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Abstract 

 Evaluating total knee arthroplasty implant design success generally requires many 

years of patient follow-up studies which are both inefficient and costly.  Although 

computational modeling is utilized during the implant design phase, it has yet to be fully 

utilized in order to predict the post-implantation kinetics associated with various design 

parameters.  The objective of this study was to construct a three-dimensional 

computational model of the human lower limb that could predict in vivo kinetics based 

upon input subject specific kinematics.  The model was constructed utilizing Kane’s 

theory of dynamics and applied to two clinical sub-studies.  Firstly, axial tibiofemoral 

forces were compared over a deep knee bend between normal knee subjects and those 

with implanted knees.  Secondly, kinematics were obtained for a sample subject 

undergoing a deep knee bend, and the amount of femoral rollback experienced by the 

subject (-1.86 mm) was varied in order to evaluate the subsequent change in the axial 

tibiofemoral contact force and the quadriceps force.  The mean axial tibiofemoral contact 

force was 1.35xBW and 2.99xBW for the normal and implanted subjects, respectively, 

which was a significant difference (p = 0.0023).  The sample subject experienced a 

decrease in both the axial tibiofemoral contact force (-8.97%) and the quadriceps load (-

11.84%) with an increase of femoral rollback to -6 mm.  A decrease in rollback to 6 mm 

led to increases in both the contact force (22.45%) and the quadriceps load (27.14%).  

These initial studies provide evidence that this model accurately predicts in vivo kinetics 

and that kinetics depend on implant design and patient kinematics. 
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Chapter 1: Introduction 
 
 Over time, the design of knee replacements has largely been a post hoc process, in 

which empirical data is obtained after total knee arthroplasty (TKA) in order to evaluate 

design success.  Although theoretical approaches are used towards replacement design, 

the difficulty of modeling the subsequent kinetic effects after TKA inherently places 

limits on the extent to which pre-TKA conclusions can be drawn.  The primary 

difficulties involved in modeling in vivo knee kinematics are twofold: accurate data 

collection and the statically indeterminate nature of the system.   

 The main methods of approximating in vivo motions of the rigid components of 

the knee include:  skin markers (Soutas-Little et al., 1987; Andriacchi et al., 1998), bone 

pins (LaFortune et al., 1992; Ramsey et al., 2003), external fixation devices (Marin et al., 

1999; Ganjika et al., 2000; Lin et al., 2003), roentgen stereophotogrammetric analysis 

(RSA) (Fleming et al., 2002; Saari et al., 2003), and video fluoroscopy (Dennis et al., 

1998; Fantozzi et al., 2004).  Skin markers are non-invasive and involve no radiation 

exposure, but have been shown to induce measurement errors of up to 18 degrees for 

internal/external rotation (Murphy, 1990).  Another study found that skin markers 

produced errors of 21% for flexion/extension, 63% for internal/external rotation, and 

70% for abduction/adduction during gait (Reinschmidt et al., 1997).  Intra-cortical bone 

pins have been found to yield highly accurate measurements (with errors less than 0.4 

mm) (Ramsey et al., 2003), but the insertion process is highly invasive and stressful, 

limiting the application of this process to small sample sizes.  External linkages attached 

to the limbs offer a non-invasive approach to bone pins, but assume that there is 
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negligible mobility between the rigid structure and the underlying bone.  Rigid 

attachments have also been used in patellar tracking, but limitations exist upon the 

activities that can be analyzed.  For example, with one attachment design, positions can 

only be determined from full extension to 20 degrees of flexion (Lin et al., 2003).  RSA 

yields highly accurate results, but it is often non-weight bearing, utilizes static, and can 

only be performed when specially designed replacements were implanted at the time of 

TKA.  Video fluoroscopy has proved to be a highly accurate and non-invasive procedure 

that exposes patients to minimal radiation.  Our group employs a novel semi-automated 

algorithm to register three-dimensional (3-D) computer automated design (CAD) models 

two dimensional (2-D) fluoroscopy images.  This procedure yields in vivo 3-D 

kinematics, susceptible to errors of less than 0.5 mm for in-plane translations and less 

than 0.5º for in-plane rotations (Mahfouz et al., 2003).  We believe that this technology 

offers the most practical and reliable method for determining knee kinematics.  For 

instance, a different approach to obtaining 3-D kinematics from 2-D video fluoroscopy 

produces errors of 1.2 mm for in-plane translations, 0.8 degrees for in–plane rotations, 

and 4.0 mm for medial/lateral translation (Kanisawa et al., 2003).

 Aside from obtaining rigid body motions in the knee, determining the in vivo 

contact and soft tissue forces has proven to be extremely difficult due to the statically 

indeterminant nature of the system.  The two primary methods for obtaining in vivo 

contact forces are telemetry and mathematical modeling.  Telemetry has traditionally 

been utilized to determine forces acting at the hip (Rydell, 1965; Bergmann et al., 1993), 

and, more recently, near the knee (Taylor and Walker, 2001), to give very accurate results 

for axial forces, torques, and bending moments.  However, the requisite instrumented 
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prostheses are very expensive and prevent studies involving more than a few subjects.  

The more practical alternative is mathematical modeling, which can be applied to an 

infinite sample size.  However, the leg is controlled by 47 muscles (Crowninshield and 

Brand, 1981), which creates a statically indeterminant system.  This dilemma has been 

handled either by applying optimization criteria (Crowninshield et al., 1975; Seireg and 

Avrikar, 1975) or by reducing the amount of unknowns involved (Paul, 1965; Komistek 

et al., 1998; Lloyd and Besier, 2003).  Although optimization can yield solutions from 

indeterminate problems, it has the potential to yield physiologically unrealistic, although 

mathematically sound, calculations (Challis, 1997).  Although the reduction technique 

can create a statically determinant system, there are often too many degrees of freedom 

(DOFs), or too many unknowns to create an efficient algorithm.  To this end, Kane’s 

theory of multi-body dynamics (Kane and Levinson, 1985), which uses a simultaneous 

approach to eliminate redundancy within the dynamical equations themselves, can greatly 

facilitate computational speed and reliability. 

 The goal of this work was to create a 3-D model of the human knee that would 

generate accurate in vivo contact forces for the lower limb.  Specifically, the aim was to 

model kinetics of the tibiofemoral joint, the patellofemoral joint, the hip joint, and soft 

tissue forces surrounding the knee.  The constructed model utilizes input kinematics from 

the fluoroscopic registration process, and outputs the associated kinetics.  Hence, the 

model relies on an inverse dynamics approach.  Although various optimization criteria 

could be used to solve the full lower limb indeterminate system, this study was more 

concerned with the primary kinetics of the lower limb, such as the joint contact forces 

and extensor mechanism loads.  Therefore, the reduction approach (the amount of 
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unknowns are reduced to a statically solvable system) was chosen to create a solvable 

system.  To maximize computational efficiency, Kane’s dynamical equations of motion 

were used to solve the system. 

 In addition to the construction of the computational model, this study incorporated 

two clinical applications of the model.  Firstly, it was applied to two sample subject 

groups, normal knee and TKA subjects, undergoing a deep knee bend (DKB) activity and 

used to compare the axial tibiofemoral forces between the two groups.  Secondly, the 

model was applied to a sample TKA patient undergoing a DKB.  The anterior-posterior 

(AP) translation of the femorotibial contacts upon the tibial plateau were varied over the 

activity to simulate both more anterior translation and more posterior translation (or 

rollback) than the original subject experienced.  The axial tibiofemoral contact force and 

the quadriceps load were determined for each condition, and then compared to evaluate 

the effect of rollback upon knee kinetics. 

 This study was part of a larger effort to create a computational model that will 

assist TKA implant design by simulating the kinetic effects produced by particular design 

parameters.  The focus of the model is to allow for adjustment of constraints and 

parameters to simulate a given total knee replacement design.  The applicability and 

efficacy of the design will then be evaluated by comparing the TKA results with those of 

the normal knee, as well as to other designs.  This model will thus provide quantitative, 

theoretical data that will provide guidance and insight towards determining the in vivo 

success of TKA designs prior to implantation and/or manufacture. 
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Chapter 2: Materials and Methods 

 This study consisted of two main divisions: 

  1.  Construction of the computational knee model 

  2.  Application of the model to obtain clinically relevant results. 

  

 The construction of the model consisted of applying the concepts of Kane’s 

method of dynamics to the human knee.  This entailed creation of a lower limb model 

utilizing AutolevTM, a software package that provides a user-interface that is constructed 

specifically for dynamics modeling built upon Kane’s method.  The model was designed 

to accept kinematics from the 3-D fluoroscopic registration process, both for normal knee 

subjects and TKA subjects undergoing a DKB.  Hence, Chapter 3.1 is separated into 3 

main sections: Theory, Model, and Kinematics.   

 Application of the model was carried out by obtaining kinematics from 

fluoroscopic data of previously analyzed subjects.  The first application consisted of 

comparing the tibiofemoral contact forces of subjects with normal knees to those of 

subjects with total knee replacements (TKRs).  This application involved obtaining 

kinematics for seven subjects in each group, running the model for each subject, then 

tabulated and comparing results between the groups.  The second application focused on 

predicting the in vivo kinetics of only one patient, and then varying the anterior-posterior 

(AP) motion of the femur in order to evaluate the kinetic effects of femoral rollback.  

These two applications of the computational model will be discussed separately. 
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2.1:  Construction of the Computational Knee Model 

2.1.1:  Theory 
 The essential foundation of this study was to construct a rigid body dynamics 

model of the knee that could be used to predict in vivo knee kinetics.  This model was 

proposed to be an inverse dynamics model, implying that kinematics would be input, and 

kinetics would be output.  As with all dynamics models, a system of equations would 

need to be established and unknowns would then be determined.  Due to its 

computational efficiency, it was decided that Kane’s theory of dynamics would allow for 

the construction of the most ideal model.   

 Kane’s theory of dynamics is founded upon the concept that traditional methods 

of solving dynamics systems are unnecessarily laborious (Kane and Levinson, 1985).  

Given a system of multiple rigid bodies, Newtonian and Lagrangian mechanics both 

solve equations of motion for each rigid body separately.  Given a contact between two 

bodies in a 3-D system, there will be three contact forces exerted by each body upon the 

other.  These forces will each appear twice within the equations of motion in Newtonian 

and Lagrangian mechanics, once for each body.  Kane’s method considers all bodies 

simultaneously and eliminates the redundancy of this process.  This can greatly increase 

computational efficiency for multi-body systems. 

