
University of Tennessee, Knoxville University of Tennessee, Knoxville 

TRACE: Tennessee Research and Creative TRACE: Tennessee Research and Creative 

Exchange Exchange 

Masters Theses Graduate School 

12-2009 

Characterizing Episodic Stream Acidification Using a Characterizing Episodic Stream Acidification Using a 

Concentration-Duration-Frequency Methodology in Watersheds of Concentration-Duration-Frequency Methodology in Watersheds of 

the Great Smoky Mountains National Park the Great Smoky Mountains National Park 

John Leland Mauney III 
University of Tennessee - Knoxville 

Follow this and additional works at: https://trace.tennessee.edu/utk_gradthes 

 Part of the Environmental Engineering Commons 

Recommended Citation Recommended Citation 
Mauney III, John Leland, "Characterizing Episodic Stream Acidification Using a Concentration-Duration-
Frequency Methodology in Watersheds of the Great Smoky Mountains National Park. " Master's Thesis, 
University of Tennessee, 2009. 
https://trace.tennessee.edu/utk_gradthes/544 

This Thesis is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and 
Creative Exchange. It has been accepted for inclusion in Masters Theses by an authorized administrator of TRACE: 
Tennessee Research and Creative Exchange. For more information, please contact trace@utk.edu. 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Tennessee, Knoxville: Trace

https://core.ac.uk/display/268807952?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://trace.tennessee.edu/
https://trace.tennessee.edu/
https://trace.tennessee.edu/utk_gradthes
https://trace.tennessee.edu/utk-grad
https://trace.tennessee.edu/utk_gradthes?utm_source=trace.tennessee.edu%2Futk_gradthes%2F544&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/254?utm_source=trace.tennessee.edu%2Futk_gradthes%2F544&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:trace@utk.edu


To the Graduate Council: 

I am submitting herewith a thesis written by John Leland Mauney III entitled "Characterizing 

Episodic Stream Acidification Using a Concentration-Duration-Frequency Methodology in 

Watersheds of the Great Smoky Mountains National Park." I have examined the final electronic 

copy of this thesis for form and content and recommend that it be accepted in partial fulfillment 

of the requirements for the degree of Master of Science, with a major in Environmental 

Engineering. 

John S. Schwartz, Major Professor 

We have read this thesis and recommend its acceptance: 

R. Bruce Robinson, Glenn A. Tootle 

Accepted for the Council: 

Carolyn R. Hodges 

Vice Provost and Dean of the Graduate School 

(Original signatures are on file with official student records.) 



 

 

To the Graduate Council:  

 

I am submitting herewith a thesis written by John Leland Mauney III entitled “Characterizing 

Episodic Stream Acidification Using a Concentration-Duration-Frequency Methodology in 

Watersheds of the Great Smoky Mountains National Park.” I have examined the final electronic 

copy of this thesis for form and content and recommend that it be accepted in partial fulfillment 

of the requirements for the degree of Master of Science, with a major in Environmental 

Engineering. 

 

 

 John S. Schwartz, Major Professor 

 

 

We have read this thesis 

and recommend its acceptance: 

 

  

 R. Bruce Robinson 

 

 

 

 Glenn A. Tootle 

 

 

 

 

 

 

 Accepted for the Council: 

  

 Carolyn R. Hodges   

 Vice Provost and Dean of the Graduate School 

 

 

 

 

 

 

 

 

 

 

 

(Original signatures are on file with official student records.) 

 



 

 

Characterizing Episodic Stream Acidification Using a Concentration-

Duration-Frequency Methodology in Watersheds of the Great Smoky 

Mountains National Park 

 
 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

A Thesis Presented for the 

Master of Science 

Degree 

The University of Tennessee, Knoxville 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

John Leland (Lee) Mauney III 

November, 2009 



 

ii 

Abstract 

 

 Episodic stream acidification occurs as storm events temporarily reduce acid neutralizing 

capacity and pH.  Stream acidification is suspected to have damaging effects on the health of 

aquatic ecosystems and biota and is dependent on various watershed characteristics such as 

drainage area, elevation, slope, and surficial geology.   Here, a stochastic modeling approach is 

applied to continuous pH data for multiple stream monitoring sites within the Great Smoky 

Mountains National Park in order to characterize episodic acidification responses during 

stormflows for different streams.  The approach summarizes voluminous pH data recorded by 

water quality sondes at 15-minute intervals into concentration-duration-frequency relationships.  

Unique to this study is the ability to characterize the episodic acidification response to watershed 

attributes without using baseflow or single-point stormflow measurements.  A slope metric of 

mean pH event duration, a measure of episodic acidification response was determined to 

correlate with basin area and elevation.  In contrast, baseflow studies have shown elevation to be 

the main driver of chronic acidification.  It appears that during stormflows transport and flushing 

of stored anions and cations govern the response of streams included in this study. 
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Note: This research is being submitted as a manuscript to a scientific journal.  

Additional research information that was not deemed publishable is located in the 

appendices for supplementary documentation of findings.  Referenced figures and 

tables are shown in Appendix A. 

 

 

1  INTRODUCTION 

 

 

 Episodic stream acidification occurs when rainfall and/or snowmelt runoff cause short-

term decreases of pH and acid neutralizing capacity (ANC) in surface water, particularly in 

watersheds with base-poor soils [Driscoll et al., 2001; Wigington et al., 1996b].  Stream 

acidification is prevalent in the eastern United States where atmospheric acid deposition is 

relatively high [Cooper et al., 2000; Driscoll et al., 2003; Sullivan et al., 2007].   Anthropogenic 

sources of sulfur dioxide and nitrogen oxides are emitted from fossil fuel combustion in coal-

fired power plants and motorized vehicles [Herlihy et al., 1991; Wigington et al., 1996b]. These 

acids enter watersheds through wet deposition or when storm events flush ions accumulated by 

dry deposition into streams, resulting in decreased ANC and pH depressions in streamflow.  Air 

quality has improved during the past two decades and consequent declines in acid deposition 

have been observed [NADP, 2007].  Improvements in air quality can be attributed to 

implementation of Title IV of the 1990 Clean Air Act Amendments, improved technologies 

including advanced scrubber systems for power plant exhaust and catalytic converters on motor 

vehicles, and increased use of low-sulfur coal [Driscoll et al., 2001; NADP, 2007; Stoddard et 

al., 1999].  Despite reductions in deposition, episodic acidification continues to impact stream 

and forest systems and threatens aquatic biota in northern Europe and eastern United States, 

specifically the Appalachian highlands [Deviney et al., 2006; Evans et al., 2006; Wigington et 

al., 1996b]. 
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 Both chronic and episodic stream acidification have been studied extensively, and 

regional water quality surveys and models have been developed [Baker et al., 1996; Deviney et 

al., 2006; Herlihy et al., 1993; R. B. Robinson et al., 2008; Tranter et al., 1994; Wigington et al., 

1996a].  Baseflow and stormflow are related spatially since the same geochemical and 

physiographic characteristics influence water quality in any particular stream location.  Chronic 

stream acidification studies have shown long-term trends in response from physical watershed 

characteristics, but acute acidification response can be dependent on different complex 

biogeochemical processes.  Watershed characteristics that influence acidification response are 

many, and include basin area, topography, and basin geology and soils  [Clow and Sueker, 2000; 

Herlihy et al., 1998; O'Brien et al., 1993; Sullivan et al., 2007].  Elevation and elevational 

gradients impact on acid-base chemistry have been documented in detail [Johnson et al., 1981; 

R. B. Robinson et al., 2008].  Studies of upland watersheds have shown that catchments at higher 

elevations with smaller drainage areas are more susceptible to acidification [Baldigo and 

Lawrence, 2001; Deviney et al., 2006; Hesthagen et al., 1999].  Bedrock composition and 

surficial geology can impact pH response through dictation of buffering capacity and the release 

of base cations during chemical weathering  [Clow and Sueker, 2000; Silsbee and Larson, 1982].  

Streams draining catchments with sili-clastic bedrock are particularly sensitive to acidification, 

and when exposed produce additional acid inputs [MacAvoy and Bulger, 1995].  Understanding 

how complex watershed-scale processes affect system responses of atmospheric deposition to 

stream acidification is imperative to evaluate how anthropogenic and natural acid inputs impact 

stream health. 

 Empirical relationships between stream chemistry and spatial statistics describing basin 

land cover composition have been shown [Clow and Sueker, 2000; Sullivan et al., 2007], 
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however a technique to quantify episodic response over time as a function of environmental 

factors, or watershed attributes, remains largely unexplored.  The advent of water quality 

monitoring devices (sondes) has made frequent and voluminous amounts of data possible.  

Robinson and Roby [2006] successfully demonstrated that data from thousands of stream pH 

measurements can be summarized by developing concentration-duration-frequency (CDF) 

curves to provide time-connected durations and frequencies of episodic events.  This CDF curve 

methodology, similar to precipitation intensity-duration-frequency curves, produces a pH event 

duration slope metric for a specific stream site that characterizes the response to acid episodes.  

