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ABSTRACT 

Vegetation change in the Great Smoky Mountains 

fol lowing balsam woolly ade lgid-caused mortality of Fraser 

fir has inc luded deve lopment of a dense Rubus canadens is 

s hrub layer . Many fir seedlings have persisted in the 

forest understory , but the possible effects of Rubus on 

their annual growth have not been intens ive ly studied . 

This study had two objectives : ( 1 )  to determine i f  

s igni ficant associations exist among density and shoot 

growth of Fraser f i r  seedlings , density/biomass of Rubus 

canadens is , canopy closure , and soi l chemical parameters , 

and ( 2 )  to determine the effects of removal of aboveground 

Rubus stems on fir seedling shoot growth . 

Eighty 1 x 1 m plots were used on Mount Col lins , Great 

Smoky Mountains National Park , to characterize the 

unders tory habitat of Fraser fir seedlings . Terminal and 

lateral shoot lengths of the 1 9 8 3 - 1 9 8 7  growth were measured 

on fir seedlings . Seedlings were class i fied according to 

substrate type , surface type , substrate form ,  presence of 

ade lgid damage , and age . Soil samples were taken for 

analyses of pH , potassium , phosphorus , and calcium .  

Overstory composition was characteri zed with prism plots . 

Fourteen 2 x 2 m plots were es tablished to determine 

e f fects of Rubus removal on fir seedling growth , herbaceous 

cover , shrub/seedling counts , and soil parameters . 
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Rubus canadens is dens ity was highest on the southwes t 

f acing s lope and lowest o n  the northeast- facing s lope of 

Mount Collins . Fraser fir seedling density was highest on 

the northeast- fac ing s lope and lowest on the southwest

f acing s lope . The Spearman rank corre lation between Rubus 

dens ity and f i r  seedling density was - 0 . 3 7 6 ( P  < 0.0 1 ) ;  a 

graph of these data showed variabi lity in fir dens ity to 

decrease with increas ing Rubus density . Most years of 

fir termina l shoot growth showed positive as sociations with 

Rubus density ( 0 . 3 0 9 - 0 . 3 9 6 , P < 0 . 0 1 ) ; a graph of these 

data showed no pronounced relationship . Rubus dens ity and 

biomass were s igni ficantly correlated with soil phosphorus 

and potassium concentrations . All years of termina l shoot 

growth of f i r  seedlings measured showed positive 

as soc iations with soil pH and potass ium concentration . 

Most  f i r  seedlings were �2 5 em tall . Only 3 8 %  were <5 

years old .  More seedlings than expected occupied dead wood 

substrates , and more than expected were found on bryophyte

covered surface s . More than 25%  of seedlings showed 

ade lgid damage ; ade lgid damage was more prevalent among 

seedlings �5 years old . Most seedlings showed a trend of 

increasing gains of terminal shoot growth over previous 

ye ars of growth . 

Remova l of Rubus s tems produced no signif icant effect 

on fir seedling shoot growth over one season . No Rubus 

removal effects were found on any other understory var iable 
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measured ; Rubus itself responded to removal by rapid 

appearance and growth of new stems . Large seasonal changes 

in bryophyte cover and red spruce seedling dens ity ( from 

germination ) occurred , but the se changes were not affected 

by Rubus removal .  

Germinal Fraser f i r  seedlings are scarce and are not 

like ly to appear in large numbers unle ss existing 

understory firs reach reproductive age . 

inhibit establishment of fir seedlings . 

Rubus appears to 

Fir shoot growth 

doe s not appear to be assoc iated with Rubus dens ity or 

biomass . Fir shoot growth trends are probably consequences 

o f  normal growth patterns and recovery from adelgid 

infestation . 
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CHAPTER 1 

BACKGROUND 

A .  Introduction 

Fraser f i r  ( Abies fraseri ) is a southern Appalachian 

coni fer endemic to seven localities in North Carolina , 

Tennessee , and Virginia ( Ramseur 1 9 6 0 ) . ( Nomenc lature for 

vascular plants follows that used by White ( 1 9 8 2 ) . )  Fir is 

most abundant above 1 5 0 0  m e levation , and its most frequent 

associates are red spruce ( Picea rubens ) and yel low birch 

( Betula lutea ) ( Oos ting and Billings 1 9 5 1 ; Whittaker 1 9 5 6 ) . 

In the past three decades , Fraser f i r  has been 

devastated by a phloem- feeding insect , the balsam wool ly 

ade lgid ( Ade lges piceae Ratz . ) .  The ade lgid , nat ive to 

Europe , was introduced into New England prior to 1 9 0 8  

( Kotinsky 1 9 1 6 ) . In the southern Appalachians , the ade lgid 

was discovered on Mount Mitche l l , North Carolina in 1 9 5 7  

( Speers 1 9 5 8 ) and was found o n  Mount Ster ling i n  the Great 

Smoky Mountains National Park ( GSMNP ) in 1 9 6 2  ( Cies la et 

a l . 1 9 63 , c ited in Eagar 1 9 8 4 ) . The ade lgid has since 

dispersed throughout the spruce- f ir forest of the GSMNP and 

has killed most mature firs by di s rupting water and 

nutrient transport to their crowns . With the loss of 

Fraser fir as a canopy dominant , the phys ical structure of 
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the forest has been greatly altered . 

Vegetational changes fol lowing fir mortality inc lude a 

large increase in the density of Rubus canadensis , 

thornless blackberry . Density of fir < 2 . 5  em diameter at 

breast height also increases as a result of seedling 

release ( Boner 1 9 7 9 ) .  DeSelm and Boner ( 1 9 8 4 ) suggest , 

however , that the " cons iderable increase in the density of 

several shrubs raises the pos s ibility of their interference 

with overstory regeneration . . . .  " Also , Bus ing et al . 

( 1 9 8 8 ) state that Rubus "does appear to retard tree spec ies 

recruitment" into taller height c lasses . 

The most extensive population of Fraser f i r  exi sts in 

the GSMNP . Ade lgid-caused mortality in the Park has been 

we ll documented ( Johnson 1 9 7 7 ; Eagar 1 9 7 8 ) and post-ade lgid 

vegetational changes have been described ( Boner 1 9 7 9 ) .  The 

growth responses of individual fir seedlings to unders tory 

development have not been intens ively studied . This study 

was undertaken to determine i f  Rubus canadens is interferes 

with establishment/survival and growth of exi sting Fraser 

fir seedlings in the GSMNP . 
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B .  The Great Smoky Mountains Spruce-Fir Forest 

1 .  Topography 

The GSMNP lies within the Blue Ridge physiographic 

province of the southern Appalachi an Mountains ( Fenneman 

1 9 3 8 ) . In the Park , Clingmans Dome is the highest peak at 

2 0 2 5  m e levation . The main crest o f  the GSMNP rises over 

1 5 0 0  m e levation for about 4 0  km o f  its length ( Ramseur 

1 960 ) . S lopes are generally 4 0 -60% within the spruce-fir 

forest but may reach 1 1 0 %  or more in some areas . 

2 .  Geology and Soils 

The large s t  portion of the GSMNP is underlain by rocks 

of the Great Smoky Group ( Ocoee Series ) .  Two formations 

are interbedded : the Thunderhead Sandstone ( quart z , 

fe ldspar , granite , and quartzite ) and the Anakeesta 

Formation ( s i lty-clayey s late , phyl lite , or schist with 

some free carbon and iron sulfides ) ( King et a l . 1 968 ) . 

These rocks weather into thin , stony Incept isols or 

Spodosols that have high surficial organic matter ( 3 0 - 5 5 % ) , 

low pH ( 3 . 4 - 4 . 4 ) , low contents of basic cations ( sum : 0 . 1 -

1 . 3  meq/ 1 0 0  g ) , and high exchangeable aluminum ( 2 . 3 - 7 . 1  

meq/1 0 0  g) ( McGinnis 1 9 5 8 ; McCracken et al . 1 962 ; Springer 

1 9 8 4 ) . For the GSMNP spruce - f ir forest , Costing and 
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Billings (1 9 5 1 ) provide general descriptions of soils , and 

Wo lfe ( 1 967 ) provides detai led soil descriptions and 

chemical analyses . 

3 .  Climate 

Annual precipitation in the GSMNP averaged 2 26 em at 

1 5 2 4  m e levation for the years 1 9 46- 1 9 5 1  ( Shanks 1 9 5 4; 

Stephens 1 969 ) . Recent data indicate somewhat lower 

precipitation . Annual totals at 1 5 2 4  m e levation for 1 9 8 3 -

1 9 8 7  averaged 1 9 1  em ( Newfound Gap weather data provided by 

the Uplands Field Research Laboratory ) .  Precipitation 

generally exceeds evapotranspiration ( Shanks 1 9 5 4 ) , 

a lthough some mois ture stress probably occurs in summer and 

early fall ( personal observation ) .  At 1 5 2 4 m ,  mean monthly 

temperatures may range from a low of 2° c. in February to a 

high of 18° c. in July ( Shanks 1 9 5 4 ) . 

4 .  Species Distribution 

Three ma j or overstory patterns are evident within the 

GSMNP spruc e-fir forest : an increase in relative dominance 

of f i r  with e levation , a dec rease in re lative abundance of 

spruce toward lower , more mes ic sites , and the interruption 

of the coni ferous canopy by stands of beech ( Fagus 
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grandi folia ) ( Rus sell 1 9 5 3 ; Whittaker 1 9 56 ; Fuller 1 9 7 7 ; 

Pavlovic 1 9 8 1 ) . Understory patterns are more complex 

because of greater species r ichne s s  compared to the 

overstory . Detai led descr iptions of herbaceous and shrub 

patterns in the GSMNP are found in Crandall ( 1 9 5 7 , 1 9 5 8 ) 

and Boner ( 1 9 7 9 ) . 

5 .  Natural Disturbances 

The most wide spread natural dis turbance in the GSMNP 

spruce-fir forest is the continual formation of canopy gaps 

< 2 0 0 m2 in area from single and multiple tree deaths . 

The se small gaps occupy about 5 - 2 0 %  of the forest area 

( White et al . 1 9 8 5 ) . "Fir patches , "  arising f rom the 

cyc lic death and regrowth of Fraser fir stands ( Crandall 

1 9 5 8 ) , occupy about 1 0 %  of the forest area ( White et al . 

1 9 8 5 ) . Large windthrow patches ( > 2 0 0 m2 ) and debris 

avalanches each occupy < 2 %  of the forest area ( White et a l . 

1 9 8 5 ) . Natural burned sites cover an ins igni ficant portion 

of the GSMNP spruce-fir forest ( White et al . 1 9 8 5 ) .  Types ,  

f requencies , and intens ities of dis turbance vary with 

topographic , e levational , and moisture gradients , species 

composition , species life history characteristics , and 

ecosystem- leve l characteristics such as litter accumulation 

and decompos ition rates ( Harmon et al . 1 9 8 3 ) . 
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6. Anthropogenic Disturbances 

Only about 2 0 %  of the GSMNP area lacks historical 

anthropogenic disturbance ( Pyle 1 9 8 5 ,  1 9 8 8 ) . Corporate 

logging , fire , and concentrated settlement prior to Park 

establishment in 1 9 3� continue to inf luence the spec ies 

compos ition o f  the vegetation ( Harmon 1 9 8 0 ; Pyle 1 9 8 5 , 

1 9 8 8 ) .  

Hi storically , corporate logging was probably the mos t  

extensive human disturbance in the southern Appa lachian 

spruce-fir forest . Logged spruce-fir forests are extremely 

susceptible to f i re , and numerous logging- related fires 

have occurred ( Korstian 1 9 3 7 ; Pyle 1 9 8 5 , 1 9 8 8 ) .  

Two other anthropogenic disturbances are currently 

known to be important in high-elevation forests of the 

GSMNP . First , an estimated 1 0 0  European wild boar ( Sus 

scrofa L . ) escaped into the mountains of North Carolina 

about 1 9 2 0  ( Stegeman 1 9 3 8 ) ;  boars have since spread into 

the GSMNP . Boar activity is concentrated in high-elevat ion 

dec iduous forests dominated by beech , where rooting has 

caused intens ive damage to unders tory vegetation ( Bratton 

1 9 7 5 ; Huf f  1 9 7 7 ) . Second , the balsam woo lly adelgid has 

threatened the continued exi stence of Fraser fir ( page 7 ) . 

Concern is increasing about the growth of Appalachian 

red spruce . I n  New England , major diebacks and radial 
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growth dec lines o f  red spruce have recently occurred 

( S iccama et al . 1 9 8 2 ; Scott et al . 1 9 8 4 ; Voge lmann et al . 

1 9 8 5 ) . Spruce growth dec lines have been reported 

throughout the Appalachians ( Adams et al . 1 9 8 5 ; McLaughlin 

et a l . 1 9 8 7 ) , inc luding parts of the GSMNP . Bus ing et al . 

( 1 9 8 8 ) , however ,  found no unusual mortality and no 

cons istent trend in spruce radial growth in old- growth 

forests of Mount Collins , GSMNP . One complication in 

determining if spruce is showing a general dec line is the 

history of logging in most Appalachian spruce and spruce

f ir forests around the turn o f  the century . In some cases , 

growth rate dec lines are attr ibutable to post - logging stand 

dynamics ( Van Deusen 1 9 8 7 ) . Proposed contr ibuting factors 

to observed dec line s  include climatic stress , patho logical 

agents , and air po l lution ( Hinrichsen 1 9 8 7 ) . 

c. The Balsam Woo lly Adelgid Problem 

1 .  Adelgid-Fir Interactions 

Adelgids are very smal l  ( <1 mm long ) sucking insects 

which feed beneath the bark of Fraser fir boles . Ade lgid 

s a liva contains substances that cause abnormal xylem growth 

and impede water and nutrient transport to the tree crown 

( Eagar 1 9 7 8 , 1 9 8 4 , 1 9 8 5 ) .  Larger trees support the highest 

ade lgid populations ( Johnson 1 9 7 7 ) , but seedlings and 

7 



s aplings may also be infested and kil led . Morphological 

changes in shoots and stems inc lude swe l l ing , twi sting , and 

suppress ion o f  terminal shoot elongation . These changes 

are referred to as "gouting" ( see Hay et al . 1 9 7 8 , p .  2 9 ) . 

Lateral shoot growth is less affected by adelgid 

infestation than terminal shoot growth , and infested 

seedlings and saplings frequently acquire a characteristic 

f lat-topped appearance . Young Fraser firs may recover from 

these effects and resume normal growth ( Eagar 1 9 8 4 ; 

personal observation ) .  Fast -growing f irs may support 

infestations for up to 20 years ( Eagar 1 9 8 5 ) . Cone 

production may continue during infestation , but effects of 

the adelgid inc lude reduced seed s i ze , weight , and 

viability in Fraser fir ( Fedde 1 9 7 3 ) .  

