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ABSTRACT 
 

Switchgrass (Panicum virgatum L.) is a warm-season, perennial grass, 

whose native range includes the entire United States and north into Canada, 

excluding areas along the pacific coast.  Recently, symptoms and signs of rust 

disease (Puccinia emaculata) have been observed on agronomic switchgrass, 

which include chlorosis of leaf tissue, necrosis, lodging, and plant death.  

To evaluate disease progress of switchgrass rust, in four fields, individual 

leaves of twenty-five switchgrass plants were rated once per week for fifteen 

weeks over two growing seasons for disease severity.  Rust was first observed 

on Julian day 166 and 152 in 2010 and 2011, respectively.  Ninety-five percent of 

switchgrass plants were at the 5-7 leaf growth stage before rust was first 

observed.  Disease severity progressed logistically after detection; the rate of 

increase in disease severity lessened in late August to early September.  The log 

phase of disease progression occurred from mid-June to mid-August.  Leaf 

mortality was first observed in mid-to-late June.   Greater than five percent of leaf 

surfaces were covered with uredia by early-to-mid October. Data collected in this 

study indicates when rust epidemics begin and subside on switchgrass in East 

Tennessee.  If fungicide sprays become a viable management strategy, this data 

will be useful in timing those applications. 

Growth and pycnidial production of Sphaerellopsis filum was highest on 

V8 juice agar, which was used to maintain cultures. To evaluate the 

mycoparasite’s ability to impede urediospore production and viability, uredia of P. 
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emaculata on detached switchgrass leaves were inoculated with conidia of S. 

filum.  Pycnidia formed in uredia at 12-14 days after inoculation.  The 

mycoparasite significantly reduced the number of urediospores per uredium by 

an average of 246 spores when compared to untreated uredia.   

When germination of urediospores was compared between healthy or 

those parasitized by S. filum, percent germination was 73% and 42%, 

respectively.  Germ tubes of urediospores from healthy uredia averaged 96.9 um 

in length, whereas those from parasitized uredia averaged 32.3 um at three 

hours.  As the mycoparasite reduced urediospore production, germination, and 

germ tube length, further investigation into its use as a potential biological control 

agent for P. emaculata is warranted. 
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Switchgrass: 

Switchgrass (Panicum virgatum L.) is a warm-season, perennial, C-4 

grass in the family Poaceae that grows in clumps and spreads by rhizomes (7).  

The native range of switchgrass includes most of the United States with the 

exception of California and the Pacific Northwest (Figure 1.1)(30). Switchgrass 

can be used as a biofuel feedstock, forage crop, ornamental plant, for bank 

stabilization, and as a component to improve wildlife habitat (18).   

Recently, agronomic switchgrass production has increased due to its 

usage as a crop for production of cellulosic ethanol.  Screening trials were 

conducted from the late 1980’s to early 1990’s at Auburn, Purdue, Iowa State, 

North Dakota State, Virginia Tech, Cornell, and a company in Ohio named 

Geophyta, and were compiled in a report by Wright (32).  Thirty-four species of 

potential biofuel crops were evaluated at thirty-one research sites, and 

switchgrass was recommended by six of the seven research institutions for 

further development as a biofuels crop, with sorghum or sorghum X sudangrass 

following in preference.  Switchgrass was favored over sorghum or sorghum X 

sudangrass due to its relatively easy establishment and longevity of stands.  

Switchgrass also had higher yields than did big bluestem, tall fescue, reed 

canarygrass, alfalfa, birdsfoot trefoil, weeping lovegrass, and sericea lespedeza 

(32).  Several reports were made of stand failure with rye/sorghum X sudangrass 

and one researcher at Oak Ridge National Laboratory reported that fertilization 

after stand failure should be considered since weeds fertilized at the same level 
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produced respectable yields (33).   The United States Department of Energy 

(DOE) has dedicated switchgrass as an energy crop because of its potential for 

high fuel yield, environmental enhancement characteristics, and ability to be 

grown on marginal cropland without intensive fertilization or crop management 

(4).  As a forage crop for cattle, switchgrass has the potential to be excellent, but 

quickly becomes tough and unpalatable as it matures and the nutritive value of 

the forage decreases dramatically.  Toxicity issues have occurred in sheep, 

horses, and goats, because of chemical compounds called saponins, which can 

cause photosensitivity and liver damage (29).  Also, switchgrass can be planted 

along stream banks and on steep slopes for erosion control due to its extensive 

root system, which helps hold the soil in place.  Due to its clumping growth 

pattern, switchgrass provides excellent habitat for wildlife.  Cover is provided for 

deer, quail, rabbits, and other wildlife.  Passageways are present at ground level 

between the clumps that allow for practically undetectable movement of wildlife 

within the field.     

Switchgrass is divided into two groups:  upland and lowland types.  Both 

upland and lowland switchgrass are deep rooted and have rhizomes.  Upland 

grasses are better suited to well-drained soils, grow 1.5 to 1.8 meters in height, 

are more cold tolerant, and tend to be more vigorous than lowland switchgrass 

when forming rhizomes.  Lowland types favor heavy soils and bottomland sites, 

can reach heights of 3.6 meters, and tend to be more clumped in nature (5).  Due 

to their higher yield potential, lowland switchgrass cultivars are better suited for 
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biofuel production on the southeast United States.  Lowland varieties, such as 

‘Alamo’ and ‘Kanlow’, are recommended by the University of Tennessee as a 

biofuel crop (10).  Switchgrass is a near obligate outcrosser, meaning that some 

self-pollination has been documented, but for the most part male and female 

plants must be present for fertilization to occur (21).  Switchgrass is vegetatively 

clonal, and clones have been used to evaluate tiller development and growth 

characteristics (2).  The ability to clone switchgrass cultivars is a very important 

characteristic when considering development of disease resistant plants.  

