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ABSTRACT 

Memory based vulnerabilities have plagued the computer industry since the 

release of the Morris worm twenty years ago.  In addition to buffer overflow 

attacks like the Morris worm, format strings, ret-libC, and heap double free() 

viruses have been able to take advantage of pervasive programming errors.  A 

recent example is the unspecified buffer overflow vulnerability present in Mozilla 

Firefox 3.0.  From the past one can learn that these coding mistakes are not 

waning.  A solution is needed that can close off these security shortcomings 

while still being of minimal impact to the user.  Antivirus software makers 

continuously overestimate the lengths that the everyday user is willing to go to in 

order to protect his or her system.  The ideal protection scheme will be of little or 

no inconvenience to the user.  A technique that fits this niche is one that is built 

into the hardware.  Typical users will never know of the added protection they're 

receiving because they are getting it by default.  Unlike the NX bit technology in 

modern x86 machines, the correct solution should be mandatory and 

uncircumventable by user programs.  The idea of marking memory as non-

executable is maintained but in this case the granularity is refined to the byte 

level.  The standard memory model is extended by one bit per byte to indicate 

whether the data stored there is trusted or not.  While this design is not unique in 

the architecture field, the issues that arise from multiple processing units in a 

single system causes complications.  Therefore, the purpose of this work is to 

investigate hardware based mandatory access control mechanisms that work in 

the multicore paradigm.  As a proof of concept, a buffer overflow style attack has 
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been crafted that results in an escalation of privileges for a nonroot user.  While 

effective against a standard processor, a CPU modified to include byte level 

tainting successfully repels the attack with minimal performance overhead.
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1. Introduction 

The world of computer security is an ongoing cat and mouse game between 

antivirus companies and hackers.  In this game, the black hats seem to have the 

upper hand as most patches for malicious software are not available until after 

the attack is unleashed on an unfortunate group of computers.  While updates 

are necessary to fix existing problems in already released software, a more 

proactive approach to computer security could greatly benefit the everyday user.  

This could come in the form of a variety of solutions.  One of the more promising 

and interesting areas is mandatory access controls.  Mandatory access controls 

(MACs) in computer systems are memory access protocols that the user cannot 

circumvent even if he or she wanted.  This can be contrasted with discretionary 

controls like the standard read, write, and execute properties that are common to 

Windows and Linux platforms.  What makes correctly used MACs powerful is the 

fact that a user, whether due to ignorance or ill intent, cannot cause harm to the 

system.  This ability to repel an attack from an insider has led the National 

Security Agency to create and adopt a MAC based operating system known as 

SELinux [35].  Hardware based MACs can first be seen in an elaborate new 

computer architecture introduced in 1960 [24].  Failing to reach the mainstream, 

they have been the subject of academic research ever since.  These systems 

have the ability to enforce security protocols at the lowest level and with little to 

no change to existing software which makes the solution both powerful and far-

reaching.  While meeting security goals is important, a successful computer 

security solution must also conform to the paradigm of the future. 
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The difficulty in continuously increasing clock speed has caused CPU designers 

to resort to increasing the number of cores on a chip in an effort to maintain 

exponential growth in computing power.  The popularity of this trend can be seen 

in a quote from Intel President Paul Otellni, “We are dedicating all our future 

product development to multicore designs” [16].  The result of this has been a 

programming and security nightmare.  The challenge of merely maintaining 

consistency across memory has proved to be difficult.  A security solution that 

doesn’t fit with a multicore design is inherently doomed.  Therefore, it is the 

purpose of this work to adapt hardware based mandatory access controls to fit 

multicore architectures. 

1.1. Motivation 

1.1.1. Buffer Overflow Attack Prevalence 

Of all the different ways for a hacker to gain access to privileged information or to 

disrupt desired functionality, buffer errors are probably the easiest and most 

successful.  Buffer overflows are just one form of memory based vulnerability, 

however, according to the National Vulnerability Database (NVD) they still 

account for around 12% of all computer vulnerabilities [9] .  The number of 

vulnerabilities classified as “buffer errors” by the NVD is given in Figure 1.1.  It is 

important to note in Figure 1.1 that data has only been collected up to the 

midpoint of 2008.  Extrapolating the year’s trend indicates that in 2008 there will 

be over 600 buffer error vulnerabilities.  The percentage of all vulnerabilities 

which fall into that same category is given in Figure 1.2.   
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Figure 1.1: Number of vulnerabilities classified as buffer errors over time [9] 
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Figure 1.2: Percentage of vulnerabilities classified as buffer errors over time [9] 



 

 5 

Even more disturbing is the fact that despite the antiquity of this problem, the 

percentage of all vulnerabilities that are of this type has been growing over the 

past couple of years.  In the face of two decades of research and numerous 

solutions, the problem still persists.  This thesis proposes a solution to the buffer 

overflow problem along with other, less prevalent, memory based vulnerabilities 

such as format strings and heap-based attacks.  

1.1.2. End User Involvement 

The problem is not the lack of solutions, but of a pervasive one that can be 

enabled and adapted easily by large populations and that actually solves the 

underlying problem.  It can be seen from past work that the solutions with the 

greatest chance of adoption, and therefore success, are those that require a 

minimal amount of effort and skill from the user.  Many types of existing solutions 

already require too much from their users.  People may not be willing to install 

update software because they don’t like having to restart their computer 

everyday due to new updates.  Most users won’t pay a monthly subscription fee 

to get the latest antivirus updates.  Observations like this can be seen in a more 

quantitative way in Figure 1.3 [37].  Despite a plethora of new computer 

architectures, the leader continues to be x86 due, in part, to its large installed 

base of software.  The millions of lines of legacy code still in use means that 

requiring developers to substantially change their applications or libraries often 

leads to difficult new architectures being labeled unusable.   
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Figure 1.3: Disparity Between Installed User Security Software and Perceived 
[37] 
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Therefore, the desired solution should be completely backwards compatible with 

existing x86 code and require no recompilation or relinking.  Often, this type of 

solution is one that is hardware based.   