2 .  Ef fects on Overstory Compos i tion 

Overstory fir mortal ity in the GSMNP has been 

extensive . Boner ( 1 9 7 9 ) has constructed a chronosequence 

of forest changes fol lowing onset of overstory fir 

mortality .  Dens i ty and basal area o f  overstory f i r  

decreased sharply ( to near zero ) within 1 0  years , but 

subsequently increased because of recruitment . Density and 

basal area of spruce did not change substantially . For 

ye llow birch , these parameters increased . Bus ing et al . 
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( 1 9 8 8 ) , in a resample of two 0 . 4  ha plots on Mount Collins 

after more than 2 0  years , found similar results with fir 

and spruce basa l  areas . 

3 .  E ffects on Understory Composition 

The understory of post-adelgid forests has undergone 

dramatic changes . Rubus canadensis density increased f ive

fold within 1 0  years and 1 0 - fold within 2 0  years in Boner ' s  

( 1 9 7 9 ) chronosequence . Dens ity o f  fir < 2 . 5  em diameter at 

breast height initially decreased but more than doubled 

within 2 0  year s . Bus ing et al . ( 1 9 8 8 ) estimated that Rubus 

canadensis patches now cover 2 5 - 5 0 %  of the Mount Col lins 

plots . Fir sapling dens ity increased in one of these plots 

but not in the other . Spruce sapling dens ity increased 

s igni f icantly in both plots . Witter and Ragenovich ( 1 9 8 6 ) 

examined fir regeneration on Mount Mitche l l , North 

Carolina , where maj or overstory mortality occurred in the 

early 1 9 6 0 ' s . A large increase in density of fir > 2 4 4  em 

tall was found . However ,  dens ity o f  smaller firs ( < 2 4 4  em 

tall ) decreased by half . Sma ller spruces and hardwoods 

showed large increases in density . Rubus spp . "were by far 

the most  common competing vegetation" ( Witter and 

Ragenovich 1 9 8 6 ) . Height growth of taller fir seedlings 

showed signs of re lease , whi le that of shorter seedlings 

showed signs of suppress ion . 
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From these studies it appears that , generally , tree 

spec ies recruitment is stimulated , but that response of 

Fraser fir speci fically is variable . Data from Witter and 

Ragenovich ( 1 9 8 6 ) suggest that few new fir seedlings are 

appearing and that existing small seedlings are being 

suppressed by competing understory vegetation . 

D .  Fraser Fir Growth 

1 .  Seed Production , Viabi lity , and Germination 

Fraser f i r  produces large seed crops about every 3 

years ( Franklin 1 9 7 4 ) . Fraser fir in the GSMNP produced 

seed in 1 9 8 7  ( personal observation ) ,  although no cones were 

seen on any trees in the Park in 1 9 8 8  ( personal 

observation ; observations by Uplands Field Research 

Laboratory and University of Tennessee personne l ) . 

Seed viabi lity in Fraser fir is typica l ly low ( S .  E .  

Schlarbaum , personal communication ) .  A period of 

s tratification ( cool , moist conditions ) is required for 

substantial germination to occur ( Franklin 1 9 7 4 ) . 

Germination in Fraser f ir is highly sens i tive to 

combinations of temperature regime , light exposure , and 

strati f ication period ( Adkins et al . 1 9 8 4 ; Blaz ich and 

Hines ley 1 9 8 4 ) . Seed longevity in forest soils is  
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apparently unknown , but viability may decrease after only 

one year under artificial storage ( S .  E .  Schlarbaum , 

personal communication ) .  

2 .  Ear ly Seedling Survival 

Many studies have described the abi lity of Fraser fir 

to coloni ze forest openings from logging , windthrow , fire , 

and c anopy gaps ( Kors tian 1 9 3 7 ; Crandall 1 9 5 7 ; Crandall 

1 9 5 8 ; Boner 1 9 7 9 ; Saunders et al . 1 9 8 3 ; Bus ing 1 9 8 5 ; White 

et a l . 1 9 8 5 ) . Seedlings may also es tablish under a forest 

c anopy and persist at low growth rates ( personal 

observation ) .  Ear ly survival of seedlings is inf luenced by 

a large number of factor s ,  inc luding microc limate , soi l , 

substrate type , and other ground layer vegetation ( Harper 

1 9 7 7 ) . 

Brown ( 1 9 5 3 ) transplanted 8 0  Fraser fir seedlings to 

an exposed grassy bald on Roan Mountain , Tennes see /North 

Carolina . Half were shie lded from prevai ling winds , whi le 

half were unprotected . After 1 0  years , 7 7 %  of the shie lded 

seedlings survived , whi le only 3 5 %  of unprotected seedlings 

survived . Winter ice damage ( broken twigs ) was noted on 

mos t  seedlings . 

Gnegy ( 1 9 7 0 ) assessed survival in Fraser fir Christmas 

tree plantations in West Virginia . Survival increased with 

inc reases in sand content of the soi l .  Mesic , we ll-drained 
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s ites were regarded as most suitable for survival . 

Bus ing ( 1 9 8 5 ) examined distr ibutions of Fraser fir 

seedlings among substrate types on Mount Collins , GSMNP . 

Of seedlings less than f ive years old , 3 9 %  occupied fallen 

logs and 4 9 %  occupied the forest f loor . Of seedlings > 2 5  

em tall and < 1 2  em diameter a t  breast height , 1 0 %  were on 

f a llen logs and 7 5 %  were on the forest f loor . Fallen logs 

appear to be we l l - suited to establi shment but not to 

continued survival . 

Warren et al . ( 1 9 8 7b ) studied survival o f  Fraser f i r  

seedlings transplanted t o  a grassy bald at 1 4 0 0  m e levation 

in North Carolina . After three years , survival was lower 

in bare soil than in other vegetation management programs . 

Most seedling mortality occurred in winter . Gnegy ( 1 9 7 0 ) 

recommended " some type of weed contro l "  to enhance surviva l 

o f  Fraser f i r  in plantations . 

These studies suggest that Fraser fir seedling 

survival is best on she ltered , moist , we ll-drained forest 

f loor s ites . Some ground layer vegetation may be 

bene f icial ( by moderating temperature or water 

avai labi lity ) ,  but very dense vegetation may reduce 

survival . 
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3 .  Seedling Growth 

Fraser f i r  is very shade tolerant . Height growth may 

not be reduced significantly unless shade reaches 7 6 %  

( Hines ley 1 9 8 6 ) . 

Shoot growth is sens i tive to temperature regime and 

mois ture avai labi lity .  Hines ley ( 1 9 8 1 ) found maximum 

height growth in 21 -week old containeri zed Fraser fir 

seedlings at  day/night temperatures o f  3 0 /1 8° c. Gnegy 

( 1 9 7 0 ) found a posi tive relation between he ight growth and 

sand content in Fraser fir plantation soils . Water stress 

reduced root and shoot dry weight o f  three year old Fraser 

f i r  ( Tseng et a l . 1 9 8 8 ) . 

Warren et al . ( 1 9 8 7a ) assessed effects of nitrogen ( N )  

fert i l i z ation and competition from orchard grass ( Dactylis 

glome rata ) and white c lover ( Trifolium repens ) on growth of 

containerized Fraser fir seedlings . After 9 0  days , 

application of N enhanced dry weights of new shoots , stems , 

and roots . Competition reduced we ights o f  the se same plant 

parts , and also reduced phosphorus , potass ium , and calcium 

concentrations in new shoots . Neither he ight nor diameter 

growth were affected by any treatment . Warren et al . 

( 1 9 8 7b ) planted Fraser f i r  seedlings in a North Carolina 

grassy bald and applied several vegetation management 

programs . After three years , most types of vegetation 

control enhanced he ight growth over no vegetat ion control .  
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One maj or problem emerging f rom the last two studies 

is  that there may be a time lag between an exper imental 

treatment and its effects . Warren et al . ( 1 9 8 7a ) suggested 

that height growth may have required more than 9 0  days to 

respond to N ferti lization . Likewise , Warren et a l . 

( 1 9 8 7b ) found s igni ficant dif ferences in height growth 

among vegetation control programs only after a second 

season . Current growth of woody plants may be partially 

determined by conditions in the previous growing season 

( Koz lowski 1 9 6 4 ) . Shoot length of many species is  

associated with s i ze of the bud producing the shoot , which 

is in turn affec ted by water deficiencies ( Kramer and 

Koz lowski 1 9 7 9 ) .  

E .  Rubus Growth 

Species of Rubus are perennial , but aboveground stems 

( canes ) generally live for only two years . New canes are 

ster i l e the f irst year and are cal led primocanes ; the se 

c anes f lower the fol lowing year and are then called 

f loricanes ( Strausbaugh and Core 1 9 7 0 -1 9 7 7 ) .  The pr imary 

mode of colony development in Rubus canadens i s  appears to 

be vegetative growth from rootstocks which occur 8 - 1 0  em 

be low the surf ace ( personal observation ; Flinn and Wein 

1 9 7 7 ) . Rubus canadens is establishes quickly in forest 
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openings in the GSMNP i f  established conifer saplings are 

not too dense ( Crandall 1 9 5 7 ) . Germination requires a 

stratification period ( Core 1 9 7 4 ) . Seed longevity in Rubus 

c anadensis is  unknown , bu� seeds of g. idaeus may retain 

viability for up to 5 years in forest soil ( Granstrom 

1 9 8 7 ) . 

F .  Future Patch Dynamics in the Spruce -Fir Forest 

The immedi ate future of Fraser fir depends strongly on 

the f ate of exi sting seedlings in an environment with a 

pers istent adelgid population . Seedlings that survive 

adelgid infestation may fail to produce viable seeds . 

Trees which mature and produce viable seeds may disperse 

those seeds into germination sites made unsuitable by herb 

and shrub species invas ion . 

Busing ( 1 9 8 5 ) cons tructed a computer model of canopy 

dynamics in the o ld-growth spruce- fir forest on a 

northeast-fac ing s lope o f  Mount Collins ( Bus ing and Clebsch 

1 9 8 7 ) . A variety of s imulations was carried out , inc luding 

f ir survival with continuous adelgid infestation . In this 

simulation , fir remained a dominant species but made up a 

reduced fraction of the stand basal area . Fir relative 

dens ity did not change subs tanti ally . 

Bus ing ' s  ( 1 9 8 5 ) mode l applies to southern Appalachian 

spruce- f ir forests whose dis turbance regimes are dominated 
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by small gap formation . The topographic and compos i tional 

divers ity of the GSMNP spruce- f ir forest imposes great 

variabi lity in type of and response to di sturbance . One 

pos s ible pattern is development o f  a mosaic landscape 

involving repeated stand growth, reproduction, infestation, 

and degeneration ( White 1 9 8 4 ) . This scenario is partially 

dependent upon suf f icient fir reproduction prior to 

ade lgid-caused mortality . With increased frequency of 

canopy disturbance, seedling-understory interactions may 

inf luence tree species regeneration more strongly . 

Balsam woo l ly adelgid infestation has greatly reduced 

the importance of Fraser fir in the forest canopy and 

caused death and growth abnormalities in understory firs . 

Canopy opening has caused rapid growth of shrub species, 

especially Rubus canadensis . Several authors sugges t  that 

Rubus does interfere with fir seedling establishment , 

survival, and growth ( Boner 1 9 7 9 ; Witter and Ragenovich 

1 9 8 6 ; Bus ing et al . 1 9 8 8 ) . This study examined Fraser fir 

seedling dens i ty and shoot growth spec i f ically for 

associ ations with Rubus canadensi s  to determine i f  Rubus 

interferes with f i r  regeneration . The approach was to 

characterize the seedling-understory environment and to 

test for effects of Rubus removal on fir seedling growth . 
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G .  Obj ec tives and Hypotheses 

Thi s  study had two primary obj ectives : 

( 1 )  to determine i f  signi f icant associations exi st among 

density and shoot growth of Fraser fir seedlings , 

density/biomass of Rubus canadens is , canopy c losure , 

and soil chemical parameters , and 

( 2 )  to determine the effects of removal of aboveground 

Rubus stems on shoot growth of f i r  seedlings . 

For obj ective ( 1 ) , e leven principal hypotheses were 

tes ted : 

( a )  Total dens ity of fir seedlings is negatively 
associated with amount o f  canopy c losure . 

( b )  Density o f  fi r seedlings established after 
overs tory mortality is negative ly associated with 
amount of canopy c losure . 

( c )  Rubus density and aboveground biomass are 
negative ly as soci ated with amount of canopy 
c losure . 

( d ) Total dens ity of f i r  seedlings is negative ly 
associated with Rubus density and aboveground 
biomass .  

( e )  Density of fir seedlings established after 
overs tory mortality is negatively associated with 
Rubus density and biomass .  

( f )  Fir terminal and lateral shoot lengths of recent 
years ' growth are negatively as soc iated with 
amount of canopy c losure . 
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( g )  Fir terminal shoot lengths o f  recent years ' 
growth are positively associated with the dens ity 
o f  f i r  seedlings themselves . 

( h )  Fir lateral shoot lengths o f  recent years ' growth 
are negatively assoc iated with the dens ity of f ir 
seedlings themse lve s . 

( i )  Fir terminal and lateral shoot lengths of recent 
years ' growth are negatively as sociated with 
Rubus dens ity and biomass . 

( j )  Fir terminal and lateral shoot lengths of recent 
years ' growth are posi tive ly as sociated with soil 
nutrient concentrations . 

( k )  Rubus density and biomass are pos itive ly 
associated with soil nutr ient concentrations . 

For obj ective ( 2 ) , the primary hypothes i s  tes ted was 

that 1 9 8 8  f i r  shoot lengths would be greater in the Rubus -

removal treatment than in an undis turbed control .  Because 

Fraser fir height growth has responded pos itive ly to 

increased l ight levels ( Hines ley 1 9 8 6 ) and reduced 

vegetative competition ( Warren et al . 1 9 8 7b ) ,  removal of 

Rubus canadens is canes may cause increased seedling growth . 

Positive effects of Rubus-removal on herbaceous species 

cove r , woody species dens ities , and soil nutrient 

concentrations were also hypothesi zed and tes ted . 
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CHAPTER 2 

METHODS 

A .  Field Methods 

1 .  Over story Composition 

Study site . Mount Co llins in the Great Smoky 

Mountains National Park was the study area ( Figure 1 ) . 

That area was chosen because of accessibility , topographic 

uniformity , and prior history of vegetation study ( Oosting 

and B i l l ings 1 9 5 1 ; Busing 1 9 8 5 ; White et al . 1 9 8 5 ; Bus ing 

et al . 1 9 8 8 ) . Ade lgid-caused mortality of overstory fir 

occurred primarily during 1 9 8 2  and 1 9 8 3  ( White et al . 1 9 8 5 ; 

R .  T .  Bus ing , personal communication ) .  Nearly a l l  large 

f irs were ki l led , foliage and smaller branches have fallen , 

and the forest canopy is discontinuous . 