Rust of switchgrass: 

 Puccinia emaculata Schw. is an obligate parasite and a member of the 

order Pucciniales (26).  The uredial stage is common on switchgrass and 

urediospores are the primary source of inoculum for secondary disease cycles.  

Urediospores are single-celled, globose or oval, and are approximately 27 × 

25µm.  In late summer to fall, telia may be observed on infected leaves.  

Teliospores are two-celled; the upper cell has a thickened cell wall (22).  

Teliospores are 33.6 µm ± 4.8 in length and the width of apical and basal cells 

are 17.5 µm ± 1.2 and 15.9 µm ± 2.5 respectfully (9). 

 On water agar, urediospores germinated one hour after inoculation.  After 

two to three hours of incubation, elongation and branching of hyphae occurred 

and appressoria were formed.  When urediospores were deposited on 

switchgrass leaf surfaces, appressoria formed over stomata and penetrated 

through stomatal openings (20). 
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 Rust can negatively impact the biomass yield, seed production, and forage 

quality of switchgrass (11).  In July and August 2007, uredial pustules of 

switchgrass rust were found on the upper leaf surface of switchgrass plants 

located at the East Tennessee Research and Extension Center, which became 

the first official report of switchgrass rust in Tennessee (9).  Rust has also been 

reported in Arkansas on ‘Alamo’ switchgrass, where 25% to nearly 100% of 

switchgrass leaves were infected by P. emaculata (13).  Rust has also been 

reported on switchgrass in numerous states throughout the southeastern United 

States, west into Texas, and north into South Dakota.   Both upland and lowland 

varieties of switchgrass have been reported to be infected by Puccinia 

emaculata.  Jacobs and Terrell reported that five ornamental cultivars of 

switchgrass, Shenandoah, Northwind, Rehbraun, Warrior, and Campfire, 

exhibited resistance (14). However, Northwind and Shenadoah were susceptible 

to rust in Tennessee (M. Windham, personal communication).  Gustafson et. al. 

examined the genetic variation of switchgrass in regards to rust resistance and 

found that a great deal of additive and non-additive genetic variation was present 

in switchgrass populations (12).  Variation in pathogenicity of P. emaculata also 

exists, as isolates from ornamental switchgrass have proven to be more virulent 

than those collected from agronomic switchgrass (19).  Ten polymorphic markers 

have recently been developed to further study genetic diversity within P. 

emaculata populations (31).   

 Infection of the primary host (switchgrass) by Puccinia emaculata may 
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occur in one of two ways.  Aeciospores are wind-blown, land on switchgrass 

leaves, and form dikaryotic hyphae, which penetrate through stomatal openings 

(M. Windham, personal communication).  After ramification throughout the leaf 

tissue, hyphae form in the compact palisade layer where urediospores are 

produced (M. Windham, personal communication).  

Urediospores may be blown into Tennessee from gulf coast states making 

dependence of primary infection from germinated aeciospores unnecessary (M. 

Windham, personal communication).  Uredia can form in 7-10 days after infection 

occurs.  In late summer/fall telia form and teliospores should germinate following 

meiosis during spring to form basidiospores which infect spurge leaves.  The 

aecial stage is thought to occur on species of family Euphorbiacae (spurge), but 

the species has not been well documented (9,24).  P. emaculata was described 

as being very similar to Puccinia pamellii Arth., so attempts were made to culture 

P. emaculata on Euphorbia corollata, the alternate host of P. pamellii, but with no 

success (1).  The alternate host infected with P. emaculata has not been 

observed in Tennessee.   

Complete management plans for switchgrass rust have yet to be 

developed.  In several publications, it is reported that significant disease and 

insect problems have not been experienced in switchgrass production, but that 

insect and disease problems should be expected (10).   

A mycoparasite of P. emaculata: 

 In 1813, Sphaeria filum was described to occur on two rust hosts by 
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Bivona-Bernadi (3).  L. Castagne established the genus of Darluca in 1851 and 

used Sphaeria filum as the type species and the fungus was renamed Darluca 

filum (6).  Spegazzini established the genus Eudarluca in 1908 to describe a 

pyrenomycete associated with uredia of rust on Canna sp. in Brazil (27).  In 

1951, Keener showed that ascospores from Eudarluca produced pycnidia and 

conidia of Darluca filum (15).  In 1966, Eriksson renamed the mycoparasite E. 

caricis Erik. O., and this is the current designation for the teleomorphic state of S. 

filum (8).  The taxonomic classification of D. filum was used until 1977, when the 

Sphaerellopsis Sutton genus was proposed. 

 Pycnidia of Sphaerellopsis filum are found in uredia of P. emaculata as 

well as on 369 species and 30 genera of rusts worldwide and has been found in 

more than 50 countries (16).  Pycnidia are black, sub-globose, 90-200 µm and 

have ostioles where conidia are exuded in a gelatinous matrix (22).  Conidia are 

hyaline, 1-septate, fusiform, 13-18 × 3-5 µm and have a gelatinous cap at one or 

both ends (20).     

 Several instances have been documented of S. filum parasitizing rusts.  In 

1957, Schroeder and Hassebrauk observed appressoria like structures which 

penetrated the urediospores of Puccinia sp. (25).  Also, antifungal and 

antibacterial compounds, Darlucins A and B, have been isolated, and may be 

important in the mycoparasite’s interaction with P. emaculata (35).  On willow 

rust, S. filum reduced urediospore production by up to 98% (34).  Urediospore 

collapse and disintegration in Puccinia recondita was observed when contact 
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with the mycoparasite occurred, and in some instances, spines on the 

urediospore walls were not present (23).  In contrast, Stahle and Kranz found 

that there were no differences in the germination percentage of urediospores, but 

germ tube branching was greatly reduced after being infected with the 

mycoparasite (28).   S. filum significantly reduced the number of telia as well as 

basidiospore production by 50-75% when Cronartium rust on oak in Florida was 

heavily infected with the mycoparasite (17).  

