 170.2 56.4 

1.000 
2 424 147.2 48.1 

M 2 
3 15 69.9 35.8 

0.854 
1 247 50.4 30.7 

* Significant levels of HPC between two different flooring premise plumbing systems.  

 

 

1.2.1.1 Water Quality Measurements  

Conductivity describes the degree to which an aqueous solution carries an electric current. The 

results of this study showed that the stagnant water sampled from 83 to 84 years old aged pipes 

had relative high conductivity (Figure 3). Some researches have indicated that the high 

conductivity levels in older pipes may be due to high levels of metal leached into the water 

(Brian Oram ect.al, 2002) 
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1.2.2 Analysis of Water Quality in Bathrooms 

Besides the effect of service age on stagnant water quality, flushing is another factor that affects 

the potential risk of microbial contamination and re-growth, especially for biofilm accumulation 

in premise plumbing systems (Benoit Barbeau, 2005). Bathrooms were a better choice to collect 

water samples because the bathroom taps in each building are much more frequently used than 

the faucets for custodial use; thus, the usage patterns are highly variable for each floor of each 

building. From these experimental sites, the study focused on how usage pattern and service age 

Figure 3.  Conductivity of Each Aged Building. 

 “%” was the comparison of conductivity between different aged buildings, while “yr” means 

how old  was the pipe system 

 



22 

 

affect the HPCs of stagnant water in premise plumbing of bathrooms. Bathroom flooring samples 

(Table 1-Bathroom sites) with their own usage patterns were collected, and the maximum floor 

capacity (person/floor) was assumed to be proportional to the usage pattern for each flooring 

bathroom.   

In order to specifically identify the impact of usage pattern on water quality, the premise 

plumbing system samples in this study were separated into three age categories: Old (range from 

113 years to 83 years); intermediate (range from 42 years to 26 years) and new (range from 16 

years to 2 years). By applying statistical analysis for correlation, results indicated that there was 

a significant negative correlation between usage pattern and HPCs as shown in Table 4, which 

shows that as usage pattern increased, levels of HPC decreased, which indicated a better water 

quality. 

 

Table 4.  Correlation between Usage Pattern and HPCs under Different Aged Pipes. 

Year Category Usage Pattern vs. HPC 

New  -0.67 

Intermediate -0.70 

Old -0.64 

 

Moreover, results of the ANOVA test and post-hoc analysis showed that there was no correlation 

between the age of the pipe systems and the level of HPC, but there was a significant difference 
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in the levels of HPC between the low and high usage category (all p<0.05); Additionally, in 

newer pipe systems, usage pattern has a more significant impact on HPCs (all p< 0.05) (Figure 4). 
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Figure 4. Effect of Usage Pattern on HPCs under Different Aged Premise Plumbing. 
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A,B,C Symbol: Comparison of significant level between two groups at p<0.05. There was a 

significant difference between different symbols (P<0.05), while no significant difference 

between same symbols. 

 

In order to investigate the effect of pipe service age on levels of HPCs, bathroom samples were 

separated into another three categories: low-usage pattern pipes, middle-usage pattern pipes and 

high-usage pattern pipes. Effect of pipe service age on HPCs could be analyzed separately for 

each category. Figure 5 shows the significance difference of HPCs under different usage pattern 

categories. No matter what the usage pattern was, old aged pipes had the most viable microbes 

inside, thus having the greatest impact on HPC than other aged pipes, which was indicated by 

p<0.05. 
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Middle Usage Pattern Pipes
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High Usage Pattern Pipes
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Figure 5.  Effect of Pipe Service Age on HPCs under Different Pipe Usage Patterns 

A,B,C Symbol: Comparison of significant level between two groups at p<0.05. There was a 

significant difference between different symbols (p<0.05), but no significant difference between 

same symbols (p>0.05). 
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Furthermore, based on the correlation analysis (Table 5), there was a positive correlation 

between service age and HPCs. As pipe service age increased, the HPCs increased; especially in 

the low usage category, the correlation was more significant (0.72). 

