
University of Tennessee, Knoxville University of Tennessee, Knoxville

TRACE: Tennessee Research and Creative TRACE: Tennessee Research and Creative

Exchange Exchange

Masters Theses Graduate School

5-2004

Sparse Matrix Sparse Vector Multiplication using Parallel and Sparse Matrix Sparse Vector Multiplication using Parallel and

Reconfigurable Computing Reconfigurable Computing

Kirk Andrew Baugher
University of Tennessee

Follow this and additional works at: https://trace.tennessee.edu/utk_gradthes

 Part of the Electrical and Computer Engineering Commons

Recommended Citation Recommended Citation
Baugher, Kirk Andrew, "Sparse Matrix Sparse Vector Multiplication using Parallel and Reconfigurable
Computing. " Master's Thesis, University of Tennessee, 2004.
https://trace.tennessee.edu/utk_gradthes/4651

This Thesis is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and
Creative Exchange. It has been accepted for inclusion in Masters Theses by an authorized administrator of TRACE:
Tennessee Research and Creative Exchange. For more information, please contact trace@utk.edu.

https://trace.tennessee.edu/
https://trace.tennessee.edu/
https://trace.tennessee.edu/utk_gradthes
https://trace.tennessee.edu/utk-grad
https://trace.tennessee.edu/utk_gradthes?utm_source=trace.tennessee.edu%2Futk_gradthes%2F4651&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=trace.tennessee.edu%2Futk_gradthes%2F4651&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:trace@utk.edu

To the Graduate Council:

I am submitting herewith a thesis written by Kirk Andrew Baugher entitled "Sparse Matrix Sparse

Vector Multiplication using Parallel and Reconfigurable Computing." I have examined the final

electronic copy of this thesis for form and content and recommend that it be accepted in partial

fulfillment of the requirements for the degree of Master of Science, with a major in Electrical

Engineering.

Gregory D. Peterson, Major Professor

We have read this thesis and recommend its acceptance:

Donald W. Bouldin, Kwai L. Wong

Accepted for the Council:

Carolyn R. Hodges

Vice Provost and Dean of the Graduate School

(Original signatures are on file with official student records.)

To the Graduate Council:
I am submitting herewith a thesis written by Kirk Andrew Baugher entitled "Sparse Matrix Sparse Vector Multiplication using Parallel and Reconfigurable Computing." I have examined the final paper copy of this thesis for form and content and recommend that it be accepted in partial fulfillment of the requirements for the degree of Master of Science, with a major in Electrical Engineering. � tJ �

Dr. G egory D. Peterson, Major Professor
We have read this thesis and recommend its acceptance:
cJ�V.� Dr��-Dr. Kwai L. ong

Accepted for the Council:

Sparse Matrix Sparse Vector Multiplication using Parallel and Reconfigurable
Computing

A Thesis
Presented for the
Master of Science

Degree
The University of Tennessee

Kirk Andrew Baugher
May 2004

Dedication

This thesis is dedicated to my loving wife and our families for their motivation

and support, which has inspired me to push my goals higher and obtain them.

11

Acknowledgements

I wish to thank all of those who have helped me along my journey of completing

my Master of Science degree in Electrical Engineering. I would especially like to thank

Dr. Peterson for his patience, guidance, wisdom, and support for me in obtaining my

degree. I would like to thank Dr. Bouldin for exposing me to microelectronic design and

for serving on my committee. I would also like to thank Dr. Wong for his support and

guidance and also serving on my committee. In thanking Dr. Wong, I wish to also thank

him on behalf of the Joint Institute for Computational Science in Oak Ridge for making

all of this happen by their support through graduate school. Finally, I wish to thank my

peers who have encouraged and helped me make this all possible.

111

Abstract

The purpose of this thesis is to provide analysis and insight into the
implementation of sparse matrix sparse vector multiplication on a reconfigurable parallel
computing platform. Common implementations of sparse matrix sparse vector
multiplication are completed by unary processors or parallel platforms today. Unary
processor implementations are limited by their sequential solution of the problem while
parallel implementations suffer from communication delays and load balancing issues
when preprocessing techniques are not used or unavailable. By exploiting the
deficiencies in sparse matrix sparse vector multiplication on a typical unary processor as
a strength of parallelism on an Field Programmable Gate Array (FPGA), the potential
performance improvements and tradeoffs for shifting the operation to hardware assisted
implementation will be evaluated. This will simply be accomplished through multiple
collaborating processes designed on an FPGA.

lV

Table of Contents
Chapter Page 1 Introduction ... 1
2 Background ... 4 2.1 Double Precision Floating-Point 4 2.2 Sparse Representation ... 6 2.3 Sparse Matrix Sparse Vector Multiplication ... 9 2.4 Field Programmable Gate Arrays .. 11 2.5 Pilchard System ... 12 2.6 Computing Platform .. 13
3 Analysis of Related Work ... 14 3.1 Floating Point Multiplication and Addition on FPGAs .. 14 3 .2 Sparse Matrix Vector Multiplication on FPGAs 15 3 .3 Sparse Matrix Vector Multiplication on a Unary Processor 16 3 .4 Sparse Matrix Vector Multiplication on Parallel Processors 16 3 .5 Sparse Matrix and Sparse Matrix Sparse Vector Multiplication 18
4 Design Approach ... 19 4 .1 Assumptions .. 19 4.1.1 Limited IEEE 754 Format Support ... 19 4.1.2 Use of Compressed Row Scheme ... 20 4.1.3 Sparse Matrix and Sparse Vectors .. 20 4.1.4 Generic Design Approach ... 20 4.1.5 No Pre-Processing ... 21 4.1.6 Addressable Range .. 21 4.2 Analysis of the Problem .. 21 4.3 Analysis of Hardware Limitations 22 4.4 Partitioning of the Problem ... 25 4.4.1 Transmission of Data .. 26 4.4.2 Logic Flow .. 30 4.4.3 Comparing of Addresses 31 4.4.4 Multiply Accumulator ... 32 4.5 FPGA Design .. 33 4.5.1 Pilchard System Interface 37 4.5.2 State Machine .. 40 4.5.3 Comparators .. 45 4.5.4 Multiply Accumulator Interface .. 51 4.5.5 Double Precision Floating-Point Multiplier and Adder 54 4.5.6 C code interface ... 57
5 Results ... 63 5 .1 Comparison of Results .. 63 5.2 Difficulties ... 76

V

5.2.1 Pcore Interface ... 76 5.2.2 Memory and 1/0 Constraints ... 77 5.2.3 Logic Glitch ... 79
6 Conclusions and Future Work ... 81 6.1 Hardware Improvements ... 81 6.2 FPGA Architecture Improvement ... 83 6.3 Algorithmic Improvements ... 84 6.4 Future Applications ... 87 6.5 Conclusion ... 88
References ... 91
Appendices .. 94
Vita .. 206

VI

Table
2.1

List of Tables
Page

Floating-Point Value Range .. 5

Vll

List of Figures
Figure Page 2.1 Floating-Point Representation ... 4 2.2 Irregular Sparse Matrix ... 6 2.3 Structured Sparse Matrix ... 6 2.4 Sparse Matrix .. 7 2.5 Sparse Vector .. 8 2.6 Sparse Matrix Sparse Vector Multiplication ... 10 2.7 Sparse Vector Multiplication .. 10 2.8 Pilchard System ... 13 4.1 Memory Bus to Pilchard: Behavioral View .. 23 4.2 Basic Architecture ... 26 4.3 FPGA Design Flow ... 35 4.4 Design Overview on FPGA ... 36 4.5 Detailed Architectural View of Sparse Matrix Sparse Vector Multiplier 38 4.6 Pcore .. 39 4.7 FPGA State Machine ... 41 4.8 Comparator System ... 46 4.9 Dynamic Scheduler Before any Matches .. 47 4.10 Dynamic Scheduler After 3 Matches .. 48 4.11 Dynamic Scheduler After Another 3 Matches .. 48 4.12 Fourteen Bit Hit Vector ... 49 4.13 Fifty-six Bit Hit Vector ... 50 4.14 Hit Vector with Over Bit ... 50 4.15 MAC Interface ... 51 4.16 Floating-Point Multiplier Flow Chart ... 56 4.17 Floating-Point Adder Flow Chart .. 58 4.18 C Code State Machine ... 60 5.1 Data Set Performances .. 65 5.2 Data Set Performances (Log Scale) .. 65 5.3 Performance to Hits ... 66 5.4 Performance to Hits (Log Scale) ... 67 5.5 CPU Compares to Performance .. 68 5.6 CPU Compares to Performance (Log Scale) ... 68 5. 7 Performance to Psi .. 69 5.8 Performance to Psi (Log Scale) ... 70 5.9 Nonzero to Performance ... 71 5.10 Nonzeros to Performance (Log Scale) .. 71 5.11 Vector Loads to FPGA Performance .. 72 5.12 Compares per Dataset .. 73 5.13 Compares per Dataset (Log Scale) .. 74 5.14 Percentage of Theoretical MFLOPS Achieved ... 75 5.15 Percentage of Theoretical MFLOPS Achieved (Log Scale) 75

Vlll

Chapter 1

Introduction

The implementation of sparse matrix sparse vector multiplication on a
reconfigurable computing platform provides a unique solution to limitations often
encountered in software programming. Typical software programming languages such as
C, C++, and Fortran are usually used in scientific computing applications. The drawback
to using such software languages as the primary method of solving systems or systems of
equations is due to the fact that they are all executed in a sequential fashion.

Many applications based on software languages such as C, C++, or Fortran can all
be implemented in some fashion on parallel machines to help improve their performance.
This can be accomplished using parallel platforms such as MPI [1] or PVM [2]. While
using these parallel tools to implement sparse matrix sparse vector multiplication can
improve the computational performance, a cost is paid for communication over the
network of parallel machines. In addition to the parallel communication cost, efficiently
distributing the workload between machines can be challenging. When designing parallel
architectures, the problem must be broken down into the ideal granularity to distribute
between machines to achieve the best possible load balance. Unfortunately, if the sparse
matrix is structured and that structure is unknown before designing the system, there is no
way of achieving optimal load balance without dynamic scheduling of tasks. While

- . dynamic scheduling may then improve performance, its overhead also cuts into
performance.