Historically, descriptive statistics of chemical parameters from a limited number of samples have 

demonstrated important relationships in stream acidification, but have not adequately 

characterized time-series responses, including those of acid episodes.  Concentration frequency 

histograms have been shown to illuminate less obvious trends in the data, but are limited in that 

they do not reflect the frequency and intensity of the time-connected durations.  CDF 

methodology provides the foundation to compare intensities, durations, and frequencies of 

episodic low pH events in order to parameterize the episodic nature of stream acidification 

spatially, and can provide critical information to understand the impact of stream acidification on 

aquatic biota.  It is valuable to predict the spatial extent of acidification on stream chemistry and 

forecast episodic extremes associated with acidification.   

 Understanding deleterious effects of stream acidification on aquatic ecosystems and fish 

populations is of utmost importance in watersheds impacted by acid deposition, including the 

Great Smoky Mountains National Park (GRSM) located in the Southern Appalachians.  The 

GRSM is particularly susceptible to episodic storm events because of elevated rates of 

atmospheric acid deposition and geology with low buffering capacity.  Episodic stream 
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acidification is suspected to be a primary cause of native brook trout (Salvelinus fontinalis) 

extirpation in GRSM headwater streams [Neff et al., 2009; R. B. Robinson et al., 2008].  

Although chronic acidification occurs in some streams within the GRSM [R. B. Robinson et al., 

2008], acute pH depressions and increases in inorganic monomeric aluminum associated with 

storm events are chiefly toxic to trout [Wigington et al., 1996b].  Studies concerning the impacts 

of these events on fish physiology are somewhat rare because episodic acidification events are 

complex and site specific [Van Sickle et al., 1996].  Biological consequences of episodic acid 

events are dependent on the extent of the reduction in pH, duration of the pH event, and 

frequency associated with successive acid episodes [Calta, 2002].  Knowledge of spatial and 

temporal patterns of episodic stream acidification related to watershed attributes is required to 

fully understand ecological processes that lead to brook trout extirpation in some watersheds but 

not in others [Neff et al., 2009]. 

 Using the CDF methodology to characterize unique episodic acidification responses for 

each stream during stormflows, the objectives of this study are to: (1) relate the CDF metric, 

specifically the pH event duration slope, to watershed attributes, and (2) explore whether the pH 

event duration slope is representative of a watershed using multiple time periods with long-term 

data from a single stream site.  Unique to this study is the ability to characterize the episodic 

acidification response to watershed attributes, not baseflow or single-point stormflow 

measurements.  Severity and response from episodes can vary spatially and seasonally.  
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2  METHODS 

 

2.1 Study Area 

 

 The GRSM (850 square miles) is located in the Blue Ridge physiographic region of the 

southern Appalachians in eastern Tennessee and western North Carolina (Figure 1).  There are 

more than 3000 kilometers of headwater streams in the GRSM, which support a great number of 

fish species, amphibians, and benthic invertebrates that must be protected from impairment. 

 The region is physiographically characterized by rugged topography, heavily forested 

slopes, with steep mountain streams.  Altitudes in the GRSM range from 300 m to 2,025 m.  

Watershed geology is predominately potassium feldspar sandstone, intermixed with siltstone, 

shale, and slate.  Siliciclastic sulfidic slate (SSS), comprised of Anakeesta and Copperhill 

bedrock formations, are of particular interest.  Anakeesta, a carbonaceous phyllite, is found is 

various watersheds within the park and is a potentially significant source of acidification for 

surface waters [Huckabee et al., 1975].  Anakeesta and Copperhill formations are usually non-

reactive until exposed to air and water, at which point are oxidized releasing acid and heavy 

metals.  The GRSM geology provides little buffering capacity, with 96% of all monitored stream 

sites having ANC less than 200 μeq/L; 59% have ANC concentrations less than 50 μeq/L and 

21% have a baseflow pH less than 6.0 [R. B. Robinson et al., 2008].  Soils are thin and consist of 

rocky, sandy loams.  The GRSM is not heavily influenced by agriculture or urbanization and 

approximately 80% of the GRSM is comprised of deciduous forests. 

 The climate of GRSM is perhumid mesothermal with seasonal temperature variation and 

precipitation distributed throughout the year [Busing, 2005].  The average annual rainfall varies 

significantly throughout the park with lower elevations generally receiving nearly 127 cm and 
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some high elevation sites nearly 216 cm [Busing, 2005].  The pH of precipitation is about 4.5 in 

the GRSM region [USEPA, 1999].  Summer and early spring generally have the most abundant 

precipitation, with rainfall averages of 12.7 cm and 20.3 cm per month in lower and upper 

elevations, respectively.  Autumn is the driest season, with rainfall averages around 7.6 cm and 

12.7 cm per month in lower and upper elevations, respectively. 

 

2.2 Study Design 

 

 Monitoring sites with continuous pH data available for close to one year were compiled 

for eighteen locations within the GRSM (Figure 1).  The watersheds selected for study are 

representative watersheds of the GRSM, typified by steep gradients and thin sandy loams that 

provide poor buffering capacities.  Sonde data collection period ranged from June 2003 to 

September 2009, including durations from nearly one year to four years (Table 1).  Parkwide 

water quality monitoring has produced an extensive water chemistry database.  Yellow Springs 

Instruments (YSI) sondes or Eureka Manta multi-parameter sondes were equipped at each site, 

recording stage, pH, conductivity, temperature, and at some sites turbidity at 15-minute or 30-

minute intervals.  The degree of stream acidification can be classified based on a number of 

parameters including acid neutralizing capacity, pH, and aluminum concentration.  Streamwater 

pH is an important water quality parameter because it is a good indicator of stream health, 

including the stream’s ability to sustain aquatic life.   

 A particularly valuable monitoring site within the GRSM dataset is the Noland Divide 

Watershed (NDW), the longest continuously monitored water quality site in the park and one of 

the more intensively studied high-elevation watersheds within the eastern United States 



 

7 

[Robinson et al., 2003].  Two first-order streams (SW and NE streams) drain the area headwaters 

and merge downstream as Noland Creek.  NDW has been monitored for pH with sonde data 

since 1991, as part of the Inventory and Monitoring program of the GRSM, to track long-term 

depositional trends and understand their consequences.  Such a unique and voluminous dataset 

allows for temporal analysis to determine the period length necessary to adequately characterize 

a watershed using the CFD methodology. 

 

2.3 Development of CDF Curves 

 

Poisson Arrival Approach 

 CDF curves are developed by the Poisson arrival approach, where downward episodic pH 

spikes during stormflows are stochastically modeled by observing the frequency and duration of 

events below a pH level of interest (pH0).  The pH (negative log of [H
+
]) is plotted over time for 

a hypothetical stream (Figure 2).  Figure 2 can be described as a chemograph, a plot of changing 

chemical concentration with respect to time.  Here, pH is the changing chemical concentration 

and the time is in days.  This stochastic type of problem is supported by a substantial theoretical 

development history [Cramer and Leadbetter, 1967; Todorovic, 1978].  For this application, pH0 

is the pH of interest and the plot shows crossings of the pH0 level through episodic downward 

spikes.  Time duration of the crossings (Dm) is the connected time the measured pH is less than 

pH0.  The arrival of episodic events and their durations are assumed to be random and similar to 

a Poisson process. 
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!/)( memP m  

/d

Td eNN 

    /lnln dNN Td 

  /dedDP 

 The duration of Poisson occurrences is the length of time between successive up and 

down crossings of the pH level of interest.  In a Poisson arrival process, the number of arrivals is 

described by the Poisson distribution: 

 

 

 

Where P(m) is the  probability of m occurrences in the time interval, m is the  number of 

occurrences in the time interval, and λ is the  mean number of occurrences in the time interval.   

 The length of time or duration of the event is described by the exponential distribution 

[Anderson et al., 1993].  The exponential distribution has been proposed to describe the duration 

of exceedances for acid shocks in streams [Bobba et al., 1990].  Mathematically, the exponential 

distribution function describing the durations is: 

 

 

 

Where P(D ≥ d) is the probability that the duration of a specific event (D) exceeds the duration of 

interest, d, and μ is the mean duration of all events.  Equation (2) can also be written in the form 

 

 

or 

 

 

 

 

where Nd is the expected number of events exceeding a specified pH with a duration ≥ d, and NT 

is the total number of events in a time period.   

 

 

 

 

 

 

1 

2 

3 
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Construction of CDF Curves 

 

 An Excel® Visual Basic for Applications macro was created to form a list of durations 

for each event in which the pH exceeded an arbitrary cutoff value (Table 2).  The cutoff values 

were assigned as every 0.5 change in pH.  The frequency of events and their duration get shorter 

for extreme pH events, below the average pH.  As pH increases above the average, the frequency 

of events again become lower, but with longer durations.  Values from Table 2 were plotted 

along with fitted curves (Figure 3).  The dependent axis is normalized by adjusting to events per 

year by multiplying each y-coordinate by a ratio of 365 over the total duration (days).  For the 

CDF plots, “concentration” is represented by the pH cutoff, the x-axis is the “duration” of an 

event greater than or equal to the specified pH cutoff, and the y-axis represents “frequency” or 

more specifically the number of events per year for events greater than or equal to the specified 

pH cutoffs and duration.  CDF plots can approximate the frequency of various time-connected 

durations of episodic events, e.g., the expected number of events per year that the pH will be less 

than 5.0 for at least one day. 

 Since the time resolution of sonde data is typically 15 minutes, extremely short-term 

events are inaccurately represented and are likely caused by other processes instead of storm 

events.  Thus, durations less than or equal to one hour are truncated and not included.  Most of 

the short duration events of one hour of less were concentrated near the average pH, therefore 

had little effect whether they were included or excluded from the regression.   

