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A little Learning is a dang’rous Thing

Drink deep, or taste not the Pierian Spring:

There shallow Draughts intoxicate the Brain,

And drinking largely sobers us again.

Fir’d at first Sight with what the Muse imparts,

In fearless Youth we tempt the Heights of Arts

While from the bounded Level of our Mind

Short Views we take, nor see the Lengths behind

But more advanc’d, behold with strange Surprize,

New, distant Scenes of endless Science rise!

Alexander Pope, An Essay on Criticism
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Abstract

Since its inception, Tor has offered anonymity for internet users around the world. Tor now

offers bridges to help users evade internet censorship, but the primary distribution schemes

that provide bridges to users in need have come under attack. This thesis explores how

threshold RSA can help strengthen Tor’s infrastructure while also enabling more powerful

bridge distribution schemes. We implement a basic threshold RSA signature system for

the bridge authority and a reputation-based social network design for bridge distribution.

Experimental results are obtained showing the possibility of quick responses to requests from

honest users while maintaining both the secrecy and the anonymity of registered clients and

bridges.
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Chapter 1

Introduction

Privacy is one of the most cherished features of a free society. However, few things empower

an individual more than privacy and anonymity. When given to members of a restricted

society, privacy and anonymity are invaluable and can pave the way to greater freedom. Tor

is one popular tool to help people achieve a level of privacy and anonymity over the internet,

but it must constantly evolve to maintain internet anonymity for its users. This thesis seeks

to augment Tor’s functionality to make it reliably available for the average user.

1.1 Tor 101

Tor is a distributed overlay network that offers anonymity for TCP-based applications [1].

To the average user, it appears simply as a browser and requires little knowledge of the

underlying architecture. For the purposes of this thesis, we require a more thorough

understanding of how Tor works. Figure 1.1 shows how a client, Alice, would talk to a

server, Bob, over the Tor network, and an explanation of the steps involved follows.

Alice downloads a version of Tor, say Vidalia, which functions as an Onion Proxy (OP).

To establish a connection over Tor, Alice must first obtain an updated list of Onion Routers

(ORs) from a Tor directory server (Step 1). Alice’s OP then chooses at least three ORs

and incrementally builds a circuit through these ORs by establishing session keys with each

OR consecutively (Step 2). Once the circuit is completed, Alice can send her TCP packets

1



Tor Directory Server

Alice Vidalia (OP)

Bob

1 2 2

2
3

Tor Relay (OR)

Tor-Encrypted Link

Figure 1.1: A basic example of routing in Tor.

to Bob through the circuit (Step 3). To Bob, it appears the final OR, the exit node, is

establishing the communication, but Bob’s responses are forwarded back through the circuit

to Alice. Note that the communication between the exit node and Bob are not encrypted by

Tor. The links between Alice and each OR in her circuit are encrypted in layers with session

keys, but it is up to Alice and Bob to establish application-level encryption. Further details

on the protocol are available in [1].

1.2 Tor Bridges

1.2.1 Background

Although the basic Tor design functions well for most people, the public nature of its

infrastructure enables adversaries to easily block access to the Tor relay network. For

example, consider a Tor user Alice whose ISP is controlled by the adversary. The adversary

need only periodically request a list of ORs from the Tor directory servers and block all

traffic destined for the IP of an OR.
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To circumvent this problem, in [2], the authors introduce the concept of Tor bridge relays,

or bridges. Bridges serve only as entry points into the rest of the Tor network. Unlike ORs,

the Tor directory servers do not publish a list of bridges, so an adversary cannot identify all

bridges with a single request. Bridges can either remain private or publish to a central bridge

directory authority, which can then distribute bridges to users in a number of ways. The

public bridges comprise a set of pools, each of which correspond to a different distribution

strategy. As proposed in [2], the pools are as follows:

1. A time-release distribution in which there are several partitions that are only available

during specific periods.

2. An IP-based distribution in which the IP of the requesting user determines which

bridges he will receive.

3. A combination of the two previous schemes. Requests from a single “/24” network

during the same time period will receive the same set of bridges.

4. A mailing list that is used to publish new bridges periodically.

5. An email-based distribution in which users send a request via emails from Yahoo!

or Gmail. These two providers in particular require CAPTCHA input for account

creation.

6. A reputation-based social network design.

7. Reserved.

8. Reserved.

In practice, there are primarily two methods of bridge distribution employed by Tor:

HTTPS bridge distribution as in pool 3, and Gmail bridge distribution as in pool 5.

Furthermore, as of March 2012, there were only about 1,000 public Tor bridges [3]. As

of April 2013, there are just over 1,300 bridges as reported by the Tor Metrics Portal [4].

Figure 1.2 shows how bridges operate in Tor. Assuming that Alice’s ISP has blocked all

connections to Tor directory servers or ORs, Alice first needs to request a set of bridges from

3



Tor Bridge Authority

Alice Vidalia (OP)

Bob

1  2 2

 3  

Tor Relay (OR)

Tor-Encrypted Link

Alice’s Bridges

2

Figure 1.2: A basic example of Tor bridges.

the bridge authority (Step 1). For example, Alice can create a Gmail account and send a

specifically formatted email request to “bridges@torproject.org” and will receive a response

with a set of bridges. Alice will then use the IP address of one of her bridges as her entry

point and will select two ORs before building a Tor circuit as usual (Step 2). Once her

circuit is complete, Alice can establish a connection through Tor to Bob (Step 3).

1.2.2 Previous Work

Despite the introduction of bridges, attackers have found ways to discover and block them.

For example, China successfully defeated both the HTTPS and the Gmail distribution

methods in September 2009 and March 2010, respectively [5]. [6] validated this problem

by launching their own bridge discovery attacks; they successfully obtained 2,365 bridges via

email and HTTPS and 2,369 bridges via control of a single Tor middle router over two weeks!

After a Tor user reported his private bridge relay as being blocked quickly [7], the authors

of [8], built upon preliminary analysis [9] that determined that Deep Packet Inspection was

to blame. Furthermore, it turned out that Tor traffic exhibits some unique features. Similar

attacks have also occurred in Iran [10], but [5] suggests that tools like obfsproxy [11], which
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transforms Tor traffic into innocent-looking data, are making headway into stopping such

network-level attacks.

While the fingerprint of Tor is one method used to detect bridges, the distribution

strategies currently employed are similarly vulnerable. [12] shows that the need for a

reputation-based social network design remains unsatisfied.