Most of the Mount Co llins area is unlogged spruce - fir 

forest , but the northwest- facing s lope ( Figure 1 )  has been 

partially logged . Corporate logging prior to Park 

establi shment was extens ive in the Little River drainage , 

into which the northwest-facing s lope drains ( Pyle 1 9 8 5 , 

1 9 8 8 ) . Maps prepared by Pyle ( 1 9 8 5 ) show approximate 

boundaries of pre-Park dis turbances . According to Map 3 6  

o f  her set , all o f  the present study area should be in 
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Figure 1 .  Map of Mount Col lins , GSMNP , Clingmans Dome 
Quadrangle , USGS 7 . 5  minute topographic series . 
Straight line s  are locations of transects used . 
Each transect is 5 0 0  m long . Dots are locations 
of control and Rubus -removal plots . Elevations 
are in meters . 
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unlogged spruce- fi r  forest . However , numerous cut stumps , 

f ew large spruce , and many large ( now dead ) fir were 

observed on the northwest- facing s lope . Fir dominance is 

an expected consequence of logging ( Weaver 1 9 7 2 ; R. T .  

Bus ing , personal communication ) .  Some cutting in the study 

area certainly occurred , although poss ibly not the " heavy 

cut " indicated for surrounding areas by Pyle ' s  map . 

Transect locations . On Mount Col lins , four transects 

were oriented along arbitrary compass bearings across the 

s lope . Locations were determined from a topographic map as 

areas of uni form topography and s imilar e levation , but of 

different aspect ( Figure 1 ,  Table 1 ;  transects are labe led 

according to the ir aspect ) .  Transects NE , sw , and SE were 

located in unlogged spruce- f ir forest apparently 

undis turbed except for ade lgid-caused mortality . Transect 

NW was located in forest which was logged to some extent . 

Canopy measurements . Each transect was 5 0 0  m long , 

with sample points located at 50  m intervals . Each point 

served as the center of a 5 - f actor metric prism plot used 

to characterize the canopy stratum . Diameter at breast 

height ( DBH ; breast height = 1 3 7  em ) of each woody stem , 

a live or dead , reaching breast he ight in the pr ism plot was 

measured to the nearest 0 . 1  em . Slope percent and aspect 
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Table 1 .  Site characteristics and sampling dates of 
transects used on Mount Collins . 

Transect 

NE NW sw 

Aspect (0) 3 0  3 1 0  2 3 0  

S lope ( % )  8 - 2 5  2 5 - 3 5  3 0 - 6 5  

Elevation ( m )  1 7 8 0 - 1 8 0 0 - 1 7 6 0 -
1 8 1 0  1 8 2 0  1 7 9 0  

SE 

1 3 5 

3 5 - 8 0  

1 7 9 0 -
1 8 3 0  

Sample date 6 / 2 4 / 8 8 - 7 / 1 / 8 8 - 7 / 7 / 8 8 - 7 / 1 6 / 8 8 -
6 / 2 8 / 8 8  7 / 5 / 8 8  7 / 1 5 / 8 8  7 / 2 0 / 8 8  
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were determined for each plot . Canopy c losure was 

estimated using a convex mirror painted with regularly 

spaced dots . The mirror was viewed from the waist , and the 

proportion of dots ( of 1 5 ) covered by canopy foli age was 

an estimate of canopy c losure . The mirror was used twice 

at each sample point , once facing north and once fac ing 

south . 

2 .  Seedling-Understory Characteriz ation 

Unders tory plot measurements . On the ups lope and 

downs lope s ides of each sample point , a 1 x 1 m plot was 

placed 0 . 5  m away from the point to sample the understory . 

Plot s i zes were not corrected for s lope because mos t  plots 

were located on gentle ( < 4 0 % ) s lopes and corrections would 

have been minimal ( < 1 0 % ) . Because s lope correction 

involves enlarging plot s i zes , some parameters ( e . g . , 

seedling densities ) may have been s lightly underestimated . 

I n  each plot , DBH of each living woody stem >1 3 7  em tall 

was measured . Woody stems �1 3 7  em tall ( except Rubus 

canadensis ) were counted and assigned to height c lasses . 

Height c lasses were : �2 5 ,  2 6 - 5 0 , 5 1 - 7 5 , 7 6 - 1 0 0 , and 1 0 1 -

1 3 7  em . Germinal seedlings ( those emerging during the 

sampling season ) were di stinguished from others in the 

smallest height c lass only in transect SE . Rubus canes 

were counted and their basal diameters were measured with a 
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caliper to the nearest 0 . 1  em . No distinction was made 

between primocanes and f loricanes . Percent cover of plot 

area for each vascular herb species was estimated to the 

nearest 1 0  percent . Spec ies with cover < 1 0 %  were ass igned 

a cover of 5 %  for data analys i s  because more precise vi sual 

estimates were not considered pos s ible . Cover of lichens , 

bryophytes ( co l lectively ) ,  li tter ( dead leaves , twigs , 

etc . ) ,  exposed rock , dead log ( > 5 em diameter ) ,  dead root , 

live root , exposed mineral soi l , and ( in two transects ) 

animal rooting were all estimated as above . A total of 4 0  

sample points ( 8 0 1 x 1 m plots ) was used . 

Rubus biomas s  estimates . S i ze-biomass relationships 

in Rubus cane s were determined from bas al diameter 

measurements of 1 1  f lor icanes and 9 primocanes chosen to 

cover the range of the most frequent cane diameters ( 0 . 3 -

1 . 0  em basa l  diameter ) .  Canes were cut at ground level , 

dried in a forced-air oven for 2 4  hours at 7 0 - 8 0° c. , and 

weighed . Separate regress ion equations ( REG procedure , SAS 

I nstitute 1 9 8 7 ) of dry weight on basal diameter were 

c alculated for f loricanes and primoc anes ( Figure 2 ,  Table 

2 ) . For all canes , exp lained variation us ing a log1 0 - log1 0  

regress ion ( r 2 
= 0 . 8 0 )  was greater than that using a 

normal-normal regression ( r 2 
= 0 . 5 9 ) . A composite equation 

for all canes was used to estimate Rubus biomass in the 
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Table 2 .  Linear regress ion stati stics for Rubus canadens i s  
biomas s  a s  a function of basal diameter , derived 
f rom log ( 1 0 ) trans formations of both biomass ( g  
dry weight ) and diameter ( em ) . Regres s ion 
coe f f ic ients ( b )  are all signi ficantly different 
from zero ( P  < 0 . 0 1 ) . n = number of canes . 

n b y-intercept 

Floricanes 1 1  2 . 9 4 1 .  7 4  0 . 9 1 

Primocanes 9 2 . 0 5 1 .  2 6  0 . 8 8 

All canes 2 0  2 . 5 8 1 .  5 5  0 . 8 0 
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transect plots , since the di stinction between cane types 

was not made in the plots . 

Fir seedling measurements .  Seedling growth was 

measured us ing lengths of annually-produced shoots . 

" Shoot "  is de f i ned here as that stem tis sue which emerges 

from an overwintering bud , elongates , and terminates in a 

new overwintering bud . Fraser fir normal ly produces only 

one inc rement o f  shoot growth per growing season ( Wise et 

a l . 1 9 8 5 ) .  Each year's shoots are recogni zable , in most 

cases , for at least f ive years . Shoot lengths are eas i ly 

and non-destruc tive ly measurable and can usua l ly be cross

compared among seedlings by each year's growth . These 

comparisons rest on the as sumption that success ive shoots 

represent success ive years ' growth . Although termina l bud 

abortion may occur , lateral shoots generally acquire apical 

dominance ( Hine s ley 1 9 8 2 ; L .  E .  Hines ley , personal 

communication ) ,  thus preserving a continuous sequence of 

annual growth . 

Fraser fir seedlings in the transect plots were 

recorded separate ly . Each seedling , alive or dead , was 

assigned to a height c lass . Its terminal shoot lengths of 

1 9 8 7  through 1 9 83 growth were measured to the nearest 0 . 5  

em . The length of a shoot was recorded as the di stance 

f rom the base of one set of bud scale scars to the base of 

the next set . Lateral shoot lengths of north-fac ing and 
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south- facing branches were determined in the same manner . 

To standardize the choice of lateral shoots to be measured , 

the fol lowing criterion was used : the longest shoot series 

on the lowest and northernmos t / southernmost lateral branch 

not older than 1 9 83 ( see Figure 3 ) . The seedling was also 

c lass i f ied by substrate type ( forest f loor , dead log , dead 

root , live root1 exposed rock ) , surf ace type ( l itter or 
----------- -------------------------------� 
bryophytes ) ,  substrate form ( f lat- leve l , f lat- s loped , 

convex , concave ) ,  evidence of ade lgid damage ( gouting ) , 

other damage ( brows ing , mechanical damage , etc . ) ,  and 

whether the seedling was les s  than f ive years old ( s ince 

overstory mortality occurred about 1 9 83 ) . 

Soil sampling . From each pair of 1 x 1 m plots , a 

composite soil sample was taken with a soil tube . Samples 

were taken only from the top 25 em of mineral soi l . 

Stone s , bryophytes , and large pieces of litter were 

discarded . Soil samples were placed in paper bags , air 

dried for several weeks , and analyzed by the Univers ity of 

Tennessee Soi l Testing Laboratory in Nashvi l le . Analyses 

inc luded leve ls of water pH , phosphorus ( P ) , potass ium ( K ) , 

and calc ium ( Ca ) . Mineral nutrient leve ls were expres sed 

in concentrations of parts per mi l lion ( ppm ) . To estimate 

the reliability of soil ana lyses , f ive samples were halved 

and each half submitted separately . 
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Figure 3 .  Fraser fir seedling , showing terminal and 
lateral shoot lengths measured . 
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3 .  Rubus -Removal Plots 

Plot locations . A topographica l ly uniform site was 

chosen on a gentle , north-fac ing s lope of Mount Collins 

( Figure 1 ,  page 2 0 ) for a test of effects of Rubus removal 

on growth of fir seedlings and other understory species . 

Fourteen 2 x 2 m p lots were located attempting to apply 

these c riteri a : a substantial number of Rubus stems, at 

least f ive fir seedlings , and no woody stems > 13 7  em tal l . 

Three of these plots were located on a separate s ite nearby 

( Figure 1 ,  page 2 0 ) . Because si tes meeting these criteria 

were rare , two plots contained only four fir seedlings , and 

one plot contained a sma l l  spruce about 1 . 5  m tall . More 

f i r  seedlings per plot were desi red , but fir seedlings and 

Rubus were seldom found together in abundance .  

Ini tial plot measurements .  Plots were initially 

eva luated during the period June 1 - 1 7 , 1 9 8 8 . By this time , 

c anopy , shrub , and Rubus foliage was we ll developed . Much 

foliage of herbaceous vegetation had emerged , and 

apparently spring growth was quite rapid in the study area . 

Most Fraser fir seedlings had broken dormancy but had not 

yet begun shoot elongation . This stage of deve lopment 

changed little over the first evaluation period . 

Each plot was delimi ted by wooden stakes at the 
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corners . Shrubs , herbs , fir seedlings , etc . were measured 

identically to those in the transect plots . Germinal 

seedlings were not distinguished f rom others < 2 5  em ta ll . 

After plot measurement , the f l ip of a coin was used to 

determine i f  Rubus was to be removed . Rubus canes were cut 

with a kni fe at ground leve l and discarded at a distance 

from the plot . A composite soil sample was taken from each 

plot for analyses of the same chemical parameters as 

samples from the transect plots . Seven plots received the 

Rubu s-removal treatment and seven plots were left 

undisturbed as contro ls . 

Final plot measurements .  During the per iod August 1 -

9 ,  1 9 8 8 , all plots were reevaluated in an identical 

f ashion , and in the same sequence , as before . Germinal 

seedlings were distingui shed in the reevaluation . At this 

time , the appearance of new vegetation of most spec ies had 

stopped . Only Rubus and a fern , Athyrium asplenioides , 

showed recently emerged stems or foliage . Fir seedlings 

had completed most if not all shoot e longation and had 

begun to deve lop overwinter ing buds . Soi l s amples were 

again taken from each plot and submitted to the Soi l 

Testing Laboratory for analyses of the same parameters as 

other soil samples . Five samples were halved and each half 

submitted separate ly to estimate reliabi lity of ana lyses . 
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B .  Data Analys is Methods 

1 .  Overstory Compos ition 

Canopy measurements , inc luding canopy c losure , basal 

area , and dens i ty ,  were summarized for each transect . 

Basa l  area and density for each species were calculated 

according to the methods of Husch et a l . ( 1 9 8 2 ) and Avery 

and Burkhart ( 1 9 83 ) . 

2 .  Seedling-Unders tory Characteri z ation 

Choice of analytical methods . The distributions o f  

most variables were highly non-normal and were not 

subs tantially affected by transformations suggested by 

Sokal and Rohl f  ( 1 98 1 ) . Variances were extreme ly 

heterogenous , many data cons isted of zero counts , and many 

differences among plots were slight ( e . g . , 2 seedlings 

versus 3 seedlings ) .  Because of the i rregular nature of 

the data , most data ana lyses used nonparametric statistics , 

which are calculated using the rank values of the data 

ins tead of the raw data ( Sokal and Rohlf 1 9 8 1 ) . Analys es 

used Ve rs ion 6 . 0 2 of the Stati stical Analys is System ( SAS 

Institute 1 9 8 5 , 1 9 8 7 ) . The 0 . 0 1 level of confidence was 

used in interpretation of all statistical tests . 
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Associations of variables . The e leven hypotheses 

regarding assoc i ations among seedling dens ity/growth , 

c anopy c losure , Rubus density/biomass , and soi l chemica l  

parameters were a l l  tested us ing Spearman rank corre lations 

( FREQ procedure , SAS Institute 1 9 8 5 ) .  

Substrate/ surface type distributions . Distributions 

of seedlings among substrate and surface types were tested 

for departures from randomnes s  us ing chi - square ana lyses 

( Sokal and Rohl f  1 9 8 1 ) . Expected distributions were 

generated using mean percent cover values of each substrate 

and surface type for all 8 0  plots ( analogous to Collins and 

Pickett 1 9 8 8 ) . Di rect estimates o f  cover of dead logs , 

dead roots , live roots , exposed rock , litter , and 

bryophytes were obtained ; mean cover of forest f loor 

substrate was obtained by subtrac ting cover of any other 

substrate type from 1 0 0 %  in each plot . 

Substrate form/damage type distributions . 

