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Abstract 

This thesis studies a multilevel converter with assumed equal de sources. The 

multilevel fundamental switching scheme is used to control the needed power electronics 

switches. Also, a method is presented where switching angles are computed such that a 

desired fundamental sinusoidal voltage is produced while at the same time certain higher 

order harmonics are eliminated. 

Using Fourier Series theory, the transcendental equations eliminating certain 

higher order harmonics were derived in terms of the switching angles. Furthermore, 

these transcendental equations were transformed into polynomial equations by making 

some simple changes of variables. Resultant theory was used to solve the polynomial 

equations. Furthermore, using the ideas of Symmetric Polynomials and Power Sums, 

these polynomials were reduced further to form smaller degree polynomials, which are 

much easier to solve. This approach will find all solutions. Numerical techniques, such 

as Newton-Raphson, will find only one solution. 

The computer algebra software package Mathematica was used to symbolically 

solve the above polynomials. When five de sources were used, it was found that quite 

often the switching angles could be selected such that the output voltage Total Harmonic 

Distortion (THO) was less than 7%. When six de sources were used, quite often the 

switching angles could be selected such that the output voltage THO was less than 6%. 
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1 Introduction 

1.1 Chapter Overview 

The following chapter serves several purposes. Section 1.2 provides a brief 

discussion of the research presented in this thesis. In Section 1.3, the general idea of the 

multilevel converter is presented. Also contained is an introduction to the "multilevel 

fundamental switching scheme." Section 1.4 discusses some of the applications being 

considered for the multilevel converter. 

Section 1.5 compares on a general level the aforementioned multilevel 

fundamental switching scheme to more traditional Pulse-Width Modulation (PWM) 

methods. Section 1.6 discusses some benefits of harmonic elimination, which is the main 

idea behind the multilevel fundamental switching scheme presented in this thesis. In 

Section 1. 7, some additional advantages and disadvantages of multilevel converters are 

presented. 

1.2 Thesis Research 

In this thesis, a multilevel converter with assumed equal de sources is studied. 

The multilevel fundamental switching scheme is used to control the needed power 

electronics switches. Also, a method is presented where switching angles are computed 

such that a desired fundamental sinusoidal voltage is produced while at the same time 

certain higher order harmonics are eliminated. 

Using the idea of the Fourier Series (which will be discussed in Chapter 3), the 
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equations eliminating certain harmonics were derived in terms of the switching angles. 

In fact, one will see these equations are transcendental equations. By making some 

simple substitutions, these transcendental equations were transformed into polynomial 

equations. 

After forming these polynomial equations, Resultant theory was used to solve the 

polynomial equations. Furthermore, using the ideas of Symmetric Polynomials and 

Power Sums, these polynomials were reduced further to form smaller degree 

polynomials, which are much easier to solve. What makes this approach appealing is that 

all solutions were found. Numerical techniques, such as Newton-Raphson, will find only 

one solution. 

Using the computer algebra software package Mathematica, the aforementioned 

equations were derived and solved for four different cases. In each case, a different 

number of de sources were used with the multilevel converter. The cases consisted of 

using three, four, five, and six de sources. 

1.3 Multilevel Converters 

There are several types of multilevel converters. The three main types of 

multilevel converters are: diode-clamped multilevel converters, flying-capacitor (also 

referred to as capacitor-clamped) multilevel converters, and cascaded H-bridges 

multilevel converters [ 1]. 

At this point, it seems appropriate to discuss the difference between the terms 

"multilevel converter" and "multilevel inverter." The term "multilevel converter" refers 

to the converter itself. Furthermore, the connotation of the term is that power can flow in 
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one of two directions. Power can flow from the ac side to the de side of the multilevel 

converter. This method of operation is called the rectification mode of operation. Power 

can also flow from the de side to the ac side of the multilevel converter. This method of 

operation is called the inverting mode of operation. The term "multilevel inverter" refers 

to using a multilevel converter in the inverting mode of operation. Chapter 2 will discuss 

cascaded H-bridges multilevel inverters in more detail. 

The main function of a multilevel inverter is to produce a desired ac voltage 

waveform from several levels of de voltages. These de voltages may or may not be equal 

to one another. The ac voltage produced from these de voltages approaches a sinusoid 

[l]. 

As an example of a multilevel inverter, consider the staircase waveform in Figure 

1. 1. In this figure, five 12 V de sources produce a staircase waveform with a peak-to-
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Figure 1.1: Multilevel inverter using five equal de sources. 
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peak voltage of 120 V. In this case, the multilevel inverter produces a fair approximation 

to a sinusoidal waveform. As one increases the number of de sources, this approximation 

will get better and better. Ideally, as the number of de sources approaches infinity, the 

staircase waveform will approach the desired sinusoid. 

Figure 1.1 also illustrates the "multilevel fundamental switching scheme." This 

scheme simply refers to determining the switching angles of the multilevel inverter such 

that a staircase waveform can be produced that approximates a sinusoid. Furthermore, 

the fundamental frequency of the produced staircase waveform and the frequency of the 

desired sinusoid are the same. 

There are other switching schemes that can be implemented on a multilevel 

inverter but do not produce a staircase waveform. Some examples include Bipolar 

Programmed PWM, Unipolar Programmed PWM, and Virtual Stage PWM. These 

switching schemes, along with some other switching schemes, are discussed further in 

Chapter 2. 

One pitfall of using multilevel inverters to approximate sinusoidal waveforms 

concerns harmonics. As one can see in Figure 1.1, the staircase waveform produced by 

the multilevel inverter contains sharp transitions. From Fourier Series theory, this 

phenomenon results in harmonics, in addition to the fundamental frequency of the 

sinusoidal waveform. 

However, by altering the times at which these sharp transitions occur, one can 

reduce and/or eliminate some of the unwanted harmonics. Furthermore, by increasing the 

number of de sources, more harmonic content can be eliminated. 
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1.4 Applications of Multilevel Converters 

As mentioned earlier, multilevel inverters utilize several de voltages to synthesize 

a desired ac voltage. For this reason, multilevel inverters can be implemented using 

distnlmted energy resources such as photovoltaics and fuel cells. Energy storage devices 

like ultracapacitors and batteries can also be used with multilevel inverters [2]. 

Many people feel that distributed energy resources will become increasingly 

prevalent in the future. As a result, one notable application of multilevel inverters being 

considered is connecting the aforementioned energy resources with an ac power grid [2]. 

If a multilevel converter is made to either draw or supply purely reactive power, 

then the muhilevel converter can be used as a reactive power compensator. For example, 

a multilevel converter being used as a reactive power compensator might be placed in 

parallel with a load connected to an ac system. Using a multilevel converter as a reactive 

power compensator can help to improve the power factor of a load [3]. 

It was mentioned earlier that it is possible to determine the switching angles of the 

multilevel converter such that certain higher order harmonics are either minimized or 

eliminated altogether. The switching angles can also be varied in order to inject certain 

harmonics into an ac system. For example, consider once again a multilevel converter 

placed in parallel with a load connected to an ac system. If the load draws a current 

containing a high amount of harmonic distortion, the multilevel converter can be used to 

provide some of these harmonics. As a result, the ac system can provide a more 

sinusoidal current [ 4]. 

If the de sources of the multilevel converter are banks of batteries or capacitors, 

the multilevel converter can also be used to provide ride-through capability under 
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emergency conditions. This application is extremely useful when voltage sags or load 

swings are experienced at the utility connection [5]. 

Multilevel converters can also be used to construct a high voltage de back-to-back 

intertie. For example, two diode-clamped multilevel converters can be used to produce 

such a system. One multilevel converter acts as a rectifier for the utility interface. The 

other multilevel converter acts as an inverter to supply the desired ac load. One idea 

behind using a back-to-back intertie is to connect two asynchronous systems. The intertie 

can be used as a frequency changer, a phase shifter, or a power flow controller [3]. 

Since the back-to-back intertie system can be used as a frequency changer, it 

would seem reasonable that a multilevel converter can also be used as an Adjustable 

Speed Drive (ASD). The input from the ac source can be a constant, defined frequency. 

The output of the ASD can be connected to an ac load whose frequency can vary [3]. 

Another possible application of multilevel converters is their use in Electric 

Vehicles (EVs) and Hybrid Electric Vehicles (HEVs). One reason is that multilevel 

converters, EV s, and HEV s are all ideally suited for utilization of a large number of 

relatively small-sized energy sources, such as batteries and fuel cells. Also, multilevel 

converters generally allow for smaller components, thus reducing weight. 

1.5 Multilevel Fundamental Switching vs. Traditional PWM 

When considering the application of the multilevel fundamental switching 

scheme, one might ask the question: Why use the multilevel fundamental switching 

scheme when traditional PWM schemes can be used? One answer to this question refers 

to the switching frequencies employed by these schemes. Traditional PWM methods 
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employ switching frequencies on the order of several kHz. The multilevel fundamental 

switching scheme employs switching frequencies on the order of 60 Hz. 

One benefit of traditional PWM methods employing much higher switching 

frequencies concerns harmonics. Undesirable harmonics occur at much higher 

:frequencies. Thus, filtering is much easier and less expensive. Also, the generated 

harmonics might be above the bandwidth of some actual systems, which means there is 

no power dissipation due to these harmonics [ 6]. 

Given a specified switch duty ratio, switch conduction losses are approximately 

independent of switching frequency [7]. Therefore, the multilevel fundamental switching 

scheme will lead to switch conduction losses comparable to typical PWM schemes. 

However, switching losses increase as the switching frequency increases [7]. As a result, 

it is desirable to make the switching frequency as low as possible. In this case, switching 

at the desired fundamental frequency would seem to make the most sense. In other 

words, the multilevel fundamental switching scheme will lead to lower switching losses. 

Therefore, using the multilevel fundamental switching scheme will result in increased 

efficiency. 

One disadvantage of using the multilevel fundamental switching scheme is that 

the created harmonics occur at much lower levels. However, determining the appropriate 

switching angles can result in eliminating some of these harmonics. The other harmonics 

can then be filtered. 

Traditional PWM schemes also have the inherent problems of producing 

Electromagnetic Interference (EMI). Rapid changes in voltages (dv I dt) are a source of 

EMI [7]. The presence of a high dv I dt can cause damage to electrical motors. For 
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example, a high dv I dt produces common-mode voltages across the motor windings. 

Furthermore, high switching frequencies can make this problem worse due to the 

increased number of times these common-mode voltages are applied to the motor during 

each fundamental cycle. Problems such as motor bearing failure and motor winding 

insulation breakdown can result due to circulating currents and voltage surges [8]. Also, 

long current-carrying conductors connecting equipment can result in a considerable 

amount of EMI. 

Multilevel converters inherently tend to have a smaller dv I dt due to the fact that 

switching involves several smaller voltages [8]. Furthermore, switching at the 

fundamental frequency will also result in decreasing the number of times these voltage 

changes occur per fundamental cycle. 

Another consequence of having a high dv I dt concerns device ratings. Using 

typical PWM switching schemes will result in an increased "oversizing" of devices in 

order to prevent voltage and current surges from destroying components. Furthermore, 

using PWM switching schemes might require the use of more snubber circuits and EMI 

filters. 

1.6 Harmonic Elimination 

The multilevel fundamental switching scheme inherently provides the opportunity 

to eliminate certain higher order harmonics by varying the times at which certain 

switches are turned "on" and turned "off' (i.e. varying the switching angles). Before 

doing so, one might ask: Why perform harmonic elimination? 
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One reason concerns EMI. Quite simply, harmonics are a source of EMI. As 

mentioned earlier, EMI can create voltage and current surges. Without harmonic 

elimination, designed circuits would need more protection in the form of snubbers and 

EMI filters. As a result, designed circuits would cost more. 

EMI can also interfere with other "message" signals, such as the control signals 

used to control power electronics devices. Radio signals are another form of "message" 

signal that might be affected by the unwanted EMI. 

Harmonics can also create losses in power equipment. For example, harmonic 

currents in an electrical induction motor will dissipate power in the motor stator and rotor 

windings. There will also be additional core losses due to harmonic frequency eddy 

currents [7]. 

Harmonics can also lower the power factor of a load. The power factor of a load 

is proportional to the ratio of the magnitude of the fundamental of the load current to the 

magnitude of the load current [7]. Increased harmonic content may decrease the 

magnitude of the fundamental relative to the magnitude of the entire current. As a result, 

the power factor would decrease. 

It was mentioned earlier that an mcrease in the number of de sources in a 

multilevel inverter results in a better approximation to a sinusoidal waveform. 

Furthermore, the increased number of de sources provides the opportunity to eliminate 

more harmonic content. Eliminating harmonic content will make it easier to filter the 

remaining harmonic content. As a result, filters will be easier to design and build. Also, 

filters will be smaller and cheaper. 
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1. 7 Further Advantages/Disadvantages of Multilevel Converters

One additional advantage of multilevel converters concerns switch ratings. Since 

multilevel converters usually utilize a large number of de sources, switches are required 

to block smaller voltages. Since switch stresses are reduced, required switch ratings are 

lowered. As a result, cost is reduced. 

The ability of multilevel converters to utilize a large number of de sources 

provides another advantage. Utilization of a large number of de sources allows for 

multilevel converters to produce high voltages and thus high power ratings. One distinct 

benefit is the idea that no transformers are needed to produce these high voltages, 

whereas traditional 12, 24, and 48-pulse inverters require transformers. Transformers are 

bulky and expensive. Furthermore, complicated connections of these transformers are 

sometimes required. 

Another advantage of multilevel converters concerns the idea of reliability. If a 

component fails on a multilevel converter, most of the time the converter will still be 

usable, albeit at a reduced power level. Furthermore, multilevel converters tend to have 

switching redundancies. In other words, there might be more than one way to produce 

the desired voltage. 

Another advantage of multilevel converters concerns application practicality. As 

an example, consider designing an inverter for a large HEV. Such an application would 

require excessively large components to deal with the relatively large working voltages 

and currents. These large components are expensive, bulky, and generally not reliable 

[I]. However, multilevel converters allow for the utilization of smaller, more reliable 

components. 
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One disadvantage of multilevel converters is that they require more devices than 

many traditional converters. The system cost will increase ( although this increased cost 

might be offset by the fact switches with lower ratings are being used). The idea of using 

more devices also means the probability of a device failure will increase. 

Another disadvantage of multilevel converters concerns the idea of controlling the 

switches. The increased number of switches will result in more complicated control. 

1.8 Chapter Summary and Thesis Outline 

In this chapter, several topics were discussed. A brief summary of the research to 

be presented in this thesis was first provided. Also discussed was some introductory 

material on multilevel converters. A general definition of the multilevel converter was 

given along with some advantages and disadvantages. Also, some applications of the 

multilevel converter were given. The multilevel fundamental switching scheme was 

introduced and compared to typical PWM schemes. The benefits of harmonic 

elimination were also given. 

