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Abstract 

Farmers are price takers for both inputs and outputs. Therefore, when the prices of inputs 

rise, as they have with many inputs used in agricultural production, optimal production practices 

may change. Two separate studies of the impacts of agricultural technology on input use in crop 

production were undertaken in this thesis. The first study evaluated economically optimal plant 

population considering seeding rate, maturity group, row spacing, and input-output prices in 

soybean production in the rolling uplands region of the upper Midsouthern United States. Data 

from field experiments at the University of Tennessee Research and Education Center at Milan, 

Tennessee during 2005, 2006, and 2007 were used to model yield response to plant population 

density (PPD). Given that farmers must make their planting decisions based on expected 

weather, original models were weighted by year based on the Ångström weather index. 

Evaluation of weighted average response functions found that maturity group IV soybean 

cultivars planted in 38 cm rows at seeding rates necessary to achieve final PPD of 115,000 plants 

ha−1 would maximize farmers returns to soybean production. The second study evaluated factors 

influencing cotton farmers’ decisions to adopt information technologies for variable-rate input 

application and subsequent perceptions of directional changes in the overall use of fertilizer in 

cotton. Data from the Cotton Incorporated 2009 Southern Precision Farming Survey were 

evaluated using probit models with sample selection given the sequential nature the adoption 

decision and farmer perceptions of directional changes in fertilizer use. Results suggest that 

cotton farmers in the sample who rented more of their cotton area and used picker harvest 

technology were more likely to perceive that overall fertilizer use declined with the use of the 

selected information technologies and VRT. This and other key findings of this research have 
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implications for a wide range of audiences ranging from University Extension to policy makers 

given the economic and environmental impacts.  
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Introduction 

The prices of inputs used in crop production have been rising rapidly in the last decade. 

According to the United States Department of Agriculture – Economic Research Service (USDA 

– ERS), the average cost of seed, fertilizer, and chemicals in 2010 was 87% higher in soybean 

production and 95% higher in cotton production than in 1996 (USDA – ERS 2010a). In 

response, farmers have enhanced their effort to increase the efficiency of input use through the 

reevaluation of current production practices as well as the adoption of newly developed 

technologies. This project specifically evaluates farmer efforts to better utilize inputs in two 

papers by first looking at economically optimal plant population densities (EOPPD) in Midsouth 

soybean production and the adoption of information technologies and their subsequent effect on 

farmer perceptions of directional changes in input use in cotton production.  

Soybean production in the United States trails only corn with 30 million hectares planted 

in 2011 with an estimated value of just under $36 billion (USDA – NASS 2012). Soybeans are 

also the leading commodity produced in the state of Tennessee with annual receipts estimated 

over $550 million (USDA – ERS 2010b). Soybean production in the Midsouthern United States 

has historically relied on the use of full-season maturity groups (MG), but yield limitations as a 

result of late-season drought common in the region has generated interest in earlier maturing 

soybean cultivars as part of an early soybean production system (ESPS) (Edwards et al. 2003; 

Popp et al. 2004, 2006). The use of ESPS allows soybean plants to take advantage of the region’s 

water availability earlier in the growing season (Heatherly, Spurlock, and Elmore 2004). Because 

of its recent implementation in the rolling uplands of Kentucky, Tennessee, eastern Mississippi, 

and northern Alabama, ESPS still lacks a set of optimal production practices (Walker et al. 

2010). For instance, information regarding alternative row spacing (RS) is limited for ESPS. 



 
3 

 

Soybeans planted in narrower rows at higher plant population densities (PPD) have produced 

higher yields as a result of better canopy development and higher light interception in the 

Southern United States (Boquet 1990; Bowers et al. 2000; Bullock, Khan, and Rayburn 1998; 

Etherege, Ashley, and Woodruff 1989; Heatherly 1988; Holshouser and Whittaker 2002; Oriade 

et al. 1997; Reddy 2002; Walker et al. 2010). However, these advantages have been found to be 

inconsistent and relatively small under nonirrigated conditions (Epler and Staggenborg 2008; 

Heatherly 1988; Heitholt, Farr, and Eason 2005). Economic literature has also generally 

supported the benefits of narrow RS in the southern United States, but available research is based 

on outdated input and output prices (Heatherly, Elmore, and Spurlock 2001; Reddy 2002; Oriade 

et al. 1997). Specifically seed has become one of the most expensive inputs in soybean 

production as a result of the introduction of genetically modified (GM) crops in 1996, and 

subsequent market concentration of the seed industry and attempts by seed companies to protect 

their intellectual property (Shi, Chavas, and Stiegert 2010; Rich and Renner 2007). Because both 

ESPS and narrower RS require higher seeding rates for optimal production, changes in the input-

output price ratio directly affect farmer planting decisions.  

Cotton, while not as prominent as corn or soybean, is an important crop in the Southern 

United States. It has an annual estimated value of $25 billion (USDA – NASS 2012), and is the 

sixth leading commodity in the state of Tennessee with receipts over $145 million (USDA – ERS 

2010b). Cotton growers have historically applied inputs using uniform rate technology (URT), 

which may lead to inefficient input use in some cases as a result of variability within farm fields. 

Precision farming, however, allows farmers to take advantage of knowledge of in-field 

variability using variable rate technology (VRT), and thus increase the efficiency of input use 

(Roberts et al. 2004). Improved productivity of input use affords farmers using precision farming 
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the potential for economic and environmental benefits. The factors affecting this increased 

productivity following VRT management have been evaluated in previous literature (Khanna 

2001; Torbett et al. 2007, 2008). However, the factors affecting specific directional changes 

(increase, no change, or decrease) of overall input use following VRT have not been evaluated. 

Thus, knowledge of these factors may provide insight into the potential economic and 

environmental benefits of precision farming.  

Two separate studies of the influence that the aforementioned agricultural technologies in 

soybeans and cotton have on input use were undertaken in this thesis. The objective of the first 

study was to determine EOPPD considering seeding rate, MG, RS, and input-output prices in the 

rolling uplands of the Midsouthern United States for dryland soybean production. The objective 

of the second study was to evaluate the farmer and farm characteristics, sources of precision 

farming information, and regional characteristics that influence farmer decisions to adopt 

selected information technologies for VRT management of inputs and the subsequent 

perceptions of directional changes in the use of selected inputs.  
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Production 

  



 
9 

 

Abstract 

Traditionally grown maturity group (MG) V, and more recently adapted MG IV soybean 

cultivars, are subject to late-season drought conditions in the Midsouthern United States when 

planted in mid-May resulting in yield limitations. Thus, earlier maturing cultivars, such as MG 

III, have been generating interest among soybean farmers in the Midsouth. The objective of this 

research was to determine economically optimal plant population density (EOPPD) considering 

seeding rate, MG, row spacing (RS), and input-output prices in the rolling uplands region of the 

Midsouth for dryland soybean production. Field experiments were conducted during 2005, 2006, 

and 2007 at the University of Tennessee Research and Education Center at Milan, Tennessee. 

Maturity group III, IV, and V cultivars were planted in wide (76 cm) and narrow (38 cm) RS at a 

range of seeding rates from 60,000 to 593,000 seeds ha−1 in mid-May to determine the 

production system that would maximize net returns. Results suggest that the profit maximizing 

production system was MG V soybean cultivars planted in narrow rows at seeding rates 

necessary to achieve a final PPD of 97,000 plants ha−1 in 2005; MG IV soybean cultivars planted 

in narrow rows at seeding rates necessary to achieve a final PPD of 126,000 plants ha−1 in 2006; 

and MG V soybean cultivars planted in wide rows at seeding rates necessary to achieve a final 

PPD of 69,000 plants ha−1 in 2007. Given that farmers must make planting decisions based on 

expected weather, response functions for the three years were weighted based on the Ångström 

weather index. Results of the evaluation of weighted average response functions revealed that 

MG IV soybean cultivars planted in narrow rows at seeding rates necessary to achieve a final 

PPD of 115,000 plants ha−1 would maximize returns to soybean production. Overall, results 

indicated that earlier maturing, MG III, soybean cultivars were never part of a production system 

that would maximize returns irrespective of weather conditions.   
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Introduction 

Soybeans are a very important crop in the United States, representing over 30 million 

hectares and a gross production value of nearly $36 billion in 2011 (USDA – NASS 2011b). 

Production practices for soybean vary by region. The upper Midsouthern United States has two 

distinct growing environments for soybeans: the flat landscapes of the Mississippi Delta region 

of Arkansas, Mississippi, and the boot heal of Missouri, which are conducive to irrigation; and 

the rolling uplands of Kentucky, Tennessee, eastern Mississippi, and northern Alabama, which 

have highly erodible soils and small field sizes that are not conducive to irrigation (Walker et al. 

2010).  

Soybean production in the Midsouth has historically relied on the use of full-season, 

maturity group (MG) V and VI cultivars given the daylength conditions in the region (Popp et al. 

2006). However, the pod-fill period of these MG inconveniently coincide with the mid-June 

through late August drought that is common in the region subsequently limiting yield potential 

(Heatherly and Hodges 1999). In an effort to avoid the effects of mid or late season drought, 

producers have increasingly adopted the use of the early soybean production system (ESPS), in 

which earlier maturing soybean cultivars, such as MG 00-IV, are planted in late March or early 

April allowing soybean plants to take advantage of the region’s water availability earlier in the 

growing season (Boquet 1998; Heatherly and Hodges 1999; Heatherly, Spurlock, and Elmore 

2004; Popp et al. 2004). Hence, the use of MG IV cultivars has become widely adopted in the 

Midsouth as an alternative to MG V and VI (Hill, Popp, and Manning 2003).  

However, soil moisture and temperature conditions often restrict the planting of earlier 

maturing cultivars to late April or early May, which consequently still subjects MG IV cultivars 

to mid-June drought (Edwards et al. 2003; Popp et al. 2004). For this reason, even earlier 
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maturing cultivars, MG 00-III, have been generating interest among farmers in the Midsouth 

(Edwards and Purcell 2005; Edwards et al. 2003; Holshouser and Whittaker 2002; Lee, Egli, and 

TaKrony 2008; Popp et al. 2004, 2006; Walker et al. 2010). Edwards and Purcell (2005) found 

that MG II-VI soybean had similar yield potential in the Mississippi Delta region of the 

Midsouth, but earlier maturing cultivars generally required higher plant population density (PPD) 

to reach these yields. Subsequent economic analysis of these data estimated that economically 

optimal plant populations (EOPPD) of 490,000 plants ha−1 for MG II to 110,000 plants ha−1 for 

MG VI, generated similar net returns ranging from $502.00 ha−1 for MG II to $529.00 ha−1 for 

MG IV (Popp et al. 2006). The choice between these MG was said to depend on yield potential, 

seasonal sale price, irrigation requirement, and seed cost (Popp et al. 2006). However, one 

important factor not evaluated in their research was variations in row spacing (RS).  

Soybeans are cultivated in a variety of RS, but in the Southern United States soybeans 

planted in narrower rows (<50 cm) at higher PPD have produced higher yields due to the benefits 

of quicker canopy closure and higher light interception (Boquet 1990; Bowers et al. 2000; 

Bullock, Khan, and Rayburn 1998; Etherege, Ashley, and Woodruff 1989; Heatherly 1988; 

Holshouser and Whittaker 2002; Oriade et al. 1997; Reddy 2002; Walker et al. 2010). However, 

under nonirrigated growing conditions, reported yield benefits have been relatively small and 

inconsistent (Epler and Staggenborg 2008; Heatherly 1988; Heitholt, Farr, and Eason 2005). 

Thus, RS choice cannot be based solely on yield benefits, but rather by measuring yield 

advantages against the economics of each system (Heatherly, Elmore, and Spurlock 2001). 

Oriade et al. (1997) were the first to confirm the economic benefits of narrower RS in Midsouth 

soybean production, evaluating three tillage by row spacing treatments. They found yields and 

net returns for soybeans planted in narrow RS were higher in both irrigated and nonirrigated 
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environments. Subsequent research by Heatherly, Elmore, and Spurlock (2001) and Reddy 

(2002) found that yield benefits were more than enough to offset the higher costs of equipment, 

seed, and weed management associated with narrower RS, supporting the findings of Oriade et 

al. (1997). 

While the aforementioned studies suggest potential economic benefits of ESPS and 

narrow row soybean production in the Midsouth, these potential economic benefits have not been 

evaluated for dryland soybean production in the rolling upland region of the Midsouthern United 

States.  

In recent years the cost of soybean production has risen considerably. In particular, seed 

has become one of the most expensive inputs (Rich and Renner 2007). Much of the increase in 

the price of soybean seed can be attributed to the introduction of genetically modified (GM) 

varieties in 1996, and subsequent attempts by seed companies to protect their intellectual 

property (Epler and Staggenborg 2008; Shi, Chavas, and Stiegert 2010). As farmers strive to 

utilize seed inputs more efficiently, production decisions such as MG selection and RS must be 

reevaluated. Both ESPS and narrow RS require farmers to plant soybeans at higher PPD. Thus, 

as the relationship between input and output prices changes, optimal production decisions may 

also change due to their relationships with PPD.  

There are many other production practices that may also affect returns to soybean 

production. For instance, farmers may use different planting dates as part of ESPS in an effort to 

avoid late-season drought (Heatherly 2005; Heatherly and Spurlock 1999; Lee, Egli, and 

TaKrony 2008). Earlier planting dates have generally required lower PPD to achieve EOPPD, 

and have consistently generated higher returns as a result of higher yields, lower costs, and 

higher prices received (Heatherly and Spurlock 1999; Lee, Egli, and TaKrony 2008). However, 
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when considering earlier planting dates, farmers must also consider additional equipment and 

labor costs resulting from the limited number of days available for field work (Heatherly and 

Spurlock 1999). While it is evident that planting date plays a vital role in soybean production, it 

is beyond the scope of this research, which evaluated the impacts of MG, RS, and PPD on 

soybean profitability.  

The objective of this research is to determine EOPPD considering seeding rate, MG, RS, 

and input-output prices in the rolling uplands region of the Midsouth for dryland soybean 

production. The potential to avoid late-season drought common in the Midsouth has caused 

growing interest in ESPS. Also, economic analysis of alternative RS recommendations are 

currently lacking in the Midsouth for farmers considering ESPS. In addition, rising seed prices 

inevitably influence these decisions, given the direct effect of MG and RS decisions on PPD. 

Previous research regarding EOPPD for the rolling uplands region is limited, and currently 

available EOPPD estimates are based on production practices different than what is evaluated in 

this research. Results of this study have the potential to provide farmers with information 

regarding seeding rate, MG selection, and RS decisions that will maximize profits.  

Methods and Procedures 

Analytical Framework 

Farmers are assumed to be profit maximizers and price takers for their inputs and outputs 

(Nicholson 2005). Thus, EOPPD can be calculated by determining the PPD at which the 

marginal yield impact of the last additional plant is equal to its cost using the following equation: 

(1) ����,�,��	
����,�,��� � � � �	����,�,��� � � � ��,�,�, 

where E is the expectations operator; NR is net returns ($ ha−1); PPD is plant population density 

(plants ha−1) which is determined by seeding rate i (seeds ha−1), MG j (MG III, IV, and V), and 
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RS k (76 and 38 cm rows); p is soybean oilseed price ($ kg−1); Y is soybean oilseed yield (kg 

ha−1); and v is seed cost of each additional plant ($ plant−1). Assuming not all seed planted will 

germinate to produce harvestable plants, PPD is affected by both seeding rate and the expected 

plant survival rate (PSR) (Larson, Roberts, and Gwathmey 2007). As a result, seed cost per plant 

can be calculated using the following equation: 

(2) � � �/��, 

where v is the cost of each additional plant ($ plant−1), r is the seed cost ($ seed−1), and PSR is 

the expected plant survival rate ϵ(0,1). Hence, EOPPD can be converted to optimal seeding rates 

by dividing by the PSR. Note that up until 2002, technology fees for GM soybean were assessed 

directly to farmers as a fixed per hectare charge. Given the fixed nature, farmers were able to 

ignore this fee when making PPD decision. But in 2002, this policy changed when Monsanto 

started charging a royalty to seed companies rather than assessing technology fees directly to 

farmers (Monsanto Company 2001). Seed companies then passed this royalty along to farmers 

by increasing the price of seed packages. Thus, technology fees are now incorporated into the 

price of seed, r, and have a direct impact on PPD decisions.  

Higher seeding rates and therefore PPD are assumed to increase net returns due to higher 

yields. However, at some point the cost of increasing the seeding rate will actually decrease net 

returns because of higher seed costs. RS is also directly related to PPD. As RS decreases, PPD 

increases as plants become more equidistantly placed. Narrower rows are assumed to have the 

benefits of quicker canopy closure, which helps preserve soil moisture and inhibit weed growth. 

However, at some level of RS, rows become too narrow causing competition among plants for 

necessary nutrients as well as lodging, both of which reduce net returns through yield reduction 

(Cooper and Jeffers 1984; Webber, Shibles, and Byth 1966). Based on these assumptions, profit-
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maximizing producers will choose the PPD that produces the highest profits compared to other 

PPDs.  

The first-order condition for profit maximization is that marginal revenue product (MRP) 

equals marginal input cost (MIC) (Debertin 1986; Nicholson 2005): 

(3) 
��

�����, ,!
� � � "� � "#$ � �, 

where Y is the total physical product (TPP) which in this case is soybean oilseed yield (kg ha−1); 

PPD is plant population density (plants ha−1) which is determined by seeding rate i (seeds ha−1), 

MG j (MG III, IV, and V), and RS k (76 and 38 cm rows); p is soybean oilseed price ($ kg−1); 

and v is seed cost of each additional plant ($ plant−1). Assuming the cost of each additional unit 

of an input is constant, MIC is equal to the price per unit of that input, v. Therefore, the EOPPD 

is the point where MRP equals v (Debertin 1986; Nicholson 2005). At this point, the return from 

the last unit of input is just equal to its cost. It is also assumed that the second order conditions 

for profit maximization, diminishing marginal physical product (MPP), are met (Debertin 1986; 

Popp et al. 2006). That is, net returns are decreasing at EOPPD.  

As can be derived from the relationship between MRP and MIC, EOPPD also changes 

with the relationship between input cost and the output price (i.e. the v:p ratio) (Debertin 1986). 

