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ABSTRACT 
 

Fracture networks and their scaling properties are important from both an academic and 

practical perspective since they play a significant role in many areas ranging from crustal 

fluid flow to studies of earthquakes. Over the years, researchers have employed a wide 

variety of techniques to quantify the complexities of fractured media. These range from 

deterministic, process-based approaches employing the laws of physics, to ones involving 

the applications of geostatistics and more recently, fractal geometry. Fractals are irregular 

entities that show self-similarity over a wide range of scales and can be quantified by the 

fractal dimension, D. It is important that the D-values of such networks are properly 

evaluated. The box-counting algorithm is a widely used technique for characterizing 

fracture networks as fractals and estimating their D-values. If this analysis yields a power 

law distribution given by DrN −∝ , where N is the number of boxes containing one or 

more fractures and r is the box size, the network is considered to be fractal. However, 

researchers are divided in their opinion about issues such as the best box-counting 

algorithm for estimating the ‘correct’ D-value or whether a fracture network is indeed 

fractal. For instance, a closer look at the N vs. r plots for a set of previously published 

fracture trace maps shows that such distributions do not follow power law scaling. As 

part of the present work, a synthetic fractal-fracture network with a known theoretical 

fractal dimension, D, was used to develop an improved algorithm for the box-counting 

method that returns “unbiased” D-values. A suite of 17 fracture trace maps that had 

previously been evaluated for their fractal nature was reanalyzed using the improved 

technique.  “Unbiased” estimates of D for these maps ranged from 1.56±0.02 to 

1.79±0.02, and were much higher than the original estimates. The fractal dimension of a 

pattern however, does not capture all of the heterogeneity present. For instance, two 

patterns that have the same fractal dimension may have very different appearances. We 

investigated the applicability of a new parameter, namely lacunarity, L, for distinguishing 

between different fracture networks having the same fractal dimension. The lacunarity is 

the degree of clustering in a pattern and is a geostatistical parameter that can be used to 

study patterns that are both fractals non-fractal. The gliding-box algorithm is a popular 
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technique for computing lacunarities as a function of the box-size, r. In the present work 

it has been successfully used for the first time to analyze fracture networks. Apart from 

computing lacunarity curves for a set of synthetic patterns generated in MATLAB, we 

also analyzed a set of 7 nested natural fracture maps with similar D values ranging from 

1.80±0.05 to 1.84±0.04. Our results show that differences between maps are most 

pronounced when L values are determined using intermediate box sizes.  Estimates of L 

based on such box sizes indicate that fractures are more clustered at smaller scales. 

Future work in this area should explore the use of the gliding box algorithm to see 

whether fracture networks are self-similar over a given range of scales and if lacunarity 

analysis alone can furnish information on the “unbiased” fractal dimensions of such 

networks.  
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Fractures are developed by brittle failure and are defined as discrete breaks within a rock 

mass across which cohesion is lost. They include both faults with in-plane shear and 

joints with opening mode behavior. Open fractures allow rapid transport of fluids and 

contaminants through rock masses. Since the mid-nineteen eighties interest in the 

hydrological and geo-mechanical properties of fractured rock has gained appreciable 

momentum in the scientific community. However, modeling and prediction of flow 

through fractured media remains a challenging task.  

 

Fractures exist over a wide range of scales from microns (in thin sections) to hundreds of 

kilometers (as in transform faults). Their size scaling and spatial clustering attributes are 

important for understanding fractured rock hydrology and bulk mechanical properties. 

Fracture patterns tend to become more complex in nature as fractures are superimposed 

during two or more deformational episodes. The importance of fractures and their scaling 

characteristics lies in applied areas such as modeling of flow through fractured aquifers 

and along fractures in the interwell volume of petroleum reservoirs, where fractures on 

scales that are significant to flow are not represented in either seismic reflections or well 

logs. Another application includes the study of faults in relation to the prediction of 

earthquakes.  

 

Various attributes of fracture networks have been quantified. Most of the approaches 

have been statistical in nature such as studies about the distribution of orientation, length 

scaling, aperture size distribution etc. Some approaches on the other hand have looked at 

fracture patterns as a whole using the concepts of fractal geometry, thus incorporating the 

distributions of length, barycentres and orientation into a single analysis. In a nutshell, 

fractals are entities that display self-similarity over a wide range of scales, which means 

that any proportion of such a pattern is a scaled down version of the whole. The very fact 

that fractures exist over a wide range of scales makes them interesting from the 

perspective of fractal geometry. 
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Over the past few years discussion has centered on the issue of whether fracture networks 

can be characterized as fractals and if a single fractal parameter can completely describe 

such a pattern. In this study, a two-step approach was taken. The first part deals with 

addressing the question of whether fractal geometry can be successfully used to harness 

the complexities of natural fracture networks. The second part goes a step further and 

addresses the issue of whether fracture networks can be satisfactorily quantified using a 

more generalized approach based on lacunarity. In this case, researchers need not begin 

with any preconceived notion on whether or not a fracture network is fractal. The entire 

study involves a modeling component and analysis of synthetic (fractal) as well as natural 

fracture networks.  
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Fractal Characterization of Fracture Networks: An Improved Technique 
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Fracture systems have been a focus of research for decades owing to their importance in a 

variety of fields including fluid flow in the earth’s crust, contaminant transport, 

engineering geology and seismology. Joints and faults are two primary types of fractures. 

Joints are mode I fractures where displacement is normal to the propagating fracture 

walls (opening mode). Faults are mode II fractures, where displacement is parallel to the 

walls of the discontinuity (in-plane shear mode). Fractures exist over a wide range of 

scales – from microns (in thin sections) to thousands of kilometers (as with plate-

bounding faults) and typically develop more complex patterns in a region as fracturing 

events are superimposed through time. These characteristics potentially make them 

interesting from the perspective of fractal geometry. Fractals are entities displaying self-

similarity over a wide range of scales, which means that any portion of a fractal entity is a 

scaled down version of the whole (Mandelbrot, 1983). Such patterns can be quantified by 

a parameter, namely the fractal dimension, which is related to the way in which the 

complexities of the network fill up the embedding Euclidean space. 

 

The earliest attempt to identify fractal characteristics in fractures is documented in Barton 

and Larsen (1985) where the box-counting method was used by manually placing grids of 

various sizes over maps of three different rock pavements in welded tuff, and counting 

the number of grid elements, N, intersected by the fracture traces. Ever since, many 

workers have attempted to analyze fracture patterns using various modifications of this 

method [Chiles, 1988; La Pointe, 1988; Gillespie et al., 1993; Walsh and Watterson, 

1993; Barton, 1995; Ouillon et al., 1996; Berkowitz and Hadad, 1997; Babadagli, 2000]. 

Others have attempted to find fractal characteristics in the distributions of fracture lengths 

or apertures [Odling, 1997; Odling, 1999; Marrett et al., 1999; Bour et al., 2002]. Details 

on most of these works with critiques on the methods used can be found in the review 

paper by Bonnett et al. (2001). However, in spite of the large number of investigations, 

researchers are still divided as to whether fracture networks can be characterized as 

fractals at all. Also, since different workers have reported different values of the fractal 

dimension for the same map, a technique for evaluating the fractal dimension that has 

wide acceptance and can be used for future research remains to be developed. 
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Notwithstanding the fact that fracture networks have not been unequivocally established 

to be fractal in nature, and that the value of the fractal dimension varies with the method 

employed, workers have tried to relate this parameter to physical processes such as flow 

and transport (Doughty and Karasaki, 2000) and the percolation threshold (Zhang and 

Sanderson, 1994). Others like Zhang and Zhou (2000) list research endeavors that seem 

interesting in light of the fact that normal, reverse and strike-slip faults were said to have 

high, medium and low fractal dimensions respectively. Therefore, establishing whether 

fracture networks are fractals is still important. If the answer is yes, we need to have a 

technique for computing “unbiased” fractal dimensions of such networks. 

 

Our present research is therefore an endeavor to address these questions by developing 

with a modified version of the box-counting method. The method that we describe has 

been tested on a model with a known theoretical fractal dimension and on a nested set of 

7 fracture patterns (Odling, 1997). If our method returns a consistent value for the fractal 

dimension for each of these maps it may be proved that a more detailed map from a 

smaller section of the whole region is essentially a scaled down version of the latter. 

