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Abstract 

The body mass index (BMI), weighVheight2 (W/H2), is currently the index 

of choice for assessment of nutritional status. Statements in the literature about 

the BMI as a potential expression of "cold adaptation" or "Bergmann's Rule" beg 

the question: What does that BMI measure in terms of size, shape, and the 

surface area:volume (SA:V) ratio? Geometric modeling shows that the BMI 

captures both size and shape and is inversely related to the SA:V ratio. This 

admixture of size/shape information, combined with the unmeaningful absolute 

value of the BMI, preclude precise understanding of what it measures. A new 

weight-height-based variable was derived -the mean effective breadth (MEB)­

which more clearly relates to the SA:V ratio and heuristically represents what 

weight-for-height does: if alters body breadth. 

Previous findings of a geographical cline in the BMI in Native Americans 

were expanded to a worldwide sample of 328 adult populations. The BMI and 

MEB increased with increasing latitude, while the SA:V ratio decreased. All 

three ratios were also correlated with variables that alter the biological SA:V 

ratio: sitting height, relative sitting height, and bi-acromial and bi-iliac breadths. 

The MEB showed higher correlations with latitude, weight, height, sitting height, 

relative sitting height, and bi-acromial breadth than did the BMI, though 

coefficients were similar to those of the SA:V ratio. 

The BMl's geometric and statistical associations with the SA:V ratio and 



measures of proportion or shape corroborate and amplify others' findings that 

the BMI is not a shape-independent index of body size or nutritional status. 

The W/H
2 

ratio was originally conceived by Quetelet as a "proof' of body 

proportionality. Nutritional epidemiologists should beware these associations 

when using BMI cutoff categories to diagnose chronic energy deficiency or 

obesity. 
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Introduction 

The body mass index (BMI), or "Quetelet1 s Index" (weight in kg/(height in 

m) ), is used in many clinical and anthropological contexts to compare 

individuals' or groups' weights "independent of' or "unbiased by" their heights 

(Keys et al., 1972; Shetty and James, 1994:9). In adults, the BMI is usually 

correlated with weight, but not with height: it is therefore preferred over other 

weight-height indices as a measure of body size or nutritional status ( e.g. Keys 

et al., 1972; Shetty and James, 1994 ). However, a number of studies have 

shown that the BMI does not truly represent size independent of body shape. 

The BM I is correlated with several measures of body shape or proportion such 

as relative sitting height (Garn et al., 1986; Norgan, 1994a,b), bony chest 

breadth (Garn et al., 1986), and the sum of humerus and femur breadths (Ross 

et al., 1988). These correlations are not surprising given the BMl's origin as a 

ratio of body proportionality (Quetelet, 1835). 

In a different context, researchers have cited (Johnston and Schell, 

1979:282) or predicted (Beall and Goldstein, 1992:7 47,752) high BMI values in 

cold-climate groups as evidence of "Bergmann's Rule" or cold adaptation. 

Bergmann's Rule (Bergmann, 1847; Mayr, 1956) refers to the intraspecific 

tendency for body size to increase in colder parts of the geographic range. The 

complementary "Allen's Rule" (Allen, 1877, 1906) predicts temperature-related 

clines in body (or limb) shape. Together, both rules reflect the fact that larger 

1 
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and less linear organisms have a lower body surface area to volume (SA:V) 

ratio, and are thus better able to conserve heat (Roberts, 1978:29-30). In heat­

adapted organisms, the opposite is true (reviewed in Mayr, 1956; Ruff, 1994). 

The BM l's precise relationships to size and shape -and hence to these "rules" -

are unclear. If the BMI is to be cited as an expression of "cold adaptation", what 

it measures in terms of the SA:V ratio must be understood. 

Here, I develop a geometric model after Ruff (1991) to show that the BMI 

does indeed capture shape as well as size and varies inversely with the SA:V 

ratio. However, the absolute value of the BMI -in mixed units of "kgm" - is not 

informative in intuiting what it measures. As a clearer alternative, I introduce a 

new weight-and-height-derived variable -the mean effective breadth (MEB)­

that heuristically represents the effects of weight-for-height in terms of its effects 

on the SA:V ratio and body breadth. 

Next, in a worldwide sample of 328 means, I assess the BMI and SA:V 

ratio's correlations with geographic latitude (as a proxy variable for climate), and 

with anthropometric variables known to positively cline with latitude and affect 

the SA:V ratio (bi-iliac breadth, bi-acromial breadth, sitting height, relative sitting 

height, and body surface area). The MEB is included in the correlation analyses 

for exploratory purposes. 

Results accord with and expand prior researchers' findings of both a 

geographic cline in the BMI (Johnston and Schell, 1979), and the BMl's 

association with measures of body proportion or shape (Garn et al., 1986; Ross 



et al., 1988; Norgan, 1994a,b). Results strongly suggest that the BMI is not a 

shape-independent index of body size or nutritional status. Despite its 

popularity as a proxy of fatness, the BMI is shown to be Quetelet's (1835) index 

of proportions after all. 

3 
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Chapter 1: What is the BMI? A measure of "fatness" or body proportions? 

The BMI is arguably the most popular of weight-height ratios as a 

measure of nutritional status or fatness. The BMI has become the "index of 

choice,
, 

for nutritional epidemiology (Shetty and James, 1994:9), and BMI cutoffs 

are used to diagnose both chronic energy deficiency and obesity (James et al., 

1988; Shetty and James, 1994; reviewed in Henry, 1994). The Food and 

Agriculture Organization of the United Nations endorses the BMI as the 

worldwide standard for nutritional status assessment (Shetty and James, 1994), 

as have some National Institutes of Health-sponsored conferences (reviewed in 

Weigley, 1989: 16). Body mass index nomograms can be found in texts and 

professional reference sources for clinical nutritionists (e.g. Whitney and Rolfes, 

1996; Shils et al., 1994:A-49). The BMI has even been used to measure 

obesity or relative nutritional status in macaques, taking crown-rump length (C­

R) as the squared linear dimension, i.e., W/C-R2 
(Jen et al., 1985, "Obesity 

Index Rh"; Berman and Schwartz, 1988; Bercovitch, 1992; Schwartz et al., 1993; 

Bodkin et al., 1993). (Laber-Laird et al., 1991 used trunk length instead of C-R.) 

The BMI became popular as a measure of nutritional status largely due to 

a series of correlation analysis papers that showed that the BMI most 

consistently met three criteria: it was highly correlated with weight, minimally 

correlated with or "independent" of height (Billewicz et al., 1962; Florey, 1970; 

Lee et al., 1981; Frisancho and Flegel, 1982), and highly correlated with fatness 
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(Shetty and James, 1994:7; Keys et al. , 1972; see also Micozzi et al., 1986). 

Keys et al. (1972:341), in a seminal paper wherein the W/H2 ratio was named 

the "body mass index", designated the BMI as the weight-height index applicable 

"to all populations at all times". 

However, other researchers have questioned the BMl's ability to 

discriminate fatness, since it is only a gross measure of weight, and have also 

disputed its supposed "independence" from height and body proportions. Many 

have demonstrated what Garn et al. (1986) have called "the three limitations of 

the body mass index". First, the BMI is not "unbiased by height" (Shetty and 

James, 1994:9) in all ages and all populations, especially in children (Garn et 

al. , 1986), and women (Florey, 1970; Lee et al. , 1981; Micozzi et al. , 1986). 

Second, the BMI is a proportionality index, in that it is correlated with relative 

sitting height (Garn et al. , 1986; Norgan, 1994a,b) and bony breadths (Garn et 

al. , 1986; Ross et al. , 1988). Third, as a gross measure of ponderosity, it is as 

correlated with measures of lean mass as it is with fatness (Garn et al. , 1986; 

Ross et al, 1988; Norgan, 1990), and is often a poor predictor of fatness (Florey, 

1970; Frisancho and Flegel, 1982; Roche, 1992:206). 

The fact that the BMI correlates well with measures of body proportions is 

not surprising given its historical origins as a ratio to express such proportions 

(Quetelet, 1835; Ross et al. , 1988). This is characteristic of weight-height 

indices generally, as they were devised in the nineteenth century in the context 

of growth and body proportionality studies (Keys et al. , 1972:340). Of the ratios, 
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weight (W) divided by height (H) is the simplest. However, because weight is a 

volumetric measurement and height a linear one, a number of "power indices" 

were developed in an attempt to accommodate the different exponents of weight 

and height (Keys et al. , 1972). 

The BMI was the first such index, and is credited to statistician and 

anthropometrist L. Adolph J. Quetelet (1835; 1833, in Ross et al. , 1988). 

Subsequent indices were created to more accurately represent relative weight, it 

was believed, by adjusting the three powers of weight with linear height in a 1: 1 

ratio (Micozzi et al. , 1986; Keys et al, 1972). Thus, Livi's (1898) indice 

ponderale, or ponderal index (W·33/H), Rohrer's (1921) "index of body build" 

(WIH\ and their respective inversions by Sheldon (1940:52, H/ w·
33

) for use in 

somatotyping and by Pirquet (1913, H3/W) for growth studies all reflect this 

concern with dimensionality (Livi, Rohrer, and Pirquet in Krogman, 1941 :9, 14, 

12). 

The development of the BMI was uniquely motivated by Quetelet's 

particular goals and historical context. Quetelet was a pioneer in growth studies 

and in the application of "physical" statistics and probability theory to the social 

or "human" sciences (see Jolly and Dagnelie, 1967; Jelliffe and Jelliffe, 1979; 

Tanner, 1981; Weigley, 1989). In these veins, he collected a large amount of 

anthropometric data and characterized their variability in terms of the "normal 

law of errors" -what we would now call the "normal distribution" (Jolly and 

Dagnelie, 1967: 173). Quetelet's key preoccupation was understanding l'homme 
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moyen, or "the average man", and in deducing general "law-like
11 

principles of 

the human body and character based on the central tendencies of his data ( Jolly 

and Dagnelie, 1967; Tanner, 1981: 138). Body proportionality and its changes 

with growth were chief amongst Quetelet's traits of interest (Tanner, 1981 : 136), 

and herein lies the origin of the W/H2 ratio. 

The W/H2 ratio first saw substantial exposure in Quetelet's widely-read 

1835 compilation of essays. Based upon his observations of height and weight 

data, Quetelet (Diamond, 1969:66,67; facsimile reproduction of the 1842 English 

translation of Quetelet, 1835) said that, in children, the square of weight is 

proportioned to the fifth power of stature; in adults, weight is in proportion to the 

square of stature. Consequently, "increase in height is greater than the 

transverse increase, including breadth and thickness", and "proportion being 

attended to, width predominates in individuals of small stature" (Diamond, 

1969:67,66). 

Ross et al. (1988) have explained that Quetelet was simply trying to make 

a general statement about the growth of human proportionality: height-weight 

proportionality differs between children and adults, and between "extremes" of 

adults. In brief, he was saying that short people are relatively wider than tall 

people (Ross et al., 1988), an observation that Ross et al. (1987, in Ross et al., 

1988) have shown to be true. 

It has been said that Quetelet "adhered to the school of Procrustes, and 

the consequences of imperfections in his analogies he left to others" (Porter 
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1994:34 7). No statement is truer of the W/H2 ratio. It is clear neither from his 

proof nor his explanation how the quotient of W/H2 could itself convey the 

greater relative breadth of shorter people. However, it can be shown that 

Quetelet's index roughly expresses the surface area:volume ratio in inverse 

form, given that height2 represents an areal measurement, and weight a 

volumetric one. Regardless, Quetelet's basic point about body proportionality 

has been lost to most who use the W/H2 ratio as the "body mass index" today. 

The twentieth century saw increasing use of the BMI and other W/H 

indices as measures not so much of proportionality, but of "nutritional status" 

(Keys et al, 1972; Garn and Pesick, 1982). The title of Krogman's (1941:5-16) 

12-page listing of partially or wholly weighUheight-derived ratios -"Indices of 

nutritional status, proportion and body type" - is revealing about this transitional 

phase when W/H indices were seen as proxies of both proportionality and 

nutritional status. By the 1960s and 1970s, intensified interest in the study of 

obesity in Westerners and chronic energy deficiency in developing countries led 

to a shift in the perception of W/H indices as predominantly measures of 

nutritional status (cf. Jelliffe and Jelliffe, 1979). 

The use and conceptualization of the BMI as an idealized proxy of 

nutritional status represents a curious departure from Quetelet's (1835) and 

other early anthropometrists' intents. As priority of use shifted from the 

description of body proportions to the assessment of nutritional status, the fact 

that the BMI, and W/H indices in general, are also proportionality indices has 
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been largely forgotten. BMI proponents emphasize its supposed independence 

from the height-aspect of size, and its correlations with the weight-aspect of size 

and fatness (e.g. Keys et al. , 1972; Shetty and James, 1994). BMI detractors 

point to its correlations with measures of body shape, build, or proportion (e.g. 

Garn et al. , 1986; Ross et al. , 1988; Norgan, 1994a,b). In the next section, I will 

show with a geometric model how the BMI captures both size and shape, how it 

is not independent of height, and how it relates to the surface area:volume ratio. 
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Chapter 2: Geometric model of the BMI and the surface area:volume ratio 

The easiest way to demonstrate the effects of weight relative to height is 

with a geometric model of the human body. After Ruff (1991, 1994) and others 

(e.g. Abernethy, 1793; Roussy, 1925 in Boyd, 1935; Quetelet, 1848), I will use a 

cylindrical model. One can conceptualize a cylinder as simply a wrapped-up 

rectangle with two circles on the ends, which is taken to represent the two­

dimensional surface area of the human body, and its closed shape, the volume. 