1.2. Background 

The first great computer infection, the Morris Worm of 1988, made use of a buffer 

overflow exploit in the fingerd application as one of its methods of propagation 

[30].  Given the vastness and damage of the worm, one would think that in a 

short amount of time a solution would be developed that would inoculate the 

world’s computers from such a sickness.  However, in 2001, thirteen years after 

the Morris Worm, the Code-Red and CodeRedII worms would use another buffer 

overrun that would cost $2.6 billion [26].  This is a testimony to the 

ineffectiveness of the proposed protection schemes during that thirteen year 

period and the overall prevalence of this attack scheme.  Unlike standard file 

permissions, a proper solution should not be discretionary upon the user's desire, 

but should have at least some mechanisms that are mandatory and 

uncontrollable even at the privileged operating system level.  This level of 

security would be enforced by the processor itself, as a fundamental property of 

the ISA. 

1.2.1. Stack Smashing Attack 

One looking for a walkthrough about how to create a buffer overflow attack need 

look no further than the archives of the hacker magazine Phrack [2].   
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In 1998, it published a widely cited article giving a walkthrough on how to 

construct a buffer overflow attack that is readable at the introductory 

programming level.  To understand such an attack, first one must consider what 

a standard stack frame looks like in memory.  This is given in Figure 1.4.  A 

typical stack smashing attack will attempt to find an unsafe function call like 

strcpy().  strcpy() copies the string pointed to by source into the array pointed to 

by destination up to and including the terminating null character.  The function 

prototype for strcpy() is given in Figure 1.5.  The security issue arises from the 

fact that strcpy() copies data into destination until the null terminating character is 

found in source despite the length of either arrays.  Good programming practice 

dictates that code should be written to make sure that no more characters are 

copied into destination then it can hold.  Unfortunately, good programming 

practices are not always observed.  When a source array is not properly bounds 

checked, it allows an attack to overflow the destination buffer.  Most often, this 

buffer is overflowed up to the point of overwriting the return address stored on 

the stack.  The attacker changes the return address to point back into the buffer 

thereby redirecting execution into the attacker supplied string.  The resulting 

stack frame is shown side by side with a normal one in Figure 1.6.  Normally the 

attacker stores shell code to exec a shell in the buffer and by this means has his 

own prompt to do whatever he/she wishes. 
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Figure 1.4: Standard Stack Frame 
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char * strcpy ( char * destination, const char * 

source )

{

...

}
 

Figure 1.5: Function prototype for strcpy() 
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Figure 1.6: Normal and Overflowed Stack Frames 
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1.3. Summary 

In this chapter, the need for a protection scheme was motivated by the 

substantial and increasing number of buffer overflow attacks.  Statistics show 

that most users are not aware of the security features on their computers.  

Regardless if this is because of a lack of knowledge or lack of effort, a successful 

solution to memory based vulnerabilities will be one that requires little from the 

everyday user.  A high level look into stack frames and stack buffer overflows 

was also offered.  In an effort to thwart stack buffer overflows, many solutions 

have been attempted over the years, some of which will be discussed in the next 

chapter. 
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2. Related work 

Since the inception of the modern computer as a device to calculate artillery 

trajectories, security has been a concern.  With the dawn of the Internet it has 

taken on a whole new meaning and importance.  In this chapter some historical 

attempts to provide security are discussed followed by modern methods that 

attempt to achieve a robust system. 

2.1. A Brief History of Secure Architectures 

Dating back to 1959, there has been an effort to create more secure processors 

by enforcing safety precautions at the hardware level.  Capability-based 

architectures refer to computer systems that access data using an address that 

refers to both the memory object itself and a set of access rights that govern how 

that data can be used.  For an excellent reference of such architectures see [23]. 

2.1.1. Burroughs 

First shown in the early 1960s, the Burroughs family of processors incorporated 

some very sophisticated features for their time [24].  Originally, the B5000 used a 

1 bit tag as part of its 32 bit word.  The B6000 expanded it to 3 bits and moved it 

outside the word.  It differentiates data from code and control words and is even 

used to indicate type (such as single and double precision floating point).  The 

hardware enforced security mechanism makes it impossible to execute data as 

code or to interpret code as data. 
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2.1.2. System/38 

Released in 1980, the IBM System/38 sought to be a totally object-oriented 

architecture [18].  The System/38 featured 40 bit words consisting of 32 data bits, 

7 bit ECC, and a 1 bit tag.  The tag bit is set whenever the data bits contain a 

pointer while all other words in memory have their tag bits cleared.  These tag 

bits cannot be accessed by the instruction interface and cannot be set by the 

user.  Instead, they are manipulated by instructions that use microcode to build 

the pointers and maintain the integrity of the tag bits.  User modification of the 

pointer results in its tag bits being cleared thus making it invalid for addressing 

purposes.  

2.1.3. iAPX 432 

Introduced in the year after the IBM System/38, the design and layout of the 

chipset for the Intel iAPX 432 took over 100 man-years [23].  Memory references 

are done using 32 bit long access descriptors (ADs) that specify the actual 

address and access rights to an object.  A procedure can only address and 

manipulate the ADs that are within its execution environment.  The access rights 

specify whether the possessor of the AD can read from or write to the object or 

delete the AD itself.  Unfortunately, the iAPX 432 was doomed by performance 

problems and an overzealous marketing campaign. 

2.1.4. Unisys 

A novel computer architecture that is still around today is used by Unisys 

Mainframes [41].  The ISA tags each word of memory to indicate how the data 
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stored there can be used.  All data references are done through descriptors 

generated by the hardware and operating system using instructions unavailable 

to ordinary user code.  Every memory reference is checked for a valid descriptor 

and that the reference is within appropriate bounds.  Programs that are running 

are not given privilege to descriptors that hold their own code or that of another 

program.  Furthermore, code and data are kept separate eliminating any 

adjacency between buffers and areas containing executable code. 