Finally we have examined a set of 17 fracture maps previously published and analyzed by 

Barton (1995) and later reanalyzed by Berkowitz and Hadad (1997) and attempted to 

address discrepancies in the results between different estimates of the fractal dimension.  
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We constructed a fractal-fracture pattern following Samis et al. (1986) and tested our new 

method on this synthetic pattern before examining natural fracture networks. In this 

section, we briefly introduce the concept of a fractal and the fractal dimension before 

developing our model. We also use this synthetic pattern to demonstrate that an analytical 

box-counting algorithm returns an exact value for the theoretical fractal dimension. 

 

2.1 Fractals and the Fractal Dimension 
 
Fractals are entities that display self-similarity in their geometry such that any portion of 

the system is a replica of it as seen at a larger scale. In simplistic terms, the fractal 

dimension describes the manner in which a fractal entity fills up the Euclidean space. 

More precisely, Mandelbrot (1983) defines a fractal as a set for which the Hausdroff 

Besicovitch dimension (D) strictly exceeds the topological dimension. Therefore, every 

set with a non-integer D is a fractal but it is not necessary that all fractal dimensions be 

non-integers. For most of our purposes we will be dealing with non-integer fractal 

dimensions.  

 

The most popular approach for determining fractal dimensions of fracture maps is the 

box-counting technique. Basically, it involves overlaying the map with a sequence of 

grids, each with a different cell size, r and counting the number of occupied cells, N. The 

fractal dimension, referred to as D hereafter, is simply the slope of a plot of log N vs. log 

r. We will return to the details of its estimation in a later section. Structural geologists 

have preferred to report the fractal dimension of fault trace length distributions for the 

slope of the plot of the log (size) vs. the log (cumulative number). In our model, however, 

we show that simply using the number of fractures (Nf) instead of the cumulative number 

provides the exact fractal dimension. 
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2.2 Synthetic Fractal-Fracture Pattern 

 
A fractal-fracture pattern is constructed using hierarchical fracture networks composed of 

line segments in 2D. The networks are essentially generated as deterministic Sierpinski 

lattices. Three basic parameters are used for generating the patterns – scaling factor: b, 

number of blocks not iterated at each step: n and iteration: i.  A value of b = 2 is used 

such that the initial square template consists of two orthogonal fractures dividing the 

whole area into four blocks each with a side of length 0.5 (Fig 1.1a; all tables and figures 

in appendices I B-C). We call this the initiator such that i=0. In the next step, one block is 

left unfractured and the others are reiterated by shrinking this template (i=0) by a factor 

of 2, replicating it b2 – n = 22 – 1 = 3 times and finally superimposing the replicated 

traces on the original template thus creating the generator, i=1 (Fig 1.1b). This generator 

is then applied onto itself in successive iterations until i=6, thus creating a sequence of 7 

patterns for i=0 to 6 (Fig 1.1a-f). Doughty and Karasaki (2002) also used a similar model 

with b=3 and n=1 to 8 for simulating flow through hierarchically fractured rocks.  

 

The theoretical fractal dimension, D of the patterns generated is the same for all i and 

may be found from equation (1) as follows: 

 

In Fig 1.1:  
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emphasized that equations (1) to (3) hold good for any set of b and n values. In our 
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particular case b=2, n=1.Also note that since D is independent of i, all patterns we have 

generated have, at least theoretically, the same fractal dimension.  

 

Here, we show analytically that the length count approach yields the same D-value as 

given by equation (1). Taking the logarithm on both sides, equations (2) and (3) can be 

rewritten as: 

)5..(........................................................................................................................log)log(
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rewriting equations (4) and (5) in derivative form: 
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dividing (6) by (7) we can eliminate di between the two and obtain the slope of the line 

for a log (size) vs. log (number) plot as: 
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substituting equation (1) into equation (8) yields: 
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For this model, it can also be shown analytically that the more popular cumulative length 

count approach yields the fractal dimension only as i tends to infinity (Appendix A).  

 

2.3 Analytical Box-counting on Fractal-Fracture Patterns 

 
Before the synthetic patterns were empirically box-counted for estimating the D, a set of 

analytical expressions for a general b and n is developed for a better understanding of our 

pattern. We begin by constructing our model with parameters b and n. We then overlay 
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smaller and smaller grids of size, r such that the scaling factor of the box-sizes, β is the 

same as the scaling factor of the underlying lattice of the model, b i.e.: 
ii br −− == β ………………………………………………..……….……….…….…..(10) 

 

In our particular case of b=2, n=1, the boxes scale as 1, 1/2, 1/4, 1/8 etc and the 

minimum grid size, rmin = lmin= 1/bimax, where imax is the maximum iteration level and 

lmin is the smallest fracture length in a particular pattern. Note that this is also the smallest 

fractal element in the pattern.  

For a fractal pattern, the number of occupied boxes, Noccupied is given as: 
bD

occupied rN −= ………………………………...…………………….……………...…..(11) 

where, Db  is the fractal dimension 

 

Equation (11) when plotted for b=2, n=1 and i=20, yields a straight line (Fig 1.2). This 

analytical box-counting exercise clearly demonstrates that the synthetic fractures are 

fractal. To further note, this analytical model can test the fractal nature of any pattern 

with varying values of b and n. 
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3. MODIFIED BOX-COUNTING ALGORITHM 
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The commercially available Benoit software (www.trusoft-international.com) allows for 

box-counting such that the pattern of interest can be overlaid by square grids of different 

sizes that can be rotated to find the minimum number of occupied boxes for a particular 

size. Use of the minimum number of occupied boxes is invoked here so as to 

accommodate a boundary condition stated in the derivation of equation (11) by Hausdroff 

(1919). The software generates an array of points for N (number of occupied boxes) vs. r 

(box-size) on a log-log scale and fits a line to it, the slope of which gives the box-

counting fractal dimension, Db of the pattern. One can manually “turn off” points on the 

plot so that the regression line is fitted to a subset of the whole range of data set at the 

user’s discretion. For our purpose, the side length of the largest box is fixed at 1/2 the 

width or length of the map, whichever is smaller. The scaling factor of the box sizes, β is 

the factor by which the box-sizes are divided during the progression from the largest to 

the smallest box size, the progression always being geometric (i.e. for β = 2, box-sizes are 

16, 8, 4, 2, 1). For our empirical box-counting we set β = 1.1 (as opposed to 2 in our 

analytical box-counting discussed earlier) so that the number of box sizes (data points) is 

maximized in each case, thus generating a robust data set. The number of data points, P is 

given by the following equation:  P = log (side length of largest box)/log β. The 

increment of grid rotation is set to 1º and the grid is rotated by a full 90º such that the 

algorithm determines the smallest number of occupied boxes from an array of 90 (= 90/1) 

data points for each box size.  

 

The six synthetic patterns (i =0 - 5) that we created were box-counted in the Benoit 

platform and it was found that none of these patterns yielded points that fell on a straight 

line (e.g., Fig 1.3). Walsh and Watterson (1993) and Gillespie et al (1993) have also 

reported the curved nature of data plots from box-counting. A closer examination of 

similar plots published by Barton (1995) for his set of 17 maps show that they do not 

really fall on straight lines. Figure 6, depicting the fractal dimension of fractured rocks, in 

the work of Zhang and Sanderson (1994) also reveals the same artifact. The curvature 

observed raises questions about the fractal nature of these fracture patterns. It is further 

noted that quite contrary to theoretical ideas discussed earlier, for our model the Db-value 
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systematically increases with the iteration level, i if the whole range of values is 

considered (Fig 1.4)  

 

In the box-counting algorithm, when the box-size r becomes smaller than the smallest 

fractal-fracture element present, no new elements are revealed and counted. As a result 

the N (number of occupied boxes) vs. r (box-size) relationship on the log-log scale 

deviates from its theoretical straight-line behavior and becomes curvilinear. Therefore, 

fitting a straight line to the entire range of data points returns a spurious fractal dimension 

and may further give the impression that the pattern under investigation is not a true 

fractal. However, a straight line, the slope of which gives the true fractal dimension of the 

pattern, should only be fitted to those data points for which the r is larger than (or equal 

to) a limiting value rmin. For our analytical box-counting discussed earlier, where the 

scaling factor of the box-sizes, β is same as the scaling factor of the underlying lattice of 

the model, i.e. β = b = 2 in our case, the boxes scale as 1, 1/2, 1/4, 1/8 etc and rmin = lmin= 

1/bimax, where imax is the maximum iteration level and lmin is the smallest fracture length 

in a particular pattern. This is also the smallest element in the fractal pattern. However, in 

the case of empirical box-counting for the same model, β was chosen to be 1.1 so that a 

more robust set of data points would be generated. As a result the limiting box-size at 

which all the boxes appear unfilled is larger than the value rmin = 1/bimax+1 by an 

infinitesimally small amount. This means that for a pattern of i=5, lmin = 1/25 = 0.312 and 

rmin → 1/26. Accordingly, points for which r < rmin are easily “turned off” in the plot (Fig 

1.3), thereby yielding a better estimate of the true fractal dimension. 