Here, "volume" and "weight" are used interchangeably. Such an assumption is 

required without actual measurements of body density. 

Simple logic predicts that increased weight relative to height will produce 

a relatively wider body (Roberts, 1978:30). This can be visualized by comparing 

two cylinders of the same.height, but different volumes. The one with the 

greater volume will necessarily be wider. In addition, since areal dimensions 

scale with the 2
/3 power of volume, the wider cylinder will have a larger surface 

area but a lower SA:V ratio. Thus, increased weight relative to height increases 

surface area, but more strongly decreases the SA:V ratio. 

The physiological implications of this scaling are apparent when one 

considers surface area and volume as each representing two different 

components of body size, and the SA:V ratio as containing some shape 

information derived from the relative proportions of these two different aspects of 

physiological body size. 
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Body weight is often referred to as the "metabolic size" because of 

Kleiber's Law, which states that across species, basal metabolic rate -the 

amount of heat produced to maintain basic biologic functions- varies with the ¾ 

power of body weight (Kleiber, 1961; Reiss, 1989). 

External body surface area (i.e. , of the skin) is often referred to as "body 

size" in reference to physiological processes that take place across organ 

surfaces (internal or external), and represents an energy "assimilation and loss" 

measure of size. Many assimilation/loss processes occur across organ surfaces 

of the body, such as nutrient and drug absorption; gaseous exchange; renal 

functions; conductive, evaporative, and radiative heat loss; and so forth (Reiss, 

1989:16,20; Haycock et al. , 1978:62,65; Turner and Reilly, 1995; Brozek et al., 

1987). In clinical medicine and physiology, such functions are often "corrected 

for body size" by expressing them per unit body surface area, the assumption 

being that relevant organ surface areas parallel that of the skin (reviewed in 

Nwoye, 1989; Mosteller, 1987; Takai and Shimaguchi, 1986; Haycock et al. , 

1978; Brozek et al. , 1987; Turner and Reilly, 1995). 

Thus, weight grossly represents heat or energy requirements and 

production (Kleiber, 1961; Reiss, 1989: 15,20), and surface area represents the 

substrate of energy assimilation or loss (Reiss, 1989: 15,20). The SA:V ratio, 

then, is one of energetics and is a ratio of potential energy loss to production, of 

potential energy assimilation to energy requirements (Roberts, 1978; Reiss, 

1989). Therefore, weight-for-height -via its link with the SA:V ratio- is not just 
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a measure of physical proportions, as noted by Quetelet and others reviewed in 

the previous section, but of physiological proportions of "gross energetics" as 

well. 

The BMl's relationship to the SA:V ratio can be easily modeled 

geometrically. Ruff (1991) developed a cylindrical model of the human body to 

demonstrate that changes in body breadth, but not changes in height, alter the 

lateral SA:V ratio. Here, I adapt and expand his model to include total surface 

area, and compare it to a geometric model of the BMI equation (Figure 1 • ). The 

geometric model is also useful for examining size/shape aspects of the BMI, 

independent of the potential collinearity and spurious correlation that can arise 

when ratios are used in statistical analyses with their component parts (Tanner, 

1949), as is characteristic of many previous statistical assessments of the BMI 

(e.g. Keys et al, 1972; Norgan, 1994a,b). 

Geometry shows that the BMI is inversely related to both the lateral and 

total SA:V ratios, but contains additional confusing information about size and 

shape. From Figure 1 (where D = diameter and L = height), the BMI can be 

broken down as follows: 

BMI = 1tD /(4L) 

=(D/4) (1tD) (1/L) 

=(inverse lateral SA:V ratio)( circumference )(inverse height) 

• All tables and figures may be found in Appendix A. 



The BMI would be the exact inverse of the lateral SA:V ratio in an 

individual with a circumference equal to its height: 

1tD /4L = (D/4) (1tD/L) =(D/4)(1/1) = D/4 

13 

The BM l's relation to the total SA:V ratio cannot be so neatly or easily 

decomposed, though the two ratios contain some similar information in the 

inverse. Referring to Figure 1, two contrasts between the BMI and the total SA:V 

ratio (hereafter denoted "SA:V ratio") deserve note, since they also point to 

shape and size information subsumed in the BMI. First, the BMI gives greater or 

exponential "weight" (sensu importance) to body breadth than does the SA:V 

ratio, given the squared diameter term in the BMl's numerator. Second, because 

of this D2 
term, the BMI gives greater importance to breadth than it does to 

height, versus the SA:V ratio where the diameter and height terms are both 

arithmetic. 

However, the BMI is certainly not "independent" of height according to the 

geometric model. The model suggests a differential influence of height on the 

BMI in people of different shapes. Since the diameter-based BMI numerator 

increases exponentially, while the height-based denominator increases 

arithmetically, height should have less of an impact on the BMI quotient in wider 

people. Height should have a greater impact on the BMI in absolutely narrower 

people, such as children. Thus, according to the geometric model, the BMI is 

heavily shape-dependent (defining diameter as shape), and differentially height­

dependent. 
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These implications may at first not seem intuitive, since the real BMI 

formula, W/H2
, contains H2 in the denominator. This relates to a larger issue 

about the BMI (and ratios generally): What does it measure? Abstractly, it 

measures both size and shape, and "how much" of each it measures seems to 

vary with size and shape themselves. Concretely, the absolute value of the BMI 

represents a one-dimensional mixed unit of measurement, "kgm". This only 

provides further confusion regarding what the BMI measures. Knowing that 

someone has a BMI of, say, 25.9  is not meaningful in and of itself, but only in 

relation to reference standards (e.g. BMI cutoff categories, in James et al. , 

1988). Supposedly, one main purpose in using W/H indices is to avoid the use 

of referents (Keys et al. , 1972; Shetty and James, 1994). Yet the BMI is difficult 

to understand at face value. 

For use in the present paper, I will derive a new weight-height variable 

that is heuristically clearer than the BMI, and relates to the SA:V ratio. This 

variable, called the "mean effective breadth" (MEB), is the diameter of a 

cylindrical "person" with mass, and therefore all possible breadths, equalized per 

unit height (Figure 2). This variable represents what, for example, increased 

weight relative to height does: it increases breadth. 

As shown in Figure 2, the MEB is derived with the formula for the volume 

of a cylinder, by substituting weight for volume and using known weight and 

height to solve for diameter. This diameter is what I have called the MEB. 

From Figure 2: 
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MEB (in cm) = sq. root [(weight in kg x 1000)/(height in cm x . 785)] 

or 35.69 (W·
5
/H5

) 

The purpose of multiplying weight in kilograms by 1,000 (to convert it to 

cubic centimeters) is to resolve the mixed-unit-quotient problem seen in the BMI. 

The MEB represents a one-dimensional mean diameter, in centimeters, which 

makes its absolute value easy to understand. This conversion is based on the 

fact that one kilogram of water equals 1,000 cubic centimeters. Humans, of 

course, are not water, though water does comprise 60-80% of human body 

weight (Marieb, 1992: 11 ). Regardless, this conversion is simply intended to 

make the MEB readily comprehensible. For statistical purposes, use of this 

constant would have no impact on any results. 

Heuristical ly and mathematical ly, the MEB measures mean diameter or 

shape per unit height. By this statement, I do not imply or claim that the MEB is 

independent of size. Rather, it is a means of expressing weight-size per unit 

height-size in a quotient that equals mean diameter, with an absolute value that 

is simple to understand. Further, two individuals with the same height, weight, 

and MEB could be shaped differently (i.e. , one could have a wider body, the 

other a narrower body with greater sitting height). Yet each has the same mean 

shape, and each should have similar SA:V ratios. Their effective breadths, 

therefore, are the same. 

It is predicted that both the BMI and MEB wil l  show the same patterns of 

correlations with other variables as the SA:V ratio, but in the inverse. I wil l  test 



these predictions in the worldwide data analysis to follow. First, though, I will 

review the limited previous findings about weight-for-height and the BMI in 

morphological adaptation to climate research. 

16 



Chapter 3:  Weight-for-height and the BMI in morphological adaptation to 

climate research 

1 7  

Research on climate-related clines in  anthropometric characters seeks to 

document and explain worldwide human variability in terms of two 

"ecogeographic rules" : Bergmann's ( 1 847) and Allen's ( 1 877) Rules. 

Bergmann's Rule refers to the intraspecific tendency in homeotherms for body 

size to increase in colder parts of the geographic range (Mayr, 1 956). The 

complementary Allen's Rule states that their "peripheral parts" tend to be 

relatively elongated in warmer parts of the geographic range (Allen, 1 906). 

Together, both rules reflect the fact that larger and less linear organisms have a 

lower SA:V ratio, and are thus better able to conserve heat. In heat-adapted 

organisms, the opposite is true (see Mayr, 1 956; and Ruff, 1 994 for discussion) .  

This thermoregulatory aspect of the SA:V ratio is highlighted in such studies, 

where it is emphasized as a ratio of heat loss to heat production (e.g. Roberts, 

1 978:29-30). 

The extensive body of li terature in this area (thoroughly reviewed in Ruff, 

1 993; 1 994) has shown temperature-related morphological clines in a number of 

measures of body proportion or shape that physically relate to the SA:V ratio. 

The SA:V ratio itself varies with climate in human populations as would be 

predicted by the physiological explanation (Schreider, 1 950, 1 964; Ruff, 1 994) .  

Roberts ( 1 978: 1 3-29, 94-97) has shown negative correlations between mean 
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annual temperature· and sitting height, relative sitting height, chest girth, relative 

biacromial and bi-il iac breadths, and calf circumference. He obtained positive 

correlations between mean annual temperature and relative span of the upper 

limbs, and lengths of the distal segments of the upper and lower limbs (Roberts, 

1978:95-96). Ruff (1991, 1994) found a highly significant correlation between bi­

iliac breadth and latitude in 56 modern human populations, and as summarized 

in the previous section, has shown via cylindrical modeling that body breadth, 

but not height, drives the lateral SA:V ratio. (However, Figure 1 here 

demonstrates that height does play an important role in the total SA:V ratio.)  

Given the predictions above about the BMI (and weight-for-height 

generally) and its inverse relation with the SA:V ratio, one would expect that 

prior researchers would have studied weight-for-height in that context. However, 

the topic has received scant attention, and is usually only mentioned in passing 

in analyses that focus on related variables such as weight and height. 

In a worldwide sample of 116 male and 33 female populations, Roberts 

(1953) reported correlations between weight and mean annual temperature of 

-.600 for males, and -.809 for females. The partial coefficients for weight and 

temperature exclusive of stature were -.538 and -.704 for males and females, 

respectively. Significant correlations between height and mean annual 

temperature disappeared when weight was partialed out. Roberts (1953:537) 

plotted his groups on a map according to "weight per unit stature", but did not 

include it in his reported statist ical analyses. 



19 

Roberts (1978: 17), when reviewing his clinal weight results as above, 

noted that "the effect of stature ( on weight) can be partly overcome by examining 

weight per unit stature, and the same pattern appears". No statistical results 

accompany this comment. 

Similarly, Newman (1960) reported negative correlations between weight 

and mean temperature of the coldest month in a sample of 60 adult Native 

American male groups (r = -. 729). When stature was held constant, the partial 

correlation between weight and temperature was -.670, while the correlation 

between height and temperature when weight was partialed became non­

significant. In his discussion, Newman (1960:307) briefly mentions that the 

HfW·33 ratio "is independent of temperature", but other than presenting mean 

values for the index in a table, he does not elaborate. 

In their analysis of climatic influences on cranial morphology, Beals et al. 

(1984) note a correlation of -.46 between a "ponderal index" and their five 

climatic zones (ranked 1-5, from "dry heat" to "dry cold"), but do not give the 

formula they used for "ponderal index". Some authors define the ponderal index 

as Livi's (1898, in Krogman, 1941:9) W·33/H (Keys et al. , 1972; Micozzi et al. , 

1986; Shephard, 1991: 17), while others give the formula H/W.33 (Florey, 1970; 

Lee et al. , 1981 ). Shetty and James (1994:8) define it as the latter formula, or as 

W/H3
. 

Ruff (1994:85), in his study of the correlation between bi-iliac breadth and 

geographic latitude, regressed body weight on stature in a sample of 56 male 
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and female means. Points for cold-climate modern populations and fossils (e.g. 

Neanderthals) tended to fall above the regression line, i .e. ,  they had relatively 

more weight per unit height. Tropical moderns and fossils (e.g. KNM-WT 15000; 

see Walker and Leakey, 1993) showed the opposite trend. 

In the only explicit test of the BMI and climate, Johnston and Schell 

( 1979) assessed geographic variation in the BMI in a Native American sample of 

16 groups. ANOVA results showed a significant main effect for geographic 

region, with BMI means highest for northern North American Indians, followed by 

Eskimos, South American Indians, and Mesoamerican Indians. They explained 

the paradoxically lower BMI values of the Mesoamericans in comparison to the 

South Americans as due to the "well-documented" nutritional stress 

characteristic of Mesoamerican populations (Johnston and Schell, 1979:282). 

While they were cautious about overextending their interpretations, they did 

"point to the increased adaptation to low temperature afforded by a high weight­

for-height" (Johnston and Schell, 1979:282). 

More recently, Beall and Goldstein (1992:747,752) predicted -but did not 

find- high BMI values in Tibetan Nomads as evidence of "cold adaptation" or 

"Bergmann's Rule". While their statement is logically valid, no worldwide study 

has been done to show such an empirical association. 