Proximax [13] is a distribution system that can be applied to Tor bridges. In Proximax,

there are registered users who learn bridges from the system, while other users learn

bridges from each other. The system determines which registered users will receive more

bridge addresses to disseminate depending on their reputation. The authors also list

some challenges still facing Proximax and other distribution schemes: censoring nations

may develop cooperative agreements to share information, adversaries can imitate normal

users to improve their reputation, adversaries can accrue bridge addresses to block them

simultaneously in DDoS fashion, and adversaries can target the bridge authorities to learn

all bridge addresses. The authors have yet to implement Proximax to acquire empirical

results.

An alternative reputation-based scheme to Proximax is rBridge. Introduced in [14],

rBridge is a reputation-based bridge distribution scheme that additionally offers a layer

of privacy preservation for its users. rBridge’s underlying distribution scheme requires a

set of registered users who earn credits based on the availability of their assigned bridges.

Periodically, the bridge authority will distribute invitation tokens to members with high

credit balances, and those users may distribute the invitation tokens to any friends by any

means. However, since knowing a user’s set of entry points can reduce the anonymity of that

user in Tor, the creators of rBridge create a privacy-preserving mechanism to effectively hide

the bridge selection from the bridge authority using a combination of zero-knowledge proofs

and Oblivious Transfer (OT).

Besides Proximax and rBridge, to date there are no effective reputation-based bridge

distribution strategies adopted by Tor. However, recall that the sixth pool of bridges

maintained by Tor depends on the development of a robust, reputation-based social network

5



scheme. We aim to contribute to filling this gap in the evolution of Tor while addressing

some of the problems facing such bridge distribution schemes.

1.3 Threshold RSA

1.3.1 Background

First published in [15], RSA is a popular tool used in public-key cryptosystems. RSA can

be described in a few simple steps: the key owner picks two distinct prime numbers p and

q, computes N = pq and φ(N) = (p − 1)(q − 1), picks a public key e, and computes the

private key d as the multiplicative inverse of e mod φ(N). The difficulty in compromising

the private key lies in the factorization of N when it is a large number, e.g., a 2048-bit

number.

Threshold cryptography as described by [16] effectively eliminates a single point of failure–

the lone user with the private key–and forces a group of entities to cooperate in order to

perform decryption or signatures. The classic example is one seen in movies: in order to

launch a missile, two officers on opposite sides of a control panel must simultaneously insert

their key into a special lock. Likewise, for threshold signatures, some minimum portion of

authorized entities must cooperate to perform a cryptographic signature with their shared

private key.

Following the logic of [17], a (t,n)-threshold signature scheme (or t-out-of-n) is one in

which at least t out of n parties must cooperate in order to perform a valid signature for a

message m. The goal of threshold RSA is to split the private key d across n parties in such

a way that at least t of said parties can perform a valid RSA signature that can be verified

with the public key e and the modulus N .

1.3.2 Previous Work

The first example of a (t,n)-threshold RSA scheme in literature is in [18], which provides

a simple method based on polynomial interpolation to share the key in such a way that

6



t − 1 of the parties cannot recover the remaining shares of the key. Extending upon this

work, [19] adapted the method to be more practical∗.

[17] designed a non-interactive and an interactive protocol for verifying partial signatures.

Through their scheme, parties that control shares of the key are able to verify the partial

signatures of potentially compromised members and discern the bad partial signatures

from the valid. [20] employed and supplemented the methods above to create a complete

threshold RSA scheme. In their paper, each party’s share is in turn shared among the other

participants by adapting a Verifiable Secret Sharing (VSS) scheme, which allows the share

to be “regenerated” when it has been compromised. Furthermore, the shares among the

servers can be refreshed if the compromised party returns.

While earlier papers either ignore how to generate the RSA key itself or assume a trusted

dealer would generate and distribute the n shares of d, [21] provides a distributed method

to generate the shared RSA key for groups of at least three parties. At the end of their

protocol, each of the n parties has a share of the secret key d, but no one knows the value

of d or any of the other shares. [22] adapted that protocol to enable distributed two-party

RSA key generation. Although both papers provide insight to eliminating the trusted dealer

from the key generation process, the former paper introduces overhead during the process,

whereas the latter paper targets only two-party RSA keys.

∗Shamir’s method [18] requires that the share space of d be a field. d is in the ring Zφ(N), and polynomial
interpolation is not necessarily possible. [19] generalized the scheme by requiring the share space to be a
finite Abelian group. A brief sketch of their proof is available in [17], but the reader may refer to [19] for
complete details.

7



Chapter 2

System Overview

Following the discussion of how Tor, bridges, and threshold RSA work, we now provide

an overview of this thesis. The following sections explain the objectives of the thesis, the

assumptions about adversarial threats, and the overall architecture of the approach.

2.1 Our Objectives

As asserted in the previous chapter, Tor bridges must adapt to the counter attacks in place.

Furthermore, we must remain vigilant and prepare for future attacks on the Tor architecture.

The single, overarching goal of this thesis is to help make Tor more accessible for the average

internet user in censored nations. To help contribute this effort, we wish to gain insight into

how to develop a robust system for Tor bridge distribution that can withstand active attacks

and yet retain anonymity and privacy for the bridges and their users. Specifically, our goals

are as follows:

1. The first objective is to determine if threshold cryptography is suitable and efficient

for use in the Tor environment.

2. The next objective is to open the door to more advanced bridge distribution techniques

that are mathematically efficient.
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3. The last objective is to provide experimental results to support our arguments.

The purpose of threshold cryptography in this project is to remove a single point of failure.

Previous papers( [13], [14]) do not account for the compromise of the bridge authority. With

the current state of their projects–and, in fact, the current state of Tor, whose lone bridge

authority is in Tonga [3]–, the compromise of the bridge authority by an adversary would

immediately result in the leak of all public bridge IP addresses and likely result in system

downtime.

For the second objective listed, we seek to enable future research into better bridge

distribution algorithms. Devoted mathematicians could perhaps derive very efficient bridge

distribution schemes that would be interchangeable with the rest of our protocol, but the

creation of a mathematically sound strategy is outside the scope of this thesis.

We hope that our design helps offer a consistently reliable supply of bridge IP addresses

to users who need them without compromising the privacy of either the bridges or users. In

other words, the bridge authorities and any eavesdroppers should not learn the IP addresses

of either users or bridges from the execution of our protocol.