 

Although rmin is known for our synthetic fractal-fracture networks, it is unknown for 

natural patterns. Therefore, a method for estimating a proxy value for rmin needs to be 

determined. For each pattern the standard deviation, SD, from the regression equation for 

the line of best fit in the N vs. r plot, is noted in a systematic manner for points “turned 

off” at increasing r-values. The idea is to attain an r-value for which the incremental 

change in the SD of the best-fit line is minimized. In order to achieve this, the d(SD)/dr is 

calculated to find the r-value at which the slope of the SD goes to zero. However, in some 
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cases, because of statistical fluctuations in the data points, the d(SD)/dr function jumps 

back to a small non-zero value after initially reaching zero. Therefore, in order to find the 

best estimate for the rmin value (i.e. the one nearest to the theoretical rmin) we employed 

the condition that the d(SD)/dr function remain at zero for at least three consecutive r-

values (Fig 1.5). This value is the proxy rmin and all points for which r < proxy rmin are 

then excluded from fitting the straight line. This algorithm is used on our synthetic 

patterns to test how good an estimate of the Db-value it provides when used instead of the 

theoretical rmin value for “turning off” the points on the N vs. r plots. Although the proxy 

rmin consistently underestimates the theoretical rmin values (Fig 1.6) its use nonetheless 

returns very good estimates of the Db as compared to those obtained by fitting over the 

whole range of r values (see next section). 
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4. APPLICATION TO FRACTURE NETWORKS 
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4.1 Synthetic Fractal-Fracture Networks 

 
The variation of Db’s estimated considering the whole range of data points, and following 

truncation based on the rmin and the proxy rmin values, with i, is shown in Fig.1.4. From 

the plot it can be seen that Db computed using the whole range of r values increases with 

increasing i, while consistently underestimating the theoretical D-value. The error bars 

around the Db -values are small and are consistent over whole range of i; this is because 

the same number of data points was used in the best fits regardless of the iteration level. 

On the other hand, the Db’s obtained by not considering the r-values smaller than the rmin 

and the proxy rmin respectively, stabilize at i = 3 and approximate the theoretical D-value 

of 1.585. The error bars around the Db-values become smaller with increasing i. This 

happens because the number of points used for calculating the slope of best fit increases 

with the iteration level; i.e. the error associated with the estimates increases as the rmin 

and proxy rmin values increase.  The Db-values determined using the rmin and the proxy 

rmin truncation points are nearly identical for i ≥ 3 (Fig 1.4). However, they do result in a 

slight overestimate of the theoretical value. For i ≥ 3 the magnitude of this bias is very 

small compared to the systematic bias introduced by fitting over the whole range (Table 

1.1).  In general, these results imply that using proxy rmin in place of the rmin does not 

influence box-counting estimates of the theoretical D value. The idea is further supported 

by Fig 1.6 which shows that there exists a good correlation between the rmin and the proxy 

rmin determined for all the patterns from i = 1 through 6. Also, table 1.1 shows that using 

the proxy rmin, the D values for i > 2 can be evaluated within an error of 3.5%. Therefore 

the proxy rmin may be used instead of the rmin for evaluating the box-counting fractal 

dimension, Db in the case of natural fractures where a value for the latter is not normally 

available.  

 

The above results are promising from the perspective of natural networks where fracture 

lengths commonly range over one or two orders of magnitude (Barton, 1995). This size 

range is important because starting at i = 4, the lengths of our synthetic fractures are 

distributed over two orders of magnitude since lmin= 1/bi = 1/24 = 0.0625 and lmax = 1. 
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Therefore, this method should work well in case of natural fractures since they have the 

same relative length ranges as the synthetic pattern.  

 

4.2 Analysis of Natural Patterns in Nested Maps  

 

Having established a synthetic fracture pattern with a known fractal geometry, we also 

identified natural fracture patterns for testing our modified box-counting approach. One 

natural data set is suite of 7 nested fracture patterns mapped in the same area of Hornelen 

basin, Norway (Appendix A) by Odling (1997). Each map is a subset of the larger area 

(Figure 1 in Bour et al., 2002) and is mapped from a lower elevation such that it 

represents a limited scale range of joint trace lengths controlled by the image resolution. 

The original 7 maps, received as encapsulated postscript files from Dr Odling, were 

converted into bitmap images at 500dpi resolution using Adobe Illustrator.  If the 720m x 

720m pattern is self-similar, all maps should have the same fractal dimension because 

one is essentially a scaled down version of the other. These maps were also used by Bour 

et al (2002) to compute capacity dimensions and in our work we present a comparison 

between these values (Table 1.2) 

 

The proxy rmin and the fractal dimension are two parameters that were evaluated for this 

data set. The former changes systematically with the scale suggesting that it responds to 

the smallest fracture length present at each scale and can thus be considered an estimate 

for the minimum observed fracture length at a given scale and resolution.  It may be 

noted here that given the fact that map 4 was photographed from a higher elevation than 

map 3 it is expected that the latter should yield a smaller proxy rmin (meter). However, 

since a higher resolution camera (Hasselbald) was used in case of map 4 as compared to 

map 3, this change compensated for the height effect (personal communication with 

Noelle Odling, March 06, 2006).  

 

The box-counting fractal dimension Db, varies from 1.80±0.05 to 1.84±0.04 (Table 1.2). 

Comparing with the capacity dimension, which is equivalent to the box-counting fractal 
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dimension, determined by Bour et al (2002), Db lies within a narrower range and exibits 

less variation in terms of the 95% confidence limits. It may therefore be said that the D 

value remains almost constant throughout the different scales. Not only does this further 

support the fact that the 720m x 720m pattern is a fractal but also that our method returns 

an “improved” box-counting Db value.  

 

Further, the N vs. r data from all 7 maps were converted to meter scaling and plotted on a 

single graph (Fig 1.7). The rpix value, (i.e. r in terms of pixels) was converted to rm using 

rm = rpix x (side length of map area in m)/(3473), where 3473 is the length of the map 

area in pixels. The N value was accordingly adjusted using:  Nadjusted = N x [720/(side 

length of map area in m)]1.82, where 720 is the side length of the largest map (in meters) 

and 1.82 is the average fractal dimension computed by averaging the Db values in table 

1.2. The points from all the maps encompass a scale range of more than 3 orders of 

magnitude. This shows in a very convincing manner that the Hornelen basin fracture 

pattern is a fractal over at least 3 orders of magnitude.  

 

4.3 Analysis of Individual Maps 

 

Given that our modified box-counting approach that only considers box-sizes larger than 

a particular proxy rmin value yields an “improved” fractal dimension we analyzed a series 

of 17 previously published fracture trace maps from a variety of tectonic settings, 

lithologies and scales (Barton, 1995). All maps were scanned at 500dpi in B/W line-mode 

using a standard scanner into Photoshop. Two sets of maps were created from the 

scanned images (Appendix B). The first map set was made by rotating the images and 

drawing a rectangle around them so as to exclude any “unmapped” white areas while 

including all of the fractures such that there is no loss of data. The other set was created 

by rotating the images and cropping them by drawing the largest possible rectangle 

within a pattern such that it would capture the maximum subset of the entire data without 

any “unmapped” white areas. However, maps i, m and p were not included in this second 

set because they did not have any “unmapped” white areas. A different set of cropped 
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versions of these maps was analyzed by Berkowitz and Hadad (1997) who reported 

higher D-values. In our work, we compared the D’s and endeavored to explain their 

differences thereof. 