 Kane’s method achieves its efficiency by introducing the abstract concepts of 

generalized speeds and generalized active forces.  Generalized speeds are variables that 

characterize the speed of a particle, body, or set of particles or bodies in reference to 

some coordinate system.  These can represent either translation velocities or, in the case 

of bodies, angular velocities.  In the simplest case, consider a particle A in reference 
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frame N.  The velocity of A in N, , can be represented by utilizing generalized speeds 

in the form 

AN v

 , (2.1.1) 332211 NuNuNuv AN ++=

where u1, u2, and u3 are generalized speeds of A in N.  Note that this equation completely 

characterizes the motion of A in N, and, hence, given the motion of N in another 

reference frame, will lead to the characterization of the motion of A in that reference 

frame as well.  Similarly, given a body B, its motion in N can be completely 

characterized utilizing 6 generalized speeds.  Defining BO as the mass center of body B 

and noting that u1, u2, and u3 are defined differently from above, the motion of B is 

represented by 

  (2.1.2) 332211 NuNuNuv BON ++=

and  

   (2.1.3) 362514 NuNuNuBN ++=ω

where u1, u2, and u3 characterize the velocity of BO in N and u4, u5, and u6 characterize 

the angular velocities of B in N.  Specifically, these generalized speeds are defined as 

    (2.1.4) ,11 Nvu BON ⋅≡ ,22 Nvu BON ⋅≡ ,33 Nvu BON ⋅≡

,25 Nu BN ⋅≡ ω    (2.1.5) ,14 Nu BN ⋅≡ ω ,36 Nu BN ⋅≡ ω

where  represents the angular velocity of body B in N, and the symbol “·” denotes 

the dot product.   

BNω

 Although these generalized speeds appear synonymous with the components of 

the velocity vectors in N, they are handled completely differently.  They are incorporated 

into the angular and translational velocity vectors through the use of partial angular 
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velocities and partial velocities. Using the same variables as above for body B in N and 

for n generalized speeds, the angular velocity and velocity vectors are written as 

  (2.1.6) ∑
=

+=
n

r
r

BO
r

NBON vuvv
1

0
~~

and 

  (2.1.7) ∑
=

+=
n

r
r

B
r

NBN u
1

0
~~ ωωω

where BO
r

N v~  is called the rth (constrained) partial velocity of BO in N, 0
~v  is the 

(constrained) velocity remainder of BO in A, B
r

Nω~  is the rth (constrained) partial angular 

velocity of B in N, and 0
~ω  is the (constrained) angular velocity remainder of B in N.  

Generally, n may be greater than the number of degrees of freedom within a system, 

implying that at least two of the generalized speeds are not independent of each other.  In 

this situation, the previously defined terms are deemed unconstrained.  When n is equal 

to the number of degrees of freedom in a system, than the terms are constrained.  The 

system utilized in this study was constrained. Therefore, for efficiency and simplicity, all 

derived terms will be constrained, and the unconstrained system will not be considered.  

By equating equation (2.1.2) to (2.1.6) and (2.1.3) to (2.1.7), it follows that 

 11
~ Nv BON = , 22

~ Nv BON = , 33
~ Nv BON = , 0~

0 =v , (2.1.8) 

 11
0~ NBN =ω , 22

0~ NBN =ω , 33
0~ NBN =ω , 0~

0 =ω . (2.1.9) 

Hence, if there is no generalized speed associated with a particular unit vector of a 

reference frame, then that unit vector will not appear within the partial velocity terms. 
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 Now, denote a set S of v particles, at which forces (both contact and distance) are 

acting, as Pi (i =1…v).  For each generalized speed there is a corresponding force term 

called a (constrained) generalized active force for S in N.  The (constrained) generalized 

active forces are defined by 

  (r = 1,…,n), (2.1.10) ∑
=

⋅≡
v

i
i

P
r

N
r RvF i

1

~~

where iP
r

N v~  are the (constrained) partial velocities of Pi (i =1…v) and Ri is the resultant 

of all contact forces and distance forces acting on Pi (i =1…v).  This equation implies 

several details fundamental to Kane’s method.  Firstly, if a certain particle of S does not 

have a partial velocity associated with it, then forces acting upon this particle will not be 

included within the generalized active force term.  From equations (2.1.2), (2.1.4), and 

(2.1.6), in order for a point to have a partial velocity associated with it, its velocity must 

be given in terms of at least one generalized speed.  Otherwise, the forces at this particle 

will be non-contributing forces, and will not be contained in the eventual dynamical 

equations.  Secondly, only the resultant, Ri, of forces upon Pi is considered.  Therefore, 

couple resultants will not be present within the generalized active force equation, and will 

not be contained within the eventual dynamical equations.   

 Equation (2.1.10) pertained to a set of particles, but the focus of this study was 

upon rigid bodies.  Equation (2.1.10) can also be applied to points of rigid bodies, but 

torques must be taken into account as well.  Any set of forces acting upon a rigid body 

can be replaced with a resultant vector, say R, and a couple of torque T.  Let Q be the 

point of B through which R acts.  The contribution of this set of forces to the 

(constrained) generalized active force equation is  
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 RvTF Q
r

NB
r

N
Br ⋅+⋅= ~~)~( ω  (r = 1,…,n) (2.1.11) 

Similar to equation (2.1.10), this equation implies that in order for forces and torques to 

appear within the generalized active force equations, the points at which forces act must 

have velocities written in terms of generalized speeds.  Additionally, the angular velocity 

of the body must be written in terms of generalized speeds in order for torques to be 

contained within the active force equations. 

 In addition to active forces acting upon rigid bodies, passive (or inertia) forces 

must be taken into account when representing the dynamics of the system.  For the 

previously used rigid body B in N, this is done first by determining the inertial force, F*, 

and torque, T*, given by 

  (2.1.12) BONaMR −≡*

and 

 ωωα ⋅×−⋅−≡ IIT* , (2.1.13) 

where M is the mass of B,  is the acceleration of BO in N, α is the angular 

acceleration of B in N, ω is the angular velocity of B in N, and 

BON a

I is the central inertia 

dyadic of B.  As with the active forces, these terms are incorporated into (constrained) 

generalized inertia forces for B: 

 *~*~*)~( RvTF BO
r

NB
r

N
Br ⋅+⋅= ω  (r = 1,…,n). (2.1.14) 

 Once the generalized active and inertia forces are determined, the r dynamical 

equations, where r is the number of generalized speeds, can be written in order to solve 

the system: 

 0*~~
=+ rr FF  (r = 1,…,n). (2.1.15) 
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In this study, as previously stated, the number of generalized speeds, n, equaled the 

number of degrees of freedom within the system.  Hence, equation (2.1.15) simplifies to 

 0* =+ rr FF  (r =1,…,n) (2.1.16) 

which is d’Alembert’s Principle.  This states that sum of the active forces and the passive 

forces within a system is equal to zero.   

 It should be noted that the number of dynamical equations corresponds to the 

number of generalized speeds utilized within the system.  Each dynamical equation 

corresponds to a specific generalized speed.  Any multi-body system contains an infinite 

number of forces (e.g. the force required to hold two adjacent particles together within a 

rigid body), but the majority of these forces are non-contributing, and will not appear 

within the generalized active force equations.  Thus, they will not appear within the 

dynamical equations, and cannot be directly calculated.  If a non-contributing force is 

sought, them auxiliary generalized speeds can be introduced to the system.  These are 

speeds that are equal to zero in reality, but are introduced as variables in order to have the 

corresponding particles (or bodies, for angular velocities) have corresponding partial 

velocities.  This will subsequently result in the force appearing within the dynamical 

equations.  For inverse dynamics problems, all forces and torques to be determined will 

be non-contributing.  Hence, it is necessary to introduce an auxiliary generalized speed 

for each unknown that is to be calculated. 
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2.1.2:  Model 
 An inverse dynamics model of the lower limb was created within the AutolevTM 

environment based upon the concepts of Kane’s method of dynamics presented within the 

previous section.  Simplifying reduction assumptions were made according to which 

forces would be primarily involved in a DKB.  The model contained two rigid bodies 

representing the femur and tibia (Figures 2.1 and 2.2).  Since the system was 

unconstrained, there were 12 degrees of freedom (6 for each body), and hence, 12 

unknowns could be found.  The complex hip reactions were replaced with a resultant 

force, FH, and a torque, TH, each with three scalar components.  Hence, 6 unknowns were 

required to model the hip reaction.  The tibiofemoral joint was replaced with a resultant 

force, FTF, and a torque, TTF.  FTF was composed of three scalar components, but the 

component of TTF in the direction of the medial-lateral (ML) axis (flexion-extension 

torque) was assumed to be zero.  This was because it was assumed that the extensor 

mechanism is the primary activator during a DKB, and no additional torque was needed.  

Thus, five unknowns were required for the tibiofemoral joint interaction.  The patellar 

ligament force, FPL, was the final unknown quantity.  The model was created so that it 

could be applied to both normal knee subjects and TKA subjects.   

Activity 
 The model was constructed to predict in vivo lower limb kinetics throughout 

weight-bearing flexion.  Since gait, which is potentially more clinically applicable than 

weight-bearing flexion, involves the activation of muscles, such as the soleus and 

gastrocnemius, outside of the extensor mechanism (Otter et al., 2004), it was decided that  
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Figure 2.1:  Lateral view of free body diagram of 
lower limb model. 

 

Figure 2.2:  Frontal view of free 
body diagram of lower limb model. 
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this model would not accurately predict gait kinetics.  A deep knee bend (DKB) was the 

only activity to which the model was applied.   

Rigid Body Rotations 
 The angle of flexion, θflex, was established as a function of time, t.  The DKB 

activity was assumed, for standardization, to occur from t = 0 to t = 1.  Since the initial 

applications of this model were aimed at assessing varying kinetics due to differences in 

kinematic patterns over flexion, not specifically the speed of performing the activity, the 

same temporal function was used for all patients: 

 (( tflex *cos1*
1802

max ππβ
θ −= )) , (2.2.1) 

where βmax represents the maximum flexion angle achieved for the DKB.  Figure 2.3 

displays θflex over time for a sample subject that achieved 100º at maximum flexion.  This 

function was chosen because it allows for a gradual increase in flexion at the beginning 

of the interval, and a gradual decrease at the end of the interval.  This was more 

representative of realistic motions, as opposed to either a linear function or one that 
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 Figure 2.3:  Flexion angle versus time for a sample subject with 100º maximum 
 flexion 
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corresponded to a sudden start (or stop) at the beginning (or end) of the interval. 

  The orientation and motion of each body was characterized by specifying both the 

location of a point on each body and the rotations of each body’s local reference frame.  

Specifically, the model was constructed to allow the position of the tibia with respect to 

the global reference system, N, to be defined in terms of three sequential fixed axis 

rotations, namely a N1-N2-N3 rotation sequence.  These rotations are represented by the 

variables θTib−1, θTib-2, and θTib-3.  The model was constructed to utilize a differentiable 

polynomial function, in terms of flexion angle, θflex, to define each rotation over the 

course of the activity.  The order of each equation was adjusted to achieve a high r2 value.  