In Chapter 2, the cascaded H-bridges multilevel inverter will be discussed in more 

detail. Also, in addition to the multilevel fundamental switching scheme, some other 

switching schemes being applied to multilevel inverters will be discussed. 

Chapter 3 will discuss some of the theory behind the research presented in this 

thesis. A brief summary of the Fourier Series will be presented. The idea of the Fourier 

Series will then be used to derive the harmonic equations corresponding to the multilevel 

fundamental switching scheme. Resultant theory will also be presented. It will then be 
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shown how Resultant theory can be used to find the solutions to the aforementioned 

harmonic equations. 

Chapter 4 will discuss more theory behind the research presented in this thesis. 

The ideas of Symmetric Polynomials and Power Sums will be presented. Using these 

ideas, it will be shown how the derived harmonic equations can be simplified. 

The main purpose of Chapter 5 will be to discuss theoretical and experimentation 

results. The experimentation setup will first be discussed. Then, theoretical calculations 

and experimental results will be presented. 

In Chapter 6, a brief summary of the thesis will be given. From this summary, 

some conclusions regarding the research will be made. Finally, some suggestions on 

possible future research will be given. 
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2 Background 

2.1 Chapter Overview 

In the previous chapter, some introductory material on multilevel 

converters/inverters was presented. The purpose of this chapter is to provide some 

background material on other research pertaining to the multilevel inverter. In Section 

2.2, the cascaded H-bridges multilevel inverter will be discussed in more detail. Section 

2.3 will present some other switching schemes involving harmonic elimination besides 

multilevel fundamental switching. 

In Section 2.4, the idea of using unequal de sources with multilevel inverters will 

be discussed. Section 2.5 will discuss the idea of "duty cycle swapping" as it applies to 

multilevel inverters. Section 2.6 will briefly discuss the use of numerical iterative 

techniques in solving nonlinear equations. 

2.2 Cascaded ff-Bridges Multilevel Inverter 

The cascaded H-bridges multilevel inverter is a relatively new inverter structure 

[3]. A cascaded H-bridges multilevel inverter is simply a series connection of multiple 

H-bridge inverters. Each H-bridge inverter has the same configuration as a typical

single-phase full-bridge inverter [1 ]. 

The cascaded H-bridges multilevel inverter introduces the idea of using separate 

de sources to produce an ac voltage waveform. Each H-bridge inverter is connected to its 

own de source Vdc. By cascading the ac outputs of each H-bridge inverter, an ac voltage 
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waveform is produced. Figure 2.1 provides an illustration of a single-phase cascaded H

bridges multilevel inverter using five de sources. 

By closing the appropriate switches, each H-bridge inverter can produce three 

different voltages: +V de, 0, and -V de· When switches S1 and S4 of one particular H

bridge inverter in Figure 2.1 are closed, the output voltage is +Vdc· When switches S2 

and S3 are closed, the output vohage is -V de· When either the switches S1 and S2 or the 

switches S3 and S4 are closed, the output voltage is 0. 

As mentioned earlier, each H-bridge inverter produces an ac voltage v;, where the 

i stands for one particular H-bridge inverter. Figure 2.1 contains five such H-bridges, one 

for each de source. Therefore, to obtain the total ac voltage produced by the multilevel 

inverter, these five distinct ac voltages are added together. Figure 2.2 provides an 

illustration of these ideas. In the figure, the multilevel fundamental switching scheme is 

used. 

Figure 2.2 also illustrates the idea of "levels" in a cascaded H-bridges multilevel 

inverter. In the figure, one notices that five distinct de sources can produce a maximum 

of 11 distinct levels in the output phase voltage of the multilevel inverter. More 

generally, a cascaded H-bridges multilevel inverter using s separate de sources can 

produce a maximum of2s + 1 distinct levels in the output phase voltage. 

Some of the advantages and disadvantages of cascaded H-bridges multilevel 

inverters are the following: 

Advantages: 

1. To achieve the same number of voltage levels, this type of inverter requires

the least number of components [3].
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Figure 2.1: Cascaded H-bridges multilevel inverter using five de sources. 

svdc 

-svdc 

v
-. 

Figure 2.2: Voltage output of cascaded H-bridges multilevel inverter. 

15 



2. Unlike diode-clamped and flying-capacitor multilevel inverters, no extra

clamping diodes or voltage balancing capacitors are needed [3].

3. Since each H-bridge has the same structure, modularized circuit layout and

packaging are possible [3].

4. Since the total output phase voltage is a summation of voltages produced by

each H-bridge inverter, switching redundancies exist [1].

5. Smaller de sources are usually involved, resulting in fewer safety issues.

Disadvantages: 

1. Separate de sources are required, resulting in limited applicability [3].

2. For a three-phase system, this type of inverter will require more switches than

a more traditional inverter.

It is important to mention that the research conducted for this thesis was done 

using a cascaded H-bridges multilevel inverter. Therefore, for consistency and 

simplicity, all future discussions of multilevel inverters will refer to this type of 

multilevel inverter unless stated otherwise. 

2.3 Harmonic Elimination Switching Schemes 

This section will present some other switching schemes involving harmonic 

elimination besides multilevel fundamental switching. More specifically, Bipolar 

Programmed PWM, Unipolar Programmed PWM, and Virtual Stage PWM will be 

discussed. The Unified Approach switching scheme will be discussed as well. 
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2.3.1 Bipolar Programmed PWM 

One switching scheme involving harmonic elimination that has been around for 

many years is Bipolar Programmed PWM. In Bipolar Programmed PWM, the output 

voltage is either +Vde or -Vde· Figure 2.3 illustrates the Bipolar Programmed PWM 

switching scheme using three switching angles and a V de equal to 12 V. 

As one can see from the figure, Bipolar Programmed PWM uses predetermined 

switching angles to cut notches into an otherwise square-wave output. These notches 

take the voltage either from + V de to -V de or from -V de to + V de· The number of notches 

cut per fundamental cycle is equal to twice the number of switching angles used [7]. 

By using Fourier Series theory, these switching angles can be used to eliminate 

certain harmonics. For example, three switching angles can be used to eliminate the fifth 

and seventh order harmonics while at the same time controlling the value of the 
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Figure 2.3: Bipolar Programmed PWM using three switching angles. 

17 



fundamental. 

One of the main advantages of using Bipolar Programmed PWM concerns its 

applicability when low modulation indices are used. When low modulation indices are 

used, Chapter 5 will show that one may not be able to use the fundamental multilevel 

switching scheme to perform the desired harmonic elimination process. For example, 

considering again the three switching angles case above, one might not be able to use the 

fundamental multilevel switching scheme to eliminate both the fifth and seventh order 

harmonics and still control the value of the fundamental. However, it can be shown that 

Bipolar Programmed PWM can still be used with low modulation indices [6]. 

When a multilevel inverter utilizes Bipolar Programmed PWM for a low 

modulation index, typically one H-bridge is used. Therefore, another advantage is 

redundancy. If one H-bridge fails, another H-bridge can be used to provide the necessary 

voltage. Also, the desired voltage can be achieved by rotating the use of each H-bridge 

inverter for short periods of time. 

Bipolar Programmed PWM can be used for higher modulation indices in addition 

to low modulation indices. For example, if a multilevel inverter needs to use two or more 

H-bridges in order to produce a desired voltage, one can choose a lower modulation

index and use Bipolar Programmed PWM on multiple H-bridges. 

Another advantage of Bipolar Programmed PWM is that control is not as 

complicated as some other switching schemes. For example, consider one of the H

bridges in Figure 2.1. Neglecting blanking time, switches S1 and S4 are switched "on" 

and "off" together. Similarly, switches S2 and S3 are switched "on" and "off' together. 

Bipolar Programmed PWM also has some disadvantages. One disadvantage 
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concerns EMI. As mentioned earlier, Bipolar Programmed PWM produces voltage 

changes equal to 2V de· Therefore, a large V de can produce a considerable amount of 

EMI. Furthermore, Bipolar Programmed PWM inherently increases the effective 

switching frequency. For example, the multilevel fundamental switching scheme can 

result in each switch being turned "on" and "off" once per cycle. However, if Bipolar 

Programmed PWM is implemented using three switching angles, each switch is turned 

"on" and "off' seven times. Therefore, the effective switching frequency of each switch 

is increased by a factor of seven. 

Another disadvantage of Bipolar Programmed PWM concerns harmonic 

distortion. For low modulation indices, using Bipolar Programmed PWM may still lead 

to a high amount of harmonic content in the output. In fact, the Total Harmonic 

Distortion (THD) may be over 100% for certain modulation indices. 

2.3.2 Unipolar Programmed PWM 

Unipolar Programmed PWM is another switching scheme involving ·harmonic 

elimination that has been around for many years. In Unipolar Programmed PWM, the 

output voltage is + V de, -V de, or 0. Furthermore, a voltage change is from ± V de to 0 and 

vice versa. Figure 2.4 illustrates the Unipolar Programmed PWM switching scheme 

using three switching angles and a V de equal to 12 V. 

As one can see from the figure, Unipolar Programmed PWM uses predetermined 

switching angles to produce an output consisting of multiple pulses of varying widths. 

For the positive half of the fundamental cycle, these pulses have a voltage equal to +Vde· 
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Figure 2.4: Unipolar Programmed PWM using three switching angles. 

For the negative half of the fundamental cycle, these pulses have a voltage equal to -Vdc· 

The number of pulses per fund�ental cycle is equal to twice the number of switching 

angles used. 

Similar to Bipolar Programmed PWM, Fourier Series theory can be used to 

determine the switching angles such that certain harmonics are eliminated. In fact, these 

two switching schemes produce almost identical equations to solve. The only differences 

between the two sets of equations are that the Bipolar Programmed PWM equations 

contain a few extra numerical constants. 

Unipolar Programmed PWM shares many of the advantages of Bipolar 

Programmed PWM. For example, it was mentioned earlier that Bipolar Programmed 

PWM can still be used with low modulation indices, even when one may not be able to 

use the multilevel fundamental switching scheme. This statement holds true for Unipolar 
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Programmed PWM as well. 

Unipolar Programmed PWM also shares the advantage of redundancy when low 

modulation indices are used. As with Bipolar Programmed PWM, if one H-bridge fails, 

another H-bridge can be used to provide the necessary voltage. Furthermore, Unipolar 

Programmed PWM will still allow for the desired voltage to be achieved by rotating the 

use of each H-bridge inverter for short periods of time. Unipolar Programmed PWM can 

also be used for higher modulation indices in a way similar to the process described 

above with Bipolar Programmed PWM. 

Like Bipolar Programmed PWM, one disadvantage of Unipolar Programmed 

PWM concerns harmonic distortion. For low modulation indices, using Unipolar 

Programmed PWM may still lead to a high output THD. However, Unipolar 

Programmed PWM tends to produce a lower THD than Bipolar Programmed PWM. One 

possible explanation can be given by referring to Figure 2.3 and Figure 2.4. From these 

two figures, one can see that Unipolar Programmed PWM seems to provide a more 

natural approximation to a sinusoidal waveform. 

Unipolar Programmed PWM will also tend to produce less EMI than Bipolar 

Programmed PWM. Bipolar Programmed PWM produces voltage changes equal to 2V de·

However, Unipolar Programmed PWM produces voltage changes equal to only V de·

Furthermore, Unipolar Programmed PWM increases the effective switching frequency by 

a smaller factor. For example, if Unipolar Programmed PWM is implemented using 

three switching angles, each switch can be made to turn "on" and "off" three times per 

cycle. Therefore, the effective switching frequency of each switch is increased by a 

factor of three, instead of the factor of seven increase caused by using Bipolar 
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Programmed PWM. 

However, Unipolar Programmed PWM does require more complicated control 

compared to Bipolar Programmed PWM. For example, consider once again one of the 

H-bridges in Figure 2.1. Switches S1 and S4 are no longer switched "on" and "off''

together. They must now be controlled independently. The same scenario occurs with 

switches S2 and S3. 

2.3.3 Virtual Stage PWM 

Virtual Stage PWM is another switching scheme involving harmonic elimination. 

This switching scheme appears to be relatively new. Shyu and Lai are two of the most 

recent people to have done research using this scheme on multilevel inverters [9]. 

Virtual Stage PWM is a mix between Unipolar Programmed PWM and the 

multilevel fundamental switching scheme. When Unipolar Programmed PWM is 

employed on a multilevel inverter, typically one de source is involved, where the 

switches connected to the de source are switched "on" and "off'' several times per 

fundamental cycle. Furthermore, Unipolar Programmed PWM refers to exactly one 

switching pattern. In other words, given the switching angles, one should know exactly 

what the output voltage waveform looks like (See Figure 2.4 ). 

When the multilevel fundamental switching scheme is used, all of the de sources 

are typically involved, where all of the switches are turned "on" and "off' only once per 

fundamental cycle. The multilevel fundamental switching scheme also refers to exactly 

one switching pattern (See Figure 2.2). 

However, when Virtual Stage PWM is used, the number of de sources used 
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vanes. In other words, this particular switching scheme does not refer to any one specific 

switching pattern. Figure 2.5 provides an example of one particular switching pattern. In 

this figure, only two de sources are used, whereas there are four switching angles. The 

third switching angle forces the second H-bridge to produce a zero output voltage. 

Effectively, the switching pattern in Figure 2.5 is comparable to using the multilevel 

fundamental switching scheme on one H-bridge with 0 1 as the switching angle and 

Unipolar Programmed PWM on a second H-bridge with 82, 03, and 84 as the switching 

angles. 

Figure 2.6 provides an illustration of another Virtual Stage PWM switching 

pattern. In this figure, three de sources are used, whereas once again there are four 

switching angles. The fourth switching angle forces the third H-bridge to produce a zero 

output voltage. Effectively, the switching pattern in Figure 2.6 is comparable to using the 

multilevel fundamental switching scheme on two H-bridges with 0 1 and 02 as the 

switching angles and Unipolar Programmed PWM on a third H-bridge with 03 and 04 as 

the switching angles. 

One of the main reasons for considering Virtual Stage PWM concerns THD. For 

some modulation indices, using Virtual Stage PWM on a multilevel inverter will result in 

a lower THD than if the multilevel fundamental switching scheme were used. 

One explanation for this phenomenon can be given by looking at the harmonic 

content that is eliminated by each switching scheme. For example, consider a multilevel 

inverter using three de sources. If the multilevel fundamental switching scheme is used, 

typically the fifth and seventh order harmonics are eliminated. However, the Virtual 

Stage PWM switching scheme described above utilizes four switching angles. In this 
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Figure 2.5: Virtual Stage PWM using two de sources. 
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Figure 2.6: Virtual Stage PWM using three de sources. 
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case, the eleventh order harmonic can also be eliminated in addition to the fifth and 

seventh order harmonics. As a result, it would seem reasonable that for certain 

modulation indices the Virtual Stage PWM switching scheme will produce an output 

waveform with a lower THD. 