Thus, given Johnston and Schell's (1979) limited findings of a geographic 

BMI cline in Native Americans, and the geometric predictions about the BM l's 

inverse relation to the SA:V ratio, it is of interest to test the BMl's relationship to 
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climate and the SA:V ratio in a worldwide sample. In  a correlation analysis, I will 

assess the BMl's associations with geographic latitude (as a proxy variable for 

climate), and anthropometric variables known to positively cline with latitude (bi­

iliac breadth, biacromial breadth, sitting height, relative sitting height, and body 

surface area). The BMl's associations will be compared to those of the MEB and 

the SA:V ratio. 
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Chapter 4: Tests of correlation between the BMI, MEB, SA:V ratio, latitude, 

and clinal anthropometrics 

Materials and Methods 

Sex-specific adult mean height and weight data were obtained from 

primary and secondary (e.g. the compilations of Eveleth and Tanner, 1 976, 1 990) 

literature sources, and by personal communication of unpublished data 

(Armenian data from R. L. Jantz). Sitting height and bi-iliac and biacromial 

breadths were collected if also reported. Populations specifically noted to be 

"pathological" (e.g. obese) were not included. However, this criterion was not 

strictly observed regarding some Pacific Islanders and Eskimos, who have 

occasionally been defined as "obese" by BMl-cutoff standards, yet actually have 

little fat mass (cf. Houghton, 1 990; So, 1 980). In an effort to sample groups that 

were relatively long-lived in their present environments, New World populations 

except American Indians were excluded. Migration, though, was impossible to 

control (cf. Stinson, 1 990). 

Sampling criteria represent several compromises similar to those of other 

researchers doing large-scale studies based on grab sampling (e.g. Stinson, 

1 990; Ruff, 1 991 , 1 994). The "adult" age criterion was bent for some groups 

where height and weight means included 1 7  - and 1 8-year-olds pooled with the 

adults. Large original sample sizes were preferred, and a minimum criterion of 
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20 observations was general ly observed. The sample size criterion could not be 

evaluated for some of the (mainly European) listings in Eveleth and Tanner 

(1976, 1990). The criterion was mildly violated for a smal l  number of 

ethnographic populations for whom means from larger sample sizes could not be 

obtained, largely due to smal l  population size. 

Where given a choice between urban versus rural or "traditional" groups 

of the same population, the latter were chosen ( cf. Schmitt and Harrison, 

1988:353). The former were usual ly being studied for pathological processes 

associated with Westernization, so they were also excluded on that basis. For 

similar reasons, older rather than more recent data sets of the same group were 

used, if available. Most of the data were original ly col lected and published in the 

1960s, 1970s, and early 1980s. Initial efforts to control the age ranges 

represented by the samples were abandoned, due to the variability in reporting 

of summary statistics. 

An initial sample of 400 was col lected and then reduced to 333 according 

to these criteria (a procedure similar to Roberts, 1953) (Appendix B; summarized 

in Table 1 ). This method left a disproportionate number of Pacific Islanders in 

the sample (N=70, pooled with the Australian Aborigines in Table 1) with no 

reason for exclusion. In addition, Europeans predominate at the higher 

latitudes. Thus, in order to rule out biases due to these characteristics of the 

sample, analyses were performed on sample subsets excluding Pacific Islanders 

and excluding Europeans. Separate analyses were also performed by sex, by 



24 

pole, and by population classification ( after Eveleth and Tanner, 1976, 1990; as 

summarized in Table 1 ). Due to missing data for some groups, the number of 

observations for each variable-by-group classification is also given in Table 1 

and in summaries of statistical analyses ( cf. Stinson, 1990). The maximum 

sample size for latitude and weight/height-variable comparisons was 328. 

Finally, to rule out unintentional experimenter bias due to nonrandom sampling, 

separate analyses were performed with the data set published in Ruff (1994:75; 

Appendix C). 

After Johnston and Schell (1979), the sample mean BMI was calculated 

from reported mean height and weight. This method was found to be accurate in 

estimating mean BMI -as if it were calculated from the true individual values- as 

long as height was reported to the millimeters place. The accuracy of this 

procedure could not be evaluated for most groups, though, and it should be 

noted that unless there is isometry, the ratio of averages (BMI as calculated 

here) is not equal to the average of ratios (BMI calculated the correct way) (see 

discussion in Konigsberg et al., 1998: 19-20; Welsh et al., 1988). Latitudes were 

estimated to the nearest degree from Espenshade (1995), Murdock (1967), or by 

authors' reports. Midpoint latitudes were used for larger geographic ranges. 

After Ruff (1994), body surface area was estimated with the widely-used linear 

2 .425 .725 
formula of DuBois and DuBois (1916) {surface area cm =71.84 · W · H (W 

in kg, H in cm)}. The SA:V ratio was calculated by dividing surface area by body 

weight (kg). Relative sitting height was calculated as (sitting height/height) · 
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100. Sitting height was calculated from relative sitting height and height in 

seven cases. 

Statistical analyses were done with SAS Release 6. 12 for Windows (© 

SAS Institute, Cary NC). Since all variables were not normally distributed in all 

subgroups, Spearman rank-order correlation coefficients (r ) were used to 
s 

assess strengths of association. The number of tests is large (N=121 ). 

However, due to different sample sizes for different observations (and hence 

variable power for each of the tests), I did not use the conservative Bonferroni's 

experiment-wise protected alpha. Instead, I adopted a significance level of p < 

.01, so there is a chance that the null hypothesis was incorrectly rejected for one 

or two of the tests. 

Post-hoc testing of whether selected pairwise comparisons of rs values 

were significantly different was done by the Fisher z transformation of selected 

coefficients (Neter et al. ,  1996:642; McCall, 1986:388 Table D). After the 

coefficients were z-transformed, the test statistic "z observed" (zobs )  was found 

by the following formula: Zobs= (zr1 - zr2 )/square root((1/N1-3)+(1/Nr3)), where 

zr, and zr2 are the z scores of the two coefficients, and N1 and N2 are their 

respective sample sizes (McCall, 1986:238). If Zobs � -1.96 or if Zobs �1.96, then 

the null hypothesis is rejected at p < .05: the rs values are significantly different 

(McCall, 1986:238). 

In addition, partial correlations holding weight or height constant were 

done for the worldwide sample and by pole. 
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Results 

Correlations with latitude for the BMI, MEB, weight, height, surface area 

(SA), and SA:V ratio are presented overall and by sex, group, and pole in Table 

2. Table 3 includes results for the samples excluding Pacific Islanders, 

excluding Europeans, and Ruff's (1994) sample. Plots of the BMI, MEB, and 

SA:V ratio by latitude are shown in Figure 3a-c. The Pacific Islander/Australian 

Aborigine group was divided into three subgroups for the plots: Australian 

Aborigines, Polynesians, and other Pacific Islanders. 

The BMI, MEB, weight, height, and SA were all moderately positively 

correlated with latitude, and the SA:V ratio negatively so. These latitudinal 

gradients were seen in the overall sample, and for the following subsamples: 

males, females, Asians, Native Americans, Pacific Islanders/Australian 

Aborigines, North latitudes, South latitudes, the sample excluding Europeans, 

and the sample excluding Pacific Islanders. Africans showed no significant 

within-group correlations with latitude, though near-significant trends were 

similar. In Europeans, only height was significantly correlated with latitude, and 

in Inda-Mediterraneans, only the MEB, BMI, and SA:V were significantly 

correlated with latitude. The BMI was not significantly correlated with latitude in 

Pacific Islanders/Australian Aborigines and in the South latitudes. 

The same patterns in the worldwide sample were seen in Ruff's (1994) 

sample: none of the correlations between the two data sets was significantly 
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different (zobs = -1.88, 1.53, 1.24, 0.47, 1. 70, and 1.24 for BMI, MEB, weight, SA, 

SA:V, and height, respectively). In the worldwide sample, the MEB was more 

highly correlated with latitude than was the BMI (zobs = 2. 12); coefficients for the 

MEB, weight, height, SA, and SA:V ratio were similar. Also in the worldwide 

sample, after partial correlation with weight held constant, none of the 

coefficients remained significant. When height was partialed out, the 

coefficients were reduced but remained significant (rs = .3329, .3540, .3428, 

.3195, and -.3541 for BMI, MEB, weight, SA, and SA:V respectively, p<.0001 ). 

Latitudinal gradients were generally stronger in North latitudes than in 

South latitudes: the BMI, MEB, weight, and SA:V ratio were all more highly 

correlated with latitude in the North subsample (zobs=3.04, 2.81, 0.42, 1.62, and 

3.06 for BMI, MEB, weight, height, SA, and SA:V, respectively). Partial 

correlations with weight held constant were also calculated by pole. As in the 

full sample, none of the correlations remained significant after partialing out 

shared variation in weight. Partialing out height reduced the correlations in the 

North latitudes; it eliminated them in the South latitudes (data not shown). 

Correlations between the BMI, MEB, weight, height, SA, and SA:V ratio 

with sitting height, relative sitting height, and bi-acromial and bi-iliac breadths 

are presented in Table 4. Most of the variables were correlated. The MEB was 

more highly correlated than the BMI with weight, height, sitting height, and bi­

acromial breadth (zobs = 13.47, 5.78, 2.64, and 2.86, respectively). Negative 

correlations for the SA:V ratio with weight, height, sitting height, relative sitting 
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height, and bi-acromial and bi-iliac breadths tended to be intermediate to and 

similar to the positive ones for the BMI and MEB. There was some indication 

that the three ratios (BMI, MEB, SA:V) might differ in their correlations by sex, 

with higher correlations with sitting height and relative sitting height in females, 

and higher correlations with bi-acromial and bi-iliac breadths in males. 

However, the between-sex coefficients were not significantly different, likely due 

to the small within-sex sample sizes for these variables (data not shown). 
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Chapter 5: Discussion 

The BMI and MEB increased with increasing latitude, and the SA:V ratio 

decreased. These latitudinal gradients appear to be robust since they were 

seen in the worldwide sample, and in subsamples by sex, by pole, and by most 

population groupings. Further, results were similar when the analysis was done 

with the independently-selected data set of Ruff (1994). While his and this 

sample overlap (due to the use of common data sources), he did not select his 

sample with the present purposes in mind, so unintentional experimenter bias 

( due to non-random sampling) can be ruled out as an explanation for the 

gradients. Further, results cannot be attributed to high-latitude Europeans 

driving the correlations, as similar results obtained when Europeans were 

excluded from the sample. The same can be said about the disproportionate 

number of Pacific Islanders in the sample: similar results obtained when they 

were excluded from the sample as well. 

Thus, Johnston and Schei l's (1979) findings of higher BMI values in 

colder-climate Native Americans may be expanded and stated as a general 

worldwide trend. Beall and Goldstein's (1992) prediction of high BMI values in 

Tibetan Nomads as a means of "cold adaptation" may not be inaccurate, as 

higher latitude populations tend to have higher BMI values as well, and lower 

SA:V ratios. Previous findings of geographic gradients in weight (Roberts, 1953; 

Newman, 1960) and the SA:V ratio (Schreider, 1950, 1964; Ruff, 1994) were 
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also confirmed. Partial correlations alternately holding weight or height constant 

reinforced the primary association of weight with climate (Roberts, 1953; 

Newman, 1960; Ruff, 1994 ): when weight was partialed out, neither the BMI, 

MEB, SA:V ratio, nor height remained significantly correlated with latitude, while 

controlling for height had little effect on the same correlations in the worldwide 

and North latitudes samples. 

The higher correlations seen in the North as opposed to the South 

latitudes are not unexpected. Temperature range increases with increasing 

latitude generally, but less so in the South latitudes because of the higher 

proportion of ocean mass to land mass (Hammel, 1964:415). The North 

latitudes also have higher mean annual temperatures at any given parallel 

(Hammel, 1964:414,415). Thus, North and South latitudes are neither 

isothermic, nor equally variable. Given these differences, plus the fact that 

South latitudes were sampled at a more restricted range than North ones (1-30 

degrees, versus 1-70 degrees, respectively; Table 1 ), the lower correlations in 

South latitudes are not surprising. 

These polar discrepancies in temperature point to several potential 

limitations of latitude as a proxy variable for climate. The use of latitude here 

may have obscured more complex trends, as latitude may be insensitive to the 

climatic factors with which morphology "truly" clines. Allen (1906:377) observed 

that species' distributions (which in turn relate to morphological clines) are 

"found to agree, not generally with the arbitrary parallels of the geographer, but 
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with isothermal lines". Further, different authors have advocated different 

aspects of temperature as more or less important. Roberts (1953, 1978) 

emphasized mean annual temperature as driving clines in many anthropometric 

traits, while Newman (1960:294) found that "mean coldest month temperatures 

correlate more highly with body weights". 

Also, other attributes of climate such as humidity play significant roles in 

morphological clines. In addition to variable anthropometric clines between the 

sexes with different aspects of temperature, Stinson ( 1990) found that height 

varies with levels of precipitation in South American Indians. Populations are 

relatively shorter in the areas with the wettest climates, especially the tropical 

forest (Stinson, 1990:43,47). Stinson cites Hiernaux and Froment's (1976, in 

Stinson, 1990:47-48) similar observations in sub-Saharan African populations. 

While this may explain the non-significant correlations found here in the African 

sample, it is likely that the limited temperature variation around the equator and 

in the South latitudes also influenced the results. 