Representing the coefficients of the flexion terms by c1,i,…,cn,i for a nth order equation for 

θTib−i, the general function was 

 , (2.2.2) iflexi
n
flexin

n
flexiniTib cccc ,0,1

1
,1, ++⋅⋅⋅++= −

−− θθθθ

where c0,i represents the value of θTib−I at full extension.  The rotations of the femur were 

specified relative to the tibia by using a 3-2-1 Euler angle sequence in which θflex, defined 

by equation (2.2.1), represented the rotation about the Tib3 axis.  Similar to the tibial 

rotations characterized by equation (2.2.2), the remaining two angles, θfem−1, θfem-2, were 

also defined with differentiable polynomials.  Once the rotations of the two bodies were 

defined, the angular velocity of the tibia in N, , and the femur in N, , were 

determined from the cosine matrices.  Specifically, these terms were given by 

TibNω FemNω

 32
1

21
3

13
2 TibTib

dt
dTib

TibTib
dt

dTib
TibTib

dt
dTib NNN

TibN
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⋅+⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
⋅+⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
⋅=ω  (2.2.3) 

and 
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2 FemFem

dt
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⎝

⎛
⋅+⎟
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⎜
⎝

⎛
⋅=ω  

 32
1 FemFem

dt
dFemN

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⋅+ , (2.2.4) 

where the j
i

N

Body
dt

dBody
⋅  terms are found by differentiating the ijth element of that 

body’s direction cosine matrix. 

 The translation of the femur with respect to the tibia was characterized by 

defining the position vector from a point fixed on the tibia to a point fixed on the femur.  

The scalar components, in the tibial reference frame, of this vector were defined by 

polynomial functions dependent upon θflex. 

 

Morphological Parameters 
 Population estimates for soft tissue attachment sites and for force application sites 

were adopted from the literature (White et al., 1989) and are given in Appendices A and 

C (Tables A.1, A.2, C.1, and C.2).  Soft tissue forces, aside from the quadriceps force, 

were applied in the direction of the positional vector connecting the attachment sites of 

the proximal and distal ends.  The direction of the quadriceps force was applied by 

assuming an angle to the femoral axis.  Since soft tissue weight and geometry, in addition 

to bone weight and geometry, had to be considered in order to predict realistic kinetics, 

thigh and shank masses, taken from literature (Pierrynowski and Morrison, 1985) were 

included within the model (Table A.3, Appendix A).  The mass centers for the thigh and 

shank were determined from a study of 13 cadavers (Hinrichs, 1990), and are given in 
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Appendix A (Table A.4).  The inertial properties of the thigh and shank were calculated 

using truncated cone, or frustum, theory (Appendix B; Hanavan, 1964) and by obtaining 

sample measurements of the leg of an average size person (Table B.1).  A general body 

weight of 757 N was assumed for the model, which was the approximate body weight of 

the sample 24 year old, 1.87 m tall male.  

 Parameters were entered into the model through the input (.in) file.  AutolevTM 

produced the blank input file, and the morphological parameters were manually entered 

into the file.  A variable parameter was added to the model in order to allow rotation of 

the entire model around the N3 axis due to rotation of the original fluoroscopic video, 

which is frequently encountered. 

 

Ground Reaction Force 
 In order to take into account body weight, the model was constructed to utilize an 

input ground-reaction force at the distal end of the tibia.  It was assumed that force-plate 

data would not be readily available for all subjects to which this model would be applied.  

Therefore, a sample force-plate reaction was taken of the previously mentioned male 

whose body weight was used for the model.  Triaxial force data was taken over the 

course of a deep knee bend of the right leg (Figure 2.4).  The subsequent polynomial  

equations used to approximate these forces were  

  (2.2.5) ,1099.532.1577.18452.894019198185457.6573 23456
1 ++−+−+−=− ttttttFGT

,25.3442.2090254169642216356913023639628 23456
2 ++−+−+−=− ttttttFGT  (2.2.6) 

and  
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 Figure 2.4:  Force-plate data for ground reaction force over course of a right leg 
 DKB.  Positive FGT-1 acts in a posterior direction.  Positive FGT-2 acts in a 
 superior direction.  Positive FGT-3 acts in a lateral direction. 
 

  (2.2.7) ,167.3913.1406.14431.44437.64331.45391256 23456
3 −−+−+−=− ttttttFGT

where each equation produces forces in Newtons.  A positive FGT-1 value indicates a 

posteriorly directed force upon the distal end of the tibia, a positive FGT-2 value indicates 

a superiorly directed force, and a positive FGT-3 value indicates a laterally directed force.  

Since this data was taken for a right leg, the application of the computational model to a 

left leg included reversing the direction of FGT-3. 

Patellofemoral Joint 
 The patellofemoral joint force was assumed to be adequately represented by a 

normally directed force (normal to the patellar tilt), FPFn, and a ML force, FPFml.  Only 

two components were assumed because, due to articular cartilage, the contact was 

assumed to be frictionless, and thus the superior-inferior (SI) force was assumed to be 0.  

The ML force was retained due to the fact that the patella slides within the trochlear 
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groove during normal motion, particularly during higher degrees of flexion (Hungerford, 

1979).  It was expected that the sides of the groove would apply a force to the patella in 

order to resist subluxation.  A sagittal view of the patellofemoral joint mechanism is 

displayed in Figure 2.5, and the subsequent free body diagram is given in Figure 2.6.  

Assuming that the patellar ligament force, FPL, is known, the remaining forces within the 

system can be determined.  Specifically, the Pat2 components of the quadriceps force and 

patellar ligament force must sum to zero.  Hence, 

 )()( 2222 PLPatFQPatF PLQ ⋅−=⋅ . (2.2.8) 

 After calculating the patellar ligament force, the normal component of the 

patellofemoral force can be similarly determined: 

 )())(( 2121 QPatFPLPatFF QPLPFn ⋅+−⋅= . (2.2.9) 

This solves the patellofemoral system in the sagittal plane, but the ML component of the 

patellofemoral force remains unknown.  Figure 2.7 displays a transverse view, from a 

superior vantage point, of the patellofemoral joint.  Although not displayed in the figure, 

the ML component of the patellar ligament was assumed to be zero.  Hence, the ML 

patellofemoral force can be solved in terms of the quadriceps force: 

 )( 23 QPatFF QPFml ⋅−= . (2.2.10) 

The patellar ligament was assumed to be inextensible, as has been frequently assumed 

(Shelburne and Pandy, 1997), and the length was taken as 6.45 cm (Clément et al., 1989).  

This ligament was assumed to remain in the same sagittal plane as the tibia.    The patella 

was assumed to be 5 cm in length from base to apex, and the two patellofemoral forces 

(FPFn and FPFml) were assumed to be applied at the midpoint of this length.  The position  
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Figure 2.5:  Sagittal view of 
patellofemoral mechanism. 

 

Figure 2.6:  Sagittal free body diagram of 
patella. 

 
 Figure 2.7:  Superior view of patello- 
 femoral free body diagram in transverse 
 plane.  FQ acts in the Q2 direction. 
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of the patella was characterized by the patellar ligament angle, θPL, and the patellar tilt 

angle, θPat (Figure 2.6), which were defined as polynomial functions similar to equation 

(2.2.2).  The position of the apex of the patella was characterized by the known length of 

the patellar ligament and θPL.  θPat then allowed for the position of the patella to be 

completely characterized.  As with the patellar ligament, the patella was assumed to 

reside in the same sagittal plane as the tibia.  The quadriceps force was assumed to act 

within the same sagittal plane as the femur.  Since the angle between the quadriceps and 

the long axis of the femur decreases over flexion (due to the motion of the patella), it was 

defined by the approximating function 

 )*5.23(
180

tQ −=
πθ , (2.2.11) 

implying that this angle was 3º at full extension and decreased linearly over time to 0.5º 

at maximum flexion.  Since the length of the patella was approximated, the quadriceps 

force could have been applied in the direction from its origin to the patellar base.  

However, this model did not account for wrap-around of the quadriceps about the distal 

anterior femur.  Simply utilizing a position vector from the quadriceps origin to the 

patellar base would have resulted in a negative quadriceps angle, creating a 

biomechanically unrealistic situation in which contraction of the extensor mechanism 

aids flexion, rather than resisting it. 

Ligaments 
 The four major ligaments (neglecting the patellar ligament, which has already 

been discussed) of the knee were incorporated into this model: the lateral collateral 
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ligament (LCL), the medial collateral ligament (MCL), the anterior cruciate ligament 

(ACL), and the posterior cruciate ligament (PCL).  The MCL was divided into three 

bundles (Abdel-Rahman and Hefzy, 1998; Caruntu and Hefzy, 2004): the anterior bundle 

(aMCL), the oblique bundle (oMCL), and the deep bundle (dMCL), as is shown in Figure 

2.8.    The LCL was modeled as a single bundle.  The ACL was comprised of an 

anteromedial bundle (aACL) and a posterolateral bundle (pACL) (Arnoczky, 1983; 

Norwood and Cross, 1979).  Similarly, the PCL was divided into a posteromedial bundle 

(pPCL) and an anterolateral bundle (APCL) (Hughston, 1980; Burks, 1990; Amis, 2003).  

All ligament attachment sites were adopted from the literature (White et al., 1989; Abdel-

Rahman and Hefzy, 1998), and are given in Appendix C (Tables C.1 and C.2).  The 

force-strain equations were assumed to be nonlinear elastic equations given by (Grood 

and Hefzy, 1982): 

 
Figure 2.8:  Diagram of collateral ligaments in the model, including anterior, oblique, 
and deep bundles of the MCL. 
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         ,2
iii kF ε= ,0>iε  

 ,0=iF           ,0≤iε  (2.2.12) 

where  is the force in ligament i, kiF i is a stiffness parameter, and iε  is the ligament 

strain, given by: 

 ,
)(

0

0

i

i

L
LLi

i

−
=ε  (2.2.13) 

where  is the length of ligament i and  is the reference length.  AutoleviL
i

L0
TM does not 

allow piecewise functions, such as equation (2.2.12), to be defined.  Therefore, it was 

necessary to add these equations to the C code directly.  All ligament stiffness values (Li 

et al., 1999b) and reference lengths (Abdel-Rahman and Hefzy, 1998) were determined 

from previous mathematical models, and are given in Table C.3 (Appendix C). 

 

AutolevTM and C Coding 
 This model was created within AutolevTM, which then generated a C code for 

performing the actual calculations and generating results.  Four basic codes were 

generated, according to whether the knee was a right knee facing right or left, or a left 

knee facing right or left.  This was to accommodate the four different variations of 

subject orientation that occur in fluoroscopic analyses of DKBs.  Many variables required 

knee and direction specific signs (for instance, +N3 is medial for a right knee facing left 

but lateral for a left knee facing left), so this had to be accounted for in the model.  In the 

interest of brevity and efficiency, only the creation and application of generalized speeds 

will be discussed.  The remaining aspects of the code can be discerned from the 
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previously discussed features of the model, from the theory of Kane’s method, and from 

the AutolevTM manual (Kane and Levinson, 2000). 