Based on the literature reported above, we asked the following questions: 

1) On what date can rust first be detected on agronomic switchgrass? 

2) What growth stage are switchgrass plants at when they first become 

infected with P. emaculata in agronomic fields? 

3) When during the growing season are switchgrass plants most likely to 

become infected with P. emaculata? 

4) How severely are switchgrass plants infected at the time of harvest? 

The following objectives have been chosen to evaluate those questions 

concerning the epidemiology of rust on switchgrass established in agronomic 

fields in Tennessee:  

1) evaluate the date on which the disease can first be detected; 

2) determine the growth stage of plants when disease first appears;  

3)  determine when the log phase begins and ends; 

4)  and estimate disease severity at harvest.  
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In order to gain a better understanding of the relationship between S. filum and 

P. emaculata, the following questions were asked: 

1) Is S. filum a potentially viable biological control option for switchgrass 

rust? 

2) What type of media is optimum for vegetative and asexual 

reproduction of S. filum? 

3) What effects does S. filum have on urediospore production and 

germination? 

To answer those questions, the following objectives were used: 

1) determine on which medium, V-8 agar, V-8/ potato dextrose agar, or 

potato dextrose agar, S.  filum has maximum growth, produces 

pycnidia the earliest, and the greatest number of conidia are produced; 

2) determine the effects of S. filum on the number of urediospores 

produced by P. emaculata; 

3) and evaluate the effects of S. filum on germ tube length of P. 

emaculata urediospores. 
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Figure 1.1.  Distribution of switchgrass (Panicum virgatum L.) in the United  
States and Canada. 
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Abstract 

Disease onset and progession were characterized for switchgrass rust 

(Puccinia emaculata) in four agronomic fields in southeastern Tennessee.  

Disease severity was assessed on a scale of 0 (0% severity) to 5 (25% severity) 

on individual leaves of five plants per plot in five plots per field over fifteen weeks 

in 2010 and 2011. Rust was first observed on Julian day 166 and 152 in 2010 

and 2011, respectively, when plants were at the 5-7 leaf growth stage on 

average in both years.  Disease severity progressed in a logistics pattern.  The 

log phase of disease progression, when disease severity developed rapidly, 

occurred between mid-June to mid-August.  The rate of increase in disease 

severity lessened in late August to early September.   Leaf mortality of the lower 

leaves occurred due to colonization by P. emaculata, and due to environmental 

factors such as insufficient rainfall or excessive shading in the lower canopy.  

Final disease assessments were taken in early to mid-October, at which time 

uredia covered an average of 3.78% and 5.10% of the leaf surface in 2010 and 

2011, respectively. 
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Introduction 

Agronomic production of switchgrass has increased recently due to its use 

as a cellulosic ethanol feedstock. From the late 1980’s to early 1990’s, thirty-four 

species of crops were evaluated at thirty-one research sites for suitability in 

biofuel production. Switchgrass was reported to have higher yields than 

Andropogon gerardii (big bluestem), Festuca arundinacea (tall fescue), Phalaris 

arundinacea (reed canarygrass), Medicago sativa (alfalfa), Lotus corniculatus 

(birdsfoot trefoil), Eragrostis curvula (weeping lovegrass), and Lespedeza 

cuneata (sericea lespedeza) (31). The United States Department of Energy 

(DOE) chose switchgrass as a dedicated energy crop because of its potential for 

high fuel yield, environmental enhancement characteristics, ability to be grown on 

marginal cropland, and low inputs required (4). Lowland switchgrass cultivars 

such as ‘Alamo’ and ‘Kanlow’ are well suited for biofuel production in the 

southeastern United States due to a higher yield potential on heavy soils, which 

are common in Tennessee (10).  

Puccinia emaculata Schw., causal agent of switchgrass rust, was first 

reported in Tennessee in 2007 (9). The aecial stage reportedly found on species 

of family Euphorbiacae (spurge) has not been observed in Tennessee.  Whether 

primary inoculum is by aeciospores or windborne urediospores from more 

southern locations is unknown.  Rust has also been reported in Arkansas on 

‘Alamo’ switchgrass, where 25% to nearly 100% of switchgrass leaves were 

infected by P. emaculata (13). 
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 The exact impact of rust on switchgrass is unknown, but it may negatively 

impact the biomass yield, seed production, and forage quality of switchgrass 

(11). Five ornamental cultivars of switchgrass have been reported to exhibit 

resistance to rust, and those cultivars were Shenandoah, Northwind, Rehbraun, 

Warrior, and Campfire (14).  Northwind and Shenadoah have proven susceptible 

to rust in Tennessee (M. Windham, personal communication).  The objective of 

this research is to determine the date and plant growth stage when disease can 

first be visually detected, determine the temporal model that represents seasonal 

disease progression, and estimate disease severity at harvest.   
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Materials and Methods 

Establishment of field plots: 

Field plots were established in four fields located in Monroe County, 

Tennessee, where switchgrass was being grown for biofuel feedstock (Figure 

2.1).  In each field, a point was chosen at random on the fields outside perimeter.  

From that point, a visible landmark was selected on the other side of the field, 

such as a mountain peak, as a transect line. The center plot was marked 70m 

along the transect into the field with a 3m bamboo stake.  The plant nearest the 

bamboo stake was designated the middle plant of the center plot of that field.  

Individual plants were tagged 1.83m to the north, south, east, and west; thus 

establishing five plants in the center plot. Plants were tagged on the leaf lowest 

to the ground.  In addition, four other plots were established 30.5m to the north, 

south, east, and west of the center plot.  Five plants were selected per plot as 

described for the center plot (Figures 2.2 A and B).  This study was replicated in 

three additional fields.   