 

Table 5.  Correlation between Pipe Service Age and HPC Level under Different Usage Patterns. 

Usage Pattern Category Pipe Service Age (Year) vs. HPC 

Low Usage pattern System 0.72 

Middle Usage pattern System 0.55 

High Usage pattern System 0.58 

 

1.3 CONCLUSIONS 

(1) The service age of premise plumbing systems is positively and significantly correlated to the 

concentration of microorganisms in stagnant drinking water.  

(2) Usage pattern is another factor contributing to microbial contamination, with systems 

experiencing lower levels of water usage pattern exhibiting greater microbial contamination than 

those having greater water usage pattern, potentially due to the prolonged periods of stagnation 

and subsequent greater disinfectant decay rate.  

1.4. SUGGESTIONS 

(1) New pipes are better constructed to loop end points in order to prevent stagnant water from 

occurring (EPA, 2007). 
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(2) Regular flush plumbing with fresh water can keep disinfectant levels constant and reduce the 

potential of microorganism re-growth and accumulation, and even affect the odor and taste issues 

(Caroline Nguyen, 2008). 
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CHAPTER 2 

 Impact of Pipe Material and Deposits on Chlorine Decay Rate 

 2.1 INTRODUCTION 

Water is a necessary and essential source for human, animals, and even vegetables, therefore its 

microbial and pathogenic contaminations should be eliminated to avoid conditions that lead to 

health risks. In order to maintain potable water quality, disinfectant is added to water, which then 

enters the drinking water transmission and distribution systems (Benoit Barbeau, 2005). Most 

waterborne pathogens and microorganisms are inactivated as a result of the disinfectant. 

Disinfection can also improve drinking water quality by reducing taste, odor, and color, and 

leading to the oxidation of ferrous iron, manganese, hydrogen sulphide and cyanides (Pierce, 

R.C. 1978).  

Historically, water-soluble chlorine was discovered in reactive and corrosive chlorine gas (Carl 

Wihelm Scheele, 1774), which was applied to bleach for paper, vegetables, and flowers. Today, 

based on the stabilization, effectiveness, and low costs, chlorine is broadly and commonly 

applied to disinfect drinking water with an excess of 0.2mg/L concentration (Clark, R.M., Coyle, 

J.A., 1990). However, excess chlorination is not appropriate due to by-products such as 

trihalomethanes, which are considered carcinogenic. The formation mechanism of water-soluble 

chlorine is shown below (website-disinfection): 
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 Cl2 + H2O = HOCl + H
+ 

+ Cl
-
 

 HOCl + H2O = H3O
+ 

+ OCl
-
 

 OCl
- 
= Cl

- 
+ O 

 Higher reactive hypochlorous acid (HOCl) and hypochlorite ions (OCl
-
) are considered as 

free chlorine; strong oxidizing oxygen atoms replace their atoms to other compounds like 

enzymes of bacteria, which results in bacterial break down. Thus free chlorine becomes a good 

measureable and effective method to estimate the potability of drinking water and waterborne 

microorganisms level (website-disinfection).   

Premise plumbing systems have prolonged residence times, more stagnant time and elevated 

temperatures resulting in worse adverse effects on drinking water quality reaching consumers in 

comparison with the main distribution system. Additionally, chlorine decay more rapidly in 

premise plumbing, influenced by a range of physicochemical and biological reasons, such as 

reactions with pipe materials and organic/inorganic nutrients of drinking water, biofilm, 

tubercles and corrosion by-products produced on the pipe wall surface (Wabl,O, 1991; DiGiano 

and Zhang, 2005; N.B. Hallasm et al., 2002).  

 It would be a useful tool for designing and operating premise plumbing to model the 

dynamic fate of the free chlorine of drinking water. The decay has been expressed by a first order 

reaction for both the wall and bulk reactions (Chambers et al., 1995), which shows that free 
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chlorine concentration changes with resident times in drinking water premise plumbing systems 

for drinking water.   

 dC/dt = -kC 

 or  Ct = C0 exp(-kt) 

 k is the first-order decay constant (h
-1

) and k = kb + kw, where kb represents the bulk first-

order chlorine constant (h
-1

) and kw represents the wall first-order chlorine decay constant (h
-1

). 