1

In this thesis, the focus will be towards the performance of one processor
accompanied by an FPGA compared to a stand-alone processor. The limited focus of
performance comparisons is due to two reasons: the complexities of designing a parallel
computer architecture specifically for this comparison is too costly, and if the FPGA
assisted processor yields better performance versus one processor, then the scaling factor
of both systems to parallel machines could debatably be equivalent provided that
identical parallelization schemes benefit both designs equally.

The type of data supported for the sparse matrix sparse.vector multiplication is
double precision floating-point. This data type corresponds to usage for real scientific
applications using sparse matrix sparse vector multiplication as scientific computations
are typically concerned about data precision and accuracy. This way more reasonable
performance measures can be obtained for actual computation times providing a level of
realism and not just theoretical or simulated results. The particular format for the double
precision floating-point type values used is the IEEE 754 standard [3]. The IEEE
standard is recognized worldwide and is a logical choice for use as a standard to represent
the floating-point values used here. The difficulty in using double precision floating­
point format is the bandwidth that the data type commands as it uses 64-bits to represent
one piece of data putting a strain on 1/0 and memory.

The following chapter will provide background into the IEEE 7 54 floating-point
standard representation, floating-point multiplication and accumulation, sparse matrix
and sparse vector representation, FPGAs, the Pilchard System [4], and the computer
system used. The remaining chapters will discuss areas of related work, the overall

2

design approach, results, future work, and conclusions describing the successes and

difficulties of this design approach.

3

Chapter 2

Background

2.1 Double Precision Floating-Point

For double precision floating-point data the IEEE 754 format was utilized. It is
important that format be defined as it has implications for the double precision values'
representation in C to its binary representation in memory and in the FPGA. This format
then ensures compatibility so long as the compiler used for the software code supports the
IEEE 754 double precision floating-point standard.

The double precision standard calls for values to be represented by a specific 64-
bit structure. As can be seen in Figure 2.1 below, the binary structure is broken up into
three sections, the sign bit, exponential bits, and fraction bits. The exponential bit range
is 11-bits in width while the fraction is represented by 52-bits of precision. The exponent
is biased by 1023, i.e. if the exponent field equals 1023, the value's actual exponent
equals 0.

s - sign bit
e - exponential bits
f - fraction bits

1 11 52 . .. widths
s e f

,---...,-..--------1
_________ .._ ____________ __, . . . order msb lsb msb lsb

Figure 2.1 - Floating-Point Representation
4

Table 2.1 - Floating-Point Value Range
e f Value

e = 2047 fj0 NaN
e = 2047 f = 0

0 <e <2047 Don't care
e = 0 f;t0
e = 0 f = 0

(-1)500
(- I)5 2e-tuL.5(1 •f)
(- I)5 Tl ULL(0•f)

0

Depending on the value of the three components, the value of the floating-point
number is determined by Table 2.1. In general the formula used to represent a number
from its binary floating-point representation is

V =(-l)s • 1. { [f (22) 22 + f(2l) 21 + ... + f (O)o] • r23 } • 2(e-1023)

The leading I is an implied I that is added to the exponent. An example of going from
scientific notation to binary floating-point representation is below:

If converting 1.1 e I to its 64-bit double precision floating-point value
I . Convert 1.1 e I to its decimal representation = 11
2. Convert 11 to its binary representation = IO 11
3. The leading bit is the implied 1 automatically added to the exponent,

therefore move the decimal left just to the right of the leading 1
= 1.011

4. Since the decimal was moved 3 times, e = 3
5. Add the bias of I 023 to e and convert to binary = I 0000000010

5

6. Now the

f = 0ll000

and it is positive so s = 0

7. v =

0 10000000010 011000

2.2 Sparse Representation

Sparse matrices or vectors can be defined as a matrix or vector that is sparsely

filled with nonzero data. So for example, a matrix may have only 10% of its elements

filled with nonzeros. Due to this large amount of nonzero values, it is not practical to

spend time operating or accessing zeros; therefore, special methods or representations

have been designed to compress their storage of data. In short, sparse matrices and

vectors can be described such that; given the number of elements in the matrix or vector

that are zero, the use of special measures to index the matrices or vectors becomes ideal

[5]. Some sparse matrices can be structured where the data appears to have some sort of

pattern while other sparse matrices are irregular and therefore have no pattern. By

viewing the following two figures, Figure 2.3 has a diagonal pattern while Figure 2.2 has

no such pattern.

1

10

Figure 2.2 - Irregular Sparse Matrix Figure 2.3 - Structured Sparse Matrix

6

10 4 -1

-4 9 -1
8 3 -1

1 -3 7
1 6 2

1 -2 5

Figure 2.4 - Sparse Matrix

Because these structures are filled with a high percentage of zeros, it is best to use

a format to only represent the nonzero values so time and memory space are not wasted

on processing or storing zeros. Some popular formats for storing sparse matrices and

vectors are the Compressed Row, Compressed Column, and Coordinate Storage Schemes

(CRS, CCS, CSS) [6]. The matrix in Figure 2.4 above would have the following

representations for these three schemes:

Compressed Row Scheme
Val(i) = (10,4,-l ,-4,9,-1,8,3,-1, 1,-3, 7, 1,6,2, 1,-2,5)
Col(i) = (0,2,3,0, 1,4, 1,3,5,0,2,5, 1,4,5,2,4,5)
Rowptr = (0,3,6,9,12,l5,18)

Compressed Column Scheme
Val(i) = (10,-4, 1,9,8, 1,4,-3, l,-1,3,-l ,6,-2,-1,7,2,5)
Row(i) = (0, 1,3, l ,2,4,0,3,5,0,2, 1,4,5,2,3,4,5)
Colptr(i) = (0,3,6,9, 11, 14, 18)

Coordinate Storage Scheme
V al(i) = (10,4,-l ,-4,9,-l ,8,3,-l, 1,-3, 7, 1,6,2, 1,-2,5)
Row(i) =(0,0,0,l,l,l,2,2,2,3,3,3,4,4,4,5,5,5)
Col(i) = (0,2,3,0, 1,4, l ,3,5,0,2,5,2,4,5,2,4,5)

The Coordinate Storage Scheme is a typical representation of a matrix with the

data represented from left to right and top to bottom in three storage arrays. The arrays

hold the column, row, and values each. The Compressed Row Scheme stores the values

7

and column addresses in two separate arrays in the same order as the Coordinate Storage
Scheme, except the row pointer, or "Rowptr", array stores the index of the first number in
each row of the value array. As can be observed, less storage room is necessary when
using the row pointer array versus a full row array as in the Coordinate Storage Scheme.
This can become very important as the number of data become large. The Compressed
Column Scheme works like the Compressed Row Scheme except that values are stored
with respect to column order, the row values are stored in an array, and it has a column
pointer array instead of row pointer array.

The most popular storage format typically used with sparse matrix sparse vector
multiplication is the Compressed Row Scheme as it lends itself well to coding and
memory access for improved performance with respect to this problem. An advantage of
using these schemes is that pointer indexing can be used for the arrays, which is faster for
indexing large arrays than actual array indexing if programming in C. Because of this
advantage, linked lists are usually not used with large arrays.

Storage for a sparse vector is simpler than for matrices because it only requires
two arrays to store information instead of three. One array stores the values while the
other array stores the value's vector address. This can be seen in Figure 2.5 below.

I Val(i) = (1,2,3) Row(i) = (0,3,4)

Figure 2.5 - Sparse Vector
8

2.3 Sparse Matrix Sparse Vector Multiplication

Sparse Matrix Sparse Vector Multiplication is simply the multiplication of a
sparse matrix by a sparse vector. The general format follows typical matrix vector
multiplication except that it would be a waste of time to multiply zeros by any number.
Figure 2.6 illustrates this dilemma. To handle this implementation, a storage scheme is
used to hold the data for the sparse structures. Due to the storage scheming, matrix
vector multiplication is no longer a straightforward operation. The column address of the
current row of a matrix being multiplied must correspond with an existing row address of
the vector. If there is a match, then the two corresponding values can be multiplied
together. This situation can be observed in Figure 2. 7. If the first row of the sparse
matrix from Figure 2.4 was multiplied by the sparse vector in Figure 2.5, the resulting
answer would be 1 O* 1 + -1 *2 = 8. The C code to implement this was derived from the
algorithm for sparse matrix vector multiplication, where the vector is dense and
Compressed Row Scheme is used. The colG) array is the column address array for the
sparse matrix and directly maps to the matrices matching value in the dense vector.

Do I = 1 to number of rows Sum(I) = 0 Do j = Rowptr(I) to Rowptr(I+ 1)-1 Sum(I) = Sum(I) + matrixG)*vector(colG)) End Do End Do
Because the vector is sparse in the case of this thesis, the matrix value's column

address must be compared to the vector's row_ address and cannot be directly mapped as
above. If the matrix address is less than the vector address, then the next matrix value's
address needs to be compared. If the matrix value's address is greater than the vector

9

Address

Data

Matrix Vector

• • • • • • • • • X
• • • • • • • •

Figure 2.6 - Sparse Matrix Sparse Vector Multiplication

Vector
Address Data

0 2.1e1

7 1e3

Vector 100 4.1e1

1 5 100 205 278 567 610 891 150 1e2

lel 2e2 5.1e2 1.1e2 7.4e1 2.leC 8.9e3 9.1e4 X 333 3.2e3

610 le0

761
I

7.6e1
I

900
I

7.lell

Figure 2. 7 - Sparse Vector Multiplication
10

address', then the next vector value's address must be retrieved. If they both match, then
they are obviously multiplied together. This algorithm can be seen in the Appendix B
and is the C code that will be compared against the FPGA assisted processor.

The large amount of comparing necessary to implement the sparse matrix sparse
vector multiplication is where the sequential nature of software programming becomes a
weakness. Unfortunately for this algorithm, no optimization exists for an implementation
used for both structured and irregular sparse matrices. Specific algorithms can be created
for the optimization of structured sparse matrices but such an approach is beyond the
scope of this thesis. The critical question however is how often do address matches
typically occur; however, this cannot be answered unless the sparse matrix and vector
formats are known in advance, which affects the load balance of the problem.
2.4 Field Programmable Gate Arrays

Field Programmable Gate Arrays or FPGAs are prefabricated rows of transistor
and logic level gates attached to electronically programmable switches on a chip. To
program an FPGA, many different tools exist to accomplish such a task. Typically a
Hardware Description Language (HDL) is used to describe the behavioral and register
transfer level (RTL) of the FPGA. VHDL or Verilog are the two most popular used
hardware description languages. Programming an FPGA involves the development of
"processes". A process is essentially a set of digital logic that continuously runs.
Creating multiple processes on one FPGA in essence creates a parallel architecture on a
chip that handles information on a bit or signal level. The ability to create multiple
processes all running simultaneously sharing and computing information on a bit level
gives FPGAs the capability to handle the processing of specific problems efficiently. The 11

more gates or transistors that are on one FPGA, the more data an FPGA can process at
one time. Because FPGAs are electronically reprogrammable, designs can quickly be
loaded, erased, and upgraded provided that designs have already been developed. Due to
the portable nature ofHDLs, HDL designs can be used on many different FPGAs.