Disease rating system: 

A numerical rating system was used to estimate disease severity, where 

0=0%, 1≤1%, 2≤5%, 3≤15%, 4≤25%, 5>25% of the leaf was covered by uredia, 

respectively.  Plants were evaluated once per week in each field from the fourth 

week of May until harvest in October.  All live leaves on each plant were 

evaluated on each observation date.  Data were not recorded for dead leaves.  In 

addition, numerous other plants were examined per field for the initial 
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observance of rust.   

Statistical analyses: 

Microsoft Excel and SAS were used to analyze data using the nonlinear model 

(NLIN) procedure of SAS software (Version 9.2, SAS Institute Inc., Cary, NC) 

was used to obtain estimates of parameters from the nonlinear form of the 

logistic model and differences between years or fields were compared.  The 

Richard’s equation, Y= max /(1+k*exp(-max*rate*t)), is a nonlinear logistic model, 

which was used to evaluate disease severity over time and estimate predictive 

values based on actual disease severity, apparent infection rate, and maximum 

disease severity at a given time in a given field.  In this equation, y is the disease 

severity at time t; Max is the upper asymptote of the disease progress curve; k is 

an intercept; Rate is the apparent infection rate; and t is the time of disease 

assessment.  
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Results and Discussion 

In 2010, rust was first observed in the designated plots on Julian date 166 

(June 15) and was not observed in all fields until date 189 (July 8) (Figure 2.3 A).  

In 2011, rust was first observed on date 152 (June 1) and was finally observed in 

the last field on date 167 (June 16) (Figure 2.3 B).  Although rust has been 

observed in previous years in other fields throughout the state of Tennessee, 

Julian date 152 is the earliest day rust has been detected since it was first 

recorded in the state (M. Windham, personal communication).  When other 

plants in the field (outside the designated plots) were examined for rust, the 

earliest date for observing rust was 166 in 2010 and 152 in 2011 (Figures 2.3 A 

and B).  

Disease severity values and disease estimates were plotted over the 

growing season for plants in each of the four fields for 2010 and 2011 (Figure 2.4 

A and B).  Disease severity progressed in a logistics pattern and reached the 

upper asymptotic value around Julian day 246 in 2010 and day 244 in 2011.  

Average leaf area infected with rust at the end of the growing season was 

approximately 3.78% in 2010 and 5.10% in 2011.  There were significant 

differences in trends and maximum rust severity between years, but this 

approximation does not justify the observed amount of dried out foliage and 

lodged plants in each field.  As plants matured, lower leaves tended to die 

regardless of rust severity, probably due to the natural senescence of aging 

leaves and shading.  Among all fields, disease severity was higher on all 
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recorded dates in 2011 compared with 2010 (Figure 2.4 A and B).  This may 

have been due to differences in weather patterns and primary inoculum levels. 

Higher initial spore concentrations could result in a larger number of foci and 

higher secondary inoculum levels.  Weather data was not collected for 

comparison of weather differences per location and alternative weather stations 

do not exist in the region. Because of the nature of mountainous terrain, meso-

scale weather conditions may not be representative of field differences.    

Among all fields, the most drastic difference in disease severity occurred 

at the field in Vonore (Figure 2.4 A and B).  This field would be characterized as 

a rolling hill type landscape. Disease was observed earlier in the low spots within 

the field.  This may be due to increased humidity within the switchgrass canopy 

in these areas.  The terrain of the field in Madisonville is similar to Vonore.  

Disease severity at Madisonville and Vonore (Figure 2.4 A and B) was 

significantly greater than the two fields in Tellico Plains (Figures 2.4 A and B) in 

both years, possibly due to differences in terrain. Fields in Tellico Plains are flat 

with more uniform microclimates. Tellico Plains is surrounded by a mountain 

range near Cherokee National Forest that could be a barrier to air currents, and 

possibly result in spores being blown over, and not actually landing in the fields 

many days. 

Ninety-five percent of switchgrass plants in the plots were at the 5-7 leaf 

growth stage before rust was first observed in 2010 and 2011 (Table 2.1).  We 

were already observing leaf senescence at the 5-7 leaf growth stage when the 
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disease was just beginning and infection rates were low, which is one reason that 

we believe rust infection is not the only contributing factor for senescence and 

drying out of leaves during the growing season.   

The knowledge of growth stage, time of initial infection, disease 

progression, and maximum disease severity provides a basic understanding of 

switchgrass rust epidemics in eastern Tennessee climates.  The information is 

important in designing future studies to measure yield losses in agronomic fields.  

Also, if fungicidal sprays can be economically justified, knowledge of disease 

detection dates and growth stage at initial infection will be important in timing 

disease onset and initial spray dates.  In addition, data generated on predicted 

disease severity values to produce epidemic models may help switchgrass 

producers predict rust outbreaks in future years and implement control strategies 

before disease appears. 
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Figure 2.1.  Location of fields (V=Vonore, M=Madisonville, T1=Tellico 
Plains Field 1, T2=Tellico Plains Field 2) in Monroe County, Tennessee.   
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Figure 2.2. Each field contained five plots arranged in a cross pattern (A) 

with the center of the center plot located 60.96 m from the edge of the field and 
spaced 30.48 m from each other.  Within each plot, five plants arranged in a 
cross pattern (B) at a spacing of 1.83 m apart were sampled as repeated 
measures.  
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Table 2.1.  The number of infections per leaf at each leaf stage, defined as the 
number of fully expanded leaves per plant in 2010 and 2011.   