In other words, the total chlorine decay rate involves either reaction with water compounds (bulk 

decay) or pipe walls (wall decay). However, wall decay is considered as a dominant mechanism 

compared with bulk decay within drinking water (Huang J, 2008).  

 Drinking water premise plumbing systems are constructed with various types and ages of 

pipelines, ranging from cast iron pipes during the 19
th

 century to ductile iron pipe and finally to 

plastic pipes installed in the 1970s and still in use (NRC, 2006). Today, premise plumbing 

systems involve a variety of materials including copper, galvanized iron, plastics, brass, lead and 

stainless steel. In order to maintain potable water quality, disinfectant is added to the treated 

water. Once disinfectants decay occurs, it can cause a series of water quality degradation. 

Researchers have investigated the reaction between free chlorine and various pipe materials of 

premise plumbing (Clark et al., 1994); Powers (2000) and Nguyen (2005) also determined that 

chlorine decays more rapidly in copper and brass pipelines. Moreover, recent research indicates 
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that unlined iron are considered high activity materials, while PVC, MDPE and cement-lined 

ductile iron are considered low activity materials (N.B Hallam, 2002). However, the effects of 

pipe materials on disinfectant decay have often been underestimated by drinking water treatment 

plants (H. J. Singleton, 1989).   

Premise plumbing itself is not an independent system that could interact with the pipes' inner 

aqueous environment or pipe wall. During the interaction process, undesired deposits could be 

produced (Heryong Jung, 2009) by the physicochemical and biological reactions with particulate 

matter, dissolved oxygen, chlorine, sulphates from bulk water body and pipe inner wall surfaces. 

Recent research has determined the primary deposits in drinking water premise plumbing include 

minerals, organic matters, corrosion products, and biofilm (Vikas Chawla, 2012). Deposits have 

adverse effects not only for flow of water transmission (S.A. Imran, 2005) but also on water 

quality. Many researchers have investigated the effect of deposits on drinking water quality, for 

instance, odor, taste, and color issues could be produced due to the release of corrosion products 

(Sarin et al., 2004; Imran et al., 2005). Microbial contamination could result from reactions 

between biofilm, humid substances, and iron oxide (Lechevallier et al., 1987; Zacheus et al., 

2001). Furthermore, Gauthier et al. (2001) indicated that deposits can result in severe reductions 

in disinfectants of drinking water and even reduce free chlorine residual (Lehtola et al., 2004); 

deposits have also been found to reduce chlorine decay and provide nutrients for bacteria growth 
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(Gauthier et al. 1999). However, few studies have investigated the effects of deposits on water 

quality in pipelines of different materials, especially for disinfectant (free chlorine) decay 

problems.   

 2.2 OBJECTIVES OF RESEARCH: 

  (1) Characterize the effects of pipe materials on free chlorine decay,  

  (2) Characterize the influence of deposits in the pipe on chlorine decay rate.  

 2.3 MATERIALS AND METHODS 

 The experimental system includes twelve U-shaped plumbing pipes with a nominal 

diameter of 0.5 inch and length of 60 inches. Different pipe materials contain galvanized iron, 

copper, and PVC (four times repetition). Each pipe system was equipped with a submersible 

pump in a closed reservoir of 15-L drinking water. These pipelines had already been in operation 

(for prior biofilm experiments) for around three years using tap water before this study and thus 

there was deposits accumulation on the inside surface of the pipes (Yan Zhang, 2012).  