2.2 Threat Model

Since we are focusing on Tor and its bridges, we draw from the threat models described in [1]

and [2]. In our project, we make the following important assumptions:

1. We have an initially trusted dealer controlled by the Tor Project.

2. Adversaries may take control of users, bridges, or some fraction of bridge authority

servers.

3. The objective of the adversary is to either learn bridge IP addresses or otherwise render

the service unusable.

4. A Tor circuit with underlying TLS offers acceptable anonymity and privacy between

the two endpoints.

9



5. Bridges can notify the bridge authority soon, say within a day, when they have been

blocked.

2.3 Threshold-based System

Recall that the sixth pool of public Tor bridges is reserved for a reputation-based social

network. Since the HTTPS and Gmail distribution schemes have been defeated [5], we

propose a scheme for robust bridge distribution with an underlying reputation-based social

network design. Since Proximax [13] and rBridge [14] are the only two such reputation-based

schemes to have been proposed in literature so far, we should first revisit them briefly to try

to learn from them.

2.3.1 Challenges

Neither Proximax nor rBridge resolve the issue that the current bridge authority server [3] is

a single point of failure. Because it knows all of the public bridge IP addresses, compromise

would mean the adversary could block all such bridges in their own country and bring down

the Tor public bridge distribution service. This is where threshold cryptography can help:

increasing the number of servers the adversary would need to compromise simultaneously

increases the difficulty of compromising the system as a whole. Furthermore, the servers

could be placed in separate locations or managed by separate teams, so an adversary would

have to increase their efforts dramatically to break into so many systems at once.

Another problem inherent to the bridge authority is that it knows the real IP addresses

of the bridges. Ideally, this information should remain a secret shared between a bridge and

its users even if the bridge authority is compromised.

Other issues include the bridge distribution strategy itself. rBridge [14] uses an Oblivious

Transfer (OT) technique to mask a user’s bridge selection. This approach forces the bridge

assignment for each user to be random. As an argument against a random selection approach,

10



suppose we have 100 bridges and hand out 3 per user. Suppose further that we have a

malicious user in our set of registered users and that he has received an invitation token

for behaving well. With the threat model in mind, the adversary will likely invite another

malicious user into the network. If bridges are selected randomly, then these two malicious

nodes are likely to learn 6 total bridges. However, a more intuitive bridge selection strategy

could force the two malicious users to share some bridges. For instance, we could reduce

the number of bridges known by the adversaries to 4 if they share 2 bridges. The bridge

authority can enforce such a strategy if it knows who invites whom into the network.

In developing our scheme, we must also avoid incurring too much overhead. For instance,

the zero knowledge proofs and OT protocols used in rBridge result in averages of just over 5

seconds of computation time for the user and over 17 seconds for the bridge authority during

registration and bridge requests, respectively [14]. Likewise, because in Proximax the users

disseminate the bridge IP addresses themselves [13], it could take significant time for a user

to tell his friends about his new bridge IP addresses.

2.3.2 Our Contributions

First, we give the basic idea behind our approach. The concept of a reputation-based

social network design is straightforward: registered users improve their reputation by not

blocking bridges, and users with a good reputation can invite their friends into the network.

Invitations require a valid invitation token dealt by the bridge authority, who acts as a middle

man between the bridges and users. Figure 2.1 provides a brief overview of our approach.

Bob is a user that has a good enough reputation, so when he connects to the bridge

authority (1), the authority responds with an invitation token (2). Bob then distributes

this token to his friend, Alice (3). In order to join the network, Alice contacts the bridge

authority (4). This can be done either outside Tor, e.g., via email, or using one of Bob’s

bridges to build a Tor circuit. Periodically, the bridges report to the bridge authority (5).

When the authority has determined which bridge to assign Alice, it relays Alice’s request

for the bridge’s IP address (6). The bridge will then respond (7) with its IP address. The

11
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Figure 2.1: An overview of our scheme.

authority relays this message back to Alice (8). Now that Alice has the bridge’s IP address,

Alice can build a Tor circuit using the bridge (9).

In order to avoid keeping the bridge authority a single point of failure, we adapt the

(t,n)-threshold RSA signature scheme proposed in [20]. For instance, if we have three bridge

authority servers, the adversary would have to compromise two of the servers in order to

recover the key of the third server and produce valid threshold signatures.

Note that the bridge authority is the middle man that the users must trust. With

threshold cryptography, the bridge authority can be trusted to a greater extent as the middle

man. We take advantage of this by using the bridge authority to establish trust between the

client and its selected bridges. This allows the bridge’s IP address to be kept secret from

the bridge authority.

We also borrow the basic, non-private reputation system proposed for rBridge in [14] to

show how a reputation-based bridge distribution scheme can operate within our protocol.
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If one were to use Proximax as the reputation system, our protocol could be tweaked to

transfer bridge IP addresses secretly to the seed users. More details on the methods we

employ can be found in the next chapter.
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Chapter 3

Threshold RSA-based Tor Bridge

Distribution

For this thesis, we implemented a distributed, multi-threaded server that can generate a

threshold RSA key-pair and can use it to authenticate itself to clients and bridges in the

Tor network for anonymous bridge distribution. This chapter will describe in detail the

threshold RSA scheme used, the reputation-based bridge distribution implemented, and the

overarching protocol developed.

3.1 Threshold Signatures

The threshold RSA signature scheme implemented in this thesis is derived from the proactive

threshold RSA protocol in [20]. This protocol supports n servers with a threshold of t where

n ≥ 2t−1. Below, we describe each of the major components of the threshold RSA protocol

in terms of our environment.

3.1.1 Key Generation

During the key generation phase, the dealer generates a basic RSA key-pair. This key will

later be shared among the n servers. The steps involved in key generation are as follows:
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1. Generate a 2048-bit RSA key-pair. (N, e) is the public key. N = pq, where p = 2p′+ 1

and q = 2q′ + 1 with p, q, p′, and q′ are prime.∗ The private key d satisfying de = 1

mod N will be shared among the servers.

2. Pick a global value g = gL
2

0 mod N where g0 is an element of high order (a random

2048-bit number) and L = n!.

Although we use 2048-bit moduli for RSA key generation, this is not a restriction. In

the implementation, the dealer performs all of these steps. Because the dealer knows the

private key d, he can perform a valid signature later on. The dealer needs to be trusted

during key generation and must forget the private key and its shares. Alternatively, the

distributed protocol in [21] could remove the need for a trusted dealer. Once the base RSA

key is generated, it can be shared among the participating servers.

3.1.2 Sharing

This phase splits the private key d into pieces and shares it among each of the n servers.