 

 

 

 

 

 

 

 

 

 

 

Leaf Stage 
Year 

4 
10’      11’ 

5 
10’      11’ 

6 
10’         11’ 

7 
10’      11’ 

8 
10’      11’ 

Vonore    0          1    3          8  22          16    0          0    0          0 

Madisonville    0          1    5          6  18          16    2          1    0          0 

Tellico Plains 
1 

   0          1    6          8  14          14    4          2    1          0 

Tellico Plains 
2 

   2          1   12         3  11          17    0          2    0          2 
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2010 
 
 

 
 

 
 

 
 

 

 
 
 
 

2011 
 
 

 
 
 
 
 
 

 
 

 
 
 
 
Figure 2.3 A (Top) and B (Bottom).  Initial disease detection dates at the four 
locations (V=Vonore, M=Madisonville, T1=Tellico Plains Field 1, T2=Tellico 
Plains Field 2) in 2010 and 2011.   
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Figure 2.4.  Logistical model of switchgrass rust severity for 2010 (A) and 2011 (B) growing 
seasons.  The X axis represents percent leaf surface covered with uredia.  Y axis indicates 
Julian date.  Significant differences between trends as well as significant differences in max 
rust severity: 2010 - 3.78%, 2011 - 5.10% leaf surface covered with uredia. 
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CHAPTER III 
COMPARISON OF GROWTH MEDIA FOR PYCNIDIAL AND 

MYCELIAL GROWTH OF SPHAERELLOPSIS FILUM 
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Abstract 

 A mycoparasite Sphaerellopsis filum was observed to be infecting rust 

pustules of Puccinia emaculata on switchgrass in 2009. This paper serves at the 

first report of S. filum being a mycoparasite of P. emaculata on switchgrass.  The 

mycoparasite was identified using morphological characters, and the identity was 

confirmed by extracting and sequencing DNA ITS regions.  Sequences confirmed 

with 99% identity that all isolates were isolates of Eudarluca caricis, the perfect 

stage of S. filum.   

 The mycoparasite was grown on V8 juice agar (V8), PDA and a media 

combining PDA and V8 juice.  All media were amended with antibiotics to 

prevent bacterial growth.  Colonies of S. filum grew significantly faster on V8 than 

on PDA during the first two weeks.  However, no differences were observed 

between radial growth rates on the two media during weeks 3 and 4.  Radial 

growth rates were highly variable on PDV-8+ thus the media was omitted 

thereafter.   

 Pycnidial formation differed between the three media. Pycnidia formed 

earliest on V8, followed by PDA+V8, and later on PDA.  Pycnidia formed in 100 

% of cultures grown on V8 by week two.  Cultures grown on PDV8-A+ did not 

exhibit 100% pycnidial formation until the fourth week. Pycnidial formation was 

the slowest on PDA, where 12% of cultures still had not formed pycnidia by the 

end of the four week when the experiment was terminated.   

 Uredinia of P. emaculata on detached switchgrass leaves were inoculated 
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with S. filum conidia.  Pycnidia formed 12-14 days after inoculation.  Presence of 

the mycoparasite significantly reduced the number of urediospores per pustule 

by an average of 246 spores per uredium.  The ability of the mycoparasite to 

reduce urediospore production may be important because urediospores are the 

inoculum that fuels secondary disease cycles of switchgrass rust.    

Germination rate of urediospores was compared between spores collected 

from healthy or infected uredia.  Germination rate of spores from healthy or 

parasitized uredia averaged 73% and 42%, respectively.  For germinated spores, 

the germ tube length or urediospores from unparasitized uredia was 96.9um after 

3 hrs. of observation, whereas the average germ tube length for urediospores 

from parasitized uredia was 32.3um after 3 hrs.  Since the mycoparasite reduced 

urediospore production, germination percentage and germ tube length of infected 

urediospores, further investigation into its use as a potential biological control 

agent is warranted. 
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Introduction 

Switchgrass (Panicum virgatum L.) is a warm-season, perennial, C-4 

grass in the family Poaceae that is native to most of the United States (21), 

grows in clumps, and spreads by rhizomes (4).  Switchgrass can be used as a 

biofuel feedstock, forage crop, ornamental plant, for bank stabilization, and as a 

component to improve wildlife habitat (13).   

 Puccinia emaculata Schw. is the causal agent of switchgrass rust (6).  A 

serious level of damage results when diseased grass stops growing prematurely 

and lodge because the foliage dried out.  While the pathogen negatively impacts 

biomass yield, seed production and forage quality of switchgrass.  The pathogen 

can be negatively impacted by a mycoparasite (8).   

In 2009, a mycoparasite, Sphaerellopsis filum, was observed parasitizing 

switchgrass in Mississippi, (M. Peterson, personal communication), North 

Carolina (Mike Benson, personal communication) and Tennessee (Y. Li, 

personal communication).  This mycoparasite is known to infect 369 species and 

30 genera of rusts worldwide and has been found in more than 50 countries (11).  

Pycnidia of S. filum are black, sub-globose, 90-200 µm and have ostioles where 

conidia are exuded in a gelatinous matrix (16).  Conidia are hyaline, 1-septate, 

fusiform, 13-18 × 3-5 µm and have a gelatinous cap at one or both ends (14).  In 

1957, Schroeder and Hassebrauk observed appressoria like structures, which 

penetrated the urediospores of Puccinia sp. (18).  Also, antifungal and 

antibacterial compounds (Darlucins A and B) have been isolated, and may be 
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important in the mycoparasite’s interaction with P. emaculata (24).  On willow 

rust, S. filum has reduced urediniospore production by up to 98% (23).  

Urediospore collapse and disintegration of Puccinia recondita urediospores was 

observed from infection by the mycoparasite.  In some instances, spines on the 

urediniospore walls were absent (17).  In contrast, Stahle and Kranz found no 

differences in the percent germination of urediospores from infection by the 

mycoparasite, but germ tube branching was greatly reduced (20).   S. filum 

significantly reduced the number of telia, as well as basidiospore, produced by 

50-75% of Cronartium rust on oak in Florida (12).  