The EOPPD is equal to the point where a line with the slope of v/p is just tangent to the TPP 

curve (Debertin 1986). In cases where v is low relative to p, PPD close to the EOPPD show little 

changes in net returns. But when v rises, as they have with many inputs in crop production, the 

ratio between v and p becomes larger, and small deviations from EOPPD cause much larger 

changes in net returns (Lauer and Stanger 2006). It is for this reason that knowledge of EOPPD 

has become increasingly important to farmers.  
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Data 

The data for this study were from field experiments during 2005, 2006, and 2007 at the 

University of Tennessee Research and Education Center at Milan, Tennessee (35.92° N, 88.74° 

W). The soil was Falaya silt loam (coarse-silty, mixed, active, acid, thermic Aeric Fluvaquents). 

Experimental plots were arranged in a randomized complete block, split-plot design with four 

replications. The main plot was cultivar and the subplot consisted of a two-factor-factorial 

treatment arrangement of row spacing by seeding rate (Walker et al. 2010). 

In all years of the study, glyphosate-resistant MG III, IV, and V soybeans were planted in 

76 and 38 cm rows. Maturity group III cultivars Asgrow 3906, Delkalb 36-52, and Pioneer 

93M90 were planted at seeding rates between 247,000 and 593,000 seeds ha−1; MG IV cultivars 

Pioneer 94B73 and Vigoro 42N3 were planted at seeding rates between 60,000 and 180,000 

plants ha−1; and MG V cultivar Vigero 52N3 was planted at seeding rates between 60,000 and 

180,000 plants ha−1 (see Table 2.1 for more detailed planting information). Seeds were planted 

using no-tillage practices in all years using a modified John Deere MaxEmerge 7240 planter 

(Walker et al. 2010). In each year weeds were controlled using a burndown application of 

glyphosate plus dicambia (3,6-dichloro-2-methoxybenzoic acid) before planting, followed by 

two post-emergence applications of glyphosate according to the University of Tennessee 

recommendations (Flinchum 2001).  

Net returns to soybean yield were determined using marketing year soybean prices for the 

state of Tennessee from the years 2000-2010, inflated to 2011 dollars using the prices received 

index (PRI) (base PRI = 100 for the years 1990-1992) (USDA – NASS 2011a, 2011b). The mean 

soybean price in 2011 dollars was $10.06 bu−1, or $0.37 kg−1 (USDA – NASS 2011b). Average 

soybean seed price from University of Tennessee Extension Field Crop Budgets was $45.00 per 



 
17 

 

140,000 seed count package (McKinley and Gerloff 2012). Selling soybean seed in seed 

packages has become the norm for various reasons in the last several years, one of which is the 

rising cost of seed (Moore 2010). It is emphasized that seed prices can vary based on seed traits, 

such as conventional versus GM varieties, as well as based on yield potential of the cultivar 

(Popp et al. 2006). Assuming a PSR of 85%, the price of each additional plant was $0.0004 

plant−1 (McKinley and Gerloff 2012).  

Total planting costs for wide rows included a 215 horsepower tractor and a base model 

Kinze 3500 Twin-Line® Planter (eight row, 76 cm RS, no-tillage) (Kinze Manufacturing Inc. 

2011; McKinley and Gerloff 2012). Total planting costs for narrow rows included a 215 

horsepower tractor, a base model Kinze 3500 Twin-Line® Planter, and the addition of a Kinze 

Interplant® Solid Row Package (seven offset push row planting units which enables planting in 

38 cm rows) (Kinze Manufacturing Inc. 2011; McKinley and Gerloff 2012). Planting costs were 

annualized by creating budgets using American Society of Agricultural and Biological Engineers 

(ASABE) cost and returns guidelines (ASABE 2011a, 2011b). A farm size of 405 hectares was 

assumed, and tractor and planter prices were from University of Tennessee Extension Budgets 

and Kinze Manufacturing Inc. (Kinze Manufacturing Inc. 2011, McKinley and Gerloff 2012). 

Ownership costs for depreciation and opportunity cost of capital were estimated using an 

expected useful life of 12,000 hours and 1,500 hours for the tractor and planter, respectively, 

using the capital recovery method, and an interest rate of 6% (ASABE 2011a; McKinley and 

Gerloff 2012). Additional ownership costs included taxes, insurance, and housing, which were 

all estimated as a percentage of the purchase price (ASABE 2011a). Operating costs included 

repairs and maintenance of both the tractor and planter, and labor, fuel, and lubrication costs for 
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the tractor (ASABE 2011a). Total planting equipment costs were converted to per hectare costs 

of $30.78 and $36.12 ha−1 for wide and narrow RS, respectively.  

Differences in RS may also lead to differences in fuel and labor costs. It is hypothesized 

that fuel cost would increase under narrower RS given the increased weight and back-force of 

the additional planting units, and labor cost would also increase given the additional time 

required to fill the extra seed hoppers. However, due to the difficulty of quantifying these 

changes and the expectation these changes would be rather small, fuel and labor costs are 

assumed constant for both wide and narrow RS. 

Empirical Models 

To evaluate EOPPD, a yield response equation as a function of PPD was estimated for 

each MG, RS, and year combination: 

(4) ��,�,� � %&��,�,�' ( )�,�,�, 

where Y is yield  (kg ha−1), PPD is final plant population density (plants ha−1), i is seeding rate 

(seeds ha−1), j is MG (MG III, IV, and V), k is RS (38 cm and 76 cm rows), and ε is a random 

error term. Based on a review of agronomic literature, the relationship between PPD and soybean 

yield assumes diminishing marginal physical productivity of each additional plant (Holliday 

1960a, 1960b; Weiss 1949). Thus, as PPD increases, soybean yield is assumed to increase at a 

decreasing rate. At some unknown PPD, yield is expected to either plateau or decrease as PPD is 

further increased. Based on these assumptions, the data were fitted to square root, quadratic, and 

quadratic plus plateau functional forms, all of which impose diminishing marginal physical 

productivity, to evaluate which best fits the data (Cox and Cherney 2011; De Bruin and Pedersen 

2008; Holliday 1960a, 1960b; Popp et al. 2006). The choice between functional forms was made 
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based on a variety of measures of goodness-of-fit including F-statistics and Akaike information 

criterion (AIC). 

Because farmers cannot predict future weather conditions, they must make their planting 

decisions based on expected weather. Year by year analysis may provide beneficial ex post 

information, but it does not help farmers in making future planting decisions. Thus, original 

response equations were weighted by year based on the weighting procedure by Lambert, 

Lowenberg-DeBoer, and Malzer (2007) to establish response functions for each MG, RS 

combination that were representative of expected weather conditions. When calculating the 

weights, different critical periods of soybean growth were considered. The weights were 

calculated as a function of the weather in May through September, or the entire growing season 

for each year. This system was chosen due to the role weather conditions play in all phases of 

soybean growth (Egli 2009). While phase two of soybean growth, flowering and pod set, is 

considered by most to be the critical period given the detrimental effects adverse weather 

conditions have on yield; both phase one, vegetative growth, and phase three, seed filling, also 

have negative effects on yield if weather conditions are adverse (Egli 2009). Annual weights 

were calculated as: 

(5) *+ � ∏ -�./,+�/ ∑ ∏ -&./,+'/,++/,+  , 

where l is the month (May, June, July, August, or September); t is the year (2005, 2006, or 

2007); -(·) is the normal probability density function; and A is an Ångström weather index. The 

weighting plan is based on the rules of general probability products: 

(6) &12 3 1��452,…,7829 ' � ∏ �1���452,…,79  , 
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assuming the Ångström index in month l is independent of the Ångström index in month l−1 

(Lambert, Lowenberg-DeBoer, and Malzer 2007). The Ångström weather index is a function of 

precipitation and temperature calculated using the following equation: 

(7) . � �

2.;<= , 

where P is monthly precipitation (mm month−1) and T is the average monthly temperature  

(°Celsius) (Oury 1965). The Ångström index was chosen over other weather indices due to its 

continuous properties and the relative availability of the required data (Mooney et al. 2010; Oury 

1965). Precipitation and temperature data were collected from the National Oceanic and 

Atmospheric Association (NOAA) for the years 1910-2010 at the Milan Experiment Station in 

Milan, Tennessee (NOAA 2011).  

By using a partial budget, differences in net returns are able to be determined by focusing 

only on those costs and returns that change with alternative production practices evaluated (PPD, 

MG, and RS) (Lambert and Lowenberg-DeBoer 2003). Thus, seed costs and planting costs were 

subtracted from revenues at EOPPD using the following equation: 

(8) ����,�,��	
����,�,��� � � � �	����,�,��� � � � ��,�,� � >$�, 

where E is the expectations operator; NR is net returns ($ ha−1); PPD is plant population density 

(plants ha−1) which is determined by seeding rate i (seeds ha−1), MG j (MG III, IV, and V), and 

RS k (76 and 38 cm rows); p is soybean oilseed price ($ kg−1); Y is soybean oilseed yield (kg 

ha−1); v is seed cost of each additional plant ($ plant−1); and TPC is total planting cost ($ ha−1). 

Since production costs other than seed and planting costs were assumed similar across PPD, the 

MG, RS combination that generated the highest net returns at EOPPD would be chosen on the 

basis of highest profitability.  
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Analysis for individual year response functions and the weighted average response 

functions include biologically optimal PPD (BOPPD), EOPPD, yields, and net returns. 

Biologically optimal PPD and EOPPD will be estimated for each MG, RS combination by 

differentiating equations (4) and (8) with respect to PPD, setting the first order conditions equal 

to zero, and solving for PPD. Plugging the estimated EOPPD back into equations (4) and (8), 

yields and net returns will then be estimated for each MG, RS combination.  

Hypotheses  

The hypothesized impacts on EOPPD of changes in MG and/or RS decisions are as 

follows. Earlier maturing cultivars are expected to require higher plant populations to reach 

EOPPD (Holshouser and Jones 2003; Edwards and Purcell 2005; Popp et al. 2006). Previous 

agronomic literature established that earlier maturing cultivars reach the first reproductive stage, 

“beginning bloom”, sooner than later cultivars (Flinchum 2001; Lee, Egli, and TaKrony 2008). 

Consequently, plants are smaller and canopy development is impeded, resulting in the need for 

higher PPD to maximize light interception (Kane and Grabau 2002; Lee, Egli, and TaKrony 

2008; Wells 1991). Soybeans planted in narrower rows are also expected to require higher plant 

populations to reach EOPPD (Devlin et al. 1995; Weber, Shibles, and Byth 1966). Soybean 

plants generally respond positively to more equidistant spacing. As row spacing decreases, 

increased seeding rates maximize use of space (De Bruin and Pedersen 2008).  

Soybeans planted in narrow rows are expected to produce higher net returns than those 

planted in wider rows. The economic benefits of narrow rows are primarily driven by potential 

yield benefits. Again, as plant spacing becomes more equidistant, canopy development and light 

interception improve, generating higher yields (Shibles and Webber 1966; Webber, Shibles, and 

Byth 1966). Subsequently, these higher yields generally translate into higher returns to the 
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farmer (Heatherly, Elmore, and Spurlock 2001; Reddy 2002; Oriade et al. 1997). However, 

increased seed costs due to higher PPD and the potential for competition among plants associated 

with narrower RS may limit economic benefits (Devlin et al. 1995; Elmore 1998). 

 Maturity group III cultivars are expected to generate the highest net returns. While the 

use of MG IV and V soybean cultivars are common in the Midsouth, recent literature has made a 

case for the agronomic benefits of planting earlier maturing cultivars in order to better avoid the 

common late-season drought in the region (Edwards and Purcell 2005; Popp et al. 2004, 2006; 

Walker et. al. 2010). However, increased seed costs due to higher PPD associated with earlier 

maturing cultivars may limit the economic benefits of MG III soybean cultivars (Popp et al. 

2006).  

Statistical Analysis 

Equation (4) was estimated using the MODEL procedure in SAS for each MG, RS, and 

year combination (SAS Institute Inc. 2008). The model was fitted to square root, quadratic, and 

quadratic plus plateau functional forms. Goodness-of-fit criteria including F-statistics and AIC 

were used to determine which functional form best fit the yield data. Given a candidate 

functional form, the model was investigated for multicollinearity and heteroskedasticity. 

Collinearity diagnostics were determined using the COLLIN statement in SAS (SAS Institute 

Inc. 2008). Multicollinearity occurs when two or more independent variables are highly 

correlated with each other (Chatterjee and Price 1991). Due to the nature of the functional forms 

used in this analysis, some degree of multicollinearity is expected. If present, multicollinearity 

causes standard errors to be inflated, which in turn can affect the significance and inferential 

power of coefficients (Chatterjee and Price 1991). Heteroskedastic-consistent covariance matrix 

estimation was used following the procedure proposed by White (1980) using the PROC 
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MODEL HCCME=1 statement (SAS Institute Inc. 2008). Heteroskedasticity occurs when the 

variance of the error term of the regression is not constant (Wooldridge 2009). If present, 

heteroskedasticity causes estimates of variance, and therefore standard errors, to be over or under 

represented. This also leads to biased inference with respect to hypothesis tests (Wooldridge 

2009).  

The model was further evaluated using the ESTIMATE and TEST statements in the 

PROC MODEL command (SAS Institute Inc. 2008). The ESTIMATE statement computes 

values for nonlinear functions (e.g., the net revenue function) that include parameters fitted in the 

model (SAS Institute Inc. 2008). Estimated values calculated using this statement are presented 

with standard errors and t-values. This statement was used for estimating BOPPD, EOPPD, 

yields, and net returns as well as weighting regression coefficients. The TEST statement 

performs tests of nonlinear hypotheses on model parameters (SAS Institute Inc. 2008). The 

default Wald statistic, interpreted based on the chi-squared distribution, was used for this 

analysis (SAS Institute Inc. 2008). Hypotheses for differences in BOPPD and EOPPD, as well as 

differences in net returns among each MG, RS combination were tested using this statement.  

Results 

Model Evaluation 

For each functional form, 18 response equations were estimated; one for each MG, RS, 

and year combination. The quadratic functional form was determined to best fit the data on the 

basis of visual inspection, F-statistic, and AIC. Results from the estimated yield response 

functions can be seen in Table 2.2. Of the 18 original response equations, eight were found to be 

significant at the 10% level based on model F-tests. One of which, MG III planted in 76 cm RS 

in 2005, did not display the expected concave properties of the quadratic function. In addition, 
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two of the remaining response functions that were not significant, MG IV planted in 38 and 76 

cm RS in 2007, also did not display the expected concave properties. For these functions, net 

returns were estimated for both the minimum and maximum observed PPD, and the one that 

generated higher net returns was presented as the EOPPD.  

Annual equations were then weighted by year to calibrate the response functions to 

expected weather conditions. Weather data for the three years of the experiment, and the 100 

year average can be found in Table 2.3. Weights were 0.14, 0.71, and 0.15 for the years 2005, 

2006, and 2007 respectively. As probability theory suggest, the weights for the three years sum 

to one. Further understanding of what these weights represent is realized by looking at weather 

conditions in each of the three years and comparing the Ångström indices with their 100 year 

averages. The 2005 response functions received the lowest weight of the three years as a result of 

close to average monthly temperatures, but considerably high precipitation in June, July, and 

August. The 2006 response functions received the highest weight because weather conditions 

were similar to the 100 year average for the entire growing season. Lastly, the 2007 response 

function received another relatively low weight as a result of what was recorded as severe 

drought conditions due to higher than average temperatures and major deficits in precipitation in 

May, July, and August (Fuchs 2008). Weights were applied (∑ *+?�,++ ) by year, t, reducing the 

original 18 response equations to six weighted average response equations, one for each MG, RS 

combination. Weighted coefficients can be seen in Table 2.4. All weighted response functions 

possessed the expected concave properties of the quadratic function, and three of them showed 

significance at the 5% level on each the estimated intercept, linear, and squared coefficients.  
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2005 Growing Season 

Results from the evaluation of the 2005 soybean yield response functions can be seen in 

Table 2.5. All estimated BOPPD and EOPPD fell within the observed PPD of the experiment. 

Economically optimal PPD for wide and narrow RS were 349,000 and 198,000; 102,000 and 

60,000; and 44,000 and 97,000 plants ha−1 for MG III, IV, and IV respectively. Net returns for 

soybeans planted in narrow RS were $114, $210, and $240 ha−1 higher than those planted in 

wide RS for MG III, IV, and V cultivars respectively. When evaluating MG selection, MG V 

cultivars generated the highest returns for both wide and narrow RS. Thus, for the 2005 growing 

season MG V soybean cultivars, planted in 38 cm RS resulted in the highest returns to soybean 

production. Given the ample water supply that was available during the entire 2005 growing 

season, these results suggest that traditionally grown MG V cultivars generate higher returns 

compared to earlier maturing cultivars when water is not limited by drought late in the growing 

season.  

2006 Growing Season 

Results from the evaluation of the 2006 soybean yield response functions can be seen in 

Table 2.6. All estimated BOPPD and EOPPD fell within the observed PPD of the experiment. 

Economically optimal PPD for wide and narrow RS were 370,000 and 390,000; 84,000 and 

126,000; and 49,000 and 92,000 plants ha−1 for MG III, IV, and V respectively. Net returns for 

soybeans planted in narrow RS were $113, $168, and $71 ha−1 higher than those planted in wide 

RS for MG III, IV, and V respectively. When evaluating MG selection, MG IV cultivars 

generated the highest returns for both wide and narrow RS. Thus, for the 2006 growing season 

MG IV soybean cultivars, planted in 38 cm RS resulted in the highest returns to soybean 

production.  
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2007 Growing Season 

Results from the evaluation of the 2007 soybean yield response functions can be seen in 

Table 2.7. All estimated BOPPD and EOPPD fell within the observed PPD of the experiment. 