2.1.5. NX bit 

Mandatory Access Controls were brought into the mainstream when AMD began 

to use an extra bit, the No eXecute bit (NX), to mark pages of memory as non-

executable [43].  Intel later followed with what it called the Execute Disable bit 

[13].  The capability of the processor to take advantage of this sort of functionality 

can be queried by the operating system that is running.  When activated by 

setting the bit IA32_EFER.NXE, memory pages can be marked as not being 

executable. This is done by adjusting bit 63 in the corresponding page table entry 

for that page of memory.  If the protection is running and an instruction fetch to a 

linear address translates to a physical address in a memory page that has the 

execute disable bit set, a page fault exception will be generated.  This sort of 

protection is very close to what is desired in protecting memory from memory 

based vulnerabilities: there is no effort required of the user other than having a 

processor with the ability, it incurs very little memory or performance overhead, 

and it is backwards compatible with existing code.   



 

 16 

To allow for backwards compatibility, Intel decided to give the host OS the ability 

to turn non-executable pages on or off.  Windows XP Service Pack 2 and 

Windows 2003 Service Pack 1 contain patches to take advantage of this 

hardware feature by using what Microsoft calls Data Execution Prevention (DEP) 

[1].  Shortly after its debut, exploits began to be posted that easily sidestepped 

the mechanism [28].  In order to bypass DEP, a ret-libC style attack can be used 

to jump to a section of system code marked as executable that can then further 

be exploited to disable DEP and return into shell code stored in the original 

buffer.  If there was no way that a process could disable NX support at runtime, 

this exploit would not work.   

2.2. Recent Solutions 

In an attempt to close off the buffer overflow attack vector, many solutions have 

come about.  As the goal of this work is to place a minimal amount of burden on 

the user, previous attempts can best be organized along a continuum with the 

least user involvement at one end and the most at the other.  Within that 

continuum, most solutions fall into a particular category depending upon their 

level of abstraction: language, compiler, library, application, operating system, or 

hardware.  These form a gradient as shown in Figure 2.1. 

2.2.1. Safe Languages 

Buffer overflows arise from the lack of type safety and bounds checking in C.   
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Figure 2.1: Amount of user involvement required for various type solutions. 

Safe Languages: Java, 

Cyclone 
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StackGuard, Dynamic 

Access Control 
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Work has been done in the past to create a programming language that has built 

in bounds checking or is otherwise immune to buffer attacks.  Despite whatever 

security features these languages may have, they normally require code to be 

ported from C to the new safe language.  Porting this amount of legacy code, 

some of which has been lost, to an entirely new language would be a massive 

undertaking.  Another problem with both language and compiler techniques is the 

availability of source code.  While open source movements are gaining 

popularity, there is still a great amount of proprietary software in use.  For 

companies unwilling to release the source code, the following techniques would 

not work. 

2.2.1.1. Java 

The security and portability features of Java make it very desirable to replace C 

as the language of choice.  There seems to be a growing trend of applications 

being written in Java versus other languages [39].  The Java Virtual Machine 

(JVM) and corresponding bytecode is what makes Java so portable and safe [8].  

Interestingly enough, the Java Virtual Machine (JVM) is written in C, and is 

vulnerable to buffer overflow attacks itself [12].  Unfortunately, Java as a 

vulnerability solution suffers from the previously stated issues related to legacy 

code porting.   

2.2.1.2. Cyclone 

Cyclone follows nearly all of C’s lexical conventions and grammar.  It also offers 
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the same fundamental and composite data types.  Where they differ is on the 

issue of security [19].  A cyclone compiler performs a static analysis on the 

program and inserts runtime checks into the compiled code at places where 

safety is in danger.  The compiler can also choose to reject a program based on 

a static analysis of its code that deems it unsafe.  As compared to the same 

program written in C, Cyclone’s slowdown varies from 1X to 3X and as much as 

6X in pathological cases that feature a great amount of pointer arithmetic.  The 

test suite consisted of common web utilities such as http_get and http_post, 

and computationally intensive benchmarks like cfrac, maxtmult, and tile 

[19].  Subsequently, Cyclone found array bounds violations in three benchmarks, 

one of which dates back to the mid 1980s. 

2.2.2. Compiler Based Solutions 

While compiler based solutions share the requirement of source code availability, 

they also have the unique disadvantage of demanding users to recompile their 

programs.  Many users are unaware of how to do this and many of those who are 

may choose not to deal with the hassle of recompiling their programs. 

2.2.2.1. StackGuard 

StackGuard, part of the Immunix Linux Distribution, is probably one of the most 

well known stack smashing protection schemes available [6]. It is a modified 

version of the gcc compiler that automatically inserts “canaries” into the stack 

before a function is called [7]. After the function completes, and before it returns 

to the return address on the stack, the canary value is checked with a stored 
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version.  If the values do not match, then it means that the canary has been 

illegally overwritten, and the stack corrupted.  A canary may be a simple XOR 

with a secret key or an even simpler scheme.  A canary that is comprised solely 

of null values is adequate to stop buffer overflow attacks.  When strcpy() is 

called, it will return upon reaching the null value instead of continuing to overwrite 

out of bounds data on the stack.   

2.2.2.2. CRED 

CRED (C Range Error Detection) is an extension to the GNU compiler that was 

developed at Stanford University [33].  It relies on replacing every out-of-bounds 

pointer value with the address of a special OOB (out-of-bounds) object created 

for that value.  At the current state of development, CRED would break when 

using an out of bounds pointer in an external library.  It was effective against 20 

different buffer overflow attacks and also ran 20 open-source programs 

consisting of 1.2 million lines of code [33].  The average performance 

degradation was 2X but up to 20X for some applications.  Incorporating this idea 

into the next distribution of an operating system would allow CRED to reach a 

large user base without forcing users to recompile existing applications.   

2.2.2.3. Dynamic Access Control 

Dynamic Access Control monitors program data that might be indicative of an 

attack, even those attacks that do not alter control flow [44].  The dangers of 

these types of attacks are demonstrated in [5].  Dynamic Access Control requires 

support at both the hardware and micro-architecture level.  The compiler 
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identifies program regions in which the data should not be modified as per 

program semantics.  If there is an attempt to modify this data at runtime, the 

hardware detects the attack. 