The use of FPGAs when improving existing problems is usually targeted to
exploit any and all redundancy and maximize parallelism through multiple processes.
This allows the use of FPGAs to out perform software programs where processing large
amounts of redundant information or parallelism can be exploited. Depending on the
complexity of the design, interfacing and synchronizing multiple processes can be
difficult. If used correctly, FPGAs could demonstrate beneficial performance
improvements.
2.5 Pilchard System

The Pilchard System [4] is an FPGA based platform that was developed by the
Chinese University of Hong Kong to add FPGA functionality to an existing computer.
While other systems that add FPGA functionality to computers utilize the PCI bus of a
computer to interface with an FPGA, the Pilchard System uses the memory bus.
Essentially an FPGA has been placed on a board which fits into a DIMM memory slot on
a computer and can be accessed using special read and write functions in C as if writing
and reading to and from the computer's main memory. The advantage the Pilchard
System provides is the use of the faster memory bus over the slower PCI bus, which
allows for higher communication speeds in data processing.

The Pilchard System has a relatively light interface that helps HDL programmers
spend less time learning the system and allows for more room on the FPGA to be

12

Figure 2.8 - Pilchard System

utilized. The Pilchard System in use has a Xilinx Virtex 1000-E FPGA on the board.

Figure 2.8 is a picture of the Pilchard System.

2.6 Computing Platform

The computing platform used to compare performance between the FPGA

assisted computer and the computer performing the software-only sparse matrix sparse

vector multiplication, were kept the same. The computer system used has a 933 MHz

Pentium III processor with a 64-bit memory bus of 133 MHz that the Pilchard System has

access to. The operating system is Mandrake Linux version 8. 1 with a Linux kernel no

later than version 2.4.8. The C gee compiler is version 2.96 and the C library version is

Glibc 2.2.4.

13

Chapter 3

Analysis of Related Work

3.1 Floating Point Multiplication and Addition on FPGAs

In the early stages of FPGA development and usage exploration, it was deemed

that FPGAs were not suitable for floating-point operations. This was mainly due to the

low density of early FPGAs being unable to meet the high demands of resources by

floating-point operations [8]. Floating-point operations involve separate processes to

handle the exponents, sign values, and fractions. These operations must normalize

portions of the floating-point data as well.

Shirazi, Walters, and Athanas [8], demonstrated that FPGAs became a viable

medium for floating-point operations in 1995 as Moore's Law had time to alter the FPGA

landscape. Designs were created that supported eighteen and sixteen floating-point

adders/subtractors, multipliers, and dividers. Shirazi, et al., reported tested speeds of 10

MHz in their improved methods for handling addition/subtraction and multiplication all

using three stage pipelines. The multiplier had to be placed on two Xilinx 4010 FPGAs.

Seven years later in 2002, Lienhard, Kugel, and Manner [9] demonstrated the

ability of current FPGA technology of that time and its profound effect on floating-point

operations conducted on FPGAs. Essentially Moore's Law had continued to provide

greater chip density as faster silicon was being produced. These authors reported design

frequencies ranging from 70 to 90 MHz for signed addition and 60 to 7 5 MHz for

. multiplication.

14

In comparing the improvements in floating-point calculations over the last several
years, it as become apparent that floating-point operations can be done efficiently and
effectively thus lending them for co-processor uses.
3.2 Sparse Matrix Vector Multiplication on FPGAs

Sparse matrix vector multiplication is the multiplication of a sparse matrix and a
dense vector. Minimal work has actually been documented in applying this to FPGAs.
The need always exists for faster methods of handling sparse matrix vector
multiplication; however, the lack of information involving FPGA implementations leads
to minimal information regarding possible future implementations.

ElGindy and Shue [10] implemented a sparse matrix vector multiplier on an
FPGA based platform. In their research they used the PCI-Pamette, which is a PCI
board, developed by Compaq that houses five FPGAs with two SRAMs connected to two
of the FPGAs. The implementations explored used one to three multipliers and the
problem is described as a bin-packing problem. The bin-packing side of the problem is
handled by preprocessing on the host computer and the constant, or vector values are
stored before computation times are observed. When comparing results obtained, the
single multiplier is outperformed by the other two methods and by software. All of the
execution times grew quadratically as the size of the matrix grew, giving the performance
an O(n)2 appearance. The dual multiplier saw results close to that of the software
multiplier and the triple multiplier showed some improvements in performance over the
software multiplier. Performance was measured in clock ticks with the triple multiplier
taking roughly 200 clocks, the software and dual multipliers were around 50% slower and
the single multiplier was almost 4 times as slow as the triple multiplier. How these 15

multipliers are developed is not discussed in any detail. The performances of the FPGA
based implementations are only given for the core multiplication. No information is
provided as to how the preprocessing times affect results and if preprocessing is also
done for the software version.
3.3 Sparse Matrix Vector Multiplication on a Unary Processor

Sparse matrix vector multiplication on a single processor is widely used in
scientific computing, and circuit simulations among various other fields. Even though
the use of sparse matrix vector multiplication varies widely across industries, the basic
form remains unchanged. Wong [6] provides a simple model to compute sparse matrix
vector multiplication in compressed row storage and compressed column storage formats.
The very same format can be seen in multiple resources found through Netlib.org [11], a
major website that provides vast amounts of efficient computing algorithms in various
programming languages. The formula driving this algorithm was previously mentioned
in section 2.3 in compressed row storage. This algorithm simply uses a column address
(assuming compressed row storage) from the sparse matrix to pull the appropriate vector
data out for multiplication and accumulation, and can be performed in O(n) time where n
represents the number of nonzero elements in the sparse matrix. No more efficient
implementation of this algorithm has been found for sequential designs.
3.4 Sparse Matrix Vector Multiplication on Parallel Processors

Implementing sparse matrix vector multiplication on parallel processors has been
done with success. In general, the problem is distributed by rows of the sparse matrix
across the parallel processors. Wellein et al [12] demonstrated that use of parallel

16

machines could provide performance improvements that improve linearly with the
number of processors added to the overall design. Performance was measured in
gigaflops. Some of the machines that were used were vector computers and current
supercomputers such as SGI Origin3800, NEC SX5e, and Cray T3E to name a few.

Gropp, et al., [13] provide ways of analyzing realistic performance that can be
achieved on processors and parallel processors by simply evaluating the memory bus
bandwidth available. They simply state that the sparse matrix vector multiplication
algorithm is a mismatch for today's typical computer architecture as can be seen by the
low percentage of performance observed to peak performance available by processors.

Geus and Rollin [14]evaluated the problem to improve eigenvalue solution
performance. Eigenvalue problems can compute sparse matrix vector multiplication
"several thousand times" for large sparse matrices and thus take up "80 to 95% of the
computation time." Performance speedup was achieved by "pipelining the software" by
forcing the compiler to prefetch data. Matrix reordering and register blocking found
some additional improvements as well. The additions help improve performance in an
assisted sense. The same preprocessing techniques can be implemented in applying
designs to an FPGA. What makes Geus and Rollins' research applicable is their
application of their parallel implementation on more standard parallel computing
platforms. The workload was again distributed by rows, more specifically in this case,
blocks of rows per processor. Performance improvements were seen from 48% (DEC
Alpha) to 151 % (IBM SP2). These results also demonstrated that the inherent problem
scales well.

1 7

3.5 Sparse Matrix and Sparse Matrix Sparse Vector Multiplication

Virtually no resources are available in this area for reference, let alone discovery;

however, the need exists for scientific computations. These computations are used in

Iterative Solver [15] methods, Eigenvalue problems [6], and Conjugate Gradient methods

[6]. Khoury [15] also stated the lack of existing information regarding this area. Khoury

needed sparse matrix multiplication in solving blocked bidiagonal linear systems through

cyclic reduction. Khoury had to develop a sparse matrix multiplication method due to

being unable to find resources supporting such areas. Unfortunately, Khoury' s results

were skewed due to compilers unoptimizing the design and the heap not being cleaned

appropriately.

Sparse matrix multiplication is an area of interest; however, due to the very core

of its operation being sparse vector multiplication. Sparse vector multiplication is also

the basis behind sparse matrix sparse vector multiplication. Sparse matrix sparse vector

multiplication can then be looked as a core component of sparse matrix multiplication. In

speeding up sparse matrix sparse vector multiplication, sparse matrix multiplication can

be sped up as a result.