Economically optimal PPD for wide and narrow RS were 134,000 and 236,000; 121,000 and 

179,000; and 69,000 and 70,000 plants ha−1 for MG III, IV, and V respectively. Net returns for 

soybeans planted in narrow RS were $17 ha−1 higher than those planted in wide RS for MG IV 

cultivars. Net returns for MG III and V soybean cultivars planted in wide RS were $16 and $40 

ha−1 higher respectively than those planted in narrow RS. When evaluating MG selection, MG V 

cultivars generated the highest returns for both wide and narrow RS. Thus, for the 2007 growing 

season MG V soybean cultivars, planted in 76 cm RS resulted in the highest returns to soybean 

production. Given the drought conditions during the 2007 growing season, these results support 

the findings of Alessi and Power (1982) and Taylor (1980) that the benefits of narrow RS may 

dissipate in years of extreme water stress. 

Weighted Average Response Functions 

Results from the analysis of the weighted average response functions can be seen in 

Table 2.8. Estimated BOPPD for all MG, RS combinations except one fell within the observed 

PPD of the experiment. As is common practice, instead of presenting a plant population out of 

the range of the experiment, the BOPPD for this MG, RS combination is presented at the highest 

observed PPD for that experiment. All of the estimated EOPPD fell within the PPD observed in 

the experiment. Economically optimal PPD were lower than BOPPD for all MG, RS 

combinations.  

Evaluating EOPPD by RS, generally EOPPDs were found to be higher for soybeans 

planted in narrower rows as expected. MG IV and V cultivars both reached EOPPD at higher 
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plant populations for soybeans planted in 38 cm rows than those planted in 76 cm rows. 

However, EOPPD for MG III cultivars were approximately 84,000 plants ha−1 lower for 

soybeans planted in 38 cm rows. The cause for this result is likely the strong convex shape of the 

original 2005, MG III, 76 cm RS response equation. As previously discussed, the weighting 

scheme moderated the convexity, but large original coefficients caused the shape of the weighted 

average MG III, 76 cm RS response function to be very flat which led to higher EOPPD.  

Holding RS constant, it is also evident that, as expected, earlier maturing cultivars require 

higher plant populations to reach EOPPD. The earliest maturing cultivars in this experiment, MG 

III, displayed considerably higher EOPPD than the two later maturing cultivars in the study. The 

estimated EOPPD of approximately 296,000 plants ha−1 is close to the EOPPD estimated by 

Popp et al. (2006) of 280,000 plants ha−1 for MG III cultivars planted in narrow rows. MG IV 

cultivars reached their EOPPD at considerably lower plant populations of 87,000 and 115,000 

plants ha−1 for wide and narrow RS respectively, and MG V cultivars reached their EOPPD at 

modestly lower levels of 51,000 and 90,000 plants ha−1 for wide and narrow RS respectively.  

Following this preliminary analysis of estimated BOPPD and EOPPD, the null hypothesis 

that BOPPD were equal to EOPPD for each MG, RS combination was tested. Four of the six 

MG, RS combinations rejected this hypothesis at the 10% level of significance. These findings 

generally support the hypothesis that the increase in the input-output price ratio has caused 

EOPPD to become significantly different from BOPPD. Three of the four MG, RS combinations 

that rejected the null hypotheses were for soybeans planted in 38 cm rows. Therefore, for 

soybeans planted in narrower rows, EOPPD were generally different from BOPPD; but for 

soybeans planted in wider rows there was insufficient evidence to support this hypothesis.  
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Net returns were calculated for each MG, RS combination (Table 2.8). Results suggest 

that MG IV cultivars planted in 38 cm RS generated the highest net returns, while MG III 

cultivars planted in 76 cm RS generated the lowest net returns of the MG, RS combinations 

evaluated. To better understand these results, net returns were evaluated by MG and RS 

separately. Putting these two factors together, the overall production system that maximized 

returns was evaluated. Further evaluation of differences in net returns was conducted by testing 

the null hypothesis that net returns for each MG, RS combination was equal to the net returns of 

all other MG, RS combinations. The results of these comparisons can be seen in Table 2.9, and 

are referred to throughout the following discussion.  

Evaluating differences in net returns by RS, soybeans planted in narrow rows generated 

net returns of $105, $135, and $75 ha−1 higher than soybeans planted in 76 cm rows for MG III, 

IV, and V respectively. These results suggest that the yield benefits of narrower rows are more 

than enough to offset higher seed cost. Results testing for statistical differences in net returns 

rejected the null hypotheses at the 10% level that the net returns for soybeans planted in wide 

and narrow rows were equal for all MG evaluated. These findings are consistent with Oriade et 

al. (1997); Heatherly, Elmore, and Spurlock (2001); and Reddy (2002) that showed soybeans 

planted in narrow rows consistently generate higher returns to soybean production in the 

Midsouth. Further, plotting net returns over the range of PPD observed in the experiment, 

breakeven plant populations between wide and narrow RS can be evaluated (Figure 2.1). These 

points represent plant populations at which farmers would be indifferent between planting 

soybeans in wide or narrow rows. MG III cultivars had breakeven PPDs of 64,107 and 479,104 

plants ha−1. At PPDs below 64,107 and above 479,104 plants ha−1, soybeans planted in 76 cm 

rows produced higher net returns. At PPDs between 64,107 and 479,104 plants ha−1 soybeans 
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planted in 38 cm rows generated higher net returns. MG IV cultivars evaluated in this study did 

not exhibit a breakeven PPD. Net returns were higher for soybeans planted in 38 cm rows for all 

observed PPDs. At PPD between 18,000 and 20,000 plants ha−1, there was only a difference of 

about $65.00 ha−1 in net returns between the wide and narrow RS, but as PPD increased beyond 

20,000 plants ha−1 the difference in net returns grew substantially. The breakeven PPD for MG V 

cultivars was 57,634 plants ha−1. Net returns were higher for soybeans planted in 76 cm rows at 

PPDs below 57,634 plants ha−1, and at PPDs above that point net returns were higher for 

soybeans planted in 38 cm rows. 

Evaluating differences in net returns by MG, MG IV cultivars generated the highest 

returns for soybeans planted in both wide and narrow RS. While it was hypothesized that earlier 

maturing MG III cultivars would produce higher net returns based on their ability to mature 

before the late-season drought that is common in the Midsouth, the results of this analysis 

suggest otherwise. Maturity group IV cultivars generated net returns that were more than $100 

ha−1 higher than MG III cultivars for both 76 and 38 cm RS. In addition, the significance of 

differences in net returns among MG can be further evaluated by looking at the results of the 

side-by-side comparisons (Table 2.9). For soybeans planted in narrows rows, tests rejected the 

null hypotheses that net returns of MG IV cultivars were equal to the net returns of both MG III 

and V cultivars at the 1% level, but failed to reject the null hypothesis that net returns for MG III 

and V were equivalent. These results support the use of MG IV cultivars rather than MG III 

cultivar soybeans in narrow RS in the Midsouth for the years analyzed. Looking at soybeans 

planted in wide rows, the null hypothesis that net returns for MG IV cultivars were equal to the 

net returns for MG III was rejected at the 5% level, but the null hypotheses that MG V cultivars 

were significantly different from MG III or IV could not be rejected. These results do not 
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unambiguously support the use of MG IV cultivars when planting soybeans in wide rows given 

the inability to determine statistical differences in net returns for MG IV and V cultivars.  

Combing these findings, the overall production system that produced the highest net 

returns in this research was the planting of MG IV cultivars in 38 cm RS at seeding rates 

appropriate to achieve final PPD of approximately 115,000 plants ha−1. While there are clearly 

many factors that could be considered but are beyond the scope of the present research, the 

results of this analysis suggest the use of a production system at least similar to the one 

presented.  

Summary and Conclusions 

The objective of this research was to determine EOPPD considering seeding rate, MG, 

RS, and input-output prices in the rolling uplands region of the Midsouthern United States for 

dryland soybean production. The opportunity to avoid late-season drought common in the 

Midsouth has caused growing interest into ESPS and earlier maturing soybean cultivars. Also, 

economic analysis of alternative RS recommendations are currently lacking in the Midsouth. 

Rising seed prices also warrant reevaluation of these practices, given the direct effect of MG and 

RS decisions on PPD. Yield response equations as a function of PPD were developed for each 

MG, RS, and year combination using data from experiments conducted for 2005 to 2007 at the 

University of Tennessee Research and Education Center at Milan, Tennessee. Given that farmers 

must make their planting decisions on the basis of expected weather conditions, the annual 

response functions were weighted by year based on the Ångström weather index, resulting in 

weighted average response functions for each MG, RS combination. Not only were these 

equations assumed to be representative of expected weather conditions, but they also all met the 

first and second order conditions for profit maximization. Lastly, using partial budgeting, a net 
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return equation was estimated to analyze the MG, RS combination that would maximize returns 

to soybean production.  

Initial results suggest that the combination of production practices that maximized net 

returns varied by year. Practices that maximized net returns in 2005 were MG V soybean 

cultivars planted in 38 cm RS at seeding rates necessary to achieve final PPD of 97,000 plants 

ha−1; MG IV cultivars planted in 38 cm RS at seeding rates necessary to achieve final PPD of 

126,000 plants ha−1 in 2006; and MG V cultivars planted in 76 cm RS at seeding rates necessary 

to achieve final PPD of 69,000 plants ha−1 in 2007. Based on what is known about weather 

conditions in the three years of the experiment, inference about these findings are as follows: in 

2005 traditionally grown MG V cultivars out performed earlier maturing cultivars when late-

season drought did not impede soybean development; in 2006 when conditions were relatively 

typical for the region, MG IV cultivars generated the highest returns which may imply benefits to 

ESPS; and results from 2007 are consistent with previous finding that the benefits of narrow RS 

may dissipate in years of extreme water stress.  

Analysis of the weighted average response functions estimated EOPPD for wide and 

narrow RS of approximately 380,000 and 296,000 plants ha−1; 87,000 and 115,000 plants ha−1; 

and 51,000 and 90,000 plants ha−1 for MG III, IV, and V respectively. Estimated EOPPD are 

close to currently available recommendations for MG III, but considerably lower for MG IV and 

V soybean cultivars in the Midsouth. Findings also generally support hypotheses that higher PPD 

are required to achieve EOPPD for soybeans planted in narrower RS and for earlier maturing 

cultivars. 

It was hypothesized that MG III soybean cultivars planted in narrow RS would generate 

the highest returns to soybean production in the Midsouth. However, results suggest MG IV 
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soybean cultivars planted in narrow RS generated the highest net returns of all MG, RS 

combinations evaluated in this research. These findings support the hypothesis of economic 

benefits of narrow RS, but fail to support the benefits of planting earlier maturing MG III 

soybean cultivars to avoid late season drought. While MG IV cultivars out yielded MG III, the 

cost of achieving higher PPD associated with earlier maturing cultivars also likely influenced 

these findings.  

One consideration when interpreting the results of this study is the limitation of the 

conventional mid-May planting dates used for all three MG evaluated. Earlier March or April 

planting dates have been incorporated as part of ESPS in an effort to avoid late-season drought 

(Heatherly 2005; Heatherly and Spurlock 1999; Lee, Egli, and TaKrony 2008). These earlier 

planting dates have generally required lower PPD to achieve EOPPD, and have consistently 

generated higher returns as a result of higher yields, lower costs, and higher prices received 

(Heatherly and Spurlock 1999; Lee, Egli, and TaKrony 2008). Modeling the potential influence 

of planting dates on the economically optimal production system was beyond the scope of this 

study. However, data for alternative planting dates are available for this production region, and 

are an objective of future research to determine how this may affect farmer production decisions 

including PPD, MG, and RS.   



 
33 

 

References 

American Society of Agricultural and Biological Engineers (ASABE). 2011a. Agricultural and 

Machinery Management. ASAE D497.7. ASABE St. Joseph, MI.  

—. 2011b. Agricultural and Machinery Management. ASAE EP496.3. ASABE St. Joseph, MI.  

Boquet, D.J. 1998. Yield and Risk Utilizing Short-Season Soybean Production in the Mid-

Southern USA. Crop Science 38(4): 1004-1011. 

—. 1990. Plant Population Density and Row Spacing Effects on Soybean at Post-Optimal 

Planting Dates. Agronomy Journal 82(1): 59-64.  

Bowers, G.R., J.L. Rabb, L.O. Ashlock, and J.B. Santini. 2000. Row Spacing in the Early 

Soybean Production System. Agronomy Journal 92(3): 524-531.  

Bullock, D., S. Kahn, and A. Rayburn. 1998. Soybean Yield Response to Narrow Rows is 

Largely Due to Enhanced Early Growth. Crop Science 38(4): 1011-1016. 

Chatterjee, S., and B. Price. 1991. Regression Analysis by Example. New York: Wiley.   

Cooper, R.L., and D.L. Jeffers. 1984. Use of Nitrogen Stress to Demonstrate the Effect of Yield 

Limiting Factors on the Yield Response of Soybean to Narrow Row Systems. Agronomy 

Journal 76(2): 257-259.  

Cox, W.J., and J.H. Cherney. 2011. Growth and Yield Responses of Soybean to Row Spacing 

and Seeding Rate. Agronomy Journal. 103(1): 123-128. 

De Bruin, J.L., and P. Pedersen. 2008. Effect of Row Spacing and Seeding Rate on Soybean 

Yield. Agronomy Journal 100(3): 704-710. 

Debertin, D.L. 1986. Agricultural Production Economics. New York: Macmillan Publishing 

Company. 



 
34 

 

Delvin, D.L., D.L. Fjell, J.P. Shroyer, W.B. Gordon, B.H. Marsh, L.D. Maddux, V.L. Martin, 

and S.R. Duncan. 1995. Row Spacing and Seeding Rates for Soybean in Low and High-

Yielding Environments. Journal of Production Agriculture 8(2): 215-222. 

Edwards, J.T., and L.C. Purcell. 2005. Soybean Yield and Biomass Responses to Increasing 

Plant Population Among Diverse Maturity Groups. Crop Science 45(5): 1770-1777.  

Edwards, J.T., L.C. Purcell, E.D. Vories, J.G. Shannon, and L.O. Ashlock. 2003. Short-Season 

Soybean Cultivars Have Similar Yields with Less Irrigation than Longer-Season 

Cultivars. Crop Management Online doi:10.1094/CM- 2003-0922-01-RS.  

Egli, D.B. 2009. Critical Growth Stages for Maximum Soybean Yield. University of Kentucky 

Extension Corn and Soybean News 9(5): 5-6.  

Elmore, R.W. 1998. Soybean Cultivar Responses to Row Spacing and Seeding Rates in Rainfed 

And Irrigated Environments. Journal of Production Agriculture 11(3): 326-331. 

Epler, M., and S. Staggenborg. 2008. Soybean Yield and Yield Component Response to Plant 

Density in Narrow Row Systems. Crop Management Online doi: 10.1094/CM-2008-

0925-01-RS. 

Ethredge, W.J., D.A. Ashley, and J.M. Woodruff. 1989. Row Spacing and Plant Population 

Effects on Yield Components of Soybean. Agronomy Journal 81(6): 947-951.  

Flinchum, W.T. 2001. Soybean Production in Tennessee. University of Tennessee Agricultural 

Extension Service #PB1608. 

Heatherly, L.G. 1988. Planting Date, Row Spacing, and Irrigation Effects on Soybean Grown on 

Clay Soil. Agronomy Journal 80(2): 227-231.  

—. 2005. Soybean Development in the Midsouthern USA Related to Date of Planting and 

Maturity Classification. Crop Management Online doi: 10.1094/CM-2005-0421-01-RS. 



 
35 

 

Heatherly, L.G., and H.F. Hodges. 1999. Soybean Production in the Midsouth. Boca Raton: CRC 

Press LLC. 

Heatherly, L.G., and S.R. Spurlock. 1999. Yield and Economics of Traditional and Early 

Soybean Production Systems (ESPS) Seedings in the Midsouthern United States. Field 

Crops Research 63(1): 35-45.  

Heatherly, L.G., C.D. Elmore, and S.R. Spurlock. 2001. Row Width and Weed Management 

Systems for Conventional Soybean Plantings in the Midsouthern USA. Agronomy 

Journal 93(6): 1210-1220. 

Heatherly, L.G., S.R. Spurlock, and C.D. Elmore. 2004. Deep and Shallow Fall Tillage for 

Irrigated Soybean Grown with Different Weed Management Systems in the Midsouthern 

USA. Agronomy Journal 96(3): 734-741. 

Heitholt, J.J., J.B. Farr, and R. Eason. 2005. Planting Configuration by Cultivar Effects on 

Soybean Production in Low-Yield Environments. Crop Science 45(5): 1800-1808. 

Hill, J., M. Popp, and P. Manning. 2003. Focus Group Survey Results: Typical Arkansas Crop 

Producer Production and Marketing Practices. Res. Rep. 971. University of Arkansas 

Experiment Station, Fayetteville.   

Holliday, R. 1960a. Plant Population and Crop Yield: Part I. Field Crop Abstracts 13(3): 159-

167.  

—. 1960b. Plant Population and Crop Yield: Part II. Field Crop Abstracts 13(4): 247-254.  

Holshouser, D.L., and B.P. Jones. 2003. Early-Maturing Double-Crop Soybeans Requires Higher 

Plant Population to Meet Leaf Area Requirements. Crop Management Online doi: 

10.1094/CM-2003-0408-01-RS. 



 
36 

 

Holshouser, D.L., and J.P. Whittaker. 2002. Plant Population and Row Spacing Effects on Early 

Soybean Production Systems in the Mid-Atlantic USA. Agronomy Journal 94(3): 603-

611. 

Kane, M.V., and L.J. Grabau. 1992. Early Planted, Early Maturing Soybean Cropping System: 

Growth, Development and Yield. Agronomy Journal 84(5): 769-773.  

Kinzi Manufacturing Inc. 2011. 3500 Twin-Line
®

 Planter. Available at 

http://www.kinze.com/plantersAndCarts/viewPlanter.html?id=3 (accessed August 6, 

2011).  

Lambert, D.M., and J. Lowenberg-DeBoer. 2003. Economic Analysis of Row Spacing for Corn 

and Soybean. Agronomy Journal 95(3): 564-573.  

Lambert, D.M., J. Lowenberg-DeBoer, and G. Malzer. 2007. Managing Phosphorous Soil 

Dynamics Over Space and Time. Agricultural Economics 37(1): 43-53.  

Larson, J.A., R.K. Roberts, and C.O. Gwathmey. 2007. Herbicide-Resistant Technology Price 

Effects on the Plant Density Decision for Ultra-Narrow-Row Cotton. Journal of 

Agriculture and Resource Economics 32(2): 383-410.  