It was mentioned earlier that one of the advantages of Bipolar Programmed PWM 

and Unipolar Programmed PWM was that they could be used for modulation indices too 

low for the applicability of the multilevel fundamental switching scheme. Virtual Stage 

PWM can also be used for many of these low modulation indices. Furthermore, Virtual 

Stage PWM will most of the time produce output waveforms with a lower THD. As a 

result, Virtual Stage PWM provides another alternative to Bipolar Programmed PWM 

and Unipolar Programmed PWM. 

2.3.4 Unified Approach 

Thus far, four different switching schemes involving harmonic elimination have 

been discussed. After comparing these four different schemes, one might ask the 

question: Why not find a way to use all four schemes? In other words, why not pick the 

scheme that produces the best results at the given time? 

The Unified Approach switching scheme tries to answer this question [10]. The 

Unified Approach switching scheme applied to a multilevel inverter makes use of 

Unipolar Programmed PWM, Virtual Stage PWM, and multilevel fundamental switching. 

Given a particular modulation index for a multilevel inverter using s de sources, the 

Unified Approach switching scheme considers: Unipolar Programmed PWM withs+ 1 

switching angles, Virtual Stage PWM with s + 1 switching angles, and multilevel 
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fundamental switching withs switching angles. After finding all possible solutions, the 

Unified Approach will pick the scheme that produces the lowest THO in the output 

waveform. 

One disadvantage associated with the Unified Approach switching scheme 

concerns control of the switches. Since the Unified Approach switching scheme is a 

combination of several switching schemes, controlling the switches in the multilevel 

inverter will be more difficult. The reason is due to the fact each switching scheme 

contains its own particular switching pattern. 

2.4 Multilevel Inverters with Varying DC Sources 

The previously discussed switching schemes assumed that the de sources used by 

the multilevel inverter were all equal to one another. However, quite often these de 

sources are not equal to one another. Even if one tries to keep the various de sources 

equal to one another, it is quite difficult to accomplish. As a result, research has been 

conducted where multilevel inverters are used with unequal de sources. For example, 

Cunnyngham has worked on finding appropriate switching angles for multilevel inverters 

with unequal de sources [1]. Also, the author has worked with Chiasson and Tolbert on 

the idea of applying Resultant theory to this same problem [11, 20]. 

One reason why one will have the problem of unequal de sources deals with the 

idea that each de source will charge and discharge differently from another de source. 

For example, a multilevel inverter may use batteries as its de sources. However, one 

battery will have a different internal resistance than a different battery. This factor alone 
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will contribute to different charging/discharging rates. 

Another reason why one might have the problem of unequal de sources can be 

seen from observing Figure 2.2. In this figure, one notices that the H-bridge on the 

bottom is producing an output voltage for a longer period of time than the rest of the H

bridges. If real power flow is required, this particular H-bridge will transfer more power 

than the other H-bridges. As a result, the energy contained within that particular de 

source will decrease more rapidly. 

Figure 2. 7 gives an example of implementing the multilevel fundamental 

switching scheme on a multilevel inverter using three unequal de sources. Even when the 

de sources are not equal, the switching angles can still be determined such that the fifth 

and seventh order harmonics are eliminated while at the same time controlling the value 

of the fundamental. In the figure, the nominal de voltage of each de source is 12 V. 
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Figure 2. 7: Multilevel inverter using three unequal de sources. 
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Also, the voltages of the three de sources are 12.1 V, 11.125 V, and 9.1925 V. Therefore, 

the three de sources are operating at 100.8%, 92.7%, and 76.6% of their nominal values. 

2.5 Duty Cycle Swapping 

When a multilevel inverter is used for applications requiring real power flow, it 

can be undesirable to have a particular H-bridge produce a particular output voltage for 

an extended period. As explained above, the de sources could become unequal. One way 

to combat this problem is to perform what is called "duty cycle swapping." 

Figure 2.8 gives an example of the utilization of duty cycle swapping on a 

multilevel inverter using five de sources. When duty cycle swapping is used, after each 

half cycle the switching angle for a particular H-bridge is effectively rotated to a different 

H-bridge. The result is that every half cycle a single H-bridge produces a pulse of

Figure 2.8: Duty cycle swapping using five de sources. 
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different time duration than the previous half cycle. By performing duty cycle swapping, 

each de source will be utilized equally [12]. 

2.6 Numerical Methods for Solving Nonlinear Equations 

It has been discussed that when switching schemes involving harmonic 

elimination are used, the derived equations are nonlinear equations. As a result, many 

people have utilized numerical iterative techniques in order to solve these equations. For 

example, Cunnyngham used the Newton-Raphson numerical technique in his research 

[ 1]. Another numerical technique one might use is Gauss-Seidel, although this particular 

numerical technique is not as robust as Newton-Raphson. 

Unfortunately, numerical iterative techniques have their drawbacks. One 

drawback is that these techniques require an initial guess in order to work. However, if 

the initial guess is not good enough, a solution will not be found. Another drawback is 

that numerical iterative techniques will only find one solution, if one exists. The obvious 

drawback here is that more than one solution might exist to the problem at hand. 

Until recently, numerical iterative techniques seemed to be the only viable method 

to solve the aforementioned nonlinear harmonic equations. However, Chapter 3 will 

introduce Resultant theory. Using Resultant theory, all solutions to these nonlinear 

equations can be found without the need for an initial guess. 
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2.7 Chapter Summary 

In this chapter, several topics were discussed. The cascaded H-bridges multilevel 

inverter was first discussed in more detail. Following the discussion on cascaded H

bridges multilevel inverters, some other switching schemes involving harmonic 

elimination besides multilevel fundamental switching were discussed. More specifically, 

the Bipolar Programmed PWM, Unipolar Programmed PWM, Virtual Stage PWM, and 

Unified Approach switching schemes were presented. The idea of using unequal de 

sources with multilevel inverters was then discussed, followed by the concept of "duty 

cycle swapping." Finally, the use of numerical iterative techniques in solving nonlinear 

equations was briefly discussed. 

The purpose of the previous two chapters was to provide both an introduction to 

multilevel inverters as well as some background information regarding other research 

concerning the multilevel inverter. However, the next chapter will provide some of the 

theory behind the research conducted for this thesis. A brief summary of the Fourier 

Series will be presented. The idea of the Fourier Series will then be used to derive the 

harmonic equations corresponding to the multilevel fundamental switching scheme. 

Furthermore, these harmonic equations will be written in terms of the switching angles of 

the multilevel inverter. After these equations are derived, Resultant theory will be 

presented. It will then be shown how Resultant theory can be used to find the solutions 

(if they exist) to the aforementioned harmonic equations. 
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3 Fourier Series and Resultant Theory 

3.1 Chapter Overview 

In the previous chapter, some background material on multilevel inverters was 

presented. The purpose of this chapter is to discuss some of the theory behind the 

research presented in this thesis. In Section 3.2, the idea of the Fourier Series will be 

discussed briefly. Section 3.3 will then use Fourier Series theory to derive the 

transcendental harmonic equations corresponding to the multilevel fundamental 

switching scheme. Furthermore, these harmonic equations will be written in terms of the 

switching angles of the multilevel inverter. 

In Section 3.4, Resultant theory will be introduced. Section 3.5 will show how to 

transform the aforementioned transcendental harmonic equations into polynomial 

equations. It will then be shown how Resultant theory can be used to solve these 

polynomial equations. In particular, an example application of Resultant theory will be 

given by considering a cascaded H-bridges multilevel inverter using three equal de 

sources. In this example, the value of the output voltage fundamental will be controlled 

while the fifth and seventh order harmonics are eliminated. 

3.2 Fourier Series 

The Fourier Series is named after Jean Baptiste Joseph Fourier (1768 - 1830). 

Fourier discovered that it is possible to represent periodic functions by an infinite sum of 

sine and/or cosine functions that are harmonically related. In other words, each 
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trigonometric term in this infinite series has a frequency equal to an integer multiple of 

the fundamental frequency of the original periodic function. To express these ideas in 

mathematical form, Fourier showed that a periodic function f(t) can be expressed as 

f (t) = av + L an cos (2,m/ 0 1 )+ bn sin (21mf
0
t), (3.1) 

n=l 

where n is the set of natural numbers 1,2,3, ... ,oo [13]. 

In (3.1 ), av , an , and bn are called the Fourier coefficients. These terms are 

determined from f(t). The term lo is the fundamental frequency of the periodic 

function f(t). The integer multiples of lo, such as 21o and 3/
0

, are known as the 

harmonic frequencies of f(t). Therefore, the term nfo is the nth harmonic of f(t) [13]. 

3.2.1 Fourier Coefficients 

Once f(t) is known over one fundamental period, the terms av , an , and b
n 

can 

be determined from the following relationships: 

and 

I lo +T

av = T 
ff (t)dt ,
lo 

2 lo +T
an = T 

ff (t) cos(21mf
0

t }tit,
lo 

2 lo +T

bn = 
-

ff (t) sin (21mf
0

t }tit.
T lo 

(3.2) 

(3.3) 

(3.4) 
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In these equations, t 
O 

is any arbitrary time reference. T is the fundamental period of 

f (t), determined by taking the reciprocal of /0 [13]. 

From observing (3.2), it is obvious that a
v 

is simply the average value of f(t).

This result can be obtained by integrating both sides of (3.1) over one fundamental 

period: 

t0+T 00 t0 +T 

= J a
v
dt + L f (a

n 
cos(2tm/

0
t )+ b

n 
sin (21r11/

0
t )')dt

to 
n=l to 

(3.5) 

(3.6) 

(3.7) 

Equation (3.2) follows directly from (3. 7) [13]. 

One can obtain the value for the kth value of a
n 

by multiplying (3.1) by 

cos(2nkfi) and then integrating both sides over one fundamental period: 

t0 +T t0 +T 

J /(t) cos (21rkf
0
t ')dt = f (a

v 
cos (21rkf

0
t )')dt

00 t0+T 

+ L J(a
n

cos(2nnf
0

t )cos(27dif
0
t ))dt

n=l to 

00 t0+T 

+L J(bn 
sin (2mif

0
t )cos(2mifot ))dt

n=l to 

T 
= O+ak(-)+O. 

2 

(3.8) 

(3.9) 

Equation (3.3) follows directly from (3.9). Similarly, one can obtain the value for the kth 
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value of b
n 

by multiplying (3.1) by sin(27difof) and then integrating both sides over one 

fundamental period [ 13]. 

3.2.2 Odd Symmetry 

If a periodic function contains certain symmetries, the calculation of the Fourier 

coefficients can be greatly simplified. For example, a periodic function might possess 

odd symmetry. An odd function exhibits the property 

f(t) = - f(-t). (3.10) 

Functions satisfying (3.10) are called odd because polynomials containing only terms 

with odd exponents have this particular symmetry. For periodic functions with odd 

symmetry, the equations determining the Fourier coefficients can be simplified to the 

following expressions [13]: 

and 

a =0 
n 

for all n, 

4 
T /2 

bn = - J f (t) sin (21rnf
0
t )dt. 

T o 

(3.11) 

(3.12) 

(3.13) 

When a periodic function is odd, one should notice three facts. The first fact is 

that the average value is zero. The second fact is that the periodic function can be written 

in terms of an infinite series of only sine functions. Furthermore, in order to determine 

the amplitude of these sine functions, one only needs to integrate over half of a 

fundamental period. 
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3.2.3 Half-Wave Symmetry 

Another symmetry a periodic function might possess is half-wave symmetry. A 

periodic function that possesses half-wave symmetry exhibits the property 

f(t) = - f (t -TI 2). (3.14) 

For periodic functions with half-wave symmetry, it can be shown that the equations 

determining the Fourier coefficients simplify to the following expressions [13]: 

and 

a =0n for n even, 

4
T /2 

an = - J f (t) cos (2mzf
0
t '}dt for n odd, 

T o 

b = 0n for n even, 

4
T /2 

bn = - J f(t) sin (2mzf
0
t }dt for n odd. 

T o 

(3.15) 

(3.16) 

(3.17) 

(3.18) 

(3.19) 

When a periodic function possesses half-wave symmetry, one should notice three 

facts. The first fact is that the average value is zero. The second fact is that the even 

harmonics are zero. Also, in order to determine the amplitudes of the odd harmonics, one 

only needs to integrate over half of a fundamental period. 

3.2.4 Odd Quarter-Wave Symmetry 

Another symmetry a periodic function might possess is odd quarter-wave 

symmetry. Odd quarter-wave symmetry simply means the periodic function possesses 
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both odd and half-wave symmetries [7]. For periodic functions with odd quarter-wave 

symmetry, it can be shown that the equations determining the Fourier coefficients 

simplify to the following expressions [13]: 

and 

a = 0 
n 

b = 0 
n 

for all n,

for n even, 

g T /4 

bn = - J f (t) sin (2mif
0
t )dt for n odd.

T o 

(3.20) 

(3.21) 

(3.22) 

(3.23) 

When a periodic function possesses odd quarter-wave symmetry, the average 

value is zero. The reason is due to the fact the function is odd. Also, odd symmetry 

results in all of the cosine harmonics being zero. The half-wave symmetry of the periodic 

function forces the even sine harmonics to be zero. Furthermore, in order to determine 

the amplitude of the odd sine harmonics, one only needs to integrate over one-fourth of a 

fundamental period. 

3.3 Application of Fourier Series to Multilevel Inverter 

The purpose of this section is to utilize Fourier Series theory to derive the 

transcendental harmonic equations corresponding to the multilevel fundamental 

switching scheme. Furthermore, these harmonic equations will be written in terms of the 

switching angles of the multilevel inverter. 

Figure 2.2 provides an illustration of the multilevel fundamental switching 
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scheme being implemented on a multilevel inverter using five equal de sources. Before 

calculating the Fourier coefficients corresponding to this particular periodic function, one 

should first see if the function possesses any symmetry. As one can see from the figure, 

it is evident that the periodic function possesses odd quarter-wave symmetry. 

Since the output of the multilevel inverter is odd quarter-wave, (3.20) thru (3.23) 

can be used in calculating the Fourier coefficients. As one can see from these equations, 

only the odd sine harmonics can be nonzero. Making the change of variable mt= 2efi,

(3.23) becomes 

4 ,r12 ( t ) 
bn = - J f _!!!__ sin (nmt)d(mt). 

7r O 2efo
(3.24) 

Using the output of the multilevel inverter given in Figure 2.2, (3.24) then becomes 

,r I 2 
4 

+ J -(svdc)sin (nmt )d(mt ),
85 7r 

(3.25) 

where 01, 02 , 03 , 0 4, and 05 are the switching angles and V de is the voltage of each de 

source. Performing the required integrations, (3 .25) then becomes 
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4 4 + -(3Vdc Xcos{n0
3 )-cos{n04 )]+-(4Vdc Xcos(n04 )- cos(n05 )]

1m ,m 

(3.26)

(3.27)

Finally, using the fact that cos( n;) = 0 when n is an odd integer and simplifying,

(3.27) becomes

To briefly summarize the results in this section, the multilevel fundamental
switching scheme produces an output voltage that possesses odd quarter-wave symmetry.
As a result, this particular waveform only possesses odd sine harmonics. Equation (3 .28)

expresses the peak values of these odd harmonics in terms of the switching angles
01 , 02, 03, 0 4, and 0 5 • Furthermore, the harmonic equations produced from (3 .28) are
transcendental equations.