1 8

Chapter 4

Design Approach

The flow of the design process involves making assumptions and providing an in­
depth analysis of the problem. In observing the big picture considering sparse matrix
sparse vector multiplication running in software on a stand-alone processor, the biggest
possible limitation was considered to involve the sequential compares. Due to this
observation, the FPGA design was built around the parallelization of the compares and
the supporting components. The following sections will discuss the assumptions made,
analysis of the problem, analysis of the hardware limitations, detailed partitioning of the
problem, and design of the implementation on a FPGA.
4.1 Assumptions

To help constrain the problem to reasonable limitations to allow for an effective
implementation of sparse matrix sparse vector multiplication, some necessary
assumptions are required. All assumptions made apply to both the HDL and to the C
algorithm used except where an assumption can only apply to the HDL.
4.1.1 Limited IEEE 754 Format Support

In the design of the floating-point multiplier and accumulator, support is not given
to all features of the standard. The floating-point multiplier and adder can at the least
handle, NaN, zero, and infinite valued results but that is all. Neither of the two support
rounding, invalid operations, or exceptions including the handling of underflow and
overflow. Overflow should not be an issue since rounding is not supported. Invalid
operations are those such that there is a divide by zero, magnitude subtraction by

19

infinites, and an operation involving a NaN among other scenarios. A full list can be
found in the IEEE 7 54 Standard.
4.1 .2 Use of Compressed Row Scheme

The assumption is made that all sparse matrices used are formatted using the
Compressed Row Scheme. This is so there are no discrepancies in performance of data
that use different storage format schemes. This constraint also helps simplify the design
process by limiting the support to one input format. The storage scheme will be
combined with only using the C programming language to eliminate performance
discrepancies across various programming languages.
4.1 .3 Sparse Matrix and Sparse Vectors

It is assumed that the design involved in this scope of work is to improve
performance of sparse matrix sparse vector multiplication. All matrix and vector
structures that are not sparse will not have competitive performance results as that is out
of the design scope; however, the ability for dense matrices and vectors to be solved will
be available. This is necessary as a portion of a sparse matrix and sparse vector
multiplication could have the potential of appearing dense. Since this possibility is
supported, dense matrix vector multiplication can be accomplished but with a significant
cost in performance. Dense matrices and vectors are still expected to conform to the
Compressed Row Scheme.
4.1 .4 Generic Design Approach

In the consideration and design of this sparse matrix sparse vector multiplication
algorithm, a general approach towards the possible sparse matrix structure is assumed.
Due to the vast types of structured sparse matrices, many designs would be necessary to

20

cover them all. This design is to have the capability to solve any type of sparse matrix.
This also makes the assumption that no optimizations are made towards any particular
sparse matrix structure such that it might reduce the performance of a different structured
sparse matrix.
4.1 .5 No Pre-Processing

It is also assumed that no pre-processing of matrices or vectors will take place. It
is recognized that pre-processing of sparse matrices and even sparse vectors can help
improve performance; however, the implementation would then be constrained to one
particular type of sparse matrix sparse vector multiplication. That would defeat the
purpose of not optimizing for any one particular type of sparse matrix structure.
4.1 .6 Addressable Range

The addressable range for data will be limited by 32-bits in any one particular
dimension. This means the potential address span of a matrix could be 4,294,967,296 by
4,294,967,296. The vector address range must also be able to support up to a 32-bit
address value.
4.2 Analysis of the Problem

In analyzing the overall problem to solve the multiplication of sparse matrices
with sparse vectors, one key critical area appears to allow for the most improvement
given the sequential nature of the C programming language. This important area is the
penalty paid by the C program if the address values for a matrix and vector value do not
match. When this occurs, the program must then begin searching through the next
address values of the matrix or vector, comparing the addresses one-by-one until a match
is found or no match can exist. This searching adds another nested for loop to the

21

algorithm thus creating a potential O(n
3
) worst case scenario to solve the matrix vector

multiplication. It is this main point that the FPGA design will focus upon.

As mentioned earlier, the sequential nature of the C code prevents the algorithm

from handling concurrency in the processing of a piece of data multiple times at once.

The more parallelism that can be explored and put to use in the FPGA design, the greater

the benefit can become for using an FPGA.

4.3 Analysis of Hardware Limitations

The hardware limitations imposed by the equipment being used is important to

mention, because it ultimately has a significant impact on the overall design. Limitations

can be found on the FPGA, Pilchard System, Memory Bus, and Computer system used

with the underlying theme of memory limitations.

The FPGA used, the Xilinx Virtex 1000-E, has its own limitations being

resources. This FPGA part has approximately 1.5 million gates, 12,288 slices and 4Kbits

of block RAM. While this may appear like plenty, the double precision multiply

accumulator uses 26% of the available slices, 18% of the FF Slices, 21% of the LUTs,

and 120,000 gates. If using Dual Port RAM [16] IP from Xilinx to hold data leaving and

entering the Pilchard System as is customarily done, that will cost over 70,000 gates.

Very quickly 20-25% of the FPGA's resources have been used as an absolute minimum

for the sparse matrix sparse vector multiplication design to work with. While the design

will likely fit, room for improvements like adding an additional adder or even multiply

accumulator will become difficult if not impossible. Another issue regarding limitations

of the current FPGA is its age. The Xilinx part being used is becoming obsolete, as there

are much larger and faster FPGA parts available today. While how a design is created in

22

HDL has the largest effect on overall system speed, that overall system speed is limited
by the speed of the logic available on the FPGA itself. If a faster and larger chip were to
be available the design would have better performance as more parallel compares could
also fit. The effects the FPGA size and speed has on the overall design will be explored
further in the Results, and Conclusions and Future Work Chapters.

The limitations of the Pilchard System's interface affect the overall 1/0 bandwidth
of the FPGA system. Figure 4.1 below displays a behavioral view of the memory bus
and Pilchard connection. It is highly unlikely that the sparse matrix sparse vector code
design will run at the Pilchard interface's top speed; therefore, it only makes sense to run
the sparse matrix sparse vector multiplication code at half the Pilchard System's speed.
This way for every 2 clocks cycles of the Pilchard, the sparse code can work on twice the
amount of data as it would have been able to if it could have worked at twice the speed.

M B emorv
H,

�,

Pilchard

Pcore

SMSV

us

:

Figure 4.1 - Memory Bus to Pilchard: Behavioral View
23

This then puts more pressure on the Pilchard System's interface to operate at a higher
speed since the code beneath it will be running at half that. Unfortunately, simply
passing information through the Pilchard at its top speed of 133MHz is too difficult for it
to handle. This makes the target top speed for the code underneath it (likely limited by
the floating-point unit speeds) slower than hoped. Due to the Pilchard operating at twice
the clock speed as the sparse operating code, the Pilchard then needs to read in 2 64-bit
values from the memory bus in two clock cycles so that it may send 128-bits for every
sparse code clock cycle. Although the code to handle this is relatively straightforward
and not very complicated, producing results that operate allow the Pilchard to operate at
1 00Mhz will remain a challenge.

An additional limitation of the Pilchard System is the lack of onboard RAM or
cache. This requires that the Pilchard then take the time to access main memory, which is
costly, while the C code has the benefit of being able to take advantage of cache. If the
Pilchard Board were to have onboard RAM and/or cache, the entire vector and extremely
large portions of the matrix could quite possibly be stored right on the board itself, saving
the Pilchard System and sparse matrix sparse vector code time in having to constantly use
and compete for the memory bus for data.

Another major limitation is the memory hus itself. The memory bus operates at
13 3 MHz and is 64-bits wide; therefore only 1 double precision floating-point value can
be passed per bus clock cycle. This will put a significant strain on the memory bus as
potentially thousands to hundred of thousands of double precision values will be passed
along the memory bus alone, not to mention all of the 32-bit address values that need to
be compared. Two 32-bit address values can be passed per clock cycle.

24

4.4 Partitioning of the Problem

With the necessary assumptions made, analysis of the problem completed, and
hardware limitations explored, the problem can then be partitioned. When partitioning a
problem four main factors need to be considered to achieve the best possible load
balance. These factors are decomposition, assignment, orchestration, and mapping [17].
Decomposition involves exposing enough concurrency to exploit parallelism, but not too
much such that the cost of communication begins to outweigh the benefits of parallelism.
Assignment considers the assignment of data to reduce communication between
processors and balance workload, and efficiently interfacing parallel processes is what
orchestration entails. This means reducing communication through data locality,
reducing synchronization costs, and effective task scheduling. Mapping is simply
exploiting existing topology and fitting as many processes on the same processor as
effectively possible.

Altering one of these attributes of a parallel design effects the other attributes.
Ideally some sort of complete balance is achieved between them all. These attributes will
be addressed specifically or implied as the problem is partitioned in the subsequent
sections. The greater the understanding of both the software and hardware issues, the
more effective the partitioning process can be, which leads to a more complete design.
The decomposition and mapping stages are essentially predetermined due to hardware
limitations and data format already being determined. The data has already been
decomposed into 64-bit double precision floating-point values and 32-bit address values.
The only other area of decomposition is in the parallel comparators, which is attempting
to create the maximum number of parallel compares on the FPGA. As for mapping, the

25

goal is for the entire sparse matrix sparse vector architecture to fit on the FPGA chip

provided. The problem will be analyzed with the flow of data as it moves from the

memory bus to the FPGA to the multiply accumulators. Figure 4.2 provides a general

architecture for the possible design.

4.4.1 Transmission of Data

The transmission of data encompasses several different issues. Those issues

include the transmission and storage of the sparse vector, sparse matrix, answers, and any

handshaking if necessary.

In the handling of the sparse vector, consideration must be given towards either

the storage of the vector addresses and vector data, or just the vector addresses. Because

the vector is constantly reused throughout sparse matrix sparse vector multiplication, it

Matrix Vector

R
....

R
�

A Comparator
A

M M

�'

...

MAC
....

Figure 4.2 - Basic Architecture

26

only makes sense to store the vector information and not resend the same information
repeatedly. In determining how much of the sparse vector to store, as much as
reasonably possible should be stored due to the large amount of reuse in the comparison
of matrix column addresses and vector addresses. If only the vector addresses are stored,
it would result in a reduced overhead for storing the vector data; however, it would cost
more to send the vector value when a match is repeatedly found for one vector location.
Consideration could also be given to storing vector values only after a match is found
instead of storing them when they may or may not be needed. The cost for sending the
vector data when needed would ideally be the same as sending the value before knowing
if it is needed. This way unnecessary resources are not spent in transmitting vector
values that will never be needed. The downside to following this path is that the
complexity to handle this format would be increased on both the FPGA side and
supporting C code. Additional logic would be needed to determine if the vector value
exists and how to handle the request of it. The space would have to be available to store
all possible vector values for each address stored so there would be no benefit in memory
reduction, only in overall performance so long as the extra complexity does not negate
the benefits. Both vector address and value could be stored, with the convenience of
having all necessary vector data available at the cost of memory usage. Registers are
inexpensive on an FPGA and thus a large number of vector data could be stored to make
the additional overhead cost worthwhile.

After determining the storage scheme for the sparse vector, it is more than likely
that the entire vector will not fit all at once on the FPGA. This makes the decision of

27

how to store the sparse vector even more important because the more often a new section

of the vector is stored, the more often the vector loading overhead will be incurred.

When sending matrix information over the memory bus to the FPGA, similar

issues are encountered as with the vector transmission, which was determining whether to

send matrix values with the addresses, or just the addresses alone. If matrix addresses

were accompanied by their values, then those values would be readily available to begin

multiplication. If the values were not needed, they would simply be discarded. The

downside to sending the values with addresses is that if the values are not needed then

time was wasted on the bus sending the information. The less matches there are per

compare, the more costly. If considering sending the addresses alone, after a match is

found the matrix value could be requested by the FPGA. While this format may reduce

the waste of matrix value transmissions, some form of handshaking would have to be

introduced to notify the C code what values need to be sent. Unless performed cleverly,

handshaking could be costly and it disrupts any notion of streaming data to the FPGA.