Lauer, J., and T. Stranger. 2006. Guidelines for Managing Corn Seed Costs. Agron. Dept. Field 

Crops 28.424-44, University of Wisconsin.  

Lee, C.D., D.B. Egli, and D.M. TeKrony. 2008. Soybean Response to Plant Population at Early 

and Late Planting Dates in the Mid-South. Agronomy Journal 100(4): 971-976. 

McKinley, T.L., and D.C. Gerloff. 2012. Field Crop Budgets for 2012. University of Tennessee 

Extension Publication AE12-05.  



 
37 

 

Monsanto Company. Monsanto Announces Simpler Pricing for Biotech Traits in 2001. 

Monsanto Company Press Release, St. Louis, MO, 14, June 2001. Available at 

http://www.biotech-infor.net/simpler_pricing.html (accessed March 9, 2012). 

Mooney, D.F., R.K. Roberts, B.C. English, J.A. Larson, and D.D. Tyler. 2010. Is Switchgrass 

Yield Response to Nitrogen Fertilizer Dynamic? Implications for Profitability and 

Sustainability at the Farm Level. Paper presented at the Southern Agricultural Economic 

Association Annual Meeting, Orlando, FL, 6-9 February. 

Moore, M. 2010. Buying Seed by Weight or Count. Farm Industry News, available at 

http://farmindustrynews.com/soybean-varieties/buying-seed-weight-or-count (accessed 

December 1, 2011).  

Nicholson, W. 2005. Microeconomic Theory: Basic Principles and Extensions. Mason: 

Thomas/South-Western. 

Oriade, C.A., C.R. Dillon, E.D. Vories, and M.E. Bohanan. 1997. An Economic Analysis of 

Alternative Cropping and Row Spacing Systems for Soybean Production. Journal of 

Production Agriculture 10(4): 619-624.  

Oury, B. 1965. Allowing for Weather in Crop Production Model Building. Journal of Farm 

Economics 47(2): 270-283.  

Popp, M.P., J.T. Edwards, L.C. Purcell, and P.M. Manning. 2004. Early-Maturing Soybean in 

Late-Maturing Environment: Economic Considerations. Agronomy Journal 96(6): 1711-

1718. 

—. 2006. Profit-Maximizing Seeding Rates and Replanting Thresholds for Soybean: Maturity 

Group Interactions in the Mid-South. Agricultural Systems 91(3): 211-228. 



 
38 

 

Reddy, K.N. 2002. Weed Control and Economic Comparisons in Soybean Planting Systems. 

Journal of Sustainable Agriculture 21(2): 21-35.  

Rich, A.M., and K.A. Renner. 2007. Row Spacing and Seeding Rate Effects on Eastern Black 

Nightshade (Solanum Ptycanthum) and Soybean. Weed Technology 21(1):124-130. 

SAS Institute Inc. 2008. SAS/ETS 9.2 Users Guide. Cary, N.C: SAS Institute Inc. 

Shi, G., J.P. Chavas, and K.W. Stiegert. 2010. Pricing of Herbicide-Tolerant Soybean Seeds: A  

 Market-Structure Approach. The Journal of Agrobiotechnology Management and  

 Economics 12(3): 326-333. 

Shibles, R.M., and C.R. Webber. 1966. Interception of Solar Radiation and Dry Matter 

Production by Various Soybean Planting Patterns. Crop Science 6(1): 55-60. 

United States Department of Agriculture, National Agricultural Statistics Service (USDA – 

NASS). 2011a. Price Program: History, Concepts, Methodology, Analysis, Estimates, 

and Dissemination. Available at 

http://www.nass.usda.gov/Surveys/Guide_to_NASS_Surveys/Prices/Price_Program_Met

hodology_v10.pdf (accessed October 10, 2011).  

—. 2011b. Quick Stats 2.0. Available at http://quickstats.nass.usda.gov/ (accessed October 10, 

2011).  

United States Department of Commerce – National Oceanic and Atmospheric Administration 

(NOAA). 2011. DATA. Available at http://www.noaa.gov/index.html (accessed 

November 30, 2011).  

Walker, E.R., A. Mengistu, N. Bellaloui, C.H. Koger, R.K. Roberts, and J.A. Larson. 2010. Plant 

Population and Row-Spacing Effects on Maturity Group III Soybean. Agronomy Journal 

102(3): 821-826. 



 
39 

 

Webber, C.R., R.M. Shibles, and D.E. Byth. 1966. Effect of Plant Population and Row Spacing 

on Soybean Development and Production. Agronomy Journal 58(1): 99-100.  

Weiss, M.G. 1949. Soybeans. Advances in Agronomy 1(1): 78-157.  

Wells, R. 1991. Soybean Growth Response to Plant Density: Relationships Among Canopy 

Photosynthesis, Leaf Area and Light Interception. Crop Science 31(3): 755-761.  

White, H. 1980. A Heteroskedasticity-Consistent Covariance Matrix Estimator and a Direct Test 

for Heteroskedasticity. Econometrica 48(4): 817-838.  

Wooldridge, J.M. 2009. Introductory Econometrics: A Modern Approach.  Mason: South-

Western.  

  



 
40 

 

 

 

 

 

 

 

 

 

 

 

Appendix  



 
41 

 

Appendix 

 

 

 
Figure 2.1. Net Returns Evaluated at Economically Optimal Plant Population Density Plotted 
Across Observed Plant Populations by Maturity Group and Row Spacing.   
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Table 2.1. Planting Dates, Cultivars, Row Spacing, Seeding Rates, and Harvest Dates for 
Experiments by Year and Maturity Group. 

Year 
Maturity 
Group 

Planting Date Cultivar 
Row 

Spacings 
Seeding 
Ratesa Harvest Date 

2005 

III May 10 
Asgrow 3906 
Delkab 36-52 

76 and 38 
cm 

346, 395, 445, 
494, 519, and 

593 
October 7 

IV May 10 
Pioneer 94B73 
Vigoro 42N3 

76 and 38 
cm 

100, 120, 140, 
160, and 180 

October 7 

V May 11 Vigoro 52N3 
76 and 38 

cm 
80, 100, 120, 
140, and 160 

October 12 

       

2006 

III May 16 
Asgrow 3906 

Pioneer 93M90 
76 and 38 

cm 

247, 296, 371, 
445, 519, and 

593 
September 27 

IV May 16 
Pioneer 94B73 
Vigoro 42N3 

76 and 38 
cm 

60, 80, 100, 
120, 150, and 

180 
September 27 

V May 17 Vigoro 52N3 
76 and 38 

cm 

60, 80, 100, 
120, 150, and 

180 
October 24 

       

2007 

III May 16 
Asgrow 3906 

Pioneer 93M90 
76 and 38 

cm 

247, 296, 371, 
445, 519, and 

593 
October 2 

IV May 16 
Pioneer 94B73 
Vigoro 42N3 

76 and 38 
cm 

60, 80, 100, 
120, 150, and 

180 
October 2 

V May 17 Vigoro 52N3 
76 and 38 

cm 

60, 80, 100, 
120, 150, and 

180 
October 3 

aSeeding Rates are ×103. 
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Table 2.2. Estimated Regression Coefficients by Maturity Group, Row Spacing, and Year. 
  Dependent Variable is Ya   

Maturity 
Group 

Row 
Spacing ?;

bc ?2
d ?@

e Model F-
Statistic 

R-squared 

       
  2005 

III 
38cm 4204.57*** 99.48 −2.25 6.27*** 0.0969 
76cm 6237.03*** −144.58*** 3.23*** 2.91* 0.1461 

       

IV 
38cm 4494.65* 137.93 −10.67 1.02 0.0525 
76cm 2567.25*** 350.11 −16.71 1.19 0.0605 

       

V 
38cm 2615.71 599.06 −30.27 0.63 0.0694 
76cm 4535.61*** 137.15 −14.42 3.87** 0.3131 

       
  2006 

III 38cm 3425.13*** 99.48 −2.25 1.77 0.2386 
 76cm 3210.50*** 57.08 −0.63 3.42** 0.1344 
       

IV 38cm 3313.35*** 251.12*** −9.52*** 24.83*** 0.5302 
 76cm 3483.41*** 220.64** −12.50* 4.47** 0.1659 
       

V 38cm 2549.36*** 353.48** −18.63* 1.19 0.1541 
 76cm 3470.89*** 194.84 −18.84 1.08 0.0932 
       
  2007 

III 38cm 981.54*** 76.10*** −1.38** 6.01*** 0.2184 
 76cm 1502.20*** 53.17 −1.57 0.95 0.0404 
       

IV 38cm 2040.53*** −53.11 2.77 0.39 0.0218 
 76cm 1780.93*** −26.93 1.61 0.07 0.0032 
       

V 38cm 1275.05*** 281.88** −19.49*** 3.82** 0.2667 
 76cm 1655.26*** 201.75 −13.88 1.20 0.1027 

a
Y is soybean oilseed yield (kg ha−1). 

b?; is the intercept. 
cSignificance at the  1%, 5%, and 10% levels are denoted by ***, **, and  * respectively.  
d?2is the coefficient on the linear term PPD (10,000 plants ha−1). 
e?@ is the coefficient on the squared term PPD2 (10,000 plants ha−1).  
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Table 2.3. Weather Conditions: Temperature, Precipitation, and Ångström Index 
by Year and Month Collected at the Milan Experiment Station in Milan, TN. 

Year Month 
Temperature 

(°C) 
Precipitation 

(mm) 
Ångström 

2005 

May  18 15 4 
June  24 129 26 
July  26 135 23 
August 27 205 34 
September 23 96 21 

     

2006 

May  20 128 33 
June  24 151 30 
July  27 90 15 
August 27 84 14 
September 20 114 30 

     

2007 

May  22 58 13 
June  25 112 21 
July  25 55 10 
August 30 32 4 
September 23 184 39 

     

100 Year Average 

May  20 129 34 
June  24 104 21 
July  26 108 19 
August 26 94 17 
September 22 93 21 
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Table 2.4. Weighted Average Response Coefficients by Maturity Group and Row Spacing. 

  Dependent Variable is Yab 
Maturity 
Group 

Row 
Spacing ?;

cd ?2
e ?@

f 

III 
38cm 3160.63*** 67.94** −0.97* 
76cm 3369.71*** 28.52 −0.24 

     

IV 
38cm 3283.09*** 189.04** −7.81** 
76cm 3096.79*** 200.85** −10.94** 

     

V 
38cm 2364.26*** 376.62*** −20.37*** 
76cm 3341.70*** 187.89 −17.47 

a
Y is soybean oilseed yield (kg ha−1). 

bWeights: 2005 = 0.1387, 2006 = 0.7089, and 2007 = 0.1525. 
c?; is the intercept. 
dSignificance at the  1%, 5%, and 10% levels are denoted by ***, **, and  * respectively.  
e?2is the coefficient on the linear term PPD (10,000 plants ha−1). 
f?@ is the coefficient on the squared term PPD2 (10,000 plants ha−1).  
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Table 2.5. Biologically and Economically Optimal Plant Population Densities, Yields, and Net 
Returns for the Year 2005 by Maturity Group and Row Spacing. 
Maturity 
Group 

Row 
Spacing 

BOPPDa EOPPDb Wald Statisticcd Net Returnse 

      

III 
38 cm 

221,140 
(5,304)f 

198,406 
(5,293) 

1.15 $1,846.00 

76 cm 
348,602 
(5,123) 

348,602 
(5,123) 

N/Ag $1,731.74 

      

IV 
38 cm 

64,650 
(4,941) 

59,857 
(4,938) 

0.20 $1,767.20 

76 cm 
104,735 
(4,401) 

101,675 
(4,399) 

2.13 $1,557.45 

      

V 
38 cm 

98,958 
(5,580) 

97,269 
(5,579) 

1.93 $1,990.04 

76 cm 
47,571 
(4,862) 

44,023 
(4,860) 

2.47 $1,749.68 

aBiologically optimal plant population density (BOPPD) in plants ha−1.  
bEconomically optimal plant population density (EOPPD) in plants ha−1. 
cWald test for BOPPDj,k=EOPPDj,k (d.f.=1, α=.10, critical χ2 value=2.71). 
dSignificance at the  1%, 5%, and 10% levels are denoted by ***, **, and  * respectively.  
eNet Returns ($ ha−1) were calculated at the EOPPD using equation (8). 
fYields (kg ha−1) evaluated at BOPPD and EOPPD are in parentheses. 
gDue to the convex shape of the original response curve this MG, RS combination was evaluated 
as a corner solution, therefore BOPPD and EOPPD were not tested.  
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Table 2.6. Biologically and Economically Optimal Plant Population Densities, Yields, and Net 
Returns for the Year 2006 by Maturity Group and Row Spacing. 
Maturity 
Group 

Row 
Spacing 

BOPPDa EOPPDb Wald Statisticcd Net Returnse 

      

III 
38 cm 

470,563 
(4,837)f 

390,378 
(4,796) 

1.02 $1,589.75 

76 cm 
450,971 
(4,498) 

370,174 
(4,456) 

0.35 $1,477.04 

      

IV 
38 cm 

131,833 
(4,969) 

126,464 
(4,966) 

41.41*** $1,752.31 

76 cm 
88,225 
(4,457) 

84,136 
(4,454) 

3.47* $1,584.60 

      

V 
38 cm 

94,882 
(4,226) 

92,137 
(4,225) 

3.80* $1,491.29 

76 cm 
51,708 
(3,975) 

48,994 
(3,973) 

1.28 $1,419.89 

aBiologically optimal plant population density (BOPPD) in plants ha−1.  
bEconomically optimal plant population density (EOPPD) in plants ha−1. 
cWald test for BOPPDj,k=EOPPDj,k (d.f.=1, α=.10, critical χ2 value=2.71). 
dSignificance at the  1%, 5%, and 10% levels are denoted by ***, **, and  * respectively.  
eNet Returns ($ ha−1) were calculated at the EOPPD using equation (8). 
fYields (kg ha−1) evaluated at BOPPD and EOPPD are in parentheses. 
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Table 2.7. Biologically and Economically Optimal Plant Population Densities, Yields, and Net 
Returns for the Year 2007 by Maturity Group and Row Spacing. 
Maturity 
Group 

Row 
Spacing 

BOPPDa EOPPDb Wald Statisticcd Net Returnse 

      

III 
38 cm 

275,822 
(2,031)f 

238,775 
(2,012) 

6.54** $617.60 

76 cm 
169,028 
(1,952) 

136,521 
(1,935) 

2.25 $633.10 

      

IV 
38 cm 

178,886 
(1,977) 

178,886 
(1,977) 

N/Ag $627.25 

76 cm 
13,358 
(1,748) 

13,358 
(1,748) 

N/Ag $610.47 

      

V 
38 cm 

72,321 
(2,294) 

69,697 
(2,293) 

7.68*** $785.41 

76 cm 
72,667 
(2,388) 

68,984 
(2,386) 

0.12 $825.56 

aBiologically optimal plant population density (BOPPD) in plants ha−1.  
bEconomically optimal plant population density (EOPPD) in plants ha−1. 
cWald test for BOPPDj,k=EOPPDj,k (d.f.=1, α=.10, critical χ2 value=2.71). 
dSignificance at the  1%, 5%, and 10% levels are denoted by ***, **, and  * respectively.  
eNet Returns ($ ha−1) were calculated at the EOPPD using equation (8). 
fYields (kg ha−1) evaluated at BOPPD and EOPPD are in parentheses. 
gDue to the convex shape of the original response curve this MG, RS combination was evaluated 
as a corner solution, therefore BOPPD and EOPPD were not tested.  
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Table 2.8. Biologically and Economically Optimal Plant Population Densities, Yields, and Net 
Returns by Maturity Group and Row Spacing. 
Maturity 
Group 

Row 
Spacing 

BOPPDa EOPPDb Wald Statisticcd Net Returnse 

      

III 
38 cm 

348,673 
(4,345)f 

296,118 
(4,318) 

3.24*** $1,448.63 

76 cm 
507,840g 

(4,216) 
380,442 
(4,107) 

N/Ag $1,343.93 

      

IV 
38 cm 

121,051 
(4,427) 

114,503 
(4,424) 

4.98** $1,556.42 

76 cm 
91,824 
(4,019) 

87,148 
(4,017) 

4.58** $1,421.47 

      

V 
38 cm 

92,431 
(4,105) 

89,921 
(4,104) 

7.37*** $1,447.25 

76 cm 
53,774 
(3,847) 

50,847 
(3,845) 

1.70 $1,371.91 

aBiologically optimal plant population density (BOPPD) in plants ha−1.  
bEconomically optimal plant population density (EOPPD) in plants ha−1. 
cWald test for BOPPDj,k=EOPPDj,k (d.f.=1, α=.10, critical χ2 value=2.71). 
dSignificance at the  1%, 5%, and 10% levels are denoted by ***, **, and  * respectively.  
eNet Returns ($ ha−1) were calculated at the EOPPD using equation (8). 
fYields (kg ha−1) evaluated at BOPPD and EOPPD are in parentheses. 
gEstimated BOPPD was beyond the observed PPD, therefore this is the highest observed PPD 
and was not tested.  
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Table 2.9. Comparisons of Net Returns among Maturity Group, Row Spacing Combinations.  
  Maturity Group, Row Spacing Combinationsa 

 
 

MG III, 
38cmb 

MG III, 
76cm 

MG IV, 
38cm 

MG IV, 
76cm 

MG V, 
38cm 

MG V, 
76cm 

Maturity 
Group, Row 

Spacing 
Combinations 

MG III, 
38cm 

—      

MG III, 
76cm 

6.54** —     

MG IV, 
38cm 

12.87*** 28.03*** —    

MG IV, 
76cm 

0.88 3.89** 23.62*** —   

MG V, 
38cm 

0.00 4.71** 7.98*** 0.47 —  

MG V, 
76cm 

5.56** 0.44 34.23*** 2.65 3.44* — 

aValues are Wald statistics from tests for differences in net returns ($ ha−1),  NRj,k=NRj,k (d.f.=1, 
α=.10, critical χ2 value=2.71). 
bSignificance at the  1%, 5%, and 10% levels are denoted by ***, **, and  * respectively.  
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Chapter 3: The Adoption of Information Technologies and Subsequent Changes in Input 

Use in Cotton Production 
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Abstract 

Precision agriculture technology has become increasingly important in crop production. It 

allows farmers to take advantage of knowledge about in-field variability by using variable rate 

technology (VRT) to apply inputs at levels appropriate to current soil or crop needs. This affords 

farmers the potential for increased profit realized via increased yields, reduced input use, or both. 