 Gaps in data from equipment malfunction were observed and had to be addressed.  All 

gaps in record greater than one day are detailed in Appendix B.  These breaks in data were 

ignored and the data stitched together. Stitching describes linking the last available pH data point 

before the break to the first point after the break, therefore assuming fifteen minute duration 
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between the points.  Robinson and Roby noted that this could potentially truncate pH depression 

events that are ongoing before or after the break, however other approaches, for example, 

assuming that the event is half over at the break, would automatically and arbitrarily add another 

pH event [2006]. 

 

 

Development of Characteristic Equations 

 

 The data in Table 2 were fitted to Equation (3) by least squares linear regression, using 

number of events as the dependent variable versus duration as the independent variable.  The 

mean event duration for each pH level is the fitting parameter, μ, for the exponential distribution.  

The values of μ produced from the regression were then plotted against their respective pH 

(Figure 4), which gives the average duration of a pH event versus pH.    For example, the 

characteristic equation for Greenbrier Ramsey site is 

 

        5 

 

The μ is the mean time-connected duration of all occurrences in which the pH is below a certain 

pH level.  Characteristic equations like Equation 5 facilitate comparisons to various physical 

watershed attributes due to the strong exponential trend that μ has with pH.  Here, the power of 

the characteristic equation (4.028) depicts the shape of the pH vs. time duration plot of a stream, 

more specifically the shape of the average duration of episodic pH drops during stormflow.  For 

watersheds in general, higher power values describe sharper and likely shorter duration drops 

from baseflow pH levels.  The change in shape can best be illustrated on a chemograph (Figure 

2), where an increase in power is synonymous with a decrease in duration, Dm, especially for low 

pH events.  One over the power value is estimated as the slope of the characteristic equation and 

pHe   028.49101
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can be described as the “pH event duration slope metric.”  The pH event duration slope metric, 

denoted Sμ, remains constant independent of total duration.  Baseflow pH conditions shift the 

curve to the left or right, e.g., low pH during baseflow at higher elevations shifts the curve left, 

but whether baseflow pH has an affect on the pH event duration slope metric is not known. 

 The metric Sμ is the best metric to use for comparisons to physical watershed attributes 

because the only alternative option in Equation 5 is the intercept value (1E-9).  The intercept 

value is dependent on the total duration of the data set, thereby making the it useless in 

comparisons between pH data of different total durations.   

 Further inquiry of this methodology may be addressed by Robinson and Roby’s [2006] 

manuscript detailing the development of this technique.  In that manuscript, the authors explored 

use of other equation distributions including bi-Poisson and expanded exponential forms, which 

did not improve curve fitting. 

 

 

2.4  GIS Analyses 

 

 Physical attributes in contributing watersheds were quantified using geographic 

information system (GIS) software.  Data were collected from the National Park Service GIS 

database. ArcGIS 9.3 was utilized to evaluate physical watershed and sub-watershed 

characteristics for each monitoring site.  ArcHydro
®
 tools and Spatial Analyst

®
 tools were used 

to delineate watersheds.  Each sampling point location is, by definition, the lowest elevational 

point within its respective watershed.  It should be noted that some watersheds are made up of 

smaller sub-watersheds, making their attributes cumulative.  Zonal statistics were applied to each 

watershed to evaluate drainage basin area in km
2
; SSS in km

2
 and % coverage; elevation in 
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meters for minimum, maximum, range, mean, and at monitoring site; and slope in meters for 

minimum, maximum, range, mean.   

 

 

2.5 Statistical Analyses 

 

 

Spatial Analysis for Characteristic Equations vs. Watershed Attributes 

 

 The pH event duration slope and watershed attributes for each monitoring site were 

compared using Pearson coefficients and regression, after being checked for normality.  Least 

squares linear regression was employed to observe relationships between pH event duration 

slope and watershed attributes.  Forward and backward stepwise regression and best subsets 

regression was used to develop bivariate models for estimating the pH event duration slope 

metric as a function of watershed attributes.  The predictor with the highest partial F value is 

entered into the model first with additional predictors being individually entered if the addition is 

significant (F > 4) in the regression equation.  Likewise, if retaining a predictor is not significant 

(F < 4) in the regression equation it will be removed.  Strength and fit of the models were 

evaluated using R
2
, adjusted R

2
, predicted R

2
, S Value, and Mallows’ Cp.  Multicollinearity was 

addressed using the variance inflation factor (VIF).  A VIF value above 10 is often used to 

indicate multicollinearity concerns between variables [Helsel and Hirsch, 2002].  

Autocorrelation within residuals were checked by the Durbin-Watson statistic.  If adjacent 

observations are correlated, the regression model will underestimate the standard error of the 

coefficients causing the predictors to seem more significant than they are.  Because different 

selection criteria are used in each model, it is possible that the two bivariate regression 

techniques will lead to different models.  The simplest model that explains a comparable amount 
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of the variability and adheres to the assumptions of regression was therefore chosen as the best 

model.  Only significant variables were used in the regression models (p value of 0.05).  

Statistical analyses were performed in Minitab 15 and SPSS 17.0. 

 

Temporal Analysis of Noland Divide Data 

 

 A temporal analysis of long-term NDW data was used to determine whether a one-year 

data period is adequate to characterize acidification response.  Five characteristic equations are 

developed at the Noland Divide SW site,  including four one-year characteristic equations and 

one characteristic equation summarizing the entire four year period.  Chi-square goodness-of-fit 

test was performed on the dataset to test whether characteristic equations follow similar 

distributions.  Testing was not preformed on Sμ because flawed distribution analysis result when 

all values are less than one.  Instead, a chi-square goodness-of-fit test is conducted on the pH 

event duration for all five characteristic equations.  Here, the null hypothesis is that data follow 

the same distribution. 
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3  RESULTS 

 

 

3.1 CDF Curves and Watershed Attributes 

 

 Characteristic equations, i.e. Equation 5, developed for each of the eighteen study sites.  

Kolmogorov-Smirnov tests and the normal probability plot show the pH event duration slope 

(Sμ) to be normally distributed.  In summary of the study sites, the mean pH event duration is 

4.71, median is 4.55, and range is 3.94, respectively (Table 1).  The minimum pH event duration 

of 2.81 characterizes the Greenbrier upper site response. 6.75, the maximum pH event duration, 

characterizes the Lost Bottom Creek site response.  Figure 5 summarizes characteristic trends 

obtained for all study sites. 

 Among the study sites, watershed areas ranged from 0.086 km
2
 to 118 km

2
; SSS covers 

from none to 79% of watershed area per site, with a maximum area of 19.6 km
2
; sonde 

monitoring elevations ranged from 414 to 1694 m; maximum elevation per watershed ranged 

from 1465 m to 2019 m; the maximum observed slope was near 72% (Table 3).  Generally, 

slopes and elevations are highest in headwater areas and lowest in downstream reaches.  

However, since downstream watershed attributes include contributing headwater basin attributes, 

attribute values are cumulative.  For example, the highest monitoring site elevation is at Noland 

Creek, which does not correspond to the highest maximum elevation watershed values, which 

occur at the Greenbrier monitoring sites.   
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3.2 Relationships between pH Event Duration Slope and Watershed Attributes 

 

 Correlation analyses showed significant watershed attribute variables that relate to the pH 

event duration slope metric (Sμ), including drainage area (km
2
), SSS (km

2
), maximum elevation 

(m), elevation range (m), maximum slope (%), and slope range (%) (Table 4).  All significant 

correlations (p < 0.05) have positive Pearson tau coefficients, signifying that pH event duration 

slope increases as area, SSS, elevation, and slope increase.  Consequently, pH event duration has 

an inverse relationship with area, SSS, elevation, and slope. 

 Single variable relationships do not serve as best predictor models, but the regression 

plots can illuminate obvious trends in the data.  Drainage area demonstrated the strongest linear 

relationship by least squares linear regression, with R
2
=57.8, R

2
 adjusted=55.3, and R

2
 

predicted=45.4 (Figure 6), followed by maximum elevation (R
2
=43.9, R

2
 adjusted=40.4, R

2
 

predicted=0), elevation range (R
2
=41.9, R

2
 adjusted=38.3, R

2
 predicted=16.76), maximum slope 

(R
2
=30.5, R

2
 adjusted=26.1, R

2
 predicted=0.02), slope range (R

2
=25.5, R

2
 adjusted=20.8, R

2
 

predicted=0), and SSS in km (R
2
=22.5, R

2
 adjusted=17.7, R

2
 predicted=0).  To note, best subsets 

regression validates those five variables as best one variable predictor models (Appendix D).  