The final area to evaluate in data transmission is how data is transmitted over the

memory bus itself. This partly depends on the storage scheme of vectors and how matrix

information is processed. In regards to sending vector information to the FPGA, if both

vector values and addresses are transmitted then simply transmitting two addresses in one

clock and the corresponding values the next two clock cycles should be efficient. The

memory bus would be utilized to the fullest. If vector values were transmitted as needed

then they would need to be transmitted after a certain number of compares have been

processed. The C code would need to know what vector value(s) to transmit; therefore,

the FPGA would have to initiate some form of handshaking. Upon completion of

28

handshaking, the C code should send only the necessary vector values in the order needed
by the FPGA.

In the former method mentioned of sending vector values with addresses, the data
can simply be streamed in until all vector registers are full. In the latter format, vector
addresses could be streamed in, but values would only be transmitted after some
additional handshaking to notify the C code of what is needed. In general, vector
transmission is a cost only paid when necessary to load up vector data or send vector
values separately.

Most of the bus time will be spent sending matrix information instead of vector
information in the overall scheme of things. Here, two main different methods are
explored, streaming and block transfer. The streaming method is tied to the transmission
of both matrix addresses and values. This could be accomplished by sending two address
values in one memory bus clock cycle followed by two clock cycles of sending the two
corresponding values. The C code and FPGA code should already have a set number of
transmissions before either needing to take any special action.

The block transfer method would send a set number of matrix addresses or block
of addresses, and the FPGA would respond in some manner with a request for matrix
values if there were a match. The C code would then send the correct matrix values for
multiplication. This block transfer process would be repeated as necessary.

In comparing the two different data transmission methods, both have their
advantages and disadvantages. The streaming method requires no loss of time in having
to implement any handshaking. A disadvantage of streaming; however, is that two out of
every three clock cycles are spent sending data that may or may not be needed when most

29

of the time addresses are needed for comparing. The block transfer method does not

waste valuable clock time in transmitting unwanted matrix values, but additional

handshaking is necessary which has its own penalties to be paid. All of these different

methods have their advantages and drawbacks.

4.4.2 Logic Flow

The flow of logic and data must be controlled in some fashion as it enters the

FPGA because there is not enough bandwidth to handle requests for comparison

information, multiply information, handshaking, and answers all simultaneously. The

entire design has one 64-bit bus to utilize therefore the data trafficking must be

controlled. Several different possible states must be considered. Data needs to go to

comparators in some efficient and highly parallel manner, data needs to fill vector

information stored on the FPGA, and data needs to be directed to the multiply

accumulators. Also, the state machine will need to accommodate the ability to send

information back to memory bus for the C code to retrieve. In addition to the state

machine providing all of the necessary states, it must flow between states in a logical

manner and have the capability to jump to any necessary state given any possible

condition. The state machine should also be able to protect the sparse matrix sparse

vector code from operating when it should not. Ideally the state machine will help

improve orchestration between processes. Also, in orchestrating the processes and data

communication, a balanced workload should be strived for by keeping the assignment of

data dispersed appropriately.

30

4.4.3 Comparing of Addresses

As the flow of data moves from the memory bus to the state machine, it should be
sent into a structure to handle parallel comparisons. This is essentially the main reason
for this entire implementation of a sparse matrix sparse vector multiplication. Ideally the
more parallel compares that can be implemented the better; however, a few
considerations need to be made. As the number of simultaneous compares increase, the
more room on the FPGA is used. At the very least, enough space needs to be provided
for a floating-point multiply accumulator as well as minimal control for data flow. To
accommodate greater amounts of concurrent comparators, the capability needs to exist to
handle the possible large amount of data resulting from all of the comparing. One giant
comparator cannot efficiently do all of the comparing at once as it would be too slow, so
the comparing would have to be divided in multiple processes. The more processes
running, the more individual results there are to multiplex. If more than one element of
the matrix is being compared then a matching result can exist for as many elements of the
matrix being compared. This creates a dynamic load balance of results being passed on
to the multiply accumulator. When and how often multiple results will be calculated is
unknown and can make handling the results difficult. Dynamic task scheduling must
then be employed to help balance possible imbalanced results passed on to the multiply
accumulators. The increased complexity becomes very real as parallel comparators are
added and increased in size while trying to achieve optimal performance. In determining
how to handle this portion of the design, a balance needs to be achieved between creating
as many compares as possible, with still being able to provide the means to handle the
results under desired operating speeds.

31

4.4.4 Multiply Accumulator

Performing any kind of matrix vector multiplication requires the use of multiply

accumulation. When a row of a matrix is multiplied to the matching elements of a vector,

all of the multiplication results need to be accumulated for the resulting answer vector's

corresponding element. When performing this operation on sparse matrix sparse vector

data, the essential nature remains the same of needing to multiply values together and

sum those results. Constructing such an architecture to handle this is not as obvious as

handling dense matrices and vectors where maximum parallelization can be achieved due

to the static scheduling nature of information and results. In consideration of sparse

matrix sparse vector multiplication on an FPGA sharing resources, loading balancing

becomes a factor as well as limited real estate for placing MACs.

The effects of an imbalanced load and the uncertainties of the frequency at which

address matching will occur, complicates multiply accumulator design immensely. These

unknowns make it extremely difficult if not impossible to create an optimized

architecture when designing for the general case with capabilities to handle any situation.

The multiply accumulator design must therefore be able to handle dense matrices and

vectors. Obviously performance will suffer heavily for dense data since that is not the

target of the design, but what level of sparseness to target the design, cannot be

determined so it must be prepared to handle all sparseness. The structure of the sparse

matrix and sparse vector also play a part. What is important given the limited design

space is that the "best bang for the buck" is achieved. In other words, in the

determination of how many multipliers and accumulators are to be used; it is desired that

all of the arithmetic units placed on the FPGA stay busy. There is no point in wasting

32

space on the chip if arithmetic units are not used often, because it is all about designing
for the average or general case and getting the most out of what is available or in use.

Another issue to observe when creating the multiply accumulation units is how to
handle answers or the sums created. Ideally, one or multiple answers could be found at
one time. The problem in doing so range from discerning one sum from the next, to
knowing which values in the pipelined adder correspond to what partial sum. Unless
there are multiple multiply accumulator units available to keep track of their own sum,
keeping track of multiple sums would become difficult and complex even though the
capability would be convenient. Traversing an entire row of the matrix and vector to
obtain just one sum would create the need to reload the entire vector per matrix row. This
would become costly due to not maximizing reuse; therefore, the multiply accumulator
must solve for a partial sum for a given row of the answer vector. In simplifying the
work of handling vector storage and reuse, handling partial sums instead of full sums
becomes another complexity to consider. It must then be determined if the FPGA or the
computer keeps track of the partial sums, while keeping in mind that there could be a few
partial sums to thousand upon thousands of them. If handling partial sums, each partial
sum can be sent back out to the CPU to let it finish each sum. As can be seen as the data
flows from the memory bus down to the multiply accumulators into answers, the effects
of each part all tie in to each other and will be put together in one design in the following
section.
4.5 FPGA Design

The architecture of the sparse matrix sparse vector multiplication algorithm
attempts to utilize the partitioning of the problem to the highest degree possible. The 33

overall design has been broken down into six major components, the interface to the

Pilchard System or Pcore, State Machine, Comparators, Multiply Accumulator Interface,

the Double Precision Floating-Point Multiplier and Adder, and the C code that is used to

interface to the Pilchard System from the user side.

In developing these components in HDL, the flow chart in the Figure 4.3 shows

the general design flow process in developing HDL for a FPGA. Essentially, after the

specifications and requirements of a system have been determined, HDL in the form of

behavioral and structural code formats is simulated to check for accuracy. If simulation

provides accurate results, the design is then synthesized and re-simulated, or post­

synthesis simulation. After post-synthesis simulation produces valid results, the design is

place and routed which provides the real design that will go into an FPGA. The place

and routed design is also simulated to check for accuracy. If the design continues to

prove accurate, it is placed on the FPGA for actual implementation. Unfortunately, the

Pilchard System does not currently allow support for simulation after synthesis or place

and route. This deficiency is critical as these simulations can often show design flaws

that pre-synthesis simulation cannot, thus making debugging of actual performance

extremely difficult.

In general, the sparse matrix sparse vector multiplier reads in 128-bits of

information in one clock cycle. With this information, vector addresses and values are

both stored on the FPGA to minimize the complexities of having to request vector values

on an as needed basis. After storing a vector, matrix addresses are compared to vector

addresses in mass parallel. Sending in 56 addresses in one block transfer, 4 separate

matrix addresses per sparse code clock, achieves this block transfer size. The

34

Behavioral Description

System Requirements
Architectural Specifications

Simulation
Design Synthesis

Placement and Routing
Physical Implementation

Figure 4.3 - FPGA Design Flow

35

Structural Description

determination of this block transmit size will be discussed later. When an address value

has exceeded the vector address range, the partial sum for that answer vector element

corresponding to the portion of the vector and matrix is found and the overall design will

proceed to the next row. After a portion of the vector has been compared to all of the

corresponding portions of the matrix rows, the next 32 vector locations are loaded and

compared to the rest of the remaining rows of the matrix. This is repeated until all partial

sums have been found. Figure 4.4 provides a very general description of the design on

the FPGA.