3.4 Resultant Theory 

The purpose of this section is to discuss Resultant theory. When the multilevel
fundamental switching scheme is implemented using s switching angles, (3 .28) can be
used to derive s different harmonic equations. In other words, s switching angles will be
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used to control the values of s different harmonics. 

Unfortunately, these harmonic equations are transcendental equations, making 

them difficult to solve without making use of some sort of numerical iterative technique, 

such as Newton-Raphson. However, by making some simple changes of variables and 

simplifying, these transcendental equations can be transformed into a set of polynomial 

equations. Then, Resultant theory can be utilized to find all solutions to the harmonic 

equations. 

3.4.1 Coprime Fractions 

Consider a proper rational function (i.e. a fraction where the degree of the 

numerator is less than or equal to the degree of the denominator) 

"( )-
N(s)

g
s 

- D(s)'
(3.29) 

where N (s) and D(s) are polynomial functions in the variables. If g(s) is a coprime

fraction, then N (s) and D (s) do not have any common factors of degree one or higher.

In other words, the greatest common divisor of N (s) and D(s) is a nonzero constant

a [14]. 

As an example of a proper rational function where the numerator and denominator 

are coprime, consider the function 

N(s) _ (s + 4 Xs - 2)
D(s)- (s+tXs+3)' (3.30) 

In (3.30), it is evident that N(s) and D(s) do not have any common factors of degree

one or higher. Therefore, N (s) and D (s) are coprime.
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However, as an example of a proper rational function where the numerator and 

denominator are not coprime, consider the function 

N (s) (s + 5 Xs 
- 6) 

D(s) = (s + 5 Xs + 13 )"
(3.31) 

In this example, N(s) and D(s) share the common factor(s + 5). Therefore, N(s) and 

D(s) are not coprime. Instead, the fraction in (3.31) can be reduced to the fraction 

N (s) N (s) (s - 6)
D(s) = D(s) = (s + 13 )'

(3.32) 

where N(s) and D(s) are coprime. 

3.4.2 Sylvester Resultant Matrix 

In this section, the Sylvester Resultant Matrix will be discussed. Suppose one has 

the following two polynomials in x1 and x2 :

(3.33) 

and 

(3.34) 

polynomials in x1 • Also, define the following two polynomials in x2:

(3.35) 

and 

(3.36) 
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When a specific numerical value is assigned to x 1 , a(x 1 , x 2) and b(x 1 , x 2 ) become 

polynomials in only one variable, x 2. Using the above definition of coprimeness, it is 

clear these new polynomials are not coprime if and only if there exist polynomials 

a(x 2 ) and P(x 2) such that 

a(x1, x 2 ) _ a(x 2 )
b(x 1 , x 2) 

-
P(x 2)' 

or, equivalently [14], 

(3.38) can be rewritten in the matrix form 

where the coefficients of x�, k = 0,1, ... , 5 , are equated to zero. 

equation is [ 14]: 

bo(x 1) ao(x 1) 0 0 0 0 -ao 0
bi(x 1) a1 (x 1) bo(x1) ao(x 1 ) 0 0 Po 0 
bi {x 1) a2(x 1) bi (x1) a1 (x 1 ) bo(x 1) ao(x 1 ) -a1 0
bJ {x 1) a3(x 1) bi {x 1) a2 {x1) b1 (x1) a1 (x1) 

= 
0 

0 0 bJ {x 1) a3 {x1) b2 (x 1) a2 (x 1) -a2 0 
0 0 0 0 b3 (x 1) a3(x 1) P2 0 

(3.37) 

(3.38) 

(3.39) 

The resulting matrix 

(3.40) 

The columns of s(x.) are formed from the coefficients of a(x 1 , x 2) and 

b(x 1 , x 2 ) arranged in ascending powers of x 2 . The 6 X 6 square matrix s(x 1) in (3.40) 

is called the Sylvester Resultant Matrix. In general, the Sylvester Resultant Matrix will 

be (d1 + d2) X (d1 + d2 ), where d1 and d2 are the degrees of the two polynomials 

41 



Equation (3 .40) is a homogeneous linear algebraic equation. If a particular 

numerical value for x1 results in a nonsingular S{x1 ), only the trivial solution V = 0

solves (3 .40). In other words, the polynomials a(x 1 , x 2 ) and b(x 1 , x 2 ) (now only 

functions of the variable x 2 ) are coprime. However, if a particular numerical value for 

x1 results in a singular S{x1 ), then there are nonzero solutions to (3.40). In other words,

a(x 1 , x 2 ) and b(x 1 , x 2 ) are not coprime. Furthermore, the determinant of S {x1) is zero

[14]: 

bo(x1) ao(x1) 0 0 0 0 

bi (x1) a1(x1) b0(x1) a0{x1) 0 0 

R(x 1 )= det 
b2 (x1) a2 (x1) bi (x1) a1 (x1) bo(x1) a0(x1) =0. (3.41) 
b3 (x1) a3(x 1 ) b2 (x1) a2 (x1) bi (x1) a1 (x1) 

0 0 b3(x 1 ) a3(x 1 ) b2 {x1) a2 (x1) 
0 0 0 0 b3 (x1) a3

(x1
) 

In (3.41), R(x 1 ) is called the Resultant Polynomial. One should notice that R(x 1 ) only 

depends on x 
1 

• 

In conclusion, the procedure to see if two polynomials a(x 1 , x 2 ) and b(x 1 , x 2 ) 

have any common roots consists of four steps [ 15]: 

1. Compute the roots xu , k = 0,1, ... , n R , of R (x1) = 0 , where n R is the

degree of R(x 1 ).

2. Substitute these roots into a(x 1 , x 2 ).

3. For k = 0,1, . .. , n R, solve the equation a(x u , x 2 ) = 0 to get the roots x 2 k1,
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I= 0,1, ... , n
0

, where n0 is the degree of a(x1 , x2) in x2•

4. The common zeros of a(x
1
, x2) and b(x1 , x2) are then the values

(xu , xu1 ) that satisfy the equation b(xu , x2k1 )= 0.

3.5 Application of Resultant Theory to Multilevel Inverter 

In this section, an example application of Resultant theory will be given by 

considering a cascaded H-bridges multilevel inverter using three equal de sources. In this 

example, the value of the output voltage fundamental will be controlled while the fifth 

and seventh order harmonics are eliminated. 

3.5.1 Transcendental Harmonic Equations 

Consider (3 .28). This equation gives the values of the odd sine harmonics 

corresponding to the multilevel fundamental switching scheme using five switching 

angles. If three switching angles are used instead, it can be shown that the corresponding 

equation is 

(3.42) 

If one wants to control the peak value of the output voltage to be V1 and eliminate 

the fifth and seventh order harmonics, the resulting harmonic equations are: 

cos(501 )+ cos(502 )+ cos(503 )= 0, 

and 
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(3.44) 



(3.45) 

One can also write (3.43) as 

cos{01 )+ cos (02 )+ cos (03 ) = m (3.46) 

where 

(3.47) 

With this definition of the parameter m, the modulation index m
a 

is given by 

(3.48) 

where s is the number of separate de sources. It should be pointed out that a square wave 

of amplitude s Vdc results in the maximum peak value of the fundamental [ 16]: 

4 

Vlmax = -sVdc. 
1t 

When V1 is equal to the value in (3 .49), the resulting modulation index m
a 

is 

(3.49) 

(3.50) 

In other words, the square wave mode operation corresponds to a modulation index equal 

to one. 

At this point, one might ask the question: Why not eliminate the third order 

harmonic? The reason is that the third order harmonic is a triplen harmonic. A harmonic 

is a triplen harmonic if its frequency is an integer multiple of three times the fundamental 
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frequency. For balanced three-phase systems, each phase voltage will contain triplen 

harmonics equal in both magnitude and phase to the triplen harmonics of the other two 

phases. Therefore, all triplen harmonics will cancel in the line-to-line voltages. For this 

reason, when multilevel fundamental switching is employed, the selected harmonics to be 

eliminated are usually not triplen harmonics. 

3.5.2 Polynomial Harmonic Equations 

For the transcendental harmonic equations given in (3.44) thru (3.46), consider 

the following changes of variables: 

and 

Also, consider the following trigonometric identities: 

cos(50 )= 5 cos (0 )- 20 cos 3 (0 )+ 16 cos 5 (0 ), 

and 

cos( 70)= -7 cos(0)+ 56 cos 3(0)-112 cos 5(0)+ 64 cos 7 (0). 

(3.51) 

(3.52) 

(3.53) 

(3.54)

(3.55) 

Applying the results given in (3.51) thru (3.55) to the transcendental harmonic 

equations above, one obtains 

(3.56) 

Ps (x1,X2, x3)= 0 = ± � x. -20 x� + 16 x� ), (3.57) 
n=l 
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and 

P1(x1, X2,X3 )= 0 = t � 7x
n 

+ 56x� -112 X� + 64xn. (3.58) 
n=t 

It should be noted that multilevel fundamental switching requires 

(3.59) 

where the units of the switching angles are radians. Therefore, the new variables Xt, x2 ,

and x3 must satisfy

(3.60) 

Equations (3.56) thru (3.58) are polynomial equations in the variables Xt, x2 , and

x3• Resultant theory can now be used to solve polynomials Pt, Ps, and p7 for the

common roots of these three equations. 

3.5.3 Solutions to Polynomials Using Resultant Theory 

The polynomials Pt, p5, and p1 are functions of the variables Xt, x2 , and x3 • 

Using Pt to solve for X t in terms of the other two variables, one gets 

(3.61) 

Substituting this result into the other two polynomials, one gets 

+ (sx2 - 20x/ + 16x/ )+ �x3 - 20x/ + 16x/) (3.62) 

and 
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( 3 5 7)+ - 7 X 3 + 5 6 X 3 -112 X 3 + 64 X 3 (3.63) 

After x1 has been trivially eliminated, one can now apply Resultant theory to 

eliminate x 2 • For the research presented in this thesis, all Resultant calculations were 

found by using the Resultant command in the software package Mathematica. After 

factoring and then eliminating redundant factors and unnecessary numerical constants, 

the Resultant of the two polynomials in (3.62) and (3.63) was found to be 

res (x3 )= (6125 m 2 - 49000 m 4 + 137200 m 6 -179200 m 8 + 116480 m 10

- 35840 m 12 + 4096 m 14 )+ (-18375 m + 269500 m 3 -1019200 m 5

+1691200 m 1 -1361920 m 9 +501760 m 1 1 -65536 m 13 )x3

+ 62250 -588000 m 2 + 3234000 m 4 -7156800 m 6 + 7293440 m 8

-3261440 m 10 + 491520 m 12 )xf + (637000 m -5782000 m 3

+ 17875200 m 5 -23385600 m 1 + 12902400 m 9

-2293760 m 11 )xl + {- 269500 + 6370000 m 2 - 28694400 m 4

+ 49324800 m 6 
- 34298880 m 8 + 7454720 m 10 )xt

+ (- 4410000 m + 30184000 m 3 -71500800 m 5 + 63974400 m 1

-17776640 m 9 )xi+ {1470000 -20776000 m 2 + 72441600 m 4

-84940800 m 6 + 31539200 m 8 )xf + (9800000 m -50176000 m 
3
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+ 80281600 m 5 - 40857600 m 7 )xJ + (- 2744000 + 21952000 m 2 

- 53939200 m 4 + 36556800 m 6 )xf + (- 6272000 m

+ 25088000 m 3 
- 20070400 m 5 )xf + (1568000 - 6272000 m 2

+ 5017600 m 4 )xl0 . (3.64) 

Since the polynomial res is only a function of one variable, one can begin the 

process of finding the appropriate switching angles. This process consists of nine steps 

[16]: 

1. Given the value for the parameter m, solve for the roots of res (x3) = 0 .

2. Keep the roots for which O � Re (x3) � 1 , where Re refers to the real part of

a possibly complex root. Denote these roots as {x3k}.

3. For each member of the set {x3d, substitute it into p5 (x2, x3) and solve for

the roots of p5(x2 ,x3k )= 0.

4. Keep the roots for which O � Re(x3k )� Re(x2)� 1. Denote the set of

remaining roots as {(x21,x31 )} .

5. For each member of the set {(x21,x31 )} , compute m - x21 - x31 to find the

values for x
1 
•

6. Keep the roots for which O � Re (x31) � Re (x21) � Re (x1) � 1 . Denote the

set of remaining roots as {(x1n ,Xin ,x3n )}.

7. For each member of the set {(x1n, x2n , x3n )} , keep just the real parts of

x1n , x2n and x3n . Denote these triples as {(.x1n
, x2n , x3n )} .
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8. Using (3.57) and (3.58), compute

( ( 
Ps(X1n•

:
2n, X3n)r +( P?(X1n,

;
2n, X3n)r) . (3.65) 

9. If the result is less than some arbitrarily small tolerance level & , the 

switching angles are given by

{(Bin , 02n ,03n )} = �os-1 (i1n 1cos- 1 (i2n ), cos-1 (i3n )}. (3.66) 

One should notice above that complex roots to the polynomial equations are being 

considered as candidates for switching angles. The reason is due to the fact that the 

imaginary part of the root may be small enough such that the real part of the root may 

still lead to a viable switching angle. 

Equation (3.65) gives an indication of the harmonic distortion due to the fifth and 

seventh order harmonics. Theoretically, (3.65) should always be zero since one is 

supposed to be eliminating the fifth and seventh order harmonics. However, it was just 

mentioned that complex roots might be considered where the imaginary part is 

infinitesimally small. Nevertheless, these complex roots will lead to a small but nonzero 

harmonic distortion. Also, numerical round off in the computation of the roots will lead 

to a small harmonic distortion. 

The values given by (3.65) can be controlled such that they are always below 

some arbitrarily small number & • For the research presented in this thesis, this tolerance 

level was set at 0.001 times the current value of m.

Two more important points should be made. In general, the algorithm for finding 

the desired switching angles can theoretically be applied to the more general case of s
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switching angles. It should also be pointed out that the above algorithm can be applied to 

the Unified Approach switching scheme. However, the process is more complicated. For 

a multilevel inverter using s de sources, recall that the Unified Approach switching 

scheme considers: Unipolar Programmed PWM with s + I switching angles, Virtual 

Stage PWM with s + 1 switching angles, and multilevel fundamental switching withs 

switching angles. Therefore, two algorithms need to be implemented. 

The first algorithm finds the solutions corresponding to multilevel fundamental 

switching with s switching angles. The second algorithm finds the solutions 

corresponding to Unipolar Programmed PWM and Virtual Stage PWM with s + 1 

switching angles. Using the algorithm above, one must replace all occurrences of the 

term Re (x) with the term jRe (x �, where x refers to the variables x1 , x2 , ... , xs+I . In 

other words, the real parts of the roots can be negative. 