2.2.3. Safe Libraries 

Libsafe is an example of a secure library [15]. It intercepts certain unsafe calls 

such as strcpy() or fgets() and calculates the maximum allowed size of the buffer 

based on the stack frame address, and then calls the safer bounded variant such 

as strncpy(). Although this solution has proven to be effective against some stack 

overflows, it still suffers some flaws. One specific problem is that it does not 

prevent the overflow itself, in-band data within the stack frame can still be 

overwritten.  As previously mentioned, a system in which just the control flow 

data is protected can still be vulnerable to attack. Like other library-based 

approaches, it is only applicable when the application is dynamically linked. It will 

not be effective for statically linked software or for user defined functions.  

2.2.4. Monitoring Applications 

2.2.4.1. Program Shepherding 

Program Shepherding is a system built on top of Runtime Introspection and 

Optimization (RIO), a dynamic optimizer application, and seeks to stop malicious 

code executions by using the concepts of restricted code origins, restricted 

control transfers, and uncircumventable sandboxing [20] . When an application is 

run under this paradigm, the loader must first determine if the block of 
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instructions is trusted in accordance with a security policy and the origins of the 

code, e.g. executable file from the disk or dynamically generated code, and tags 

them as executable. This first step is known as restricted code origins. Restricted 

control transfers refers to the restriction of jumps and branches from one block of 

memory to another only if it is allowed in the security policy, e.g. if the target of 

the branch is not tagged as executable, then control transfer should be restricted. 

Finally, uncircumventable sandboxing is used to ensure that all implemented 

security checks must be done at all times.   

2.2.4.2. LIFT 

Low-Overhead Information Flow Tracking is a tainting architecture that is built on 

top of the dynamic binary translator StarDBT [3].  A typical tainting scheme would 

identify data from untrusted channels (e.g. network, keyboard, USB) and taint, or 

tag, that data as being not executable.  If this data is copied to a new location or 

used as an operand in another instruction, the destination operand would also be 

marked as untrusted.  Only untainted memory locations would be used as return 

address, jump destinations or function pointers.  For LIFT, a one bit tag is 

associated with each byte of data in memory or in registers.  These tags are 

stored in a special memory region that generates a protection fault when a 

program attempts to access them.  Tags for registers are stored in a spare CPU 

register.  If the architecture has no spare registers, another special memory 

region is allocated to store the data.  The extra functionality of propagating taint 

bits is accomplished by instrumenting the binary with additional instructions that 
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keep track of the current taint values.  While the overhead is much less than that 

of a similar, previous tool, LIFT incurs an average performance slowdown of 3.6X 

for SPEC-INT [32]. 

2.2.4.3. Pointer Encryption 

A novel protection scheme involves encrypting return addresses and function 

pointers when they are stored then decrypting them when they are loaded [40].  

Since every return address goes through a decryption before it is loaded into 

program counter, a typical stack smashing attack would result in execution 

jumping to a random location in memory.  This is because the address of the 

shell code (presumably stored within the overflowed buffer) would be decrypted 

and result in an unknown value, but most likely not where the attack desired.  In 

the original paper, a variety of methods are offered to minimize the encryption 

overhead and ensure cryptographic security. 

2.2.4.4. Shadow Threads 

A recent innovation takes advantage of evolving multicore architectures by 

spawning a “shadow thread” to ensure security of the executing main thread [4].  

Ideally, each thread would be running on a separate core thereby making use of 

idle cores.  First the binary is modified to allocate “shadow memory” which will be 

used to indicate the level of trust associated with a piece of data.  As the main 

thread executes regular program instructions, the shadow thread stays a few 

instructions behind and performs regular tainting arithmetic.  The two threads use 

a synchronizer which relays control flow information from the main thread to the 
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shadow thread.  Before branches are taken, the main thread waits for the 

shadow thread to catch up and then evaluates whether the branch target is safe 

or not.  The shadow thread serves as a way to get the extra tainting functionality 

without adding additional code to the program or introducing new memory 

architectures.  Runtime performance varied from 1.5X – 5.5X slowdown on a 

suite of custom applications and one program from SPEC-INT [4]. 

2.2.5. Operating System Patches 

PaX is a Linux kernel patch written by The PaX Team whose principal author 

chooses to remain anonymous.  PaX’s main avenues of defense are to mark 

data as non-executable and take advantage of address space layout 

randomization (ASLR) [34].  By default, PaX marks the following areas as non-

executable: memory that holds the stack, heap, anonymous memory mappings, 

and any section not specifically marked as executable in an ELF file.  This 

prevents the standard stack-smashing attack since shell code stored in the buffer 

on the stack will be marked as non-executable.  PaX randomizes the location of 

the stack, heap, loaded libraries, and executable binaries thereby greatly 

reducing the likelihood of success for attacks that rely on hard coded addresses, 

such as a standard ret-libC attack.  This protection, when combined with a 

hardware protection scheme such as the NX bit provides for powerful protection.   

It should also be noted that a successful attack on PaX has been published on 

Phrack [27].  It directly calls the dynamic linker’s symbol resolution procedure to 

get around the ASLR aspect of Pax and then uses a traditional ret-libC exploit. 
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2.2.6. Hardware Based Solutions 

Another class of buffer overflow prevention techniques are those that make 

modifications to the actual hardware of a CPU.  By doing so, users would benefit 

from these additional features upon buying a new system and most likely would 

not even know they were there.  Users wouldn’t have to recompile the programs 

they have, download new ones, or manually patch their OS.  Most hardware 

based solutions use the notion of “tainting” memory locations.  These taint bits 

are either all stored together in one continuous piece of memory or are tacked on 

to the end of every memory location.  The latter is the more common case and 

has the advantage of being able to move and operate on taint bits with each 

instruction.  In this particular scenario, all registers, caches, cache lines, and 

main memory would have to be widened by some amount.  The operating 

system is expected to identify unsafe channels of input and mark the 

corresponding data as it streams into the computer.  This change to the OS can 

be expected with the new hardware that the user buys. 