 

A plot of the proxy rmin values for the uncropped maps versus the minimum lengths (lmin) 

as reported by Barton shows two important characteristics (Fig 1.8). First it displays the 

scale range of the maps – from microscopic (map q) to that of transform faults (map p) of 

over eight orders of length magnitude. Secondly, it shows that the proxy rmin is well 

correlated with the lmin parameter (coefficient of determination, R2 = 0.961) such that 

former is a very good estimate of the latter. When the second set of cropped maps was 

used for determining proxy rmin the values returned were very close (exactly the same in 

cases of maps c and g) although consistently higher in most cases with the exception of 

map a (table 1.3).  

 

The second set of maps was created by cropping 14 of 17 maps as described earlier to 

investigate whether, in the case of maps with irregular boundaries, it is appropriate to 

crop maps before evaluating their fractal dimensions. One clear advantage is that 

cropping eliminates all white areas containing “no data”. At the same time it is important 

to consider that the cropped area should be representative of the entire region. An 

example of this issue is maps without white areas may not be representative of the 

pavement, because they are more fractured than average across the region (personal 

communication Randall Marrett, March 21, 2006). Thus in some cases, the white areas 

without fractures may really be part of the data set. Also, another problem is that 

cropping can eliminate the smallest fracture from the pattern and overestimate the proxy 

rmin value (table 1.3). So, the use of cropping is a trade off between analyzing a pattern 

with the complete data (all fractures included) and a pattern with a few missing fractures 

but no “unmapped zones” which might also bias the D value. Our results, show that 

cropping might not be that serious an issue because for each of the maps analyzed the 

fractal dimensions computed from the cropped maps, (Db)c fell within the same range as 

those computed from the uncropped ones denoted by Db in table 1.3. The two sets of 
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estimates yielded a coefficient of correlation of r = 0.89. For all purposes of comparing 

our results with those of others we have used the Db’s obtained from the un-cropped 

versions. 

 

Comparing Db values evaluated using the modified box-counting method with those of 

Barton’s (1995) and Berkowitz and Hadad’s (1997), the former are underestimates while 

the latter are overestimates (Fig 1.9). It can be seen from table 1.3 that our box-counting 

results without “turning off” the data points for which r < proxy rmin i.e. considering the 

whole range of data points, returned consistently lower estimates of the true fractal 

dimension and that the values were very similar to those reported by Barton (1995). In 

fact, for maps d, f and m the values are exactly the same. This shows that if the data 

points for which r < proxy rmin are considered for fitting the straight line to the plot we 

end up with spurious Db-values even though the R2 may be high. 

 

The dimensions reported by Berkowitz and Hadad (1997) on the other hand are over 

estimates of the “unbiased” fractal dimension. One of the reasons cited by the authors for 

values higher than Barton’s is that cropping the maps to remove “arbitrary boundaries” 

increased the fractal dimension. Clearly this is not the case since a comparison of the 

values estimated by our method from cropped and un-cropped maps (table 1.3) show that 

they fall within the same range of each other and are consistently lower than all the 

values reported by Berkowitz and Hadad (1997).  

 

However, the question still remains as to the differences between our results and those of 

Berkowitz and Hadad (1997). We suggest that they may be related to differences in the 

map resolution and/or the scaling factor, β, employed in the two studies. For instance, one 

of their digitized maps (map b) was only 128 X 128 pixels, whereas ours was 2063 X 

1463. The lower resolution employed by Berkowitz and Hadad may have yielded 

inaccurate box counts for the smallest box sizes. Furthermore, the larger the β value, the 

fewer the number of points on the box-counting curve. Their plot for map b has only 5 

data points whereas in our modified box-counting plot there were 28. This is because the 
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scaling factor of the box-sizes was β = 2 in their analyses as opposed to β = 1.1 in ours. 

The importance of a robust the data set cannot be overemphasized since the use of a just 

few points to fit a straight line has already met with criticism and raised doubts about the 

fractal nature of the fracture network under investigation (e.g., Bonnet et al, 2001).  
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5. CONCLUSIONS 
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Our synthetic fractal-fracture pattern, which is a generalized version of Sammis’ (1986) 

model, is a powerful one that helps prove a number of points. First of all it demonstrates 

that the length count approach returns a good value for the theoretical fractal dimension 

of a pattern just as the box-counting approach does. It also illustrates the fact that if the 

points on the log N (occupied boxes) vs. log r (box-size) plot, for which r <lmin are 

“turned off” the resulting array of points can be fitted by a straight line whose slope gives 

the true fractal dimension of the pattern. Finally it helps in realizing the proxy rmin 

parameter and proves that it is a fair estimate of the minimum fracture length in the 

pattern.  

 

Our analyses of Odling’s maps from the Hornelen basin in Norway proves that fracture 

patterns can indeed be fractals and repeat themselves over at least 3 orders of magnitude. 

The results from this analysis coupled with those from our model also helped us 

demonstrate that our modified box-counting technique is a novel one that can be used 

with any other fracture pattern to check for fractal characteristics and evaluate their 

fractal dimension.  

 

We further analyzed a series of 17 previously published fracture trace maps from a 

variety of tectonic settings, lithologies and scales (Barton, 1995). All of these maps have 

been previously analyzed for their fractal dimension (Barton, 1995; Berkowitz and 

Hadad, 1997). The analyses of these maps returned two parameters: proxy rmin and Db. 

The former proved to be excellent estimates of the measured minimum length values 

(Barton 1995). The latter, however, was found to be very different from the values 

reported both by Barton (1995) and Berkowitz and Hadad (1997). For each of the 17 

maps analyzed, the “improved” Db value was consistently higher than that of Barton’s 

(1995) and lower than that of Berkowitz and Hadad’s (1997). The modification in the 

box-counting algorithm employed by us is the reason for the difference between our 

results and those of Barton’s (1995). On the other hand, the difference in the map 

resolution appeared to be the main reason for our values being different from those of 

Berkowitz and Hadad (1997). The maps were also cropped and reanalyzed to see the 
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effects of cropping on the algorithm. It was seen that although the Db and (Db)c values did 

differ, in most cases they fell within an acceptable range of each other and so the cropped 

sections were considered representative of the entire network. 

 

In conclusion, it may be said that although many workers have argued over the fractal 

nature of fractures, some networks (at least those discussed here) can be truly self similar 

such that their geometries can be described by a single parameter, namely the fractal 

dimension. However, whether the Db value can be related to any geomechanical 

properties of the rock or the stress regime that generated the fractures remains to be 

addressed. Also, it should be noted that fracture networks that look different from each 

other might have the same fractal dimension and it needs to be investigated whether any 

other parameter, apart from the Db value, can be used for characterizing a particular 

pattern uniquely. 
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APPENDIX I A 
 
 
In our model the length distribution of the fractures at iteration i is given by: 
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For a cumulative length count equation (2) can be written as: 
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summing as a geometric series we get: 
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taking the log on both sides in equation (4) we get: 
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Now, slope of the line on the log (cumulative length) vs. log (number) plot is given by: 
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from equations (2) and (5): 
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substituting equations (7) and (8) in equation (6): 
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therefore, for ∞→i , the slope in the limit is: 
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invoking the relationship ))(())(( xgLtfxgfLt

axax →→
=  equation (10) may be rewritten as: 
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dividing the numerator and denominator terms by inb )( 2 −  we get: 
 

=
∞→

slopeLt
i b

nb
nbnbLt i

i

i

log
1})(1{

)(})(1{log 2

22

⎥
⎦

⎤
⎢
⎣

⎡
−−

−−−

−
→∞

………………………………………….(12) 

 

b
nbslopeLt

i log
)log( 2 −

−=∴
→∞

…………………………………………………………..…(13) 

 
The RHS term in equation (13) is same as the expression for the theoretical fractal 

dimension, D of our model given by equation (1) in chapter 2. 
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Table 1.1 Percentage errors in evaluating Db for synthetic patterns using whole range of 

data points and points turned off for r < proxy rmin and r < rmin 

 

i D Db wholerange % error: whole range  Db  r min % error: r min Db  proxy r min % error: proxy r min