 After defining the 3-D orientations and motions for the femur and the tibia, 

auxiliary generalized speeds were introduced.  As discussed within Chapter 2.1.1, an 

auxiliary generalized speed had to be created for each unknown variable to be determined 

by the model.  Specifically, three generalized speeds were created for the angular velocity 

terms for each body: 

 , (2.2.14) 332211 *** NUNUNUTibNTibN +++= ωω

 , (2.2.15) 362514 *** NUNUNUFemNFemN +++= ωω

where U1-U6 are auxiliary generalized speeds.  The remaining 6 auxiliary generalized 

speeds were introduced at the tibia-ground and tibia-femur interactions as follows: 

 , (2.2.16) 392817 *** NUNUNUvTGN ++=

 , (2.2.17) 312211110 *** NUNUNUvv TFNFTN +++=

where  is the velocity of the tibia-ground contact, TG, in N,  is the velocity of 

the femorotibial contact in N,  is the velocity of the tibiofemoral contact in N, and 

U

TGN v FTN v

TFN v

7-U12 are auxiliary generalized speeds.  In realistic motion, all generalized speeds are 

equal to zero, but they are needed within the analysis in order to bring the desired 

unknowns into the generalized active force equations.  The 12 subsequent dynamical 

equations were then utilized to simultaneously solve for the 12 unknowns. 

 The AutolevTM model generated a 11264 line C code, which was too large to 

include within this manuscript.  The only modifications made directly to the C code were 
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for the ligament forces given in equation (2.2.12).  The force-strain equations were 

initially defined in AutolevTM as 

 f_mcla=kmcla*strain_mcla^2, (2.2.18) 

which corresponds to the positive strain piecewise segment of equation (2.2.12).  This 

produced the following definition within the C code: 

 F_MCLA = KMCLA*pow(STRAIN_MCLA,2);. (2.2.19) 

This definition was replaced with the following coding 

   if (STRAIN_MCLA < 0) 
    { 
   F_MCLA = 0; 
    } 
    else 
    { 
  F_MCLA = KMCLA*pow(STRAIN_MCLA,2); (2.2.20) 
    } 

which allowed the ligament force-strain relationships to be defined piecewise. 

 

2.1.3:  Kinematics Acquisition 
 Although kinematics could theoretically be obtained from many methods (gait 

analysis, theoretical equations, etc.) and entered into the model, this model utilized 

fluoroscopically obtained kinematics.  The model was designed to utilize input 3-D 

kinematics, obtained from a highly accurate 3-D to 2-D registration process (Mahfouz, 

2003), as displayed in Figure 2.9.  This process utilizes 3-D computer aided design 

(CAD) models, which are registered to 2-D fluoroscopic images taken from videos of 

subjects performing activities.  For knee implants, these models are constructed based 

upon the manufacturing specifications.  For normal knees, 3-D models are constructed 

from segmentation of subject specific computed tomography (CT) data (Komistek et al., 
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Figure 2.9:  Registration of 3-D CAD models of femoral and tibial components to 
2-D fluoroscopic image for a TKA subject. 

 

2003).  The rotations and translations of the rigid bodies were thus obtained from 

registration, and then utilized to construct the polynomial equations dependent upon θflex.  

For TKA knees, the implants were assumed to be rigidly fixed to the bones.  This implies 

that the kinematics obtained of the implants were assumed to be those of the actual bones.  

Also, it had to be assumed that the TKA components were aligned correctly within the 

bones.  The registration process characterizes the position of the femoral implant (or bone 

model, for normal knees) relative to the tibial implant by defining the position vector 

between the model centroids.  Since it was assumed that knowledge of the actual size of 

the femur and tibia for both normal and TKA subjects would not be readily available, the 

position vector from the centroid of the 3-D CAD models to the center of mass of the 

bones was estimated.   

 The registration method estimates the femorotibial contact points by determining 

the closest points on the femoral condyles to the tibial plateau (Hoff et al., 1998).  These 

points are then defined as the femorotibial contacts.  The tibiofemoral contacts are then 

identified by drawing a vector distally in the axial tibial direction from each femorotibial 

point.  The intersection of these vectors with the tibial plateau identifies the location of 
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the tibiofemoral contacts.  The model assumed a unicompartmental contact.  The 

positions of the two contacts derived from the registration process were therefore 

averaged to minimize the error associated with the unicompartmental assumption.  A 

single mobile contact point was thus used as the point of application of the tibiofemoral 

contact forces. 

 
 Figure 2.10:  Patellar ligament and patellar tilt angle determination. 

 The patellar ligament angle, θPL, and the patellar tilt angle, sagittal patella tilt 

angle, θPat (see Figure 2.6) were determined from 2-D measurements made upon the 

fluoroscopic image.  θPL was determined by drawing a line from the tibial tuberosity to 

the apex of the patella.  θPL was taken to be the angle between this line and the vertical.  

The patella tilt was approximated by drawing a line from the apex to the base of the 

patella.  θPat was taken to be the angle between this line and the vertical.  This process is 

shown in Figure 2.10.  Since 3-D positions of the patella were not available, both the 

patellar ligament and the patella were assumed to reside in the same sagittal plane as the 

tibia.   

 

 27



2.2:  Application of the Model to Obtain Clinically Relevant Results 

2.2.1:  Normal versus TKA Tibiofemoral Forces 
 7 normal knee subjects (Komistek, 2003) and 7 subjects implanted with a Sigma 

Fixed Bearing, Posterior Stabilizing (PS) TKR (DePuy Orthopaedics, Inc; Yoshiya, 

2004) analyzed from previous studies were modeled.  The subjects performed a DKB 

under fluoroscopic surveillance from full extension to maximum flexion.  Since the angle 

of maximum flexion varied from subject to subject, the kinematics were only obtained for 

full extension to 90º of flexion.  Images were analyzed for the normal subjects at 15º 

increments, and at 30º increments for the TKA subjects.  All patients signed informed 

consent statements, and the research was approved by both the Rose Medical Center and 

University of Tennessee Institutional Research Review Boards (IRRB 0445 and 897-A, 

respectively).   

 The normal group, on average, experienced normal femoral rotation, defined as 

external femoral rotation relative to the tibia with increasing flexion, of 18.0º from full 

extension to 90º of flexion.  Figure 2.11 displays the average condylar rollback pattern 

over the DKB activity.  The group had a medial pivot pattern, and achieved -21.4 mm of 

lateral condylar rollback and -4.2 mm of medial condylar rollback.   

  The TKA group experienced slight normal axial rotation from 0º to 90º of 

flexion of 1.1º.  Figure 2.12 displays the average condylar rollback pattern for this group 

over the activity.  The medial condylar contact achieved a minimal posterior rollback of -

0.2 mm, while the lateral contact moved only slightly more posteriorly (-1.2 mm). 

 Axial tibiofemoral contact forces were obtained throughout the flexion cycle from 

the kinetic model, and the maximum contact force was recorded for each subject.  Group 

 28



 29

Average Normal Anterior / Posterior Position

-15

-10

-5

0

5

10

15

0 15 30 45 60 75 90

Flexion Angle (Degrees)

A
P 

Po
si

tio
n 

(m
m

) [
- p

os
te

rio
r, 

+ 
an

te
rio

r]
105

Average
LAP
Average
MAP

 
 Figure 2.11:  Condylar AP position over a DKB for the normal knee subjects.  Zero 
 is defined as the mid-point of the tibial plateau in the sagittal plane.  Positive values 
 represent more anterior positions. 
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 Figure 2.12:  Condylar AP position over a DKB for the TKA subjects.  Zero is 
 defined as the mid-point of the tibial plateau in the sagittal plane.  Positive 
 values represent more anterior positions. 



averages were obtained, and Levene’s test was used to determine whether or not means 

could be compared assuming equal variances or not.  Statistical significance was assigned 

at the α = 0.05 level. 

2.2.2:  Kinetic Effects of Femoral Rollback 
 The model was adjusted for a sample subject, from the Sigma TKA group 

(Chapter 2.2.1) to allow for adjustment of the condylar rollback and for posterior shift of 

the femur relative to the tibia.  This consisted of modifying the model to allow the 

coefficients of the polynomial parametric function for the AP position of the tibiofemoral 

contact to be entered into the input file.  The n+1 variables contact0, …,contacti, …, 

contactn, where n is the order of the polynomial, denote these coefficients. The code was 

also modified to allow the AP position of the femur to be entered into the input file.  The 

subject was analyzed throughout a DKB from full extension  to  maximum  flexion  

(100º).   The original in vivo condylar contact AP positions are displayed in Figure 2.13.  
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 Figure 2.13:  Condylar AP position over a DKB for the sample TKA subject.  
 Zero is defined as the mid-point of the tibial plateau in the sagittal plane.  
 Positive values represent more anterior positions. 
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This subject experienced -4.1 mm lateral condylar rollback, 0.4 mm anterior condylar 

translation, and 5.1º external femoral rotation from 0º to 100º of flexion.  The average AP 

contact position (average of the medial and lateral contacts) demonstrated -1.9 mm of 

femoral rollback, or femorotibial contact translation. 

 The AP pattern of the average tibial condylar contact was varied over the last two 

increments of flexion (60º to 90º and 90º to 100º) in order to simulate magnitudes both 

more anterior and more posterior than -1.86 mm of femorotibial contact translation.  100º 

positions were input according to overall (the difference in AP position from full 

extension to 100 º of flexion) femorotibial contact translation values of +6 mm (6 mm 

anterior from the full extension position), +4 mm, +2 mm, 0 mm, -4 mm, and -6 mm.  

The 90º contact position was determined utilizing the same proportional distance between 

the 60º position and the 100º position as the original motions.  Figure 2.14 displays the 

resulting AP positions over flexion for the various simulated AP translation patterns.   