2.2.6.1. Secure Bit2 

Secure Bit2 extends every memory word and register by one bit which is used to 

add semantic meaning to each word of memory [31].  This bit is moved along 

with its associated word by memory manipulating instructions.  Words in buffers 

passed between processes get their secure bit set while all others mark the 

secure bit at the destination register or memory location.  Call, return, and jump 

instructions check the secure bit and if set, generate an interrupt or fault signal.  
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Modifications are required at the kernel level to set the secure bit when passing a 

buffer across domains.  Since the address validation is done in hardware, there 

is no performance overhead.  Memory overhead is related to the total size of 

memory, for n words of memory, an additional n bits are needed. 

2.2.6.2. Raksha 

Raksha offers multiple active security policies that can all be run simultaneously 

and are also programmable [11].  In this setup, every word of memory is 

extended by 4 bits, one for each security policy running.  Each processor 

instruction carries out some operation for each of the security policies, one of 

which is solely devoted to high level attacks like SQL injection.  This is what sets 

Raksha apart from many other hardware based solutions: the ability to recognize 

this type of sophisticated attack.  In addition, software can modify the tag rules 

for each policy and configure how tags from multiple operands are combined.  

Raksha even allows a user to specify custom rules for a small number of 

individual instructions.  These modifications were made to the open source Leon 

SPARC V8 processor and synthesized to a FPGA.  The additional hardware 

caused a 7% increase in size over an unmodified Leon.  Performance slowdown 

on SPEC ranged from 1X – 2.98X [11]. 

2.2.6.3. Minos 

While Raksha is one of the newer tainting architectures, Minos is one of the older 

ones Error! Reference source not found..  Like Secure Bit, Minos extends 

each 32 bit word with a single integrity bit.  The security policy can be 
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summarized as follows: any subject may modify any object if the object’s integrity 

is not greater than that of the subject, but any subject that reads an object has its 

integrity lowered to the minimum of the object’s integrity and its own.  These 

operations are carried out in parallel with the normal functionality of the 

instruction.  Minos is implemented and tested on the Pentium emulator known as 

Bochs.  When an attempt is made to transfer control flow to low integrity data, the 

processor traps to the kernel for error recovery.  A similar architecture is offered 

by Chen, et. al. in [42]. 

2.2.6.4. DIFT 

Dynamic Information Flow Tracking (DIFT) also features modifications to the 

standard memory model by storing an extra bit for each byte of memory [36].  

The memory overhead was greatly reduced by using multi-granularity tags.  Each 

page of memory contains two extra bits which are used to indicate if all the taint 

bits on that page are the same and if they are all marked as trusted or not.  If 

needed, the processor generates an exception to allocate more memory for 

individual bytes on a page, but by default marks all taint bits the same.  This 

method reduced total memory overhead from 12.5% to 0.21% due to common 

occurrence of entire pages of memory having the same tag.  Despite being 

publicized in 2004, DIFT remains the only tainting scheme that makes use of 

multi granularity tags.  Two different policies are offered depending on the 

amount of performance one is willing to sacrifice in exchange for security.  This 
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approach also uses binary annotation to recognize when data is properly bounds 

checked.  When this occurs, the destination buffer can be marked as trusted. 

2.3. Summary 

This chapter explores some of the past attempts to eliminate memory based 

vulnerabilities dating back to 1959.  Recent efforts up to 2007 have also been 

examined.  Ranging from requiring developers to code in an entirely different 

language to coming built into new computer designs, they provide differing levels 

of security based on the amount of performance sacrificed or user involvement 

necessary.  By examining the advantages and disadvantages of past solutions, a  

novel computer architecture that protects against buffer overflows is offered. 
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3. Approach 

After thoroughly studying past and present protection schemes as well as 

modern attacks, the goal of this thesis is to provide a solution that fulfills the 

following requirements: 

 Provides protection from known memory based vulnerabilities such as 

buffer overflows 

 Works with existing legacy code 

 Does not require recompilation 

 Is compatible with emerging trends in processor architectures (multicore) 

 Gives the maximum amount of security while sacrificing the least amount 

of performance 

 Requires the least amount of user intervention 

 Is mandatory as opposed to discretionary 

3.1. Design Details 

Working from these goals towards a specific solution leads one to believe that 

the correct approach is one that is hardware based.  By employing a hardware 

based protection scheme, the user gains a security advantage without having to 

install new software or recompile their existing software.  Whenever the user 

buys their new system, the protections are built in.   
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3.1.1. Memory extension 

3.1.1.1. Byte or Word? 

In the past, some tainting architectures have chosen to add one bit per byte [11] 

[36] [32] [42] [21] while others have chose to taint per 32 bit word [31] [9].  This 

approach will follow the former, more popular scheme.  That is, every 

addressable memory location remains 8 bits wide but also has a one bit tag at 

the end.  So each 4 byte word will have 32 bits of data along with 4 one bit tags 

interspersed throughout its bytes.  Many processors, particularly x86, allow byte 

granularity memory access.  Even though compilers normally align memory 

accesses to words or double words, there are still many cases in C that make 

word level tainting impractical.  Aggregate types such as unions are one 

particular problem because they are often accessed in different ways, even 

without modifying data.  On the other hand, a difficulty that arises from tainting at 

the byte level comes when data is accessed in large chunks that contain 

separate taint values.  For example, imagine a union that can be accessed as 4 

chars or 1 integer.  If the chars were stored separately, they could each have a 

different taint value.  Which does the CPU use in computing the taint value for 

the destination?  In this work, the taint values are ORed together so that the 

result is the least trusted of all the bytes. 