1 1.58 1.07 -32.49 1.43 -9.78 1.53 -3.47 
2 1.58 1.13 -28.70 1.57 -0.94 1.52 -4.10 
3 1.58 1.22 -23.03 1.62 2.21 1.61 1.58 
4 1.58 1.31 -17.35 1.61 1.58 1.62 2.21 
5 1.58 1.40 -11.67 1.62 2.21 1.62 2.21 
6 1.58 1.48 -6.62 1.62 2.21 1.62 2.21 

 
 

 

 

 

Table 1.2 Odling’s (1997) maps: scales, proxy rmin (in pixels), proxy rmin (in meters), 

modified box-counting dimension Db and capacity dimension, D* (Bour et al., 2002) 

 

no map name area   scale proxy r min (m)          Db         D* 
                    
1 horn_ya 18m x 18m 1 :102 0.35 1.80 ± 0.05 1.80± 0.1 
2 horn_yb 55m x 55m 1 :313 0.81 1.82 ± 0.04 1.77± 0.08 
3 horn_yc 90m x 90m 1 :511 1.33 1.82 ± 0.05 1.80± 0.05 
                  
4 horn_sa 90m x 90m 1 :511 1.33 1.81 ± 0.05 1.80± 0.1 
5 horn_sb 180m x 180m 1 :1023 2.4 1.82 ± 0.04 1.82± 0.1 
6 horn_sc 360m x 360m 1 :2045 3.62 1.84 ± 0.04 1.85± 0.1 
7 horn_sd 720m x 720m 1 :4091 7.25 1.84 ± 0.04 1.88± 0.1 
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Table 1.3 Barton’s maps: reported lmin, proxy rmin (in meters) for uncropped maps, proxy 

rmin for cropped maps, Db evaluated by Barton (1995), Db evaluated using whole range of 

data points, Db (fractal dimension from uncropped maps) and (Db)c (fractal dimension 

from cropped maps)  

  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

maps lmin (m) proxy rmin (m) proxy rmin c (m) Db barton D whole      Db ( Db)c 
                    

a 0.25 0.32 0.31 1.52 1.55 1.64 ± 0.01 1.62± 0.03 
b 0.5 0.74 0.97 1.38 1.45 1.56 ± 0.02 1.58± 0.04 
c 0.39 0.36 0.36 1.5 1.54 1.62 ± 0.02 1.66± 0.03 
d 0.59 1.43 1.6 1.61 1.61 1.71 ± 0.01 1.75± 0.05 
e 0.23 0.4 0.43 1.59 1.56 1.74 ± 0.02 1.76± 0.05 
f 0.24 0.47 0.65 1.54 1.54 1.64 ± 0.03 1.65± 0.03 
g 0.2 0.17 0.17 1.7 1.65 1.77 ± 0.02 1.78± 0.02 
h 1.7 1.56 2.61 1.5 1.55 1.62 ± 0.02 1.77± 0.08 
i 0.09 0.2 - 1.6 1.63 1.75 ± 0.04           - 
j 0.12 2.35 2.63 1.5 1.67 1.79 ± 0.02 1.79± 0.04 
k 0.2 0.36 0.44 1.58 1.68 1.78 ± 0.02 1.83± 0.04 
l 0.08 0.15 0.31 1.52 1.58 1.66 ± 0.02 1.78± 0.11 
m 53 306.92 - 1.49 1.49 1.75 ± 0.06           - 
n 0.4 1.28 1.5 1.48 1.5 1.69 ± 0.02 1.73± 0.05 
o 26 46.16 54.98 1.52 1.61 1.7 ± 0.02 1.75± 0.03 
p 99000 103000 - 1.32 1.47 1.63 ± 0.02           - 
q 0.0005 0.000412 0.000438 1.58 1.47 1.69 ± 0.03 1.72± 0.03 
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Figure 1.1 Construction of a deterministic Sierpinski lattice with b=2 and n=1: (a) basic 

template i = 0 with two fractures of length 1, (b) i = 1: addition of fractures of length 1/2, 

(c) i = 2: addition of fractures of length 1/4, (d) i = 3: addition of fractures of length 1/8, 

(e) i = 4: addition of fractures of length 1/16 (f) i = 5: addition of fractures of length 1/32 
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Figure 1.2 Analytical box-counting showing N (no. of boxes) vs. r (box-size) plots for 

fractures in synthetic pattern with b=2, n=1 and i= 20 
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Figure 1.3 Plot showing N (no of boxes) vs. r (box size) for synthetic pattern with b=2, 

n=1, i=4 with whole range of data points and those for which r < rmin, “turned off” 
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Figure 1.4 Plot showing variation of Db with i for synthetic patterns b=2, n=1: Db (± 95% 

confidence intervals) computed using whole range of box-sizes, box-sizes larger than the 

rmin and box-sizes larger than the proxy rmin  
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Figure 1.5 Plot showing d(SD)/dr vs. r for synthetic pattern b = 2, n = 1, i = 4 used for 

finding the proxy rmin. (theoretical rmin = 63.23) 
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Figure 1.6 Plot showing relationship between rmin and proxy rmin for synthetic pattern with 

b = 2, n = 1 at different iteration levels (i = 1 - 6) 
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Figure 1.7 Nadjusted vs. rm for maps 1-7 from Odling (1997) 
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Figure 1.8 Plot showing relationship between lmin and proxy rmin for Barton’s (1995) maps 
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Figure 1.9 Comparison of fractal dimensions of Barton’s (1995) maps as computed by 

Barton (1995), Berkowitz and Hadad (1997) and using the improved method 
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PART II 

 

Lacunarity Analysis of Fracture Networks 
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The importance of fractures and their pattern geometries cannot be overemphasized since 

they play a significant role in geological systems ranging from crustal fluid flow to 

studies of earthquakes. Geostatistical techniques, semi-variograms in particular, have 

been widely employed for fracture characterization (e.g., La Pointe and Hudson, 1985; 

Chiles, 1988 and Marrett et al., 2006). Over the past two decades some investigations 

have quantified the size scaling and spatial properties of fracture networks with fractal 

descriptors. For example, Barton and Larsen (1985) defined the geometry of fracture 

patterns with a fractal dimension using the “box-counting” method. A persistent problem 

in such characterizations however, is that fracture patterns having different appearances 

can have the same fractal dimension. The conclusion of part I therefore posed the 

question as to whether any other parameter can be used to uniquely quantify a particular 

pattern. We address this basic question in part II by considering our synthetic fractal-

fracture patterns and the data set from the Hornelen basin, Norway (Odling, 1997).  In 

this part we step aside from the idea of a fractal dimension and instead consider fracture 

patterns from a more generalized point of view. 

 

Early studies about fractal properties gave way to the new concept of lacunarity. 

Mandelbrot (1983) defined this characteristic as the degree of clustering in a pattern. For 

instance, in a fracture pattern, if a large unfractured area is present, the pattern will have a 

high lacunarity value. Allan and Cloitre (1991) proposed a method for quantifying the 

lacunarity of any pattern using the gliding-box method. Following this work, Plotnick et 

al. (1996) analyzed a suite of geological (γ-ray peaks from well logs) and ecological data 

and showed that lacunarity may be used as a general tool for spatial analysis of fractal, 

multifractal and non-fractal data sets well as. Turcotte (1997) extended the idea of the 

gliding box method to 2 dimensions and calculated the lacunarity of a second-order 

Sierpinski carpet. Chen (1997) used this concept for studying zinc concentration values. 

Along with the gliding box algorithm, another technique, the sandbox algorithm 

(Chappard et al., 2001) has been employed for determining lacunarities of soil micro-

structures (Pendleton et al., 2005). However, neither the gliding box nor the sandbox 

method has been previously used for determining the lacunarities of fracture networks.  
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The purpose of the present work is to use the gliding box technique to compute the 

lacunarities of fracture networks that have similar fractal dimensions and to investigate 

the scale range over which fracture networks might be self-similar. A MATLAB code 

was written for analyzing fracture patterns using the gliding-box algorithm (Appendix II 

C). Two deterministic fractal-fracture models, and a set of eleven random ones, all 

generated using two MATLAB codes (Appendices II A and B) were analyzed. In 

addition, a set of 7 fracture maps from the Hornelen basin, Norway (Odling, 1997) was 

evaluated to determine the ability of this method to discriminate between patterns with 

similar fractal dimensions.  
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2. SYNTHETIC FRACTAL-FRACTURE PATTERNS 
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A suite of deterministic and random fractal-fracture patterns was constructed using 

hierarchical fracture networks made up of line segments in 2D. The networks were 

generated using MATLAB (Appendices II A and B) and are essentially generalized 

versions of Sammis’ (1986) model. Three basic parameters are used to for generating the 

patterns – scaling factor: b, number of blocks not iterated at each step: n, and iteration: i.  