On a more systemic level, after the vector is stored and matrix vector address

comparing begins, the results from the compare matches are encoding with some flags in

the 64-bit output to handshake with the C code. While matches are being found, the

vector values that will be necessary for multiplication are stored in four buffers in the

Peare Com arator

MAC

Figure 4.4 - Design Overview on FPGA

36

SMSVM

V

e

C

t

0
r

order that they will be multiplied. Following the handshaking, all of the matching matrix
values are streamed in for multiplication with their corresponding vector values in one of
two multipliers. Up to two multiply results are then ready to be accumulated per clock.
The adder will then accumulate all of the multiply results and intermediate partial sums
into one consolidated partial sum. There is just one adder to accomplish this. The
following sections describe each portion in detail. Figure 4.5 on the next page offers a
more detailed view of the overall architecture.
4.5.1 Pilchard System Interface

Two main vhdl files, Pilchard.vhd and Pcore.vhd, predominantly handle the
Pilchard System interface. The former helps setup the actual interfacing between the
FPGA pins and Pilchard board to memory bus while the latter is in a sense the wrapper
around all of the supporting sparse matrix sparse vector code design. It is the Pcore file
that needs to be manipulated to accommodate the input and output requirements of the
design to the Pilchard interface for the memory bus. The Pcore operates by receiving a
write and a read signal when there is a request to send information or read information to
and from the Pilchard's FPGA. Also, there are dedicated lines for the input and output of
data as well as address lines if interfacing directly with generated block RAM on the
FPGA. There are other signals available but they are mainly for use with the Pilchard
top-level VHDL file or for external testing and will not be used in this design.

37

p
C
0
R
E

F
I F
0
I

State Machine

Dynamic Task Allocation

F
I F
0
2

F
I F
0
3

F
I F
0
4

__ 6�·- · ····· MULT I

r----6 f ························---··································
.....__

M
_,..
UL

_
T
_

2
____.

MAC
Controller

ADDER

MAC FIFO

Figure 4.5 - Detailed Architectural View of Sparse Matrix Sparse Vector Multiplier

38

p

I

L

C

H

A

R

D

PCORE

R A M

Controller
CLK CLiillIV

Async FIFO

Figure 4.6 - Pcore

SMSVM

When developing the Pcore, the requirements and needs of the underlying system
are important. The necessary components can be seen in Figure 4.6 above. Since the
sparse matrix sparse vector multiplication will be operating on a clock cycle twice as long
as Pcore's clock, it is important that the synchronization between clocks and the
communication of information between those clocks is accurate. To make-up for the
slower speed of the matrix vector multiplication, twice the amount of memory bus data
can be sent to the sparse code to operate on. Pcore will have the capability to read in two
64-bit values in two clock cycles and pass one 128-bit value on to the sparse code in one
sparse code clock cycle. This allows the memory bus to stream data in, while providing a
way to get the information to the sparse matrix sparse vector code on a slower clock.

The difficulty lies in the synchronization of passing the data back and forth
between the top level Pilchard structure and the slower clock of the sparse code. The

39

slower clock is based off of a clock divider from the main clock and will be referred to as

clockdiv. Because the faster clock operates at twice the speed of clockdiv, the 1 28-bits

being passed along to the sparse code needs to be held long enough for the sparse code to

accurately retrieve the 1 28-bits. To accomplish this, an asynchronous FIFO buffer was

generated using Xilinx' s Coregen program. This generated core can handle reading data

on one clock while writing data out on a different clock. Due to the core being available

for professional use, it is reliable and can handle the asynchronous data transfer

effectively. The use of this asynchronous FIFO was a convenient and time saving

solution to handle the memory bus to sparse matrix sparse vector code data transfer.

When passing answers back from the sparse code through the Pcore out of the

FPGA, Xilinx' s Coregen block RAM was used. Using block RAM to output data

ensured that data would be stabilized for the memory bus to read from. This is important

due to interfacing two different clock speeds again. The depth of the RAM was four.

Currently only two locations are in use; however, that can be expanded if desired.

4.5.2 State Machine

The state machine is the main interface to the Pcore when controlling the data

read into the FPGA and also for controlling and monitoring the sparse matrix sparse

vector multiplication process. The different states utilized to accomplish this are:

INITIALIZE, ADDRESS, DATA, PROCESSING, REPORTw, REPORTx, SEND, and

MACN. All states check an input signal called "din _rdy" that when goes high, notifies

everything that valid 1 28-bits of input are available. If this signal is not high, the state

machine simply holds its current status and position. Figure 4. 7 gives a graphical

representation of the state machine.

40

Get data

Vector stored
Now compare

Figure 4.7 - FPGA State Machine

41

The INITIALIZE state is run first and only once. It receives the first writes from

the C code, which notify the state machine of how many rows exist in the matrix. This is

necessary so that the state machine knows when it is handling the last row so it can

transition to appropriate states. After this state, the state machine moves to the

ADDRESS state.

The ADDRESS state receives the address data for the vector and stores the

addresses in registers. Registers are used for storage to help simplify their frequent

access by the compators. Due to the 128-bit input, 4 32-bit addresses can be

simultaneously stored into registers in one clock cycle. After the four addresses are read

from the input, the state machine will transition to the DATA state for the next two clock

cycles.

The DATA state breaks the 128-bit input into 2 64-bit inputs, which represents

vector data, in one clock cycle and stores them into block RAM designated to hold vector

values. Because in the previous state; 4 addresses were read in, the DAT A state is held

for 2 clock cycles so that it will have read in 4 vector values. After reading in 4 vector

values, the state machine transitions back to the ADDRESS state. The transition back

and forth between these two states goes on until 32 vector addresses and values have all

be input into the vector registers. When this is done, the state machine moves on to the

PROCESSING state.

The PROCESSING state constantly reads in matrix addresses for mass parallel

comparing. This state keeps count of how many input values have been read in using a

decrementing counter. The counter allows for 14 block transfers of 4 matrix addresses

42

each. When the counter is zero, the maximum number of address values has been read in
and the state will transition to the REPORTw and REPORTx states.

The two REPORT states are executed successively. The REPORTw stage is the
next stage after PROCESSING, and it buffers the 1 clock delay required to ensure all
comparing is done so the comparator results can be sent to the C code. This one clock
delay is necessary for the transition from REPORTw to REPORTx state. The REPORTw
state is left out of the diagram for simplification. In the REPORTx state, information is
gathered from all of the comparing of addresses. All of this information is used to notify
the C code if there were any address matches, what addresses had matches, if the matrix
addresses went over the current address range stored on the vector, and a special last
address match flag. All of this information must fit into one 64-bit output signal to
simplify the number of clocks of handshaking down to one. Five bits ended up being
extra and are reserved for future use. One bit each is reserved for the match flag, over
flag, and last address match flag. The overflag signals to the C code that a matrix address
wnt past the vector address range. The match flag indicates that there was at least one
match, and the last address match flag indicates if the last bit in the 56-bit encoded
compare result stands for a match if equal to one. This is done for redundancy checking
to ensure the very last bit is transmitted correctly. The remaining 56 bits are used to
encode which matrix addresses matching occurred on. This will be described in the
Comparator section. After reporting the status of compares back to the C code,
depending on the status, the state machine will transition to one of three states: the
MACN, SEND, or back to PROCESSING state. The MACN state has first priority, as it
needs to be next if there were any address matches. The SEND state has second priority

43

meaning if there were no matches and the over flag is high, then a partial sum needs to be

found based on the current data that has been input and calculated to be sent to the C

code. Last priority is given to moving to the PROCESSING state. This is only done if

there were no matches and the over flag has not been set high; therefore, continue

processing more matrix addresses.

If the MACN state is next, all of the matrix values that correspond to matches will

be read in, in order. As these values are read in, they are sent to two multipliers to be

multiplied with their corresponding vector values. Because there is no dedicated signal to

the FPGA to notify it when the C code is done sending matrix values, the C code will

send in all zeros when it is done. This is necessary because the "din _rdy" flag is already

in use to notify the MACN stage if it even needs to be looking for valid input. It is

possible that there may be a delay in sending matrix values to the FPGA; therefore, an

input of all zeros will be acceptable. If the MACN stage receives all zeros as an input, it

knows it is time to move on to the next state. The purpose for sending all zeros as

notification is due to the fact that a zero should never be stored as a matrix value to begin

with because zero values should not be stored, thus providing flexibility in reading

inputs. After reading in all of the input values, the state machine will transfer to the

SEND stage if the over flag is high; otherwise if no answer needs to be sent, go back to

the .PROCESSING state.

In the SEND state, the state machine simply waits for the floating-point multiply

accumulator to find the current partial sum. When the partial sum is ready, the state

machine notifies Pcore that an answer is ready to be sent out from the FPGA. When this

is done, the state machine checks if the flag was set to notify it that the last row of the

44

matrix was being processed. If so, then the state machine needs to go back to the
ADDRESS state to begin loading a new vector; otherwise, the state machine will transfer
back to the PROCESSING state to begin handling another partial sum for a different
matrix row.
4.5.3 Comparators

Each comparator is made up of four parallel compare processes for each of the
four matrix addresses input per clock during the PROCESSING state. Each process
handles 8 compares in one clock cycle for a total of 128 simultaneous compares in one
clock cycle. This is where the strength of the design lies. Figure 4.8 displays the overall
comparator design in its entirety with an individual compare process shown in greater
detail.

For each of the four processes per matrix address, only one match can exist, as all
vector addresses are unique per row. After the initial 32 compares per matrix address are
executed, the four individual process results are multiplexed to check for a match. If
there is a match, several different tasks occur. One task is that the corresponding vector
value for that match is grabbed and sent off to a dynamic task scheduler to handle the
random nature that multiple matches may occur. What the dynamic task scheduler does
is keep all of the matches in order in the four buffers that will feed the two floating-point
multipliers. Each buffer is filled in order as a match is found, so if buffer one is filled
first, buff er two is next. After buffer two, buffer three is next and so on. After buff er
four is filled, the dynamic task scheduler should assign the next matched vector value to
the first buffer. Due to the random matching nature, the next buffer to fill on a clock

45

Input
(1 27->96)

CMPA ... �

�
... CMPB �

1 28
bits

Input
(95->64 I Dynamic r

Input
(63->32)

Input
(3 1 ->0)

.... CMPC .

... CMPD

Task
Scheduler

I
r

.----+

.... -·········
· ··························

··
•········

··· ····· ··································
· ·
·· �·v·····

·····
·····

····

••••••••••••••••••••••••••••••••u•••••••••••••••••••••••••••••.,.,., .. .,.,.,.,., , •• •••••
•••• ., , ••• .. ··- ·

Vector CMPD Addresses
0

8 -+ CMPs

7
8

8 -+ CMPs �
atrix M

A
I

ddr

ut Inp
(127->96)

1 5 r

1 6 MUX

I
r

8
� CMPs

23
24

8 � CMPs

3 1

Figure 4.8 - Comparator System

46

.. r
Dynamic

Task
Scheduler

cycle depends on how many matches the previous clock cycle had and whicl) buffer was

next to have been filled first in that previous clock cycle. Figures 4.9, 4.10, and 4.11

demonstrate this process.