3.6 Chapter Summary 

In this chapter, several topics were discussed. The idea of the Fourier Series was 

first discussed. It was then illustrated how Fourier Series theory could be used to derive 

the transcendental harmonic equations corresponding to the multilevel fundamental 

switching scheme. Furthermore, these harmonic equations were written in terms of the 

switching angles of the multilevel inverter. 

Resultant theory was then introduced. After the aforementioned transcendental 

harmonic equations were transformed into polynomial equations, it was shown how 

Resultant theory could be used to solve these polynomial equations. Finally, an example 
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application of Resultant theory was given where a cascaded H-bridges multilevel inverter 

using three equal de sources was considered. In this example, the value of the output 

voltage fundamental was controlled while the fifth and seventh order harmonics were 

eliminated. 

The purpose of this chapter was to introduce some of the theory behind the 

research presented in this thesis. The next chapter will discuss some additional ideas that 

were needed for the research. The idea of Symmetric Polynomials will be discussed first. 

For the special case of when the multilevel inverter is using equal de sources, it will be 

shown how the idea of Symmetric Polynomials can be utilized to transform the set of 

polynomial equations above into a new set of polynomials of lower degree. As a result, it 

will be easier to solve these equations. The idea of Power Sums will also be discussed. 

Power Sums theory provides another way of transforming the set of polynomial equations 

above into a new set of polynomials of lower degree. 
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4 Symmetric Polynomials and Power Sums 

4.1 Chapter Overview 

The previous chapter introduced some of the theory behind the research presented 

in this thesis. In this chapter, some additional ideas that were needed for the research will 

be discussed. In Section 4.2, the idea of Symmetric Polynomials will be presented. 

Section 4.3 will discuss an example application of Symmetric Polynomials. In this 

example, a cascaded H-bridges multilevel inverter using three equal de sources will once 

again be considered. For the special case of when a multilevel inverter is utilizing equal 

de sources, it will be shown how the idea of Symmetric Polynomials can be utilized to 

transform the set of polynomial equations derived in Chapter 3 into a new set of 

polynomials of lower degree. As a result, it will be easier to solve these equations. 

Section 4.4 will discuss the idea of Power Sums. Power Sums theory provides 

another way of transforming a set of symmetric polynomials into a new set of 

polynomials of lower degree. In Section 4.5, Power Sums theory will be applied to the 

aforementioned multilevel inverter using three equal de sources. 

4.2 Symmetric Polynomials 

In Chapter 3, it was mentioned that Resultant theory alone could, in principle, be 

utilized to find the desired switching angles for the general case of a multilevel inverter 

utilizing s switching angles. However, increasing the number of switching angles causes 

the degrees of the corresponding harmonic polynomial equations to increase as well. 
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Thus, the symbolic Resultant calculations become more time consuming and complex. In 

fact, for a multilevel inverter using five equal de sources, the original set of five 

equations in five unknowns could not be solved. 

In this section, the idea of Symmetric Polynomials will be introduced. For the 

special case of when a multilevel inverter is utilizing equal de sources, the idea of 

Symmetric Polynomials can be utilized to transform the set of polynomial equations 

derived in Chapter 3 into a new set of polynomials of lower degree. The definition of a 

symmetric polynomial will first be given. A subset of the symmetric polynomials, the 

elementary symmetric polynomials will then be defined. After the elementary symmetric 

polynomials are defined, The Fundamental Theorem of Symmetric Polynomials will be 

presented. 

4.2.1 Symmetric Polynomial Definition 

The idea of Symmetric Polynomials arises when one studies the roots of a 

polynomial. For example, consider the polynomial 

(4.1) 

where r1 , r2 , and r3 are the roots of the polynomial. Expansion of the right-hand side of 

( 4.1) yields [17] 

f (x) = x 3 + bx 2 + ex + d , 

where 

b = -(r1 + r2 + r3), 

53 

(4.2)

(4.3) 

(4.4) 



(4.5) 

Equations (4.3) thru (4.5) show that the coefficients of J(x) are polynomials in 

its roots. Furthermore, since reordering the roots does not change f (x), the coefficients 

b, c, and d will be unchanged if the roots r1, r2, and r3 are reordered. Therefore, the 

polynomials given in (4.3) thru (4.5) are said to be symmetric [17]. 

In general, a polynomial / e k [x1 , •.. , x n] is said to be symmetric if 

flx;
1 
, .. , X;n )= J(x1 , ... , Xn) (4.6) 

for every possible permutation x;
1

, ••• xin of the variables x1 , ... , xn . The term 

k [x1 , ... , xn ] refers to the set of all polynomials in x1 , ... , x n with coefficients in the field 

k. A field is a set where addition, subtraction, multiplication, and division can be defined

with the usual properties. Two common examples of fields are the real numbers and the 

complex numbers [17]. 

4.2.2 Elementary Symmetric Polynomials 

Given the variables x1 , ... , xn , define s1 , ... , sn e k[x1 , ... , xn ] by the following 

expressions: 

S1 = X1 + ... + X n' 
(4.7) 
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s, = L (xit x;2 ••• x;, ), it <i2 < ... <i,
(4.8) 

(4.9) 

In (4.7) thru (4.9), each polynomial s,, 1 � r � n, is the sum of all monomials that are 

products of r distinct variables. In other words, each term in s
, 

has total degree r [17]. 

To see if these polynomials are indeed symmetric, consider the polynomial 

(4.10) 

where x1 , ••• , x n are the roots of the polynomial. Expansion of the right-hand side of 

(4.10) yields 

(4.11) 

Suppose the roots x1 , ••• , xn 
are now rearranged. The order of the factors on the right

hand side of (4.10) is different. However, J(x) remains unchanged, implying the 

coefficients (- 1 Y s, of f (x) are symmetric polynomials. Therefore, each polynomial

s, is symmetric. The symmetric polynomials s1 , ••• , s n are called the elementary

symmetric polynomials [ 1 7].

4.2.3 The Fundamental Theorem of Symmetric Polynomials 

The elementary symmetric polynomials are perhaps the most important 

symmetric polynomials. The following theorem, called The Fundamental Theorem of 
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Symmetric Polynomials, explains why: 

=> Every symmetric polynomial m k [xt , ... , x n ] can be written uniquely as a 

polynomial in the elementary symmetric polynomials St, ... , s n. 

For a proof of this theorem, see [17]. 

For a simple example of the above theorem, consider the symmetric polynomial 

(4.12) 

where x, y, and z are the independent variables. It can be shown that the above 

polynomial can be rewritten as 

= (xy + xz + yz Xxy + xz + yz )- (x + y + z Xxyz) 

2 
= S 2 - StS3' 

(4.13) 

(4.14) 

(4.15) 

where st, s2, and s3 are the elementary symmetric polynomials corresponding to the 

variables x, y, and z [17]. 

4.3 Application of Symmetric Polynomials to Multilevel Inverter 

In this section, an example application of Symmetric Polynomials will be 

presented. In this example, a cascaded H-bridges multilevel inverter using three equal de 

sources will once again be considered. 
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4.3.1 Symmetric Polynomial Reduction 

Equations (3.56) thru (3.58) provide the polynomial harmonic equations for the 

case when one wants to control the peak value of the output voltage to be V1 while 

eliminating the fifth and seventh order harmonics. These equations are repeated below: 

(4.16) 

Ps(x,,x2,x3)= 0 = f �xn -20x� +16x�), (4.17) 
n=l 

and 

p7(x1, X2,X3 ) = 0 = f (- 7 Xn + 56x! -112 x� + 64xJ ). (4.18) 
n=l 

In (4.16), mis given by 

(4.19) 

where V de represents the voltage of each de source. For the variables x1 , x2 , and x3,

the corresponding elementary symmetric polynomials are 

and 

Recall that multilevel fundamental switching requires that 
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(4.20) 

(4.21) 

(4.22) 

(4.23) 



As a result, the new variables s1 , s2, and s3 must satisfy 

and 

(4.24) 

(4.25) 

(4.26) 

One should notice that p1, p5, and p7 are symmetric polynomials. Therefore, 

The Fundamental Theorem of Symmetric Polynomials states that one can express these 

polynomials in terms of s1 , s2, and s3• The resulting symmetric polynomials are: 

Pt (s1 ) = 0 = 
s1 - m , (4.27) 

(4.28) 

and 

(4.29) 

It should be noted that these equations were created using the SymmetricReduction

command in Mathematica. Since (4.27) says that s1 = m, p5 and p7 can be rewritten 

as 

( ) 
3 5 3 2 

p5 s2 ,s3 = 
5m-20m +16m +60ms 2 -80m s2 +80ms 2 -60s3 
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and 

( ) 
3 5 7 3 

p7 s2,s3 = -7m +56m -112m +64m -168ms 2 +560m s2

5 2 3 2 
8 

3 
168 - 448 m s2 - 560 ms 2 + 896 m s 2 - 44 ms 2 + s3

2 2 + 448s2 s3 + 448ms3 

(4.30) 

(4.31) 

For (3.62) and (3.63) in Chapter 3, it turns out that the degrees of p5 (x2, x3) and

p7 (x2, x3) in the variable x2 are four and six, respectively. As a result, the Sylvester

Resultant Matrix corresponding to these two polynomials is a 10 X 10 matrix. On the 

other hand, the degrees of p5 (s2, s3) and p7 (s2, s3) in the variable s3 are one and

two, respectively. As a result, the Sylvester Resultant Matrix corresponding to these two 

polynomials is a 3 X 3 matrix. In other words, the idea of Symmetric Polynomials has 

been effectively utilized to transform the set of polynomial equations derived in Chapter 

3 into a new set of polynomials oflower degree, thus making them much easier to solve. 

4.3.2 Solutions to Symmetric Polynomials 

After s1 has been eliminated, the next step is to eliminate the variable s3 by

calculating the Resultant of p5 (s2, s3) and p 7 (s2, s3). After factoring and then

eliminating unnecessary numerical constants, the Resultant of the two polynomials in 

(4.30) and (4.31) was found to be 
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res(s2 )= (-1575 + 9800 m 2 -24080 m 4 + 28160 m 6 -15360 m g 

+ 3072 m 10 )+ (-10500 + 56000 m 2 - I 03040 m 4 + 78080 m 6

-20480 m g )s2 + (-19600 +89600 m 2 -116480 m 4 

+ 46080 m 6 )sl + (-11200 + 44800 m 2 -35840 m 4 )s1. (4.32) 

Since the polynomial res is only a function of one variable, one can now solve for the 

variables s1 , s2 , and s3 • 

Once values for s1, s2 , and s3 are found, it is necessary to use these values to 

find the corresponding values of x1 , x2 , and x3 in order to obtain the switching angles.

The following three equations need to be solved in order to obtain the values of x1, x 2 , 

and X
3

: 

Ji(x1,x2,x3 )= 0 = s1 -(x1 + x2 + x3),

ji(xl, X 2, X 3 ) = 0 = S 2 - ( X 1 X 2 + X t X 3 + X 2 X 3 ) , 

and 

f3(x1,x2,x3 )= 0 = s3 -(x1x2x3 ). 

(4.33) 

(4.34) 

(4.35) 

One can now eliminate x1 by calculating the Resultant of /1 and Ji as well as the 

Resultant of Ji and /3 • The resulting equations are 

(4.36) 

and 

(4.37) 

One can now eliminate x2 by calculating the Resultant of g1 and g 2 • After factoring 
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and then eliminating redundant factors, the resulting equation is 

h (x 3 ) = S 3 - S 2 X 3 + S1 Xi - X 1 . (4.38) 

Since the polynomial h is only a function of one variable, one can now solve for the 

variables x1 , x 2 , and x 3 •

It is now possible to begin the process of finding the appropriate switching angles. 

This process consists of 14 steps: 

1. Set s1 to be equal to the parameter m.

2. Solve for the roots of res (s2 )= 0 .

3. Keep the roots for which O � Re {s2) S 3, where Re refers to the real part of

a possibly complex root. Denote these roots as {s2k } •

4. For each member of the set {s2k}, substitute it into p5 (s2 , s3 ) and solve for

the roots of p5 (s2k ,s3 )= 0.

5. Keep the roots for which O S Re (s3 ) S 1 . Denote the set of remaining roots

as {(s21, s31 )}.

6. For each member of the set {(s21 ,s31 )}, substitute it along with the value for

s1 into h(x3 ) and solve for the roots of h(x3 ) = 0.

7. Keep the roots for which O � Re (x3 ) S 1 . Denote the set of remaining roots

as {(s2n, 83n , X3n )} •

8. For each member of the set {(s2n ,SJn ,x3n )}, substitute it along with the value

for s1 into g 1 (x2, x3) and solve for the roots of g1 (x2 , x3n) = 0.
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9. Keep the roots for which O � Re (x3n
) � Re {x2) � 1. Denote the set of

remaining roots as {(s2r , S3r , X2r , X3r )} .
10. For each member of the set {{s2r,s3r,x2nx3r)}, compute m - x2, - x3r 

to
find the value for x1 • 

11. Keep the roots for which O � Re{x3,)� Re{x2r)� Re{x1)� 1. Denote the
set of remaining roots as {(s2s ,s3s ,X1s ,X2s ,X3s )}.

12. For each member of the set {(s2s ,s3s ,Xts ,x2s ,x3s )}, keep just the real parts of
x1s ,x2s , and x3s . Denote these triples as {(x1s ,x2s ,x3s )}.

13. Using (4.17) and (4.18), compute
( ( Ps(X1,,:2,,X3, )r +( P1(i1.,;2,,i3,)n. (4.39) 

14. If the result is less than some arbitrarily small tolerance level e, the
switching angles are given by

{(01s ,B2s ,03s )} = �os-1
(x1s 1cos-1

(i2s ),cos-1
(x3s )}. (4.40) 

Two important points should be made. In general, the algorithm for finding the 
desired switching angles can theoretically be applied to the more general case of s 
switching angles. It should also be pointed out that the above algorithm can be applied to 
the Unified Approach switching scheme. However, two algorithms need to be 
implemented. 

For a multilevel inverter using s de sources, the first algorithm finds the solutions 
corresponding to multilevel fundamental switching with s switching angles. The second 
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algorithm finds the solutions corresponding to Unipolar Programmed PWM and Virtual 

Stage PWM with s + 1 switching angles. Using the algorithm above, one must replace all 

occurrences of the term Re (x) with the term !Re (x �. 

4.4 Power Sums 

In this section, the idea of Power Sums will be introduced. For the special case of 

a multilevel inverter using equal de sources, it was shown in Section 4.3 how the idea of 

Symmetric Polynomials could be utilized to transform the set of polynomial equations 

derived in Chapter 3 into a new set of polynomials of lower degree. Power Sums simply 

provides another way of transforming a set of symmetric polynomials into a new set of 

polynomials of lower degree. 