 The kinetic plots were calculated for each AP pattern over the DKB activity, and 

the maximum tibiofemoral and quadriceps loads were tabulated for each condition.  The 

loads were then compared with the predicted initial in vivo loads. 
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 Figure 2.14:  Average AP femorotibial contact patterns over a DKB for 
 the sample TKA subject.  The solid line represents the observed in vivo 
 contact pattern.  Overall AP translation for the activity was defined as the 
 difference between the 100º position and the 0º position.  Zero on the y-axis 
 is defined as the mid-point of the tibial plateau in the sagittal plane.  Positive 
 values represent more anterior positions. 
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Chapter 3:  Results 
 The relevant results of the constructed computational model were given by the 

two clinical applications of the model, since no specific results are associated with the 

construction of the model in general.  However, in order to show the extent of the model, 

all calculated unknown joint forces, joint torques, soft tissue loads, ligament strains, and 

ligament forces are presented for a sample normal knee patient.  Thus, the reported 

results will be confined to these three particular aspects of this study.  The results are 

divided as follows: 

 3.1.  Kinetic results for a sample normal knee subject 

 3.2.  Normal versus TKA tibiofemoral forces 

 3.3.  Kinetic effects of femoral rollback 

 

3.1:  Kinetic Results for a Sample Normal Knee Subject 
 The 3-D computational model of the lower limb was constructed to calculate 12 

unknown forces and torques.  These consist of 3 tibiofemoral forces, 2 knee torques 

(torques exerted by the femur onto the tibia), 3 hip joint forces, 3 hip torques (torques 

exerted by the pelvis onto the femur), and the patellar ligament force.  All other forces 

included within the model were either input (the ground reaction force), dependent upon 

one or more of the calculated unknowns (the quadriceps force and the 2 patellofemoral 

contact forces), or were functions of the positions of the bones (the ligamentous forces).  

These results are presented for a sample normal knee subject. 
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 The sample subject was arbitrarily chosen from a previous study (Komistek, 

2003).  A normal knee subject was chosen since most TKA implants involve the 

complete resection of one or both cruciates.  When this is the case, the ligaments are not 

included within the model.  Choosing a normal subject allowed the results for cruciate 

ligament forces to be demonstrated.  Figure 3.1 displays the AP position of the 

femorotibial contacts upon the tibial plateau over the DKB at 15º increments.  Zero is 

defined as the mid-point of the tibial plateau in the sagittal plane, with positive AP 

translation values denoting a position anterior to this point.  Note that this subject’s femur 

was internally rotated relative to the tibia over the majority of the DKB activity.  The 

subject then experienced a very high amount of external femoral rotation (14.8º) in the 
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 Figure 3.1:  In vivo condylar AP positions for the sample subject.  Zero, on the 
 AP position scale, denotes the midpoint of the tibial plateau in the sagittal 
 plane.  Positive values denote positions anterior to this mid-point.  The flexion 
 angle is given for each pair of contact points. 
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last increment of flexion (105º to 120º).  The subject experienced a total amount of 

external femoral axial rotation of 25.0º from full extension to maximum flexion (120º).  

This subject experienced 34.1 mm of lateral condylar rollback, and 1.31 mm of medial 

condylar rollback. 

 Since the flexion motion of each patient was determined from equation (2.2.1) 

over an interval of t = 0 to t = 1, plots were initially generated in terms of time.  Figure 

3.2 shows an axial tibiofemoral force plot for a sample TKA patient with respect to time.  

However, to obtain more clinically relevant results, plots were subsequently constructed 

with respect to flexion angle, θflex.  Figure 3.3 gives the same tibiofemoral force profile as 

shown in Figure 3.2, but plotted with respect to flexion angle instead of time.   It should 

be noted that this method resulted in some flexion dependent force plots appearing 

asymptotic, whereas the original time dependent plots were clearly not asymptotic. 
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 Figure 3.2:  Axial tibiofemoral contact force over time for the sample normal 
 knee patient. 
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3.1.1:  Knee Joint Forces and Torques

Sample Normal Knee Subject Axial 
Tibiofemoral Contact Forces vs. Flexion Angle
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 Figure 3.3:  Axial tibiofemoral contact force over flexion angle for the sample 
 normal knee patient. 
 

 The predicted tibiofemoral contact forces for the sample subject are shown in 

Figure 3.4.  A positive AP force value indicates a posteriorly directed force exerted upon 

the femur by the tibia, and a positive ML force value indicates a medially directed force 

exerted by the tibia upon the femur.  For this particular subject, the axial force peaked at 

1.61xBW at about 120º of flexion.  The AP force shifted from anteriorly directed to 

posteriorly directed at approximately 22º of flexion, and obtained a peak force of 

0.75xBW at about 120º of flexion.  The ML force shifted from laterally directed to 

medially directed at approximately 65º of flexion. 

 The torques exerted upon the tibia by the femur are shown in Figure 3.5.  Ttf-1 

represents the torque around the N1 axis.  A positive value indicates a valgus inducing 

torque.  Ttf-2 denotes the torque around the N2 axis.  A positive value indicates a torque 
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Sample Normal Knee Subject Tibiofemoral 
Contact Forces vs. Flexion Angle
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 Figure 3.4:  Tibiofemoral contact forces over the DKB for the sample normal 
 knee patient.  A positive FTF-1 indicates a posteriorly directed tibiofemoral force.  
 A positive FTF-3 force indicates a medially directed tibiofemoral force. 
 

Sample Normal Knee Subject Knee Torques 
vs. Flexion Angle

-0.035

-0.030

-0.025

-0.020

-0.015

-0.010

-0.005

0.000

0.005

0.010

0.015

0.020

0 20 40 60 80 100 120 140

Flexion Angle (deg)

To
rq

ue
 (x

B
W

m
)

T-tf-1
T-tf-2

 
 Figure 3.5:  Knee torques over the DKB for the sample normal knee patient.  A 
 positive TTF-1 value indicates a valgus inducing torque.  A positive TTF-2 value 
 indicates an internal tibial rotation inducing torque.



inducing internal rotation of the tibia with respect to the femur.  The sample patient 

experienced a valgus torque at the beginning of the DKB.  However, at 41º of flexion, the  

torque changed to a varus torque.  Ttf-2 remained positive over the entire activity.  Both 

torques were very small in magnitude, with neither breaching ±0.1xBWm.   

3.1.2:  Patellar Forces 
 Predicted results for the patellar forces (see Figures 2.6 and 2.7 for diagrams) for 

the sample subject are given in Figure 3.6.  As with the axial tibiofemoral contact force, 

the quadriceps force, FQ, the normal patellofemoral force, FPFn, and the patellar ligament 

force, FPL, generally increased with flexion.  Both FQ and FPFn reached a maximum of 

approximately 6.0xBW.  A positive value of the medial-lateral component of the 

patellofemoral contact force, FPFml, indicates a medially directed force acting upon the 

femur.  As Figure 3.6 shows, the sample subject experienced a medially directed force 
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 Figure 3.6:  Patellar forces over the DKB for the sample normal knee patient.  A 
 positive FPFml value indicates a medially directed force acting upon the femur. 
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over the majority of the activity, but experienced a change to a laterally directed force at 

116º of flexion. 

3.1.3:  Hip Joint Forces and Torques 
 Calculated hip joint forces exerted by the pelvis onto the femur are displayed in 

Figure 3.7 for the sample subject.  A positive value of the AP component, FH-1, represents 

a posteriorly (in the pelvic, or global, reference frame N) directed force acting upon the 

femur.  A positive SI component, FH-2, represents a downward force in the direction of 

gravity.  A positive ML component, FH-3, indicates a medially directed force (relative to 

the pelvis) acting upon the femur.  As Figure 3.7 demonstrates, FH-1 generally wavered 

around 0xBW throughout the activity.  The downward force followed a similar pattern as 

the ground-reaction force (Figure 2.4).  FH-3 acted in a medial direction until 
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 Figure 3.7:  Hip joint reaction forces over the DKB for the sample normal knee 
patient.  A positive FH-1 value indicates a posteriorly directed force acting upon the 
femur.  A positive FH-2 value indicates a downward force.  A positive FH-3 value 
indicates a medially directed force upon the femur. 
 



approximately 116º of flexion, after which it acted in a lateral direction.  This 

phenomenon was also observed in the ML patellofemoral contact force pattern for this 

subject, as shown in Figure 3.6. 

 The torques exerted by the pelvis onto the femur are shown in Figure 3.8.  A 

positive value for the torque in the N1 direction, TH-1, indicates an abduction moment 

upon the femur.  A positive value for the torque in the N2 direction, TH-2, indicates a 

moment internally rotating the femur relative to the pelvis.  A positive value for the 

torque in the N3 direction acts to cause extension of the femur relative to the pelvis.  The 

three torques were less than 0.1xBWm over most of the DKB.  However, after 

approximately 112º of flexion, the torques rose in magnitude, with TH-2 reaching a 

maximum of 0.69xBWm.   
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 Figure 3.8:  Torques exerted by the pelvis onto the femur over the DKB for the 
 sample normal knee patient.  A positive TH-1 value induces femoral adduction.  A 
 positive TH-2 value induces internal rotation of the femur relative to the pelvis.  A 
 positive TH-3 value induces extension of the femur relative to the pelvis. 
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3.1.4:  Ligamentous Strains and Forces 

Sample Normal Knee Subject Cruciate 
Ligament Strains vs. Flexion Angle
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 Figure 3.9:  Cruciate ligament strains over the DKB for the sample subject.  

The ligamentous forces were functions of the ligament strain, as defined by equations 

(2.2.12) and (2.2.13).  The strains for the cruciate  ligaments  over  the  DKB  are  given  

in Figure 3.9, and those for the collateral ligaments are given in Figure 3.11.  All four 

bundles of the cruciates decreased in length over the DKB.  The LCL decreased in length 

over the DKB as well.  All three bundles of the MCL initially increased in length, then 

gradually decreased.  The deep bundle of the MCL was the only bundle to have a strain 

greater than 0 over the entire activity.  The corresponding cruciate and collateral ligament 

forces are shown in Figure 3.10 and 3.12, respectively.  Only the posterolateral ACL 

bundle and the posteromedial PCL bundle produced notable cruciate forces, and both had 

decreased to 0 by 30º of flexion.  The posterolateral ACL bundle peaked at 0.017xBW 

(approximately 12.9 N) and the posteromedial PCL bundle achieved a maximum force of 
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 Figure 3.10:  Cruciate ligament forces over the DKB for the sample subject.  
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 Figure 3.11:  Collateral ligament strains over the DKB for the sample subject.  



0.030xBW (22.7 N).  The peak LCL force was 0.007xBW (5.3 N), occurring at full 

extension.  The anterior MCL bundle did not significantly contribute, while both the 

oblique and deep bundles exhibited an initial increase in force to 0.014xBW (10.6 N) at 

16º of flexion and 0.013xBW (9.8 N) at 29º of flexion, respectively. 
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 Figure 3.12:  Collateral ligament forces over the DKB for the sample subject.  

3.2:  Normal Versus TKA Tibiofemoral Forces 
 Axial tibiofemoral contact forces were determined over the DKB activity from 

full extension to 90º of flexion for each of the 14 subjects (7 normal knee and 7 TKA).  