 The research proposed was to establish growth studies of the 

mycoparasite. The first objective was to derive a suitable medium for growth and 

pycnidial formation, so quantities of the fungus and fit spores could be produced. 

The second objective of the research was to investigate the effects of the 

mycoparasite on urediospore production and urediospore fitness by measuring 

percent germination.  This information will be important for future studies of the 

ecological potential of S. filum to serve as a potential biological control agent for 

switchgrass rust. 
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Materials and Methods 

Identification of S. filum: 

 Single spores of S. filum were isolated and grown in Frier’s liquid media 

(Y. Li, personal communication).  Koch’s postulates were satisfied by inoculating 

uredia of P. emaculata with conidia of S. filum.  After formation of pycnidia, 

conidia were isolated from cirri and grown on PDA amended with 30 mg/L of 

streptomycin sulfate and 30 mg/L of chlortetracycline.  Spores from these 

cultures were compared with spores from colonies used for the initial inoculations 

and confirmed to be S. filum.  Conidia of S. filum collected from the second set of 

cultures were used to inoculate fresh uredia of P. emaculata.  Pycnidia formed in 

uredia, indicating that S. filum established a parasitic relationship on switchgrass 

rust.     

 Scanning electron microscopy (SEM) was used to observe parasitism of 

rust by S. filum.  Uredia of P. emaculata infected with S. filum were excised from 

detached switchgrass leaves, fixed in 2.5% gluteraldehyde for 4 hours, and 

washed several times with distilled water.  Samples were then dehydrated using 

a series of progressively higher concentrations of ethanol, starting with a 

concentration of 25% and ending at 100%.  Samples were critical point dried and 

mounted on specimen stubs.  Gold/palladium alloy was applied to the surface of 

the samples using a spatter coater and samples were stored in a desiccator.  

SEM was used to examine uredia for signs of parasitism. 
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To obtain genetic sequences, S. filum was grown on V8 agar and tissue 

was mascerated by crushing under liquid nitrogen.  DNA was extracted using the 

Quiagen DNeasy Plant Mini Kit protocol for purification of total DNA (Qiagen, 

Valencia, CA, USA), and amplified by PCR using primers ITS-1 (5′-

TCCGTAGGTGAACCTGCGG-3′) and ITS-4 (5′-TCCTCCGCTTATTGATATGC-

3′). Gel electrophoresis was used to evaluate DNA purity by the presence of a 

single band of approximately 500 bp.  PCR products were purified using Quiagen 

DNA purification kit (Qiagen, Valencia, CA, USA) and sequenced.   

Culture Media Experiment for Mycoparasite Sphaerellopsis filum: 

V-8 juice agar was prepared by adding 125 mL of clarified V8 juice, 5g of 

maltose, and 9 g of Bacto agar to 1L of water. PDA (Becton, Dickinson and 

Company, Franklin Lakes, NJ, USA) was prepared by following the company’s 

instructions.  V-8/ potato dextrose agar was prepared by combining the recipes of 

the two previous described media with 12 g of potato dextrose used as sugar 

source (maltose was omitted).  Antibiotics (chlorotectracycline and streptomycin 

sulfate, Sigma-Aldrich Corporation, St. Louis, MO, USA) were added after 

autoclaving to give a final concentration of 30mg of each antibiotic per liter.   

To measure growth of S. filum on each medium, a 6mm plug of S. filum 

(grown on the same medium as the test medium) was transferred to the center of 

each petri dish containing 20 ml of test medium.  Twenty five plates of each type 

of media were used for the experiment for a total of 75 plates.  Cultures were 

grown for one week with the lid of the petri dish up and then petri dishes were 
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flipped upside down to prevent moisture from interrupting growth of the cultures.  

Surface area measurements were taken once a week.  Colony size and growth 

were compared among test media.  While data was being collected, cultures 

were also observed for formation of pycnidia.  

Effects of S. filum on P. emaculata: 

 Switchgrass leaves with mature uredia of P. emaculata were collected 

from a field near Vonore, TN and examined microscopically to confirm that 

pycnidia of S. filum were absent.  Leaves with uredia without pycnidia of S. filum 

were considered free of the mycoparasite.  Uredia were inoculated with the 

mycoparasite by spraying the detached leaves with a conidial suspension of 500 

x 103 conidiospores/mL of S. filum.   After inoculation with the mycoparasite, 

leaves were examined every two days to determine when pycnidia of S. filum 

formed.  Leaves with uredia that were not inoculated with S. filum served as 

controls.   

To determine if S. filum infection influenced the number of urediospores 

per uredium, ten leaf disks (1cm diameter) were excised.  The number of uredia 

per disk were counted, and the disks were then teased in 500 L deionized water 

to release urediospores.  The number of urediospores per 500 L of water was 

determined using a hemacytometer.  The spore concentration was divided by the 

number of uredia present on the leaf disk, giving the average number of 

urediospores/uredium.  This experiment was repeated three times. 