In generai given the variables x1 , ••• , x n, the power sums polynomials are defined 

as 

(4.41) 

where k is a natural number. One should notice that tk is a symmetric polynomial. 

Therefore, The Fundamental Theorem of Symmetric Polynomials says that t k can be 

written in terms of the elementary symmetric polynomials s1 , ••• , sn [17]. 

More importantly, however, the following theorem says that any arbitrary symmetric 

polynomial can be written in terms of t1 , ••• , tn

=> If k is a field containing the set of rational numbers, then every symmetric 

polynomial in k[x1 , ••• , x
n

] can be written as a polynomial in the power sums 
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11 , •.. , t n.

Since any symmetric polynomial can be expressed in terms of the elementary symmetric 

polynomials s1 , ••• , sn, a sufficient proof of this theorem consists of showing that 

s1 , ••• , s n can be written in terms of t1 , ••• , t n. In order to prove this statement, the 

equations 

(4.42) 

and 

(4.43) 

are needed. These equations are referred to as the Newton Identities [17]. 

It will now be proved by induction on r that s
r 

can be written in terms of 

t1 , ••• , t n. For the case of when r = 1, it is obvious that s1 = t1 • Assume now that the 

above claim is true for 1,2, ... , i-1, where 2 � i � n. For the case of r = i, the Newton 

Identities state that 

( \i-1 1 { ( \i-1 
) s; = - I, --:-V; - s1t;_1 + ... + - 1 J s;_1 t1 •

l 

(4.44) 

Since it was assumed earlier that the rational numbers were contained within the 

coefficient field k, it is acceptable to divide by i in (4.44). The expression in (4.44) 

shows that the polynomial s; can be written in terms of the power sums t1 , ••• , tn. 

Therefore, the proof is now complete [ 17]. 

64 



4.5 Application of Power Sums to Multilevel Inverter 

In this section, an example application of Power Sums will be presented. In this 

example, a cascaded H-bridges multilevel inverter using three equal de sources will once 

again be considered. 

4.5.1 Power Sums Reduction 

For the variables x1 ,x2 , and x3, define the power sums polynomials 11 ,12 , ••• , t1 

as follows: 

(4.45) 

(4.46) 

(4.47) 

(4.48) 

Using the expressions for 11 ,12 , ... , 11 , the polynomials p1 ,p5, and p7 given in (4.16)

thru (4.18) can be rewritten as 

and 

(4.49) 

(4.50) 

(4.51) 

From the Newton Identities given in (4.42) and (4.43), 1
5 

and h can be rewritten 
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in terms of t1 ,t2, and t3. The resulting expressions are 

(4.52) 

and 

(4.53) 

Using these new expressions, p5 and p7 can now be rewritten as 

(4.54) 

and 

(4.55) 

Since ( 4.49) says that t1 = m, p5 and p7 can now be rewritten in terms of only 

t 2 and t 3 • The resulting equations are 

(4.56) 

and 

( ) 1( 5 7 3 32 
p1 t2,t3 =- -63m-I68m +16m +840m t2 -336m t2 +504t3

9 

(4.57) 

and two, respectively. As a result, the Sylvester Resultant Matrix corresponding to these 

two polynomials is a 3 X 3 matrix. As with Symmetric Polynomials, the idea of Power 
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Sums has been effectively utilized to transform the set of polynomial equations derived in 

Chapter 3 into a new set of polynomials of lower degree, thus making them much easier 

to solve. 

4.5.2 Solutions to Power Sums 

After t1 has been eliminated, the next step is to eliminate the variable t2 by

calculating the Resultant of p 5 (t 2, t 3 ) and p7 (t 2, t 3). After factoring and then

eliminating unnecessary numerical constants, the Resultant of the two polynomials in 

( 4.56) and ( 4.57) was found to be 

res{t3 )= (-4725 m 4 + 25200 m 6 -5040 m 8 + 256m 12 )+ (4725 m

-12600 m 3 -95760 m 5 + 20160 m 7 -4096 m 9 )13 + (-12600

+ 100800 m 2 + 80640 m 4 + 3840 m 6 )tf + (-100800 m

-44800 m 3 )tf + (44800 )tt. (4.58) 

Since the polynomial res is only a function of one variable, one can now solve for the 

variables t1, t2, and t3•

Once values for t1, t2, and t3 are found, it is necessary to use these values to find

the corresponding values of x1 , x2, and x3 in order to obtain the switching angles. The

following three equations need to be solved in order to obtain the values of x1 , x2, and

X3 [19]: 

(4.59) 
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(4.60) 

and 

(4.61) 

One can now eliminate x1 by calculating the Resultant of Ji and Ji as well as the 

Resultant of /1 and /3• The resulting equations are

(4.62) 

and 

(4.63) 

The variable x2 can now be eliminated by calculating the Resultant of g1 and g 2.

After factoring and then eliminating redundant factors, the resulting equation is 

(4.64) 

Since the polynomial h is only a function of one variable, one can now solve for the 

variables x1, x2, and x3.

It is now possible to begin the process of finding the appropriate switching angles. 

This process consists of 12 steps: 

1. Set t1 to be equal to the parameter m.

2. Solve for the roots of res (t3 ) = 0 .  Denote these roots as �3k}.

3. For each member of the set �3d, substitute it into p5 (t2 ,t3 ) and solve for

the roots of p 5 (t 2, t 3k ) = 0 . Denote the set ofremaining roots as {(t 21, t 31 )} .
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4. For each member of the set {(t21,t31)}, substitute it along with the value for t1

into h(x3 } and solve for the roots of h(x3) = 0 .

5. Keep the roots for which O :s; Re (x
3
) :s; 1 . Denote the set of remaining roots

as {(t2n
,t3n

,X3n
)}.

6. For each member of the set {(t2n
,t3n

,x3n)}, substitute it along with the value

for t1 into g1 (x2, x3 ) and solve for the roots of g1 (x2, x3 n
) = 0.

7. Keep the roots for which O :s; Re (x3n
) :s; Re (x2) :s; 1. Denote the set of

remaining roots as{(t2r
,t3r

,X2r,x3r
)}.

8. For each member of the set {(t2r
,t3r

,x2r,x3r 
)}, compute m - x2, - x3, to

find the value for x1 . 

9. Keep the roots for which O :s; Re (x3
,) :s; Re (x2 r

) :s; Re (x1} :s; 1 . Denote the

set of remaining roots as {(t2s,l3s,Xis,X2s,x3s)}.

10. For each member of the set {(t2s,t3s,Xts,x2s,x3s )}, keep just the real parts of

x1s,x2s, and x3s . Denote these triples as {(i1s,i2s,x3s)}.

11. Using (4.17) and (4.18), compute

( ( p5(X1s,
;2,, X3,)r +( P1(X1s,;2,, X3,)r J. (4.65)

12. If the result is less than some arbitrarily small tolerance level e, the

switching angles are given by

{(B1s ,B2s,B3s )}= �os-1{i1s 1cos-1(i2s ),cos-1{x3s )}. (4.66) 
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Similar to the case of Symmetric Polynomials, the algorithm for finding the 

desired switching angles can theoretically be applied to the more general case of s

switching angles. It should also be pointed out that the above algorithm can be applied to 

the Unified Approach switching scheme. However, two algorithms need to be 

implemented. 

For a multilevel inverter using s de sources, the first algorithm finds the solutions 

corresponding to multilevel fundamental switching with s switching angles. The second 

algorithm finds the solutions corresponding to Unipolar Programmed PWM and Virtual 

Stage PWM with s + I switching angles. Using the algorithm above, one must replace all 

occurrences of the term Re {x) with the term !Re (x � . 

4.6 Chapter Summary 

In this chapter, several topics were discussed. The idea of Symmetric 

Polynomials was first presented. For the special case of when a multilevel inverter is 

utilizing equal de sources, it was shown how the idea of Symmetric Polynomials could be 

utilized to transform the set of polynomial equations derived in Chapter 3 into a new set 

of polynomials of lower degree. As a result, these equations were easier to solve. An 

example application of Symmetric Polynomials theory was also given where a cascaded 

H-bridges multilevel inverter using three equal de sources was considered.

The idea of Power Sums was then introduced. It was shown that Power Sums 

theory provides another way of transforming a set of symmetric polynomials into a new 

set of polynomials of lower degree. As with Symmetric Polynomials, an example 
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application of Power Sums theory was given where a cascaded H-bridges multilevel 

inverter using three equal de sources was considered. 

The purpose of this chapter was to introduce more of the theory behind the 

research presented in this thesis. The next chapter will present some of the theoretical 

and experimental results. A general discussion of each step in the research process will 

be provided first. Some of the theoretical and experimental results obtained for a 

cascaded H-bridges multilevel inverter using a different number of de sources will then 

be provided. Two cases will be considered in detail. These cases consist of using five 

and six de sources. For the five de sources case, the switching angles of the inverter were 

determined such that the 5th
, 7th

, 1 1th
, and 13th order harmonics were eliminated while at 

the same time controlling the value of the fundamental. For the six de sources case, the 

additional switching angle was used to eliminate the 17th order harmonic. 
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5 Theoretical and Experimental Results 

5.1 Chapter Overview 

The previous two chapters introduced the theory behind the research presented in 

this thesis. In this chapter, some of the theoretical and experimental results will be 

presented. In Section 5.2, a general discussion of each step in the research process will 

be provided. Section 5.3 will discuss the theoretical results obtained for a cascaded H

bridges multilevel inverter using five and six equal de sources. 

Section 5.4 will discuss some of the experimental results obtained from a 

cascaded H-bridges multilevel inverter utilizing five equal de sources. The switching 

angles of the inverter were determined such that the 5th
, 7th

, 11th
, and 13th order 

harmonics were eliminated while at the same time controlling the value of the 

fundamental. Section 5.5 looks at the case of using six equal de sources. The additional 

switching angle was used to eliminate the 17th order harmonic. 

5.2 Steps Performed in Research 

In this section, a description of the research process will be given. The research 

process consisted of three main steps: theoretical calculations, simulations, and 

experimentation. 
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5.2.1 Theoretical Calculations 

The first part of the theoretical calculations dealt with finding the appropriate 

switching angles. Using the ideas presented in Chapter 3, the appropriate polynomial 

harmonic equations were first derived. For the five de sources and six de sources cases, 

the idea of Symmetric Polynomials was then used in conjunction with Resultant theory to 

solve these polynomials for all possible switching angles. The computer software 

package Mathematica was used to perform all of the above calculations. Mathematica 

was used since many of the above calculations were symbolic, not numerical. As one 

will see in Section 5 .3, the algorithm used to find the switching angles resulted in some 

modulation indices having more than one set of corresponding switching angles. 

The second part of the theoretical calculations involved organizing and analyzing 

all of the collected switching angles. For this purpose, the software package MATLAB 

was utilized. Using MATLAB, the collected switching angles were organized into look

up tables to be used later in simulations and experiments. Also, MATLAB was used to 

generate plots of the switching angles and THD versus the modulation index. 

5.2.2 Simulations of Multilevel Inverter 

After all of the theoretical calculations were completed, simulations of the 

multilevel inverter were then conducted. These simulations were necessary in order to 

make sure the computed switching angles were actually eliminating the desired 

harmonics while at the same time controlling the value of the fundamental. Simulink, an 

extension to MATLAB, was used to perform the simulations of the multilevel inverter. 
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5.2.3 Experiments on Multilevel Inverter 

A three-phase, wye-connected, 11-level (five de sources) cascaded H-bridges 

multilevel inverter was used for all of the conducted experiments. The power electronics 

switches used for this particular multilevel inverter were MOSFETs with voltage ratings 

of 100 V and current ratings of 70 A. Rechargeable batteries were used for the separate 

de sources. 

The RT-LAB software package from Opal-RT-Technologies was used to 

interface the computer generating the control signals for each switch to the gate driver 

board on the multilevel inverter. Use of the RT-LAB software allowed for the 

development of the switching algorithm in Simulink. The switching model was then 

converted into C code using Real-Time Workshop (RTW). The RT-LAB software 

provided icons to interface the Simulink model with a digital 1/0 board. Also, the C code 

was converted into executable code [ 18]. 

Two types of experiments were performed. The first experiments consisted of 

measuring the open-circuit voltages of the multilevel inverter. However, for brevity, 

these results will not be presented in this thesis. 

After measurements were made under open-circuit conditions, a load was then 

connected to the output of the multilevel inverter. For the five de sources case, the 

multilevel inverter was connected to a three-phase induction motor. The induction motor 

had a rated horsepower of 1/3 hp, a rated speed of 1725 rpm, a rated current of 1.5 A, and 

a rated voltage of 208 V (RMS line-to-line voltage at a frequency of 60 Hz) [19]. No 

additional physical load was placed on the shaft of the motor. Measurements were taken 

of the output phase voltages and line currents. For the six de sources case, six of the H-
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bridge inverters on the multilevel inverter were cascaded to form a single-phase system. 

With a RL (resistor-inductor) load connected to the output, measurements were taken of 

the output voltage and current. Figure 5.1 provides a picture of the experimental setup. 

5.3 Theoretical Results 

5.3.1 Five DC Sources 

For the case of a multilevel inverter using five equal de sources, the five 

switching angles were determined such that the 5th
, 7th

, 11th
, and 13th order harmonics 

were eliminated while at the same time controlling the value of the :fundamental. The 

idea of Symmetric Polynomials was used in conjunction with Resultant theory to solve 

the corresponding set of polynomial harmonic equations for all possible switching angles. 

RL Load 

Multilevel Inverter 

12 V Batteries 

Figure 5.1: Experimental setup. 
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The solutions to the polynomial equations are plotted in Figure 5.2 versus the modulation 

index m
a

. For purposes of simplicity, only modulation indices in increments of 0.01/5 

were considered. 

Neglecting the isolated points in Figure 5.2, at least one set of solutions exists 

when m
a 

is in the intervals [0.442 , 0.728] and [0.748, 0.846 ]. Furthermore, multiple 

solutions exist when m
a 

is in the subintervals [0.506, 0.580 ] and [0.610,  0.700 ]. For 

modulation indices that do not have any solutions, a different switching scheme must be 

used. When m
a 

� 0.732 , it can be shown that the Unified Approach switching scheme 

will have at least one set of solutions to the aforementioned polynomial harmonic 

equations. 

For each set of switching angles, Figure 5.3 provides a plot of the output phase 

voltage THD. The voltage THD was calculated thru the 49th harmonic using the equation 

_V _1�_+_V_1�_+_V_{_3_+_V_2_�_ +_ .. _. +_V_4�_ * 100'
v.2 

(5.1) 

where V1 is the peak value of the fundamental and V17 , V19 , ••• , V49 are the peak values of 

the harmonics [19]. Notice in (5.1) that the 5th
, 7th

, 11th
, and 13th order harmonics were 

omitted. The reason is the switching angles were determined such that these harmonics 

were eliminated. Also notice that only odd, nontriplen harmonics were considered. As 

discussed in Chapter 3, the even harmonics are zero due to the symmetry of the 

multilevel fundamental switching scheme. The triplen harmonics cancel in the line-to

line voltages. In Figure 5.3, the black points correspond to the switching angles that give 

the lowest THD. For modulation indices having multiple solutions, the blue and red 
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Figure 5.2: Switching angles for an 11-level multilevel inverter. 
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Figure 5.3: Voltage THD from an 11-level multilevel inverter. 
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points correspond to switching angles that give a higher THD. 