 Drainage area plotted against the pH event duration slope metric, Sμ, (Figure 5) reveals 

the possible existence of two separate linear relationships, one for areas of 0 to 40 km
2
 and a 

second for areas including 60 to 120 km
2
.  A threshold may exist somewhere between 40 and 60 

km
2
, where a change in trend may result.  This theory was further examined in Figure 7, by 

illustrating separate linear relationships.  For the thirteen points grouped below the threshold 

line, including areas of 0 to 40 km
2
, R

2
=21.3, R

2
 adjusted=14.2.  For the five points grouped 

above the threshold line, including areas of 60 to 120 km
2
, R

2
=50.7 and R

2
 adjusted=34.3. 
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 Stepwise linear regression includes drainage basin area and maximum elevation, resulting 

in R
2
 of 74.5, R

2
 adjusted of 71.1, R

2
 predicted of 42.8, VIF of 1.16, and Durbin-Watson statistic 

of 1.26.  The resulting prediction equation is Sμ = - 0.156 + 0.000816 * Area (km
2
) + 0.000184 * 

Maximum Elevation (m).  Figure (7) illustrates predicted pH event duration slope (Sμ) from the 

regression model verses actual 1 / μ from field data.  Figure 8 shows increasing variability as 

drainage basin area becomes larger in size.  One may infer that as drainage area becomes larger, 

it becomes increasingly difficult to predict consistent acidification mechanisms due to the unique 

attributes and hydrological responses associated with sub-watersheds. 

 

 

3.3 Temporal Variation of CDF Curves for a Single Watershed 

 

 Chi-square goodness-of-fit test shows that the null hypothesis, that all pH event duration 

metric values for the five CDF curves at Noland Divide SW site fit the same distribution, cannot 

be rejected (α = 0.1, p-value = 0.94).  The summary plot of μ vs. pH event at Noland Divide SW 

Site (Table 5, Figure 9) illustrates the similar trends of five curves at different time periods for 

the same watershed.  For pH 5.0, mean duration ranges from 0.17 to 0.47 days, for pH 5.5 mean 

duration ranges from 0.77 to 3.5 days, and for pH 6.0 mean duration ranges from 3.5 to 158 days.  

For pH 6.5, only two mean durations exist.  The four one-year curves have the same total 

duration near one year (360 days).  Since the curve including all four years is the sum of the one-

year curves, the total duration is near four years (1444 days).  Here, the pH event duration slope 

is similar between the five curves, but the curve for near four years duration shifts the duration 

per event pH curve upward.  This implies that as long as the total duration is near one year or 

greater, total duration has minimal influence on slope of μ vs. pH event.



 

17 

4  DISCUSSION 

 

 

 CDF curves aided in summarizing large amounts of sonde data that can be fitted by an 

exponential distribution, and capture more information than other approaches using general 

descriptive statistics or time series analysis.  Descriptive statistics alone do not adequately 

characterize the episodic nature of water quality parameters and require relatively few data 

points [Kneale and Howard, 1997].  Time series analysis supports development of predictive 

stochastic models, but does not allow for site characterization with field data.  CDF curves allow 

for quantitative spatial and temporal comparisons of intensities, durations, and frequencies of 

episodic events.  The importance of CDF relationships has been recognized by others, but 

previous studies have not evaluated spatial multi-site field data characterization [Schwartz et al., 

2008].  Robinson and Roby [2006] developed and applied the CDF curve methodology, similar 

to precipitation intensity-duration-frequency curves, to pH data for four sites in the Little Pigeon 

River watershed of the GRSM, but this technique is not restricted to pH data.  Schwartz et. al. 

[2008] illustrated CDF curve development for stream turbidity data to assess biological stream 

impairment from siltation and to support development of sediment total maximum daily loads 

(TMDLs).   

 Watershed drainage area appears to be a dominant driver in stream response from 

episodic acidification of streams monitored for this study, explaining 65% of the variance.  

Herlihy et al. determines almost all acidic (ANC<0) streams in the Appalachian highlands are 

located in small upland watersheds, less than 20 km
2
 in area [1993].  During stormflow, water is 

routed through upper soil layers that are acidic due to acid deposition or other natural processes, 

like the flushing of organic acids or base cation dilution [Wellington and Driscoll, 2004]. The 
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stormwater has less time to react with base cations in the soil and generally is more acidic upon 

reaching streamflow [Wigington et al., 1996a].  Also, smaller high-elevation watersheds can 

have positively charged soil surface conditions causing sulfate adsorption and base cation 

desorption [Cai et al., 2009].  This depletion of base cations contribute to episodic ANC 

depressions [Castro and Morgan, 2000].  Deyton et al. [2009] showed that base cations 

contribute to reductions in episodic pH and ANC depressions for stormflow in larger watersheds 

in the GRSM.  Therefore, increased drainage basin area may increase base cations available in 

stormflows. 

 Basin elevation has a strong influence on stream response from episodic acidification, 

explaining 44% of variance alone, and when coupled with basin area, explains 75% of variance. 

Previous storm event studies in the GRSM show significant stream pH drops at higher elevations 

[R. B. Robinson et al., 2008].  The potential for a variable pH response between different sites in 

GRSM have been shown, where baseflow pH decreased by 0.72 pH units for every 1000 meter 

increase in elevation [Roby, 2005].  High elevation watersheds typically have low bedrock 

weathering rates that can diminish neutralizing capacity.  In high elevation watersheds, 

acidification may be more a function of acidic anion inputs.  Interestingly, basin area and 

elevation are sometime considered surrogates for stream size. 

This study is not meant to diminish the complexity of the episodic acidification process, 

nor propose a simple equation that explains all the biogeochemical processes and environmental 

drivers that cause acidic episodes in streams.  Inherent randomness of the driving variables and 

the randomness of the hydrologic system cause difficulty in explaining or predicting these 

processes [Maidment, 1993].  Some significant variables are intercorrelated and the strength of 

the observed correlations does not necessarily imply cause-effect.  High elevation sites are 
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generally more likely to have a smaller area, have steeper slopes, and be underlain by siliceous 

formations.   

 Period length and frequency of sonde data collection required are dependent on the 

episodic nature of pH events for a study.  Seasonality and hydrologic patterns can have impacts 

on stream chemistry.  Stream water pH is temporally variable in response to seasonal patterns in 

plant and microbial activities and dynamic hydrological conditions [Sullivan et al., 2007].  

Although the extent and magnitude of episodic acidification varies by site and with 

meteorological conditions, some generalities exist.  For example, during the spring season, 

baseflow pH is likely to be depressed to its lowest levels of the year [Herlihy et al., 1993].  

Likewise, ANC values are usually at a maximum during summer base flow events [Driscoll et 

al., 2001]. Episodic acidification is most common during seasons of high precipitation.  Deyton 

et al. indicate large storms preceded by long, dry periods cause the largest pH depressions 

[2009].  Also, hydrologic flow paths typically shift from deeper soils and geologic strata of 

watersheds during baseflow to shallower, more acidic soils during storm events [Wigington et 

al., 1990].  Despite temporal concerns, data collected in this study for approximately a one-year 

period was sufficient to characterize the episodic nature of GRSM pH events, as observed by the 

chi-square goodness-of-fit results.  This outcome suggests that although hydraulic and climatic 

factors affect baseflow chemistry, episodic acidification of streams for this study induced by 

stormflow is dependent on watershed attributes and the complex biogeochemical processes in the 

particular watersheds. 

 As with any methodology, limitations are associated with use of CDF curves to 

characterize watershed response.  First, the scale for this study is small, consisting of drainage 

basins no larger than 118 km
2
. Larger scale watershed studies, such as regional or eco-regional 
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studies, may find different associations and/or additional landscape variables that might affect 

stream pH.  An advantage to having a larger data set with large sample size is ability to quantify 

relationships at multiple spatial scales.  Second, continuous pH data for one year, preferably at 

fifteen minute durations, is required to produce characteristic CDF curves for any basin.  Such 

data are not likely available for many watersheds of interest and producing such a data set is 

expensive and time intensive.  Third, another data availability concern is that the assignment of 

landscape statistics depends on the availability of high quality gridded spatial data.  The method 

of assigning proportions of landscape type within GIS grid squares is also approximate.  Last, 

there is inherent variability in any data set, due to factors like equipment calibration, mechanical 

malfunctions, and operator errors; and these errors may have more of an effect on data sets with 

small durations.  The limitations mentioned here are likely to be encountered under any attempt 

to model catchment scale water chemistry by linking landscape type, or watershed attributes, to 

water chemistry parameters.  A limitation specific to CDF curve development is the requirement 

for enough pH variability to adequately regress a pH event duration metric.  Newt Prong is an 

additional monitoring site where a characteristic equation was developed, but the metrics could 

not be applied in this study because of the small variability in pH data.  Figure 10 illustrates that 

pH never goes below 6.0 or above 7.0.  Two data points for the pH vs. μ regression causes 

difficulty in characterizing this site with any confidence. 

 

 In summary, the focus of this research was to apply the CDF curve methodology to 

summarize stream response and characterize stormflow based on physical watershed attributes.  