For each private share di belonging to server Si, a witness value will be computed to be used

for signature verification at a later stage. Additionally, each server will be given a piece

of the other servers’ private shares through Verifiable Secret Sharing. The steps below are

performed by the dealer for each server Si:

1. Select a random di ∈ [−nN2..nN2]. Set dpublic = d−
∑n

i=1 di.

2. Compute wi = gdi mod N .

3. Construct the polynomial f(x) = atx
t + ... + a1x + diL with random at, ..., a1 ∈

[−nL2N3..nL2N3].

4. Compute f(j) for 1 ≤ j ≤ n.

5. Compute bt = gat mod N, ..., b1 = ga1 mod N, b0 = gdiL mod N .

∗p and q are considered strong primes. This is required by the threshold RSA protocols in [20] and [17].

15



6. Send to server Si his secret share di.

7. Broadcast the witness wi and bt, ...b0.

8. Send to server Sj the value f(j).

Once these data have been distributed accordingly, each server must verify the

information he receives. The steps below are performed at each server Si:

1. Verify that gf(i) =
∏t

j=0(bj)
ij . Request the dealer to publish f(i).

2. The dealer will broadcast all requested f(j)s.

3. For each published f(j), perform Step 1. If any verifications fail, the dealer is

disqualified.

If the verification of the f(i)s fail, the dealer is disqualified, and the process needs to

restart. Once this phase has been completed successfully, the dealer is no longer a part

of the system, and the servers can begin signing messages. The dealer’s knowledge of this

threshold RSA key should be erased immediately.

3.1.3 Signature Generation

In a typical shared RSA signature scheme, a valid signature can be generated by multiplying

the individual partial signatures on a message m. The same holds for threshold RSA

signatures as defined in [20]. Thus, to perform a complete signature on a message m, we

must perform the following steps:

1. Each server Si publishes its partial signature σi = mdi mod N .

2. The complete signature on m is mdpublic
∏n

i=1 σi mod N .
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Verifying the signature is the same as with normal RSA signature verification. If c is the

ciphertext generated by the signature operation on a message m, then the verifier computes

ce mod N = mde mod N = m with the public key (N, e).

3.1.4 Verifying Partial Signatures

The benefit of this protocol is that an individual partial signature with share di can be

validated using the witness wi generated in the previous section on sharing. If the partial

signature on m is invalid, then the share di can be recovered by at least t of the n servers.

The interactive verification protocol discussed in [17] and listed below can be used to verify a

partial signature. Suppose server Si wishes to verify the partial signature σj = mdj mod N

of server Sj. The steps below detail this process:

1. Si chooses random x, y ∈ [0..N ] and computes Q = mxwyj mod N . Si sends Q to Sj.

2. Sj computes A = Qdj mod N and sends A to Si.

3. Si verifies that A = σxjw
y
j mod N . If not, then σj is an invalid partial signature on m.

The last step is possible because of the arithmetic properties of ZN . In other words,

σxj = (md
j )
x = (mx)dj . This verification protocol is flawed in that Si could send a different

message m′ to Sj, who would then effectively reveal his signature σj
′ on m′ in step 2. The

authors in [17] remedy this with the revised protocol below:

1. Si chooses random x, y ∈ [0..N ] and computes Q = mxwyj mod N . Si sends Q to Sj.

2. Sj computes A = Qdj mod N and sends a commitment to A to Si.

3. Si sends the values x and y to Sj.

4. Sj verifies the value of Q with its knowledge of x and y. If Q is valid, Sj sends A to

Si.
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5. Si verifies the commitment of A and that A = σxjw
y
j mod N . If both are valid, the

partial signature σj is valid.

3.1.5 Share Reconstruction

If Sjs partial signature σj on a message m is incorrect, then it is possible that Sj has been

compromised. In a typical n-out-of-n RSA scheme, a single compromised server would render

the entire system useless. However, due to Verifiable Secret Sharing (see steps 3-5 of the

protocol in the above section Sharing), Sjs private share dj can be recovered by t or more

of the other n− 1 servers. The reconstruction process for a single share dj is detailed here:

1. Each uncompromised server Sk broadcasts fj(k).

2. Server Si finds a set I of t+ 1 indices where ∀x ∈ I, gfj(x) =
∏t

y=0(by)
xy .

3. Si chooses a prime P > 2nN2 and computes dj =
∑

x∈I fj(x)
∏

y∈I,y 6=x
−y
x−y/L mod P .

3.1.6 Share Refreshing

Once the share reconstruction protocol has run to completion, the key share of the

compromised server will be known to the other servers. When the compromised server

is restored or replaced, it cannot simply reclaim its key share. The näıve approach would

be to regenerate the keys. However, this has disadvantages, including expiring signatures,

server downtime, and having to re-publish the public key. This is particularly unfortunate

with respect to Tor bridge distribution because new users or those who are in the process of

acquiring bridges may have difficulty acquiring the new public keys.

To avoid having to regenerate the shared RSA key, the author of [20] provides a

share refreshing protocol. This enables the servers to re-distribute their key shares among
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themselves. Also, the refreshing protocol repairs the VSS backups to reflect the changes in

the key shares. Their protocol as detailed below is performed for each server’s share of the

private RSA key d:

1. Server Si splits his private share into n pieces:

(a) Server Si randomly picks di,j ∈ [−N2..N2] for 1 ≤ j ≤ n.

(b) Si sets di,public = di −
∑n

j=1 di,j.

(c) Si sets gi,j = gdi,j mod N for each j.

(d) Si sends di,j to Sj.

(e) Si publishes di,public and each gi,j.

2. Another server Sj verifies Sis published data:

(a) Sj verifies that his new private share di,j ∈ [−N2..N2].

(b) Sj verifies that gi,j = gdi,j mod N .

(c) If either test fails, Si must make di,j public and set gi,j = gdi,j mod N .

(d) If Si fails to make these values public, his share di is reconstructed.

3. Sj verifies that Si’s old and new shares are the same:

(a) Sj verifies that wi = gi,public
∏n

j=1 gi,j mod N .

(b) If the test fails, Si’s share di is reconstructed.

4. Si gets his new share:

(a) Si computes dnewi =
∑n

j=1 dj,i.

(b) gd
new
i mod N =

∏n
j=1 g

di,j mod N is already public.
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(c) Si shares dnewi via the VSS sharing phase (see steps 3-5 of the protocol in the

above section Sharing).