Another task that is completed on a match is the encoding of matching addresses

for the REPORTx state. A 14-bit vector is used for each of the four main sets of

comparators to encode matching information. To break it down, 56 addresses from the

matrix are sent to the FPGA in one block transfer. This means 4 matrix addresses are

used at once for 14 clock cycles. If there is a match for a particular matrix address on the

first of the 14 sends, then the highest bit of its particular vector is assigned a one. If there

was a miss, a zero is put in that bit. As compares are completed the results are encoded

in all 14-bits representing the 14 clock cycles to transmit the block transfer. These

vectors are assigned their values when the four processes for each matrix address are

multiplexed. After the block transfer is done, the four vectors must be rearranged into

Ptr l

L+

Dynamic Task Scheduler

Ptr2 Ptr3 Ptr4

FIFO FIFO FIFO FIFO

1 2 3

i

L+ � -.

Figure 4.9 - Dynamic Scheduler Before any Matches

47

4

Dynamic Task Scheduler

Ptr2 Ptr3 Ptr4 Ptrl

FIFO FIFO FIFO FIFO

1 2 3 4 !

_. -+

1 2 3 l.-+

Figure 4.10 - Dynamic Scheduler After 3 Matches

Dynamic Task Scheduler

Ptr3 Ptr4 Ptrl Ptr2

FIFO FIFO FIFO FIFO
1 2 3 4

6 l.-+ l.-+

1 2 3 4

Figure 4.11 - Dynamic Scheduler After Another 3 Matches

48

one 56-bit vector such that the order of the matches are preserved. Figures 4.12 and 4.13
show how this comes together.

The final task performed by the comparator is monitoring matching and if a
matrix address goes over the vector address range. If there is just one match by any of
the comparator processes, the match flag goes high for that block transfer. Similarly as
soon as the first matrix address exceeds the vector range, the over flag goes high. To
support these functions, two smaller functions are performed. When the first compare
trips the over flag to high, that exact location in the entire 56 address compare scheme is
identified and sets that particular location in the 56-bit encoded vector to a one. After an
over is triggered, all of the remaining bits of the 56-bit encoded vector are set to zero, so
when the C code knows the over flag has been tripped, the first "one" it encounters in
checking the encoded match vector from right to left signifies the position of where the
first matrix address exceeded the vector address range. That matrix address will then be
the starting address when that row is returned to, to multiply with the next section of the
vector. Figure 4.14 in the next page shows an over bit being assigned to its appropriate
location in the 56-bit encoded vector.

Match on 1st CMP
i
I 1 I 0 0 13

Match Over on 4th occurs CMP A Output Status CMP
l

Vector
i 1 I 0 0 1 I 0 0 0 0

Figure 4.12 - Fourteen Bit Hit Vector
49

0 0 I O 11 0

55
1 0 0 0 0 0 0 0 0 1

I I I L-------------------, 1
I I

r - - - - - � - - - - : - - - - J

r- : - - - - - : - - - - J - - - - - - - - - - - - - - - - - - - · - - - - - - - - - - - - - - - - - - �- - - - - - J

1 0 0 1

0 CMPA 3

39

I o I o I o I o

23

I o I o I o I o

I

1 0 0 1
0 CMPB 3

I

I

I

I

I

I

I

I 1 0 0 1
0 CMPC 3

Figure 4.13 - Fifty-six Bit Hit Vector

Marks over @ 24
from CMPA
Output 6

l
0 I o I o I 0 I 1 I o 0 I o

0 J 0 • • • I o o I o

Figure 4.14 - Hit Vector with Over Bit

50

1 0 0
0 CMPD

I o I 0 I o

I o I o I o

40

1
3

24

I 0 I
0 0

4.5.4 Multiply Accumulator Interface

The multiply accumulator interface handles several processes involved in the
overall design of finding a partial sum. Figure 4. 15 displays how these processes
interconnect. Due to the dynamic scheduling of the four buffers that feed into the
multipliers from the comparators, handling the multiplier input data becomes a static
workload. The first multiplier reads data from buffers one and three while alternating
between them to multiply with the top 64 bits of the 128-bit input signal. The second
multiplier alternates between the second and fourth buffer multiplying the buffer data
with the bottom 64 bits of the input vector. This ordering is to preserve the matching
order of addresses from the comparator such that the appropriate matrix and vector values
are multiplied together. What happens is the upper 64-bit input value is multiplied by a
buff er one value simultaneously while the bottom 64-bit input value is multiplied by a
buffer two value. On the next clock cycle, the same halves of the input are sent to

MULT I

MAC Controller
ADDER

MULT 2

Figure 4 . 1 5 - MAC Interface
51

MAC FIFO

the same multipliers, but multipliers one and two get their vector values from buffers

three and four respectively. This alternating sequence continues until all data has been

sent in for multiplication. The advantage in using two multipliers and four buffers lies in

that there is no backup of data on the FPGA, the two 64-bit multipliers can handle the

128-bit input.

As the multiplication results are found, they are fed into an adder. Over time,

addition results are accumulated into one partial sum, but the process of accumulation is

complex. Due to the pipelined nature of the adder, results cannot be available on the next

clock following the input. As the number of values to accumulate drop below what can

fit in the pipeline, the values must be temporarily stored in a buffer until another result is

available to be added with. There will be times when there are so many values to

accumulate, that accumulation has not finished before the next round of multiplication

results come in. Soon monitoring all of the data to be summed becomes difficult. Input

to the adder can come from two multipliers, the output of the adder, and the FIFO buffer

used to store overflow. The combination of obtaining these values and when they are

available is complex. There could be two multiplication results available or there could

be only one. There could be an adder result available too. Not helping the situation is if

data is being stored in the buffer. When data is requested from the buffer, there is a two­

clock cycle delay. Depending on if data is requested from the buff er, as the second or

first input into the adder is another issue as well.

To begin sorting out this complication, priorities must be set as to what

component's result has the highest and lowest priority with respect to being an input into

52

the adder. The multiplication results are given the highest priority because their four
buffers must be cleared as soon as possible to avoid a backup of matching vector value
information. If a backup were to occur, the system as a whole would have to stall, a
situation to be avoided if possible. Because they are given such priority and the MACN
stage can have the buffers cleared during that state, this potential back up is avoided.
Multiplier one will have priority over multiplier two as multiplier one would be handling
a greater number of matches if the number of matches is odd. Next in line on the priority
chain is the adder result. Last priority is given to retrieving data from the buffer. A mini­
pipeline is established to handle the funneling of data into the adder, mainly due to the
possibility of there being one answer available for a clock or two before another potential
input is ready. This pipeline is also used to time input into the adder upon a request for
data from the buffer. When one input is available and waiting for another input, the first
input will hang around for two clock cycles. If no other input is available at that time, it
is written to the buffer to wait for a longer period for another input. When multiple
inputs are present, the prioritized scheme is used to determine what values get put into the
adder and what value is written to the buffer.

Some complications involved in using a buffer with a delayed output is that if a
request has been made for buffer data, it then holds the ''trump card" over all other inputs.
This is because of the complicated nature of timing its availability with the
unpredictability of other inputs. If the first input for the adder is a call to the buffer for
input, the process monitoring all the activity will wait for another input to be available
while the buffer output is taking its two clock cycles to come out. If something becomes
available, the newly available data is sent to one of three stages to time it with the

53

buffer's output into the adder. If more than one piece of data becomes available while

waiting on output from the buffer, the priority scheme kicks in. If two inputs are

available, one will be sent into to the buff er while the other will be sent with the buff er

output to the adder. If data is available from both multipliers and the adder while not

waiting for output from the buffer, an overflow signal must be used to store the second

extra piece of data available. The worst-case scenario is, when two values are being

pulled from the buffer (one ahead of the other) and values become available from the

multipliers and the adder. Now both buffer outputs hold the highest priority, one

multiplication result gets written to the buffer, the other multiplication results is written to

the overflow signal, and the adder result is written to a second overflow signal.

Fortunately this worst-case scenario cannot happen in consecutive clocks or every other

clock as it takes that many clocks for such a situation to develop. This allows time

immediately following the worst-case scenario to clear out the two overflow signals so

they are not overwritten. Another reason why the worst-case scenario cannot repeat itself

is once multiplication results are incoming and the worst-case scenario has occurred, for

the next several clock cycles the multipliers will control the inputs into the adder thus

flushing out any remaining multiplication results so the worst-case scenario still cannot

repeat itself. All adder results in the meantime are written to the buffer.

4.5.5 Double Precision Floating-Point Multiplier and Adder

The floating-point multipliers and adder both handle double precision (64-bit)

data and are pipelined processes. The multipliers are 9 pipeline stages and the adder has

13 pipeline stages. Both support the IEEE 754 format and are constrained as mentioned

in the Assumptions section.

54

The multipliers XOR the sign bits to determine the resulting sign of the answer.
The fractional part of each input has a one appended to them to account for the implied
one and both are multiplied together. Meanwhile the exponents are added together and
then biased (subtracting by I 023) since the biases of each will also have been added
together. The exponent result is then checked for overflow. After these simultaneous
processes have a occurred, the top 54 bits of the multiplication result are taken, and the
rest discarded. If the highest bit of the multiplication result is a one, then the exponent
needs to be incremented by one and the fraction shifted left by one. If the highest bit was
a O then shift the fraction part by two to the left. After the fractional shift, keep the top 52
bits to fit the fraction format in the IEEE standard. The sign bit, exponent, and fraction
all need to be put together to form the 64-bit double precision representation. The
following flowchart in Figure 4.16 outlines the behavioral model of two floating-point
numbers being multiplied on a bit level.

The floating-point adder is more involved. First the larger input needs to be
determined. Subtracting the two exponents does this. If the exponent difference is
positive then the first operand is the larger; otherwise, the second operand is. The larger
operand's exponent is stored for the answer while the exponent differential will be used
to shift right the fraction part of the smaller number to normalize it to the large fraction
for addition. The sign bit will also be equal to the larger number's sign bit. If subtraction
is being performed (sign bits are different), the smaller number's fraction needs to be
two's complemented after being shifted. Before any modifications are made to either
fraction or before they are added, a 1 is appended to the highest bit to account for the
implied one in the exponent. After these previous steps have been done, the two fractions

55

s

Sign

S I S2

=O

E Exponent
El

Bias Adjust

E2

Iner. by 1

E

F Fraction - Value
Fl F2

Append 1
Multiply

MSB MSB
=O

Shift Left 1
Shift Left 2

F

Figure 4.16 - Floating-Point Multiplier Flow Chart

56

are summed. After the fractions are added, the resulting fraction must be shifted left until

the highest bit was one to renormalize the fraction. The sign bit, exponent, and resulting

fraction are all appended together in order to form the double precision addition result.