A different type of latitude-climate divergence is seen in the case of some 

Pacific Islanders. Houghton (1990) has shown that the effective temperature 

faced by Polynesian ocean-goers and small island-dwellers is decidedly not 

tropical. The combined effects of winds, wetness, and the greater thermal 

conductivity of water make it "one of the coldest global environments" 

(Houghton, 1990:29). Figure 3a-c clearly shows Polynesians' outlying status 

with regard to the BMI, MEB, and SA:V ratio and latitude as compared with other 
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groups. Polynesian means for these variables accorded more with those for 

high-latitude, cold-climate groups than with those of their low-latitude 

counterparts. Despite the Polynesians' unusual body proportions, the pooled 

Pacific Islander/Australian Aborigine sample still showed within-group latitudinal 

clines in the three ratios. 

To the degree that it was not practical to control for all of these complex 

patterns on a worldwide basis, latitude was a good proxy variable. It should be 

noted that stronger or different trends could have been observed if other, more 

sensitive climatic variables were used. However, it is noteworthy that clines 

were present despite all of this underlying variability. 

As Mayr (1956) has explained, geographical character gradients are 

simply empirical associations. Explanation of such trends is a separate process, 

and the gradients remain independent of the reasons for explaining them. The 

SA:V ratio is the favored physiological explanation for the types of trends 

observed here. In this paper, I have shown that weight for height -as measured 

by the BMI and MEB- and the SA:V ratio are measuring very similar things. 

The BMI and MEB are essentially inverse expressions of the SA:V ratio. 

Figure 4a-b shows the SA:V ratio plotted against the BMI and the MEB, 

respectively. Both plots show an inverse relationship. The MEB more closely 

approximates the SA:V ratio's inverse than does the BMI. The great deal of 

scatter in the BMI plot is likely due to the "extra information" it contains as shown 

in the geometric model. The BMI also has a higher coefficient of variation (CV) 
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than does the MEB (10.6 versus 6.2 in the worldwide sample, respectively. The 

MEB's CV is consistently around half of the BM l's CV in each subsample). 

On this basis, it is reasonable and tempting to locate explanation for the 

clines in the BMI and MEB with the SA:V ratio. However, it is best not to 

interpret the correlations of ratios containing similar information with each other 

(cf. Tanner, 1949). More importantly, each ratio was correlated with other 

anthropometrics that alter the biological SA:V ratio. The BMI, MEB, and the 

SA:V (negatively) were all correlated with sitting height and bi-acromial and bi­

iliac breadths. The MEB was more highly correlated with the former two 

variables than was the BMI. Sitting height and bi-acromial and bi-iliac breadths 

all literally or effectively increase body breadth or decrease the SA:V ratio as 

they increase. The BMI and MEB's geometrically-predicted relationships to the 

SA:V ratio can thus be verified outside of the inter-related statistical properties of 

the ratios themselves. 

The MEB's correlations with these variables reinforce the concept of 

mean effective breadth: there is more than one way to reach the same biological 

outcome regarding the SA:V ratio (cf. Schreider, 1964:3). Weight-for-height 

expressed as the MEB better captures these relationships -statistically and 

heuristically- than does the BMI. Further, the BM l's correlations with these 

structural aspects of body build confirm and expand previous findings that the 

BMI reflects body proportions or build (Garn et al., 1986; Ross et al., 1988; 
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Norgan, 1994a,b), in line with Quetelet's (1835) intent when he first expressed 

the W/H2 ratio. 

The BMI and MEB's geometric and statistical associations with the SA:V 

ratio and SA:V-altering body dimensions provide proximate, physiological 

explanations for their clines with latitude. As Mayr (1956) has discussed, 

whether this physiological explanation has ultimate grounding via natural 

selection depends on genetic heritability of the trait(s). There are of course no 

heritability (h2
) estimates of the MEB, and I am unaware of any such estimates 

for the SA:V ratio. However, there are a number of (widely variable) h2 estimates 

for the BMI. 

Narrow h2 estimates for the BMI range from .05 (Bouchard et al. , 1988, in 

Canadians) to . 70 - .90 (e.g. Stunkard et al. , 1990; reviewed in Bouchard, 

1993:426). Twin-study estimates fall in the .40 -. 70 range; adoption studies 

tend to produce estimates of .30 or less (Bouchard, 1996:310,311 ). Bouchard et 

al. (1988) conclude that 30% of the variance in the BMI is culturally 

transmissible. Similarly, Tambs et al. (1991) estimate broad h2 at about .40 in a 

group of Norwegians. 

In contrast, some family pedigree studies claim higher estimates of 

narrow h2
. Ness et al. (1991) estimate polygenic h2 at .34 in white Americans 

and .50 in African Americans. Their h2 estimate is truly broad, though, as it 

includes "(n)ongenetic within-family influences on trait transmission, if they exist" 

(Ness et al. , 1991 :44). Comuzzie et al. (1993) find a narrow h2 of .408 in 
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Mexican Americans, and estimate weight and height h2 at .517 and . 728, 

respectively, in the same pedigree. Overall, while results are variable, they 

implicate a significant genetic contribution to the BMI (and its components) in 

some populations. A potential ultimate or adaptive aspect to the BMI cannot be 

ruled out. 

On the other hand, several environmental factors vary with latitude which 

could alter growth, weight-for-height, and body proportions and hence affect the 

SA:V ratio independent of its physiological role in thermoregulation. For 

example, Newman (1960) cited nutritional differences in certain groups, 

especially nutritional deficiencies and parasite loads in tropical and sub-tropical 

Mesoamericans and South American Quechuas. At the other extreme, 

"environmental cold has been found to retard postnatal growth, as available 

energy is channeled from storage to growth and heat production . . .  ( and) can 

influence the size and shape of the skeleton" (reviewed in So, 1980:77-78). 

Thus, factors associated with latitude or temperature can affect weight, height, 

and proportions in the direction predicted by the SA:V ratio's thermoregulatory 

function. 

In spite of such environmental influences on morphology, Roberts (1978) 

argues rather forcefully that they are minor when examined on a between­

population scale. For example, differential nutrition during growth and adulthood 

hardly alters canalized interpopulational differences in physique (Roberts, 

1978:62-65). Roberts (1978) cites dietary variation amongst several Nilotic 
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groups, and describes how such factors differentially influence their weights and 

heights relative to each other. When compared to Europeans, though, they are 

all very similarly "ectomorphic" (Roberts, 1978:64 ). Whichever interpretation 

one chooses, all of these ideas reinforce the concept of the SA:V ratio as one of 

"gross energetics" or of physical and physiological proportions which extend 

beyond and subsume its thermoregulatory role and advantages. 

It should be noted that SA and the SA:V ratio as measured here likely 

deviate systematically from their actual values in certain groups. DuBois and 

DuBois (1916:866) anticipated this when they noted the importance of variations 

in leg length (alternatively, relative sitting height) in determining body surface 

area, and how height as a unitary measure fails to reflect this influence. Their 

linear formula will tend to underestimate surface area in the long-legged (e.g. 

tropical African groups), and overestimate it in the very short-legged (e.g. Arctic 

Eskimo groups) (cf. Nwoye, 1989; Takai and Shimaguchi, 1986). "Real" surface 

area measurements are rare; they are usually obtained by the very laborious 

method of "coating" the entire body with some flexible, inelastic substance, and 

taking the surface area of that substance after it is peeled from the body 

(reviewed in Boyd, 1935; Brozek et al. , 1987). Hence, linear formulas using 

weight and height (Boyd, 1935; Haycock et al. , 1978; Nwoye 1989) or perhaps 

an additional measurement (Takai and Shimaguchi, 1986) are the most practical 

and widely-used surface area estimators. 

This, plus the fact that weight must be taken for volume when calculating 
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the SA:V ratio in this and other (Schreider, 1950, 1964; Ruff, 1994) studies, 

means that estimated SA:V ratios reflect an unquantified error component. The 

"real" SA:V ratios of the groups studied here may cline with latitude more 

strongly. However -inasmuch as we measure the SA:V ratio with linear 

formulas- the SA:V ratio and the BMI and MEB represent similar things, as 

argued above. This makes the SA:V ratio perhaps as much a measure of 

"nutritional status" as the BMI is of "proportions". 

There is a great deal of variation in the BMI, MEB, and SA:V ratio that 

was not associated with latitude. Their respective correlation coefficients 

produce r2 of 13%, 25%, and 23%. The unexplained variation could be partially 

due to several uncontrolled factors in this study relating to ontogenetic and 

secular influences on weight and height. As these factors were not controlled, it 

could alternatively be argued that they biased the results in the predicted 

direction. Since ontogenetic and secular changes are or have been quite 

variable in different populations, though, it is doubtful that they converged to 

systematically vary by latitude. I thus consider them more as sources of error 

variance. 

For example, ontogenetically, weight declines with age in some groups 

(e.g. lban men, Strickland and Ulijaszek, 1993), shows peaks and subsequent 

drops in others (e.g. Yolungu and Indian women, Jones and White, 1994; Sidhu 

and Sidhu, 1987), or remains stable (e.g. Zoro Indians, Fleming-Moran et al. , 

1991 ). Further, weight fluctuates with seasonal dietary or subsistence cycles 
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(reviewed in Ulijaszek, 1995:26; Beall et al. , 1996); parity in women ("maternal 

depletion", Little et al. , 1992), and altitude (Khalid, 1995). 

Secular changes in weight and height can also obviously affect weight­

for-height. Such changes have not been uniform, though. While some groups 

have shown increases in height, others' heights have decreased; in some 

groups there has been a concomitant increase in weight, in others not; some 

have shown no changes in BMI or weight-for-height, while others have seen 

decreases or increases (e.g. Papua New Guinea groups in Ulijaszek, 1993; 

European groups reviewed in Van Wieringen, 1986). 

The fact that Europeans showed no within-group latitudinal clines may be 

partially related to secular changes there. More likely, the non-significant results 

are due to sampling procedures and sample availability. Many of the European 

samples were national in scope, so less-precise midpoint latitudes had to be 

estimated. Others came from cities or urban locales characterized by mobility 

and migration. Thus, Europeans were procedurally and culturally more 

decoupled from their adaptive environments than were perhaps other groups. 



39 

Chapter 6: Conclusion 

Geometric modeling showed that the BMI measures size and shape and 

is inversely related to the SA:V ratio. The model also suggested that the BMI is 

very shape-dependent and differentially height-dependent, with height having a 

greater impact on the BMI quotient in absolutely narrow individuals. The BMI 

quotient itself is not helpful in understanding what it measures, or "how much" it 

measures size versus shape. A new height-weight based variable was derived -

the mean effective breadth (MEB)- which more clearly relates to the SA:V ratio 

and represents what weight-for-height does: it alters body breadth. 

Previous findings of a geographical cline in the BMI in Native Americans 

(Johnston and Schell, 1 979) were expanded to a worldwide sample of 328 adult 

populations. These results appear robust as they were replicated in subsamples 

by sex, by pole, by several population groupings, and in an independent sample 

collected by another researcher (Ruff, 1 994). The BMI and MEB increased with 

increasing latitude, while the SA:V ratio decreased. All three ratios were also 

correlated with variables that alter the biological SA:V ratio: sitting height, 

relative sitting height, and bi-acromial and bi-i liac breadths. The MEB showed 

higher correlations with latitude, weight, height, sitting height, relative sitting 

height, and bi-acromial breadth than did the BMI , though coefficients were 

similar to those of the SA:V ratio. 

The BM l's geometric and statistical associations with the SA:V ratio and 
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measures of proportion or shape such as sitting height and bi-iliac and bi-

acromial breadths accord with and expand prior researchers' claims that the BMI 

is not a shape-independent index of body size or nutritional status (Garn et al. , 

1986; Ross et al . ,  1988; Norgan, 1994a,b). These findings are not surprising 

since the W/H2 ratio was originally conceived by Quetelet (1835) as a "proof' of 

body proportionality. As Norgan (1994a,b) has warned, nutritional 

epidemiologists should beware these associations when using BMI thresholds to 

diagnose chronic energy deficiency or obesity. 
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Appendix A: Tables and Figures 



Table 1 .  