For all subjects, the general pattern of the force was to increase over the DKB activity, 

similar to the normal knee sample subject pattern shown in Figure 3.4.  The maximum 

force was generally achieved near 90º flexion.  The normal subjects achieved a mean 

maximum axial tibiofemoral force of 1.35xBW (maximum = 1.70xBW, minimum = 
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1.00xBW, standard deviation (σ) = 0.236xBW).  The TKA subjects achieved a mean 

maximum force of 2.99xBW (maximum = 4.56xBW, minimum = 2.09xBW, σ = 

0.889xBW).  Figure 3.13 displays a box and whiskers plot for the two groups.  The TKA 

distribution is much larger than the normal group (as also evidenced by the larger 

standard deviation).  The TKA distribution is also skewed to the right, whereas the 

normal knee distribution is mostly symmetric. 

 
 Figure 3.13:  Box and whiskers plot of the axial tibiofemoral contact forces 
for both the normal and TKA groups. 

 The variances of the two groups were compared using Levene’s test, which 

concluded that the variance of the TKA group was significantly higher than the normal 

knee group (p = 0.0064).  Since the variances were not equal, a standard t-test could not 

be used to compare the means of the two groups.  A Welch comparison of means (also 

known as the Welch-Satterthwaite method [Tamhane and Dunlop, 2000]), assuming 
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unequal variances, was performed in order to compare means.  The TKA group 

experienced a significantly higher axial tibiofemoral contact force than the normal knee 

group (p = 0.0023).  A nonparametric Kruskal-Wallis ranked sum test was performed in 

order to verify this conclusion, since the TKA distribution appeared to deviate from 

normality slightly.  However, this test indicated that the TKA groups experienced a 

significantly higher force than the normal group with the same certainty (p = 0.0023). 

 

3.3:  Kinetic Effects of Femoral Rollback 
 Axial tibiofemoral force and quadriceps load profiles were generated for each AP 

femoral translation condition, and maximum values were tabulated.  The original force 

profiles, prior to adjusting the AP position of the femorotibial contact, are displayed in 

Figure 3.14.  The predicted maximum axial tibiofemoral contact and quadriceps forces 

were 2.32xBW and 3.59xBW, respectively.  The maximum values for each simulated AP 
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 Figure 3.14:  The calculated axial tibiofemoral contact force and quadriceps load 
for the naturally occurring kinematics of the sample subject. 
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translation condition are given in Table 3.1.  The maximum axial tibiofemoral contact 

force is plotted in Figure 3.15 against the amount of AP femorotibial contact translation 

from full extension to 100º of flexion.  By shifting the maximum flexion femorotibial 

contact position 6 mm anteriorly to the full extension position, the contact force increased 

22.45% to 2.84xBW.  A posterior translation of -6 mm resulted in a decrease of 8.97% to 

2.11xBW.  Figure 3.16 displays the analogous plot for the quadriceps force.  An anterior 

femorotibial contact translation of 6 mm corresponded to a 27.14% increase in 

quadriceps force to 4.57xBW.  A posterior translation (or rollback) of 6 mm resulted in a 

11.84% decrease to 3.17xBW.  The quadriceps and contact load profiles over the various 

translation conditions followed similar trends, although the quadriceps load experienced 

greater differences in magnitude in response to translation adjustments. 

 Table 3.1:  Maximum tibiofemoral and quadriceps loads for each simulated shift of 
 the femorotibial contact.  Percent differences are relative to the original in vivo 
 kinematics (-1.86 mm of AP).  Translation values represent the difference in AP 
 position between the 100º flexion and the full extension positions.  Positive 
 translations indicate an anterior translation upon the tibial plateau. 

+6 mm 2.84 22.45 % 4.57 27.14 %
+4 mm 2.69 16.14 % 4.30 19.72 %
+2 mm 2.53 9.01 % 4.00 11.21 %
0 mm 2.41 4.08 % 3.78 5.16 %

-1.86 mm 2.32 0 % 3.59 0 %
-4 mm 2.22 -4.21 % 3.40 -5.46 %
-6 mm 2.11 -8.97 % 3.17 -11.84 %

% DifferenceFemorotibial Contact 
AP Translation

Tibiofemoral Contact 
Load

% Difference Quadriceps Load
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Maximum Axial Tibiofemoral Contact Force 
vs. Femoral Rollback
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 Figure 3.15:  Maximum axial tibiofemoral contact force plotted against the 
different AP translation conditions for the femorotibial contact.  Translation values 
represent the difference in AP position between the 100º flexion and the full 
extension positions.  Positive translation values indicate an anterior translation 
upon the tibial plateau. 
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 Figure 3.16:  Maximum quadriceps force plotted against the different AP 
translation conditions for the femorotibial contact.  Translation values represent 
the difference in AP position between the 100º flexion and the full extension 
positions.  Positive translation values indicate an anterior translation upon the 
tibial plateau. 

 47



Chapter 4: Discussion 
 A computational model was constructed to predict 3-D in vivo lower limb 

dynamics from input kinematics obtained fluoroscopically.  The inverse dynamics model 

utilizes a reduction approach to simplify the statically indeterminant lower limb system.  

Results were presented for a sample normal knee subject undergoing a DKB.  The model 

was then applied to two clinically relevant sub-studies.  Firstly, the model was used to 

compare the axial tibiofemoral contact forces between 7 normal knee subjects and 7 TKA 

subjects.  Secondly, the model was used to evaluate the kinetic effects of femoral 

rollback.   

 The results presented for the sample patient serve mainly to demonstrate the 

capabilities of the computational model, and to provide an example of all possible loads 

that can be predicted by the model.  Since sample statistics cannot be obtained from one 

patient, and thus population parameters should not be estimated, the actual values of the 

sample subject should not be generalized to all knees.  Results varied according to 

different input kinematics.  Therefore, since kinematics differs from subject to subject, 

force profiles from one subject cannot be generalized to all.  Also, many previous studies 

that predicted in vivo kinetics or experimentally determined in vitro kinetics failed to 

incorporate realistic kinematics.  Thus, differences between the output kinetics and those 

reported in the literature should always be expected.  Minor or occasional disagreements 

with the literature should not be taken as evidence that the computational model is faulty.  

Nevertheless, the sample results can be used to verify that the model is within reason.   

 Comparisons to previous studies are difficult due to the lack of DKB activities 

being included in telemetric and mathematical analyses.  However, comparisons to gait 
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and stair ascending, when available, were assumed to provide some illumination upon the 

validity of this model.  It should be noted that the stance phases of both gait and stair 

ascending require one leg to support the entire upper body.  A DKB allows the body 

weight to be distributed between both legs, although the force-plate data in Figure 2.4 

indicates that most of the weight is indeed on the target leg at high flexion angles.  Also, 

during gait and stair ascending, the ground contact is generally either anterior or posterior 

to the mass center of the body, especially near heel-strike and toe-off.  Due to the lack of 

forward momentum, the mid-point between the two ground contacts throughout a DKB is 

likely directly beneath the body mass center.  This would result in less of a moment 

around joints, particularly around the flexion-extension axis of the hip.  For these reasons, 

it was expected that the kinetic results from the model, particularly joint moments and hip 

forces, would be slightly less than previously reported data in the literature.  Indeed, for a 

telemetric study, peak hip contact forces for a knee bend have been found to be 55.5% to 

71.4% to those obtained for normal walking, and 51.5% to 66.8% to those obtained for 

stair ascending (Bergmann et al., 2001). 

 The model generated knee reaction loads comparable to previous telemetric and 

mathematical studies, indicating that this modeling approach is both reliable and relevant.  

A previously conducted subject specific approach obtained axial knee forces in the range 

of 1.7 to 2.3 BW during gait for a normal knee subject (Komistek et al., 1998).  The 

corresponding peak axial knee force for the sample subject undergoing a DKB in this 

study was 1.6xBW, which is similar in magnitude.  Furthermore, a study utilizing 

telemetry obtained average distal femoral shaft forces of 3.1 and 2.8 BW for stair 

descending and stair ascending, respectively, which, although is likely to cause higher 
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axial forces, is the closest activity to DKB that was analyzed (Taylor and Walker, 2001).  

The peak axial knee force of 1.6xBW obtained here thus seems reasonable.  Also, the 

distal femoral shaft subjects had been implanted with a rotating hinge knee, which may 

be responsible for higher axial loads, as will be discussed shortly.   

 As demonstrated in Figure 3.8, the peak AP torque exerted by the femur on the 

tibia was -2.8xBWcm, i.e., the knee joint peak AP torque was 2.8xBWcm (varus 

inducing).  The peak predicted SI torque was 1.2xBWcm, acting to internally rotate the 

tibia.  Taylor and Walker measured peak AP varus moments of 6.9-9.0xBWcm during a 

stair ascending activity from distal femoral telemetry (2001).  Since stair ascending 

would be expected to generate higher AP torques than a DKB due to the increased weight 

on the leg, the values generated seem reasonable.  Similarly, Taylor and Walker 

measured peak SI moments of -0.4-1.3xBWcm during stair ascending.  The values 

predicted by the computational model are similar in magnitude, but acting in the opposite 

direction.  This could possibly be due to the difference in body movement between a 

DKB and stair ascending.  However, the model predictions are definitely within reason. 

 As expected, hip reaction loads were smaller than those reported from previous 

mathematical and telemetric analyses for gait and stair ascending.  Rydell reported hip 

joint forces of about 1.6xBW during normal gait, as determined from a telemetric hip 

prosthesis (1965).  However, it was noted that slower gait resulted in lower hip forces.  

Very slow gait actually resulted in a resultant hip force of less than 1.0xBW, implying 

that the speed of the DKB should be accounted for when comparing to previous studies.  

An optimization technique, solving 33 unknowns with 8 equations, revealed a resultant 

hip force of 3.3-5xBW during gait, and greater than 7xBW during stair ascending 
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(Crowninshield, 1978).  A telemetric proximal femoral prosthesis was used to obtain 

femoral shaft forces of greater than 3.0xBW during stair ascending, which is theoretically 

only a 3-9% difference between the hip resultant force (Taylor et al., 1997).  Although, 

these studies generated forces notably higher than those generated by the computational 

model, a telemetric hip prosthesis was used to obtain peak hip resultant forces of 1.17-

1.77xBW over a knee bend.  This is much closer to the peak resultant load of 0.87xBW 

(Figure 3.8) generated by the sample subject.  Additionally, preliminary results for a 

mathematical model of the hip have been presented (Alford et al., 2005), and future 

incorporation with this model may lead to a much more accurate lower limb model. 

 The predicted torques across the hip joint were similar in magnitude to previously 

reported data.  Crowninshield et al. found peak moments of approximately 0.12xBWm, 

0.015xBWm, and 0.074xBWm for TH-1, TH-2, and TH-3, respectively, during gait (1978).  