(d) The VSS results in a public value b0 = gsL mod N where s = dnewi .

5. The other servers verify the VSS of Si’s private key share dnewi :

(a) If Si does not perform VSS with his secret, or if (gd
new
i )L 6= gsL mod N , each

other server Sj publishes dj,i.

(b) If some server Sj does not expose dj,i, he is compromised, and his dj is

reconstructed.

3.2 Bridge Distribution

Now that we have described in detail the threshold RSA scheme in terms of bridge authority

servers, we will now describe the bridge distribution scheme implemented in our program.

As mentioned before, we base our bridge distribution on rBridge [14]. rBridge can be split

up into two major parts. First, you have the bridge distribution method, and then there

is the privacy preserving mechanism. Unfortunately, the privacy preservation in rBridge

comes at the cost of increased computation time. Furthermore, due to the oblivious transfer

protocols used, each user gets a random set of bridges from the bridge authority. A perfect

bridge distribution system would offer the privacy of rBridge but give the bridge authority

more control over who gets which bridge in a timely fashion. Thus, we only borrow rBridge’s

basic bridge distribution protocol as a starting point for more advanced protocols.
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3.2.1 Bridges

Recall that a Tor bridge is a user’s gateway through or a detour around censorship devices.

Volunteers who wish to offer their machine’s services as a bridge register their computers

with the bridge authority. Once they have done so, the bridge authority typically learns

their IP address. When a bridge is running, users that the bridge authority points to the

bridge can use the bridge to establish typical Tor circuits to the rest of the world. Thus, the

substance of the bridge distribution system is the set of bridges. Bridges are not necessarily

as fast as Tor routers, so the number of users that can connect to any bridge is limited both

by the availability of the bridge and the amount of bandwidth it offers. For our project, as

in rBridge, we only hand out a bridge’s IP address to a select few users.

3.2.2 Clients

When a client registers with the bridge authority, he receives a random selection of a fixed

number of bridge IP addresses. Once the client has bridges, he can try connecting to them

to establish Tor circuits to the outside world. Throughout its lifetime, the client will connect

to bridges and seek to replace any bridges that his local censor blocks. Additionally, a client

can invite his friends to join the network. How the client acquires bridges and invitations to

send to his friends depends on his reputation.

3.2.3 Credits

Clients earn credits based on how long the bridges that they know remain unblocked. For

each bridge a client acquires, there is a window from T0 to T1 during which he can earn

credits at a given rate of ρ. For instance, if a client receives a bridge on March 12, his

window for earning credits from that bridge might be from May 12 to December 12. If the

bridge is blocked before May 12, the client will receive no credits for the bridge. If a client

has earned enough credits by having unblocked bridges, then they can afford to purchase a

new bridge should one of their current bridges be blocked.
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3.2.4 Invitations

If a client has enough credits from having unblocked bridges, then he may receive an

invitation token from the bridge authority servers. Periodically, the bridge authority will

select a handful of tokens to hand out to clients with high enough reputations, or high

credit balances. Of course, the number of unblocked bridges available limits the number of

clients that can exist at any given time. Also, to prevent a malicious client from hogging the

invitations and sending them to other malicious nodes or Sybils, the bridge authority will

randomly select who gets an invitation token.

3.3 Our Implementation

Before we delve into specific protocol details, we provide the basic idea inspiring this protocol.

Tor, both in its current form and as for both Proximax and rBridge has only a single bridge

authority server that knows the IP addresses of each registered bridge. This makes the entire

set of non-private bridges vulnerable: if an adversary compromises the bridge authority,

they can discover every bridge IP address available at that time, and the adversary could

bring down the infrastructure. An ideal bridge authority would not only be resistant to

compromise, but if compromised, it could still keep the bridge IP addresses secret and

continue to provide some level of service to the clients.

One sure way to solve the latter problem is to have more than one bridge authority. By

using a (t,n)-threshold RSA signature scheme, the bridge authority servers can still operate as

long as t servers remain uncompromised. This gives those supporting the Tor infrastructure

time to determine and resolve the problems with the compromised server.

The way we keep bridge IP addresses secret is by using the trusted t-out-of-n bridge

authority servers to relay messages between bridges and clients, who should all connect

to the authority via Tor circuits. Although the bridges and the clients do not have prior

knowledge of each other, the bridge authority can act as a trusted middle-man during a
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typical Diffie-Hellman (DH) key exchange. Figure 3.1 shows a simple example of how Diffie-

Hellman key exchange works with our protocol.

Alice sends her signed public DH key (message m) to the server. The servers check

Alice’s signature, and, if it passes, they create a full signature on the message to Bob. Bob

will then validate the full signature on the message sent to him by the bridge authority

servers. Once satisfied, Bob can create his own DH key and encrypt a secret message s with

the symmetric DH key. Bob sends back a signed message m′ containing his public DH key

and the encrypted secret message. Again, the servers will validate Bob’s signature, sign the

message with each of their partial keys, and then relay the fully-signed message m′ to Alice.

Alice can then validate the full server signature and decrypt the secret message from Bob.

Alice

1

2

3

TLS-encrypted

[m]A [m]S

Get [m]σ1 

Get [m]σ3

[m’]B[m’]S
Get [m’]σ3

Get [m’]σ1

Tor-encrypted

Bob

m = ga

m’ = gb, {s}AB

Figure 3.1: Diffie-Hellman key exchange with a trusted server infrastructure.
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In a typical Diffie-Hellman key exchange, the parties need to watch out for the middle

man. This is still the case, as someone in the right place between Alice (or Bob) and the

servers can impersonate Alice and perform the usual MITM attack. With our protocol, Alice

and Bob will both have RSA key-pairs to authenticate themselves to the servers, preventing

the MITM attack. Replay attacks where an adversary replays a previous message by Alice

can be prevented by typical countermeasures like session tokens, timestamps, and nonces,

but for the sake of simplicity, we omit them from our protocol.

Keeping this model for DH key exchange in mind, the sections below describe in greater

detail the different events and messages within our protocol.

3.3.1 Bridge Registration

Before any clients join the network, a bridge distribution system needs to have a set of

bridges. Bridges can register with the bridge authority by sending a signed message to one

of the bridge authority servers. Figure 3.2 shows the process of bridge registration

If a user Bob would like to offer his services as a bridge, he must first generate an RSA

signature key. Then, he needs to establish a Tor circuit and connect to one of the bridge

authority servers, say Si, and send a signed copy of his public key. The servers should

validate his public key before creating a unique IDB for Bob. When server Sj validates

Bob’s public key, it will send its partial signature [IDB]σj to Si. Once Si has gathered all of

the partial signatures, he can generate the full signature [IDB]S by computing the product of

all partial signatures, including the partial signature with the public key share dpublic. Once

Bob receives the reply from Si, he can validate the signature using the public component of

the threshold RSA key and store his pseudonym IDB.