Distributions of seedlings among substrate forms could not 

be tested in any fashion , since no estimates of percent 

cover were made for the se attributes . No � priori 

e stimates of seedling di stribut ion among damage types 

( ade lgid , mechanica l , etc . ) were pos s ible , because other 
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data of these types do not exist for Fraser fir seedlings . 

Shoot growth trends . Overall growth trends in Fraser 

fir seedlings were examined by calculating mean shoot 

lengths of each year's growth and by determining 

proportions of seedlings showing increases ,  dec reases , and 

no changes of each year's growth over the previous year ' s  

growth . 

3 .  Rubus-Removal Plots 

Change s in understory and soi l parameters . Analyses 

of results from experimental removal o f  Rubus candensis 

c anes cons isted of pai rwise comparisons of changes in 

removal plots with changes in control plots . Changes 

tested inc luded coverages of herbaceous spec ies , dens ities 

of woody plants , and chemical parameters of soil samples .  

Analyses cons isted of Wilcoxon rank sum tests ( NPAR1WAY 

procedure , SAS I ns titute 1 9 8 7 ) , which are ana logous to 

Student's !-tests ( Sokal and Rohl f  1 9 8 1 ) . The rank sum 

test was chosen because of small sample sizes ( n  = 7 ) . 

Changes in fir seedling growth . Current growth 

response of fir seedlings in each treatment was tested two 

ways : ( 1 )  direct comparisons of 1 9 8 8  terminal and lateral 

shoot lengths between treatments ( using rank sum tests ) ,  
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and ( 2 )  comparisons of product-moment correlation 

coef f i c ients between 1 9 8 7  and 1 9 8 8  shoot lengths of 

individual seedlings . 

3 5  



CHAPTER 3 

RESULTS 

A .  Overs tory Compos ition 

Mean canopy c losure was highest on the SE s lope ( Table 

3 ) . That s lope also had the highe s t  spruce basal area and 

dens ity ( Tables 4 and 5 ) . The NW s lope , which had been 

logged , had the greatest total dead f i r  basa l  area and 

density ( Tables 4 and 5 ) . Canopy c losure , spruce basal 

area , and spruce dens ity were all lowest on that s lope . 

Mean total basal area for transects NE , sw , and SE ( a ll 

unlogged ) was 54 m2 /ha , 4 0 %  of which was dead . Mean total 

density for the respective transects was 2 2 23 stems /ha , 5 0 %  

of which was dead . 

B .  Seedling-Understory Characteri z ation 

1 .  Herbaceous Species Compos ition 

A tota l o f  23 herbaceous taxa was descr ibed in the 

transect plots ( Table 6 ) . No attempt was made to 

dif ferentiate spec ies of bryophytes , although they were 

c learly important components of the ground layer of the 

study area , particularly on the NE s lope . Ferns , inc luding 
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Table 3 .  Mean percent c anopy closure ca lculated for 
the Mount Collins transects . n = 1 0  sample 
points for all value s . 

Transect 

NE 

NW 

sw 

SE 

Canopy c losure ( % )  

3 7  

6 1 . 3  

5 8 . 3  

6 8 . 3  

93 . 7  



Table 4 .  Basal areas ( in m2 / ha ) o f  tree spec ies ( �1 . 3 7  m 
tal l ) in 5-factor metric prism plots of the Mount 
Collins transects . n = number of prism plots . 

Transect 

NE NW sw SE Mean 

Species n= 1 0  1 0  1 0  1 0  4 0  

Abies fraseri 

Live 0 . 5  0 0 . 5  3 . 0  1 . 0  
Dead 1 9 . 0  3 1 . 0  1 2 . 0  1 7 . 0  1 9 . 8  

Acer spicatum 

Live 0 1 . 0  0 0 . 5  0 . 4  
Dead 0 0 0 0 0 

Aesculus octandra 

Live 0 0 0 . 5  0 0 . 1  
Dead 0 0 0 0 0 

Betula lute a 

Live 4 . 5  1 0 . 0  8 . 0  7 . 5  7 . 5  
Dead 2 . 5  1 . 5  1 . 5  0 1 . 4  

Pice a rubens 

Live 23 . 0  7 . 0  1 8 . 0  3 0 . 5  1 9 . 6  
Dead 5 . 5  0 5 . 5  1 . 0  3 . 0  

Prunus pensylvanica 

Live 0 1 . 5  0 0 0 . 4  
Dead 0 1 . 0  0 . 5  0 0 . 4  

Serbus americana 

Live 0 0 1 . 0  0 0 . 3  
Dead 0 0 0 0 0 

Total Live 2 8 . 0  1 9 . 5  2 8 . 0  4 1 . 5  2 9 . 3  
Dead 2 7 . 0  33 . 5  1 9 . 5  1 8 . 0  2 4 . 5  
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Table 5 .  Densities ( in stems /ha ) o f  tree species ( �1 . 3 7  m 
tall ) in 5 - f ac tor metric prism plots of the Mount 
Collins transects . n = number of prism plots . 

Transect 

NE NW sw SE Mean 

Spec ies n= 1 0  1 0  1 0  1 0  4 0  

Abies fraseri 

Live 3 9 8  0 6 63 1 6 0  3 0 5  
Dead 1 6 2 2  1 7 83 4 7 5  93 6 1 2 0 4  

Acer spicatum 

Live 0 9 6 7  0 3 1 4  3 2 0 
Dead 0 0 0 0 0 

Aesculus octandra 

Live 0 0 1 0 < 1  
Dead 0 0 0 0 0 

Betula lute a 

Live 23 3 6 7  83 0 4 0 8  4 0 7  
Dead 9 6 1  2 4 2  0 7 8  

Picea rubens 

Live 1 1 1  63 1 2 7  2 4 2  13 6 
Dead 1 8  0 2 5  3 1 2  

Prunus pensylvanica 

Live 0 2 9  0 0 7 
Dead 0 3 0  1 0  0 1 0  

Serbus americ ana 

Live 0 0 53 0 13 
Dead 0 0 0 0 0 

Total Live 53 2 1 4 2 6  1 6 7 4  1 1 2 4  1 1 8 9  
Dead 1 6 4 9  1 8 7 4  7 5 2  93 9 13 0 4  

3 9  



Table 6 .  Mean percent cover of herbaceous taxa s ampled in 
the Mount Col lins transects . n = number of 1 x 1 
m plots . 

Transect 

NE NW sw SE Mean 

Taxon n= 2 0  2 0  2 0  2 0  8 0  

Bryophytes 4 2 . 5  1 8 . 3  1 9 . 5  2 1 . 3  2 5 . 4  

Athyrium 
asp1enioides 1 6 . 8  2 0 . 0  2 0 . 0  23 . 0  2 0 . 0  

DryoEteris spp . 1 2 . 8  1 5 . 8  5 . 0  6 . 5  1 0 . 0  

Oxa l i s  montana 7 . 0  1 2 . 5  1 1 . 3  6 . 0  9 . 2  

Carex spp . 1 . 3 4 . 5  3 . 3 1 4 . 5  5 . 9  

Cacalia ruge lia 6 . 8  3 . 3 5 . 3 4 . 5  5 . 0  

Lichens 4 . 8  3 . 5  3 . 0  3 . 8  3 . 8  

Clintonia 
borealis 0 . 3 7 . 8  0 . 3 0 . 5  2 . 2  

Aster acuminatus 0 . 3 3 . 0  4 . 0  0 . 8  2 . 0  

Dennstaedtia 
Euncti lobula 0 0 0 . 3 7 . 8  2 . 0  

Other gramino ids 0 2 . 5  1 . 8  1 . 5  1 . 5  

Solidago 
glomerata 0 2 . 0  1 . 8  2 . 0  1 . 5  

Ar isaema 
triEhyllum 0 2 . 3 0 . 5  1 . 3  1 . 0  

LycoEodium 
luc idulum 0 0 0 . 8  2 . 3 0 . 8  

Aster chloroleEis ?  0 1 . 0  0 . 5  0 0 . 4  

Houstonia 
serEyllifolia 0 0 0 . 8  0 . 5  0 . 3 

4 0  



Table 6 .  Continued . 

Transect 

NE NW sw SE Mean 

Taxon n= 2 0  2 0  2 0  2 0  8 0  

Viola sp . 0 0 . 5  0 . 5  0 0 . 3 

Laportea 
canadensis 0 0 . 3  0 0 . 5  0 . 2  

Tr i llium sp . 0 . 5  0 0 0 . 3 0 . 2  

Impatiens sp . 0 0 . 5  0 0 0 . 1  

EuEatorium 
rugosum 0 0 0 0 . 3 < 0 . 1  

Medeola 
virginiana 0 . 3 0 0 0 < 0 . 1  

Stachys 
c lingmani i 0 0 . 3  0 0 < 0 . 1  

Total 93 . 4  9 8 . 1  7 8 . 7  9 7 . 4  9 1 . 9  

4 1  



Athyrium asplenioides and Dryopteris spp . , covered 

relative ly large areas of the forest f loor . Oxalis montana 

cover was highest on west-fac ing s lopes ( NW  and SW ) . Carex 

spp . formed subs tantial ground cover in some areas , 

particularly on the SE s lope . Other graminoids were 

infrequent and did not contribute greatly to herbaceous 

cover in the study area . Total herbaceous cover was lowe st 

on the sw s lope . 

2 .  Woody Species Composition 

Ten woody species ( �13 7 em tall ) were found in the 

transect plots ( Table 7 ) . Both spruce and fir seedlings 

were most abundant on the NE s lope . Spruce seedlings were 

also quite numerous on the SE s lope . Separate counts of 

germinal spruces made on transect SE showed that these made 

up fully 7 6 %  of spruce seedlings on that transect .  Dens ity 

of Rubus canadens is was highest on the SW slope and lowe st 

on the NE s lope . Total density of woody stems �13 7  em tall 

was highest on the NE s lope . 

3 .  Fir Seedling Population Characteristics 

Data from Whi te et al . ( 1 9 8 5 ) indicate a fir seedl ing 

( s tems < 2  m tall ) density of about 2 4 , 0 0 0 /ha ( 2 . 4  stems /m2 ) 

on the northeas t - f ac ing s lope of Mount Co llins . In the 
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Table 7 .  Mean densities ( stems /m2 ) of woody spec ies < 13 7  
em tall sampled i n  the Mount Col lins transects . 
n = number of 1 x 1 m plots . 

Transect 

NE NW sw SE Mean 

Species n= 2 0  2 0  2 0  2 0  8 0  

Picea rubens 2 0 . 6  2 . 3 4 . 3 1 5 . 2  1 0 . 6  

Rubus 
canadensis 2 . 1  5 . 9  8 . 5  3 . 3 5 . 0  

Vaccinium 
e rythrocarpum 3 . 9  1 . 6  2 . 7  5 . 9  3 . 5  

Abies fraseri 8 . 2  1 . 6  1 . 5  2 . 2  3 . 4  

Betula lutea 2 . 2  1 . 5  1 . 8  1 . 3  1 . 7  

Viburnum 
a lnifolium 0 . 5  1 . 2  0 . 8  0 . 4  0 . 7  

Serbus americana 0 0 . 3 0 . 8  0 . 2  0 . 3  

Acer spicatum 0 0 . 4  0 . 1  0 . 1  0 . 2  

Prunus 
pensylvanica 0 0 . 3 0 . 1  0 . 1  0 . 1  

Sambucus Eubens 0 0 0 . 2  0 < 0 . 1  

Total 5 6 . 4  1 5 . 1  2 0 . 8  2 8 . 7  3 0 . 3  

43 



present study , the NE s lope ( Table 7 )  showed a fir seedling 
. 2 dens ity of 8 . 2  stems /m . If transect NE is representative 

of the area studied by White et al . ( 1 9 8 5 ) ,  then a recent 

increase in fir seedl ing density is evident at that site . 

In the present study , fir seedling density ranged from 0 to 

7 2  stems /m2 . This peak dens ity occurred on the NE s lope . 

The height c lass structure of fir seedlings showed a 

preponderance of seedlings �2 5 em tall , except on transect 

SW ( Table 8 ) . Transect SW also showed the lowe s t  total 

number of fir seedlings . Thirty-e ight percent of fir 

seedlings were less than f ive years o ld ( Table 9 ) . Only 

two f ir seedlings less than f ive years old were found on 

transect sw . 

4 .  Substrate /Microhabitat Composi tion 

Substrate and microhabitat patterns showed relative ly 

low litter cover on the NE s lope ( Table 1 0 ) .  Dead logs 

made up a smal l  fraction of the forest f loor habitat . 

Animal root ing occurred primarily on the NW s lope and was 

conf ined to four plots on the NW s lope and one plot on the 

SW s lope . 
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Table 8 .  Number o f  live Fraser f i r  seedlings in each 
height c lass in the Mount Co llins transects . 
n = number of 1 x 1 m plots from which each 
dis tr ibution is derived . 

Transect 

NE NW sw SE 

Height c lass n= 2 0  2 0  2 0  2 0  

< 2 5  em 1 5 5  2 5  1 2  4 1  

2 6 - 5 0  6 3 1 2  0 

5 1 - 7 5  0 4 4 2 

7 6 - 1 0 0  0 1 1 0 

1 0 1 - 13 7  1 0 0 0 

Total 1 6 2  33 2 9  43 

4 5  
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8 0  
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2 1  
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Table 9 .  Number of live Fraser fir seedlings less than 
f ive years old and f ive or more years o ld in the 
Mount Collins transects . n = number of 1 x 1 m 
p lots from which each distribution is derived . 

Number less than Number 5 or more 
Transect n 5 years old years old 

NE 2 0  6 0  1 0 2  

NW 2 0  1 5  1 8  

sw 2 0  2 2 8  

SE 2 0  2 4  1 8  

Total 8 0  1 0 1  1 6 6  

4 6  



Table 1 0 . Mean percent cover of substrate and surf ace 
types in the Mount Collins transects . n = 
number of 1 x 1 m plots . 

Transect 

NE NW sw SE Mean 

n= 2 0  2 0  2 0  2 0  8 0  

Litter 5 2 . 0  7 9 . 0  7 5 . 0  7 5 . 5  7 0 . 4  

Dead log 1 4 . 3  4 . 5  6 . 3 9 . 0  8 . 5  

Dead root 3 . 4  0 . 8  5 . 5  2 . 5  3 . 1  

Exposed rock 0 1 . 0  4 . 8  1 . 0  1 . 7  

Live root 0 . 8  1 . 5  0 . 5  2 . 5  1 . 3  

Animal rooting 0 2 . 3 0 . 3 0 0 . 7  

Mineral soi l 0 . 5  0 0 . 3 0 0 . 2  
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5 .  Rubus Biomass Estimates 

Estimated aboveground biomass of Rubus canadens is 

ranged from 0 t o 8 3 7  g dry weight per 1 m2 plot , with a 

mean of 1 0 6 . 6  g ( Table 1 1 ) .  Mean biomass was highest on 

the SW s lope and lowe st on the SE s lope . 