Summary Statistics for Worldwide Sample 

Sam� Latitude in degrees* BMI in kg/m -- MEB in cm Height in cm Weight in kg 

N Range Mean N Range Mean N Range Mean N Range Mean N Range Mean 

overal l :  330 1 - 70 23.6 331 1 7.6-31 .2 22. 1  331 1 8.4-25.6 21 .3 333 1 35.8-1 81 .6 160.6 331 37.0-88. 1 57.4 

by sex: 

males 1 85 1 - 70 23.8 1 85 1 7.6-30 22. 1  1 85 1 8.7-25.6 21 .6 1 87 1 45.0-1 81 .6 165.6 1 85 40.0-88. 1 60.8 

females 1 45 1 - 70 23.4 1 46 1 7.8-31 .2 22.2 1 46 1 8.4-25.2 20.9 1 46 1 35.8-1 66.5 154.2 146 37.0-80.0 53. 1  

by grou12:** 

Africans 53 1 - 30 8.4 53 1 7.6-29. 1  20.6 53 1 8.4-24.0 20.5 53 1 35.8-1 81 .6 160.7 53 37.0-70.8 53.3 

Asians 36 2 - 48 24.8 34 1 8.5-26.2 20.9 34 1 9. 1 -23.3 20.6 36 1 42.4-1 70. 1 160.2 34 40.8-69.7 53.7 

Europeans 54 39 - 65 49.3 54 20.7-26.8 23.3 54 20.5-24. 1  22.3 54 1 55.4-1 78. 1  167.2 54 51 .4-79.3 65.4 

lndo-
Mediterranean 
s 48 1 3 - 44 28. 1  48 1 8.0-27.2 2 1 .4 48 1 8.9-24.0 20.9 48 1 51 .0- 1 72.5 161 .3 48 42.7-78. 1 2  55.8 

Native 
Americans 61  1 - 70 27.8 64 1 9.8-27.9 23.4 64 1 9.9-24.0 21 .7 64 1 42.8-1 77.4 158.9 64 44.4-76.6 
Pac. Isl./ 
Aust.Ab. 78 2 - 25 9.6 78 18 .4-31 .2 22 .3 78 1 8.7-25.6 21 . 1  78 1 37.0-1 73.4 157.1  78 38.9-88. 1  

by 12ole: 

north 205 1 - 70 31 .8 204 1 7.6-31 .2 22.3 204 1 8.5-25.6 21 .5 206 1 38.0-1 81 .6 162. 7 204 37 .0-88. 1  

south 1 20 1 - 30 1 0.5 1 20 17 .6-30.5 21 .9 1 20 1 8.4-25. 1  20.9 1 20 1 35.8-1 76.5 156.8 1 20 38.5-84.8 

*Latitude in absolute degrees 

**Groupings were made according to the classifications of Eveleth and Tanner (1 976, 1 990), except New World "Asiatics" were 

separated from Old World Asians 

59.3 

55.5 

59.3 

54.2 

0, 
� 



Table 2. 
Correlations with Latitude: Overall and by Sex, Group, and Pole 

Native Pac. Isl./ North South 
Variable Overall Males Females Africans Asians Europeans lndo-Med Americans Aust. Abor. Latitudes Latitudes 

BMI 0.3664 0.38328 0.3440 0.0123 0.5666 -0.2508 0.4257 0.3255 0. 1518 0.49 1 1 0.1 779 

0.0001 0.0001 0.0001 0.9302 0.0005 0.0673 0.0026 0.0 1 05 0 . 1 845 0.0001 0.05 1 8 
328 1 83 1 45 53 34 54 48 61 78 203 1 20 

MEB 0.5029 0.5354 0.51 1 3  0.2390 0.6954 -0.0468 0.3843 0.4923 0.3406 0.5732 0 .31 1 9  
0.0001 0.0001 0.0004 0.0848 0.0001 0.7371 0.0070 0.0001 0.0023 0.0001 0.0005 

328 1 83 1 45 53 34 54 48 6 1  78 203 1 20 

weight 0.5270 0.601 7 0.5762 0.3032 0.6830 0.0649 0.3097 0.51 1 3  0.41 71  0.5524 0.3367 
0.0001 0.0001 0.0001 0.0273 0.0001 0.6409 0.0322 0.0001 0.0001 0.0001 0.0002 

328 1 83 1 45 53 34 54 48 6 1  78 203 1 20 

height 0.4306 0.5754 0.5888 0.2689 0.4763 0.3641 0.0191  0.4293 0.4972 0.3358 0.29 1 3  
0.0001 0.0001 0.0001 0.05 1 6  0.0033 0.0068 0.8978 0.0006 0.0001 0.0001 0.00 1 2  

330 1 85 1 45 53 36 54 48 6 1  78 205 1 20 

SA 0.51 31  0.6300 0.61 6 1  0.301 1 0.6203 0.2084 0. 1 946 0.5269 0.4898 0.4947 0.341 1 
0.0001 0.0001 0.0001 0.0284 0.0001 0 . 1 305 0. 1 851  0 .0001 0.0001 0.0001 0.0001 

328 1 83 1 45 53 34 54 48 6 1  78 203 1 20 

SA:V -0.4823 -0.5052 -0.4808 -0. 1 881 -0.6863 0. 1 1 69 -0.41 21 -0.4692 -0.291 8 -0.5676 -0.28 1 0  
0.0001 0.0001 0.0001 0. 1 774 0.0001 0.3998 0.0036 0.0001 0.0095 0.0001 0.001 9 

328 1 83 1 45 53 34 54 48 6 1  78 203 1 20 

The three values listed for each group-by-variable intersection are (from top to bottom): rs , two-tailed p value, and N 
Since most correlations are significant at p < .01 , non-significant correlations are in boldface 

0, 
0, 



Table 3. 
Correlations with Latitude: Excluding Europeans or Pacific Islanders, and with Ruffs (1 994) Sample 

Excluding Excluding Ruffs 
Variable Europeans Pacific Isl. (1 994) data 

BMI 0.2408 0.4855 0.5820 
0.0001 0.0001 0.0001 

274 258 56 

MEB 0.3643 0 .5869 0.6538 
0.0001 0.0001 0.0001 

274 258 56 

weight 0.3942 0.5808 0.6467 
0.0001 0.0001 0.0001 

274 258 56 

height 0.3351 0.3562 0.2729 

0.0001 0.0001 0.041 9 
276 260 56 

SA 0.3939 0.5225 0 .5603 
0.0001 0 .0001 0.0001 

274 258 56 

SA:V -0.3420 -0.5757 -0.6528 
0.0001 0.0001 0.0001 

274 258 56 

The three values listed for each group-by-variable intersection are (from top to bottom): rs , two-tailed p value, and N 
Since most correlations are significant at p < .01 , non-significant correlations are in boldface 
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Table 4 .  
Correlations with other Anthropometric Variables 

variable latitude BMI MEB weight height SA SA:V 

weight (see Table 2) 0.7464 0.9564 - - 0.9626 -0.921 3 
0 .0001 0 .0001 0.0001 0.0001 

331 331 331 331 

height (see Table 2) 0 . 1 656 0.5504 0 .7542 - 0.8947 -0 .4653 
0.0025 0.0001 0.0001 0.0001 0.0001 

331 331 331 331 331 

sitting height 0.41 50 0 .3069 0.5832 0.7209 0.73 1 6  0.7842 -0 .51 95 
0 .0001 0.0008 0.0001 0 .0001 0.0001 0.0001 0.0001 

1 1 3 1 1 6 1 1 6 1 1 6 1 1 6 1 1 6 1 1 6 

relative sitting 0.2920 0 .51 31  0.31 69 0.1 469 -0.3062 -0.0300 -0.3739 
height 0 .001 7 0.0001 0.0005 0 . 1 1 55 0.0008 0 .7496 0.0001 

1 1 3 1 1 6 1 1 6 1 1 6 1 1 6 1 1 6 1 1 6 

bi-acromial 0.2207 0.2542 0.5656 0.7073 0.7006 0 .7523 -0.4968 
breadth 0.0705 0.0351 0 .0001 0.0001 0 .0001 0.0001 0.0001 

68 69 69 69 69 69 69 

bi-il iac breadth 0 .6270 0.51 99 0.51 93 0 .4927 0.1 277 0.3940 -0.51 47 
0.0001 0 .0001 0.0001 0.0001 0.31 08 0.0012 0.0001 

64 65 65 65 65 65 65 

The three values listed for each group-by-variable intersection are (from top to bottom): rs , two-tailed p value, and N 
Since most correlations are significant at p < .01 , non-significant correlations are in boldface 

0, 
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D 
D = diameter 
L = length or height 
SA = surface area 
V = volume or weight, mass 

L 

Partial rendering of Ruffs (1 991 :83) 
cylindrical model of the lateral 
surface area:volume (SA:V) ratio : Total SA:V ratio: 

lateral SA = 1tDL total SA = 1tDL + 21t 
1
/40

2 

V = rc/4 D
2L 

lateral SA:V = 4/D total SA:V = 4/D + 2/L 

Cylindrical model of the body mass index (BMI) : 

BMI = weighUheight
2 

= V/L2 

= (
re/ 4 D

2
L)/L 

2 

= xD2
/(4L) 

Figure 1 .  
Cylindrical Model of the Body Mass Index vs. the Surface Area:Volume Ratio 
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D 

L 

V = 

D = diameter 

L = length or height 

V = volume or weight 

- substitute weight in kg for V 

- substitute height in cm for L 

- to solve for D, the equation reduces to: 

D = square root (weight/(.785 height)) 

- here, D is cal led the "mean effective breadth" (MEB) 

- to express the MEB in cm, weight in kg is multiplied by 1 ,000 

(in other words, weight is expressed in grams) to convert it to cm
3 

- the resulting formula is: 

MEB in cm = 

= 
square root ((1 ,000 weight in kg)/(. 785 height in cm)) 

35.69 (W·
5/H) 

- the first formula would be easier to solve if one were using a hand-held calculator 

Figure 2. 

Derivation of the Mean Effective Breadth 
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Plot of BMI *LATITUDE . Symbol is value of ETCLASS . 
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Key : a=Af ricans , s=Asians , i=I ndo - Mediterraneans , e=Eu ropeans , 

n=Native Ame ricans , u=Aust ralian Aborigines , y=Polynesians , 

p=Pacif ic I slanders ( non -Aust ralian , non - Polynesian ) 

Figure 3 .  Plots of Variables vs . Latitude 

a .  BM! 
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Plot of MEB*LATITUDE . Symbol is value of ETCLASS . 
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NOTE : 

Plot of SAV*LATITUDE . Symbol is value of ETCLASS . 
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Appendix B: Worldwide Sample 



A B C D E F 

sex** 

latitude pole n g rou p/location/n umber" see age*** see 

1 ID # degrees or s see Notes on page 76 Notes Notes 

2 1 39 n Greek Students 1 students 
3 2 39 n O students 
4 3 40 n W Armenians 1 adults 
5 4 40 n 45f 61 m 0 adults 
6 5 40 n E Armenians 1 adults 
7 6 40 n 30f 34m 0 adults 
8 7 40 n Madrid, Spain 1 
9 8 40 n 1 25f 1 1 9m 0 

1 0  9 44 n Bucharest, Rumania 1 students 
1 1  1 0  44 n 0 students 
1 2  1 1  49 n Paris, France 1 students 
1 3  1 2  49 n 0 students 
1 4  1 3  50 n Czechs, Czechoslovakia 1 25-39 
1 5  1 4  50 n 0 25-39 
1 6  1 5  5 1  n Cracow, Poland 1 21 -25 
1 7  1 6  5 1  n 0 21 -25 
1 8  1 7  5 1  n Brussels, Belgium 1 21 -25 
1 9  1 8  5 1  n 0 2 1 -25 
20 1 9  51 n Leipzig, Germany 1 students 
21 20 51  n 0 students 
22 21 52 n London, England 1 1 8-25 
23 22 52 n 25f 21 m 0 1 8-25 
24 23 52 n Oxfordshire Villagers, UK 1 adults 
25 24 52 n 434f 439m 0 adults 
26 25 53 n Netherlands 1 25 
27 26 53 n 0 25 
28 27 55 n Northern England 1 1 6-64 
29 28 55 n large N not split by group 0 1 6-64 

G H I 

height weight BMI 

cm kg kg/m
2 

1 72.2 73 24.62 
1 59 . 1  58.7 23. 1 9  

1 69 . 1 9 76.95 26.88 
1 56.07 60.9 25 
1 71 .54 71 .93 24.44 

1 55 .93 63.48 26. 1 1 
1 68.25 72. 9  25.75 
1 56.83 61 .88 25. 1 6  

1 71 .2 60.7 20.71 
1 57 . 1  53.9 21 .84 
1 74.3 73.9 24.32 
1 61 .4 56.2 21 .57 
1 73.5 75.3  25.01 
1 61 .0 63.5 24.5 
1 73.2 69 23 
1 60.2 59 22.99 
1 74 .5 66.9  21 .97 
1 62.0 56.2 21 .41 
1 75.0 69.6 22.73 
1 63.4 59.3 22.21 
1 78 . 1  70.7 22.29 
1 66.5 58.2 20.99 
1 73.9 76.4 25.26 
1 61 . 1  63.9  24.62 
1 77.7 71 .4 22.61 
1 66.3 60 21 .7 
1 73 .3  73.95 24.62 
1 60.0 61 .4 23.98 

J K 

sitting 

MEB height 
cm cm 

23.24 . 
21 .68 . 
24.07 89.45 . 

22.3 83.94 . 
23. 1 1 90.52 . 
22.77 83.43 . 
23.49 . 
22.42 . 
21 .25 . 
20.91 . 
23.24 . 
21 .06 . 
23.51 . 
22.42 . 
22.53 90 . 
21 .66 84 . 

22. 1  . 
21 .02 . 
22.51 . 

21 .5 . 
22.49 . 

21 . 1  . 
23.66 . 
22.48 . 
22.62 . 
21 .44 . 
23.31 . 
22. 1 1  . 