When multiple solutions exist, one possibility would be to choose the switching 

angles that give the lowest THD. Figure 5.4 is a plot of these switching angles versus 

m
a
. Figure 5.5 provides a plot of the corresponding voltage THD. For the modulation 

indices having at least one set of solutions, notice from Figure 5.5 that most of the time 

the switching angles can be picked such that the THD is less than 7%. For some of the 

modulation indices having multiple solutions, it is also obvious from Figure 5.3 that one 

set of switching angles may give a much higher THD than another set. For example, 

consider the case m
a 

= 0.548. This particular m
a 

has three sets of solutions. One set 

gives a THD of 8.29%. However, a second set gives a THD of 5.64%, a difference of 

2.65%. 

Notice from Figure 5.2 that the switching angles can be picked such that they 

form a relatively continuous function when plotted versus m
a 
. These switching angles 

are the solutions that a numerical iterative algorithm would most likely produce. 

However, as Figure 5.4 illustrates, it should be pointed out that these same switching 

angles might not give the lowest THD. Hence, unlike numerical iterative procedures, the 

method of determining switching angles presented in this thesis allows for one to always 

obtain switching angles giving the lowest THD. Tables 1 thru 3 in the Appendix provide 

a list of selected modulation indices along with their corresponding switching angles and 

THD for a multilevel inverter using three, four, and five equal de sources, respectively. 
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Figure 5.4: 11-level multilevel inverter switching angles giving the lowest THO. 
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Figure 5.5: Lowest voltage THD from an 11-level multilevel inverter. 
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5.3.2 Six DC Sources 

For the case of a multilevel inverter using six equal de sources, the six switching 

angles were determined such that the 5th
, 7th

, 11th
, 13th

, and 17th order harmonics were 

eliminated while at the same time controlling the value of the fundamental . The idea of 

Symmetric Polynomials was used in conjunction with Resultant theory to solve the 

corresponding set of polynomial harmonic equations for all possible switching angles. 

The solutions to the polynomial equations are plotted in Figure 5.6 versus the modulation 

index m
a 

. Similar to the five de sources case, only modulation indices in increments of 

0.01/6 were considered. 

Neglecting the isolated points in Figure 5.6, at least one set of solutions exists 

when m
a 

is in the intervals [0.455, 0.503 ], [0.530, 0.647 ], [0.650, 0.752 ], and 

[0.778, 0.828 ]. Furthermore, multiple solutions exist when m
a 

is in the subintervals 

[o .530, 0.572 ] , [o .608, 0.633 ], and [o .667, 0. 722 ]. For modulation indices that do

not have any solutions, a different scheme must be used. For m
a 

� 0.760 (with the 

exception m
a 

= 0.330 ), it can be shown that the Unified Approach switching scheme 

will have at least one set of solutions to the aforementioned polynomial harmonic 

equations . 

For each set of switching angles, Figure 5. 7 provides a plot of the voltage THD. 

Similar to the five de sources case, the THD was calculated using the equation 

(5.2) 

Notice in (5.2) that the 17th order harmonic was ignored in the calculation. In Figure 5.7, 
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the black points correspond to the switching angles that give the lowest THD. For 

modulation indices having multiple solutions, the blue, red, and green points correspond 

to switching angles that give a higher THD. 

Figure 5.8 provides a plot of the switching angles giving the lowest THD versus 

m
a
. Figure 5.9 is a plot of the corresponding THD. For the modulation indices having 

at least one set of solutions, notice from Figure 5.9 that most of the time the switching 

angles can be picked such that the THD is less than 6%. As with the five de sources case, 

for modulation indices having multiple solutions, one set of switching angles may give a 

much higher THD than another set. For example, consider the case m
a 

= 0.622. This 

particular modulation index has three sets of solutions. One set gives a THD of 7 .19%. 

However, a second set gives a THD of3.62%, a difference of3.57%. 

Notice from Figure 5.6 that the switching angles can be picked such that they 

form a relatively continuous function when plotted versus m
a 

. These switching angles 

are the solutions that a numerical iterative algorithm would most likely produce. 

However, similar to the five de sources case, these same switching angles might not give 

the lowest THD. Table 4 in the Appendix provides a list of selected modulation indices 

along with their corresponding switching angles and THD for a multilevel inverter using 

six de sources. 

S.4 Experimental Results: Five DC Sources

This section will discuss some of the experimental results obtained from a 

cascaded H-bridges multilevel inverter utilizing five equal de sources. A three-phase, 
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wye-connected, 11-level cascaded H-bridges multilevel inverter was connected to a 

three-phase induction motor with no additional physical load attached to the shaft of the 

motor. Measurements were then taken of the output phase voltages and line currents. 

Within the RT-LAB software, a step size of 32 microseconds was used for the real time 

implementation. 

Each de source was comprised of three 12 V (nominal) batteries connected in 

series. For phase A of the multilevel inverter, the voltages of the de sources were 

measured to be 38.20 V, 38.24 V, 38.14 V, 38.22 V, and 38.24 V. The voltages of the de 

sources for phase B were measured to be 37.79 V, 37.82 V, 38.01 V, 37.82 V, and 38.27 

V. For phase C, the voltages of the de sources were measured to be 37.85 V, 37.64 V,

37.73 V, 37.84 V, and 38.18 V. Although the de sources above are not equal to one 

another, they were considered equal in the experimentation. 

5.4.1 ma = 0.640: Lowest THD 

For the case m
a 

= 0.640, one can see from Figure 5.2 that there are three 

different solution sets. In the experimentation, the switching angles giving the lowest 

voltage THD were used. Furthermore, the frequency of the :fundamental voltage was set 

at 60 Hz. 

Figure 5.10 illustrates the phase voltages measured at the output of the multilevel 

inverter. Figure 5.11 provides the corresponding normalized FFT of the phase A output 

voltage. The term "normalized" simply refers to the idea that the magnitudes of all 

harmonics were found relative to the magnitude of the :fundamental. 
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Figure 5.10: Phase voltage waveforms for ma
= 0.640 (lowest THD). 
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Notice from Figure 5.11 that the magnitudes of the 5th
, 

7th
, 11th

, and 13th

harmonics are quite small. One reason they are not precisely zero is the battery voltages 

are not exactly equal to one another. Also, the quantization error of the oscilloscope will 

lead to some error. Using (S.l), the voltage THD was determined from Figure 5.11 to be 

4.26%. When this value is compared to the theoretical value of 4.69%, the resulting 

percent difference is 

14.69 - 4.261 
% Difference = -----* 100 = 9.15%. 

4.69 
(5.3) 

Figure 5 .12 illustrates the measured phase A output current. Figure 5 .13 provides 

a plot of the corresponding normalized FFT. As with the output voltage, notice from 

Figure 5.13 that the magnitudes of the 5th
, 7th

, 11th
, and 13th harmonics are quite small. 

Furthermore, notice that the odd, triplen harmonics are practically zero. Using the 

equation 

THD;(%)= 
2 2 2 2 2

/17 + Ji9 + /23 + 125 + ... + /49 * 100
2 

' 

/1 
(5.4) 

the current THD was determined from Figure 5.13 to be 1.36%, which is less than the 

measured voltage THD. The inductance of the three-phase induction motor acts as a 

lowpass current filter. 

5.4.2 m0 = 0.548: Lowest THD 

For the case m
a 

= 0.548, one can see from Figure 5.2 that there are three 

different solution sets. In one experiment, the switching angles giving the lowest voltage 

THD were used. Furthermore, the frequency of the fundamental voltage was set at S 1 
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Hz. The fundamental frequency was lowered in order to maintain a constant V/Hz ratio. 

Figure 5.14 illustrates the phase voltages measured at the output of the multilevel 

inverter. Figure 5 .15 provides the corresponding normalized FFT of the phase A output 

voltage. Notice from Figure 5.15 that the magnitudes of the 5th
, 7th

, 11th
, and 13th

harmonics are quite small. Using (5.1), the voltage THD was determined from Figure 

5.15 to be 5.09%. Comparing this value to the theoretical value of 5.64%, the resulting 

percent difference is 

15.64 - 5.091 
% Difference = -------- * I 00 = 9. 77 %.

5.64 
(5.5) 

Figure 5 .16 illustrates the measured phase A output current. Figure 5 .1 7 provides 

a plot of the corresponding normalized FFT. As with the output voltage, notice from 

Figure 5 .1 7 that the magnitudes of the 5th
, 7th

, 1 1th
, and 13th harmonics are quite small. 

Furthermore, notice that the odd, triplen harmonics are small. Using (5.4), the current 

THD was determined from Figure 5.17 to be 1.59%, which is less than the measured 

voltage THD. 

5.4.3 ma
= 0.548: Highest THD 

For the case m
a 

= 0.548, another experiment was conducted where the switching 

angles giving the highest voltage THD were used. As with the experiment discussed in 

Section 5.4.2 above, the frequency of the fundamental voltage was set at 51 Hz. 

Figure 5.18 illustrates the phase voltages measured at the output of the multilevel 

inverter. Figure 5.19 provides the corresponding normalized FFT of the phase A output 

voltage. Notice from Figure 5.19 that the magnitudes of the 5th
, 7th

, 11th
, and 13th
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Figure 5.14: Phase voltage waveforms for ma
= 0.548 (lowest THD). 
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Phase Currents vs. Time (m = 2. 74, Fundamental Frequency = 51 Hz, Lowest TIID) 
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Figure 5.16: Phase current waveforms for ma
= 0.548 (lowest THD). 
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Phase Voltages vs. Time (m = 2.74, Fundamental Frequency= 51 Hz, Highest THD) 
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Figure 5.18: Phase voltage waveforms for ma
= 0.548 (highest THD). 
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harmonics are quite small. Also notice that the magnitudes of the 17th and 19th order 

harmonics in Figure 5.19 are larger than the corresponding harmonics in Figure 5.15. 

Using (5.1 ), the voltage THD was determined from Figure 5.19 to be 7.68%. Comparing 

this value to the theoretical value of 8.29%, the resulting percent difference is 

18.29 - 7.681 % Difference = -----* 100 = 7 .30%. 
8.29 

(5.6) 

Figure 5.20 illustrates the measured phase A output current. Figure 5.21 provides 

a plot of the corresponding normalized FFT. As with the output voltage, notice from 

Figure 5.21 that the magnitudes of the 5th
, 7th

, 11th
, and 13th harmonics are quite small. 

Furthermore, the odd, triplen harmonics are small. One should also notice that the 

magnitudes of the 17th and 19th order harmonics in Figure 5 .21 are larger than the 

corresponding harmonics in Figure 5 .17. Using ( 5 .4 ), the current THD was determined 

from Figure 5.21 to be 3.18%, which is less than the measured voltage THD. 

5.5 Experimental Results: Six DC Sources 

This section will discuss some of the experimental results obtained from a 

cascaded H-bridges multilevel inverter utilizing six equal de sources. It was mentioned 

earlier that experiments were conducted on a single-phase system comprised of six 

cascaded H-bridge inverters. With an inductive load connected to the output of this 

single-phase system, measurements were taken of the output voltage and current. The 

inductive load consisted of a 10 mH inductor connected in series with a measured 

equivalent resistance of 61.1 n. Within the RT-LAB software, a step size of 32 

microseconds was used for the real time implementation. Furthermore, the fundamental 

92 



] 
= 

e 

e 

l 

i _: 

0.005 0.01 

0 0.005 0.01 0.015 0.02 0.025 

Figure 5.20: Phase current waveforms for ma = 0.548 (highest THD). 

1 

0.9 

0.8 

0.7 

0.6 

0.5 

0.4 

0.3 

0.2 

0.1 

Normalized FFT or Phase A Corrent vs. Frequency (m = 2. 74, Highest TIID) 

2000 2500 

Figure 5.21: Normalized FFT of phase A current for ma
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frequency was set at 60 Hz for all experiments. 

Similar to the five de sources case, each de source was comprised of three 12 V 

(nominal) batteries connected in series. The voltages of the de sources were measured to 

be 38.65 V, 38.65 V, 38.55 V, 38.63 V, 38.48 V, and 38.65 V. Although the de sources 

above are not equal to one another, they were considered equal in the experimentation. 

5.5.1 m0 = 0. 760 

For the case m
a 

= 0.760, one can see from Figure 5.6 that there exists only one 

solution. However, out of all modulation indices that have solutions, it is evident from

Figure 5.9 that this particular modulation index will give the lowest output voltage THD. 

Figure 5.22 illustrates the voltage measured at the output of the multilevel 

inverter. Figure 5.23 provides the corresponding normalized FFT of the output voltage. 

Notice from Figure 5 .23 that the magnitudes of the 5th
, 7th

, 11th
, 13th

, and 17th harmonics 

are quite small. Using (5.2), the voltage THD was determined from Figure 5.23 to be 

2.49%. Comparing this value to the theoretical value of 2.41 %, the resulting percent 

difference is 

12.41 - 2.491 
% Difference = -----* 100 = 2. 95 %. 

2.41 
(5.7) 

It should be noted that the peak-to-peak value of the output voltage in Figure 5.22 

is about 40 V less than the corresponding value under open-circuit conditions. One 

explanation is the internal resistance of each battery leads to a voltage drop proportional 

to the current. Another explanation is the on-state voltage drop of each MOSFET is 

proportional to the current. 
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Figure 5.24 illustrates the measured output current. Figure 5.25 provides a plot of 

the corresponding normalized FFT. As with the output voltage, notice from Figure 5.25 

that the magnitudes of the 5th
, ih, 11th

, 13th
, and 17th harmonics are small. However, 

notice that the odd, triplen harmonics are not small. The reason is due to the fact that a 

single-phase system was considered instead of a balanced three-phase system. A 

balanced three-phase system does not have any odd, triplen harmonics. Therefore, the 

current THO was determined using the equation 

THD;(%)= 
2 2 2 2 

I 19 + 123 + 1 is + · · · + 149 * 100 .

11 
(5.8) 

Notice in (5.8) that the odd, triple harmonics were neglected. Using (5.8), the current 

THD was determined from Figure 5.25 to be 0.99%, which is less than the measured 

voltage THD. The 1 0mH inductor acts as a lowpass current filter. To the nearest 0.01 %, 

the measured current THD is equal to the theoretical value of the current THD. 

5.5.2 ma
= 0.622: Lowest THD 

For the case m
a 

= 0.622, one can see from Figure 5.6 that there are three 

different solution sets. In one experiment, the switching angles giving the lowest voltage 

THD were used. 