Significant stream response drivers include basin drainage area, elevation, surficial geology, and 
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slope.  Overall, this study validates that the CDF methodology applied to continuous pH data 

near one year in duration can adequately characterize a watershed’s response to acidification.  
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APPENDIX A: Referenced Figures and Tables 
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Figure 1. Monitoring Site Locations Within the GRSM, Located At The Tennessee And North Carolina Border.  Map ID #’s Correspond To Table 1. 
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Table 1. Monitoring Site Details Including Duration and Determined Characteristic Values 

Map ID # 

(Figure 1)
Monitoring Site Name Monitored Time Range Total Duration (days) No. of Data Points

pH Event 

Duration

pH Event Duration 

Slope (Sμ)
R2

1 Ramsey Prong 2/17/06 - 8/14/08 520 49811 4.055 0.247 0.937

2 Middle Prong 2/28/06 - 7/3/08 789 75615 4.003 0.250 0.993

3 Eagle Rocks 3/9/06 - 12/11/07 528 50591 5.478 0.183 0.923

4 Greenbrier-1 (Downstream) 8/25/03 - 9/15/04 324 30714 3.037 0.329 0.979

5 Greenbrier-2 (Middle) 9/3/03 - 8/28/04 340 32243 3.560 0.281 0.961

6 Greenbrier-3 (Upper) 8/20/03 - 9/15/04 275 25071 2.813 0.355 0.958

7 Greenbrier-4 (Ramsey) 6/19/03 - 5/25/04 327 31384 4.028 0.248 0.978

8 Rock Prong 4/2/08 - 9/5/09 504 48349 5.647 0.177 0.975

9 Cosby Creek 4/24/08 - 9/8/09 501 48112 5.476 0.183 0.953

10 Jakes Creek 5/29/08 - 9/7/09 453 43492 6.020 0.166 0.993

11 Lost Bottom Creek 4/23/08 - 9/4/09 499 47919 6.753 0.148 0.951

12 Palmer Creek 4/23/08 - 9/4/09 499 47935 6.006 0.167 0.993

13 Noland Creek - NE 11/13/03 - 12/10/06 810 77785 4.643 0.215 0.951

14 Noland Creek - SW 10/22/03 - 12/2/08 1443 138240 5.529 0.181 0.972

15 Straight Fork-Upper 10/27/04 - 3/10/07 637 61077 4.453 0.225 0.953

16 Straight Fork-Lower 10/27/04 - 3/2/07 649 62211 4.191 0.239 0.960

17 Oconaluftee River-Upper 5/25/05 - 7/13/09 1078 103485 5.198 0.192 0.977

18 Oconaluftee River-Lower 9/4/08 - 7/13/09 261 25092 3.957 0.253 0.923  
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Figure 2. Example of Crossings of pH0 Criterion for a Hypothetical Plot of pH vs. Time 

 

 

 

 

 
Table 2. Ranked Duration of Events for pH Cutoffs at the Greenbrier Ramsey Site. 
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Figure 3. For the Greenbrier Ramsey Site, Data Points Represent the Number of Events Per Time With pH 

Greater Than the Specified pH Cutoff vs. Duration (days), and the Corresponding Exponential-Fitted 

Curves. 
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Figure 4. Best-Fit Exponential Regressions for pH vs. µ at Greenbrier Ramsey Site. 
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Table 3. Summary Table For Watershed Attributes At Monitoring Site Locations 

Monitoring Site Name State Longitude Latitude Area (km2) *SSS (km2)
*SSS (% 

Coverage)

Maximum 

Elevation (m)

Elevation 

Range (m)

Average 

Elevation (m)

Sonde Site 

Elevation (m)

Maximum 

Slope (%)

Slope 

Range (%)

Average 

Slope (%)

Ramsey Prong TN 289243.0 3953451.5 10.29 0.00 0.0% 2019 1177 1419 847 69.1 68.8 25.1

Middle Prong TN 288790.8 3953281.0 38.77 1.17 3.0% 2019 1225 1407 795 71.8 71.6 28.5

Eagle Rocks TN 290091.3 3951877.5 10.47 1.17 11.2% 1808 843 1445 969 71.8 71.6 30.5

Greenbrier-1 (Downstream) TN 281543.1 3957626.8 117.71 10.00 8.5% 2019 1605 1146 414 71.8 71.7 28.4

Greenbrier-2 (Middle) TN 282375.4 3956895.5 111.10 10.00 9.0% 2019 1592 1174 427 71.8 71.7 28.8

Greenbrier-3 (Upper) TN 284432.5 3954923.9 99.80 10.00 10.0% 2019 1532 1233 487 71.8 71.7 29.3

Greenbrier-4 (Ramsey) TN 288940.2 3953502.1 10.47 0.00 0.0% 2019 1217 1410 804 69.1 68.8 25.1

Rock Prong TN 300192.9 3959734.6 3.63 0.00 0.0% 1793 1167 1249 626 61.5 60.2 30.0

Cosby Creek TN 300118.9 3959943.0 17.56 0.00 0.0% 1793 1188 1111 605 61.7 61.5 28.2

Jakes Creek TN 266268.3 3948636.6 12.02 4.01 33.3% 1465 807 1096 659 60.3 60.2 22.5

Lost Bottom Creek NC 305730.4 3945795.9 8.45 0.00 0.0% 1875 869 1423 1008 60.3 60.3 26.4

Palmer Creek NC 305830.5 3945667.8 20.00 0.00 0.0% 1875 888 1380 987 60.3 60.3 25.8

Noland Creek - NE NC 275243.2 3938508.6 0.088 0.00 0.0% 1904 212 1798 1694 46.7 41.3 19.7

Noland Creek - SW NC 275232.7 3938492.6 0.086 0.00 0.0% 1918 227 1814 1692 52.8 48.6 19.8

Straight Fork-Upper NC 299689.9 3944344.5 27.23 0.00 0.0% 1900 952 1425 948 61.2 61.0 28.4

Straight Fork-Lower NC 299416.3 3943229.2 39.75 0.00 0.0% 1900 981 1378 919 62.3 62.3 28.2

Oconaluftee River-Upper NC 288440.7 3938511.2 66.21 13.84 20.9% 1799 1133 1170 729 69.9 69.9 31.0

Oconaluftee River-Lower NC 290587.2 3937002.9 105.62 19.58 18.5% 1895 1229 1205 666 69.9 69.9 30.1

All elevation values represent elevation above sea level

*SSS represents sililiclastic  slate, comprised of anakeesta and copperhill surficial geology features  
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Figure 5. Summary Chart of pH Event Duration Slopes at All Monitoring Sites 

 

 

 

 

 

 

 

 
 

 

 

Table 4. Pearson Correlation and p values for pH Event Duration Slopes (Sμ) vs. Watershed Attributes 

Area 

(km2)
SSS (km2)

SSS (% 

Coverage)

Maximum 

Elevation 

(m)

Elevation 

Range (m)

Average 

Elevation 

(m)

Sonde Site 

Elevation 

(m)

Maximum 

Slope (%)

Slope 

Range (%)

Average 

Slope (%)

Pearson coefficient 0.761 0.475 0.026 0.662 0.648 -0.231 -0.451 0.552 0.505 0.269

p-Value < 0.001* 0.047* 0.917 0.003* 0.004* 0.356 0.06 0.018* 0.033* 0.28

* denotes significant p  value (alpha = 0.05)  
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Figure 6. Linear Regression For Best One Variable Predictor Model. Area (km²) vs. pH Event Duration Slope 

with resulting regression equation pH Event Duration Slope (Sµ) = 0.184 + 0.00104*Area.  Points Are Shown 

To Be In One Of Three Maximum Elevation Classes. 
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Figure 7. Two Linear Regression Fits For Best One Variable Predictor Model. Area (km²) vs. pH Event 

Duration Slope (Sµ). 
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Figure 8. Predicted Sμ vs. Actual Sμ Using Stepwise Regression Equation Sμ = - 

0.156+0.000816*Area+0.000184*Maximum Elevation. 

 

 

 

 

 

 

 

 

 
 

Table 5. Summary Table of NDW Curves Used For Temporal Analysis 

Time Range Duration (days) No. of Data Points
pH Event 

Duration

pH Event Duration 

Slope (Sμ)
R2

10/22/03 - 11/1/04 359.9 34560 4.87 0.205 0.910

11/1/04 - 2/24/06 360.7 34560 7.15 0.140 0.977

2/24/06 - 9/13/07 361.9 34560 4.45 0.225 0.999

9/13/07 - 12/2/08 360.5 34560 5.01 0.200 0.937

10/22/03 - 12/2/08 1442.9 138240 5.53 0.181 0.972  
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Figure 9. μ vs. Event pH For Temporal Analysis at NDW 
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Figure 10. Best-Fit Exponential Regressions for pH vs. µ at Newt Prong Site (Only Two Data Points 

Available). 
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APPENDIX B: CDF Curves and Missing Data 
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pH vs μ Curves Used For Regressions 
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Figure 11. µ vs pH for All Sites With Points Simply Connected (No Regression Fits). 
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Figure 12. µ vs Event pH for Ramsey Prong Site. 
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Figure 13. µ vs Event pH for Middle Prong Site. 
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Figure 14. µ vs Event pH for Eagle Rocks Site 
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Figure 15. µ vs Event pH for Greenbrier 1 – Downstream Site 
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Figure 16. µ vs Event pH for Greenbrier 2 - Middle Site 
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Figure 17. µ vs Event pH for Greenbrier 3 - Upstream Site 
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Figure 18. µ vs Event pH for Greenbrier 4 - Ramsey Site 
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Figure 19. µ vs Event pH for Rock Prong Site 
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Figure 20. µ vs Event pH for Cosby Creek Site 
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Figure 21. µ vs Event pH for Jakes Creek Site 
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Figure 22. µ vs Event pH for Lost Bottom Creek Site 
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Figure 23. µ vs Event pH for Palmer Creek Site 
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Figure 24. µ vs Event pH for Noland Creek - Northeast Site 
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Figure 25. µ vs Event pH for Noland Divide - Southwest Site 
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Figure 26. µ vs Event pH for Straight Fork - Upstream Site 
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Figure 27. µ vs Event pH for Straight Fork - Downstream Site 
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Figure 28. µ vs Event pH for Oconaluftee - Upstream Site 
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Figure 29. µ vs Event pH for Oconaluftee - Downstream Site 
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pH vs. μ Curves Used for Temporal Analysis at Noland Divide Watershed 
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Figure 30. µ vs Event pH for NDW Site (All Four Years Of Data) 
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Figure 31. µ vs Event pH for NDW (Year One of Four) 
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Figure 32. µ vs Event pH for NDW (Year Two of Four) 
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Figure 33. µ vs Event pH for NDW (Year Three of Four) 
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Figure 34. µ vs Event pH for NDW (Year Four of Four) 
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Missing Data Periods 
 