 After all of the pipes were filled with tap water and equilibrated around 24 h at room 

temperature (22℃), the pipes were rinsed with DI water before being filled with tap water again 

for measuring the chlorine decay rate. Tap water was filled in pipes from the same faucet with 

the same flow rate (adjusted by ball valve), and then the pipelines were placed at room 

temperature to ensure chlorine consumption. For each sample, 5ml of stagnant water were 
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collected at certain time intervals for testing free chlorine until chlorine concentration dropped 

below 0.05mg/L using the Orbeco-Hellige Aqua Comparator test kits with DPD colorimetric 

method. A digital thermometer was used to measure the initial water temperature, which was 

16℃. By applying the first-order decay equation, the natural log of chlorine concentration was 

plotted against water stagnation time. The chlorine decay constant (k) was determined by the 

slope of linear regression line (Figure 6 as an example) 
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Figure 6. Chlorine Decay Over Time in Copper Pipe (As an example) 

The k-value was 0.9803 hr
-1

 with the R
2
 of 0.9819.  

 

Water-soluble free chlorine solution (10% domestic bleach) was filled into all twelve pipelines,  

and the pipes were hand-shaken in the same direction 5 min and then the diluted free chlorine 

fluid inside the pipe systems were placed at room temperature overnight (>8h). Then the pipes 
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were flushed with tap water for 30 min to clean the inside of the pipes, which was followed by 

DI water rinsing. The DI water rinsing consists of filling the pipe with tap water again and 

measuring chlorine decay in the series of pipelines based on DPD method by Orbeco-Hellige 

Aqua Comparator test kits. Triplicate measurements were needed for each sample at each time to 

reduce k-value bias. In the end, pipes were rinsed with DI water and stored inside tap water to 

protect the inner pipe  environment. Chlorine decay rate was measured again after half a year.  

 

 

Figure 7. Flow Chart of The Methods for the Effects of Pipe Materials and Deposits on Chlorine 

Decay. 
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2.4 RESULTS AND DISCUSSION 

 2.4.1Effect of Pipe Materials on Chlorine Decay Rate 
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Chlorine decay rates varied from 0.24 hr
-1

 to 1.57 hr
-1

 for different pipe materials. Average 

chlorine decay rate was greatest in copper pipes as shown in Figure 7. Copper and galvanized 

pipes exhibited relatively high reactivity, while PVC was a relatively non-reactive pipe material. 

Compared with other work, k-value might vary with the conditions and characteristics of the 

pipe itself (Caroline K. Nguyen, 2005).  

 

 

Figure 8. Effects of Pipe Materials on Chlorine Decay Rate.  

*C, I, and P represent copper, galvanized iron and PVC pipelines, respectively.  
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Figure 9. Effects of Free Chlorine on Chlorine Decay Rate in Different Pipe Materials.  

 

 

 2.4.2 Effect of Free Chlorine on Chlorine Decay Rate 
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 After using free chlorine to remove deposits in the pipeline systems, chlorine decay rate k 

increased for copper pipes from 1.274/h to 2.557/h, and decreased for PVC pipes, but there was 

no significant difference for galvanized pipelines (Figure 8). Other researchers have indicated 

that deposits surely have effects on chlorine decay rate. When deposits were present in the pipe, 

chlorine decay was slower than when deposits were not present (Domanska, 2011). Based on my 

study, this phenomenon occurred in copper pipes; that is, after cleaning away the water-pipe 

deposits, chlorine decay rate increased significantly. Furthermore, after stagnant water was 

stored in pipes for half a year, the chlorine decay rate of copper pipe dropped to 1.455 hr
-1

, while 

other materials did not show significant changes. Formation of deposits is speculated but more 

future research is needed to clarify this speculation.  
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 2.4.3 Effect of Pipe Materials on Water pH 

 Measurement of the pH of the stagnant water over time following water stagnation in 

galvanized iron pipes determined that PH increased more rapidly than in other material pipes. 

Some work states that iron releasing is a large factor in rapidly increasing pH (Robert M, 1999).  

2.5 CONCLUSIONS  

(1) According to pipe material characteristics, the order from fastest chlorine decay rate to lowest 

was as follows: Copper pipes> Galvanized iron pipes> PVC pipes; 

 (2) Deposits slow down chlorine decay, while chlorine decay is increased without 

deposits. This effect occurred mainly in copper pipes;   

 (3) pH increased rapidly following water stagnation in galvanized iron pipes.  