To determine the effects of the mycoparasite on urediniospore germ tube 
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length and percent germination, six switchgrass leaves cv. ‘Alamo’ were 

collected from the greenhouse and split across the veins.  Half of each leaf was 

used for the control and the other half of the same leaf was used for the 

mycoparasite treatment.  Leaf segments were inoculated with either 

urediospores, or urediospores followed by S. filum conidia once uredia were 

formed.  Leaf segments were incubated at room temperature under florescent 

lighting for 14 days.  Two leaf disks, 1 cm in diameter, were removed from leaves 

inoculated with rust urediospores (control) or urediospores and the mycoparasite 

conidia (treatment).  Urediospores from the leaf disks were collected by sliding 

adaxial leaf surfaces across water agar slides to dislodge spores.  Germination 

was assessed three hours after inoculating water agar slides.  Urediospores 

were considered germinated when the germ tube was at least equal to the radius 

of the spore it originated from.  To obtain germ tube lengths, 20 germ tubes were 

randomly measured from each slide. A total of 240 germ tubes were measured, 

which included 10 spores per subsample, 2 subsamples per disk, 2 disks per 

leaf, from 6 leaves. To determine the germination percentage, Percent 

germination was determined from 100 spores that were randomly selected from 

water agar coated slides three hours.   So, a total of 12 observations were made, 

which included 6 leaves, 2 disks per leaf, and 1 sample per disk. A randomized 

complete block design with subsamplings was used to determine the 

mycoparasite’s effects on germ tube length and germination percentage. Data 

were analyzed in SAS 9.2, using the PROC GLM procedure to analyze germ 
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tube length and the PROC MIXED procedure to analyze germination percentage.  
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Results and Discussion 

Identification of Sphaerellopsis filum 

 The sequence was compared with BLAST results and matched accession 

numbers AY572490.1, AY836373.1, AY836371.1, AY607023.1, and AY607022.1 

with 99% identity (501 to 537 bp).  All matching results were isolates or strains of 

Eudarluca caricis, the perfect stage of S. filum.  To our knowledge, this is the first 

report of Eudarluca caricis as a parasite of Puccinia emaculata. 

 Morphological characteristics of S. filum were evaluated using light 

microscopy.  Pycnidia were black, sub-globose, 90-200 µm and had ostioles 

where conidia were exuded in a gelatinous matrix.  Conidia were hyaline, 1-

septate, fusiform, 13-18 X 3-5 µm and had a gelatinous cap at one or both ends.  

The morphological identity of S. filum was consistent with previous reports 

(14,16).  

Culture Media Experiment for Mycoparasite Sphaerellopsis filum: 

 Colonies of S. filum on V8 agar had significantly faster radial growth than 

those grown on PDA+ during the first two weeks (Table 3.1), with differences 

between means being .29 cm and .27 cm for weeks one and two in repetition 

one, respectively, and .75 cm and .45 cm for weeks one and two in repetition 

two, respectively.  Nicolas and Villanueva reported that in preliminary 

experiments, if vitamins were added to the growth medium, initial growth of the 

mycoparasite was accelerated (15).  This is in agreement with our results since 

V8 agar has a much higher concentration of nutrients than did the other two 
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media.  In weeks three and week four, no differences were observed between 

treatments.  Colony areas of S. filum grown on PDV8-A+ had a high degree of 

variation within replications, as well as differences in results between repetitions, 

and therefore results were inconsistent for the purpose of maximizing growth and 

conidium production . 

 Significant differences in pycnidial formation were evident between all 

treatments (Table 3.2).  Pycnidia formed earliest on V8 agar followed by PDV8 

agar.  One hundred percent of the cultures grown on V8-A exhibited pycnidial 

formation by week two; cultures grown on PDV8-A did not exhibit 100% pycnidial 

formation until week four.  Pycnidial formation was the slowest on PDA, and 12% 

of cultures had not formed pycnidia by the end of the fourth week.   

Effects of S. filum on P. emaculata: 

 Formation of pycnidia occurred 12-14 days after inoculation, at which time 

pycnidia were so abundant that accurate counts of the number of pycnidia could 

not be ascertained.  Presence of the mycoparasite significantly reduced the 

number of urediospores per pustule by 246 spores on average (Table 3.3).  The 

ability of the mycoparasite to reduce urediospore production is very important as 

these spores serve as inoculum in the secondary disease cycle for switchgrass 

rust.  Therefore, the inoculum available for fueling secondary disease cycles 

would be reduced significantly. These findings are in agreement with similar 

observations in Mississippi, North Carolina, and Tennessee (M. Peterson, 

Mississippi State University, M. Benson, North Carolina State University, Y. Li, 
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University of Tennessee). The mycoparasite significantly reduced the number of 

urediospores produced per pustule by 31% on average (Table 3.3).   

There were significant differences between the rust spore germination 

percentage between the control and the mycoparasite treatment, with the 

germinated percentage of urediospores being 73% and 42%, respectively (Table 

3.4).  For germ tube length, there were significant differences between the germ 

tube length between the control and treatment, with average germ tube length of 

96.9 µm and 32.3 µm, respectively (Table 3.5).  This data is in agreement with 

similar observations of the mycoparasite’s ability to reduce spore viability on 

Cronartium oak rust and willow rust (12, 23).  If antifungal compounds are 

produced by the mycoparasite as reported by Zapf et. al., those compounds, 

along with the direct penetration of urediospores, may contribute to the reduced 

spore numbers, shorter germ tubes, and lower germination percentages of 

urediospores that are reported here (23).  Parasitism of urediospores by S. filum 

by direct penetration or the role antifungal compounds play in the parasitism of 

urediospores is not well understood.  Hyphae of the mycoparasite have been 

observed attached to rust germ tubes, but direct penetration of the germ tubes 

was not observed (18).  Kranz observed that most of the hyphae mass produced 

by the mycoparasite was associated with rust inside the plant tissue, and that 

most likely, the mycoparasite was absorbing nutrients from rust urediospores 

(11). 