 
 

Table 6. Missing Data Periods Greater Than One Day (Excluding NDW Sites) 

Ramsey Prong Middle Prong Eagle Rocks
Greenbrier-1 

(Downstream)

Greenbrier-2 

(Middle)

Greenbrier-3 

(Upper)

Greenbrier-4 

(Ramsey)
Rock Prong Cosby Creek Jakes Creek Lost Bottom Creek Palmer Creek

Straight Fork-

Upper

Straight Fork-

Lower

Oconaluftee River-

Upper

Oconaluftee River-

Lower

Date (From) 4/25/06 4/21/06 5/5/06 1/21/04 9/29/03 9/29/03 7/30/03 4/13/08 12/2/08 7/25/05 5/25/05 6/28/06 3/23/09

Date (To) 5/15/06 4/24/06 6/21/06 2/16/04 10/6/03 10/19/03 8/13/03 4/30/08 12/4/08 3/1/06 6/24/05 7/6/06 5/13/09

Duration (days) 20.3 3.5 47.3 26.0 7.2 20.1 13.6 17.5 1.8 219.0 30.2 7.8 50.8

Date (From) 7/28/06 5/5/06 10/29/06 5/29/04 12/6/03 10/27/03 5/8/09 5/13/06 9/25/05 9/13/06

Date (To) 11/3/06 5/15/06 1/4/07 6/9/04 12/12/03 11/4/03 5/9/09 5/18/06 3/1/06 10/11/06

Duration (days) 97.9 10.3 67.0 10.7 5.9 8.1 1.4 5.0 157.1 27.9

Date (From) 12/21/06 9/22/06 11/18/03 6/29/09 12/3/06 4/28/06 7/5/07

Date (To) 1/4/07 10/5/06 12/9/03 7/7/09 12/6/06 5/11/06 7/18/07

Duration (days) 13.8 12.7 20.7 7.9 3.1 13.1 12.7

Date (From) 6/17/07 9/7/07 1/21/04 1/7/07 8/5/07

Date (To) 2/14/08 10/14/07 3/8/04 1/11/07 11/14/07

Duration (days) 242.0 36.9 47.1 4.6 100.9

Date (From) 3/18/08 6/3/04 1/16/07 1/21/08

Date (To) 3/21/08 6/23/04 1/18/07 2/25/08

Duration (days) 3.4 19.8 1.7 35.5

Date (From) 7/20/08 7/31/08

Date (To) 7/23/08 12/10/08

Duration (days) 3.1 131.8

Date (From) 12/29/08

Date (To) 12/31/08

Duration (days) 2.0

Date (From) 2/19/09

Date (To) 5/13/09

Duration (days) 83.1

Total Missing Days 380.5 63.4 114.3 36.7 13.2 115.8 13.6 17.5 0.0 11.0 0.0 0.0 227.0 206.6 401.6 50.8

Time Range 2/17/06 - 8/14/08 2/28/06 - 7/3/08 3/9/06 - 12/11/07 8/25/03 - 9/15/04 9/3/03 - 8/28/04 8/20/03 - 9/15/04 6/19/03 - 5/25/04 4/2/08 - 9/5/09 4/24/08 - 9/8/09 5/29/08 - 9/7/09 4/23/08 - 9/4/09 4/23/08 - 9/4/09 10/27/04 - 3/10/07 10/27/04 - 3/2/07 5/25/05 - 7/13/09 9/4/08 - 7/13/09

Duration (days) 520.0 788.7 527.8 323.6 339.8 275.1 327.0 503.7 501.3 453.0 499.2 499.4 636.6 649.1 1078.3 261.4

No. of Data Points 49811 75615 50591 30714 32243 25071 31384 48349 48112 43492 47919 47935 61077 62211 103485 25092

No Missing Data 

(>1 Day)

No Missing Data 

(>1 Day)

No Missing Data 

(>1 Day)
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Table 7. Missing Data Periods Greater Than One Day (NDW SW Site Only) 

1st Year 2nd Year 3rd Year 4th Year

Date (From) 2/3/04 11/24/04 3/30/06 9/13/07

Date (To) 2/5/04 12/1/04 5/9/06 9/20/07

Duration (days) 2.0 7.0 39.9 6.8

Date (From) 2/7/04 12/14/04 6/19/06 10/5/07

Date (To) 2/12/04 12/16/04 7/3/06 10/24/07

Duration (days) 4.7 2.3 14.3 18.9

Date (From) 9/26/04 12/18/04 8/30/06 12/14/07

Date (To) 9/30/04 12/21/04 9/15/06 12/21/07

Duration (days) 3.6 2.9 16.0 7.1

Date (From) 5/4/05 9/21/06 12/24/07

Date (To) 7/27/05 9/29/06 12/26/07

Duration (days) 84.1 7.7 2.2

Date (From) 8/6/05 12/2/06 1/19/08

Date (To) 8/9/05 1/2/07 1/24/08

Duration (days) 2.7 31.1 5.2

Date (From) 8/25/05 1/14/07 2/27/08

Date (To) 8/31/05 1/18/07 3/6/08

Duration (days) 5.8 4.3 8.1

Date (From) 2/3/07 3/24/08

Date (To) 2/8/07 4/3/08

Duration (days) 4.7 10.1

Date (From) 5/14/07 4/12/08

Date (To) 8/1/07 4/18/08

Duration (days) 78.8 6.5

Date (From) 9/5/08

Date (To) 9/25/08

Duration (days) 19.8

Total Missing Days 10.2 104.9 196.7 84.7

Time Range 10/22/03 - 11/1/04 11/1/04 - 2/24/06 2/24/06 - 9/13/07 9/13/07 - 12/2/08

Duration (days) 359.9 360.7 361.9 360.5

No. of Data Points 34560 34560.0 34560 34560  
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Table 8. Missing Data Periods Greater Than One Day (NDW NE Site Only) 

NDW NE

Date (From) 12/31/03

Date (To) 2/12/04

Duration (days) 42.5

Date (From) 5/31/04

Date (To) 6/9/04

Duration (days) 9.3

Date (From) 9/1/04

Date (To) 10/21/04

Duration (days) 49.7

Date (From) 11/24/04

Date (To) 12/1/04

Duration (days) 7.3

Date (From) 12/14/04

Date (To) 12/16/04

Duration (days) 2.3

Date (From) 12/18/04

Date (To) 12/21/04

Duration (days) 2.9

Date (From) 7/13/05

Date (To) 10/20/05

Duration (days) 98.7

Date (From) 3/30/06

Date (To) 4/11/06

Duration (days) 12.1

Date (From) 7/15/06

Date (To) 7/20/06

Duration (days) 4.8

Date (From) 7/27/06

Date (To) 10/5/06

Duration (days) 69.5

Total Missing Days 229.5

Time Range 11/13/03 - 12/10/06

Duration (days) 809.8

No. of Data Points 77785  
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APPENDIX C: GIS Figures 
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Discussion of watershed variables: 

 

Admittedly, the listed predictor variables are only a few of the possible predictor variables that 

could be integrated into this study.  The variables included were known to have strong 

relationships to baseflow pH in the GRSM, prompting their use in this study of stormflow pH.  

Previous studies have incorporated limestone bedrock as a predictor of stream chemistry due to 

associated ANC increases [Jackson, 2006].  Limestone is only prevalent within certain regions of 

the GRSM and does not include monitoring sites used in this study.  Basin soil type is difficult to 

classify per watershed, other than a majority soil type.  Furthermore, soil types have been shown 

to be strongly correlated with elevation.  Similarly, overstory vegetation, i.e., tree cover, is 

correlated with elevational zones, and although diverse in species, forests are the dominant land 

cover in the study area so comparison with non-forested basins is not possible.  Although they 

are not physical watershed parameters, baseflow ANC and baseflow pH levels could provide 

further understanding of watershed response from episodic acidification. 

 Flow rate and precipitation were also not assessed for significance.  Stream flow rates are 

not known for individual monitoring sites and mean daily flow does not adequately represent 

stormflow discharge.  Similarly, site specific precipitation data is not available at such a small 

spatial scale and would likely be relatively static over the small study area.  To compare these 

site specific data is needed.  
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Figure 35. Map Depicting Topographical Features In And Surrounding GRSM 
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Figure 36. Anekeesta And Copperhill Formation In GRSM. 
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Figure 37. Drainage Area For Monitoring Sites Within GRSM.  Several Watershed Include The Attributes Of Smaller Sub-Watersheds 
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APPENDIX D: Statistical Analyses 
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 All statistical analyses were computed using Minitab or SPSS Statistical software.  With 

spatial land statistics that summarize basin attributes and characteristic equations (e.g. Equation 

5) developed to characterize pH episodes, an analysis of statistical relationships is feasible.   