2.6 SUGGESTIONS: 

 Appropriate pipe materials of premise plumbing need to be designed and installed to reduce 

adverse water quality impacts including releasing unwanted metals and producing deposits.      
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CHAPTER 3 

 Models of Chlorine Decay Rates of Stagnant Water in Premise Plumbing of 

Drinking Water Distribution System 

 3.1 INTRODUCTION 

 Disinfectant is added into treated water at the drinking water treatment plant and 

transferred to distribution systems, but the concentration of disinfectants does not remain 

constant especially during the transmission to the consumer tap—which engineers refer to as 

premise plumbing systems. As a widely used disinfectant, free chlorine disappears gradually due 

to a variety of reasons and thus increases the possibility of microbial contamination. This 

phenomenon usually occurs in premise plumbing systems with longer water residence time 

(Vieira P, 2004). Chlorine wall decay constant (k) is harder to determine as a function of a 

variety of pipe properties:  pipe service age, deposits, usage pattern, pipe material, diameter, and 

ambient elevated temperature. Prior studies have already stated the effects of service age, 

deposits, and usage pattern, thus chapter three will focus on the effect of pipe material, diameter, 

and ambient elevated temperature. For modeling aims, these factors should be studied separately 

in order to quantify the effect of each decay mechanisms correctly. The main objective was to 

quantitatively investigate the relationship between the chlorine consumption rate mechanism and 

the effects of pipe materials, diameter, and temperature. 
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 3.2 MATERIALS AND METHODS 

 The pilot pipelines were bought from a Home Depot store in Knoxville, TN and were 

established in the laboratory condition. The performance of different pipe materials was tested 

with new galvanized steel, copper, and PVC. For each material pipe, different pipe diameters 

(0.5 inch & 0.75 inch) were set up with total length of 24 inches. For effects of temperature, 

incubation places under different temperature condition were applied (21℃, 35℃, 5℃). The 

stoppers were equipped with a manual control to open and close in order to collect water samples 

for measuring free chlorine concentration at different time intervals. A color-wheel test kit was 

used to measure chlorine concentration at the inlet of pipes based on color changes. According to 

the reaction with DPD (N,N diethyl-p-phenylene diamine), free chlorine could cause the color to 

change from clear to pink. Free chlorine reading ranges from 0-3.5mg/L (0-3.5ppm). Duplicated 

water samples were collected at each time interval to reduce the bias of chlorine measurement.      

 3.3 RESULTS AND DISCUSSIONS 

 3.3.1 Wall Chlorine Decay Mechanism 

 Wall chlorine decay is the reaction between chlorine and the pipe wall material. When 

water flows through pipes in water distribution systems, dissolved compounds can be transported 

to the pipe wall and react with the products on the wall (corrosion by-products or biofilm) or just 

react with the pipe wall itself. Previous work determined that chlorine decay in water through 
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pipe systems is driven by first order kinetic (dC/dt = -kC). Wall decay constant k is a function of 

pipe features, like pipe materials, pipe service age, and diameter.  
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 3.3.2 Effect of Pipe Diameter 

 A Bulk decay model with boundary conditions, which expresses the chlorine decay 

mechanism by the reaction with pipe wall materials, was used and is shown below (Wable et al., 

1991). Chlorine decay rate could be influenced by the whole reactive area of the wall and the rate 

of mass transfer between the drinking water and the pipe wall.   

  

 This study was performed on two different pipe diameters (0.5 inch and 0.75 inch), using 

three different pipe materials (copper, galvanized steel and PVC) at room temperature. The 

results showed that as pipe diameter increased, the decay rate constant k decreased, because 

smaller pipes have larger surface to volume ratios than those of larger diameter pipes (Risala A. 

Mohammed, 2003). From this bulk decay model, we can also see that the size of the wall surface 

does impact the chlorine decay rate. 

 

 

 .  