Applying inputs using VRT may also limit potentially damaging environmental impacts such as 

groundwater contamination from the leaching of over applied inputs. Both the economic and 

environmental benefits of precision agriculture can be traced back to increased productivity of 

input use. The factors affecting this increased productivity following VRT management have 

been evaluated in previous literature. However, the factors affecting specific directional changes 

(increase, no change, or decrease) of overall input use following VRT have not been evaluated. 

Hence, the objective of this study was to evaluate the factors influencing the decision by cotton 

growers to adopt one or more information technologies for VRT application of inputs, and 

farmer perceptions of directional changes in input use. Data about cotton farmer adoption of 

alternative information technologies for VRT application of inputs were from the 12-state 2009 

Southern Cotton Precision Farming Survey. Given the sequential nature of adoption and 

perceptions of changes in input use, models were initially estimated using a Heckman Probit 

model to account for potential sample selection bias. The explanatory variables included in the 

model were: characteristics describing the farm operation and farm decision maker, sources of 

precision agriculture information used by the farm decision maker, and regional dummy 

variables for farm location. Results from the initial estimation failed to reject the hypothesis that 

correlation between the error terms of the selection and outcome equations was equal to zero, 

meaning the models were not significantly affected by sample selection bias and could be 
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evaluated as individual binomial Probit models. Results suggest that cotton farmers in the sample 

who used picker rather than stripper harvest technology were more likely to perceive that overall 

fertilizer use declined with the use of the selected information technologies and VRT. This result 

and other key findings of this research may not only be of interest to other cotton farmers but 

also to the USDA Natural Resource Conservation Service, who may be interested in the 

environmental impacts of decreased fertilizer use among cotton farmers, and University 

Extension, who are involved in educating farmers about precision agriculture. Finally, the results 

of this research lay the groundwork for future research to build upon regarding directional 

changes in fertilizer use, as well as the use of other inputs. 
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Introduction 

Prior to the advent of precision farming, farmers typically applied inputs using uniform 

rate technology (URT). Depending on the amount of in-field variability, URT commonly leads to 

under or over utilization of inputs in more productive and less productive sections of farm fields, 

respectively. Precision farming involves “collecting site-specific information about within-field 

variability in yields and crop needs, linking that information to specific locations within a field, 

and acting on that information to determine and apply appropriate input levels” (Mooney et al. 

2010, p.6). Thus, precision farming allows farmers to take advantage of knowledge of in-field 

variability, leading to increased input productivity (Roberts et al. 2004). However, directional 

changes in overall input use vary by site and circumstance (Batte 2000; Lambert, Lowenberg-

DeBoer, and Malzer 2006). The ability to understand the factors affecting farmer perceptions of 

changes in overall input use following VRT management is important because precision farming 

technologies have the potential to increase profit and reduce potential negative environmental 

effects of inefficient input management. 

Research has shown that precision farming affords the potential for economic benefits 

(Lambert and Lowenberg-DeBoer 2000; Swinton and Lowenberg-DeBoer 1998). This is 

especially true for cotton given it is a high-value crop that requires the extensive use of 

chemicals and fertilizers (Brooks 2001; Griffin et al. 2004; Larson et al. 2008). The ability to 

apply inputs according to current crop and/or soil needs using VRT input management 

commonly leads to increased input efficiency (Roberts et al. 2004). As a result, farmers have the 

potential for increased profit realized via yield increases, reduced input use, or both, when 

compared to URT (Babcock and Pautsch 1998; English, Mahajanashetti, and Roberts 2001; 

Roberts, English, and Mahajanashetti 2000).  
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Precision farming also has the potential to reduce negative environmental impacts such as 

surface and groundwater contamination from runoff and leaching that result from the over 

application of inputs (Roberts et al. 2002; Wang et al. 2003; Watkins, Lu, and Huang 1998). 

Although these environmental benefits can be difficult to quantify, they are based on the implicit 

assumption that improved input efficiency, realized through precision farming, translates to 

improved environmental quality (Larkin et al. 2005). Larkin et al. (2005) found that total planted 

area, higher yields, computer use, perceived profitability of precision farming, and perceived 

importance of reducing input use all positively influenced farmer perceptions about the 

importance of precision farming in improving environmental quality.  

Currently available literature concerning precision farming’s effect on changes in input 

use focus on improvements in input efficiency (Khanna 2001; Torbett et al. 2007, 2008).  

Khanna (2001) evaluated determinates of nitrogen productivity (yield per unit of nitrogen) 

following the adoption of site-specific soil test and VRT management among grain farmers in the 

Midwest. College education was the only explanatory variable that significantly influenced 

increased nitrogen productivity, suggesting that other unobserved factors such as soil quality 

may be important in explaining differences in input productivity among farmers (Khanna 2001). 

Torbett et al. (2007, 2008) evaluated the factors affecting farmer perceptions of the importance 

of precision farming technologies in improving the efficiency of phosphorus (P), potassium (K), 

and nitrogen (N) in cotton production. Using an ordered logit model, they found the use of yield 

monitor without GPS, management zone soil sampling, grid soil sampling, and on-the-go sensing 

to be important in increasing P, K, and N efficiency (Torbett et al. 2007, 2008). Also, positive 

perceptions of the importance of precision farming technologies were found to be more likely 

among older farmers who used computers for farm management and rented larger portions of the 
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land they farmed (Torbett et al. 2007, 2008). While understanding the factors influencing 

improved input productivity have been beneficial to understanding the potential benefits of 

precision farming, there is a need to further understand improvements in input productivity. 

Hence, understanding the factors influencing farmer perceptions of specific directional changes 

in overall input use (increase, no change or decrease) may be beneficial to understanding the 

benefits of precision farming.  

Prior to perceiving changes in input use, a farmer must first make the decision to adopt. 

This decision is based on the expected utility a farmer derives from the adoption and use of 

precision farming technologies; where utility refers to the overall level of satisfaction that may 

be a influenced by both economic and environmental benefits (Torbett et al. 2008). The adoption 

of precision farming has been extensively evaluated in prior research (Batte and Arnholt 2003; 

Daberkow and McBride 1998; Griffin et al. 2004; Khanna 2001; Kotsiri et al. 2011; Lambert et 

al. 2007; Larson et al. 2008; Marra et al. 2010; Popp and Griffin 2000; Roberts et al. 2004; 

Surjandari and Batte 2003; Walton et al. 2008; Walton et al. 2010).  

 The objective of this research was to determine the characteristics that influence farmer 

decisions to adopt select information technologies for VRT management of inputs, and the 

subsequent perceptions of directional changes in overall application of selected inputs. There 

does not appear to be any literature evaluating the factors affecting farmer perceptions of 

directional changes in input use following the adoption of one or more information technologies. 

Knowledge of the factors motivating both adoption and subsequent perceptions of changes in 

input use may provide further insight into the potential benefits of precision farming realized 

through increased input productivity.  
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Methods and Procedures 

Analytical Framework 

 A farmer is hypothesized to make decisions to maximize expected utility through profit. 

Therefore, let UA represent the expected utility of profit from adopting one or more information 

technologies for VRT application of inputs and UNA represent the expected utility from not 

adopting any information technologies. Defining UA* = UA – UNA, the farmer who maximizes 

expected utility will choose to adopt when UA* > 0 and not adopt when UA* < 0. The 

unobservable latent variable UA* is assumed to be a random function of a vector of observable 

exogenous variables ZA: 

(1) UA* = ZA γA + εA, 

where γA is a vector of unknown parameters and εA is the random error. While UA* is not directly 

observable, a farmer’s observable decision to adopt can be represented by the following binary 

variable (Khanna 2001): 

(2) IA = 1 if UA* > 0, 

    = 0 otherwise.  

Farmers who choose to adopt one or more information technologies for VRT application 

are subsequently self-selected into the group of farmers who are conceivably able to have 

perceptions regarding directional changes in input use. This sequence suggests the use of 

econometric methods that account for sample-selection bias (Heckman 1979; Khanna 2001; 

Roberts et al, 2004; Walton et al. 2008). Thus, the previously defined adoption model is the 

selection equation, and the outcome equation modeling farmer perceptions of directional changes 

in input use can be modeled as: 

(3) IP = ZP γP + εP 
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where IP = 1 if a farmer perceives a specific directional change in input use given that IA = 1, and 

zero otherwise; ZP is a vector of observable exogenous variables hypothesized to affect these 

perceptions; γP is a vector of unknown parameters; and εP is the random error term. A farmer 

who maximizes expected utility will choose to: 

(4)  adopt one or more information technologies for the VRT application of inputs and 

perceive a given directional change in input use when UA* > 0 and IP = 1,   

(5) adopt one or more information technologies for the VRT application of inputs and not 

perceive a given directional change in input use when UA* > 0 and IP = 0, or 

(6) not adopt any information technologies when UA* < 0. 

Assuming the error terms εA from equation (1) and εP from equation (3) are both normally 

distributed with a mean of zero and variance of one, the choices characterized by equations (4) – 

(6) can be expressed in terms of the following probabilities: 

(7) Pr(IA = 1 and IP = 1)  = Pr(IP = 1 | IA = 1) × Pr(IA = 1) 

    = Φ2(ZA γA, ZP γP, ρ),  

(8) Pr(IA = 1 and IP = 0)  = Pr(IP = 0 | IA = 1) × Pr(IA = 1) 

    = Φ2(ZA γA, –ZP γP, –ρ),  

(9) Pr(IA = 0)   = 1 – Pr(IA =1) 

    = Φ(–ZA γA), 

where Φ2 and Φ are cumulative distribution functions for the standard bivariate normal and 

standard normal distributions respectively, and ρ is the correlation between εA and εP (Greene 

2003; Miranda and Rabe-Hesketh 2006).  

 If ρ is not zero, the model can be estimated as a bivariate probit model with sample 

selection using maximum likelihood. The probabilities in equations (7) – (9) form the sample 

likelihood function as (Greene 2003; Roberts et al. 2004): 

(10) L = ∏ Φ@BCD2,BED2 (ZA γA, ZP γP, ρ) ∏ Φ@BCD2,BED; (ZA γA, –ZP γP, –ρ) ∏ Φ BED; (–ZA γA).  
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If ρ is zero, the bivariate distribution reduces to the product of two univariate distributions, and 

the likelihood function becomes (Greene 2003; Roberts et al. 2004): 

(11) L = ∏ ΦBCD2,BED2 (ZA γA)Φ(ZP γP) ∏ ΦBCD2,BED; (ZA γA)Φ(−ZP γP) ∏ Φ BED; (–ZA γA) 

   = ∏ ΦBCD2 (ZA γA) ∏ ΦBCD; (–ZA γA) ∏ ΦBCD2,BED2 (ZP γP) ∏ ΦBCD2,BED; (–ZP γP).  

Thus, the model fails to identify sample selection bias and equations (1) and (3) can be estimated 

as separate binomial probit models (Greene 2003).  

Data 

The data for this study were collected from a 2009 survey of cotton producers in 12 

southern states: Alabama, Arkansas, Florida, Georgia, Louisiana, Mississippi, Missouri, North 

Carolina, South Carolina, Tennessee, Texas, and Virginia. The Cotton Board in Memphis, 

Tennessee, provided a list of 14,089 potential cotton producers from their 2007-2008 marketing 

year lists. Following the general mail survey procedures of Dillman (1978), a questionnaire, 

postage-paid return envelope, and a cover letter outlining the importance of the survey were sent 

to each producer. The initial mailing was on February 20, 2009. A reminder post card was sent 

two weeks later on March 5, 2009. For those not responding, a follow-up mailing containing a 

questionnaire, postage paid return envelope, and a letter reemphasizing the importance of the 

survey was sent March 27, 2009. Of the surveys initially mailed, 306 were returned as 

undeliverable and 204 indicated they had either retired or did not farm cotton. Assuming all 

remaining non-respondents and the 85 who declined participation are active cotton producers, 

the total number of cotton producers surveyed was 13,579. Of the responses received, 1,692 were 

counted as valid. Calculating the survey response rate as the number of valid responses divided 

by the number of cotton farmers surveyed, the response rate was 12.5% (Mooney et al. 2010). 

Also included in this analysis were secondary data representing the number of farm input 
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suppliers at the county level. These data were collected from the U.S. Census Bureau 2007 

County Business Patterns (CBP) (U.S. Census Bureau 2011). The number of establishments was 

extracted using North American Industry Classification System (NAICS) codes 423820 and 

424910 for “Farm and Garden Machinery and Equipment Merchant Wholesalers” and “Farm 

Supplier Merchant Wholesalers” respectively (U.S. Census Bureau 2011).  

The survey was developed to collect information concerning cotton producers’ use and 

perceptions of precision farming technologies, including site-specific information and VRT. This 

study is based on questions 17 and 18 from the survey (Figure 3.1). Question 17 asked farmers to 

indicate the specific information technologies (i.e. yield monitors, passive remote sensing, 

PDA/handheld GPS, electrical conductivity, and GreenSeeker) that were used to make selected 

VRT decisions (i.e. drainage, fertility or lime, seeding, growth regulator, harvest aids, fungicide, 

herbicide, insecticide, and irrigation). To avoid confusion, it is acknowledged that the adoption 

of information technologies does not automatically indicate VRT application of inputs. But given 

the wording of question 17 it is assumed for this model that farmers adopting information 

technologies are using them for VRT decisions. Question 18, which is a follow up to question 17 

asked farmers about their perceptions of changes in the overall use of select inputs (i.e. fertilizer, 

lime, seed, growth regulator, harvest aids, fungicide, herbicide, insecticide, and irrigation) as a 

result of VRT management. Given the initial overrepresentation of larger farmers, post-

stratification survey weights estimated by Harper et al. (2011) were used to align survey data 

with the 2007 United States Department of Agriculture (USDA) Agricultural Census by state and 

farm size class. Post-stratification weights can adjust for over or underrepresentation of survey 

within strata (e.g. state or farm size class), but do not correct for potential non-response bias 

(Lohr 1999). 
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Comparison of Sample Means 

Farm business and farmer characteristics were compared between different subsets of the 

population for adopters and non-adopters as well as for the subsets of various perceptions of 

directional changes in overall input use. By comparing these subsets of the sample, further 

insight can be drawn as to the factors affecting farmer decisions to adopt technologies and their 

perceptions about changes in input use. To stay consistent with the regression analysis, means 

were estimated using post-stratification survey weights. Differences among means were tested 

using side-by-side t-tests.  

Empirical Models 

The model for the adoption of one or more selected information technologies for the VRT 

application of inputs as a function of farmer and farm business characteristics was specified as 

follows: 

(12) ADOPTi = β1AGEi + β2EDUCi + β3INCi + β4INCFRMi + β5COMPi + β6LIVSTKi + 

β7COTAREAi + β8OWNRENTi + β9IRRIGi + β10PICKERi + β11FRMSPLYi + 

β12FRMDLERi + β13CRPCSLTi + β14OFRMERi + β15EXTENi + β16TRDSHWi + 

β17INTERi + β18MEDIAi + β19NOINFOi + β20ERS1i + β21ERS4i + β22ERS5i + β23ERS6i 

+ β24ERS7i + β25ERS9i + ei 

where ADOPT equals one if producer i adopted one or more of the following information 

technologies, yield monitor, passive remote sensing, PDA/handheld GPS device, active remote 

sensing, or electrical conductivity, for VRT management of inputs and zero otherwise. β1 

through β25 are parameters to be estimated and e is the random error term. Variable names, 

definitions, hypothesized signs, and means for independent variables are found in Table 3.1.  

Subsequently, farmers who choose to adopt one or more of the select information 

technologies are self-selected into the group of farmers who are conceivably able to perceive 

directional changes in the use of select inputs. This model was applied to several inputs, but due 
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to missing observations for some inputs, only the model evaluating perceptions of changes in 

fertilizer use was evaluated. Models for farmer perceptions of directional changes in fertilizer 

use, as a function of farmer and farm characteristics, were specified as follows: 

(13) FERTILIZERj = θ1AGEj + θ2EDUCj + θ3INCj + θ4INCFRMj + θ5COMPj + 

θ6COTAREAj + θ7OWNRENTj + θ8IRRIGj + θ9PICKERj + θ10FRMSPLYj + 

θ11FRMDLERj + θ12CRPCSLTj + θ13OFRMERj + θ14EXTENj + θ15TRDESHWj + 

θ16INTERj + θ17MEDIAj + ej 

where FERTILIZER equals one if producer j perceived the change of interest in fertilizer use and 

zero otherwise, θ1 through θ17 are parameters, and e is the random error term. Given the 

construction of the survey, farmers were able to indicate one of three perceived changes in the 

use of each input: increase, no change, or decrease. To evaluate the factors affecting each of 

these perceptions, the model was estimated three times, redefining the binary outcome variable 

of equation (14). Dependant variables in the three models were defined as:  

(14) FERTILIZERj,1 = 1 if input use increased 

                    = 0 otherwise (input use did not change or decreased) 

(15) FERTILIZERj,2 = 1 if input use did not change 

                     = 0 otherwise (input use increased or decreased) 

(16) FERTILIZERj,3 = 1 if input use decreased 

                     = 0 otherwise (input use increased or did not change). 

Names, definitions, hypothesized signs, and means for independent variables can also be found 

in Table 3.1. 

Also note that both equations (13) and (14) were restricted to no intercept term and all 

dummy variables were included to aid in model estimation (Butler 1996).  