To note, Jakes Creek site seems to be an outlier in this study.  Per discussions with Neff 

[2009], the data at Jakes Creek may be inaccurate due to poor site conditions and technical 

malfunctions with sonde equipment during the monitoring period.  Although eighteen monitoring 

sites were included for this study, future work may exclude this site from analyses.   

 

 

Test For Normality 

 

 Kolmogorov-Smirnov test with observations of the normal probability plot were used to 

assess the normality of the characteristic equations.   
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Figure 38. Kolmogorov-Smirnov Test For Normality. 
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Figure 39. Normal Probability Plot Showing 95% Confidence Intervals 

 

 

 

 

Correlation Analysis 

 

 Correlation analysis was used to determine significant linear relationships between basin 

characteristics and the characteristic curves.  Pearson’s R coefficient, Kendall’s tau coefficient, 

and Spearman’s Rho coefficient were assessed. 

 
Table 9. Correlation Analysis Table for Pearson, Kendall's tau, and Spearman's rho Coefficients. 

Area 

(km2)

SSS 

(km2)

SSS (% 

Coverage)

Maximum 

Elevation 

(m)

Elevation 

Range (m)

Average 

Elevation 

(m)

Sonde Site 

Elevation 

(m)

Maximum 

Slope (%)

Slope 

Range (%)

Average 

Slope (%)

Pearson coefficient 0.761 0.475 0.026 0.662 0.648 -0.231 -0.451 0.552 0.505 0.269

p-Value < 0.001 0.047 0.917 0.003 0.004 0.356 0.06 0.018 0.033 0.28

Kendall's tau coefficient 0.516 0.365 0.218 0.615 0.647 -0.19 -0.438 0.588 0.599 0.242

p-Value 0.003 0.053 0.242 0.001 < 0.001 0.272 0.011 0.001 0.001 0.161

Spearman's rho coefficient 0.684 0.489 0.245 0.793 0.804 -0.205 -0.517 0.726 0.774 0.319

p-Value 0.002 0.04 0.328 < 0.001 < 0.001 0.414 0.028 0.001 < 0.001 0.197  
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Linear Regression 

 

 Least squares linear regression was employed to model relationships between pH event 

duration slope as the independent variable and watershed attributes as dependent variables.   

 

 

Linear Regression – Sµ vs. Area 
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Figure 40. Least Squares Linear Regression For Area (km2) vs. pH Event Duration Slope. 

 
The regression equation is 

Mu inverse = 0.184 + 0.00104 Area (km2) 

 

Predictor         Coef      SE Coef       T       P     VIF 

Constant       0.18392     0.01247   14.75   0.000 

Area (km2)   0.0010401   0.0002220    4.69   0.000   1.000 

 

S = 0.0382055   R-Sq = 57.8%   R-Sq(adj) = 55.2% 

 

PRESS = 0.0302744   R-Sq(pred) = 45.35% 

 

Analysis of Variance 

Source           DF          SS          MS        F       P 

Regression        1    0.032047   0.032047   21.95   0.000 

Residual Error   16    0.023355   0.001460 
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Total            17    0.055401 

 

Durbin-Watson statistic = 1.25821 
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Linear Regression – Sµ vs. Maximum Elevation 
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Figure 41. Least Squares Linear Regression For Maximum Elevation (m) vs. pH Event Duration Slope. 
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The regression equation is 

Mu inverse = - 0.301 + 0.000278 MAX_Elev 

 

Predictor        Coef      SE Coef       T       P     VIF 

Constant      -0.3006       0.1488    -2.02   0.060 

MAX_Elev   0.00027758  0.00007849    3.54   0.003   1.000 

 

S = 0.0440848   R-Sq = 43.9%   R-Sq(adj) = 40.4% 

 

PRESS = 0.0591687   R-Sq(pred) = 0.00% 

 

Analysis of Variance 

Source           DF        SS          MS        F       P 

Regression        1   0.024306   0.024306   12.51   0.003 

Residual Error   16   0.031096   0.001943 

Total           17   0.055401 

 

Durbin-Watson statistic = 1.85968 
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An outlier seems to exist in the regression plot for maximum elevation vs. pH event duration 

slope.  Removing Jakes Creek here does improve the regression fit for maximum elevation, but 

removing outliers in this study was not deemed appropriate and all eighteen monitoring sites 

were included for statistical analyses. 
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Linear Regression – Sµ vs. Elevation Range 
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Figure 42. Least Squares Linear Regression For Elevation Range (m) vs. pH Event Duration Slope. 

 
The regression equation is 

Mu inverse = 0.124 + 0.000096 RANGE_Elev 

 

Predictor          Coef       SE Coef      T       P     VIF 

Constant        0.12410      0.03131   3.96   0.001 

RANGE_Elev   0.00009574   0.00002816   3.40   0.004   1.000 

 

S = 0.0448338   R-Sq = 41.9%   R-Sq(adj) = 38.3% 

 

PRESS = 0.0461162   R-Sq(pred) = 16.76% 

 

Analysis of Variance 

Source           DF        SS          MS        F       P 

Regression        1   0.023240   0.023240   11.56   0.004 

Residual Error   16   0.032161   0.002010 

Total            17   0.055401 

 

Durbin-Watson statistic = 1.49226 
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Linear Regression – Sµ vs. Maximum Slope 
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Figure 43. Least Squares Linear Regression For Maximum Slope (%) vs. pH Event Duration Slope. 
 

The regression equation is 

Mu inverse = - 0.055 + 0.00432 MAX_Slope 

 

Predictor       Coef     SE Coef       T       P     VIF 

Constant     -0.0547     0.1060    -0.52   0.613 

MAX_Slope   0.004316   0.001630    2.65   0.018   1.000 

 

S = 0.0490663   R-Sq = 30.5%   R-Sq(adj) = 26.1% 

 

PRESS = 0.0553917   R-Sq(pred) = 0.02% 

 

Analysis of Variance 

Source           DF        SS          MS       F       P 

Regression        1   0.016881   0.016881   7.01   0.018 

Residual Error   16   0.038520   0.002407 

Total            17   0.055401 

 

Durbin-Watson statistic = 1.83824 
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Linear Regression – Sµ vs. Slope Range 
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Figure 44. Least Squares Linear Regression For Slope Range (%) vs. pH Event Duration Slope. 

 

 

The regression equation is 

Mu inverse = 0.0081 + 0.00338 RANGE_Slope 

 

Predictor         Coef     SE Coef      T       P     VIF 

Constant       0.00810    0.09319   0.09   0.932 

RANGE_Slope   0.003381   0.001445   2.34   0.033   1.000 

 

S = 0.0507931   R-Sq = 25.5%   R-Sq(adj) = 20.8% 

 

PRESS = 0.0609225   R-Sq(pred) = 0.00% 

 

Analysis of Variance 

Source           DF        SS          MS       F       P 

Regression        1   0.014122   0.014122   5.47   0.033 

Residual Error   16   0.041279   0.002580 

Total            17   0.055401 

 

Durbin-Watson statistic = 1.72632 
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Linear Regression – Sµ vs. SSS (km2) 
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Figure 45. Least Squares Linear Regression For SSS (km

2
) vs. pH Event Duration Slope. 

 

The regression equation is 

Mu inverse = 0.207 + 0.00447 SSS (km2) 

 

Predictor       Coef     SE Coef       T       P     VIF 

Constant     0.20698    0.01462   14.16   0.000 

SSS (km2)   0.004475   0.002074    2.16   0.047   1.000 

 

S = 0.0517914   R-Sq = 22.5%   R-Sq(adj) = 17.7% 

 

PRESS = 0.0584610   R-Sq(pred) = 0.00% 

 

Analysis of Variance 

Source           DF         SS          MS       F       P 

Regression        1   0.012484   0.012484   4.65   0.047 

Residual Error   16   0.042918   0.002682 

Total            17   0.055401 

 

Durbin-Watson statistic = 1.23572 
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Bivariate Regression Analyses 

 Only significant variables were used in the model (p value of 0.05).  Strength and fit of 

the models were evaluated using R
2
, adjusted R

2
, predicted R

2
, S Value, and Mallows’ Cp.  R

2
, 

the coefficient of determination, is the percent of the total variance explained, where each 

additional variable used in the equation results in a higher R
2
.  Adjusted R

2
 is an attempt to 

correct this weakness by adjusting the numerator and denominator by their respective degrees of 

freedom.  Unlike R
2
, adjusted R

2
 can decline in value if the contribution to the explained 

deviation by the additional variable is less than the impact on the degrees of freedom.  Predicted 

R
2
 indicates how well the model predicts responses for new observations by using observations 

not included in model estimation.  Predicted R
2
 can prevent overfitting and is sometimes more 

useful for comparing models.  S represents the standard distance data values fall from the fitted 

values, where better model response prediction produces lower S values [Minitab 15, 2009].  

Small Mallows' Cp close to the number of predictors in the model plus the constant indicates that 

the model is relatively precise with small variance in estimating the regression coefficients and 

predicting future responses [Minitab, 2007]. 