3.3.2 Bridge Reporting

In future connections to the bridge authority, Bob will prefix messages with IDB. This allows

the bridge authority to identify his otherwise anonymous connection. However, because Bob

is connecting to the bridge authority through Tor, the bridge authority does not know his
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1

2

3

TLS-encrypted

Bob

[m]B

Get [m’]σ1 

Get [m’]σ3

[m’]S

Tor-encrypted

m = PKB

m’ = IDB

Figure 3.2: The bridge join protocol.

IP address. Hence, reports from the bridges are critical part of our protocol. Periodically,

a bridge should report to one of the bridge authority servers. Figure 3.3 gives the messages

involved in a bridge report.

When reporting to the bridge authority, Bob merely sends a signed copy of his identity

IDB. If the servers have any requests waiting for Bob, then the server connected with Bob

will send them. The important part of each request is the public component ga of the client’s

DH key. However, if the server only sent [ga]S to Bob, a malicious server could replay the
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2

3

TLS-encrypted

Bob

[m]B

Get [m’]σ1 

Get [m’]σ3

[m’]S

Tor-encrypted

m = IDB

m’ = IDB, ga

m” = gb, {IPB}AB

[m”]B

Figure 3.3: The bridge report protocol.

same fully-signed message to any bridge that connects to it. To protect Bob’s IP address

from being discovered by replaying old requests, each request m′ = [IDB, g
a] must contain

IDB before Bob will accept its authenticity.

After verifying the IP request from the bridge authority, Bob can create a DH key with a

random secret value b and the public ga. Bob will encrypt his IP address with this secret key

shared with the client and reply to the authority with a signed message m′′ = gb, {IPB}AB.

The servers will then do further processing of Bob’s response, but Bob is no longer needed.
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Bob’s connection will eventually time out, and he will report back to a different server at a

later time.

3.3.3 Client Invitations

Once we have a set of bridges available to offer to clients, we can invite clients. At first, the

system needs to distribute tokens to seed clients. The seeds may be known honest users,

NGOs, or communities of users. For example, in rBridge [14], the authors consider using

Chinese users on Twitter as seeds, because their use of Twitter implies an interest in censored

internet resources.

Other than being selected to start the growth of the network, seeds operate as normal

clients would. When they accrue enough credits, they may be given invitation tokens. The

bridge authority servers periodically generate and agree on tokens, which are then doled out

to randomly-selected clients with credits above a certain amount. In our protocol, these

tokens are sent to selected, high-reputation clients when they report to the bridge authority

as in Figure 3.5.

3.3.4 Client Registration

When a Client receives an invitation token from a friend or acquaintance who is already in

the network, they can redeem the token to register with the bridge authority and receive

a set of bridge IP addresses. Figure 3.4 shows the messages used during the registration

process.

Before a client like Alice can register with the bridge authority, they must first obtain a

token from a registered user. For a token to be redeemed, Alice needs some way to prove

that the original token owner intentionally sent it to her. The way our protocol does this is

to have the token owner, say Trent, use his RSA key to sign the message [token, PKA], where

PKA is Alice’s public key. When Alice sends her registration request to server Si, she will

need to provide this signed message from Trent proving that Trent gave her the invitation

token. In order to establish a secret communique with any bridges, Alice also must sign and
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Alice

1

2

3

m

Bob

[m’]S

Get [m’]σ1

Get [m’]σ3

[mIP]B[m”]S
Get [m”]σ3

Get [m”]σ1

TLS-encrypted

Tor-encrypted

m = [token, PKA]T, [ga]A

m’ = IDB, ga

mIP = gb, {IPB}AB

m” = IDA, gb, {IPB}AB

Figure 3.4: The client registration protocol.

send the public component of her DH key, ga. Thus, the first message from Alice to Si is

m = [token, PKA]T , [g
a]A.

The first thing Si must do is verify the signatures on [token, PKA] and [ga]. If the

signatures are authentic, Si will create IDA for Alice and select a set of bridges. Si will then

relay the message from Alice, IDA, and a list of messages designated for the selected bridges

to the other servers. For example, Si will select the bridge with IDB. The message it will

send to each Sj will be [token, PKA]T , [g
a]A, [IDB, g

a]σi .

As each of the servers validate the messages and agree on the bridge selection, they

will broadcast their partial signatures on each message designated for a bridge, e.g., m′ =

[IDB, g
a]σj . When all partial signatures for a particular bridge request have been published,

the next server that Bob contacts can relay Alice’s request for an IP address to Bob. Once
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all encrypted bridge IP addresses have been acquired and validated, the servers will send

their partial signatures on m′′ = IDA, g
b, {IPB}AB. When Si, receives all of the partial

signatures, it can compiled the full signature on m′′ and send it to Alice.

Once Alice receives [m′′]S, she can validate the bridge authority’s signature, store IDA,

and decrypt each of the encrypted bridge IP addresses using her private DH key component

a and each gb.

3.3.5 Client Reports and Requests

The process of reporting to the bridge authority and requesting a replacement bridge is very

similar to the registration process. Periodically, clients are expected to report to the bridge

authority. Once connected, they will receive an update on their credit balance along with

any invitation tokens selected for them. Provided the client has enough credits to purchase

a new bridge, the bridge authority will select a new bridge and request an IP address from

the bridge. Figure 3.5 shows this process in detail.

Alice will contact a server Si with the signed message [m]A = [IDA, g
a]A. If Alice has any

tokens waiting for her, Si will relay Alice’s message to the other servers and ask for partial

signatures on her list of tokens, m′. Si will send to Alice a full signed list of her tokens.