Hypotheses 

Variables explaining adoption include proxies for farmer and farm characteristics, 

sources of precision farming information, and farm location. Hypotheses for these variables were 
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based on a review of precision farming adoption literature (Batte, Jones, and Schnitkey 1990; 

Daberkow and McBride 1998; Khanna 2001; Kotsiri et al. 2011; Larson et al. 2008; Roberts et 

al. 2004; Surjandari and Batte 2003; Walton et al. 2008; Walton et al. 2010). Farmer perceptions 

of directional changes in overall fertilizer use are expected to be influenced by the endogenous 

adoption decision as well as exogenous farmer and farm operation characteristics and sources of 

precision farming information. Hypotheses for these variables were based on a review of 

literature associated with the effects of precision farming on input use (Khanna 2001; Roberts, 

English, and Larson 2006; Roberts, English, and Mahajanashetti 2000; Torbett et al. 2007, 

2008). The variable representing livestock ownership (LIVSTK) was excluded as an explanatory 

variable because, while it is expected to affect the adoption of information technologies, it is not 

expected to have a direct impact on perceptions of directional changes in fertilizer use. The 

proxy for failure to use any information sources (NOINFO) was excluded because the sub-

sample of adopters showed little to no variation. Regional dummy variables were also excluded 

because the sub-sample of adopters contained too few observations for some of the regions.  

Five farmer characteristics were hypothesized to affect the decision to adopt one or more 

information technologies for VRT application of inputs and the subsequent perception of 

directional changes in fertilizer use. The age of the primary decision maker (AGE) was 

hypothesized to be negatively associated with adoption and the perception that fertilizer use did 

not change. Younger farmers were expected to have a longer time horizon to realize the benefits 

of adoption, whereas older farmers were hypothesized to be less interested in investing in new 

technologies (Batte, Jones, and Schnitkey 1990; Roberts et al. 2004; Walton et al. 2008). An 

older farmer was also expected to have the experience needed to better recognize changes in 
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fertilizer use in one direction or the other, making them less likely to perceive no change in 

fertilizer use (Torbett et al. 2008).  

Farmers who held a Bachelor’s degree or higher (EDUC) were hypothesized to be more 

likely to adopt and to perceive fertilizer use to increase or decrease. A college education was 

expected to equip a farmer with the higher level of analytical ability needed to deal with the 

volume and intricacy of data associated with precision farming (Batte, Jones, and Schnitkey 

1990; Roberts et al. 2004; Walton et al. 2008). Much in the same way, a farmer with a college 

degree was expected to have the level of analytical ability needed to recognize changes in 

fertilizer use no matter how small in either direction (Torbett et al. 2007, 2008).  

Household income over $100,000 (INC) was hypothesized to be positively associated 

with adoption. This threshold was selected based on the approximate median household income 

of cotton farmers (USDA – ERS 2011). Higher income was expected to potentially facilitate 

initial investment into precision farming technologies (Daberkow and McBride 1998; Walton et 

al. 2008). The effect of INC on farmer perceptions of directional changes in fertilizer use was 

unable to be hypothesized a priori. Higher income could facilitate the ability to invest in 

complementary technologies that would help to realize reductions in fertilizer use, but it could 

also provide a farmer with the financial ability to invest in higher levels of fertilizer application if 

that is what collected information indicates is needed (Walton et al. 2008).  

The percentage of household income from farming operations (INCFRM) was 

hypothesized to positively influence adoption and the perception that fertilizer use increased or 

decreased. A farmer who earned a larger portion of their income from farming was assumed to 

spend more time attending to those operations, and therefore was expected to have a higher 

probability of adopting time and management intensive technologies (Cooper and Keim 1996; 
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Khanna 2001). In much the same way, farmers earning a larger portion of their income from 

farming were expected to have more time to learn and realize the full potential of the 

technologies, potentially increasing fertilizer productivity (D’Souza, Cyphers, and Phipps 1983; 

Khanna 2001).  

The use of a computer to manage the farm operation (COMP) was hypothesized to 

positively influence adoption and negatively influence the perception that fertilizer use did not 

change. Because computer technology is integrated into precision farming, a farmer with 

previous experience using a computer was more likely to adopt (Walton et al 2008). Familiarity 

with computers may also facilitate more efficient manipulation and use of collected data 

increasing fertilizer productivity (Torbett et al. 2007, 2008).  

Six farm characteristics were expected to affect the adoption decision, five of which were 

expected to affect the perception of directional changes in fertilizer use. Ownership of livestock 

(LIVSTK) was hypothesized to negatively affect adoption (Surjandari and Batte, 2003; Walton 

et al., 2010). Time spent managing an enterprise not directly related to cotton production was 

hypothesized to reduce the time available for managing crops. While this variable was expected 

be associated with the adoption of information technologies, it was not expected to influence 

farmer perceptions of directional changes in fertilizer use.  

Cotton area planted (COTAREA) was hypothesized to be positively associated with 

adoption and perceptions of an increase or a decrease in fertilizer use. When the fixed cost of 

information technologies can be spread over a larger area of cotton, a farmer would be expected 

to invest in precision agricultural technologies (Roberts et al. 2004; Walton et al. 2010). A farm 

with a larger area of cotton was expected to be subject to larger spatial variability, and therefore 
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may be more likely to increase in fertilizer productivity following VRT application of inputs 

(Roberts et al. 2004; Torbett et al. 2007; Walton et al. 2010).  

The percentage of total cotton area owned (OWNRENT) was hypothesized to be 

positively associated with adoption and negatively affect the perception of an increase or a 

decrease in fertilizer use. Information technologies and the spatially referenced data they are 

used to collect are potentially useful for several growing seasons, and land ownership may help 

to ensure return of this investment because of the ability to pass owned land on to subsequent 

generations while rental contracts can vary in length (Daberkow and McBride 1998; Walton et 

al. 2008). A farmer owning a larger portion of their land may also be more likely to already 

know more about the variability of their fields and not recognize significant changes in fertilizer 

use as a result of VRT (Torbett et al. 2007).  

The presence of irrigation on a farm (IRRIG) was hypothesized to positively influence 

the adoption decision and the perception that fertilizer use increased. Irrigated cotton is generally 

associated with higher yields and the need for potentially higher input levels (Baerenklau and 

Knapp 2007; Monks et al. 2007). Therefore, there may be more opportunities for the use 

information technologies to vary inputs in different parts of irrigated fields (Larson et al. 2008). 

Also, the recognized interaction between irrigation and fertilizer was expected to make the 

perception that fertilizer use increased more likely among those who used irrigation (Larson et 

al. 2008; Roberts, English, and Larson 2006). 

A dummy variable representing the use of a cotton picker (PICKER) was included in 

both the adoption and the perceived changes in fertilizer use equations as a technological proxy 

for a variety of factors including production techniques and location (Boman et al. 2011). Picker 

cotton is typically considered the higher value alternative to stripper cotton which is often subject 
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to discounts for higher leaf and bark content in the lint (Larson et al. 2004; Valco, Anthony, and 

McAlister 2001). Also, picker cotton and stripper cotton are region specific, with stripper cotton 

being grown predominantly in the high plains of Texas and Oklahoma and picker cotton largely 

everywhere else (Boman et al. 2011). PICKER was hypothesized to positively affect adoption. A 

farmer growing picker cotton was expected to be more likely to adopt information technologies 

due to its higher expected value. PICKER was also anticipated to contribute to the perception of 

an increase or a decrease in fertilizer use based on the physiology of cotton growth. Farmers 

growing picker cotton were expected to be less likely to perceive an increase and more likely to 

perceive a decrease in fertilizer use because the over application of fertilizer, especially nitrogen, 

can shift the growth of cotton plants away from reproductive growth of cotton bolls and towards 

more vegetative growth, leading to discounts for leaf and bark content in the lint (Gaylor et al. 

1983; Howard et al. 2001; Kohli and Morrill 1976). Plant growth regulators and harvest aids can 

also be used to compensate for over application of nitrogen, but can be expensive and are 

therefore only used as needed (Fritschi et al. 2003).  

The number of farm input suppliers within the county (FRMSPLY) was hypothesized to 

positively affect adoption. It was expected that closer proximity to more local farm input 

suppliers would increase a farmer’s knowledge of information technologies (Khanna 2001). The 

effect of FRMSPLY on the perception of changes in fertilizer was difficult to predict a priori.  

Dummy variables representing farmer sources of information concerning precision 

farming technologies were also included in both models. Each of the seven sources were 

included as a dummy variable equal to one if a farmer indicated receiving information from that 

source and zero otherwise. The sources include farm dealers (FRMDLER), crop consultants 

(CRPCSLT), University Extension (EXTEN), other farmers (OFRMER), trade shows 
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(TRDESHW), the internet (INTER), and news or media outlets (MEDIA). Also included in the 

adoption model was a dummy variable representing farmers who did not use any of the 

information sources or did not answer the question (NOINFO). NOINFO was hypothesized to 

negatively influence the adoption of information technologies due to the expected general lack of 

knowledge about the technologies. The effects of the remaining information sources on adoption 

and directional changes in fertilizer use are unknown a priori.   

Dummy variables representing the regions where a farm was located were included in the 

adoption model. USDA Economic Research Service (USDA – ERS) Farm Resource Regions 

were used because of the factors they were created to capture such as farm production 

characteristics, soil characteristics, and climatic traits (USDA – ERS 2012). The Heartland 

(ERS1), Prairie Gateway (ERS4), Eastern Uplands (ERS5), Southern Seaboard (ERS6), Fruitful 

Rim (ERS7), and Mississippi Portal (ERS9) were all included in the model, equal to one if the 

respondent’s operation is located in that region and zero otherwise. Limited availability of 

previous literature evaluating regional characteristics affect on adoption decisions made it 

difficult to make hypotheses for these variables a priori.  

Statistical Analysis 

Equations (12) and (13) were tested for multicollinearity among independent variables 

using the COLLIN statement in STATA 12.0 (StataCorp 2011). Multicollinearity occurs when 

two or more independent variables are highly correlated with each other. If present, 

multicollinearity causes standard errors to be inflated, which in turn can affect the significance 

and inferential power of coefficients (Chatterjee and Price 1991). Variance inflation factors 

(VIF) were used to detect collinear variables. Typically, VIFs greater than 10 are thought to 

indicate the presence inflated standard errors. 
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Equations (12) and (13) were first estimated simultaneously using maximum likelihood 

for each of the three directional changes in fertilizer use using the HECKPROB command in 

STATA 12.0 (StataCorp 2011). Models were weighted using the PWEIGHT option, including 

the post-stratification weights (StataCorp 2011). A Wald test was used to test the null hypothesis 

that the cross-equation correlation coefficient ρ was equal to zero. Rejection of this hypothesis 

indicates correlation between the error terms and the need to estimate the models using the 

bivariate probit model with sample selection, but failure to reject the null hypothesis suggests the 

models could be estimated as individual probit regressions (Greene 2003; StataCorp 2011).  

Results 

Comparison of Sample Means 

Comparison between adopters and non-adopters is found in Table 3.2. Analysis suggests 

that producers who adopted information technologies for VRT application of inputs were 

generally younger, more highly educated, and more likely to use computers for farm 

management. They were also less likely to own livestock, farmed larger cotton areas, were more 

likely to use irrigation, and more likely to grow picker cotton rather than stripper cotton. 

Adopters were also more likely to use each of the evaluated sources of precision farming 

information except other farmers, and were less likely to not use any of the information sources.  

Results of the comparison between sub-populations of farmers who perceived fertilizer 

use to increase, not change, and decrease can be found in Table 3.3. Farmers who perceived 

fertilizer use not to change were more highly educated than those who perceived increased or 

decreased fertilizer use. Farmers who perceived fertilizer use to decrease farmed significantly 

larger cotton areas. Farmers who perceived fertilizer to not change or decrease were significantly 

more likely to use a picker than those who perceived an increase in input use. Farmers who 
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perceived no change in fertilizer use were also significantly more likely to use University 

Extension as a source of precision farming information than those who perceived an increase or a 

decrease.  

Model Evaluation 

Multicollinearity diagnostics for the independent variables in both equations (12) and 

(13) were estimated. All independent variables in equation (12), with the exception of PICKER, 

ERS6, ERS7, and ERS9, had VIFs below two. While the VIFs of PICKER, ERS6, ERS7, and 

ERS9 were still below the threshold of 10, they were slightly higher than the other independent 

variables given expected correlation between PICKER and regional variables caused by regional 

differences in picker and stripper cotton. Multicollinearity diagnostics for equation (13) found 

VIFs of all independent variables to be below two. Therefore, the standard errors of the models 

did not appear to be adversely affected by multicollinearity.  

The null hypothesis that ρ was zero could not be rejected at any conventional level for the 

three bivariate probit models with sample selection for directional changes in fertilizer use 

equations (Table 3.4). Thus, it is appropriate to estimate individual binomial probit models for 

the adoption equation and each of the three models for directional changes in fertilizer use. a 

likelihood ratio test suggested that the overall adoption model was significant at the 1% level, 

and correctly predicted 1,047 (87%) of the adoption responses (Table 3.5). The models for a 

perceived increase, no change, and decrease in fertilizer use were all significant at the 1% level 

based on the results of likelihood ratio tests; correctly predicting 79 (80%), 84 (85%), and 66 

(67%) of the responses, respectively (Tables 3.6, 3.7, and 3.8). 
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Information Technology Adoption 

Results from the estimation of the adoption equation can be seen in Table 3.5. Cotton 

area (COTAREA) and the percentage of cotton area owned (OWNRENT) significantly 

influenced the probability that a farmer would adopt one or more of the select information 

technologies for VRT application of inputs. The use of other farmers (OFRMER) and trade 

shows (TRDESHW) as sources of precision farming information and not using any of the 

selected information sources (NOINFO) also significantly affected the adoption decision. Lastly, 

all regional dummy variables (ERS1, ERS4, ERS5, ERS6, ERS7, and ERS9) were associated 

with the decision to adopt precision agriculture technologies considered. Other explanatory 

variables in the adoption model were not significant.  

Results for statistically significant farm decision maker and farm operation effects all 

exhibited the expected relationships. For each additional 405 hectares of cotton planted, the 

probability of a farmer adopting one or more information technologies for VRT increased 1.8%, 

holding all other variables at their means. For each 1% increase in the contribution of owned 

cotton area to total cotton area, farmers were 4.6% more likely to adopt.  

Results also suggest interesting findings concerning the effects of farmer sources of 

precision farming information on adoption. Farmers who used trade shows as a source of 

precision farming information were 4.5% more likely to adopt one or more information 

technologies for VRT, holding all other variables at their means. The large variety of vendors 

present at trade shows likely offer farmers with an enhanced perspective of information 

technologies encouraging them to consider the technology or technologies that best suit their 

needs. Any technology manufacturers not currently using trade shows as a mode of promotion 

may reconsider this decision given these findings. Farmers who used other farmers as a source of 
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precision farming information were 4.9% less likely to adopt than those who did not. Of the 

information sources included in this study, farmers obviously relate best to other farmers making 

them one of the most widely used sources of precision farming information (Velandia et al. 

2011). Given the relatively slow adoption of precision farming among cotton farmers, it may be 

that hesitancy to adopt was perhaps shared among farmers. A farmer who did not use any of the 

information technologies analyzed was 8.9% less likely to adopt, holding all other variables at 

their means. As expected, the use of one or more of the sources of precision farming information 

significantly increased the probability that a farmer would adopt information technologies.  

The negative relationship between each of the regional dummy variables and the adoption 

decision identified an overall propensity by farmers to be less likely to adopt independent of their 

location. Evaluating the marginal effects, farmers probability of adopting one or more 

information technologies for VRT decreased by somewhere between 7.7% and 12.7% depending 

on region, except for farmers in the Prairie Gateway who were 22.7% less likely to adopt than 

farmers in other regions.  

Perceived Increase in Fertilizer Use  

The use of a computer for farm management (COMP) and growing picker cotton 

(PICKER) significantly influenced the probability of a farmer perceiving an increase in fertilizer 

use (Table 3.6). Other explanatory variables in the equation for farmer perceptions that fertilizer 

use input use increased following VRT were not significant.  

Results for all statistically significant farmer and farm effects carried their expected 

signs. Farmers who used a computer for farm management were 23.2% more likely to perceive 

fertilizer use to increase following VRT application, holding all other variables at their means. 

Familiarity with a computer likely facilitates more efficient use of collected data, leading to 
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increased fertilizer productivity. Farmers who grew picker cotton were 67.6% less likely to 

perceive fertilizer use to increase. Excess nitrogen in cotton often reduces yield and fiber quality 

because of excessive vegetative growth. Thus, in higher-valued picker cotton production, farmers 

often avoid over application of fertilizer to avoid discounts for lint quality and the need for 

greater quantities of plant growth regulators and harvest aids prior to harvest.  

Perceived No Change in Fertilizer Use  

Age of the primary decision maker (AGE), holding a Bachelor’s degree (EDUC), the use 

of a computer for farm management (COMP), cotton area (COTAREA), percentage of cotton 

area owned (OWNRENT), and the use of irrigation (IRRIG) contributed significantly to the 

perception that fertilizer use did not change following adoption (Table 3.7). The use of farm 

dealers (FRMDLER) and University Extension (EXTEN) as sources of precision farming 

information also contributed significantly to the perception that fertilizer use did not change 

following technology adoption. Other explanatory variables in the equation for farmer 

perceptions that fertilizer use did not change following VRT were not significant. 

Results for statistically significant farm decision maker and farm operation effects 

exhibited the expected signs, except the variables for education and cotton area. For each 

additional 10 years in age, a farmer was 5.2% less likely to perceive fertilizer use to not change, 

holding all other variables at their means. It may be that younger farmers lack the experience 

necessary to recognize changes in input use. The probability of perceiving no change in input use 

was 16.6% higher for farmers who had a Bachelor’s degree or higher. These farmers were 

hypothesized to have the analytical ability needed to recognize increases or decreases in fertilizer 

use, however it may be that their higher level of analytical ability actually helped them 

understand that fertilizer use would change differently in different parts of their fields, but 
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overall would not change but become more efficient. Farmers who used a computer for farm 

management were 39% less likely to perceive no change in fertilizer use.  

Contrary to the hypothesis that larger cotton area may be associated with farmers being 

more likely to perceive increased or decreased fertilizer use, each additional 405 hectares of 

cotton planted was associated with an increase in the probability of a farmer perceiving no 

change in fertilizer use by 3.3%, holding all other variables at their means. It may be that while 

farmers with more cotton area observed increases and decreases in fertilizer use in different 

sections of their fields, their overall input use did not change. For each 1% increase in the 

contribution of owned cotton area to total cotton area, farmers were 14.5% more likely to 

perceive no change in fertilizer use. Owning more of their land, farmers are expected to know 

more about in-field variability prior to adoption than farmers who rent more of their cotton area. 