In conclusion, if the mycoparasite does become a viable control option for 
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switchgrass rust, addition of V-8 to the growth medium should be considered for 

producing inoculum to infect P. emaculata.  We observed faster radial growth in 

the first two weeks of the experiment and earlier pycnidial formation.  Our 

findings of the ability of S. filum to significantly reduce urediospore numbers, 

germination percentage, and germ tube length warrant further investigation into 

the use of the mycoparasite as an option for biological control for rust on 

switchgrass.  
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Week  

Experiment 

Week 1 

One    Two 

Week 2  

One    Two 

Week 3 

One    Two 

Week 4 

One    Two 

V8A - PDA   .29 a        .14 b    .37 a       .01 a    .39 a       .24 a     .34 a      1.05 a 

V8A - PDV8A   .31 a        .27 a    .75 ab      .47 b    .58 a       .73 a     .96 a      1.08 a 

PDA - PDV8A   .02 b        .12 c    .38 b       .45 c    .19 a       .49 a     .62 a      .04 a 

Pr > F .0079      .0002 .0001      .0123 .0982      .0936 .1103      .0520 

Table 3.1.  Means of mycelial radial growth of Sphaerellopsis filum on potato dextrose 
agar (PDA), V8 agar, and a combination of PDA and V8 agar from repeated experiments 
One and Two (One: N=24 for PD-A and V8-A, and N=25 for PDV8-A; Two: N=25 for all 
treatments).  Different letters indicate significant difference.   
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Table 3.2.  Pycnidial production by Sphaerellopsis filum on potato dextrose 
agar (PDA), V8 agar, and a combination of PDA and V8 agar (recipes on 
page 44) from repeated experiments One and Two (One: N=24 for PD-A and 
V8-A, and N=25 for PDV8-A; Two: N=25 for all treatments).  Different letters 
indicate significant difference.   

 

 

 

 

 

 

 

 

 

 

 

Week 

Experiment 

Week 1 

One    Two 

Week 2  

One    Two 

Week 3 

 One    Two 

Week 4 

 One    Two 

PDA     0 a       3 a     4 a      18 a    12 a     18 a     21 a    22 a 

V8A   22 b     23 b    24 b     25 b    24 b     25 b     24 b    25 b 

PDV8A   11 c     13 c    14 c     22 c    18 c     24 b     24 b    25 b 

Probabilities <.0001,<.0001 <.0001,0.0140 .0004,.00240 0.0437,0.0439 
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Table 3.3.  Effects of Sphaerellopsis filum on urediospore production by 
Puccinia emaculata.  Uredia were not infected with the mycoparasite 
(control) or infected with the mycoparasite (treatment) (N=20).  Different 
letters indicate significant difference.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 Repetition 1 

Pr < .0001 

Repetition 2 

Pr = .0001 

Repetition 3 

Pr = .0014 

Control 374 a 363 a 338 a 

Treatment 96 b 119 b 122 b 



54 
 

 

 

Table 3.4.  Effect of Sphaerellopsis filum on germination percentage of 
Puccinia emaculata.  Urediospores were not infected with the mycoparasite 
(control) or infected with the mycoparasite (treatment) (N=12).  Different 
letters indicate significant difference.   
 

 

 

 

 

 

 

 

 

 

 

 

 Repetition 1 

Pr < .0001 

Repetition 2 

Pr = .0002 

Control 73% a 68% a 

Treatment 42% b 40% b 
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Table 3.5.  Effects of Sphaerellopsis filum on germ tube length of 
urediospores of Puccinia emaculata.  Uredia were not infected with the 
mycoparasite (control) or infected with the mycoparasite (treatment) 
(N=240).  Different letters indicate significant difference.   
 

 

 

 

 

 

 

 

 Repetition 1 

Pr < .0001 

Repetition 2 

Pr < .0001 

Control 96.9 m a 88.0 m a 

Treatment 32.3 m b 32.1 m b 
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Figure 3.1.  Uredium of Puccinia emaculata parasitized by Sphaerellopsis 

filum. 
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Figure 3.2.  Pycnidium of Sphaerellopsis filum in a Puccinia emaculata 

uredium that has ruptured and dispersed conidia on the adaxial surface of 

switchgrass leaf. 
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Figure 3.3.  Uredium of Puccinia 
emaculata that has ruptured 
through the epidermis of Panicum 
virgatum. 

 

 

 

 

 
 
Figure 3.4.  Pycnidia of Sphaerellopsis filum  
embedded in uredia of Puccinia emaculata 
on Panicum virgatum. 

 

 

 

 

                                                      
 
 
 
 
Figure 3.5.  Panicum virgatum leaf 
from an agronomic field in Monroe 
County, TN infected with uredia of 
Puccinia emaculata. 
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Epidemiology of Puccinia emaculata 
 

Rust disease on switchgrass is becoming an increasing concern for 

agronomic producers as well as the horticultural industry due to its ability to 

spread rapidly and potential to cause yield losses. This thesis has identified the 

timing of initial detection of swithgrass rust, the rate of disease progression, and 

the maximum disease severity of rust in switchgrass fields in the Vonore, TN 

area.  From this knowledge, future studies to measure yield losses can be 

designed to accurately reflect when and how rust epidemics will occur in 

swithgrass fields.  In addition, the epidemic models can be utilized to predict 

disease severity values over time to help switchgrass producers predict when 

rust outbreaks are likely to occur. Knowing the timing of when the disease can 

first be detected and when epidemics of rust enter the log-phase is also critical 

for timing the application of fungicidal sprays for disease control. 

Evaluation of Sphaerellopsis filum 

Our findings of the ability of S. filum to significantly reduce urediospore 

numbers, germination percentage, and germ tube length will lead to addition 

research to evaluate S. filum as a biological control option for rust on 

switchgrass.  If the mycoparasite does become a viable control option for 

switchgrass rust, the addition of V-8 juice to the growth medium should be 

considered since V-8 juice addition leads to faster radial growth and earlier 

pycnidial formation.  This information will be important for future studies on the 

ecological potential of S. filum to serve as a potential biological control agent for 
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switchgrass rust. 
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