6 .  Associations Among Vegetation Variables 

A Spearman rank correlation matrix among se lected 

vegetation variables appears in Table 1 2 . Test results for 

the f irst nine hypotheses presented in Chapter 1 

( Obj ectives and Hypotheses , pages 1 7  and 1 8 ) are described 

be low . 

( a ) The rank correlation between total fir density 

and overs tory canopy c losure was not signi f icant ; a s light 

positive tendency was found . 

( b ) The rank correlation between dens ity of seedlings 

less than f ive years old and canopy c losure was not 

s igni ficant ; as in ( a ) , a s light positive tendency was 

found . 

( c )  Density and aboveground biomass of Rubus 

canadens is were not signi f icantly corre lated with canopy 

c losure ; negative tendencies were found . 
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Table 1 1 . Mean estimated aboveground biomass of Rubus 
c anadens is in the Mount Co llins transects . 
Estimates are based on regres s ion stati stics for 
all cane s , Table 2 ,  page 2 6 . n = number of 1 x 
1 m plots . 

Transect n Aboveground Biomass ( g )  Range ( g )  

NE 2 0  8 1 . 3  0 - 8 3 7  

NW 2 0  1 0 7 . 1  0 - 5 2 1  

sw 2 0  1 8 7 . 2  0 - 7 5 1  

SE 2 0  5 0 . 9  0 - 4 2 1  

Mean 8 0  1 0 6 . 6  

4 9  



Table 1 2 . Spearman rank corre lations ( with s ample sizes ) 
among selected vegetation variables measured in 
the Mount Coll ins transects . Correlations with 
* are signif icant at the 0 . 0 1 leve l . 

Canopy Total fir Rubus Rubus 
c losure dens ity dens ity biomass 

* 
Total f i r  0 . 1 8 3  - 0 . 3 7 6  - 0 . 4 2 6  

density ( 8 0 )  ( 8 0 )  ( 8 0 )  
( n )  

* * 
Density of 0 . 1 3 8  0 . 7 4 1  - 0 . 3 6 5  - 0 . 4 3 9  
f ir < 5  yrs ( 8 0 )  ( 8 0 )  ( 8 0 )  ( 8 0 )  

o ld 

Rubus - 0 . 1 7 2  0 . 8 8 9  
density ( 8 0 )  ( 8 0 )  

Rubus - 0 . 2 5 0  
biomass ( 8 0 )  

* * 
Terminal - 0 . 2 2 4  - 0 . 2 8 3  0 . 1 7 4  0 . 1 0 7  
8 7  growth ( 2 6 4 ) ( 2 6 4 ) ( 2 6 4 ) ( 2 6 4 ) 

* * 
Terminal - 0 . 0 2 7  - 0 . 4 5 3  0 . 3 9 6 0 . 3 4 9  
8 6  growth ( 2 6 7 ) ( 2 6 7 ) ( 2 6 7 ) ( 2 6 7 ) 

* * 
Terminal 0 . 0 5 9  - 0 . 4 0 5  0 . 3 5 2  0 . 3 7 0  
8 5  growth ( 2 6 0 ) ( 2 6 0 ) ( 2 6 0 ) ( 2 6 0 ) 

* * 
Terminal 0 . 1 4 1  - 0 . 3 5 4  0 . 3 4 4  0 . 3 4 3  
8 4  growth ( 2 3 9 ) ( 2 3 9 ) ( 2 3 9 ) ( 2 3 9 ) 

* * 
Terminal 0 . 1 4 4  - 0 . 2 8 7  0 . 3 0 9  0 . 3 6 7  
8 3  growth ( 1 5 0 ) ( 1 5 0 ) ( 1 5 0 ) ( 1 5 0 ) 

5 0  
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* 

* 

* 

* 

* 
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Table 1 2 . Continued . 

N - lateral 
87 growth 

N- lateral 
8 6  growth 

N- lateral 
85 growth 

N- lateral 
8 4  growth 

N- lateral 
83 growth 

S - lateral 
87 growth 

S - lateral 
8 6  growth 

S - lateral 
8 5  growth 

S - lateral 
8 4  growth 

S - lateral 
83 growth 

Canopy 
c losure 

- 0 . 1 5 0  
( 1 0 5 ) 

0 . 4 4 9  
( 6 3 )  

0 . 3 9 1  
( 3 6 ) 

0 . 6 7 3  
( 2 6 )  

0 . 5 4 0  
( 1 4 )  

- 0 . 2 3 0  
( 1 1 9 ) 

0 . 2 1 4  
( 7 4 )  

0 . 4 3 0  
( 4 0 )  

0 . 5 5 1  
( 3 2 )  

0 . 6 0 9  
( 1 5 ) 

* 

* 

* 

* 

Total fir 
dens ity 

- 0 . 1 0 2  
( 1 0 5 ) 

- 0 . 0 1 8  
( 6 3 )  

0 . 0 4 8  
( 3 6 )  

0 . 4 6 0  
( 2 6 )  

0 . 3 1 3  
( 1 4 )  

0 . 0 5 1  
( 1 1 9 ) 

- 0 . 0 2 1  
( 7 4 )  

- 0 . 0 6 6  
( 4 0 )  

0 . 2 4 9  
( 3 2 ) 

0 . 5 5 5  
( 1 5 ) 

5 1  

Rubus 
density 

0 . 0 7 6  
( 1 0 5 ) 

0 . 0 5 1  
( 6 3 )  

0 . 0 0 6  
( 3 6 )  

- 0 . 0 1 7  
( 2 6 )  

- 0 . 0 4 2  
( 1 4 )  

- 0 . 0 8 5  
( 1 1 9 ) 

0 . 2 1 4  
( 7 4 )  

0 . 1 1 7  
( 4 0 )  

0 . 1 8 1  
( 3 2 )  

- 0 . 0 7 4  
( 1 5 )  

Rubus 
biomass 

0 . 0 2 6  
( 1 0 5 ) 

0 . 1 4 1  
( 6 3 ) 

0 . 0 6 2  
( 3 6 ) 

0 . 0 3 9  
( 2 6 )  

0 . 0 3 6  
( 1 4 )  

- 0 . 0 2 7  
( 1 1 9 ) 

0 . 3 0 4  
( 7 4 )  

0 . 2 3 3  
( 4 0 )  

0 . 2 3 5  
( 3 2 )  

0 . 0 0 1  
( 1 5 )  

* 



( d )  Signif icant negative rank corre lations were found 

between Rubus density/aboveground biomass and total dens ity 

o f  f ir seedlings . A graph of fir dens ity against Rubus 

density ( Figure 4 )  i l lustrates the negative trend in 

variabi lity with increasing Rubus dens ity .  Plots with more 

than 10 Rubus stems per m2 rare ly contained any f i r  

seedlings . 

( e )  Signif icant negative rank correlations were found 

between dens ity of fir seedlings less than five years old 

and Rubus dens ity/ aboveground biomass . The magnitudes of 

the se correlations were s imi lar to those in ( d ) , and 

negative trends in variability of fir density were nearly 

identical to that in Figure 4 .  

( f ) Five correlations between fir seedling shoot 

lengths and canopy c losure were s igni f icant . These were 

either weak ( in the case of terminal 1 9 8 7  growth ) or based 

on small sample s i zes ( in the cases of lateral growth ) .  

( g )  Every year of terminal shoot growth measured was 

signi f icantly negative ly correlated with dens ity of fir 

seedlings themse lves . 

( h )  No lateral shoot lengths measured were 

s igni f icant ly correlated with density of fir seedlings 

themse lves . S light negative tendencies were evident in 

more recent growth ( 1 9 8 5 - 1 9 8 7 ) ,  while pos i tive tendencies 
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were evident in previous growth . Correlations in older 

growth were based on relative ly smaller sample s i zes . 

( i )  All but the mos t  recent terminal shoot lengths 

measured were signi ficantly posi tively corre lated with 

Rubus dens i ty and aboveground biomass . A graph of the 

largest of these cor�elations ( terminal 1 9 8 6  growth with 

Rubus dens i ty )  does not show a clear trend ( Figure 5 ) . 

Mos t  seedlings have short shoots regardless o f  Rubus 

dens i ty .  

Two other correlations i n  Table 1 2  were s igni f icant . 

Density of fir less than f ive years old was highly 

correlated with total fir dens ity ,  s ince about one third of 

a l l  seedlings were less than f ive years old ( Table 9 ,  page 

4 6 ) .  Rubus density and biomass were also strongly 

correlated because biomass was calculated from density and 

basal diameter . 

7 .  Soil Parameters 

A summary of soil parameters by transect appears in 

Table 1 3 . One sample in transect SW contained large 

amounts of li tter and fine roots , and it showed 

concentrations of all nutrients that were cons iderably 

higher than in other samples . That outlier sample was not 

inc luded in calculating means for that transect because the 

5 4  
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Table 1 3 . Soil chemical parameters in the transect plots . 

n 

water pH 

p 

K 

Ca 

Values for P ,  K ,  and Ca are means ( + 1 standard 
error ) in ppm ; values in the same row with the 
same letter are not signi f icantly di f ferent at 
the 0 . 0 1 leve l ( T  method , Sokal and Rohl f  1 9 8 1 ) . 
n = number of pairs of 1 x 1 m plots . 

Transect 

NE NW sw SE Mean 

1 0  1 0  9 1 0  3 9  

3 . 9 2 a 3 . 8 8 a 3 . 7 8 a 3 . 9 0 a 3 . 8 7 
( 0 . 0 6 )  ( 0 . 0 4 )  ( 0 . 0 5 )  ( 0 . 0 7 )  ( 0 . 0 3 )  

2 . 6  a 5 . 5  a 6 . 2  a 3 . 8  a 4 . 5  
( 0 . 5 ) ( 1 . 1 )  ( 1 • 7 ) ( 1 . 2 ) ( 0 .  6 )  

3 6 . 8  c 6 3 . 3  ab 6 5 . 0  a 4 6 . 5  be 5 2 . 6  
( 3 . 6 ) ( 5 . 4 ) ( 1 . 7 )  ( 3 . 7 ) ( 2 . 9 ) 

1 1 . 5  a 1 5 . 0  a 2 1 . 1  a 1 4 . 0  a 1 5 . 3  
( 1 . 1 )  ( 3 . 4 ) ( 8 . 7 ) ( 4 . 0 ) ( 2 • 4 ) 

5 6  



s ample was not representative of the mineral hori zons . 

Concentrations of K var ied significantly among transects ; 

concentrations were highest on the west facing- s lopes ( NW  

and SW ) and lowest on the NE s lope . Water pH and 

concentrations of P and Ca did not vary s ignif icantly among 

transects . These low variabi lities among samples may have 

reduced many of the correlations presented below . 

Student ' s  !-tests between replicate samples ( to determine 

reliabi lity of analyses ) showed no s igni ficant di f ferences 

for any soil parameters . 

8 .  Associ ations Between Vegetation and Soi l Parameters 

A Spearman rank correlation matrix among soil 

variables and selected vegetation variables appears in 

Table 1 4 . Test results of the last two hypotheses 

presented in Chapter 1 ( page 1 8 ) are described be low . 

( j )  Signi f icant positive corre lations between 

terminal growth of 1 9 8 4 - 1 9 8 7  and water pH were found . 

Moderately strong positive corre lations between all years 

of terminal growth and K concentration were also found . No 

correlations involving lateral shoot growth and soil 

parameters were signi ficant . 

( k )  Signi f icant positive corre lations were found 

be tween Rubus densi ty/ biomass and P and K concentrations . 
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Table 1 4 . Spearman rank corre lations ( with s ample s i ze ) 
among se lected vegetation variables and soil 
parameters measured in the Mount Collins 
transects . Analyses used only those Fraser f i r  
seedlings growing on a " forest f loor " substrate . 
Correlations with * are signi ficant at the 0 . 0 1 
leve l . " cone . "  = concentration ( ppm ) . 

p K Ca 
water pH cone . cone . cone . 

Total f i r  0 . 0 1 9  - 0 . 2 2 0  - 0 . 2 3 9  - 0 . 1 4 7  
dens ity ( 8 0 )  ( 8 0 )  ( 8 0 )  ( 8 0 )  

* 
Dens ity o f  0 . 0 8 6  - 0 . 1 5 4  - 0 . 3 2 5  - 0 . 2 0 3  
f ir < 5  yrs ( 8 0 )  ( 8 0 )  ( 8 0 )  ( 8 0 )  

old 
* * 

Rubus 0 . 0 0 1  0 . 4 3 6  0 . 4 1 1  0 . 0 9 2  
density ( 8 0 )  ( 8 0 )  ( 8 0 )  ( 8 0 )  

* * 
Rubus -0 . 0 8 4  0 . 4 4 9  0 . 4 4 5  0 . 1 5 0  

biomass ( 8 0 )  ( 8 0 )  ( 8 0 ) ( 8 0 )  

* * 
Terminal 0 . 4 9 2  0 . 0 9 7  0 . 4 7 5  0 . 0 6 0  
8 7  growth ( 1 6 1 ) ( 1 6 1 ) ( 1 6 1 ) ( 1 6 1 ) 

* * 
Termina l 0 . 4 2 8  0 . 1 4 4  0 . 6 2 5  0 . 0 8 6  
8 6  growth ( 1 6 4 ) ( 1 6 4 ) ( 1 6 4 ) ( 1 6 4 ) 

* * 
Terminal 0 . 3 1 9 0 . 0 9 4  0 . 5 6 6  0 . 0 3 5  
8 5  growth ( 1 6 0 ) ( 16 0 ) ( 1 6 0 ) ( 1 6 0 ) 

* * 
Terminal 0 . 4 0 7  0 . 0 7 1  0 . 5 9 1  0 . 0 1 5  
8 4  growth ( 1 4 4 ) ( 1 4 4 ) ( 1 4 4 ) ( 1 4 4 ) 

* 
Terminal 0 . 2 2 8  0 . 0 5 1  0 . 5 1 3  -0 . 0 2 0  
8 3  growth ( 9 2 ) ( 9 2 )  ( 9 2 )  ( 9 2 )  

5 8  



Table 1 4 . Continued . 

p K Ca 
water pH cone . cone . cone . 