L 

bi-
acromial 

breadth 

cm 

38. 1  
35.4 

39.9 
35.8 

40 
36.4 

O> 
O> 



A B C D E F 

30 29 56 n Scotland 1 1 6-64 
31 30 56 n 0 1 6-64 
32 31 43 n sofia bulgaria 1 24 
33 32 43 n 0 24 
34 33 56 n national denmark m 20-49 
35 34 60 n helsinki finland constripts m 
36 35 46 n national trance conscripts m 
37 36 47 n railway wrkr hungary m 
38 37 41 n naples italy 1 21 
39 38 41 n 0 21  
40 39 64 n national norway conscripts m 
41 40 52 n warsaw poland 1 1 8-20 
42 41 52 n 0 1 8-20 
43 42 52 n port talbot uk steel wrkrs m 20-29 
44 43 54 n national uk BP staff 1 20-24 
45 44 54 n 0 
46 45 56 n moscow russia m 
47 46 50 n national czech f 20-49 
48 47 64 n finland students f 
49 48 46 n national trance f 20-34 
50 49 47 n hungary students f 1 8-25 
51 50 53 n ireland f mean 28 
52 51 41 n sassari prov italy f 
53 52 48 n basel switzerland students f 
54 53 45 n Italy padova northern 1 97 m 20-59/36.68 
55 54 22 s botswana bushmen n= 1 5  m 
56 55 9 n chad rural sara m=238 1 young ad 
57 56 9 n f=269 0 young ad 
58 57 3 . congo fulero n= 1 00 m 
59 58 3 . congo tutsi n= 1 00 m 
60 59 7 . congo congolese n=32 1 
61 60 7 . f=26 0 1 8.5 
62 61 1 s congo twa pygmies n=23 m 

G H I 

1 73.0 72.6 24.26 
1 60.0 60.3 23.55 
1 71 .3  68.8 23.45 
1 60.2 60.2 23.46 
1 72.0 74.7 25.25 
1 76.2 65.9  21 .23 
1 69 .2 64.3 22.46 
1 70.9 74.6 25.54 
1 74.4 71 23.34 
1 62.5 60.5 22.91 
1 77.5 70. 1  22.25 
1 73.0 64 21 .38 
1 58.9 56 22. 1 8  
1 74.2 75.4 24.85 
1 76.5 70. 1  22.5 
1 63.6 58. 1  21 .71 
1 71 .8  71 .3 24. 1 6  
1 59.5 67.3 26.45 
1 65.0 56.8 20.86 
1 60 .4 55.5 21 .57 
1 59.8 56.2 22.01 
1 59.8 61 .5 24.08 
1 55.4 51 .4 21 .28 
1 65.0 58 21 .3 

1 74.02 79.3 26. 1 9  
1 57.8 47.7 1 9. 1 6  
1 73.5 66.8 22. 1 9  
1 63.9 58.3 21 .7 
1 59 . 1  47.8 1 8.88 
1 73.5 55.7 1 8.5 
1 67.8 59. 1  20.99 
1 56.7 48.2 1 9.63 
1 60.0 51 .2 20 

J 

23. 1 2 . 
21 .91 . 
22.62 
21 .88 
23.52 
21 .83 . 

22 . 
23.58 
22.77 . 
21 .78 . 
22.43 
21 .71 . 
21 . 1 9 . 
23.48 . 
22.49 . 
21 .27 . 
22.99 . 
23. 1 8  
20.94 . 
20.99 
21 . 1 7  
22. 1 4  
20.53 . 
21 . 1 6 . 
24.09 . 
1 9.62 . 
22. 1 5  
21 .29 
1 9.56 
20.22 
21 . 1 8  
1 9 .79 
20. 1 9 . 

K 

89.6 
84.6 
90.4 

89 

91 .2 . 

84.8  

85. 1  
84.5 

86 . 

89 
84.6 
81 .3  
85.9 
86.8 . 
81 .4 . 

L 

37.7 
34.4 
39.3 

39.2 

39.6 
35.2 

36 .2 

35.8 
36.6 

35.4 

38.4 
34.5 
34.8 
35.7 

0) 
........ 



A B C D E 

63 62 3 s conga mbaiki pygms n= 1 5  
64 63 2 n conga bunia pygms m= 1 4  
65 64 2 n f=21 
66 65 5 n conga kasai n=214  
67 66 9 s conga katanga n=1 1 2 
68 67 1 4  n gambia 
69 68 1 4  n 
70 69 4 s kenya samburu n= 1 53 
71 70 1 3  s malawi bantu m=23 
72 71 1 3  s f=1 1 9  
73 72 9 n nigeria akufo(yoruba)n=340 
74 73 9 n f=205 
75 74 7 n nigeria ibadan slum m1 01 
76 75 7 n f=239 
77 76 6 n nigeria lagos m=89 
78 77 6 n f= 1 31 
79 78 2 s rwanda tutsi n= 1 77 
80 79 2 s rwanda hutu n=1 84 
81 80 23 s so africa venda(rural)n1 99 
82 81 23 s so africa venda(rural)n1 34 
83 82 30 s so af durban zulus m= 1 06 
84 83 30 s f=21 9 
85 84 9 n sudan dinka n=279 
86 85 1 0  n sudan shilluk n=48 
87 86 3 s tanzania hadza m=36 
88 87 3 s f=31 
89 88 2 n uganda baganda rural m61 
90 89 2 n f=66 
91 90 3 s conga bayenga pygm n42 
92 91  2 . conga bayenga bantu 
93 92 2 s rwanda tutsi n=28 
94 93 2 s rwanda hutu n=25 
95 94 21 n sudan nubians n=282 

F G H 
m 1 51 .8 46. 1  
1 1 45.0 40 
0 1 38.0 37 

m 23.4 mean 1 66.9 60 
m 29.8 mean 1 64.3 56.6 
1 1 66.6 54.9 
0 1 58.0 52.2 

m 1 75.3 54 
1 20-29 1 65.7 55.7 
0 20-29 1 54 . 1  48.6 
1 1 67.5 56.2 
0 1 55.0 51 .8 
1 1 68.7 60. 1  
0 1 58 .3 52.9  
1 30-39 1 68.9 62.7 
0 30-39 1 58.5 60.5 

m 1 76.5 57.4 
m 1 67 . 1  57.5 
m 41 .5 mean 1 66.5 56.8 
m 20-29 1 67.6 56.8 
1 20+ 1 66 . 1  66.9 
0 20+ 1 56.0 70 .8 

m 1 81 .6 58.2 
m 1 78.6 58. 1 
1 25-34 1 60.5 53.6 
0 25-34 1 50.0 47.7 
1 25-34 1 63.6 59 
0 25-34 1 56.2 56.3 
f 1 35.8 38.5 
f 1 54.0 54.2 
f 1 9 .5-20.5 1 61 .8 52.8 
f 1 8 .5-1 9 .5 1 55 .9  52. 1  
f 1 8-45 1 57.4 53.6 

I J 

20.01 1 9 .67 . 
1 9.02 1 8.75 . 
1 9.43 1 8.48 . 
21 .54 21 .4 
20.97 20.95 
1 9.78 20.49 . 
20.91 20.52 . 
1 7.57 1 9.81 . 
20.29 20.69 . 
20.47 20.04 . 
20.03 20.67 . 
21 .56 20.63 . 
21 . 1 2  21 .3 . 
21 . 1 1 20.63 . 
21 .98 21 .75 . 
24.08 22.05 . 
1 8.43 20.35 
20.59 20.94 . 
20.49 20.85 
20.22 20.78 . 
24.25 .22.65 . 
29.09 24.04 . 
1 7.65 20.21 . 
1 8.21 20.36 . 
20.81 20.63 . 

21 .2 20. 1 3 . 
22.04 21 .43 . 
23.08 21 .43 . 
20.88 1 9 . 
22.85 21 . 1 7 . 
20. 1 7  20.39 . 
21 .44 20.63 . 
21 .63 20.83 . 

K 

71 .8 
70.6 

87.7 

84.7 

L 

37.5  
36.8  

36.8 

37.3 
36.6 

33.9 
34 

O> 
CX> 



A B C D E F 

96 95 4 n CAR bagandu&issongo 50 1 
97 96 4 n f=62 0 
98 97 1 5  n sudan fur m=359 1 
99 98 1 5  n f=202 0 
1 00 99 4 n Turkana, Kenya 1 20-29 
1 01 1 00 4 n 28each 0 20-29 
1 02 1 01 2 n Lese, lturi Forest, Zaire 1 21 -65 
1 03 1 02 2 n 41 f 35m 0 32-70 
1 04 1 03 2 n Efe Pygmies, lturi Forest 1 20-60 
1 05 1 04 2 n 26f 23m 0 20-60 
1 06 1 05 20 s Dobe ! Kung 1 1 5-83 
1 07 1 06 20 s 74f 79m 0 1 5-75 
1 08 1 07 44 n North Pag Island, Croatia 97 1 1 9-84 
1 09 1 08 44 n (indo=yugo/eur=locatn)1 39f 0 1 9-84 
1 1 0  1 09 44 n Yugoslavia (Gypsies) 1 21 -30 
1 1 1  1 1 0  44 n 43f 29m 0 21 -30 
1 1 2 1 1 1  29 n Salme Village, Nepal 1 
1 1 3  1 1 2  29 n 39f 35m 0 
1 14 1 1 3 26 n Kolis of Rajasthan 1 
1 1 5 1 1 4 26 n 1 OOeach m and f 0 
1 1 6  1 1 5  30 n Shiraz, Iran 1 25-69 
1 1 7  1 1 6 30 n 926f 882m 0 20-59 
1 1 8  1 1 7  30 n Multan, Pakistan 1 1 4-65 
1 1 9  1 1 8  30 n 245f 1 334m 0 1 4-65 
1 20 1 1 9  25 n Santai of Bihar, India 1 21 -45 
1 21 1 20 25 n 1 OOeach m and f 0 21 -45 
1 22 1 21 1 4  n india madras m 35 mean 
1 23 1 22 20 n india ooty m 34 mean 
1 24 1 23 23 n india gujarat m99 1 adults 
1 25 1 24 23 n f83 0 adults 
1 26 1 25 20 n india students 86 m 22 
1 27 1 26 31 n egypt alexandria 1 young ad 
1 28 1 27 31  n 0 young ad 

G H I 

1 61 .2 54.6 21 .01 
1 54.4 50.4 21 . 1 4  
1 67.9 57.6 20.43 
1 59.2 51 .8 20.44 
1 72.4 53.5 1 8  
1 66 . 1  50 1 8. 1 2  
1 59.3 53 .8 21 .2 
1 49.5 48.6 21 .74 
1 46.4 43.2 20. 16  

1 38.63 38.27 1 9.91 
1 60.92 47.91 1 8 .5 
1 50. 1 4  40.08 1 7.78 
1 72 .49 78. 1 2  26.26 
1 58.84 68.72 27.24 

1 67.4 61 .6 21 .98 
1 54.8 55. 1 22.99 
1 59 .0 51 .65 20.43 
1 51 .0  47.9 21 .01 
1 63.8 48.2 1 7.96 
1 51 .7 42.7 1 8.55 
1 69.8 68 23.58 
1 58.9 58.6 23.21 
1 69.3 63.92 22.3 

1 56 .92 55.35 22.48 
1 59.42 46.7 1 8.38 
1 51 .74 45.5 1 9.76 

1 65.2 56.8 20.81 
1 64.4 54 1 9.98 
1 64. 1 51 .2 1 9.01 
1 51 .4 43.6 1 9.02 
1 71 .6 60. 1 20.41 
1 7 1 .6 67 22.75 
1 59.2 58.3 23 

J 
20.77 
20.39 
20.91 . 
20.36 . 
1 9.88 . 
1 9 .58 . 
20.74 . 
20.35 . 
1 9.39 . 
1 8.75 . 
1 9.47 . 
1 8 .44 . 
24.02 
23.48 
21 .65 . 
21 .29 . 
20.34 . 

20. 1  . 
1 9.36 
1 8.94 
22.59 . 
21 .67 . 
21 .93 . 

21 .2 . 
1 9.32 
1 9.54 
20.93 . 
20.46 . 
1 9 .94 . 
1 9. 1 5 . 
21 . 1 2 . 

22.3 . 
21 .6 . 

K 

81 .6 . 
78 . 

90.48 
84.8 

81 .3 
74.5 

80.31 
76.82 

L 

40.56 
36.72 

33. 1  
30. 1  

35.8 
30.6 

35.82 
34.38 

m 
co 



A B C D E F 

1 29 1 28 25 n saudia arabia 250 m young ad 
1 30 1 29 1 3  n yemen democ rural f mothers 
1 31 1 30 28 n algeria students 96 1 1 9-37 
1 32 1 31 36 n f29 O 1 9 .2mean 
1 33 1 32 27 n egypt farmers 28 m 1 9-68 
1 34 1 33 27 n egypt professionals 33 m 1 9-68 
1 35 1 34 1 4  n ethiopia debarech 81 1 
1 36 1 35 1 4  n f37 0 
1 37 1 36 1 3  n ethiopia adi-arkai 68 1 
1 38 1 37 1 3  n f35 0 
1 39 1 38 31  n india punjab 1 1 7-21 
1 40 1 39 31  n 0 1 7-21 
1 41 1 40 34 n india jammu & kashmir 1 1 7-21 
1 42 1 41 34 n 0 1 7-21 
1 43 1 42 26 n india lahaulis 1 31 /lalauli m 
1 44 1 43 26 n india assam 51 1 20-21 
1 45 1 44 26 n f 51 0 20-21 
146 1 45 32 n iran village 1 20-30 
1 47 1 46 32 n f 0 26-31 
1 48 1 47 32 n israel kurdish jews 56 1 20-30 
1 49 1 48 32 n f41 0 20-30 
1 50 1 49 32 n israel yemenite jews 33 1 20-30 
1 51 1 50 32 n f34 0 20-30 
1 52 1 51 32 n pakistan lahore 1 92 1 22-35 
1 53 1 52 32 n f=221 0 22-35 
1 54 1 53 25 n saudi arab/bedouin arabs1 9 m 27.4 mean 
1 55 1 54 32 n iran urban n=1 20 f >1 9 
1 56 1 55 25 s aust abor m=22 1 25-29 
1 57 1 56 25 s 22f 0 25-29 
1 58 1 57 1 7  s fiji 1 30 1 25-29 
159 1 58 1 7  s 1 42f 0 25-29 
1 60 1 59 6 s ng(=newguinea)bundi 2 14  1 
1 61 1 60 6 s 21 4f 0 

G H I 

1 65.5 65.8 24.02 
1 51 .4 51 .5  22.47 
1 72.5 64.8 21 .78 
1 60.8 56. 1  21 .7 
1 66 . 1  59 21 .39 
1 69.2 65.7 22.95 
1 67.3 56.8 20.29 
1 56.6 50 20.39 
1 68.8 53.6 1 8.81 
1 52.6 47 20. 1 8  
1 68.3 55.6 1 9.63 
1 55.8 48.4 1 9.94 
1 67.5 52. 1  1 8.57 
1 56 . 1  48.6 1 9.94 
1 61 .8 52 .3 1 9.98 
1 63.0 52.4 1 9.72 
1 55.2 47.8 1 9.84 
1 64.4 59.4 21 .98 
1 52.3 51 .9  22.38 
1 67.6 66.0 23.5 
1 52.6 59.7 25.64 
1 62.2 61 .7 23.45 
1 52.0 51 . 1  22. 1 2  
1 66.8 55.6 1 9.98 
1 52.8 48.6 20.82 
1 67.2 64.7 23. 1 4  
1 52.3 50.8 21 .9 
1 68.6 56.2 1 9.77 
1 56.8 48.9 1 9.89 
1 72.0 71 .4 24. 1 3  
1 61 .8 62 23.68 
1 56.5 53.7 21 .93 
1 47.9 45.6 20.85 

J 

22.51 . 
20.82 . 
21 .88 . 
21 .08 . 
21 .27 . 
22.24 . 