 

For the first network, a value of b = 2 is used such that the initial square template consists 

of two orthogonal fractures dividing the whole area into four blocks each with a side of 

length 0.5 (Fig 2.1a; all tables and figures in appendices II E-F). We call this the initiator 

such that i = 0. At each level n = 1 block is left unfractured and the others are reiterated 

by shrinking this template (i = 0) by a factor of 2, replicating it b2 - n = 22 – 1 = 3 times 

and finally superimposing the resulting patterns on the original template as shown in Fig 

2.1b. This process is then repeated for each of the 0.5 length templates (Fig 2.1c), then 

for each of the resulting 0.25 and 0.125 length templates and so on until a sequence of 5 

patterns is produced at for i=0 to 4 as seen in Fig 2.1a-e. Hereafter, the pattern will be 

referred to as b2n1i4_det. This pattern was “randomized” by using a probability function 

for choosing the “un-fractured” block from the four initial blocks and repeating the 

process until i=4 (Fig 2.1f) and this pattern is named b2n1i4_ran. Ten such random 

patterns were generated. A second deterministic fractal-fracture pattern (Fig 2.2a) and its 

random counterpart (Fig 2.2b) were generated likewise for b = 4, n = 7 and i = 2. These 

patterns are named as b4n7i2_det and b4n7i2_ran, respectively. The iteration in this 

case is done only until i=2 such that the smallest fracture length, lmin is the same size in 

both models i.e.: 

 

The theoretical fractal dimension, D of the synthetic patterns is: 
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Although the two patterns have the same fractal dimension, they do not look identical 

(Figs 2.1, 2.2). For that matter, it may be easily proved that for any set of b and n such 

that: 
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where m is any positive integer, the fractal dimension of the pattern will be D = 1.585. 

For the two particular models constructed here, m=1 and 2 respectively. Consequently, 

many possible synthetic patterns would have the same fractal dimension, but may be 

quite different in appearance. Our purpose is to characterize this difference. 
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In this section we introduce the concept of translational invariance and use it to explain 

lacunarity. We then describe the gliding box algorithm to show how lacunarity may be 

quantified and that in essence it is a ratio of the variance to the mean of a pattern.  

 

3.1 Translational Invariance 

 
A simple 32 X 32 square grid (Fig 2.3) will map onto itself if a copy of it is made and 

moved by one unit so that the original cannot be distinguished from the translated copy. 

This is called translational invariance. Quite obviously, this property is not observed in a 

slightly more complicated pattern like b2n1i4_ran because unlike the simple grid, this 

pattern has heterogeneity. The deviation of a pattern from translational invariance can 

thus be conceived as a measure of the degree of heterogeneity of texture. This property is 

highly scale dependent because sets that are homogeneous at a larger scale can be 

heterogeneous at smaller scales and vice-versa.  

 

3.2 Lacunarity  

 

In simple terms, lacunarity (L) is the degree of clustering in a pattern. It is actually a 

measure of the degree to which a set is not translationally invariant (Allan and Cloitre, 

1991). This means to say that for translationally invariant sets, L = 1 and for non-

translationally invariant sets L > 1. As every pattern may have some sort of heterogeneity, 

lacunarity can be a property of both fractal and non-fractal patterns.  

 

3.3 The Gliding-box Algorithm 

 

This algorithm puts the investigated pattern on an underlying lattice and then moves a 

window of a given length, r translated in unit increments of the chosen lattice (Allan and 

Cloitre, 1991). Consider the four linear patterns in Fig 2.4. Each is of total length rt = 27 

and has 8 occupied units distributed in different ways: (a) almost uniform; (b) 

deterministic fractal – cantor dust; (c) random fractal – cantor dust; and (d) clustered. The 
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underlying lattice has a mesh size of unit length and is the same as the one on which the 

sets are built. As the window glides across, the total number steps covered is given by: 

 
N(r) = (rt – r + 1)E…………………………………………..…………...………...……(4) 

E is the Euclidean dimension of the pattern. Here E = 1; for a window size of r = 9, we 

have: 

N(9) = (27 – 9 + 1) = 19.  
 
The frequency of the distribution of the masses (occupied units) in the window of size r 

containing s occupied units is given by n(s,r) (Fig 2.5). This can be converted to a 

probability distribution as: 

 
Q(s,r) = n(s,r)/N(r)………………..…………...…………………………………...……(5) 

 
The 1st and 2nd moments, which are related to the mean and variance of the distribution of 

this probability function, are: 

 
M1(r) = Σ s.Q(s,r)……………………………………..………………………………..(6a) 

M2(r) = Σ s2.Q(s,r)……………………………………………………………………..(6b) 

 
The lacunarity, L is (Allan and Cloitre, 1991): 
 
L(r) = M2(r)/[ M1(r)]2………………………...………………………………………………….(7) 
 
 

Lacunarity is thus the dimensionless representation of the variance to mean ratio at a 

given scale (Plotnick et al., 1996).  

 

The L(r) of a pattern has upper and lower bounding values. Consider φ  as the fraction of 

sites occupied (this is the same as the fracture porosity values for our fracture patterns). 

In Fig 2.4 for example, φ = 8/27. It may be easily proved that Q(1,1) = φ, in all cases 

(Plotnick et. al. 1996). The lacunarity L(1) = M2(1)/[ M1(1)]2 = φ /φ2 = 1/φ. From Fig. 

2.4, L (1)= 27/8 = 3.33 (Fig 2.6). For r = rt, M1(rt) = 1, and M2(rt) = 1, therefore from 
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equation (7),  L(rt) = 1. To summarize, the upper bound Lupper = 1/φ and the lower bound 

is Llower = 1 

 

The L-values can be plotted versus the window sizes, r, to yield the lacunarity curve of a 

pattern (e.g. Fig 2.6). It can be further shown that on a log-log scale patterns that are self-

similar monofractals plot on straight lines, from the slope of which their fractal 

dimensions may be found (Allan and Cloitre, 1991). This also means that the lacunarity 

curves can be used to investigate the range of scales for which a pattern may be fractal 

because the curve should be a straight line over this range.  
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4. DATA ANALYSIS AND RESULTS 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 57

The gliding-box technique has been applied to our synthetic patterns and a set of natural 

fracture maps published by Odling (1997). For natural data sets, Allan and Cloitre (1991) 

recommended that the underlying lattice should be the array of pixels that define the 

image. To be consistent, we chose the pixels to be the underlying lattice for both the 

synthetic and the natural patterns.  A square window edge length r glides across the 

pattern (Fig 2.7) recording the number of steps n(s,r) with s occupied pixels that are 

inside and on the box boundaries and the lacunarity L(r) is calculated (equation 7). A 

MATLAB code written by Jung-woo Kim was modified for this purpose (Appendix II 

C). The program computes the L(r) value for a given r from bitmap image files. Before 

we used it for our purpose, it was tested on a second order Sierpinski carpet (Mandelbrot, 

1983) that had been previously evaluated for its L value (Turcotte, 1997), using equations 

(4) to (7). It returned a similar value (within 0.4%) to that given by the analytical method 

employed by Turcotte (1997) thus demonstrating its effectiveness in computing the 

lacunarity parameter.  Following this test, the L(r) values for our fracture patterns were 

found and were plotted against the r-values thus yielding the lacunarity curve. Fracture 

porosity is another parameter that was evaluated using a MATLAB code (Appendix II 

D). This is a ratio between the number of the occupied pixels that constitute the fractures 

and the total number pixels in the pattern. This parameter may be used in conjunction 

with the fractal dimension, proxy rmin and lacunarity values for comparing patterns. 