N- lateral 0 . 2 8 9  0 . 1 5 3  0 . 0 7 9  0 . 2 5 9  
8 7  growth ( 6 8 )  ( 6 8 )  ( 6 8 )  ( 6 8 ) 

N- lateral - 0 . 0 0 5  - 0 . 2 6 8  0 . 177  0 . 1 1 8  
8 6  growth ( 3 9 )  ( 3 9 )  ( 3 9 )  ( 3 9 ) 

N- lateral - 0 . 1 6 5  - 0 . 4 5 2  - 0 . 1 3 5  - 0 . 1 6 6  
8 5  growth ( 2 6 )  ( 2 6 )  ( 2 6 )  ( 2 6 )  

N- lateral - 0 . 2 7 3  - 0 . 4 5 1  - 0 . 4 1 5  - 0 . 1 0 4  
8 4  growth ( 1 7 )  ( 1 7 )  ( 1 7 )  ( 1 7 )  

N - 1ateral 0 . 3 3 9  - 0 . 2 0 2  0 . 4 3 2  0 . 2 9 5  
8 3  growth ( 1 0 )  ( 1 0 )  ( 1 0 )  ( 1 0 )  

S - lateral 0 . 2 3 7  - 0 . 0 5 5  0 . 0 8 5  0 . 0 8 3  
8 7  growth ( 7 3 )  ( 7 3 )  ( 7 3 ) ( 7 3 )  

S - lateral - 0 . 0 5 2  - 0 . 2 9 0  0 . 3 4 9  - 0 . 1 5 0  
8 6  growth ( 5 1 )  ( 5 1 )  ( 5 1 )  ( 5 1 )  

S - lateral 0 . 0 4 3  - 0 . 2 6 9  0 . 1 5 3  - 0 . 3 7 6  
8 5  growth ( 3 3 ) ( 3 3 )  ( 3 3 ) ( 3 3 ) 

S - lateral 0 . 1 5 0  - 0 . 4 8 8  0 . 2 5 6  - 0 . 3 2 8  
8 4  growth ( 2 7 )  ( 2 7 )  ( 2 7 )  ( 2 7 )  

S - lateral - 0 . 1 9 5  - 0 . 5 4 6  0 . 1 2 8  -0 . 4 1 9  
8 3  growth ( 1 4 )  ( 1 4 )  ( 1 4 )  ( 1 4 ) 

5 9  



Neither Rubus density nor biomass were s igni f icantly 

associated with pH or Ca . 

A signi f icant negative correlation was found between 

dens ity of f i r  seedlings less than f ive years old and K 

concentration . 

9 .  Substrate Type Distribution 

A distribution of fir seedl ings among subs trate types 

is shown in Table 1 5 . A signif icant deviation from the 

expected distribution among substrate types was found . 

Seedlings are c learly not randomly distributed among 

substrate types . Whi le dead wood ( dead logs plus dead 

roots ) occupied only 1 1 . 6 % of the sample plots , more than 

3 3 % of all fir seedlings were found on that substrate . 

Student ' s  t - tests ( for single observations agains t a 

population , Sakal and Rohlf 1 9 8 1 ) showed that K and/or Ca 

concentrations may be signi f icantly higher in logs than in 

soil ( Table 1 6 ) .  

1 0 . Sur face Type Distr ibution 

A distribution of fir seedlings among surface types is 

shown in Table 1 7 . A s igni f icant deviation from the 

expected distribution was found . Bryophytes covered only 

6 0  



Table 1 5 . Distribution of Fraser f i r  seedlings among 
substrate types . n = 2 6 5  seedlings . 

Mean Predicted Actual 
Substrate % cover number number 

Forest f loor 8 5 . 4  2 2 6 . 3  1 6 4  

Dead wooda 1 1 . 6  3 0 . 8  8 8  

Otherb 3 . 0  8 . 0  1 3  

* 
Chi - square = 1 2 6 . 3 9 5  

Chi - squareO . O l [ 2 ]  
= 9 . 2 1 0  

* 
s igni ficant at the 0 . 0 1 leve l . 

a " Dead wood" inc ludes both dead logs and dead roots . 

b " Other" inc ludes both live roots and exposed rock . 

6 1  
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Table 1 6 . Comparison of chemical parameters o f  forest 
f loor soil samples ( means of all transect data ) 
and two rotting logs occupied by Fraser fir 
seedlings . Mineral nutr ient concentrations ( ±1 
standard error ) are in ppm . 

Fore st f loor Log A Log B 

n 3 9  1 1 

water pH 3 . 8 7 4 . 0  3 . 9  
( 0 . 0 3 )  

p 4 . 5  6 6 
( 0 .  6 )  

* 
K 5 2 . 6  1 1 5  5 5  

( 2 . 9 )  
* * 

Ca 1 5 . 3  2 6 0  1 2 0  
( 2 . 4 ) 

* 
s igni ficantly different f rom forest f loor mean <.�-test , 
p < 0 . 0 1 )  
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Table 1 7 . Distribution of Fraser f i r  seedlings among 
sur f ace types . n = 2 6 5  seedlings . 

Surf ace 
Mean 

% cover 
Predicted 

number 
Actua l 
number 

Bryophytes 

Litter 

2 5 . 4  

7 4 . 6 a 

* 
Chi - square = 1 5 7 . 8 7 1  

Chi - square0 _ 0 1 [ 1 ]  = 6 . 6 3 5  

* 
signif icant at the 0 . 0 1 level 

6 7 . 1  

1 9 7 . 9  

1 5 6  

1 0 9  

aThis percentage differs from mean cover o f  li tter i n  Table 
1 0  ( page 4 7 ) because seedlings growing on substrates such 
as dead logs were sometimes ass igned a surface type of 
" litter . "  
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2 5 . 4 % of the sample plot area , yet 5 9 %  of seedlings 

occurred on thi s surface type . 

1 1 . Substrate Form Distribution 

Most fir seedlings were found on convex ( 4 1 % ) or f lat

s loped ( 3 2 % ) substrates ( Table 1 8 ) .  The fewest were found 

on concave substrates . Many convex surfaces were 

bryophyte-covered ( especially dead logs ) . A two-way 

distribution of fir seedlings among surface types and 

substrate forms is shown in Table 1 9 . The largest number 

of seedlings ( 3 2 % ) were found on convex , bryophyte-covered 

surfaces . Flat - s loped , litter -covered surfaces were 

occupied by 2 1 %  of seedlings . Although no tests for 

departure from randomness are poss ible for the se 

distribut ions , fir seedlings do not seem to be dispersed 

independently of substrate form .  

1 2 . Damage Type Distributions 

More than one fourth of fir seedlings showed obvious 

gouting ( Table 2 0 ) .  Gouting was seen in only 5 %  of 

seedlings less than f ive years old , as compared to 3 9 % of 

those five or more years old . 

Other , non- adelgid-re lated forms of damage were found 

in nearly 1 8 %  of fir seedlings ( Table 2 1 ) . Mi ss ing 
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Table 1 8 . Distribution o f  Fraser f i r  seedlings among 
substrate forms . 

Subs trate form 

Concave 

Convex 

Flat- leve l 

Flat - s loped 

Total 

6 5  

Number o f  seedlings 

2 6  

1 0 8  

4 6  

8 6  

2 6 6  



Table 1 9 . Distribution of Fraser f i r  seedlings among 
surface types and substrate forms . 

Surface type 

Subs trate form Bryophytes Litter 

Concave 1 2  1 4  

Convex 8 4  2 4  

Flat- leve l  3 0  1 6  

Flat - s loped 3 1  5 5  

6 6  



Table 2 0 . Distribution of Fraser fir seedlings by presence 
or absence of ade lgid damage ( gouting ) .  

Gouting obvious 

Gouting not obvious 

Number < 5  
years old 

5 

9 5  

6 7  

Number > 5  
years old 

6 3  

1 0 0  



Table 2 1 . Distribution o f  Fraser f i r  seedlings among other 
damage categories . Total number of seedlings 
tallied is 2 6 6 . Total of damage frequencies 
does not sum to this number because some 
seedlings showed more than one kind of damage . 

Damage type 

Undamaged ( regardless of gouting ) 

Mi ss ing terminal bud 

Terminal replacement 

Mechanical damage 

Aborted terminal shoot 

Exposed roots 

Multiple terminal shoots 

Mi s sing lateral bud 

Aborted lateral shoot 

Chlorosis 

Frost damage ? 

Leaf base dieback 

6 8  

Number o f  seedlings 

2 1 9  

1 8  

1 5  

1 5  

5 

3 

3 

2 

1 

1 

1 

1 



terminal buds ( presumably from browsing ) , replacement of 

terminal shoots by lateral shoots , and types of mechanical 

damage ( e . g . , crushed , abraded ) were most frequent . 

1 3 . Shoot Growth Trends 

Mean lengths of terminal and lateral shoots on fir 

seedlings are shown in Table 2 2 . A general increase in 

terminal shoot length since 1 9 8 4  is  apparent . North- facing 

and south-facing lateral shoot lengths do not show a common 

trend for all years , but a decrease since 1 9 8 5  is evident 

in both sets of shoots . 

Changes in shoot length over previous years ' growth 

and the proportions of seedlings showing positive , 

negative , and no changes are shown in Table 2 3 . I n  1 9 8 4 , 

termina l shoots were , on average , no longer than the 

previous year ' s  termina l shoots . Most seedlings ( 4 4 % ) 

actual ly grew less in 1 9 8 4  than in 1 9 8 3 . By 1 9 8 7 , however , 

terminal shoots were , on average , 0 . 5 8 em longer than the 

previous year ' s  growth . Over half ( 57 % ) of the seedlings 

showed some increase of 1 9 8 7  over 1 9 8 6  growth . A trend 

toward increas ing gains over previous terminal growth is 

evident , although the trend in not monotonic . Lateral 

shoots show more irregular patterns of increases and 

dec reases . 
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Table 2 2 . Mean shoot lengths of a l l  Fraser fir seedlings 
in the Mount Col lins transects for each year . 
n = number o f  seedlings . 

Mean Mean Mean 
terminal shoot N- lateral shoot S- lateral shoot 

length ( em )  length ( em )  length ( em )  
Year ( n )  ( n )  ( n )  

1 9 8 7  2 . 3 4 3 . 4 2 3 . 2 5 
( 2 6 5 ) ( 1 0 5 ) ( 1 1 9 ) 

1 9 8 6  1 . 8 0 3 . 6 6 3 . 2 5 
( 2 6 7 ) ( 6 3 )  ( 7 4 )  

1 9 8 5  1 . 6 9 4 . 7 2  4 . 0 4 
( 2 6 0 ) ( 3 6 ) ( 4 0 )  

1 9 8 4  1 . 3 6 3 . 8 3 4 . 5 6 
( 2 3 9 ) ( 2 6 )  ( 3 2 )  

1 9 8 3  1 .  4 7  3 . 7 9 4 . 7 0 
( 1 5 0 ) ( 1 4 ) ( 1 5 ) 
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Table 2 3 . Changes in Fraser fir seedling shoot growth over 
previous years ' growth and proportions of 
seedlings showing increases , no changes , and 
decreases in the Mount Collins transects . n = 

number of seedlings . 

Mean change % % % 
over previous showing showing showing 

Year n year ( em )  increase no change decrease 

Terminal shoots 

1 9 8 7  2 6 5  0 . 5 8 5 7  2 8  1 5  

1 9 8 6  2 6 0  0 . 1 0 3 8  3 0  3 2  

1 9 8 5  2 3 9  0 . 3 8 4 9  2 9  2 1  

1 9 8 4  1 5 0  0 . 0 0 2 3  3 3  4 4  

N- 1atera1 shoots 

1 9 8 7  6 3  - 0 . 2 1 3 8  1 9  4 3  

1 9 8 6  3 6  - 0 . 4 9 1 7  2 2  6 1  

1 9 8 5  2 6  0 . 6 7 6 2  8 3 1  

1 9 8 4  1 4  - 0 . 4 6 2 1  2 9  5 0  

S- lateral shoots 

1 9 8 7  7 3  - 0 . 0 9 3 3  2 5  4 3  

1 9 8 6  4 0  - 0 . 4 1 2 8  1 5  5 8  

1 9 8 5  3 2  - 0 . 3 6 3 1  6 6 3  

1 9 8 4  15  0 . 1 0 4 0  1 3  4 7  

7 1  



c. Rubus -Removal Plots 

1 .  Herbaceous Species Cover 

Changes of herbaceous species cover in control and 

Rubus - removal plots are shown in Table 2 4 . Substantial 

increases with time in bryophyte cover occurred in both 

treatments .  Athyrium asplenioide s cover also increased , 

and that species seemed to be continuing to produce new 

foliage at the time of reevaluation , as mentioned earlier . 

Dryopteris spp . cover decreased s lightly . None of the 

changes in herbaceous cover di ffered signi ficantly between 

treatments ,  so no evidence of a Rubus -removal effect was 

apparent . 

2 .  Woody Species Dens ities 

Changes in woody spec ies dens ities in control and 

Rubus-removal p lots are shown in Tab le 2 5 . Large increases 

in dens ity of spruce seedlings occurred in both treatments . 

Minor increases in dens ity of Betula lutea and Vaccinium 

erythrocarpum occurred . No changes dif fered signi f icantly 

between treatments . 

Changes in spruce density by height c lass are shown in 

Table 2 6 . The sma l lest height class showed the largest 

changes , indicat ing appearance of large numbers of germinal 
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Table 2 4 . Changes in mean percent cover of herbaceous taxa 
in control ( C )  plots and Rubus - removal ( R )  plots 
between initial and final evaluation dates . n = 

7 2 x 2 m plots for all value s . No changes 
dif fered signi f icantly between treatments ( P  > 
0 . 0 1 ,  Wi lcoxon rank sum test ) . 

Mean Mean 
initial f inal 

Taxon Treatment cover ( % )  cover ( % )  Change 

Arisaema triEhyllum c 0 0 . 7  0 . 7  
R 0 0 0 

Aster acuminatus c 0 . 7  1 . 4  0 . 7  
R 0 0 0 

Athyr ium c 1 0 . 0  1 6 . 4  6 . 4  
asElenioides R 3 . 6  5 . 7  2 . 1  

Bryophytes c 2 3 . 6  4 1 . 4  1 7 . 8  
R 3 1 . 4  5 1 . 4  2 0 . 0  

Cacalia rug:e lia c 6 . 4  7 . 1  0 . 7  
R 6 . 4  7 . 1  0 . 7  

Carex spp . c 2 . 1  2 . 1  0 
R 0 0 0 

Claytonia sp . c 0 . 7  0 - 0 . 7  
R 0 0 0 

Clintonia borealis c 0 . 7  0 . 7  0 
R 0 0 0 

Dennstaedtia c 0 . 7  0 - 0 . 7  
EUncti lobula R 0 0 0 

DryoEteris spp . c 1 4 . 3  1 0 . 0  - 4 . 3  
R 1 5 . 7  1 3 . 6  - 2 . 1  

Oxalis montana c 5 . 0  5 . 7  0 . 7  
R 5 . 0  5 . 0  0 

Total c 6 4 . 2  8 5 . 5  2 1 . 3  
R 6 2 . 1  8 2 . 8  2 0 . 7  

7 3  



---------------------------------------------

Table 2 5 . Changes in mean stem numbers o f  woody species 
< 1 3 7  em tall in control ( C )  plots and Rubus 
removal ( R )  plots between initial and f inal 
evaluation dates . n = 7 2 x 2 m plots for all 
values . No changes di f fered signi f icantly 
between treatments ( P  > 0 . 0 1 ,  Wilcoxon rank sum 
tes t ) . 