20.8 
20. 1 7 . 
20. 1 1 
1 9.81 . 
20.51 
1 9.89 
1 9.91 
1 9.92 
20.29 
20.24 
1 9.81 
21 .45 . 
20.84 . 

22.4 
22.32 
22.01 
20.69 
20.61 . 
20. 1 3 . 

22.2 . 
20.61 . 
20.61 
1 9.93 

23 . 
22.09 . 
20.91 
1 9 .82 

K 

84.5 

85.6 

87.8 . 
82 .6 . 
88.2 . 
83.4 . 
84.7 . 
84.5 . 
80. 1 . 

89.6 
82.3 

87 
80.2 

79.9 . 
75.3 . 

82.2 . 
77 . 

L 

37.9 

38. 1 

39.5 
34.5 
37.8 
33.5 

"'-J 
0 



A B C D E F G H I J K L 

1 62 1 61 6 s ng kaiapit 1 02 1 1 66 . 1  59.6 21 .6 21 .38 . 
1 63 1 62 6 s 1 02f 0 1 56 .8 52.8 21 .48 20.71 . 
1 64 1 63 6 s ng chimbu 74 1 1 57.4 55.6 22.44 21 .21 . 
1 65 1 64 6 s 74f 0 1 49.3 49.3 22. 1 2  20.51  . 
1 66 1 65 2 s ng manus 20 1 21 -25 1 62.9 60.2 22.69 21 .7 . 
1 67 1 66 2 s 20f 0 21 -25 1 51 .0 48.2 21 . 1 4  20. 1 7 .  
1 68 1 67 6 s ng asai valley 1 25 1 20-29 1 50.4 45.3 20.03 1 9.59 79. 1  . 
1 69 1 68 6 s 1 25f 0 20-29 1 42.7 41 .4 20.33 1 9.22 75.8 . 
1 70 1 69 6 s ng lumi 20 1 22 1 57.9 51 .7 20.74 20.42 . 
1 71 1 70 6 s 20f 0 22 1 48.9 45. 8  20.66 1 9.79 . 
1 72 1 71 5 s ng karkar isl 1 1 5 1 21 -35 1 61 .0 56.4 21 .76 21 . 1 2  84 36.2 
1 73 1 72 5 s 1 1 5f 0 21 -35 1 51 .7 47 20.42 1 9.87 79.3 32. 1  
1 74 1 73 7 s ng lufa 1 07 1 21 -35 1 60.3 58.5 22.77 21 .56 84.4 37.3 
1 75 1 74 7 s 1 07f 0 21 -35 1 51 .6 49.2 21 .41 20.33 79.6 33.7 
1 76 1 75 6 s ng kukukuku 59 1 1 51 .2 49.2 21 .52 20.36 . 
1 77 1 76 6 s 59f 0 1 42.7 42.8  21 .02 1 9.55 . 
1 78 1 77 6 s ng megiar 30 1 1 61 .9 52.9 20. 1 8  20.4 . 
1 79 1 78 6 s 30f 0 1 51 .5 47.3 20.61 1 9.94 . 
1 80 1 79 6 s ng okapa 78 1 1 55 . 1  52.6 21 .87 20.79 . 
1 81 1 80 6 s 78f 0 1 47.8 47.7 21 .84 20.28 . 
1 82 1 81 6 s ng wosera 39 1 1 55.9 51 .6 21 .23 20.53 . 
1 83 1 82 6 s 39f 0 1 46.6 42.3  1 9.68 1 9. 1 7 . 
1 84 1 83 6 s ng kalabu 69 1 1 56.2 54.5 22.34 21 .08 . 
1 85 1 84 6 s 69f 0 1 47.2 45.9 21 . 1 8  1 9.93 . 
1 86 1 85 6 s ng baiger vs baiyer 68 1 1 58.6 56.8 22.58 21 .36 . 
1 87 1 86 6 s 68f 0 1 47. 1 46.5 21 .49 20.07 . 
1 88 1 87 6 s ng simbai 1 39 1 1 48.8 45. 1 20.37 1 9.65 . 
1 89 1 88 6 s 1 39f 0 1 37.0 38.9 20.73 1 9.02 . 
1 90 1 89 6 s ng wabag 98 1 1 58.3 61 .6 24.58 22.26 . 
1 91 1 90 6 s 98f 0 1 49.0 52 23.42 21 .09 . 
1 92 1 91 1 4  s wstrn samoa salamumu1 01  1 <45 1 70.4 73.4 25.28 23.42 . 
1 93 1 92 1 4  s f1 44 0 <45 1 58.3 68.4 27.3 23.46 . 
1 94 1 93 1 4  s a m  sam manu'a islands 43 1 <45 1 72.8 81 .2 27. 1 9  24.47 . 



A B C D 
1 95 1 94 1 4  s f88 
1 96 1 95 1 4  s a m  sam tutuilia 425 
1 97 1 96 1 4  s f61 0  
1 98 1 97 20 n hawaii samoans 1 82 
1 99 1 98 20 n f280 
200 1 99 7 s png wopkaimin 4 7 
201 200 7 s f58 
202 201 7 s png ningerum 55 
203 202 7 s f59 
204 203 7 s png awin 56 
205 204 7 s f77 
206 205 7 s png yonggom 23 
207 206 7 s f26 
208 207 7 s png gidra 332 
209 208 7 s f41 9  
21 0 209 9 s solomon isl aita 39 
21 1 21 0 9 s f49 
21 2 21 1 9 s sol isl nagovisi 29 
21 3 212  9 s f37 
214 21 3 9 s sol isl nasioi 28 
21 5 214 9 s f24 
21 6 21 5 9 s sol isl baegu 39 
21 7 21 6 9 s f42 
21 8 21 7 9 s sol isl kwaio 46 
219  21 8 9 s f49 
220 21 9 9 s sol isl lau 20 
221 220 9 s f38 
222 221 9 s sol isl ulawa 37 
223 222 9 s f51 
224 223 5 s sol isl ontong java 75 
225 224 5 s f1 1 9  
226 225 1 3  s Aust Abor. Arnhem Land 
227 226 1 3  s 71 f 67m 

E F G H 
0 <45 1 62.7 77.9 
1 <45 1 70.8 84.8 
0 <45 1 60.3 78 .3 
1 <45 1 71 .5 88. 1 
0 <45 1 60 . 1  80 
1 20-25 1 59.6 58.8 
0 20-25 1 49.5 49. 1  
1 1 57.5 51 .7 
0 1 46.9 40.8 
1 1 58.4 52.5 
0 1 47. 1 42.3 
1 1 55.6 52. 1  
0 1 46.0 39.9 
1 1 65 .2 55.7 
0 1 54.6 45.2 
1 20-34 1 59.6 60.9 
0 20-34 1 49.9 54. 1  
1 20-34 1 60.5 58.6 
0 20-34 1 51 .3 49. 1  
1 20-34 1 63.2 58.2 
0 20-34 1 52.3 48.2 
1 20-34 1 62.0 58.6 
0 20-34 1 50.8 49. 1  
1 20-34 1 61 .0 57.7 
0 20-34 1 49.7 48.6 
1 20-34 1 64.0 65.4 
0 20-34 1 53.4 55.9 
1 20-34 1 62.9 60.9 
0 20-34 1 51 .0 50 
1 20-34 1 66.2 67.7 
0 20-34 1 56.0 59.5 
1 20-29 1 73.4 58.9 
0 20-29 1 61 .5 49.3 

I 

29.43 
29.07 
30.47 
29.95 
31 .21 
23.08 
21 .97 
20.84 
1 8.91 
20.92 
1 9.55 
21 .52 
1 8.72 
20.41 
1 8.91 
23.91 
24.08 
22.75 
21 .45 
21 .85 
20.78 
22.33 
21 .59 
22.26 
21 .69 
24.32 
23.76 
22.95 
21 .93 
24.51 
24.45 
1 9.59 

1 8.9 

J 

24.7 . 
25. 1 5 
24.94 . 
25.58 . 
25.23 . 
21 .66 
20.45 
20.45 . 
1 8 .81 . 
20.55 . 
1 9 . 14 . 
20.65 . 
1 8.66 . 
20.72 . 

1 9 .3 . 
22.05 
21 .44 
21 .57 
20.33 
21 .31 
20.08 
21 .47 
20.37 
21 .37 
20.34 
22.54 
21 .55 
21 .82 
20.54 
22.78 
22.04 

20.8 
1 9.72 

K 

82.5 . 
77.7 . 

84.6 . 
79. 1  . 
84. 1  . 
79. 1  . 
84.3 . 
79.2 . 
85.2 . 
79. 1  . 
86.2 . 
80. 1  . 
86.7 . 

81 . 
84 . 

78.2 . 
88.7 . 
83. 1  . 
83.2 . 
77.5 . 

L 

-...J 
I\.) 



A B C D E F 

228 227 1 7  s Rural Qamea, Fij i  1 
229 228 1 7  s 34f 37m 0 
230 229 23 s Aust. Aborigines Central 1 
231 230 23 s 43f 44m 0 
232 231 4 n Trio, Surinam So America 1 
233 232 4 n 1 42f 1 1 5m 0 
234 233 9 s Tanu, W Java 1 20-50+ 
235 234 9 s 37f 39m 0 20-50+ 
236 235 8 s Jogjakarta, W Java 1 
237 236 8 s 0 
238 237 2 n lban of Sarawak, Malaysia 1 1 8-42 
239 238 2 n 4 1 f  43m 0 
240 239 9 s Quechua, Peru So Amer 1 
241 240 9 s 50each m and f 0 
242 241 46 n Khalkha Mongols.Mongolia 1 
243 242 46 n 49f 59m 0 
244 243 1 6  n Guatemalan Highlanders 1 
245 244 1 6  n 49each m and f 0 
246 245 1 9  s Arica, Chile So America 1 
247 246 1 9  s 63f 70m 0 
248 247 35 n Japanese-lbaraki Area 1 1 8-23 
249 248 35 n 93f 1 21 m  0 1 8-23 
250 249 36 n Tokyo, Japan 1 1 8-29 
251 250 36 n 1 1 2f 96m 0 1 8-23 
252 251 21 n Burma 1 
253 252 21 n m 221 f ?  0 1 9-24 
254 253 24 n Taiwan 1 1 7-29 
255 254 24 n 29f 31 m 0 1 9-38 
256 255 26 s Chaco, Argentina So Amer 1 20+ 
257 256 26 s 37f 29 m 0 20+ 
258 257 27 n Bhutan 1 1 9+ 
259 258 27 n 28f 44m 0 
260 259 67 n Eskimos-Canadian Arctic 1 1 8-39 

G H I 

1 73.0 76 25.39 
1 62.0 69 26.29 
1 68 .7 57.4 20. 1 7  
1 57 .3 49.5 20.01 
1 57.7 58.2 23.4 
1 47.5 48. 7  22.38 
1 55.3 48.6 20. 1 5 
1 42.4 40.8 20. 1 2  
1 61 .5 50.5 1 9.36 
1 50.0 44 1 9.56 
1 59.7 53.9 21 . 1 3 
1 48.7 49 22. 1 6  
1 60.0 55.9 21 .84 
1 48.0 54 24.65 
1 64.8 66.5 24.49 
1 51 .3  56.3 24.59 
1 60.7 53. 9  20.87 
1 47.7 45.8 20.99 
1 61 .5 62 23.77 
1 49 . 1  56.3 25.33 
1 69.6 61 .2 21 .28 
1 58.9 53 .8 21 .31 
1 67.2 58 .9 21 .07 
1 55.3 48.9 20.28 
1 67.9 55.8 1 9.79 
1 53.2 47.7 20.32 
1 67.6 52.6 1 8.73 
1 54.3 49.3 20.71 
1 64.3 65.7 24.34 
1 52.9 56.7 24.25 
1 69.2 60.6 21 . 1 7  
1 61 . 1  52.8 20.34 

1 64. 1 4  66.6 24.72 

J 

23.66 . 
23.29 . 
20.82 
20.02 
21 .68 
20.51 
1 9 .97 . 

1 9. 1  . 
1 9.96 . 
1 9.33 . 
20.74 . 
20.49 . 

21 . 1  
21 .56 
22.67 
21 .77 
20.67 . 
1 9.88 . 
22. 1 1 . 
21 .93 . 
21 .44 
20.77 
21 . 1 8 . 
20.03 . 
20.58 . 
1 9.92 . 
1 9.99 
20. 1 7  
22.57 . 
21 .73 . 
21 .36 
20.43 
22.74 

K 

81 .3 . 
75. 1  . 
79.8 
75.5 

84.5 . 
80 . 