3.1.1.2. Architecture 

The taint bit extension has to be made to every single memory location including 

registers, caches, and main memory.  An abstract view of this CPU is shown in 
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Figure 3.1.  The additional hardware is shown by a darker shade.  This particular 

CPU is a four core system that is composed of 2 dual core packages.  The 

diagram is based on the Intel Core 2 Quad architecture codenamed Kentsfield 

with model numbers in the Q6xx0 range [17].  Each core has its own L1 

instruction and data cache and shares a unified L2 cache with the other core on 

the package.  The taint unit of the L1 instruction cache must be wired to the ALU 

for verification in the case of a branching instruction.  The tainting ALU (TALU) 

enforces the taint propagation rules for combining tainted and untainted data.  

The registers also have been extended to accommodate the taint bits and 

forward their status on to the TALU as well.  While at first the wiring complexity 

may seem staggering, one should keep in mind that Figure 3.1 is just an abstract 

view of what the processor would look like.  In reality, taint bits wouldn’t be kept 

in a separate space on the same level of memory.  Instead, they would be kept 

right beside the data as if each memory location were 9 bits wide.  Adding one 

extra wire for each byte of data should not drastically complicate the wiring of a 

modern CPU.  An extensive study of the area required to implement tagging bits 

is made in [9] and is estimated to be less than 0.5% for per-word tagging.  Even 

with per byte tagging, the cost will be minimal compared to the size of modern 

x86 processors. 

3.1.1.3. Overhead 

Memory overhead for byte level tainting is 12.5%.  A sample stack with taint 

extensions can be seen in Figure 3.2.   
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Figure 3.1: A 4 Core Processor with Tainting Hardware 
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Figure 3.2: Memory layout of proposed architecture. 
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This is a small price to pay for additional security.  At the current rate that 

memory densities are growing, this price can be paid in a very short time by 

Moore’s Law. 

All memory and cache lines will also have to be extended to facilitate transporting 

the extra information along the data path.  Taint bits are passed through the 

memory hierarchy from registers to L1, L2, or main memory right alongside the 

actual data. 

3.1.2. Taint Propagation Rules 

Most importantly, a set of rules must be devised for how taint bits interact with 

each other.  From a security standpoint, most of these rules are pretty 

straightforward.  For example, the taint value for the result of an addition 

operation should be the least trusted of the two operands. For this application, a 

taint value of “1” means that the data stored at that location is not trusted.  

Conversely, a taint value of “0” means that that particular piece of memory is safe 

to branch to.   A set of taint propagation rules is listed in Table 3.1.  These rules 

are a modified set based on the rules in [11] [36] [32] [42] [21].  Note that ALU 

represents typical ALU operations such as ADD, SUB, OR.  The special case 

XOR entry in the table corresponds to a commonly used compiler technique to 

clear a register.  In doing so, the destination register will be all zeros and can be 

considered to be trusted. 
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Table 3.1: Taint Propagation Rules. 

Instruction Meaning Rules 

ALU R1, R2, R3 R1 <- R2 + R3 T[R1] <- T[R2] OR T[R3] 

LW R1 IMM(R2) R1 <- Mem[R2+IMM] T[R1] <- T[R2] OR T[IMM] 

SW R1, IMM(R2) Mem[R2+IMM] <- R1 T[R2+IMM] <- T[R1] OR T[IMM] 

XOR R1, R2, R2 R1 <- R2 XOR R2 
(R1 <- 0)      

T[R1] <- 0 
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3.1.3. Additional ALU functionality 

Additionally, the CPU is modified to propagate taint information while performing 

normal operations.  Typical assembly commands like add or load now contain 

extra functionality.  This extra functionality comes from the ALU itself, not 

instructions that are annotated to the binary.  This allows legacy code to run 

without having to recompile or instrument the executable.  Given the scale and 

complexity of modern chips, the additional space required to carry out the taint 

propagation rules will be minimal because the operators are so simple.  Branch 

instructions like RET, CALL, or JMP must validate the taint bits before branching 

to that location. 

3.1.4. Floating Point, MMX and SSE 

Since floating point data should never be used as the target for a branch or 

return instruction, all floating point data is marked as tainted.  Memory extensions 

are not needed by the FPU or FP registers because when writing floating point 

data back to memory, it is automatically marked as untrusted. 

Multimedia / vector instructions such as MMX and SSE and all their variations 

can be considered in the same way.  No extra functionality is performed by these 

instructions because they operate on floating point data and as such are forced 

to write back to memory with low integrity. 
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3.1.5. Reaction to Attack 

When a branching instruction is found to be tainted, an attack is signaled.  Upon 

discovery, there are a variety of options that could be taken: trap to the operating 

system, terminate the process, or attempt to recover.  For the time being, 

whenever an attack is found, the application is terminated.  Repeated attack 

attempts could lead to a Denial of Service but this a better result than a hacker 

hijacking control flow. 

3.2. Bochs 

The proof of concept for this work is done using an IA-32 emulator called Bochs 

[22].  Bochs is an open source C / C++ project maintained on SourceForge.  

Within the computer architecture community, it is a commonly used tool to verify 

designs, particularly experimental ones [31] [9] [40].  By using Bochs the 

developer gets a chance to quickly see the results of changes made to the 

internals of a CPU.  Modifications can be tested by running different applications 

on their new, unique design.  Bochs uses a custom BIOS and can emulate a 

standard PC including memory, DMA, I/O devices, and an x86 CPU with MMX 

and SSE instructions.  A variety of processor cores can be emulated ranging 

from x386 to P4.   

Any machine with a C++ compiler can run Bochs provided they have the correct 

display libraries.  The ability to run on a variety of host operating systems while 

emulating a machine running a different OS makes Bochs useful for virtualization 

or running Linux programs natively on a Windows machine or vice versa.   
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Figure 3.3 shows a screenshot of Bochs using Windows XP as its host OS.  

Inside the emulator, Bochs is running Redhat 6.0.  Some other tested guest 

operating systems are FreeDOS [14], openBSD [29], and nearly every flavor of 

Windows including Vista [25]. By downloading the Bochs source code and 

making changes to it one can easily experiment with the internal design of CPU.  