Species 

Abies fraseri 

Acer SJ2icatum 

Betula lutea 

Picea rubens 

Viburnum 
alnifo1ium 

Vaccinium 
erythrocar12um 

Total 

Treatment 

c 
R 

c 
R 

c 
R 

c 
R 

c 
R 

c 
R 

c 
R 

Mean Mean 
initial f inal 

number number Change 

1 6 . 1  1 5 . 9  - 0 . 2  
1 7 . 9  1 7 . 9  0 

0 . 3  0 . 6  0 . 3  
0 0 . 3  0 . 3  

2 . 4  4 . 9  2 . 5  
4 . 1  9 . 3  5 . 2  

2 5 . 3  7 9 . 7  5 4 . 4  
2 4 . 4  7 0 . 6  4 6 . 2  

6 . 3  7 . 9  1 . 6  
2 . 4  2 . 9  0 . 5  

9 . 9  1 4 . 1  4 . 2  
6 . 6  8 . 3  1 . 7  

4 4 . 2  1 0 7 . 2  6 3 . 0  
3 7 . 5  9 1 . 4  5 3 . 9  

7 4  



Table 2 6 . Changes in mean density o f  Picea rubens by 
height c las s in control ( C )  and Rubus-removal 
( R )  plots between initial and f inal evaluation 
date s . n = 7 2 x 2 m plots for a l l  values . 

Treatment Height class 

c < 2 5  em 

2 6 - 5 0  

5 1 - 7 5  

7 6 - 1 0 0  

1 0 1 - 1 3 7  

R < 2 5  em 

2 6 - 5 0  

5 1 - 7 5  

7 6 - 1 0 0  

1 0 1 - 1 3 7  

Mean 
initial 
density 

2 2 . 1  

1 . 3  

1 . 6  

0 . 1  

0 

2 3 . 4  

7 5  

1 . 0  

0 

0 

0 

Mean 
f inal 

density 

7 6 . 6  

1 . 6  

1 . 3  

0 . 4  

0 . 1  

6 9 . 4  

1 . 1  

0 

0 

0 

Change 

5 4 . 5  

0 . 3  

- 0 . 3  

0 . 3  

0 . 1  

4 6 . 0  

0 . 1  

0 

0 

0 



seedlings . ( Changes in mean densities are not identical to 

those in Table 2 5  because of rounding errors . )  At the 

f inal evaluation , germinal spruces made up 6 2 %  and 5 5 %  of 

all spruce seedlings in the control and Rubus -remova l 

plots , respective ly . 

Changes in Rubus dens ities and estimated aboveground 

biomas s in control and Rubus- removal plots appear in Tables 

27 and 2 8 , respectively . New primocanes appeared in 

somewhat higher numbers and new aboveground biomas s  was 

s lightly higher in the Rubus-removal plots , but these 

differences were not signi f ic ant . Basal diameter 

distributions of Rubus ( Figures 6 - 9 ) show that appearance 

and growth of individual canes can be extreme ly rapid . The 

diameter distribution in the Rubus-removal plots at the 

final evaluation ( Figure 9 )  is  not greatly dif ferent from 

that at the initial evaluation ( Figure 8 ) , even though a l l  

canes a t  the f inal evaluation are 6 0 -day old primocanes . 

3 .  Soil Parameters 

Changes in soi l parameters in control and Rubus 

removal plots are shown in Table 2 9 . Water pH and nutrient 

concentrations in those plots are similar to those in plots 

f rom transect NE ( Table 1 3 , page 5 6 ) , also on the 

northeast-fac ing s lope of Mount Col lins . Slight reductions 

are evident in all parameters between evaluation dates ; 
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Table 2 7 . Changes in Rubus canadens is dens ities in control 
( C )  and Rubus - removal ( R )  plots . Values are 

mean numbers of canes in 2 x 2 m plots . n = 7 
plots for all values . 

Mean 
initial 

Treatment dens ity 

c 3 9 . 1  

R 3 5 . 0  

Wilcoxon mean rank scores 
for numbers of new canes : 

Mean 
f inal 

dens ity 

4 9 . 4  

2 6 . 6  

c 5 . 1 4 3  

R 9 . 8 5 7  

Z = - 2 . 0 4 9  ns 

Mean number 
of new 

canes 

1 0 . 3  

2 6 . 6  

ns = not signif ic ant at 0 . 0 1 level , Wilcoxon rank sums 
test . 
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Table 2 8 . Changes in Rubus canadens is estimated 
aboveground biomass in contro l ( C )  and Rubus 
remova l ( R ) plots . Values are mean dry we ights 
( g )  in 2 x 2 m plots . n = 7 plots for all 
value s . 

Mean Mean Mean 
initial f inal new 

Treatment biomass biomass biomas s 

c 4 9 3  6 3 0  1 3 7  

R 7 1 7  1 8 7  1 8 7  

Wilcoxon mean rank scores 
for new biomass : c 5 . 4 2 9  

R 9 . 5 7 1  

z = - 1 . 7 8 9  ns 

ns = not signi f icant at the 0 . 0 1 leve l , Wi lcoxon rank sums 
test . 
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Table 2 9 . Changes in soil parameters in control ( C )  and 
Rubu s - removal ( R )  plots . P ,  K ,  and Ca levels 
are means in ppm . n = 7 2 x 2 m plots for all 
values . No changes dif fered signi ficantly 
between treatments ( P  > 0 . 0 1 ,  Wilcoxon rank sum 
tests ) .  

Mean Mean 
initial f inal 

Parameter Treatment va lue value Change 

water pH c 4 . 0 3 4 . 0 1 - 0 . 0 2 
R 4 . 0 1 4 . 0 0 - 0 . 0 1 

p c 2 . 9  2 . 0  - 0 . 9  
R 2 . 0  2 . 0  0 

K c 3 0 . 0  2 4 . 3  - 5 . 7  
R 2 7 . 9  2 5 . 7  - 2 . 2  

Ca c 1 1 . 4  1 0 . 0  - 1 . 4  
R 1 1 . 4  1 0 . 0  - 1 . 4  

8 3  



those changes did not dif fer signi ficantly between 

treatments .  No e ffects of Rubus removal were found in 

these data . Student ' s  �-tests between replicate soil 

s amples ( for reliability of analyses ) showed no significant 

differences for any soil parameters . 

4 .  Shoot Growth Comparisons 

Wi lcoxon rank sums comparisons of 1 9 8 8  fir shoot 

growth between treatments appear in Table 3 0 . Terminal , 

north- lateral , and south- lateral shoots a l l  tended to be 

shorter in the Rubus -removal plots than in the control 

p lots , but differences between treatments were not 

s igni f icant . Product-moment correlations between 1 9 8 8  and 

1 9 8 7  shoot growth did not dif fer s igni f icantly between 

treatments ( Table 3 1 ) .  
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Table 3 0 . Wi lcoxon rank sums tests o f  1 9 8 8  Fraser f i r  
shoot growth between control ( C )  and Rubus
removal ( R ) plots . n = number of seedlings . No 
mean ranks differed between treatments ( P  > 
0 .  0 1 ) . 

Absolute 
mean ( em )  Mean 

( n )  rank 

Shoot c R c R z 

terminal 2 . 7 9 1 . 9 7 1 3 1 . 4  1 1 3 . 4  2 . 0 0 2  
1 9 8 8  ( 1 1 6 ) ( 1 2 7 ) 

N- lateral 2 . 2 8 1 . 4 7 9 6 . 8  7 8 . 2  2 . 4 8 4  
1 9 8 8  ( 8 2 )  ( 9 1 )  

S - lateral 2 . 6 6 1 . 9 7 8 6 . 8  7 1 . 7  2 . 0 8 4  
1 9 8 8  ( 5 2 )  ( 6 1 )  

8 5  
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Table 3 1 . Comparisons of product-moment correlation 
coe f f i cients between 1 9 8 8  and 1 9 8 7  Fraser fir 
shoot growth between control ( C )  and Rubus 
removal ( R ) treatments . n = number of 
seedlings . No coe f f icients dif fered 
s igni ficantly between treatments ( P  > 0 . 0 1 ) . 

Treatment 

Correlation c R Chi - square 

terminal 1 9 8 8 /  
terminal 1 9 8 7  0 . 7 8 2  0 . 7 2 5  1 . 0 3 0  

( n )  ( 1 1 6 ) ( 1 2 7 ) 

N- latera l  1 9 8 8 /  
N- lateral 1 9 8 7  0 . 7 9 2  0 . 6 5 3  3 . 2 1 8  

( n )  ( 7 2 )  ( 8 2 )  

S - lateral 1 9 8 8 /  
S - lateral 1 9 8 7  0 . 8 0 6  0 . 7 2 6  1 . 0 3 6  

( n )  ( 5 2 )  ( 6 1 )  

8 6  



CHAPTER 4 

DISCUSSION 

A .  overstory Composition 

The NE s lope was dominated by coni fers more than other 

s lopes . Only three canopy species were encountered in the 

NE transect , and basal area and dens ity of the single 

deciduous species ( yel low birch ) were the lowest of all 

s lopes . Of the unlogged s lope s ( NE ,  sw , and SE ) , s lope NE 

had the highest dens ity of standing Fraser f i r  ( nearly a l l  

o f  which are now dead ) . 

The former dominance of live Fraser fir on the NW 

s lope apparently resulted in greater changes in overstory 

composition fol lowing ade lgid infes tation than on other 

s lopes . When that slope was logged , most large spruces 

were probably removed , al lowing Fraser fir to gain 

dominance . Low spruce and high fir dominance were 

characteristic of other red spruce-Fraser fir stands 

several decades after logging ( Weaver 1 9 7 2 ) .  Fo llowing 
' 

ade lgid-caused mortality of fir , basal area and dens ity of 

dead trees on the logged s lope exceeded those on the 

unlogged slopes , and canopy closure became lower . 

Conifers were less dominant on the SW s lope than on 

the other unlogged slopes . Ye l low birch basal area and 
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dens i ty were relative ly high on that s lope , suggesting a 

response to higher insolation . Ye l low birch is c las sed as 

intermediate in shade tolerance ( Fowe l l s  1 9 6 5 ) and the 

spec ies regenerates primarily in canopy gaps in the GSMNP 

spruce- fir forest ( Busing 1 9 8 5 ) . 

The SE s lope appeared to be the least affected by 

Fraser fir mortality . That s lope had the highest basal 

area and dens ity of live spruce , probably ref lecting 

protection from prevail ing winds ( Bus ing and Clebsch 1 9 8 8 ) 

and the drier aspect ( Whittaker 1 9 5 6 ) . Canopy c losure was 

nearly complete on that s lope . 

I n  general , fir mortality appears to have had the 

greatest effect on canopy composition of north- facing 

s lopes . Canopy c losure was lowest and dead f i r  basal area 

and density were highest on those s lopes . 

B .  Seedling-Understory Characterization 

1 .  Herbaceous Species Compos ition 

Bryophytes are the most conspicuous feature of the 

herbaceous layer , particularly on the shaded , moist NE 

s lope . Ferns are also important , with Athyr ium 

asplenioides abundant on all s lopes and Dryopteris spp . 

abundant on north -facing s lopes . The Dryopteris 
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distribution may be related to the more mesic northern 

aspect ( Boner 1 9 7 9 ) . The greater abundance of Oxalis 

montana on wes t - facing s lopes may be as sociated with higher 

soil K concentrations on those slopes . 

The relatively low total herbaceous cover on the SW 

s lope results from the low cover o f  Dryopteris spp . on that 

s lope . Dryopteris spp . cover is also low on the SE s lope , 

but higher cover of Carex spp . there compensates for low 

Dryopteris cover . 

2 .  Woody Species Compos ition 

The NE s lope of Mount Col lins seems to favor conifer 

regeneration ; both spruce and fir seedling dens ities were 

highest there . Spruce seedling dens ities were probably 

underestimated in transects sampled earlier in the season 

because appearance of germinal seedlings occurred during 

sampling . Comparisons of seedling dens ities among 

transects are confounded with time of sampling . 

Nevertheles s , germinal seedlings seemed to form a large 

proportion of the spruce seedling population . Spruce 

produced a seed crop in 1 9 8 7  ( personal observation ) ,  so the 

large number of germinals appearing during 1 9 8 8  may ref lect 

a germination peak rather than typical yearly recruitment . 

Fir seedling density is rather low in compari son to 

that of spruce . The low dens ity o f  fir on the NW s lope was 
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unexpected because the former canopy dominant was fir . 

Those canopy trees were almost certainly of reproductive 

age . One factor contributing to the pauc ity of seedlings 

on the NW s lope may be that fir seedlings and saplings 

suffer especially severe adelgid infes tation and mortal ity 

where overstory infestation is heavy ( Eagar 1 9 8 4 ) . 

Rubus canadensis dens ity and biomass 'were highest on 

the sw s lope of Mount Collins , suggesting that the species 

is more abundant on warmer , drier s ites . Boner ( 1 9 7 9 ) 

found a similar negative association of Rubus density with 

mesic aspect . The abundance of Rubus on the SW s lope may 

partially explain the low total herbaceous cover there . 

3 .  Fir Seedling Population Characteristics 

Based on comparisons with data from White et al . 

( 1 9 8 5 ) , density of fir seedlings has probably increased on 

the north-fac ing s lope of Mount Col lins following overstory 

mortality . Boner ( 1 9 7 9 ) also found increases in fir 

seedling and sapling dens ities in a post-mortality 

chronosequence . 

Most fir seedlings in this study were sma ll ( �2 5  em 

tall ) . In contrast to spruce , re lative ly few fir seedlings 

are very young . Apparently , germinal f i r  seedlings have 

become extreme ly scarce in recent years . No germinal f i r  
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seedlings were observed in any transect plots . A few 

germinal seedlings were noted in other areas still having 

live overs tory firs . Fraser fir seed crops are periodic 

( Franklin 1 9 7 4 ) ,  and some among-year variation in seedl ing 

appearance certainly occurs . Ade lgid effects on mature 

f irs are like ly to decrease seed production . Sullivan and 

Pitt i l lo ( 1 9 8 8 ) noted reduced Fraser f i r  seedling 

appearance in a grassy bald after poor seed crops on nearby 

trees the previous two years ; overstory f irs had also 

suf fered recent mortality from ade lgid infestation . The 

sens itivity of seedling appearance rate to seed production 

supports the observation that Fraser fir seed viability may 

decrease after only one year ( S .  E .  Schlarbaum , personal 

communication ) .  