87.6 . 
82.2 . 

90.6 
85.2 

90.4 . 
85. 1 . 

87. 1  . 
84.3 . 

87.37 . 

L 

36.7 
33.5 

39.6 
35.7 
38.5 
34.6 

........ 
w 



A B C D E 
261 260 67 n m  396 f 321 
262 261 70 n Inuit of lgloolik, Cnda NWT 
263 262 70 n m70 f46 
264 263 1 5  n nic=nicaragua miskito 30 
265 264 1 3  n nic sumo n=20 
266 265 1 2  n nic rama n=27 
267 266 1 3  n nic subtiava n=25 
268 267 2 s ecuador chachi 25 
269 268 2 s f=25 
270 269 1 9  s chile aymara altiplana m70 
271 270 1 9  s f=90 
272 271 1 3  s peru quechua lowlnd n=57 
273 272 1 3  s n=60 
274 273 . brazil xavante m=42 
275 274 . 39 
276 275 1 n brazil cayapo 1 1 0  
277 276 1 n 1 56 
278 277 28 s brazil caingang 354 
279 278 28 s 21 9 
280 279 1 3  n cambodia 
281 280 24 n formosa 54 
282 281 24 n 1 9  
283 282 1 6  n guatemala maya 42 
284 283 1 6  n guatemala maya 20 
285 284 8 s indonesia west java 
286 285 8 s 
287 286 44 n japan ainu 21 
288 287 36 n japan military urban 1 60 
289 288 36 n japan military rural 350 
290 289 1 8  n laos 1 36 
291 290 n mexico trigue m= 1 01 
292 291 1 2  s peru cashinahua 1 2  
293 292 1 2  s 26 

F G H 
0 1 8-39 1 53. 1 6  54.21 
1 20-29 1 64.0 65 
0 20-29 1 53.0 54.6 

m 1 64.0 69.4 
m 1 58.6 61 .4 
m 1 63.3 61 .6 
m 1 63.3 57.3 
1 25-29 1 56. 1 56.6 
0 25-39 1 45.0 48.3 
1 44 1 63.0 61 . 1  
0 44 1 50.0 52.8 
1 20-40 1 63. 1 58.5 
0 20-40 1 49.8 47 
1 1 70.2 69.8 
0 >1 8 1 56.3 57.9 
1 >1 5 1 65.4 61 .4 
0 >1 5 1 53.9 51 .6 
1 1 8-45 1 61 .0 56.3 
0 1 49. 1 50 

m 1 65.0 56.8 
1 21 1 66 .8 56 
0 21 1 55.3 44.5 

m 1 56.8 54.2 
f 1 7+ 1 42.8 45.7 
1 1 58.0 50.5 
0 1 50.0 44 

m 1 8-27 1 61 .7 57. 1  
m 1 8-29 1 67.7 62.5 
m 25 mean 1 66. 1 61 .7 
m 1 63.2 54.7 
m 1 56.4 50.8 
1 30-39 1 55.0 63.5 
0 30-39 1 45.3 54.5 

I J 
23. 1 1 21 .23 
24. 1 7  22.47 . 
23.32 21 .32 . 

25.8  23.22 
24.41 22.21 . 

23. 1 21 .92 
21 .49 21 . 1 4  
23.23 21 .49 
22.97 20.6 

23 21 .85 
23.47 21 . 1 8 
21 .99 21 .38 . 
20.94 1 9.99 . 

24. 1 22.86 
23.7 21 .72 

22.44 21 .75 
21 .79 20.67 
21 .72 21 . 1 1 
22.49 20.67 . 
20.86 20.94 . 
20. 1 3  20.68 . 
1 8.45 1 9. 1 1 . 
22.04 20.98 
22.41 20. 1 9  
20.23 20. 1 8 .  
1 9.56 1 9.33 . 
21 .84 21 .21 
22.22 21 .79 . 
22.36 21 .75 . 
20.54 20.66 . 
20.77 20.34 
26.43 22.84 . 
25.81 21 .86 . 

K 
82.33 . 

89.4 

86.9 
84.8 
85.3 . 
78.8 . 
85.8 

80 

87.8 . 
81 .3 . 
84.9 . 
79.9 . 
82.4 . 

85. 1 
78.4 

83.2 

L 

39.7 
40.2 
38. 9 
39.8 

32.8 
29.5 

31 .6 
33.2 

36.5 

....... 
� 



A B C D E 
294 293 1 3  n philippines national 36 
295 294 1 3  n 45 
296 295 37 n south korea 280 
297 296 37 n 49 
298 297 1 1  n south vietnam military21 29 
299 298 1 1  n south vietnam military n=78 
300 299 4 n surinam wajana 75 
301 300 4 n 91  
302 301 1 5  n thailand military 2950 
303 302 70 n usa wainwright eskimo 43 
304 303 70 n 36 
305 304 33 n usa apache 31 
306 305 34 n usa western apache 31 
307 306 5 1  n usa blackfeet 38 
308 307 51 n 46 
309 308 48 n usa fort belknap 27 
31 0 309 48 n 42 
31 1 31 0 33 n usa seminole 44 
31 2 31 1 33 n 1 43 
31 3 31 2 23 n south china guangdong 232 m 
314 31 3 39 n north china soldiers 942 m 
31 5 31 4 42 n Kirghiz, Kurgyzstan n=40 m 
31 6 31 5 48 n Kazak, Kazakhstan n=30 m 
31 7 31 6 65 n Iceland n=652 m 
31 8 31 7 40 n Beijing, China n=49 m 
31 9 31 8 32 n Miaozhan, China n=24 m 
320 31 9 7 s  Zoro, Aripuana Pk Brazil 
321 320 7 s  44 each m and f 
322 321 43 n Seneca Iroquois NY n=507 m 
323 322 36 n Hopi n=276 m 
324 323 35 n Zuni n=348 m 
325 324 49 n Assiniboine Gros Ventres 
326 325 49 n m=77 f= 1 00 

F G H 
1 20 1 64.6 52.2 
0 20 1 51 . 1 48 
1 23 1 70. 1 59.7 
0 23 1 56.2 5 1 .9  

m 26.8 mean 1 60.5 5 1 . 1  
m 30 mean 1 62.5 50 
1 1 56.6 61 .3 
0 1 46.2 51 .4 

m 24 mean 1 63.4 56 
1 >25 1 66.3 67.2 
0 >25 1 55.8 66.3 

m >20 1 68.4 69 
m 20-27 1 70.2 74 
1 20-39 1 77.4 74.7 
0 20-39 1 64.8 64.2 
1 20-39 1 73.7 73.9 
0 20-39 1 60.4 65 
1 42.5 mean 1 69.4 76.6 
0 39.8 mean 1 57.2 69 

adult 1 60.7 . 
adult 1 67.6 . 
adult 1 65.3 59.7 
adult 1 63 . 1  69.7 
adult 1 73.6 68. 1 
adult 1 69.3 59.2 
adult 1 54.0 46.4 

1 35.9mean 1 60.0 55.9 
O 39.3mean 1 49.7 46.6 

30.7 1 73.3 72.8 
1 61 . 1 60.8 
1 61 .4 56.3 

1 1 71 .8 75.4 
0 1 59 .4 69 

I 

1 9.27 
21 .02 
20.63 
21 .27 
1 9.84 
1 8 .93 

25 
24.05 
20.97 

24.3 
27.31 
24.33 
25.55 
23.74 
23.64 
24.49 
25.26 
26.69 
27.92 

21 .85 
26.2 
22.6 

20.65 
1 9.56 
21 .84 
20.79 
24.24 
23.43 
21 .61 
25.55 
27. 1 6  

J 

20. 1 . 
20. 1 2 . 
21 . 1 4 . 
20.57 . 
20. 1 4 . 

1 9.8 . 
22.33 
21 . 1 6  
20.89 
22.69 
23.28 
22.85 . 
23.53 . 
23. 1 6 . 
22.28 . 
23.28 . 
22.72 . 

24 . 
23.65 . 

21 .45 . 
23.33 . 
22.35 . 
21 . 1 1 
1 9.59 . 
2 1 . 1  . 

1 9.91 . 
23. 1 3 . 
21 .93 . 
21 .08 . 
23.64 . 
23.48 . 

K 

79.9 
75 

86.4 . 
87.8 
83.7 

L 

37.4 
33.3 

38.5 
35.6 

40.3 

........ 
01 



327 

328 

329 

330 

331 

332 

333 

334 

335 

336 

337 

338 

339 

340 

341 

342 

343 

344 

345 

346 

347 

A B C D E ' F G H I J K L 

326 37 n Navaho 1 1 69.5 65 22.62 22. 1 
327 37 n m=272 f=245 0 1 56.0 58. 1 23.87 21 .78 . 
328 62 n Alaskan Athabascan 1 1 67.2 65 23.25 22.25 . 
329 62 n m=24 f=25 0 1 54.3 60.4 25.37 22.33 . 
330 1 9  n Nahua 1 1 54.8 49.5 20.66 20. 1 8  83. 1  37 
331 1 9  n 1 00 each m and f 0 1 43.5 44.4 21 .56 1 9 .85 76.6 33.2 
332 22 s Aust Ab Yuendumu m=22 1 adult 1 69.791 56.71 1 9.67 20.63 79.245 34.45 
333 22 s f=20 0 adult 1 57. 1 45.43 1 8.41 1 9. 1 9 73.225 31 .09 

Notes: 
* Numbers in the group/location column = the sample size for that row (and is sometimes preceded by "n"). If the 

number is adjacent to "m" or "f', then it = the sample size for males or females, respectively, of that group. 
** Females are denoted by "O" or "f', and males are denoted by "1 " or "m". When sex is coded numerically, the data are 

on "matched pairs" of males and females sampled at the same time. Alpha sex codes are for data from sources 
reporting males only, or females only. 

*** Age is given as mean or range, whichever was reported. Blank age means age was reported as only "adult". 
1 Eveleth and Tanner (1 976, 1 990) classify populations into five broad categories: African, Asiatic (or Asian) , lndo-

Mediterranean (abbreviated "indomed" above) , European, and Australian Aborigine/Pacific Island (abbreviated 
"austpaci" above). I added a sixth category, Native Americans ("native am" above) , to separate New World Asiatics 
from Old World Asiatics. 

General : Blank boxes (e.g. in "group . . .  " and "reference" columns) or "ibid" mean same entry as above appl ies. 
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M 

bi-il iac 

breadth 

1 cm 

2 

3 

4 

5 

6 

7 

8 

9 

1 0  27.9 
1 1  27.9 
1 2  

1 3  . 

14  

1 5  . 

1 6  

1 7  . 

1 8  28.6 
1 9  27.4 
20 . 

21 . 

22 . 

23 . 

24 . 

25 . 

26 . 

27 

28 . 

29 . 

N 

Eveleth & 

Tanner 

classific.
1 

see Notes 

european 
european 
european 
european 
european 
european 
european 
european 
european 
european 
european 
european 
european 
european 
european 
european 
european 
european 
european 
european 
european 
european 
european 
european 
european 
european 
european 
european 

0 

reference 

Eveleth & Tanner 1 976 
p284 5a,b 
RL Jantz printout 1 980 (1 979) 
personal communication 
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Appendix C:  Ruff's ( 1 994) Sample 
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latitude sex o=f height weight latitude sex o=f height weight 

9 o 1 63.9 58.3 54 1 1 64.2 67.7 
2 o 1 61 .8  52.8 36 1 1 67.2 58.9 
2 o 1 55.9 52. 1  36 1 1 72.5 64.8 
2 o 1 37.3 38.2 1 3  1 1 67.3 56.8 
2 o 1 54.0 54.2 1 3  1 1 68.8 53.6 
1 5  o 1 59.0 52.5 23 1 1 64. 1 49.2 
1 5  o 1 59.8 51 .4  32 1 1 67.6 66.0 
3 o 1 45.0 42.7 32 1 1 62.6 61 .7 
4 o 1 54.4 50.4 1 8  1 1 72.9 76. 1 

51  o 1 62.0 56.2 5 1 1 61 .0 56.4 
42 o 1 60.2 60.2 7 1 1 60.3 58.5 
42 o 1 57.7 58.7 22 1 1 69.8 56.7 
49 o 1 59.5 67.3 
48 o 1 60.4 55.5 
40 o 1 55.4 51 .4 
53 o 1 59.8 61 .5 
46 o 1 57. 1 53.9 weight is in kg 
70 o 1 55.8 66.3 height is in cm 
54 o 1 52.8 80.5 latitude is in absolute degrees 
36 o 1 55.3 48.9 
32 o 1 52.6 59.7 
32 o 1 52.0 51 . 1  
5 o 1 51 .7 47.0 
7 o 1 51 .6 49.2 

22 o 1 57. 1 45.4 
9 1 1 73.5 66.8 
3 1 1 59. 1 47.8 
3 1 1 75.0 56.6 

23 1 1 66.7 60.4 
1 5  1 1 70. 1 59.3 
1 5  1 1 69.8 58.4 
2 1 1 53.8 45.8 
2 1 1 44.6 43.4 
2 1 1 63.9 56.6 
8 1 1 64.3 56.6 
6 1 1 66.9 60.0 
3 1 1 52.7 48.3 
4 1 1 61 .2 54.6 

5 1  1 1 74.5 66.9 
42 1 1 71 .3 68.8 
42 1 1 69.8 67.0 
56 1 1 72.0 74.7 
46 1 1 71 .2 60.7 
70 1 1 66.3 67.2 

Data from Ruff (1 994:75) Table 2 
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