A snippet of the code used to emulate the ADD EAX, Immediate instruction is 

shown in Figure 3.4.  If, for example, a printf() statement were entered in the 

function then every time that the assembly instruction was executed Bochs would 

print a statement to the terminal in Windows.  A more practical use would be to 

add some sort of extra functionality to the add instruction.  One such use would 

be propagating taints bits.  Being written in C makes Bochs much more 

accessible and easier to use than other hardware simulators. At program startup, 

extra storage area for taint bits had to be allocated.  Each and every integer ALU 

instruction had to be modified to include taint bit propagation as dictated by the 

tainting rules in Table 3.1.   

3.2.1. Implementation 

To facilitate testing of this new processor design, Bochs was modified to include 

taint bits for each memory location.  This involved slight modifications to many 

Bochs functions.  Dissecting and understanding the interactions and overall 

functionality of an open source program such as Bochs proved to be quite 

challenging.  Memory load and store instructions had to be modified to store the 

correct taint bits after doing the lookup from virtual address to physical address.   
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Figure 3.3: Redhat Linux running under Windows XP through the Bochs 
Emulator 
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void BX_CPU_C::ADD_EAXId(bxInstruction_c *i)

{

  int op1_32, sum_32;

  op2_32 = i->Id();

  op1_32 = EAX;

  sum_32 = op1_32 + op2_32;

  RAX = sum_32;

  SET_FLAGS_OSZAPC_ADD_32(op1_32, op2_32, 

sum_32);

}
 

Figure 3.4: Bochs Code Snippet for Add EAX, Imm instruction 
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The ALU had to be modified to not branch to addresses that were marked as 

insecure.  If the target of a branch instruction was untrusted, the program is 

terminated.  Before the performance and security of the overall system could be 

tested, the modified version of Bochs had to successfully boot a Linux disk 

image.  Upon doing so, actual testing to verify Boch’s ability to repel attacks 

could begin. 

3.3. Summary 

In this chapter, the idea of extending memory to include taint bits on a per byte 

basis was presented.  A logical overview of how a modified system would look 

was provided.  To go along with this depiction, some estimations were made 

concerning die size and memory overhead required to produce processors of this 

type.  A set of rules was laid down describing the interactions between taint bits 

depending on the currently executing instruction.  Bochs, the platform for the 

proof of concept of this work, was described along with a description of the 

changes made to it.  The next chapter will describe the performance of this 

modified CPU. 
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4. Results and Discussion 

To test and verify the proposed architecture, an attack was constructed then 

tested on an unmodified version of Redhat 6.0 running under Bochs.  Being able 

to show a successful attack before modifications and a repelled attack with 

protections in place is adequate to demonstrate a security advantage. 

4.1. The Attack 

A buffer overflow style attack was written using [2] as a guide.  The attack comes 

in two parts: an exploit program that constructs the malicious string and a 

program that has a vulnerable strcpy() call.   

4.1.1. Exploit Program 

The purpose of the first program is to form a malicious string that can then be 

used to overflow another program’s buffer.  The application takes a buffer size 

and an offset from its own stack pointer as parameters to create the string.  With 

these numbers, the program creates an “egg” which is a malicious string that 

consists of a NOP sled, shell code, and return addresses.  The NOP sled is 

placed at the bottom of the egg to allow for some error in the return address.  If 

the return address returns anywhere in the NOP sled then an unspecified 

number of NOPs is run until the shell code is reached.  After determining the 

correct length of the buffer to overflow, the length of the NOP sled and return 

address region are calculated based on the amount of shell code which will be 

put in the buffer.   



 

 43 

A memory layout of the egg is given Figure 4.1.  This egg is stored in an 

environment variable for easier access.  The purpose of the code in the buffer is 

to open a shell by using the system() command.  When paired with a poorly 

coded vulnerable program, this combination makes for a particularly dangerous 

attack. 

4.1.2. Vulnerable Program 

The program which will be attacked is a simple rootecho program.  On a 

nonprivileged account it uses setuid() to run at root privilege.  This characteristic 

makes the program particularly enticing to exploit because the attacker can gain 

root access if the exploit is done correctly.  The intended purpose of the program 

is to echo the first command line argument given with it.  The code for this 

program can be found in Figure 4.2.   

4.1.3. A Successful Attack 

A successful attack involves a number of different things.  First, the exploit 

program must be run to create the malicious string.  Knowing the approximate 

size of the target buffer is greatly helpful in this process.  The popularity and 

prevalence of open source software makes this much easier than it may have 

been in the past.  Open source software also helps hackers to identify vulnerable 

programs.  By running grep and examining locations where unsafe function calls 

are made, an attacker can easily find a suitable target.  Second, the vulnerable 

program needs to be run using the malicious string as input.  Lastly, it helps to be 

a little lucky since stack addresses can vary from execution to execution.   
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Figure 4.1: An egg that would be used to overflow a buffer. 



 

 45 

 

 

Figure 4.2: Rootecho program. 
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However, the NOP sled goes a long ways to reduce the chances of returning into 

the wrong address.  A successful attack showing an elevation to root privilege is 

shown in Figure 4.3.  A portion of the string is printed to the screen before a root 

shell is given. 

4.2. Defense 

The proposed solution effectively prevents the above attack from being 

successful.  Stopping an attack from gaining root privileges is noteworthy and 

validates the approach taken in this work.  Instead of the attacker having 

unfettered access to someone’s machine, the result of an attack is a 

segmentation fault.  As stated previously, the semantics of branching functions 

are modified to validate the taint bits associated with the destination.  When this 

location is found to be tainted, the instruction is not executed and the program 

crashes.  A screenshot of this is given in Figure 4.4.  Again, a portion of the 

attack string is printed, but this time a segmentation fault is given instead of a 

root shell. 