 Multicollinearity was addressed using the variance inflation factor (VIF).  A VIF value 

above 10 is often used to indicate multicollinearity concerns between variables [Helsel and 

Hirsch, 2002].  Autocorrelation within residuals were checked by the Durbin-Watson statistic.  If 

adjacent observations are correlated, the regression model will underestimate the standard error 

of the coefficients causing the predictors to seem more significant than they are.  The range of 

values for the Durbin-Watson statistic is between 0 and 4 with a value of 2 generally indicating 

that no autocorrelation is apparent. Typically a value less than 2 indicates positive correlation 

and a value less than 1 describes substantial autocorrelation. 
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Stepwise Linear Regression 

 

 Forward and backward stepwise regression was used to develop bivariate models for 

estimating pH event duration slope metric as a function of observable watershed attributes.  

Stepwise regression removes and adds variables to the regression model to identify a useful 

subset of the predictor variables.  The predictor with the highest partial F value is entered into the 

model first with additional predictors being individually entered if the addition is significant (F > 

4) in the regression equation.  Likewise, if retaining a predictor is not significant (F < 4) in the 

regression equation it will be removed.  The F value is a measurement of the difference between 

individual distributions and the confidence of the difference, increasing as p values decrease. 

 

Regression Output 

 
F-to-Enter: 4  F-to-Remove: 4 

Response is Mu inverse on 10 predictors, with N = 18 

 

Step                  1            2 

Constant         0.1839     -0.1562 

 

Area (km2)      0.00104    0.00082 

T-Value            4.69         4.25 

P-Value           0.000       0.001 

 

MAX_Elev                    0.00018 

T-Value                        3.13 

P-Value                       0.007 

 

S                0.0382      0.0307 

R-Sq              57.84       74.53 

R-Sq(adj)         55.21       71.13 

Mallows Cp         15.6         5.9 

PRESS          0.030274    0.031694 

R-Sq(pred)        45.35       42.79 
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Least squares linear regression on this model: 
 

The regression equation is 

Mu inverse = - 0.156 + 0.000816 Area (km2) + 0.000184 MAX_Elev 

 

Predictor          Coef       SE Coef       T       P     VIF 

Constant        -0.1562       0.1090    -1.43   0.172 

Area (km2)    0.0008159    0.0001920    4.25   0.001   1.161 

MAX_Elev     0.00018445   0.00005885    3.13   0.007   1.161 

 

Analysis of Variance 

Source           DF        SS          MS        F       P 

Regression        2   0.041290   0.020645   21.94   0.000 

Residual Error   15   0.014112   0.000941 

Total            17   0.055401 

 

Durbin-Watson statistic = 2.14717 
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Best Subsets Regression 

 

 A second bivariate regression technique, best-subsets regression, was used to develop 

alternative models for predicting pH event duration slope metric.  The best subsets regression 

procedure is an efficient way to identify the best models with as few predictor variables as 

possible.  Best subsets regression provides information on the fit of several different models, 

allowing model selection based on four distinct statistics, compared with stepwise regression 

which produces a single model based on a single statistic [Minitab, 2007].  Because different 

selection criteria are used in each model, it is possible that the two regression techniques will 

lead to different models.   
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Vars R-Sq R-Sq(adj)
Mallows 

Cp
S

Area 

(km2)

SSS 

(km2)

Maximum 

Elevation 

(m)

Elevation 

Range (m)

Maximum 

Slope (%)

Slope 

Range (%)

1 57.8 55.2 11.9 0.038206 X

1 43.9 40.4 20.5 0.044085 X

1 41.9 38.3 21.7 0.044834 X

1 30.5 26.1 28.8 0.049066 X

1 25.5 20.8 31.8 0.050793 X

2 74.5 71.1 3.7 0.030672 X X

2 69 64.9 7.1 0.033826 X X

2 63.1 58.2 10.7 0.036894 X X

2 62.3 57.3 11.2 0.037315 X X

2 59.9 54.6 12.7 0.038478 X X

3 76.7 71.7 4.4 0.030395 X X X

3 75.3 70 5.2 0.031273 X X X

3 74.7 69.2 5.6 0.031663 X X X

3 74.6 69.1 5.6 0.031718 X X X

3 69.7 63.2 8.7 0.034653 X X X

4 80.1 74 4.2 0.029125 X X X X

4 76.8 69.7 6.2 0.03141 X X X X

4 76.8 69.7 6.3 0.031428 X X X X

4 76.7 69.5 6.3 0.03152 X X X X

4 76 68.7 6.7 0.031954 X X X X

5 81.4 73.6 5.4 0.029304 X X X X X

5 80.9 73 5.7 0.02967 X X X X X

5 79.1 70.5 6.8 0.03103 X X X X X

5 76.9 67.3 8.2 0.032631 X X X X X

5 76.9 67.2 8.2 0.032684 X X X X X

6 82.1 72.4 7 0.030006 X X X X X X  
Figure 46. Best Subsets Regression Output For All Variables 

 

 

Least squares regression with 3 variables: Area (km2), SSS (km2), Max Elev (m) 
 
The regression equation is 

Mu inverse = - 0.087 + 0.00124 Area (km2) - 0.00307 SSS (km2) 

             + 0.000145 MAX_Elev 

 

Predictor          Coef       SE Coef       T       P     VIF 

Constant        -0.0867       0.1243    -0.70   0.497 

Area (km2)    0.0012434    0.0004238    2.93   0.011   5.759 

SSS (km2)     -0.003068     0.002718  -1.13   0.278   4.984 

MAX_Elev     0.00014523   0.00006788    2.14   0.051   1.573 

 

S = 0.0303955   R-Sq = 76.7%   R-Sq(adj) = 71.7% 

 

PRESS = 0.0299208   R-Sq(pred) = 45.99% 

 

Durbin-Watson statistic = 2.24392 
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Least squares regression on all 6 Variables: 

 
The regression equation is 

Mu inverse = - 0.135 + 0.00120 Area (km2) - 0.00429 SSS (km2) 

             + 0.000057 MAX_Elev + 0.000043 RANGE_Elev + 0.0213 MAX_Slope 

             - 0.0188 RANGE_Slope 

 

Predictor           Coef       SE Coef       T       P       VIF 

Constant         -0.1352       0.1423    -0.95   0.362 

Area (km2)     0.0012044    0.0005493    2.19   0.051     9.927 

SSS (km2)     -0.004290     0.003168   -1.35   0.203     6.951 

MAX_Elev     0.00005667   0.00008495    0.67   0.518     2.529 

RANGE_Elev    0.00004317   0.00005044    0.86   0.410     7.163 

MAX_Slope        0.02134      0.01195    1.79   0.102   143.654 

RANGE_Slope    -0.01881      0.01045   -1.80   0.099   149.904 

 

S = 0.0300062   R-Sq = 82.1%   R-Sq(adj) = 72.4% 

 

PRESS = 0.0308282   R-Sq(pred) = 44.35% 

 

Durbin-Watson statistic = 2.48809 

 

 

  

Discussion: 

 Best subsets regression produces the same two variable predictor model as stepwise 

linear regression, which has the lowest Cp of all models.  However, the best subsets method also 

provides other possible models.  For example, a model using three dependent variables, 

including area, SSS, and maximum elevation has R
2
=76.6, R

2
 adjusted=71.7, and R

2
 

predicted=46.0.  The additional predictor variable SSS has no effect on R
2
 adjusted, increases R

2
 

predicted, but the model has a higher VIF of 5.8 for area, with a Durbin-Watson statistic of 2.24.  

A regression with all six dependent variables yields a model with R
2
=82.1, R

2
 adjusted=72.4, 

and R
2
 predicted=44.0, but has extremely high VIF values, near 140, signifying an extremely 

autocorrelated model.  
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Goodness-of-fit (Chi-Square) 

 

 Goodness-of-fit tests are used to test whether data follow a specific distribution.  The chi-

square test is a classic goodness-of-fit test which involves breaking data into groups and 

comparing those groups to the expected groups from the known distribution [EPA QA, 2006].  A 

four year data period is broken into five separate CDF curves, including four one-year duration 

curves and one curve developed for all four years combined. 

 μ vs. pH event at NDW demonstrates the influence low pH events have on characteristic 

curves.  Year 2 has the worst fit among the one-year duration slopes, but if this curve had a μ 

value at pH 5.0 the curve would likely fit the slopes of the others.  For demonstration purposes 

the lowest μ value at pH 5.0 of year 1, 3, and 4, was entered for the μ value at pH 5.0 for year 2. 

This change moves the μ value to 4.817, and fits very well as compared to the other yearly power 

values.  This changes chi-square goodness-of-fit test results, showing the data to fit the same 

distribution with a p-value of 0.02. 

 

 

 
                          Test            Contribution 

Category  Observed  Proportion  Expected     to Chi-Sq 

1            5.526         0.2    5.4042      0.002745 

2            4.886         0.2    5.4042      0.049689 

3            7.148         0.2    5.4042      0.562681 

4            4.452         0.2    5.4042      0.167774 

5            5.009         0.2    5.4042      0.028900 

 

 

     N   DF     Chi-Sq   P-Value 

27.021    4    0.811789    0.937 
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Figure 47. Chart of Observed and Expected Values for Temporal Analysis 
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Figure 48. Annual Precipitation Volume Data Summarized For NDW From 1991 Through 2008. 
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