The corresponding peak torques obtained here were 0.17xBWm, 0.69xBWm, and 

0.07xBWm.  These are in very good agreement with Crowninshield et al., except for the 

notably large value for TH-2.  The apparent cause for this was the extreme amount of 

external femoral rotation (14.8º) for the subject in the last 15º of flexion (Figure 3.1).   

 Most previously published literature containing estimations of in vivo quadriceps, 

patellofemoral, and patellar ligament loads do not apply to weight-bearing activities, 

particularly a DKB.  Additionally, there is wide variability amongst the data that has been 

reported.  Li et al. used an optimization based computational model to predict quadriceps 

forces of 4.0-5.0xBW during a weight-bearing isokinetic flexion/extension exercise 

(1999a).  These results are comparable to that obtained for the sample subject (6.0xBW).  

Singerman et al. utilized a load frame to simulate a squatting motion in cadaver legs and 
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found a maximum quadriceps force of approximately 0.6xBW (1999).  However, the 

only applied load utilized in the simulation consisted of the leg weight and articifical hip 

joint.  Halloran et al. used the Purdue knee simulator to measure the quadriceps force 

during simulated gait of two cadaveric knees (2005).  The peak force was approximately 

1.8-2.0xBW.  These forces are less than those obtained here, but as evidenced in Figure 

3.1.6, the quadriceps force did not breach 2.0xBW until 98º of flexion.  Hence, gait 

forces, occurring when flexion is generally less than 98º, would be comparable to those 

of Halloran et al.  In addition to the limited availability of previous data with which to 

compare the results obtained here, many authors have presented forces in ratio form 

rather than in force values.  Figure 4.1 displays the ratio of FPL to FQ over the DKB 

activity for the results generated by this model and those generated by a previous model 

based off of a 4-bar linkage ligament system (Gill and O’Connor, 1996).  Although the 
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 Figure 4.1:  The ratio FPL/FQ plotted against flexion angle for this study and for a 
 previous mathematical model (Gill and O’Connor, 1996). 
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previous model was only 2-D, the ratios are very similar.  The discrepancy above 90º of 

flexion is likely due to the fact that this model did not incorporate soft-tissue wrap around 

of bone.  Similarly, Figure 4.2 displays the ratio FPFn/FQ over flexion for both this model 

and that of Gill and O’Connor.  Again, the plots are very similar, with that of Gill and 

O’Connor being slightly higher in magnitude.   
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 Figure 4.2:  The ratio FPFn/FQ plotted against flexion angle for this study and for a 
 previous mathematical model (Gill and O’Connor, 1996). 
 

 The literature is full of contradictions and varied results regarding ligament 

mechanics over flexion, but the strains observed in the sample subject are consistent with 

many of the reported observations.  As demonstrated in Figures 3.9 and 3.11, the LCL 

and all bundles of the ACL and PCL decreased in length over the DKB for the sample 

subject.  The LCL has consistently been shown to exhibit this decrease in length over 

flexion (Wang and Walker, 1973; Burks, 1990; Harfe et al., 1998).  Results are more 
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varied with the cruciates, but some do agree with this decrease in length.  Wang and 

Walker found an overall decreasing pattern in the PCL with flexion, without considering 

separate bundles, in cadaveric knees (1973).  Using magnetic resonance imaging (MRI) 

and fluoroscopy, Li et al. found a decreasing length pattern in both bundles of the ACL 

over flexion for a lunge activity (2004).  However, an increase in PCL length was found 

with increasing flexion.  Also, Burks summarized that the anteromedial bundle of the 

ACL increases with flexion while the posterolateral bundle decreases.  Likewise, he 

summarized that the posteromedial bundle of the PCL relaxes with flexion while the 

anterolateral bundle becomes more taut (1990).  Consistent with the data obtained here, 

Harfe et al. found an increase of the MCL to 45º of flexion, followed by a consistent 

decrease to 120º of flexion (1998).  However, Wang and Walker observed decreasing 

MCL length over flexion (1973).   

 The ligament forces calculated for the sample subject were generally lower than 

those reported in the literature.  Toutoungi et al. used a gait analysis-based 2-D 

mathematical model to predict increasing PCL forces and no ACL forces during a 

descending squat (2000).  However, the PCL forces peaked at approximately 2000 N, 

which exceeds the reported PCL tensile strength of 739 N (Trent et al., 1976) to 1051 N 

(Kennedy, 1976).  Mommersteeg et al. utilized a RSA-based mathematical model to 

predict PCL forces of approximately 10 N at full extension, followed by no PCL loading 

throughout the rest of flexion (1997).  This is very similar to the pattern for the 

posteromedial PCL bundle (22.7 N at full extension, decreasing to 0 N by 30º of flexion) 

obtained here.  However, Mommersteeg et al. also obtained peak ACL loads of 

approximately 130 N, much greater than that obtained here (12.9 N).  This was likely due 
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to this subject’s generally anterior position of the femur relative to the tibia throughout 

the activity (Figure 3.1), which would have reduced ACL tension.  Shelburne and Pandy 

used a 2-D mathematical model to predict aACL, pACL, aPCL, and pPCL forces of 

approximately 230 N, 310 N, 260 N, and 70 N (1997).  Although these forces drastically 

exceed those for the sample subject, they were calculated for a simulated isometric 

extension activity at different flexion angles, which could easily affect the AP position of 

the femur relative to the tibia.  Abdel-Rahman et al. used a 3-D mathematical model to 

predict knee kinetics, and found peak aMCL, oMCL, dMCL, and LCL forces of 

approximately 90 N, 30 N, 130 N, and 93 N, respectively (1998).  Although these forces 

are much larger than those obtained here, they were in response to a sinusoidal anterior 

load applied to the tibia at different flexion angles.  This would expectantly increase the 

ligament loads.  The ligament loads obtained here appeared to be reasonable, although 

studies on in vivo collateral loads during weight-bearing flexion are relatively scarce. 

 Regarding the normal knee versus TKA knee study, the predicted tibiofemoral 

forces were higher in TKA subjects than in the normal subjects.  There were two apparent 

causes for this phenomenon: the greater magnitudes of femoral rollback in the normal 

group (Figures 2.10 and 2.11), and the abscence of the cruciate ligaments in the TKA 

group.  Subjects with greater rollback generally had smaller contact loads, attributed to 

the larger moment arm of the quadriceps.  In the abscence of the cruciate ligaments, the 

quadriceps load increased in order to compensate for the lack of stabilizing forces.  This 

resulted in larger contact forces.   

 Although higher than normal flexion-extension moments have been observed in 

TKA subjects, particularly those with non-anatomical designs (Andriacchi et al., 1997), 
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the author is unaware of any prior study using a 3-D computational model to show higher 

axial tibiofemoral loads in TKA knees than in normal knees.  The literature is full of 

studies that have utilized simulators or finite element (FE) models to predict polyethylene 

stresses, wear rates, and failure mechanisms at various flexion angles.  Most of these 

utilize a constant load to simulate body weight over the entire flexion range (Hsu and 

Walker, 1989; Essinger et al, 1989; D’Lima et al., 2001c; Liau et al., 2002; Coughlin et 

al., 2003; D’Lima et al., 2003).  Other studies are vague regarding either the utilized 

loading conditions or the exact methods of how they were obtained (Bristol et al., 1996; 

D’Lima et al., 2001a).  A few studies have utilized parametric force plots over the course 

of an activity, but these force profiles are often based upon normal knee kinetics (Walker 

et al., 1997; D’Lima et al., 2001; Miura et al., 2002; Taylor and Barrett, 2003).  The 

results obtained from this computational model indicate that these studies may not model 

knee dynamics accurately.  The potential higher forces in TKA knees would generate 

higher stresses, and thus higher polyethylene wear rates, than those measured from 

experiments based upon normal knee kinetics.  Additionally, studies utilizing a constant 

load oversimplify the conditions.  The axial force profiles from this study indicated that 

the lowest forces generally occurred at or near full extension, and the greatest forces near 

maximum flexion (for example, as demonstrated in Figures 3.4 and 3.14).  It is of both 

clinical interest and design interest to know what angles of flexion generate the lowest 

and highest stresses.  Applying a constant load over an entire activity prevents these 

results from being obtained. This study indicates that more accurate stresses and 

dynamics can be predicted by utilizing parametric force profiles, specific to both the 

activity and the type of knee (normal versus TKA) being considered. 
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 The second application of the model, evaluating the kinetic effects of variations in 

AP femorotibial translation, determined that increasing femoral rollback led to improve 

knee kinetics, characterized by a decrease in both the quadriceps load and the axial 

tibiofemoral contact force.  A difference of 12 mm (6 mm rollback to 6 mm anterior 

translation, or “rollforward”) in AP femorotibial translation led to differences of 0.7xBW 

and 1.4xBW in the axial tibiofemoral force and the quadriceps load, respectively (Table 

3.1).  Numerous studies have assessed the occurrence of femoral rollback both in vitro 

(Li et al., 2001; Most et al., 2003) and in vivo (Dennis et al., 1996; Nozaki et al., 2002).  

In vitro studies have shown that rollback improves range of motion and has been shown 

to cause a decrease in the quadriceps load (Mahoney et al., 1994) and patellofemoral 

contact force (Churchill et al., 2001).  Additionally, FE analyses have demonstrated a 

reduced patellofemoral contact force for increased rollback and an increase in contact 

force for increased anterior translation (D’Lima, 2003).  To the author’s knowledge, the 

current study is the first to attempt to quantify the in vivo kinetic effects of varying 

femoral rollback.  The reduced axial loading associated with increased rollback implies 

that TKA patients that experience greater rollback may exhibit lower wear rates and 

longer implant lifetimes.  Additionally, due to the greater quadriceps efficiency, increased 

rollback may be associated with quicker rehabilitation rates for patients in which the 

extensor mechanism has been disrupted.   

 The two applications undertaken in this study have direct knee design 

implications when viewed together.  Firstly, higher flexion angles correspond to higher 

axial tibiofemoral contact loads.  Secondly, decreased femoral rollback and anterior 

femoral translation also result in higher axial tibiofemoral contact loads.  There is a 
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current industrial trend to design TKA implants that will accommodate high angles of 

flexion.  This study indicates that this will increase the axial loads within the implant.  

Also, if the designs to not encourage rollback and if the patient has high laxity within the 

joint space, then there is potential for the femur to anteriorly translate on the tibia.  This 

would create a very hazardous situation for the polyethylene component, as well as the 

fixation interfaces, due to two factors combining to increase the axial load.  This study 

gives quantitative evidence to show that it is of prime importance for design engineers to 

ensure that femoral rollback will occur in these high flexion TKA designs. 