42 

 

where R is the specific area contact rate which is equal to the surface area/volume, and d is the 

inner diameter of pipes.  

 

Table 6. Wall Chlorine Decay Rate With Different Pipe Diameters for Galvanized Steel, Copper 

and PVC Pipeline Systems (h
-1

). (R
2 

> 0.98) 

Pipe Materials Diameter = 0.5 in Diameter = 0.75 in 

Galvanized Steel 13.881 1.53 

Copper 0.705 0.69 

PVC 0.177 0.0133 
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3.3.3 Effects of Pipe Materials 

 Chlorine decay can be affected by various factors, like biofilm, deposits, and pipe 

materials. Premise plumbing consists of two categories: synthetic and metallic pipes. Biofilm and 

deposit growth is common for both categories, but chemical reactions with pipe wall materials 

are not (Jorge M. Arevalo, 2007). Previous work has stated that synthetic pipes include PVC, 

polyethylene, polypropylene, and cement-lined iron (Kiene et al., 1998), while metallic pipes 

include copper and unlined cast iron pipes. Chlorine decay rate is highly dependent on the 

characteristics of different groups (Jorge M. Arevalo, 2007).  

 New copper, galvanized steel, and PVC pipelines with 0.5 inch of diameter were used for 

this study. As shown in Table 7, the results determined that the rate of chlorine decay rate was 

lowest in PVC pipes in which the material has low chlorine demand. However, chlorine 

consumption decreased most rapidly in the galvanized steel pipelines. The results indicated that 

the chlorine decay of drinking water in copper pipe was almost completed in 1.8 hrs, 0.25 hr in 

galvanized steel pipes and 21 hrs in PVC pipes. The k-value for galvanized steel pipe was 18 

times higher than copper, and k-value of copper was 44 times higher than PVC. Thus, chlorine 

consumption rate was significantly influenced by pipe wall materials. Previous work indicated 
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that the rapid chlorine decay rate of galvanized steel was due to the reaction between chlorine 

and metallic ions which are released from galvanized steel pipe wall. 

        

 Table 7. Effect of Pipe Materials on Free Chlorine Consumption Rate  

 Galvanized Steel Copper PVC 

K-value (h
-1

) 12.813 0.696 0.01585 

Standard Deviation 0.43 0.11 0.002 

3.3.4 Temperature Accelerated Chlorine Decay Rate 

Chlorine decay rate increased as temperature increased (Powell et al., 2000; Jadas-Hécart et al, 

1992). Based on the Van’t Hoff-Arrhenius equation shown below, the chlorine decay constant 

could be determined at operation temperature, and KT could also be calculated from a base rate 

decay constant at a base temperature (20℃).  
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KT = A × exp(-E/RT) 

KT = K20 × ɑ(T-20) 

where KT = dissipation constant at T(℃)  

                 A= Constant 

            E= Activation energy 

            R= Ideal gas law constant 

            T= Temperature 

            K20=dissipation constant at 20 ℃ 

      ɑ= temperature correction factor 

 Under different temperature treatments, chlorine decay rate changed significantly. As the 

temperature increased, chlorine decay rate increased (Powell J.C, 2000) (Figure 10). The effect 

was more noticeable in galvanized steel pipes.  
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 3.4 CONCLUSIONS: 

 (1) Free chlorine consumption in water distribution systems followed the first-order 

model with respect to initial chlorine concentration; 

 (2) When new copper, galvanized steel, and PVC pipelines were applied, free chlorine 

decay rate was slowest in PVC pipe systems, and was significantly faster in metallic pipe, 

especially in iron-based pipes; 

 (3) Higher temperature accelerates chlorine decay rate, while lower temperatures 

decrease free chlorine decay rate;   

 (4) Pipe diameter affects the chlorine decay rate, such that as the diameter decreased, 

decay rate increased.  

Figure 10. Effects of Temperature on Chlorine Decay Rate for Different Pipe System Materials. 

(Temperature was applied under 5℃, 21℃ and 35℃).  
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