 

4.1 Synthetic Fracture Networks 

 

The lacunarity curves (Fig 2.8) for each of the five patterns: b2n1i4_det, b2n1i4_ran, 

b4n7i2_det, b4n7i2_ran and trans-inv (translationally invariant simple 32 X 32 grid) show 

that b4n7i3_det always has the greatest lacunarity, possibly because of the clustering of 

un-fractured blocks in the upper right corner (see Fig 2.2a). They occupy about 7/16 of 

the entire area as opposed to 1/4 i.e. 4/16 for b2n1i4_det. Interestingly, the randomized 

version, b4n7i2_ran shows the lowest lacunarity profile because the blocks, each 

individually occupying 1/16 of the entire area, are randomly dispersed within the pattern. 

Also, as expected, the lacunarity curve for the trans-inv pattern plots along the line L(r) = 
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1. This result further bolsters the soundness of our code for calculating the lacunarities 

and corroborates the fact that lacunarity plots can successfully demonstrate differences in 

heterogeneities amongst patterns. 

 

In another approach, 10 random realizations of b2n1i4 were generated and their 

lacunarities measured. The mean lacunarities are plotted versus the r along with the 

standard deviations of L(r) for each r (Fig 2.9). Given that L(r) has a lower bound of 1 

and an upper bound of 1/φ (φ being the porosity fraction and is same for all the random 

patterns) it is not really surprising that the standard deviation bars become smaller at the 

ends where L reaches it’s limiting values which are same for all of the realizations.  

 

The results for the synthetic patterns show that the fracture-porosities differ for patterns 

with distinct sets of b and n, although there was no change in this parameter for the 

deterministic and random counterparts of a particular b, n pair (Table 2.1). Additionally, 

it cannot be overemphasized that all of these patterns possess the same fractal dimension 

(D=1.585).  

 

4.2 Natural Fracture Networks  

 

Lacunarity curves were computed for a suite of 7 nested fracture patterns mapped in the 

Hornelen basin, Norway (Odling, 1997). Each pattern is a subset of a larger pattern (Fig 

1, Bour et al., 2002) and is mapped from a lower elevation, such that it represents a 

limited range of joint trace lengths that is controlled by the resolution of the image. The 

original 7 maps were received as encapsulated postscript files from Dr Odling. They were 

then converted into bitmap images of 150dpi resolution using Adobe Illustrator 

(Appendix A). We previously evaluated these maps for their fractal character and found 

that they do display self-similarity. Details about the scales, minimum fracture sizes and 

fractal dimensions of the mapped areas are in documented in table 2.2.  
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These patterns were particularly chosen keeping in mind our objective of differentiating 

between fracture patterns that look different but have similar fractal dimensions. 

Obviously, if one is essentially a scaled down version of the other and the pattern is self-

similar all the 7 maps should have the same fractal dimension (table 2.2). The lacunarity 

curves (Fig 2.10) for these maps were evaluated only up to r = 100 because for larger 

box-sizes their differences tend to become smaller and for all the maps the L(r) tends to 

unity. It can be seen that the curves differ from each other because although they have 

similar shapes, they “spread out” on the L(r) vs. r plot. The general trend is, the greater 

the resolution (smaller the scale of the map), the higher the lacunarity. This result means 

that the natural pattern is more clustered in the smaller scale maps. Visual inspection of 

the patterns (Appendix A) supports this interpretation because the smaller scale maps 

have larger unfractured areas as opposed to the large scale ones where the fractures tend 

to be more randomly distributed (personal communication Noelle Odling, March 06 

2006). 

 

The fracture porosity tends to decrease with decreasing scale because with greater 

lacunarity, the patterns are more clustered in the smaller scale maps and as a result, more 

intersections exist that decreases the porosity. The theoretical Lupper value (Lupper = 1/φ) 

has a high correlation with the empirical L(10) for all the maps 1-7 (Fig 2.11) which 

further underscores the idea that the fracture porosity decreases with clustering (lower 

lacunarity). 
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5. DISCUSSION AND CONCLUSIONS 
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This work presents a number of new and important ideas and concepts. It has already 

been shown in earlier research that the degree of heterogeneity in a pattern can be 

quantified by using lacunarity as a parameter. The present study shows that this concept 

may be applied in the area of fracture research for distinguishing between different 

fracture networks that may have similar fracture-porosity and fractal dimension values 

and for studying their scaling characteristics. 

 

Lacunarity is the extent to which a set is not translationally invariant. Sets that are 

completely translationally invariant will have a lacunarity of unity irrespective of the size 

of the gliding window. The lacunarity parameter, L(r) is a dimensionless representation 

of the variance to mean ratio and can be applied in a general manner to fractals and non-

fractals alike and helps in distinguishing between the two. Since translational invariance 

is a highly scale dependent property, lacunarity can delineate the presence of 

heterogeneities at any scale. In fact, not only does it identify the presence of self-

similarity in a set, but being scale dependent it reveals the range of self-similarity as well.  

 

Different synthetic fractal-fracture patterns with a single known theoretical fractal 

dimension, but with variability in their spatial organization, can be distinguished from 

each other by their lacunarity curves. More randomly distributed fractal-fracture 

networks tend to display lower lacunarities and hence are less clustered than their 

deterministic counterparts.  

 

Our study of a suite of 7 nested natural fracture patterns (Odling, 1997) shows that the 

same fracture network at different scales can display variability in its clustering 

attributes. Although the 720m x 720m map is a self-similar one and had the same fractal 

dimension at different scales, there is a systematic variability in the lacunarity curves. In 

general, the larger the scale, the lower the resolution, and lower is lacunarity suggesting 

that the fractures appear to be more clustered at smaller scales and more randomized at 

larger scales. In addition, lower lacunarity values were associated with higher fracture 

porosities (Table 2.2). 
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The results presented in this work can potentially open up a myriad vistas for future 

research. Firstly, it would be an interesting exercise to look into the deviation of the 

fractal dimensions, arrived at by the gliding-box method, from the true theoretical values. 

In this context, one might want to revisit the derivation of equation 12 presented by Allan 

and Cloitre (1991). Additionally, more research is needed in order to address questions 

on the choice of the underlying lattice over which a set is laid before subjecting it to the 

gliding-box algorithm. It could be either the array of pixels that define a digitized pattern 

or simply the lattice on which a set is built. The former however, seems to be a better 

choice for characterizing the clustering of fracture patterns without any preconceived 

notion about their self-similarity. 
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APPENDIX II A 
 
 
%   Deterministic Fractal as Line 
%   dfln(maxit,rulmat) 
%   output : [Figure] 
%   maxit     = maximum iteration number 
%   rulmat    = rule as a square matrix 
 
%   by Kim, Jung-Woo (2005) 
%   modified by Ankur Roy (2005) 
 
 
function [] = dfln(maxit,rulmat,lwidth) 
 
[br bc] = size(rulmat); 
 
if maxit ~= abs(fix(maxit)) | rulmat ~= abs(fix(rulmat)) | br ~= bc 
    disp('!!!!! Wrong Input...  Try it again... !!!!!'); 
    return; 
end 
Figure; 
 
matold = 0; 
for it = 1:maxit 
    [nrow ncol] = size(matold); 
    matnew = ones(br^it,br^it); 
    for i = 1:nrow 
        for j = 1:ncol 
            if matold(i,j) == 0 
                for bb = 1:br-1 
                    hh = line([(j-1)/br^(it-1)            j/br^(it-1)],... 
                              [(i-1)/br^(it-1)+bb/br^it   (i-1)/br^(it-1)+bb/br^it]); 
                    set(hh, 'LineWidth',lwidth, 'Color',[0 0 0]) 
                    hh = line([(j-1)/br^(it-1)+bb/br^it   (j-1)/br^(it-1)+bb/br^it],... 
                              [(i-1)/br^(it-1)            i/br^(it-1)]); 
                    set(hh, 'LineWidth',lwidth, 'Color',[0 0 0]) 
                end 
                matnew((i-1)*br+1:i*br,(j-1)*br+1:j*br) = rulmat; 
            end 
        end 
    end 
    matold = matnew; 
end 
 
axis([0 1 0 1]); 
set(gca,'Visible','off','Position',[0 0 1 1]); 
set(gcf, 'NumberTitle','off','Name','Deterministic Fractal as Line','pos',[200 100 500 500]); 
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APPENDIX II B 
 
 
%   Random Fractal as Line 
%   Homogeneous Random Fractal 
%   rfln(maxit,b,pb) 
%   output : [Figure] 
%   maxit = maximum iteration number 
%   b     = scale factor 
%   pb    = probability (cells to be taken out) 
 