Given the interaction between irrigation and fertilizer, the presence of irrigation likely decreased 

the probability of a farmer perceiving fertilizer use to remain idle. For example, farmers using 

irrigation were 10.6% less likely to perceive fertilizer use to not change than those who did not.  

A farmer who used farm dealers as a source of precision farming information was 8.4% 

more likely to perceive no change in fertilizer use holding all other variables at their means. A 

farmer who used University Extension as a source of precision farming information was 19.8% 

more likely to perceive fertilizer use not to change. Farmers have been previously characterized 

to associate Extension as an unbiased source of information which may potentially lead to a 

more equable deduction of their perception of how the use of information technologies affected 

their fertilizer use (Larson et al. 2008).  
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Perceived Decrease in Fertilizer Use  

The percentage of cotton area owned (OWNRENT) and growing picker cotton (PICKER) 

contributed significantly to the perception that fertilizer use decreased following adoption (Table 

3.8). Also, the use of University Extension (EXTEN) as a source of precision farming 

information contributed significantly to the perception that fertilizer use decreased. Other 

explanatory variables in the equation for farmer perceptions that fertilizer use decreased 

following VRT were not significant. 

Results for all statistically significant farmer and farm effects had their hypothesized 

signs. For each 1% increase in the contribution of owned cotton area to total cotton area, farmers 

were 35.3% less likely to perceive a decrease in fertilizer use, holding all other variables at their 

means. Farmers who grew picker cotton were 45% more likely to perceive fertilizer use to 

decrease than those who grew stripper cotton. Farmers who grew picker cotton may have used 

information technologies and VRT to manage soil fertility. Excess nitrogen in cotton may reduce 

yield and fiber quality through excessive vegetative growth. In higher-valued, picker cotton 

production, more efficient use of fertilizers such as nitrogen may also reduce the need for plant 

growth regulator and harvest aids because of excessive vegetative growth in the crop. 

Farmers who used University Extension as a source of precision farming information 

were 35.4% less likely to perceive fertilizer use to decrease than those who did not. University 

Extension generates information for a wide range of farmers in a particular region as opposed to 

other sources of precision farming information which may provide a farmer with detailed 

information customized for their particular operation (Velandia et al. 2011). Thus, the more 

general information provided to farmers using University Extension as a source of precision 

farming information may lead to a lower probability of realizing fertilizer use to decrease.  
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Summary and Conclusions 

Farmer decisions to adopt one or more selected information technologies for VRT 

application of inputs and the subsequent effect of adoption on perceptions of directional changes 

in overall fertilizer use were analyzed as a function of observable farmer and farm 

characteristics, sources of precision farming information, and regional variables for farm 

location. Because adoption is a prerequisite to perceptions of directional changes in input use 

with VRT, data from the 2009 Southern Cotton Precision Farming Survey were analyzed using 

probit models with sample selection. Statistical modeling found no evidence of sample selection 

bias, and thus the adoption and changes in fertilizer use models were estimated as individual 

binomial probit models.  

Results from the estimation of the adoption equation found that cotton growers who 

farmed more cotton and owned a larger portion of their farm operation were more likely to adopt 

selected information technologies for VRT application of inputs. By targeting these farmers, 

institutions developing and promoting information technologies may be more likely to 

successfully reach cotton growers who are likely to adopt the technologies considered. Results 

also indicated farmers using trade shows as a source of precision farming information were more 

likely to adopt. Thus, retailers of information technologies not currently using trade shows as a 

means of promoting their products may reconsider given these findings.  

Subsequently, the factors influencing farmer perceptions of increased, unchanged, and 

decreased overall fertilizer use were evaluated individually for those farmers who chose to adopt 

one or more of the selected information technologies for VRT. Examining the results of the three 

equations simultaneously, several key findings were found to be associated with these 

perceptions. Cotton farmers in the sample who rented more of their cotton area and used picker 
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rather than stripper harvest technology were more likely to perceive that overall fertilizer use 

declined with the use of the selected information technologies and VRT. This result may be 

explained by the desire of farmers growing higher value picker cotton to avoid excess nitrogen in 

cotton that may reduce yields, diminish fiber quality, and increase the need for plant growth 

regulators and harvest aids prior to harvest because of excessive vegetative growth. Thus, this 

result and other key findings of this research may not only be of interest to other cotton farmers 

but also to the USDA Natural Resource Conservation Service, who may be interested in the 

environmental impacts of decreased fertilizer use among cotton farmers. Results also suggest 

that cotton farmers who used University Extension or farm dealers as a source of precision 

farming information were more likely to perceive that overall fertilizer use did not change. 

Institutions involved in the education and promotion of precision farming may not only be 

interested in how farmers utilizing their information perceive VRT management to effect 

fertilizer use, but also in the other factors affecting these perceptions in order to tailor their 

efforts to reach farmers who are more likely to realize the economic and environmental benefits 

of precision agriculture.  

Finally, the results this research lay the groundwork for future research to build upon 

regarding directional changes in fertilizer use, as well as the use of other inputs. Results of this 

research are limited by the evaluation of only a small sub-sample of selected precision farming 

technologies and only changes in overall fertilizer use. However, using these findings, future 

studies may be able to better identify factors influencing farmer perceptions of changes in input 

use and their implications on the economic and environmental benefits of precision farming. 



 
78 

 

References 

Babcock, B.A., and G.R. Pautsch. 1998. Moving from Uniform to Variable Fertilizer Rates on 

Iowa Corn: Effects on Rates and Returns. Journal of Agricultural and Resource 

Economics 23(2): 385-400. 

Baerenklau, K.A., and K.C. Knapp. 2007. Dynamics of Agricultural Technology Adoption: Age 

Structure, Reversibility, and Uncertainty. American Journal of Agricultural Economics 

89(1): 190-201. 

Batte, M.T. 2000. Factors Influencing the Profitability of Precision Farming Systems. Journal of 

Soil and Water Conservation 55(1): 12-18. 

Batte, M.T., and M.W. Arnholt. 2003. Precision Farming Adoption and Use in Ohio: Case 

Studies of Six Leading-Edge Adopters. Computers and Electronics in Agriculture 38(2): 

125-139.  

Batte M.T., E. Jones, and G.D. Schnitkey. 1990. Computer Use by Ohio Commercial Farmers. 

American Journal of Agricultural Economics 72(4): 934-945. 

Boman, R.K., J.D. Wanjura, M.S. Kelley, C. Ashbrook, and E.F. Hequet. 2011. Picker vs. 

Stripper Harvesting in the Texas High Plain: Agronomic Implications. Paper presented at 

the National Cotton Council Beltwide Cotton Conference, Atlanta, GA, 4-7, January. 

Brooks, N.L. 2001. Characteristics and Production Costs of U.S. Cotton Farms. Washington DC: 

U.S. Department of Agriculture, Economic Research Service, Technical Bulletin No. 

974-2. 

Butler, J.S. 1996. Estimating the Correlation in Censored Probit Models. The MIT Press 78(2): 

355-358. 

Chatterjee, S., and B. Price. 1991. Regression Analysis by Example. New York: Wiley. 



 
79 

 

Cooper, J.E., and R.W. Keim. 1996. Incentive Payments to Encourage Farmer Adoption of 

Water Quality Protection Practices. American Journal of Agricultural Economics 78(1): 

54-64. 

Daberkow, S.G., and W.D. McBride. 1998. Socioeconomic Profiles of Early Adopters of 

Precision Agriculture Technologies. Journal of Agribusiness 16(2): 151-168. 

Dillman, D.A. 1978. Mail and Telephone Surveys. New York: Wiley New York. 

D’Souza, G., D. Cyphers, and T. Phipps. 1983. Factors Affecting the Adoption of Sustainable 

Agricultural Practices. Agricultural and Resource Economics Review 22(2): 159-165. 

English, B.C., S.B. Mahajanashetti, and R.K. Roberts. 2001. Assessing Spatial Break-Even 

Variability in Fields with Two or More Management Zones. Journal of Agricultural and 

Applied Economics 33(3): 551-565. 

Fritschi, F.B., B.A. Roberts, R.L. Travis, D.W. Rains, and R.B. Hutmacher. 2003. Response of 

Irrigated Acala and Pima Cotton to Nitrogen Fertilization: Growth, Dry Matter 

Partitioning, and Yield. Agronomy Journal 95(1): 133-166. 

Gaylor, M.J., G.A. Buchanan, F.R. Gilliland, and R.L. Davis. 1983. Interactions Among a 

Herbicide Program, Nitrogen Fertilization, Tarnished Plant Bugs, and Planting Dates for 

Yield and Maturity of Cotton. Agronomy Journal 75(6): 903-907. 

Greene, W.H. 2003. Econometric Analysis. Upper Saddle River: Prentice Hall. 

Griffin, T.W., J. Lowenberg-DeBoer, D.M. Lambert, J. Peone, T. Payne, and S.G. Daberkow. 

2004. Adoption, Profitability, and Making Better Use of Precision Farming Data.  Purdue 

University Dept. Agr. Econ. Staff Paper #04-06. 



 
80 

 

Harper, D.C., D.M. Lambert, R.K. Roberts, B.C. English, M. Velandia, J.A. Larson, D.F. 

Mooney, S.L. Larkin, and J.M. Reeves. 2011. Paper presented at the 10th International 

Conference on Precision Agriculture, Denver, CO, 18-21, July. 

Heckman, J.J. 1979. Sample Selection Bias as a Specification Error. Econometrica 47(1): 153-

161. 

Howard, D.D., C.O. Gwathmey, M.E. Essington, R.K. Roberts, and M.D. Mullen. 2001. 

Nitrogen Fertilization of No-Till Cotton on Loess-Derived Soils. Agronomy Journal 

93(1): 157-163. 

Khanna, M. 2001. Sequential Adoption of Site-Specific Technologies and Its Implications for 

Nitrogen Productivity: A Double Selectivity Model. American Journal of Agricultural 

Economics 83(1): 35-51. 

Kohli, S.E., and L.G. Morrill. 1976. Influence of Nitrogen, Narrow Rows, and Plant Population 

on Cotton Yield and Growth. Agronomy Journal 68(6): 897-901. 

Kotsiri, S., R. Rejesus, M. Marra, and M. Velandia. 2011. Farmers’ Perceptions about Spatial 

Yield Variability and Precision Farming Technology Adoption: An Empirical Study of 

Cotton Production in 12 Southern States. Paper presented at the Southern Agricultural 

Economics Association annual meeting, Corpus Christi, TX, 5-8 February. 

Lambert, D.M., and J. Lowenberg-DeBoer. 2000. Precision Agriculture Profitability Review. 

Site-Specific Management Center, School of Agriculture, Purdue University.  

Lambert, D.M., J. Lowenberg-DeBoer, and G.L. Malzer. 2006. Economic Analysis of Spatial-

Temporal Patterns in Corn and Soybean Response to Nitrogen and Phosphorus. 

Agronomy Journal 98(1): 43-54.  



 
81 

 

Lambert, D.M., P. Sullivan, R. Claassen, L. Foreman. 2007. Profiles of US Farm Households 

Adopting Conservation-Compatible Practices. Land Use Policy 24(1): 72-88. 

Larkin, S.L., L. Perruso, M.C. Marra, R.K. Roberts, B.C. English, J.A. Larson, R.L. Cochran, 

and S.W. Martin. 2005. Factors Affecting Perceived Improvements in Environmental 

Quality from Precision Farming. Journal of Applied Economics 37(3): 577-588.  

Larson, J.A., R.K. Roberts, B.C. English, S.L. Larkin, M.C. Marra, S.W. Martin, K.W. Paxton, 

and J.M. Reeves. 2008. Factors Affecting Farmer Adoption of Remotely Sensed Imagery 

for Precision management in Cotton Production. Precision Agriculture 9(4):195-208. 

Larson, J.A., C.O. Gwathmey, R.K. Roberts, and R.M. Hayes. 2004. Effects of Plant Population 

Density on Net Revenues from Ultra-Narrow-Row Cotton. Journal of Cotton Science 

8(1): 69-82. 

Lohr, S.L. 1999. Sampling: Design and Analysis. Pacific Grove: Brooks/Cole. 

Marra, M.C., R.M. Rejesus, R.K. Roberts, B.C. English, J.A. Larson, S.L. Larkin, and S. Martin. 

2010. Estimating the Demand and Willingness-to-pay for Cotton Yield Monitors. 

Precision Agriculture 11(3): 215-238. 

Miranda, A., and S. Rabe-Hesketh. 2006. Maximum Likelihood Estimation of Endogenous 

Switching and Sample Selection Models for Binary, Ordinal, and Count Variables. The 

Stata Journal 6(3): 285-308.  

Monks, C.D., G. Wehtje, C. Burmester, A.J. Price, M.G. Patterson, D.P Delaney, W. Faircloth, 

and M.R. Woods. 2007. Glyphosate-Resistant Cotton Response to Glyphosate Applied in 

Irrigated and Nonirrigated Conditions. Weed Technology 21(4): 915-921. 

Mooney, D.F., R.K. Roberts, B.C. English, D.M. Lambert, J.A. Larson, M. Velandia, S.L. 

Larkin, M.C. Marra, S.W. Martin, A. Mishra, K.W. Paxton, R. Rejesus, E. Segarra,C. 



 
82 

 

Wang, and J.M. Reeves. 2010. Precision Farming by Cotton Producers in Twelve 

Southern States: Results from the 2009 Southern Cotton Precision Farming Survey. 

University of Tennessee Dept. Agr. and Res. Econ. Research Series 10-02. 

Popp, J., and T. Griffin. 2000. Adoption Trends of Early Adopters of Precision Farming in 

Arkansas. Paper presented at the 5th International Conference on Precision Agriculture, 

Minneapolis, MN, 16-19, July. 

Roberts, R.K., B.C. English, and J.A. Larson. 2006. The Variable-Rate Input Application 

Decision for Multiple Inputs with Interactions. Journal of Agricultural and Resource 

Economics 3(2): 391-413. 

Roberts, R.K., B.C. English, and S.B. Mahajanashetti. 2000. Evaluating the Returns to Variable 

Rate Nitrogen Application. Journal of Agricultural and Applied Economics 31(1): 133-

143. 

Roberts, R.K., B.C. English, J.A. Larson, R.L. Cochran, W.R. Goodman, S.L. Larkin, M.C. 

Marra, S.W. Martin, W.D. Shurley, and J.M. Reeves. 2004. Adoption of Site-Specific 

Information and Variable Rate Technologies in Cotton Precision Farming. Journal of 

Agricultural and Applied Economics 36(1): 143-158. 

Roberts, R.K., S.B. Mahajanashetti, B.C. English, J.A. Larson, D.D. Tyler. 2002. Variable Rate 

Nitrogen Application on Corn Fields: The Role of Spatial Variability and Weather. 

Journal of Agricultural and Applied Economics 34(1): 111-129.  

StataCorp. 2011. Stata Statistical Software: Release 12. College Station, TX: StataCorp LP. 

Surjandari, I., and M.T. Batte. 2003. Adoption of Variable Rate Technology. Makara, Technolgi 

7(3): 119-124. 



 
83 

 

Swinton S.M., and Lowenberg-DeBoer. 1998. Evaluating the Profitability of Site-Specific 

Farming. Journal of Production Agriculture 11(4):439-446.  

Torbett, J.C., R.K. Roberts, J.A. Larson, and B.C. English. 2007. Perceived Importance of 

Precision Farming Technologies in Improving Phosphorus and Potassium Efficiency in 

Cotton Production. Precision Agriculture 8(3): 127-137. 

—. 2008. Perceived Improvements in Nitrogen Fertilizer Efficiency from Cotton Precision 

Farming. Computers and Electronics in Agriculture 64(2): 140-148. 

U.S. Census Bureau. 2011. County Business Patterns. Available at 

http://www.census.gov/econ/cbp/index.html (accessed December 12, 2011). 

U.S. Department of Agriculture, Economic Research Service (USDA-ERS). 2012. Briefing 

Room: ERS U.S. Farm Resource Regions. Available at 

http://www.ers.usda.gov/Briefing/ARMS/ResourceRegions/ResourceRegions.htm 

(accessed January 3, 2012). 

—. 2011. Briefing Room: Farm Household Economics and Well-Being. Available at 

http://www.ers.usda.gov/Briefing/WellBeing/farmhouseincome.htm (accessed December 

14, 2011). 

Valco, T.D., W.S. Anthony, and D.D. McAlister III. 2001. Ultra Narrow Row Cotton Ginning 

and Textile Performance Results. Paper presented at the National Cotton Council 

Beltwide Cotton Conference, Anaheim, CA, 9-13, January. 

Velandia, M., D.M. Lambert, M.P. Mendieta, R.K. Roberts, J.A. Larson, B.C. English, R.M. 

Rejesus, and A.K. Mishra. 2011. Factors Influencing Cotton Farmers’ Perceptions about 

the Importance of Information Sources in Precision Farming Decisions. Paper presented 



 
84 

 

at the Agricultural and Applies Economics Association’s Annual Meeting, Pittsburgh, 

PA, 24-26, July. 

Walton, J.C., D.M. Lambert, R.K. Roberts, J.A. Larson, B.C. English, S.L. Larkin, S.W. Martin, 

M.C. Marra, K.W. Paxton, and J.M. Reeves. 2008. Adoption and Abandonment of 

Precision Soil Sampling in Cotton Production. Journal of Agricultural and Resource 

Economics 33(3): 428-448. 

Walton, J.C., J.A. Larson, R.K. Roberts, D.M. Lambert, B.C. English, S.L. Larkin, M.C. Marra, 

S.W. Martin, K.W. Paxton, and J.M. Reeves. 2010. Factors Influencing Farmer Adoption 

of Portable Computers for Site-Specific Management: A Case Study for Cotton 

Production. Journal of Agricultural and Applied Economics 42(2): 193-209. 

Wang, D. T. Prato, Z. Qui, N.R. Kitchen, and K.A. Sudduth. 2003. Economic and Environmental 

Evaluation of Variable Rate Nitrogen and Lime Application for Claypen Soil Fields. 

Precision Agriculture 4(1): 35-52.  