If Alice needs new bridges and has earned enough credits, Si will select some bridges

for Alice and broadcast the associated bridge IP requests like m′′ = IDB, g
a along with its

partial signature. Again, the next server that is connected to selected bridge Bob will relay

the fully-signed bridge IP request to Bob. When Bob responds, the server will broadcast

Bob’s reply. Once all bridge responses are accounted for, the other servers send Si their

partial signatures on m′′′ = IDA, g
b, {IPB}AB. Si then compiles the full signature on m′′′

and responds to Alice. Alice will then be able to decrypt the selected bridge IP addresses.
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Alice

1

2

3

TLS-encrypted

[m]A

Bob

[m”]S

Get [m’]σ1

Get [m”]σ1

Get [m’]σ3

Get [m”]σ3

[mIP]B

[m’]S

Get [m’’’]σ3

Get [m’’’]σ1

Tor-encrypted

[m”]S

m = IDA, ga

m’ = tokens

m” = IDB, ga

mIP = gb, {IPB}AB

m’’’ = IDA, gb, {IPB}AB

Figure 3.5: Client reports, requests, and invitations.
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Chapter 4

Results

We implemented our protocol for three servers, yielding a 2-out-of-3 threshold RSA signature

system, and simulated an environment with hundreds of clients and bridges. This chapter

discusses specific implementation and experimental details along with the experimental

results we obtained.

4.1 Implementation Details

Because BridgeDB, the current bridge distribution database backend [23], is written in

Python, we implemented our protocol using Python 2.7.3. This version of Python supports

Unix style sockets and SSL up to TLSv1 based on OpenSSL [24]. For communications

between the servers and the dealer, we use sockets wrapped with TLSv1 and 2048-bit

RSA keys and certificates. Thus, it is expected for the servers (and the dealer during key

generation) to have confirmed the authenticity of each other’s certificates.

All RSA keys are 2048-bit keys. This is not a restriction, and key sizes can be changed

easily to reflect changes in security practices. To generate and use RSA keys either on the

dealer or on bridges and clients, we use PyCrypto 2.6 [25]. When signing a message, we

first hash it with SHA-256, perform the signing operation on the message hash, and then

we append the signature to the end of the message. For non-threshold RSA signatures, we

use PKCS#1 RSASSA-PSS (support provided by PyCrypto). For threshold signatures, we
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perform the standard RSA operations with the private key shares using gmpy2’s interface [26]

to the The GNU Multiple Precision Arithmetic Library (GMP) [27].

For the Diffie-Hellman key exchange, we follow the examples in the Tor specification [28].

Specifically, we use key lengths of 320-bits, with the public components g = 2 and p set to

the 1024-bit safe prime in Section “6.2 Second Oakley Group” of RFC2409 [29]. To encrypt

the IP address, we use 128-bit AES in ECB mode. ECB should not be used to encrypt

multiple blocks (repeated plaintext blocks will have the same ciphertext), but an IP address

(and a port) can fit easily into a single 16-byte block.

4.2 Experiment Details

Because we implemented rBridge’s basic reputation scheme, we wanted to test their

reputation scheme both before and after a change. We also adapted their selected parameters,

with a few changes. Table 4.1 shows the major parameters we used.

Instead of growing the bridge base as is done in [14], we keep a static set of 200 bridges.

This is a more realistic scenario, since the authors of Tor would likely not put all their

bridges into one distribution strategy. We are also interested in how the user base grows,

so we only use 10 honest seeds rather than trying to overwhelm the set of bridges at the

beginning. The last change from rBridge is that we move the credit earning window closer

to the initial assignment. We do this because we do not simulate more advanced attacks

like the event-based attacks in [14] but rather focus on “dumb” attacks (blocking bridges

immediately).

Table 4.1: Selected parameters.

Number of seeds 10 Credits per day 1
Initial bridges 200 T0 5 days
Chance for malicious client 0.05 T1 305 days
Bridges per client 3 Credits per bridge 45
Clients per bridge 40 Invite threshold 236 credits
Days to simulate 720 Invitation period 7 days
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We simulate two years of running time for the system at a rate of 10 seconds per day and

gather results from the servers. We simulate two years because the authors of [14] selected

the credit threshold for invites at 236. If an honest user has all 3 unblocked bridges, the first

time he could afford an invitation would be nearly 80 days. We also had to throttle back the

number of invitations a single user could be given at any time to prevent the system from

being bombarded with hundreds of join requests at the same time.

4.3 Results

Our results were obtained by running the scripts on a LAN. We used the VNC machines

vnc0.eecs.utk.edu through vnc16.eecs.utk.edu. The first three machines, vnc0 to vnc2, were

used as servers, vnc3 to vnc9 hosted bridges, and vnc10 to vnc15 ran clients. For experiments

involving the dealer, we ran the dealer on vnc3. Each bridge hosted clients on a specific port

in the range 40000 to 50000. Each machine has an Intel Xeon X5550 2.67 GHz processor

with 12GB 1066MHz PC3-8500 RAM, and runs Ubuntu 12.04 (Precise Pangolin) x64.

4.3.1 Key Generation

Before we tested the performance of the threshold RSA scheme in practice, we simulated the

speed of the key generation phase. This includes all communications between clients and

servers. We ran one test where the dealer always broadcasts an invalid f(j) (step 8 in the

first protocol of Section 3.1.2). The values in table 4.2 were averaged over 100 trials, with a

new RSA key generated in each trial.

The generation time shows how long it takes for the dealer to generate all of the key

data, including the witnesses and VSS shares. At 0.340 seconds on average, this is the

longest section of the key generation process.

Transmission time records how long it takes to send all of the key data to each server and

receive a response. Responses will be either “OK” or a request to publish f(j) values from
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Table 4.2: Performance of bridge distribution protocol.

Average Times (seconds)

Generation 0.340
Transmission 0.131
Validation 0.168

Average Traffic (bytes)

Transmission 44180
Validation 49893

the VSS protocol. In other words, it includes the time it takes for the servers to validate the

key data they receive.

The validation period includes the time it takes to transmit the requested data to each

server, the time for each server to validate the data, and for them to respond. Because we

modified the f(j)s going to each server, this validation protocol produced the maximum

amount of data to be sent and processed.

The next table shows the amount of data sent from the dealer throughout the experiment.

This shows that at best each server need only process about 14.4 KB of data, while at worst

a server must process about 30.6 KB of data.

From this experiment, the key generation process is clearly very fast. With threads

handling the communications from the dealer and each server working independently, the

process is nearly instant.

4.3.2 Bridge Authority

We then stored a functioning threshold key and its shares for testing the speed of the protocol

when all servers are functioning properly. For convenience, when started, each server would

read its key share data from a file to avoid regenerating the key each time. We ran two

experiments to evaluate the performance of the protocol. The first experiment uses the

rBridge reputation system along with its random selection of bridges. In other words, when

a user joins the network, he receives 3 randomly-selected bridges.
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The second experiment changes the selection of bridges slightly: when a client invites

another client, the new client will receive all but one of its inviter’s bridges. The remaining

bridges selected up to the limit of bridges per client are randomly selected. The idea is to

keep the bridge selections for a group of friends from affecting unrelated clients. This is not

necessarily a perfect solution, but the idea is to show that bridge distribution algorithms are

interchangeable with our protocol.