 This computational model does have limitations that should be noted.  The 

geometrical bone properties, segment inertial properties, and soft tissue attachment sites 

were taken from population studies available in the literature.  Subject specific MRI data 

provides a much better, and possibly the best, option for obtaining these parameters.  As 

previously stated, the ground-reaction force was not available for most subjects in this 

study.  Since subjects exhibit differences in how they perform the DKB, the most 

accurate method would be to collect subject specific ground reactions.  This model does 

not incorporate muscle or ligament wrap-around (of bony structures), a phenomenon that 

has been incorporated into several previous mathematical models (Hefzy and Grood, 

1983; Shelburne and Pandy, 1997; Li et al., 1999b).  This phenomenon mostly affects the 

quadriceps at angles of flexion above approximately 88º (Gill and O’Connor, 1996), and 

the MCL and PCL at all times.  The model assumes a unicompartmental tibiofemoral 

contact.  This was done for computational stability, but clearly oversimplifies the joint.  

Incorporating both the medial and lateral contacts into the model would allow for 

comparisons between the contact forces due to phenomena such as condylar lift-off, 
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increased varus/valgus torques, TKA component malalignment and malrotation, and 

medial osteoarthritis.  The input temporal flexion function was identical for all subjects, 

as previously discussed.  This was done to eliminate misleading differences in kinetics 

due to subject variations in the speed with which the activity was performed.  However, 

to obtain truly accurate results, the actual motion of the subjects should be used, and the 

speed with which the activity is performed should be standardized at the time of data 

acquisition.  This will minimize the possibility of erroneous conclusions being drawn due 

to differences in subject speed, yet will allow the calculation of the most realistic results.  

Finally, there has been much effort in the literature to standardize coordinate systems in 

order to avoid “kinematic cross-talk.”  This model currently utilizes the reference frames 

embedded in the non-commercial 3-D registration software.  The femoral and tibial 

reference frames are established based upon a CAD model bounding-box, that is, a 

rectangular prism completely surrounding the CAD model.  For TKA implant models, 

this is fairly standardized.  However, for normal bones constructed from CT scans, there 

is some variability between subjects due to differences in bone geometry.  This inherently 

created some variation when defining soft tissue attachment sites in a local reference 

frame. 

 There are many future steps for this computational model.  Firstly, most of the 

limitations just discussed can be overcome without too much difficulty.  MRI data can be 

taken for geometrical, inertial, and soft-tissue parameters and input into the model.  

Muscle and ligament wrap around can be incorporated based off of previously described 

algorithms (Hefzy and Grood, 1983; Blankevoort et al., 1991).  Actual real-time flexion 

temporal functions can be used, although extreme caution should be taken if the motions 
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are not standardized.  Furthermore, the registration software can be programmed to 

actually output kinematics based upon whatever coordinate system is desired, such as the 

popular Grood and Suntay system (1983), the Pennock and Clark system (1990), or the 

more recent system proposed by McPherson et al. (2005).  The registration software has 

already been modified with the capability to manually choose and/or enter soft-tissue 

attachment sites, which will help to eliminate some of the error associated with using 

population-based parameters.  However, at the time of this writing, this technique had not 

been utilized in the computational lower limb model.  In addition to overcoming the 

discussed limitations, this model will be applied to more studies, such as comparing the 

kinetics associated with different TKA implant designs.  Eventually, the model will be 

incorporated into TKA implant design.  Design parameters will be optimized by 

evaluating the predicted in vivo kinetics associated with a particular design idea.  Designs 

will be guided based off of principles such as the minimization of tibiofemoral contact 

forces, ligament strains, or quadriceps loads.  This 3-D in vivo computational model will 

be aimed at helping to significantly improve TKA design methodology and processes, 

thus improving the quality of life in TKA patients themselves.  
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Appendix A:  Geometrical Parameters 
 
Table A.1:  Raw data for geometrical parameters. 

X (cm) Y (cm) Z (cm)

greater trochanter (most 
lateral projection) 0 0 0
femoral head (center) 0 3 -8.2
medial epicondyle tip -3.1 -40.3 -12.5
lateral epicondyle tip -2 -40.9 -2.8
knee joint center -2.3 -43.5 -8.2
Vastus intermedius 1.7 -14.7 -4

0.46556847 m

tibial tuberosity 0 0 0
knee joint center -3.5 4.8 -0.4
ankle joint center -5.2 -33.8 -2.7
medial malleolus -4.8 -32.2 -5.2
lateral malleolus -6 -34.3 0.1
malleoli mid point -5.4 -33.25 -2.55

0.38158027 m
Resulting tibial length (distance from knee 
joint center to mid-malleoli point):

Tibial data points
Origin of tib coord system at tibial tuberosity

Resulting femoral length (distance from 
femoral head to knee joint center):

Origin of fem coord system at greater trochanter
Femoral data points
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Table A.2:  Data for geometrical parameters converted to fit the coordinate system 
utilized in the model.  Data corresponds to a left leg facing left. 

X (m) Y (m) Z (m) X (m) Y (m) Z (m)

greater trochanter (most 
lateral projection) -0.023 0.435 0.082

greater trochanter 
(most lateral 
projection) -0.023 0.405 0.082

femoral head (center) -0.023 0.465 0.000 femoral head (center) -0.023 0.435 0.000
medial epicondyle tip 0.008 0.032 -0.043 medial epicondyle tip 0.008 0.002 -0.043
lateral epicondyle tip -0.003 0.026 0.054 lateral epicondyle tip -0.003 -0.004 0.054
knee joint center 0.000 0.000 0.000 knee joint center 0.000 -0.030 0.000
Vastus intermedius -0.04 0.288 0.042 Vastus intermedius -0.040 0.258 0.042

tibial tuberosity -0.035 -0.048 0.004 tibial tuberosity -0.035 -0.018 0.004
knee joint center 0 0 0 knee joint center 0 0.03 0
ankle joint center 0.017 -0.386 -0.023 ankle joint center 0.017 -0.356 -0.023
medial malleolus 0.013 -0.37 -0.048 medial malleolus 0.013 -0.34 -0.048
lateral malleolus 0.025 -0.391 0.005 lateral malleolus 0.025 -0.361 0.005
malleoli mid point 0.019 -0.3805 -0.0215 malleoli mid point 0.019 -0.3505 -0.0215

Tibial data points
Origin of fem coord system at tib-component-centroidOrigin of tib coord system at knee joint center

Origin of fem coord system at fem-component-centroid; 
left leg facing left; +x=posterior, +y=superior, 

+z=lateral
Origin of fem coord system at knee joint center; left leg facing left; 

+x=posterior, +y=superior, +z=lateral

Femoral data points

 
 
Table A.3:  Segment masses utilized within the model. 

thigh
shank 0.047

Applied to model (kg)
8.4832

3.62464

Mass (proportion of 
body mass)

0.11

 
 
Table A.4:  Locations of the centers of mass used within the model. 

distance (m)
knee joint center to 
femoral CM 0.186
knee joint center to 
tibial CM 0.159

proportion of length

0.4001

0.4179  
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Appendix B:  Inertial Parameters and Theory 
 
 

N2 

N3 

 
 Figure B.1:  Frustum of right circular cone model for limb segments. 

 

 Figure B.1 contains the right circular cone frustum model utilized to calculate the 

inertial properties of the lower limb segments, the thigh and shank, within the 

computational model.  All theory is from Hanavan’s study on creating a model of the 

human body (1964).  Start by defining µ and σ: 

 ,
R
r

=µ  (B.1) 

and 

 . (B.2) 21 µµσ ++=

The density of the frustum is given by 

r 

R

N1 N1 h 

N3 N2 
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where M is the segment mass, given in Table B.3.  Then the moments of inertia of the 

frustum, I11, I22, and I33, about the three orthogonal axes, N1, N2, and N3 through the 

center of mass are given by: 
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The measurements taken from a sample male, 1.88 m tall and of mass 77.1 kg, are given 

in Table B.1. 
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Table B.1: Measurements taken from a sample human (mass = 77.1 kg, height = 1.88 m). 
radius

Dimension/Segment (in) (m) (m)
upper thigh 24 0.6096 0.09702085
lower thigh 16 0.4064 0.06468057
upper shank 14 0.3556 0.0565955
lower shank 10.5 0.2667 0.04244662
length thigh 16.5 0.4191 n/a
length shank 18 0.4572 n/a

Circumference
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Appendix C:  Ligament Parameters 
Table C.1:  Raw Data for ligament attachment sites (from Abdel-Rahman et al., 1998). 

Ligament
X (cm) Y (cm) Z (cm) X(cm) Y(cm) Z(cm)

MCL (anterior fibers) -3.475 -0.1 2.625 -2 0.4 17.125
MCL (oblique) -3.475 -0.8 2.425 -3.5 -3 19.925
MCL (deep) -3.475 -0.5 2.125 -3.5 0 19.925
LCL 3.525 -1.5 2.125 4.5 -2.5 17.625
ACL (ant-med) 0.725 -1.56 2.125 -0.7 0.5 21.125
ACL (post-lat) 0.725 -2.03 1.955 0.2 0.2 21.225
PCL (ant-lat) -0.475 -1.12 1.405 0.5 -3 20.625
PCL (post-med) -0.475 -2.32 1.565 -0.5 -3 20.625

Femoral attachments
Origin of fem coord system at knee 

joint center

Tibial attachments

Origin at tibial Center of Mass

 

 

Table C.2:  Ligament attachment site data transformed to fit the model coordinate 
systems.  Assumed tibial model centroid was 5 cm distal to the knee joint center; femoral 
model centroid was 4 cm proximal to the knee joint center. 

Ligament
X(m) Y (m) Z(m) X(m) Y (m) Z(m)

MCL (anterior fibers) 0.001 -0.01375 0.03475 -0.004 -0.00375 0.02
MCL (oblique) 0.008 -0.01575 0.03475 0.03 0.02425 0.035
MCL (deep) 0.005 -0.01875 0.03475 0 0.02425 0.035
LCL 0.015 -0.01875 -0.03525 0.025 0.00125 -0.045
ACL (ant-med) 0.0156 -0.01875 -0.00725 -0.005 0.03625 0.007
ACL (post-lat) 0.0203 -0.02045 -0.00725 -0.002 0.03725 -0.002
PCL (ant-lat) 0.0112 -0.02595 0.00475 0.03 0.03125 -0.005
PCL (post-med) 0.0232 -0.02435 0.00475 0.03 0.03125 0.005

Femoral Attachments Tibial Attachments

Origin at femoral model center Origin at tibial model center
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Table C.3:  Ligament extension ratios (at full extension; Abdel-Rahman and Hefzy, 
1998) and stiffness coefficients, k (Li et al., 1999b). 

Ligament extension ratio k (N)
MCL (anterior 0.94 2750
MCL (oblique) 1.031 2750
MCL (deep) 1.049 1000
LCL 1.05 2000
ACL (ant-med) 1 5000
ACL (post-lat) 1.051 5000
PCL (ant-lat) 1.004 9000
PCL (post-med) 1.05 9000  
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