Germinal Fraser fir seedlings are not likely to appear 

in signi ficant numbers unt il exi st ing seedlings and 

s aplings mature and begin to bear seed . First reproduction 

may occur in f irs as young as 20 years ; Fraser fir a lso 

becomes part icularly susceptible to ade lgid infes tation at 

about this age ( Eagar 1 9 8 5 ) .  The GSMNP Fraser f i r  

population has suf fered mortality primari ly within the past 

25 years . Reproducing trees are much le ss numerous than 

be fore , and the poo l  of genetic variation among these trees 

has probably become smal ler . The amount of variation among 

the progeny of surviving trees may become limited because 

of the increased likelihood of inbreeding . Li et al . 
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( 1 9 8 8 ) found signi f icant variation in height growth among 

Fraser f i r  seedlings descended from different parent trees 

growing at the same site . A subs tantial amount of such 

" among fami ly" ( Li et a l . 1 9 8 8 ) variation may be lost in 

the next generation as a result of adelgid-caused 

mortality . 

The effects of inbreeding in normal ly outcrossing 

species inc lude accumulation of rare , de leterious recess ive 

a l leles , called inbreeding depression ( Hartl 1 9 8 0 ) . I f  

Fraser f i r  experiences signi f icant inbreeding depre s s ion , 

the result may be local populations showing low growth 

rates . Li et al . ( 1 9 8 8 ) found that Fraser fir seedlings 

grown from seeds collected on Roan Mountain , 

Tennessee/North Carolina showed lower height growth than 

seedlings from other southern Appalachian provenances . 

4 .  Associations Among Vegetation Variables 

Since rank correlations are not derived from the 

original data va lues , some information contained in those 

data are lost . Few of the correlations are especially 

large , and the chance of any one of them being spurious is 

accordingly high . Discuss ions of results for the speci f ic 

hypothe ses tested are presented be low . 
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Hypotheses ( a ) , ( b ) , and ( c ) . One contr ibuting factor 

to the low correlations among canopy c losure and other 

variables , such as fir seedling density and Rubus 

density/biomas s ,  is  the measurement of canopy c losure 

directly above each sample po int . Sunlight only rarely 

enters the forest vertically , so a more accurate estimate 

of the effect of sunlight on understory plant dens ity would 

have had to account for s ide lighting from neighbor ing gaps . 

Most seedlings predated canopy mortality ; their 

distributions were determined by canopy and understory 

conditions which probably di f fered from current condi tions . 

Rubus has been regarded as a gap coloni zer species 

( Crandall 1 9 5 7 , 1 9 5 8 ) . The lack of correlation of Rubus 

dens ity or biomas s  with canopy closure may also reflect 

e f fects of side lighting from nearby canopy gaps . 

Hypotheses ( d )  and ( e ) . The negative as soc iations 

between fir seedling dens ity and Rubus dens ity/biomass may 

be interpreted in several ways . Rubus may be inhibiting 

ge rmination , establishment , and/or survivor ship of fir 

seedlings . Fir may be inhibiting es tablishment and/or 

growth of Rubus . Alternative ly , establi shment o f  both 

species may be respons ive to other var iables which favor 

one species over the other . That fir would inhibit 

establi shment or growth of Rubus seems least like ly . The 

maj ority of f i r  seedlings ( 8 7 % ) are no more than 2 5  em 
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tal l , whi le Rubus canes are typically 1 - 2  m tall . 

I nhibition o f  Rubus by shading from f i r  seedlings cannot 

contribute much to the observed associations . Also , 

because fir seedlings show low overall densities , it seems 

unlikely that fir seedlings could signi ficantly inhibit 

Rubus by competition for nutrients or root space , 

a l le lopathy , or other direct interactions . Rubus 

canadens is appears to inhibit establishment o f  Fraser fir 

seedlings . 

Hypothesis ( f ) . Correlations between fir shoot 

lengths and canopy c losure were either small or likely to 

be spurious . Terminal 1 9 8 7  shoot growth showed a s light 

negative tendency ( which was expected ) and lateral shoot 

growth showed a posi tive tendency . The se correlations do 

not strongly suggest any real as socation between fir 

seedling shoot growth and canopy c losure . 

Hypotheses ( g) and ( h ) . Negative correlations between 

terminal shoot growth of fir seedlings and fir seedling 

dens ity suggest a dens ity-dependent effect on height 

growth . This result was contrary to expectation . Farmer 

et al . ( 1 9 8 8 ) found greater height growth of j ack pine with 

increasing seedling dens ity .  Mutual shading of fir 

seedlings is unlike ly because seedlings are rarely dense 
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enough for their branches to overlap . Competition for some 

resource , alle lopathy , or dif ferent responses by shoot 

growth and establishment to some external factor are 

poss ible explanat ions . 

Hypothes i s  ( i ) . Positive associations between fir 

terminal shoot growth and Rubus density and biomass were 

unexpected ; height growth of Fraser f i r  seedlings has shown 

reductions under heavy shade ( Hines ley 1 9 8 6 ) . Under low 

light condi tions , many woody plants al locate more energy 

into height growth ( Harper 1 9 77 ; Ting 1 9 8 2 ) . I f  Rubus 

shade is producing such an effect on fir seedlings , this 

e ffect would be contrary to that found in nur sery- grown 

seedlings ( Hines ley 1 9 8 6 ) . Although the correlations were 

statistically significant , a graph of the actual data do 

not suggest  a strong associ at ion between fir seedling shoot 

growth and Rubus dens ity . 

5 .  Assoc iations Between Vegetation and Soil Parameters 

Terminal growth of fir seedlings shows moderate 

pos itive associations with K concentration of the forest 

f loor ( Hypothes i s  ( j ) ) .  McCracken et al . ( 1 9 6 2 ) suggest 

that K avai labi lity in high e levation soils of the GSMNP 

may be regulated by weathering and atmospheric inputs . 

Mineral hori zon concentrations of Ca and K are low because 
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these e lements ( among others )  are readily los t to leaching . 

Pos itive responses of fir growth to K concentration 

indicate growth limitation by this e lement in some areas . 

Positive associations of Rubus density and biomass with P 

and K concentrat ions also suggest growth limitation 

( Hypothesis ( k ) ) .  Alternatively , P and K concentrations 

may be affected by Rubus through foliar leaching , litter 

depos ition , fine root decomposi tion , or some other 

mechanism . 

Densities o f  all fir seedlings and those less than 

f ive years old showed tendenc ies toward negative 

correlations with soi l nutrient parameters . Dens ity of 

f irs less than f ive years old and K concentration were 

s igni ficantly negative ly corre lated . These tendenc ies may 

ref lect the negative associ ations of f i r  dens ity and Rubus 

dens ity/biomas s ,  because Rubus density and biomass were 

pos itive ly associated with P and K concentrations . 

The soil data indicate that K concentration is more 

var iable from s i te to site on Mount Co l lins than other 

elements . K may thus be limi ting in some areas and may 

detectably af fect plant spec ies distribution and growth . 

I nformation on N concentrations in the s tudy area would 

have been a valuable addition to these data , but N 

determinations mus t  be regarded with caution . Seasonal 

variations occur , and soil samples must be tested a lmost 
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immediately to prevent loss to vo lati l i zation ( J .  T .  

Ammons , personal communication ) .  

6 .  Subs trate and Surface Type Distributions 

Existing f i r  seedlings are not randomly di stributed in 

the study area . Dead wood ( logs or roots ) appears to be a 

particularly favorable substrate for establi shment and/or 

early surviva l .  Logs can be very important substrates for 

tree seedling establi shment ( Bus ing 1 9 8 5 ; White et al . 

1 9 8 5 ; Harmon 1 9 8 7 ) . Establi shment on logs may prevent 

competition with forest f loor herbs ( Harmon and Franklin 

1 9 8 9 ) . On Mount Col lins , Rubus canadens is was rooted 

a lmost exc lusive ly in the forest f loor . Fir seedlings 

es tablished on logs thus should not be exposed to 

be lowground interactions with Rubus . The present study 

indicates that concentrations of K and/or Ca are 

signi f icantly higher in decaying logs than in the forest 

f loor . Ca and N c ontents have been shown to increase with 

time in decaying bo les of red spruce and balsam fir ( Foster 

and Lang 1 9 8 2 ) ,  roots of lodgepole pine ( Yavitt and Fahey 

1 9 8 2 ) , and bo les of western hemlock and Sitka spruce ( Grier 

1 9 7 8 ) . K content , however ,  dec reased in these same 

spec ies . 

Bryophytes may cons titute favorable surfaces for fir 

seedling establishment . Unlike substrate types ,  surface 
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types may not be independent of the plants occupying them . 

Whi le f i r  seedlings may es tablish preferentially on 

bryophytes ,  bryophyte cover may also develop preferentially 

under seedl ings . 

7 .  Damage Type Distributions 

The fraction of fir seedlings showing obvious gouting 

( 2 6 % ) is probably an underestimate o f  the extent of balsam 

woolly adelgid e ffects among seedlings . Many understory 

f irs have died from adelgid infes tation ( and subsequently 

decomposed ) ,  gouting is not the only e f fect of infestation , 

and gouting is not a lways serious enough to be 

distingui shed from the normal growth forms o f  fir 

seedlings . Shoot origins are s lightly larger in diameter 

than shoots themselves , and seedlings rarely grow perfectly 

straight . Thi s  fraction therefore represents only the 

extent of external ly obvious adelgid e ffects among 

surviving seedlings . 

8 .  Shoot Growth Trends 

Shoot growth trends of fir seedlings indicate that 

terminal growth is increasing in successive years . This 

trend may reflect the early part of the typical sigmoidal 
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growth curve of plants ( Ting 1 9 8 2 ) . Previous adelgid 

infes tation may contribute to thi s  trend . Following 

overstory mortality ,  the rain of ade lgids from canopy trees 

has probably decreased , and a recovery from terminal 

suppress ion is occurring in many seedlings . An increas ing 

trend in growth is not cons i stent with precipitation 

patterns at high e levations of the GSMNP . Recent annual 

precipitation totals have decreased s ince 1 9 8 2 . Shoot 

growth response to overstory mortality may also contribute 

to growth trends , but the smal l  magnitudes of corre lations 

between shoot growth and canopy c losure indicate that that 

contribution is minor . 

C .  Rubus -Removal Plots 

1 .  Herbaceous Spec ies Cover and Woody Species Dens ities 

Herbaceous species cover and woody species dens ities 

generally increased between evaluation dates . The s light 

decreases in Dryopteris spp . cover may be a result of 

changes in one of the common spec ies , Q. campyloptera . 

This species has been reported to be eas ily kil led by low 

temperatures ( S trausbaugh and Core 1 9 7 0 - 1 9 7 7 ) .  White

tai led deer also feed to some degree on ferns ( personal 

observation ) .  The appearance of large numbers of germinal 

spruces probably resulted from the previous year ' s  seed 
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c rop . Spruce produces large seed crops every 3 - 8  years , 

with most seed germinating the spring fol lowing dispersal 

( Fowe lls 1 9 6 5 ) . No Rubus -removal e f fect was detected for 

any herbaceous or woody species changes . Effects may 

become evident in subsequent seasons . Rubus itself is 

capable of rapid response to disturbance . 

2 .  Soil Parameters 

The slight reductions of soil nutr ient concentrations 

indicate either uptake by growing vegetation ( e . g . , Rubus ) 

and/or loss f rom leaching . Rubus- removal did not 

s igni ficantly affect these changes . 

3 .  Shoot Growth Comparisons 

The tendency for mean 1 9 8 8  shoot lengths to be lower 

in the Rubus-removal plots may be an e f fect o f  increased 

light levels . High- light conditions suppress height growth 

in some plants ( Ting 1 9 8 2 ) . Correlations between 1 9 8 8  and 

1 9 8 7  shoot growth decreased s l ight ly , indicating added 

variation to shoot lengths of seedlings in the Rubus

removal plots . No di f ferences between treatments were 

signif icant , however . 
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CHAPTER 5 

CONCLUSIONS 

1 .  On Mount Collins , Fraser fir mortality f rom balsam 

woo lly ade lgid infestation appears to have had the 

greatest  effect on canopy composition o f  north-facing 

s lopes . 

2 .  Bryophytes are the most conspicuous feature of the 

herbaceous layer of Mount Col lins , particular ly on the 

northeas t - f ac ing s lope . 

3 .  The northeast-fac ing s lope o f  Mount Co l l ins seems to 

favor coni fer regeneration because of the high 

dens ities of Fraser fir and red spruce seedlings 

there . 

4 .  The abundance of Rubus canadens is on the southwest

fac ing s lope of Mount Collins may partially explain 

the low total herbaceous cover on that s lope . 

5 .  Density of Fraser fir seedlings has probably increased 

on the north- facing s lope of Mount Collins fol lowing 

recent overs tory mortality . 
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6 .  Germinal Fraser fir seedlings are very scarce and are 

not like ly to appear in signif icant numbers unless 

existing seedlings and saplings reach reproductive 

age . 

7 .  Reduced variabi lity o f  Fraser fir seedling density 

with increasing Rubus canadens is density suggests that 

Rubus inhibits establishment of f i r  seedlings . 

8 .  An assoc i ation between Fraser fir seedling shoot 

growth and Rubus canadens is density is not apparent on 

Mount Col lins . 

9 .  Pos itive associations of Fraser fir shoot growth and 

Rubus canadensis dens ity and biomass with soil 

potassium concentration indicate some growth 

limitation by thi s e lement . 

1 0 . Dead wood appears to be a favorable subs trate for 

establishment of Fraser fir seedlings . 

1 1 . Bryophytes may constitute favorable surf aces for 

Fraser fir seedling es tablishment . 

1 2 . Balsam woo l ly ade lgid effects are evident on about one 

fourth of Fraser fir seedlings , but this fraction is 

probably an underestimate of the extent of adelgid 

damage . 
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1 3 . Terminal shoot growth is inc reas ing in success ive 

years as a consequence o f  normal growth habits and 

recovery f rom balsam woolly adelgid infe station . 

1 4 . No effect of Rubus canadens is removal was detected on 

herbaceous cover or woody spec ies dens i ties . 

1 5 . Rubus candens is itsel f  is capable of rapid response to 

disturbance . 

1 6 . No effect of Rubus canadens is removal was detected on 

soil pH or phosphorus , potassium , or calcium 

concentrations . 

1 7 . No effect o f  Rubus canadensis removal was detected on 

1 9 8 8  Fraser fir shoot growth . 
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