Table 4.3 shows the performance of the bridge distribution protocol for both experiments.

All measurements were made at the server. Our protocol dictates that the first server to be

contacted is the same server that responds, so we took these measurements at each server.

The bridge join figures measure the first instant a message is received from a bridge to

the moment the server sends out the fully signed message welcoming the bridge into the

network. There is only one brief exchange between the bridge and its contact within the

bridge authority, thus it is the fastest of these protocols.

Client report measures the amount of time it takes for the client to get a response when

reporting to the servers. This includes the servers’ getting a full signature on the tokens

that should be sent to the client. Although the tokens have already been selected, the full

signature is not computed until the client connects in case more tokens are selected for the

client. This portion of the protocol is very fast, showing again how minimal the computation

time of threshold RSA signatures can be.

Table 4.3: Performance of bridge distribution protocol.

Method Averages

Event Random Inherited Random

Bridge Join 0.112 0.139
Client Join 3.219 2.707
Client Report 0.232 0.227
Client Request 3.663 3.299

Non-malicious Clients 963 752
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Client join represents the amount of time it takes from the first contact from the client to

the sending of the final, fully-signed message containing the client’s ID and his set of bridges.

The numbers here are elevated because it is possible that one or more of the bridges selected

for a client are not connected to the server. Thus, the client will have to wait a little while.

This can be a problem if bridges do not report as frequently as they do in our experiment

(every 3 seconds). We could select bridges from those that are at that moment reporting to

the server, and that would increase the average response time. However, because the client

is not a part of the network yet, he must wait on the servers to select and query all three

bridges. Thus, this is one of the slower parts of our protocol.

The last event we discuss are the client requests. Requests are considered part of the

reports, but they do not always occur. For instance, sometimes a client needs to report but

does not require a new bridge. These figures measure the amount of time from the first

response during the report to sending the selected, encrypted bridge IP address(es) to the

client. Note that the request times are longer than the recorded client join times. This

could have multiple causes. First, as bridges are blocked, their IP addresses become more

scarce, and with more clients making requests at the same time, the 10 threads processing

requests at each server might become overwhelmed. Another issue is that, as more malicious

clients register and block bridges, any bridges they block that are selected for registering or

requesting clients will cause a new bridge selection.

It is interesting to note that the second bridge distribution method (inherited random)

seems slightly faster with client joins and client requests. When running the experiments,

it seemed that the latter distribution entered a state of equilibrium and quit growing. The

random distribution had 66 out of 200 unblocked bridges at the end of the experiment, while

the inherited random distribution had 63 out of 199 bridges. Both sets had almost the same

number of malicious clients by the end (45 and 46, respectively). Although performance did

not improve much, the appearance of graphs showing all of the clients and their parents in

the network do vary greatly. With the latter method, trees are much less uniform in size,

and groups of blocked clients (honest clients with no bridges) seem to develop nearer each

other. The reader is referred to the appendix for the graphs.
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Chapter 5

Conclusion and Future Work

We successfully implemented a threshold RSA signature system that distributes Tor bridges

to clients via a reputation-based distribution scheme. We gathered results showing that

threshold RSA signing is computationally fast, although it may introduce communication

overhead. It also removes the single point of failure for the Tor bridge infrastructure and

allows us to implement a privacy-preserving protocol for handing bridge IP addresses secretly

to users in need.

Problems with this approach include the added communication overhead. More research

and more practical experiments would need to be performed to ensure that threshold RSA,

or rather redundant servers that operate as a single unit, is feasible in practice. This includes

a more realistic simulation of a global environment, meaning possibly significant delays and

packet loss between the servers.

Another problem is that bridges may report infrequently to the bridge authority, thus

slowing down our protocol. There are a number of ways this might be addressed, including

selecting bridges that are already connected and reporting to one of the servers and, during

the client report stage, have clients send, in advance, a Diffie-Hellman key for their next

request.

A more technical problem is the process of secure padding with threshold RSA signatures.

In practice, RSA schemes require messages to be padded before being manipulated by the
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private or public RSA key components. For signatures, this includes schemes like RSASSA-

PSS (Probabilistic Signature Scheme). Additional research by more cryptographically-

minded individuals may be able to show such padding schemes to be either compatible

or incompatible with threshold RSA.

One particularly useful advantage of our scheme is that more advanced bridge distribution

schemes can be incorporated to better distribute bridges among clients with minimal impact

on honest clients when malicious clients infiltrate the network. Because bridges and clients

are associated with identifiers and not IP addresses, better algorithms can use the known

relationships between clients to distribute bridges in a mathematically efficient way without

compromising the bridge and client’s IP addresses. Future research could develop schemes

that can outperform either of the bridge distribution algorithms implemented for this thesis.

We hope that this approach opens the door to better, more reliable, and more secure Tor

bridge distribution schemes. Such a threshold-based scheme allows much more flexibility

for developing various bridge distribution algorithms without making the bridges themselves

vulnerable, thus making Tor more accessible for the otherwise restricted, honest users.
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Figure A.1 shows the set of clients at the end of the 720-day simulation with random

selection of bridges upon client registration. Nodes with an S are seeds. Black nodes are

malicious nodes. The colors of nodes with 3, 2, 1, and 0 unblocked bridges are, respectively,

green, yellow, orange, and red. The method below was the random selection as used for

rBridge. In other words, when a client joins, he is given 3 random bridge addresses.

Figure A.2 shows the set of clients at the end of the 720-day simulation with inherited

random selection of bridges upon client registration. Nodes with an S are seeds. Black

nodes are malicious nodes. The colors of nodes with 3, 2, 1, and 0 unblocked bridges are,

respectively, green, yellow, orange, and red. The method below was the ”inherited” random

selection. Here, when a client joins, he is given bridge IP addresses based on his parent node,

the client that invited him. If the parent has 3 unblocked bridges, the child gets 2 of those

at random. If the parent has 2 unblocked bridges, the child gets 1. The remaining bridges

are chosen at random.
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Figure A.1: Clients at the end of simulation with random bridge selection.
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Figure A.2: Clients at the end of simulation with “inherited” random bridge selection.
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