%   by Kim, Jung-Woo (2005) 
%   modified by Ankur Roy (2005) 
 
function [] = rfln(maxit,b,pb,lwidth) 
 
if maxit ~= abs(fix(maxit)) | b ~= abs(fix(b)) | pb ~= abs(fix(pb)) 
    disp('!!!!! Wrong Input...  Try it again... !!!!!'); 
    return; 
    end 
 
Figure; 
 
matold = 0; 
for it = 1:maxit 
    [nrow ncol] = size(matold); 
    matnew = ones(b^it,b^it); 
    for i = 1:nrow 
        for j = 1:ncol 
            if matold(i,j) == 0 
                for bb = 1:b-1 
                    hh = line([(j-1)/b^(it-1)            j/b^(it-1)],... 
                              [(i-1)/b^(it-1)+bb/b^it    (i-1)/b^(it-1)+bb/b^it]); 
                    set(hh, 'LineWidth',lwidth, 'Color',[0 0 0]) 
                    hh = line([(j-1)/b^(it-1)+bb/b^it    (j-1)/b^(it-1)+bb/b^it],... 
                              [(i-1)/b^(it-1)            i/b^(it-1)]); 
                    set(hh, 'LineWidth',lwidth, 'Color',[0 0 0]) 
                end 
                odr = zeros(b); 
                rnd = randperm(b^2); 
                for k = 1:b^2 
                    if rnd(k) <= pb 
                        odr(k) = 1; 
                    else 
                        odr(k) = 0; 
                    end 
                end 
                matnew((i-1)*b+1:i*b,(j-1)*b+1:j*b) = odr; 
            end 
        end 
    end 
    matold = matnew; 
end 
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axis([0 1 0 1]); 
set(gca,'Visible','off','Position',[0 0 1 1]); 
set(gcf, 'NumberTitle','off','Name','Random Fractal as Line','pos',[200 100 500 500]); 
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APPENDIX II C 
 
 
%   Lacunarity (2-Dimension) 
%   lacu2d(mat,wind,ps) 
%   OUTPUT lacunarity 
%   INPUT mat : original matrix 
%         wind : unit window to compute lacunarity 
%         ps : pore or solid (pore = 0; solid = 1) 
%   by Kim, Jung-Woo (2005) 
%   modified by Ankur Roy (2005) 
  
function [] = lacu2d(wind,ps); 
A= imread('b4n7i3rand.bmp'); 
 
 
[nrow ncol] = size(A); 
 
imax = nrow-wind+1; 
jmax = ncol-wind+1; 
tot = imax*jmax; 
 
s = []; 
for i = 1:imax 
    for j = 1:jmax 
        s = [s, length(find(A(i:i+wind-1,j:j+wind-1) == ps))]; 
    end 
end 
 
np = []; 
mom1 = 0; 
mom2 = 0; 
for k = 0:wind^2 
    n = length(find(s==k)); 
    np = [np; [k n n/tot]]; 
    mom1 = mom1 + np(k+1,1)*np(k+1,3); 
    mom2 = mom2 + np(k+1,1)^2*np(k+1,3); 
end 
 
lac = mom2/(mom1^2) 
 

 

 

 

 

 

 

 



 69

APPENDIX II D 
 

 
% my second program 
% to find the porosity, mean and variance of a matrix 
% by Ankur Roy (Nov, 2005) 
 
function [] = porosity(param); 
mat=imread('bartong_72dpi.bmp'); 
[br bc] = size(mat); 
zero=0; 
one=0; 
for i=1:br 
for j=1:bc 
    if mat(i,j)==param  
        zero=zero+1; 
    else 
        one=one+1; 
    end 
end 
end 
por=zero/(zero+one); 
if param==0 
 mean=one/(zero+one)   
else 
 mean=zero/(zero+one) 
end 
porosity = por*100 
var = 0; 
for i=1:br 
for j=1:bc 
    var=var+(mat(i,j)-mean)^2; 
end 
end 
variance=var/(br*bc-1) 
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Table 2.1 Fracture porosities and lacunarities, L (31) and L (450), of synthetic fractal-
fracture patterns with D = 1.585 

 
model L(31) L(450) % porosity 

b2n1i4_det 1.8755 1.0087 5.146 
b2n1i4_ran 1.8457 1.0013 5.144 
b4n7i2_det 1.9287 1.0103 9.463 
b4n7i2_ran 1.7903 1.0014 9.451 

 
 
 
 

Table 2.2 Odling’s (1997) maps: scales, proxy rmin (in meters), fractal dimension Db, 
fracture porosity and lacunarities Lupper, L (10) and L (500) 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

map no area    scale proxy r min (m)         Db % porosity L (10)  L(500) 
                    
1 18m x 18m 1 :102 0.35 1.80± 0.05 5.73 2.4226 1.0072 
2 55m x 55m 1 :313 0.81 1.82± 0.04 7.85 2.0815 1.0071 
3 90m x 90m 1 :511 1.33 1.82± 0.05 8.50 1.9319 1.0031 
                  
4 90m x 90m 1 :511 1.33 1.81± 0.05 7.95 2.0234 1.0209 
5 180m x 180m 1 :1023 2.4 1.82± 0.04 7.93 1.9363 1.0146 
6 360m x 360m 1 :2045 3.62 1.84± 0.04 10.09 1.6414 1.0063 
7 720m x 720m 1 :4091 7.25 1.84± 0.04 9.84 1.6078 1.0037 
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APPENDIX II F: FIGURES 
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Figure 2.1 Construction of the deterministic fractal-fracture model b2n1_det: (a) basic 
template i = 0 with two fractures of length 1, (b) i = 1: addition of fractures of length 1/2, 
(c) i = 2: addition of fractures of length 1/4, (d) i = 3: addition of fractures of length 1/8, 
(e) i = 4 (b2n1i4_det): addition of fractures of length 1/16, (f) randomized version of (e): 
(b2n1i4_ran) 
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Figure 2.2 Deterministic (a) and randomized (b) fractal-fracture patterns (b4n7i2_det and  
b4n7i2_ran, respectively) 
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Figure 2.3 Translationally invariant set: simple 32 X 32 grid (non-fractal) 

 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
Figure 2.4 Linear patterns showing same number of filled units but differing in spatial 
distribution (from Turcotte, 1997) 
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Figure 2.5 Gliding window algorithm showing distribution of n(s,r) for r=9 (from 

Turcotte, 1997) 

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.6 Lacunarity analyses of the distributions shown in 2.4 (from Turcotte, 1997) 
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Figure 2.7 Gliding-window in a typical fractal-fracture pattern: b2n1i4_det 
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Figure 2.8 L(r) vs. r plots for patterns b2n1i4_det, b2n1i4_ran, b4n7i2_det, b4n7i2_ran 
and trans-inv 
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Figure 2.9 Mean and standard deviations of L(r) vs. r plots for 10 randomized versions of 
b2n1i4_ran 
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 Figure 2.10 L(r) vs. r curves for Odling’s maps 1-7 
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Figure 2.11 Lupper (=1/φ) vs. L(10) for Odling’s (1997) maps 1-7 
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APPENDIX A: ODLING’S MAPS 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
Map 1: horn_ya 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Map 2: horn_yb 
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Map 3: horn_yc 
 
 
 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

Map 4: horn_sa 
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Map 5: horn_sb 
 
 
 
 
 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

Map 6: horn_sc 
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Map 7: horn_sd 
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APPENDIX B: BARTON’S MAPS 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

 
 
 

 
 
 

Map a: uncropped 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

Map a: cropped 
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Map b: uncropped 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Map b: cropped 
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Map c: uncropped 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

Map c: cropped 
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 Map d: uncropped              Map d: cropped 
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Map f: uncropped 
 
 
 

 
 

 
 
 
 
 
 
 
 
 
 
  

Map f: cropped 
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 Map g: uncropped 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
Map g: cropped 
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Map i: uncropped 
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 Map l: uncropped 
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Map m: uncropped 
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Map n: uncropped 
 
 
 
 
 
 

 
 
 
 
 
 
 

Map n: cropped 
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Map o: uncropped 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

Map o: cropped 
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Map p: uncropped 
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Map q: 
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Map q: cropped 
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