4.3. Discussion 

The above results demonstrate the ability to prevent a typical stack smashing 

attack.  While this particular example may seem simple, an unprotected system 

can be successfully exploited exactly this easily.  As previously mentioned, the 

goal of this work was to provide a hardware based solution that would be helpful 

to the everyday while requiring little to no effort on their part. 
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Figure 4.3: Successful attack. 
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Figure 4.4: An unsuccessful attack 
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A fully functional and updated SELinux machine would not be susceptible to the 

demonstrated attack.  At the same time, understanding and maintaining a 

SELinux computer is a challenging task in its own right.  Failing to grasp all the 

nuisances and security policies of the operating system usually results in a 

number of applications being labeled insecure and thus, unusable.  On the other 

side of the spectrum is the supposed user friendliness of Windows.  While 

Windows may be the everyday user’s operating system of choice, it is certainly 

not the most secure.  The popularity of Windows among laymen has made it the 

most popular platform for attack by hackers because of the number of people 

using it insecurely.  The lengths that one has to go to in order to keep their 

version of Windows up to date are substantial at times [38].  Because of this, 

some users may elect to disable automatic updates spurred in part by the 

frequent restarts required for an update to take effect.  Presumably, this would 

lead to one of the more exposed systems imaginable: an out of date Windows 

machine. 

4.4. Summary 

This chapter detailed the exploit and vulnerable programs that were used to test 

the modified multicore CPU.  A buffer overflow attack was used in combination 

with a program that used an unsafe call to strcpy() resulting in escalation of 

privileges for a nonroot user.  A processor that features byte level tainting was 

able to repel this same attack under an identical test environment.  A computer 
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featuring this type of processor would be immune to stack smashing attacks 

without ever requiring the user to install new software, download updates, or 

recompile existing software.  The mandatory nature of this protection scheme 

would make circumventing it particularly difficult.  All of this is accomplished while 

still being backwards compatible with legacy code. 
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5. Conclusions 

Memory based vulnerabilities have been a serious problem over the past two 

decades.  Over that time, a great deal of work has been done to overcome them.  

However, much of this work required a substantial amount of expertise and 

involvement from the user and was therefore unsuccessful.  For this reason, 

exploits as simple as buffer overflows remain dangerous despite their age.  The 

subject of this work has been to close off this attack vector while requiring the 

least amount of user intervention.  To accomplish this goal, a hardware based 

mandatory access control mechanism was implemented.  This allows for existing 

legacy code to be executed natively without recompilation.  To be practical, the 

design was made with multicore consideration, an aspect of tainting that has yet 

to be researched.  To demonstrate its ability to repel attacks, a pair of programs 

were created that result in a root shell for an unprivileged user.  These programs 

were successfully exploited on a typical system using the x86 emulator Bochs.  

When the hardware MAC was implemented, the attacks failed.  This was 

accomplished with only a 12.5% memory overhead and little to no performance 

degradation. 

5.1. Future Work 

As the system seems to show promise, there remains work to be done.  At the 

forefront of this list would be an actual VHDL implementation that could then be 

run on a FPGA.  Many FPGAs already feature hard processors and can run 

Linux.  Creating a custom data path that features this hardware MAC would be a 



 

 52 

challenge worth the time and effort.  Unfortunately, this requires the VHDL code 

for an actual processor.  Since the platform of choice for this work was x86, the 

code could be difficult to come by.  If the platform were not important, there is a 

popular SPARC open source core available called Leon.  Instantiating multiple 

cores on an FPGA and then recreating these attacks would be a major step.   

In addition to the next steps in implementation, a variety of new attacks should be 

tested also.  The number of attacks that specifically target multicore architectures 

are few but growing.  Capturing one of these attacks in the wild and then testing 

it on Bochs or an FPGA would be productive work as well. 

Along the way, it is expected that the design would be continuously updated as 

well.  Having a graceful return from a detected attack would be favorable 

compared to a segmentation fault.  In the latter case, repeated attacks could 

result in a Denial of Service (DoS).  For some companies such as Amazon, a 

successful DoS attack can be very damaging.   

Another goal is to recognize properly bounds checked data and untaint it.  

Previous tainting schemes have attempted this with varying degrees of success.  

The difficulty is recognizing a set of instructions that qualifies as a bounds check.  

Moving the solution up to the compiler level would solve this problem, but require 

source code and recompilation.   

All of these areas deserve future consideration but at the time being, the solution 

serves its purpose in defending against buffer overflow style attacks. 
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Appendix A – exploit.c 
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#include <stdlib.h> 

 

#define DEFAULT_OFFSET                    0 

#define DEFAULT_BUFFER_SIZE             512 

#define NOP                            0x90 

 

char shellcode[] = 

  

"\xeb\x1f\x5e\x89\x76\x08\x31\xc0\x88\x46\x07\x89\x46\x0c\x

b0\x0b" 

  

"\x89\xf3\x8d\x4e\x08\x8d\x56\x0c\xcd\x80\x31\xdb\x89\xd8\x

40\xcd" 

  "\x80\xe8\xdc\xff\xff\xff/bin/sh"; 

 

unsigned long get_sp(void) { 

   __asm__("movl %esp,%eax"); 

} 

 

void main(int argc, char *argv[]) { 

  char *buff, *ptr; 

  long *addr_ptr, addr; 

  int offset=DEFAULT_OFFSET, bsize=DEFAULT_BUFFER_SIZE; 

  int i; 

 

  if (argc > 1) bsize  = atoi(argv[1]); 

  if (argc > 2) offset = atoi(argv[2]); 

 

  if (!(buff = malloc(bsize))) { 

    printf("Can't allocate memory.\n"); 

    exit(0); 

  } 

 

  addr = get_sp() - offset; 

  printf("Using address: 0x%x\n", addr); 

 

  ptr = buff; 

  addr_ptr = (long *) ptr; 

  for (i = 0; i < bsize; i+=4) 

    *(addr_ptr++) = addr; 

 

  for (i = 0; i < bsize/2; i++) 

    buff[i] = NOP; 

 

  ptr = buff + ((bsize/2) - (strlen(shellcode)/2)); 

  for (i = 0; i < strlen(shellcode); i++) 
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    *(ptr++) = shellcode[i]; 

 

  buff[bsize - 1] = '\0'; 

 

  memcpy(buff,"EGG=",4); 

  putenv(buff); 

  system("/bin/bash"); 

} 
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