Figure 5.26 illustrates the voltage measured at the output of the multilevel 

inverter. Figure 5 .27 provides the corresponding normalized FFT of the output voltage. 

Notice from Figure 5.27 that the magnitudes of the 5th
, 7th

, 11th
, 13th

, and 17th harmonics 

are quite small. Using (5.2), the voltage THD was determined from Figure 5.27 to be 
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Phase current vs. Time (m = 4.56, Fundamental Frequency = 60 Hz, Lowest TIID) 
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Figure 5.24: Current waveform for m0 = 0.160.
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3.19%. Comparing this value to the theoretical value of 3.62%, the resulting percent 

difference is 

!J.62 - 3. t91
% Difference = -----* 100 = 11.85 %.

3.62 
(5.9) 

As with the experiment discussed in Section 5.5.1, the peak-to-peak value of the output 

voltage in Figure 5 .26 is about 40 V less than the corresponding value under open-circuit 

conditions. 

Figure 5.28 illustrates the measured output current. Figure 5.29 provides a plot of 

the corresponding normalized FFT. As with the output voltage, notice from Figure 5.29 

that the magnitudes of the 5th
, t\ 11th

, 13th
, and 17th harmonics are quite small. 

However, notice that the odd, triplen harmonics are not small. As discussed earlier, the 

reason is due to the fact that a single-phase system was considered instead of a balanced 

three-phase system. A balanced three-phase system does not have any odd, triplen 

harmonics. Therefore, neglecting the odd, triplen harmonics and using ( 5 .8), the current 

THD was determined from Figure 5.29 to be 1.24%, which is less than the measured 

voltage THO. Comparing this value to the theoretical value of 1.45%, the resulting 

percent difference is 

� .45 -1.241
% Difference = ---------* 100 = 14.33%. 

1.45 

5.5.3 ma = 0.622: Highest THD 

(5.10) 

For the case m
a 

= 0.622, another experiment was conducted where the switching 

angles giving the highest voltage THO were used. Figure 5.30 illustrates the voltage 
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Figure 5.28: Current waveform for ma
= 0.622 (lowest THD). 
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100 



Phase Volta&e vs. Time (m - 3. 73, Fundamental Frequency - 60 Hz, 1-Dchest THD) 
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Figure 5.30: Voltage waveform for ma = 0.622 (highest THD). 
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measured at the output of the multilevel inverter. Figure 5.31 provides the corresponding 

normalized FFT of the output voltage. Notice from Figure 5.31 that the magnitudes of 

the 5th
, 711t, 11th

, 1311t, and 17th harmonics are small. Also notice that the magnitudes of 

the 19th and 23rd order harmonics in Figure 5.31 are larger than the corresponding 

harmonics in Figure 5.27. Using (5.2), the voltage THD was determined from Figure 

5.31 to be 6.77%. Comparing this value to the theoretical value of 7.19%, the resulting 

percent difference is 

17.19 -6.771 
% Difference = -------...,;.*100 = 5.93%.

7.19 
(5.11) 

As with the experiments discussed in Sections 5.5.1 and 5.5.2, the peak-to-peak value of 

the output voltage in Figure 5.30 is about 40 V less than the corresponding value under 

open-circuit conditions. 
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Figure 5.31: �formalized FFT of voltage for ma
= 0.622 (highest THD). 

Figure 5.32 illustrates the measured output current. Figure 5.33 provides a plot of 

the corresponding normalized FFT. As with the output voltage, notice from Figure 5.33 

that the magnitudes of the 5th
, 7th

, 11th
, 13th

, and 17th harmonics are small. One should 

also notice that the magnitudes of the 19th and 23rd order harmonics in Figure 5.33 are 

larger than the corresponding harmonics in Figure 5.29. However, notice that the odd, 

triplen harmonics are not small. As discussed earlier, a single-phase system was 

considered instead of a balanced three-phase system. A balanced three-phase system 

does not have any odd, triplen harmonics. Therefore, neglecting the odd, triplen 

harmonics and using (5.8), the current THD was determined from Figure 5.33 to be 

3.37%, which is less than the measured voltage THD. Comparing this value to the 

theoretical value of 4.04%, the resulting percent difference is 
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14.04 - 3.371 
% Difference = --------"""""* 100 = 16.59%.

4.04 

5.6 Chapter Summary 

(5.12) 

In this chapter, several topics were discussed. A general discussion of each step 

in the research process was presented first. The research process consisted of three main 

steps: theoretical calculations, simulations, and experimentation. Theoretical results 

obtained for a cascaded H-bridges multilevel inverter using five and six equal de sources 

were then presented. 

Some of the experimental results obtained from a cascaded H-bridges multilevel 

inverter utilizing five equal de sources were then presented. In the experimentatio°' the 

switching angles of the inverter were determined such that the 5th
, 7th

, 11th
, and 13th order 

harmonics were eliminated while at the same time controlling the value of the 

fundamental. Some of the experimental results obtained from a cascaded H-bridges 

multilevel inverter utilizing six equal de sources were also discussed. In these 

experiments, the additional switching angle was used to eliminate the 17th order 

harmonic. 

In the next chapter, a brief summary of the thesis will be given. From this 

summary, some conclusions regarding the research will be made. Finally, some 

suggestions on possible future research will be given. 
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6 Conclusions 

6.1 Chapter Overview 

The purpose of this chapter is to provide some concluding remarks. In Section 

6.2, a brief summary of the thesis will be given. From this summary, some conclusions 

regarding the research will be made in Section 6.3. Section 6.4 will provide suggestions 

for possible future research in the area of multilevel inverters. 

6.2 Thesis Summary 

Chapters 1 and 2 served to provide both an introduction to multilevel 

converters/inverters as well as some background information regarding other research 

concerning the multilevel inverter. In Chapter 1, a brief summary of the research to be 

presented in the thesis was first provided. A general definition of the multilevel 

converter was then given along with some advantages and disadvantages. Also, some 

applications of the multilevel converter were given. The multilevel fundamental 

switching scheme was introduced and compared to typical PWM schemes. The benefits 

ofharmonic elimination were also given. 

In Chapter 2, the cascaded H-bridges multilevel inverter was first discussed in 

more detail. Following the discussion on cascaded H-bridges multilevel inverters, some 

other switching schemes involving harmonic elimination besides multilevel fundamental 

switching were discussed. More specifically, the Bipolar Programmed PWM, Unipolar 

Programmed PWM, Virtual Stage PWM, and Unified Approach switching schemes were 
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presented. The idea of using unequal de sources with multilevel inverters was then 

discussed, followed by the concept of "duty cycle swapping." Finally, the use of 

numerical iterative techniques in solving nonlinear equations was briefly discussed. 

Chapters 3 and 4 discussed some of the theory behind the research presented in 

the thesis. In Chapter 3, the idea of the Fourier Series was discussed first. It was then 

illustrated how Fourier Series theory could be used to derive the transcendental harmonic 

equations corresponding to the multilevel fundamental switching scheme. Furthermore, 

these harmonic equations were written in terms of the switching angles of the multilevel 

inverter. 

Resultant theory was then introduced. After the aforementioned transcendental 

harmonic equations were transformed into polynomial equations, it was shown how 

Resultant theory could be used to solve these polynomial equations. Finally, an example 

application of Resultant theory was given where a cascaded H-bridges multilevel inverter 

using three equal de sources was considered. In this example, the value of the output 

voltage fundamental was controlled while the fifth and seventh order harmonics were 

eliminated. 

In Chapter 4, the idea of Symmetric Polynomials was presented. For the special 

case of when a multilevel inverter is utilizing equal de sources, it was shown how the 

idea of Symmetric Polynomials could be utilized to transform the set of polynomial 

equations derived in Chapter 3 into a new set of polynomials of lower degree. As a 

result, these equations were easier to solve. An example application of Symmetric 

Polynomials theory was also given where a cascaded H-bridges multilevel inverter using 

three equal de sources was considered. 
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The idea of Power Sums was then introduced. It was shown that Power Sums 

theory provides another way of transforming a set of symmetric polynomials into a new 

set of polynomials of lower degree. As with Symmetric Polynomials, an example 

application of Power Sums theory was given where a cascaded H-bridges multilevel 

inverter using three equal de sources was considered. 

The purpose of Chapter 5 was to present some of the collected theoretical and 

experimental results. A general discussion of each step in the research process was 

presented first. The research process consisted of three main steps: theoretical 

calculations, simulations, and experimentation. Theoretical results obtained for a 

cascaded H-bridges multilevel inverter using five and six equal de sources were then 

presented. 

Some of the experimental results obtained from a cascaded H-bridges multilevel 

inverter utilizing five equal de sources were then presented. In the experimentation, the 

switching angles of the inverter were determined such that the 5th
, 7th

, 11 t\ and 13th order 

harmonics were eliminated while at the same time controlling the value of the 

fundamental. Some of the experimental results obtained from a cascaded H-bridges 

multilevel inverter utilizing six equal de sources were also discussed. In these 

experiments, the additional switching angle was used to eliminate the 17th order 

harmonic. 

6.3 Conclusions From Research 

Compared to typical PWM switching schemes, multilevel fundamental switching 

will lead to lower switching losses. As a result, using the multilevel fundamental 
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switching scheme will lead to increased efficiency. One drawback of using the multilevel 

fundamental switching scheme is that the created harmonics occur at frequencies around 

the fundamental. However, appropriate switching angles can be determined such that 

some of these harmonics are eliminated. As a result, smaller filters can be used to 

eliminate the remaining harmonics. 

This thesis presented a procedure to selectively eliminate certain harmonics in a 

multilevel inverter utilizing the multilevel fundamental switching scheme. For a given 

modulation index, this procedure will produce all solutions (if a solution exists) to the 

corresponding harmonic equations. In comparison, numerical techniques, such as 

Newton-Raphson, will produce only one solution. Furthermore, unlike numerical 

techniques, the procedure presented in this thesis does not require an initial guess in order 

to find a solution. 

One drawback of the above procedure should be noted. Increasing the number of 

switching angles will lead to polynomial harmonic equations of higher degree. As a 

result, these equations could become too complex to solve using conventional computer 

algebra software tools. 

For some modulation indices, it was shown that multiple solutions exist. As a 

result, one can utilize the set of switching angles giving the smallest voltage THD. For a 

cascaded H-bridges multilevel inverter utilizing five equal de sources, most of the time 

the switching angles can be selected such that the output voltage THD is less than 7%. 

For a cascaded H-bridges multilevel inverter utilizing six equal de sources, most of the 

time the switching angles can be selected such that the output voltage THD is less than 

6%. 
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However, a large percentage of the modulation indices do not have any solutions. 

For a cascaded H-bridges multilevel inverter utilizing five equal de sources, about 61 % of 

the modulation indices do not have any solutions. If the Unified Approach switching 

scheme is used, only about 17% of the modulation indices do not have any solutions. 

Therefore, to cover a wider range of modulation indices, the Unified Approach switching 

scheme is preferred. 

6.4 Future Research 

One suggestion for future research would be to extend the multilevel fundamental 

switching scheme to include more than six equal de sources. For example, perhaps the 

ideas presented in this thesis could be used to determine the switching angles for a 

cascaded H-bridges multilevel inverter utilizing seven equal de sources. In this case, the 

seventh switching angle would be used to eliminate the 19th order harmonic. However, 

as mentioned above, increasing the number of switching angles will lead to polynomial 

equations of higher degree. Even if the ideas of Symmetric Polynomials and Power 

Sums are used to simplify these equations, they could become too complex to solve. 

A second suggestion for future research concerns the Unified Approach switching 

scheme. The Unified Approach switching scheme makes use of Unipolar Programmed 

PWM, Virtual Stage PWM, and multilevel fundamental switching. As mentioned above, 

one advantage of using the Unified Approach switching scheme is that more modulation 

indices will have solutions to the corresponding harmonic equations. It was also 

mentioned in Chapters 3 and 4 that Resultant theory, Symmetric Polynomials theory, and 

Power Sums theory could all be applied to the Unified Approach switching scheme. 
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Therefore, it would seem natural that the next step would be to try to implement the 

Unified Approach switching scheme. This switching scheme has already been 

implemented on a cascaded H-bridges multilevel inverter utilizing three equal de sources 

[10]. As with multilevel fundamental switching, it should be noted that increasing the 

number of switching angles could eventually lead to polynomial equations that are too 

difficult to solve. 

All of the research presented in this thesis assumed that the de sources used by a 

multilevel inverter were all equal to one another. A third suggestion for future research 

concerns the idea of utilizing de sources that are not equal to one another. Resultant 

theory has already been used to implement the muhilevel fundamental switching scheme 

on a cascaded H-bridges multilevel inverter using three unequal de sources [11, 20]. 

However, using the ideas in this thesis, the polynomial equations corresponding to four 

unequal de sources cannot be solved using conventional computer algebra software tools. 

Furthermore, neither Symmetric Polynomials theory nor Power Sums theory can be used 

since the derived harmonic polynomial equations are no longer symmetric. In future 

research, perhaps one can find a way to simplify these polynomial equations such that 

they can be solved using Resultant theory. 

In Chapter 5, when experiments were conducted on a single-phase system, the 

odd, triplen harmonics were not small. Therefore, for single-phase applications, a fourth 

suggestion for future research is to use the ideas presented in this thesis to eliminate all 

odd harmonics (triplen or otherwise). However, one drawback is that some of the 

previously eliminated harmonics will not be eliminated. As an example of the above 

ideas, consider a multilevel inverter using three equal de sources. Instead of eliminating 
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the fifth and seventh order harmonics, one might instead eliminate the third and fifth 

order harmonics. 

6.5 Chapter Summary 

The purpose of this chapter was to provide some concluding remarks. A brief 

summary of the thesis was first provided. Following this summary, some conclusions 

regarding the research were then made. Some topics concerning future research in the 

area of multilevel inverters were also discussed. 
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Table 1: Switching angles and THD for a 7-level multilevel inverter . 
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Table 2: Switching angles and THD for a 9-level multilevel inverter . 
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Table 3: Switching angles and THD for an 11-level multilevel inverter . 
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Table 3. Continued . 
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Set3 

81 82 83 84 Os THD 

.1 

.4 

.4 

·-

·-

.540 

.548 

·--

·-

·-'

1 

(: 14 

-

18 

. 1 

. -

. -

1 

" 

. , ... 

.x1 

19.92 

. ,4 

( 

_ .... ] 1 

... .

-

1 

39.31 

-

- . -

� 

-

_1 

No Solution 

o Solution

o Solution

No Solution 

No Solution 

No Solution 

o Soluti n

56.61 63.62 88.20 8.29 

i 

4 .. ' 

4 ;, ... ' -

-.. ,8 .... 

_... 8 - ... ... ( 

.. ... 

1 .. ... 

I 

No Solution 

No Solution 

1 i 

120 

I 
I 

I 

I 



Table 4: Switching angles and THO for a 13-level multilevel inverter. 
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Table 4. Continued .

• 
Switching Angles (Degrees) and THD (%) 
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