Watkins, K.B., Y.C. Lu, and W.Y. Huang. 1998. Economic and Environmental Feasibility of 

Variable Rate Nitrogen Fertilizer Applications with Carry-Over Effects. Journal of 

Agricultural and Resource Economics 23(4): 401-426.  



 
85 

 

 

 

 

 

 

 

 

 

 

 

 

Appendix 

  



 
86 

 

Appendix 

 
Figure 3.1. Survey Questions Used in Collection of Information Technology Adoption and 
Percieved Input Use Analysis 
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Table 3.1. Variable Definitions, Hypothesized Signs, and Means in the Adoption and Directional Changes in Fertilizer Use 
Equations 
  Hypothesized Signs  
   Fertilizer Use  

Variable Definition 
Adoption Increase 

No 
Change 

Decrease Mean 

Farmer Characteristics 
AGE Age in years of the primary decision maker − + − + 55.98 
       
EDUC Equals one if the farmer received a 

bachelor’s degree or higher and zero 
otherwise 

+ + − + 0.40 

       
INC Equals one if household income was over 

$100K and zero otherwise 
+ +/− +/− +/− 0.46 

       
INCFRM Percentage of household income from 

farming operations 
+ + − + 0.68 

       
COMP Equals one if the farmer used a computer 

for farm management and zero otherwise 
+ + − + 0.49 

       
Farm Characteristics 
LIVSTK Equals one if the farmer owned livestock 

and zero otherwise 
− n/a n/a n/a 0.33 

       
COTAREA Total cotton area (in 405 hectare units) + + − + 0.58 
       
OWNRENT Percentage of cotton area owned to cotton 

area planted 
+ − + − 0.38 

       
IRRIG Equals one if the farmer used irrigation on 

their crop and zero otherwise 
+ + − + 0.44 
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Table 3.1. Continued  
  Hypothesized Signs  
   Fertilizer Use  

Variables Definition 
Adoption Increase 

No 
Change 

Decrease Mean 

PICKER Equals one if the farmer used a picker for 
harvesting cotton and zero otherwise 

+ −  + 0.60 

       
FRMSPLY Number of farm input suppliers at the 

county level 
+ +/− +/− +/− 8.35 

       
Farmers’ Sources of Precision Farming Information       
FRMDLER Equals one if the farmer received precision 

farming information from farm dealers and 
zero otherwise 

+/− +/− +/− +/− 0.56 

       
CRPCSLT Equals one if the farmer received precision 

farming information from crop consultant 
and zero otherwise 

+/− +/− +/− +/− 0.28 

       
OFRMER Equals one if the farmer received precision 

farming information from other farmers 
and zero otherwise 

+/− +/− +/− +/− 0.57 

       
EXTEN Equals one if the farmer received precision 

farming information from extension and 
zero otherwise 

+/− +/− +/− +/− 0.37 

       
TRDSHW Equals one if the farmer received precision 

farming information from trade shows and 
zero otherwise 

+/− +/− +/− +/− 0.30 
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Table 3.1. Continued 
  Hypothesized Signs  
   Fertilizer Use  

Variables Definition 
Adoption Increase 

No 
Change 

Decrease Mean 

INTER Equals one if the farmer received precision 
farming information from the internet and 
zero otherwise 

+/− +/− +/− +/− 0.22 

       
MEDIA Equals one if the farmer received precision 

farming information from news or media 
outlets and zero otherwise 

+/− +/− +/− +/− 0.33 

       
NOINFO Equals one if the farmer did not indicate 

the use of any of the included information 
sources and zero otherwise 

− n/a n/a n/a 0.16 

       
Location Variables       
ERS1 Equals one if the farm was located in the 

Heartland Region and zero otherwise 
+/− n/a n/a n/a 0.03 

       
ERS5 Equals one if the farm was located in the 

Eastern Uplands and zero otherwise 
+/− n/a n/a n/a 0.40 

       
ERS4

 Equals one if the farm was located in the 
Prairie Gateway and zero otherwise 

+/− n/a n/a n/a 0.03 

       
ERS6 Equals one if the farm was located in the 

Southern Seaboard and zero otherwise 
+/− n/a n/a n/a 0.28 

       
ERS7 Equals one if the farm was located in the 

Fruitful Rim and zero otherwise 
+/− n/a n/a n/a 0.08 
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Table 3.1. Continued 
  Hypothesized Signs  
   Fertilizer Use  

Variable Definition 
Adoption Increase 

No 
Change 

Decrease Mean 

ERS9 Equals one if the farm was located in the 
Mississippi Portal and zero otherwise 

+/− n/a n/a n/a 0.17 
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Table 3.2. Comparisons of Characteristics between Adopters and Non-Adopters of One or More 
Information Technologies Used for Variable Rate Technology Application of Inputs in Cotton 
Production 

Variablesa 
Adopter Weighted 

Meanb 
Non-Adopter Weighted 

Mean 
t-valuecd 

AGE 51.50 56.60 −3.50*** 
EDUC 0.53 0.38 3.04*** 
INC 0.50 0.46 0.90 
INCFRM 0.71 0.67 1.43 
COMP 0.70 0.46 5.11*** 
LIVSTK 0.25 0.34 −2.22** 
COTAREA 0.80 0.55 3.09*** 
OWNRENT 0.38 0.38 0.17 
IRRIG 0.53 0.42 2.24** 
PICKER 0.77 0.58 4.36*** 
FRMSPLY 7.67 8.45 −1.16 
FRMDLER 0.76 0.53 5.47*** 
CRPCSLT 0.42 0.27 3.47*** 
OFRMER 0.61 0.57 0.81 
EXTEN 0.45 0.36 1.95* 
TRDSHW 0.51 0.28 4.87*** 
INTER 0.41 0.20 4.82*** 
MEDIA 0.47 0.32 3.14*** 
NOINFO 0.01 0.18 −9.94*** 
    
n 161 1,043  
Expanded 
Population 

1,545 11,096  
aVariables are defined in Table 1.  
bAn adopter was defined as having one or more of the following information technologies: yield 
monitor, passive remote sensing, personal digital assistant (PDA) or handheld global positioning 
system (GPS) devices, active remote sensing, and electrical conductivity. 
cResults of side-by-side t-tests between the weighted means of adopters and non-adopters 
dSignificance at the 1%, 5%, and 10% levels denoted by ***, **, and * respectively.  
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Table 3.3. Comparisons of Characteristics between Perceptions of Directional Changes in 
Fertilizer Use Following the Adoption of One or More Information Technologies for Variable 
Rate Technology Application of Inputs in Cotton Production 

Variablesa 
Fertilizer Increase  
Weighted Meanb 

Fertilizer No Change 
Weighted Mean 

Fertilizer Decrease 
Weighted Mean 

AGE 53.36 a 50.26 a 49.22 a 
EDUC 0.44 a 0.82 b 0.61 a 
INC 0.63 a 0.34 a 0.55 a 
INCFRM 0.75 a 0.65 a 0.74 a 
COMP 0.77 a 0.64 a 0.84 a 
COTAREA 0.60 a 0.76 a 1.07 b 
OWNRENT 0.52 a 0.53 a 0.29 a 
IRRIG 0.66 a 0.30 b 0.54 a 
PICKER 0.58 a 0.92 b 0.95 b 
FRMSPLY 9.91 a 7.32 a 6.61 a 
FRMDLER 0.75 a 0.82 a 0.79 a 
CRPCOSLT 0.47 a 0.42 a 0.50 a 
OFRMER 0.45 a 0.61 a 0.67 a 
EXTEN 0.41 a 0.85 b 0.41 a 
TRDESHW 0.53 a 0.51 a 0.56 a 
INTER 0.34 a 0.63 a 0.38 a 
MEDIA 0.54 a 0.48 a 0.52 a 
    
n 25 18 56 
Expanded Population 275 191 465 
aVariables are defined in Table 1.  
bMeans followed by the same letter in each row are not statistically different at the 0.05 level. 
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Table 3.4. Wald Tests of Independent Equations 
Model ρ

a 
χ

2 Statisticb p-value 
Fertilizer Increased  0.116 0.10 0.755 
Fertilizer No Change −0.626 0.88 0.348 
Fertilizer Decreased  −0.603 1.51 0.219 
aCorrelation between the error terms ei and ej of equations (13) and (14).  
b χ2 Statistic for the null hypothesis that ρ=0.  
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Table 3.5. Results from Estimation of the Adoption of One or More Information Technologies 
for Variable Rate Technology Equation 
 Dependent Variable 
 ADOPT

a 

Independent Variableb Probit Coefficientc Marginal Effect 
AGE −0.008 −0.001 
EDUC 0.159 0.024 
INC −0.122 −0.018 
INCFRM 0.251 0.037 
COMP 0.178 0.026 
LIVSTK −0.158 −0.023 
COTAREA 0.121** 0.018** 
OWNRENT 0.310* 0.046* 
IRRIG 0.158 0.024 
PICKER −0.036 −0.005 
FRMSPLY −0.004 −0.001 
FRMDLER 0.210 0.031 
CRPCSLT 0.109 0.017 
OFRMER −0.319** −0.049** 
EXTEN −0.178 −0.025 
TRDSHW 0.281** 0.045* 
INTER 0.245 0.040 
MEDIA 0.178 0.027 
NOINFO −0.929*** −0.089*** 
ERS1 −1.090** −0.077*** 
ERS4 −1.704*** −0.227*** 
ERS5

 −1.381** −0.082*** 
ERS6 −1.151*** −0.127*** 
ERS7 −1.322*** −0.093*** 
ERS9 −0.830* −0.085** 
   
n 1,204  
Expanded Population 12,641  
Unrestricted Log-likelihood −3,927.31  
Restricted Log-likelihood −4,694.14  
Likelihood Ratio Statisticd 1,533.67***  
Correctly Predicted 1,047(87%)  
a
ADOPT equals one if the farmer adopted one or more information technologies (yield monitor, 

passive remote sensing, personal digital assistant or handheld global positioning system devices, 
active remote sensing, and electrical conductivity) for variable rate technology application and 
zero otherwise. 
bIndependent Variables are defined in Table1.  
cSignificance at the 1%, 5%, and 10% levels denoted by ***, **, and * respectively.  
dLikelihood ratio statistic is LR = 2(log-likelihood unrestricted – log-likelihood restricted). 
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Table 3.6. Results from Estimated Equation of Farmer Perceptions of Increased Fertilizer Use 
with Variable Rate Technology in Cotton Production 
 Dependent Variable 
 FERTILIZER INCREASE

a 

Independent Variableb Probit Coefficientc Marginal Effect 
AGE 0.010 0.003 
EDUC −0.575 −0.187 
INC 0.323 0.101 
INCFRM 0.280 0.088 
COMP 0.907** 0.232** 
COTAREA −0.260 −0.082 
OWNRENT −0.138 −0.044 
IRRIG 0.569 0.176 
PICKER −1.974*** −0.676*** 
FRMSPLY 0.006 0.002 
FRMDLER 0.039 0.012 
CRPCSLT 0.158 0.050 
OFRMER −0.564 −0.182 
EXTEN 0.334 0.105 
TRDSHW −0.249 −0.079 
INTER −0.268 −0.083 
MEDIA −0.074 −0.023 
   
n 99  
Expanded Population 931  
Unrestricted Log-likelihood −394.72  
Restricted Log-likelihood −565.34  
Likelihood Ratio Statisticd 341.24***  
Correctly Predicted 79(80%)  
a
FERTILIZER IFNCREASE equals one if the farmer perceived fertilizer use to increase and zero 

otherwise. 
bIndependent Variables are defined in Table1.  
cSignificance at the 1%, 5%, and 10% levels denoted by ***, **, and * respectively.  
dLikelihood ratio statistic is LR = 2(log-likelihood unrestricted – log-likelihood restricted). 
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Table 3.7. Results from Estimated Equation of Farmer Perceptions of No Change in  Fertilizer 
Use with Variable Rate Technology in Cotton Production 
 Dependent Variable 
 FERTILIZER NOCHANGE

a 

Independent Variableb Probit Coefficientc Marginal Effect 
AGE −0.049*** −0.005** 
EDUC 1.687*** 0.166*** 
INC −0.360 −0.039 
INCFRM −0.656 −0.070 
COMP −1.802*** −0.390*** 
COTAREA 0.312* 0.033 
OWNRENT 1.359** 0.145* 
IRRIG −0.909** −0.106* 
PICKER 0.267 0.025 
FRMSPLY −0.006 −0.001 
FRMDLER 1.259** 0.084** 
CRPCSLT −0.652 −0.070 
OFRMER 0.216 0.022 
EXTEN 1.602*** 0.198*** 
TRDSHW −0.598 −0.068 
INTER 0.405 0.046 
MEDIA −0.187 −0.020 
   
n 99  
Expanded Population 931  
Unrestricted Log-likelihood −263.92  
Restricted Log-likelihood −472.10  
Likelihood Ratio Statisticd 416.36***  
Correctly Predicted 84(85%)  
a
FERTILIZER NOCHANGE equals one if the farmer perceived fertilizer use to not change and 

zero otherwise. 
bIndependent Variables are defined in Table1.  
cSignificance at the 1%, 5%, and 10% levels denoted by ***, **, and * respectively.  
dLikelihood ratio statistic is LR = 2(log-likelihood unrestricted – log-likelihood restricted). 
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Table 3.8. Results from Estimated Equation of Farmer Perceptions of Decreased Fertilizer Use 
with Variable Rate Technology in Cotton Production 
 Dependent Variable 
 FERTILIZER DECREASE

a 

Independent Variableb Probit Coefficientc Marginal Effect 
AGE −0.006 −0.002 
EDUC −0.167 −0.067 
INC 0.114 0.045 
INCFRM 0.008 0.003 
COMP −0.076 −0.030 
COTAREA 0.115 0.046 
OWNRENT −0.885** −0.353** 
IRRIG −0.237 −0.094 
PICKER 1.333*** 0.450*** 
FRMSPLY −0.025 −0.010 
FRMDLER −0.390 −0.154 
CRPCSLT 0.315 0.125 
OFRMER 0.368 0.146 
EXTEN −0.918** −0.354*** 
TRDSHW 0.352 0.139 
INTER −0.419 −0.166 
MEDIA 0.412 0.163 
   
n 99  
Expanded Population 931  
Unrestricted Log-likelihood −494.09  
Restricted Log-likelihood −645.37  
Likelihood Ratio Statisticd 302.56***  
Correctly Predicted 66(67%)  
a
FERTILIZER DECREASE equals one if the farmer perceived fertilizer use to decrease and zero 

otherwise. 
bIndependent Variables are defined in Table1.  
cSignificance at the 1%, 5%, and 10% levels denoted by ***, **, and * respectively.  
dLikelihood ratio statistic is LR = 2(log-likelihood unrestricted – log-likelihood restricted). 
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Chapter 4: Summary 
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Summary 

This thesis evaluated potential impacts of agricultural technology on input use in soybean 

and cotton production. This research was motivated by rising prices of inputs used in crop 

production and their effect on farmer production decisions. Included are a reevaluation of 

currently used production practices and the adoption of new technologies. Findings of this 

research may be useful to farmers and industry professionals interested in production practices 

that will generate the highest profit and how these decisions impact input use.  

The first study of this thesis focused on estimating economically optimal plant population 

density (EOPPD) considering seeding rate, MG, RS, and input-output prices in the rolling 

uplands region of the Midsouth for dryland soybean production. Because farmers are unsure of 

future weather conditions when they make their planting decisions, they must make these 

decisions based on expected weather conditions. Hence, response functions were weighted by 

year based on the Ångström weather index to calibrate original response functions to average 

weather conditions. Evaluation of weighted average response functions suggested that MG IV 

soybean cultivars planted in narrow RS at seeding rates necessary to achieve final PPD of 

115,000 plants ha−1 generated the highest net returns. These findings support the hypothesis of 

economic benefits of narrow RS, but fail to support the benefits of planting earlier maturing MG 

III soybean cultivars to avoid late season drought.  

Limitations of this study include the mid-May planting date used for all three of the MG 

evaluated. Previous research has shown benefits to using earlier planting dates when utilizing 

earlier maturing soybean cultivars. Modeling the potential influence of planting dates on the 

economically optimal production system was beyond the scope of this study. However, data for 

alternative planting dates are available for this production region, and are an objective of future 
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research to determine how this may affect farmer production decisions including PPD, MG, and 

RS. 

The second portion of this research focused on the factors that influence farmers’ 

decisions to adopt information technologies for VRT application of inputs and subsequent 

perceptions of directional changes in overall fertilizer use. These decisions were hypothesized to 

be influenced by farmer and farm characteristics, sources of precision farming information, and 

regional variables. Results from a probit analysis indicated that the probability of adopting one or 

more information technologies for VRT application of inputs was higher for farmers who farmed 

a larger area of cotton, owned a larger portion of the land they farmed, and used trade shows as a 

source of precision farming. By targeting these farmers, entities developing and promoting 

information technologies may be more likely to successfully reach cotton growers who are most 

likely to adopt.  

Subsequently, the factors influencing farmer perceptions of increased, unchanged, and 

decreased overall fertilizer use were evaluated individually for those farmers who chose to adopt 

one or more of the selected information technologies for VRT. Cotton farmers in the sample who 

rented more of their cotton area and used picker rather than stripper harvest technology were 

more likely to perceive that overall fertilizer use declined with the use of the selected 

information technologies and VRT. Results also suggest that cotton farmers who used University 

Extension or farm dealers as a source of precision farming information were more likely to 

perceive that overall fertilizer use did not change. Thus, the results of this research may not only 

be of interest to other cotton farmers but also to the USDA Natural Resource Conservation 

Service, who may be interested in the environmental impacts of decreased fertilizer use among 

cotton farmers, and institutions involved in the education and promotion of precision farming, 
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who may be able to tailor their efforts to reach farmers who are more likely to realize the 

economic and environmental benefits of precision agriculture.  

Finally, the results this research lay the groundwork for future research to build upon 

regarding directional changes in fertilizer use, as well as the use of other inputs. Results of this 

research are limited by the evaluation of only small sub-sample of selected precision farming 

technologies and only changes in overall fertilizer use. However, using these findings, future 

studies may be able to better identify factors influencing farmer perceptions of changes in input 

use and their implications on the economic and environmental benefits of precision farming. 
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