The flowchart in Figure 4. 17 depicts this process.

4.5.6 C code interface

The C code that will interface with the Pilchard System is an optimized code that

is written to cater to the state machine inside of the FPGA; therefore, to a large degree the

state machine of the C code will look identical to the FPGA state machine. The Pilchard

System comes with a special header file and C file that defines special functions to map

the Pilchard to memory, and to read and write to the Pilchard System. The Read64 and

Write64 commands will read and write 64 bits of data and the inputs to the functions are

assigned their values by using pointers. This is so 64-bit double precision values do not

have to be manipulated in order store the data in upper and lower 32-bit halves of the data

type required for the special read and write functions.

The C code will begin by opening up the necessary files that are in CRS format,

check to see how big the matrix and vector both are, dynamically allocate space, and

store all of the data in arrays. After closing those files, the Pilchard space in memory will

then be initialized. Now the processing can begin. The C code has several states,

INITIALIZE, SEND_ V ADDR, SEND_ VDAT A, CMPING, GET_ ST A TUS,

SEND_MDATA, and GET_ANS. The code will start out in the INITIALIZE state by

sending the FPGA the number of rows in the matrix. It will then transition to the

SEND_ V ADDR state by sending two addresses consecutively to achieve the 4 32-bit

57

l __ s_ign_(_S_)_.I ___ E_xp_o_n_en_t_(E_) ____ F_ra_ct_io_n_(F_) ___ I = Value

El>E2
S=S l

S1 S2 El E2 F l F2

.------<

E

Subtract
----.---- El>E2

El>E2
E=El

Ed=El -E2.___ ___

Adjust E
by shift

E Ed

Add

Shift left until
1st "1" is out

F

Fa=Fl
Fb=F2 .___ __

Append 1

Fa Fb

Shift Right
by Ed

If S l XOR S2 = 1
2's Compl Fb

Figure 4.17 - Floating-Point Adder Flow Chart

58

address input. After this state, the program will go to the SEND_ VDA TA state where
four separate writes will be performed to write four vector values that correspond with
the address values. After sending 32 vector locations, the state machine then moves to
the CMPING state. If for some reason, there is only an odd number of vector data left or
if the amount of vector data to be sent is less than 32, then the C code will send all zeros
for the address data and values. This is so an over flag will be correctly triggered
provided that the matrix addresses exceed the vector address range. These states keep
track of where they are in the vector so that each new section of the vector is loaded into
the FPGA appropriately. Figure 4.18 provides a graphical view of the state machine.

The CMPING state is very straightforward in that it sends matrix addresses to the
FPGA for comparison. It sends 56 addresses, 2 in one write. If the amount of addresses
to send runs out before 56 addresses have been sent, the program will send all ones as the
addresses to trip the over flag on the FPGA and let it know that the row is done. Before
leaving this state, the program checks to see if it has sent information from the last row.
Next the state machine will proceed to the GET_STATUS state where it will read the 64-
bit output from the FPGA to get status information on what to do next. If the match bit is
high, the program will know to go to the SEND_ MDA TA next. After this check, the
over bit is checked. If the over bit is one, the program will scan from right to left the 56
bits of the FPGA output to find the first one. The first one that is found is the point in the
row address transmission that the matrix address values exceeded the vector address
range. This point is remembered for when this row is processed again after a new set of
vector information has been stored on the FPGA. This way the row continues where it

59

Vector sent

Now compare

Figure 4. 1 8 - C Code State Machine

60

left off. After finding the over bit, that bit is set to zero. This is done because the
SEND_ MDA TA stage will check these bits for a one, and will send the corresponding
data if a one is found. After all of the over processing is done, or after a match flag is
found without the over flag equal to one, the state machine will transfer to one of three
states: SEND_MDATA, GET_ANS, or CMPING. If the match flag was high, the state
machine will go to the SEND_ MDAT A state next. If the over flag was high then the
state machine transitions to the GET_ ANS state; otherwise, the CMPING state is next.

If the state machine goes to the SEND_ MDAT A stage, the program will traverse
the 56-bit match vector from left to right to send matching data in order. After gathering
two matches it will write the two matrix values. If there are an odd number of matches,
the program will send in dummy data so that there have been an even number of writes
(so the asynchronous FIFO gets 128-bits in Pcore - the FPGA will not process dummy
data). After the matching data has been sent, all zeros are sent to notify the FPGA that all
data has been sent. This occurs when 56 values have been transmitted or while sending
data, if the stop-point is reached (point at where an "over" occurred), the state will
terminate the sending of data and send in all zeros to signify that it is done. If the over bit
is high the state machine then moves to the GET_ANS state, otherwise it moves on to the
CMPING state.

The GET_ANS state simply waits in this state for a valid answer to present itself
from the FPGA. When it does, the partial sum is taken and added to the existing partial
sum for that particular row in the answer vector. If the program had been processing the
last row of the matrix (but not the last row and set of columns) it will then go to the

61

SEND_ V ADDR state to send in new vector data and start processing the next chunk of

the matrix. If the last row and column were just processed then the program has finished;

otherwise, the program will proceed to the CMPIN G stage where the next set of row

addresses will be compared.

62

Chapter 5

Results

The following chapter summarizes the results of the FPGA assisted computer's

design implementation in comparison to the stand-alone processor's results. Several

points of interest will be observed and evaluated to help distinguish the differences and

similarities in the results. The overall performance of the FPGA design yielded slower

results than hoped in that the stand-alone processor outperformed the FPGA design. The

design was place and routed with timing constraints of 50 MHz for the sparse matrix

sparse vector portion of the FPGA while the Pcore interface ran at 100 MHz bus speed so

it could supply 128 bits per 50 MHz clock. Approximately 70% of the FPGA's slices

were used and approximately 60 of the 96 block RAM locations were also utilized. The

following sections will discuss and interpret the results and difficulties encountered in

developing a double precision floating-point sparse matrix sparse vector multiplier on a

FPGA.

5.1 Comparison of Results

In the process of evaluating results, it is important to properly put them in

perspective. To accomplish this, various characteristics of sparse matrix sparse vector

multiplication data will be utilized in the analysis of the results, which are: overall

performance, hits (when a matrix element address and vector address match to yield a

FPMAC), compares, hits-to-compares ratio ('P), quantity of nonzero values, the number

of vector loads, and percentage of theoretical MFLOPS achieved. Several sets of test

data were used to determine all of the following evaluations. When observing these

63

results, dataset 4 was varied four times with those variations all yielding extremely
similar results. A table with all of the statistics regarding each dataset can be viewed in
Appendix A.

The performance of the FPGA assisted implementation proved to be slow at best
when compared to the stand-alone computer's performance. Across the various tests, the
stand-alone's performance averaged 50-60 times faster than the FPGA assisted
computer's implementation. This slow-down will be discussed further in the difficulties
section later in this chapter. The figures throughout this chapter depict the difference in
computational performance to the characteristics mentioned above. In the all of the
graphs, the legend shows the curves for the "CPU time" and "FPGA time" where the
"CPU time" refers to the total time for the stand-alone processor to compute its results,
while the "FPGA time" represents the time taken for the FPGA and supporting CPU to
compute its results. Both times include the time spent communicating the data over the
memory bus. Due to the large performance difference between designs, all
characteristics plotted versus performance are done on both a base 10 and logarithmic
scales for execution time. Also, all graphs with time being represented by the y-axis, is
in microseconds.

Figure 5.1 plots performance time versus the datasets used. The performance
slow-down in the FPGA design is obvious when comparing results between the two
design implementations. This graph depicts the 50-60x performance difference
throughout the datasets. The performance of the two designs appear to mimic one
another on the logarithmic scaled graph in Figure 5.2.

64

Overa l l Performance

j 1 500 -+------+---------------------�

G)

! 1 000 -+------+-----------------------'

Data 1 Data 2 Data 3 Data 4a Data 4b Data 4c Data 4d Data 5
1--------,

-+- CPU time Data Set
-11- FPGA time

Figure 5 .1 - Dataset Performances

Overa l l Performa nce

_1 000 --�..,.C.-----------------------1
en
:::::,
C)
0 ::::!. 1 00 +-----------------------------1

G)

E
i=

1

Data 1 Data 2 Data 3 Data 4a Data 4b Data 4c Data 4d Data 5 1-------�
-+- CPU time Data Set
-11- FPGA time

Figure 5.2 - Dataset Performances (Log Scale)
65

The following two figures, Figure 5.3 and 5.4, display the number of hits to
I execution time. Both figures continue the trend of 50-60 times performance slow-down

for the FPGA based design. The hits were determined by determing the total number of
actual vector address to matrix address compare matches in each dataset computation.
The performance times generally increase for both designs as the number of hits increase.
This is likely due to the additional number of floating-point operations and matrix data
that needs to be communicated. The four points with nearly identical performance as the
number of hits vary represents the dataset 4 variations where the number of hits has been
altered on purpose with the intentions of observing performance tradeoffs as the number
of hits are varied for any given dataset.

2500

2000

� 1 500

·- 1 000 t-

500

0

� �

-

-+- FPGA time

-11- C PU time

� � -

- -

I

50

Performance to Hits

__________.

- -

I I I I I

1 00 1 50 200 250 300 350

H its

Figure 5.3 - Performance to Hits

66

1 0000

_ 1 000
,n
::::,
C,
0

::::!. 1 00

1 0

1

r
�

-

0

-+- FPGA time

- cPU time

Performance to Hits

- - - -- - r -�

- - -
-

- -
- -

I I I I I I

50 1 00 1 50 200 250 300 350

H its

Figure 5 .4 - Performance to Hits (Log Scale)
The next two figures, Figure 5.5 and Figure 5.6, depict the performance numbers

of both the FPGA and CPU for the number of compares incurred by the stand-alone
processor. The results show the performance time increasing with the number of
compares executed. The logarithmic scale shows both performance times increasing at
relatively the same scale. At the far right hand side of Figure 5.6, it appears as if the
performance time continues to increase for the CPU while the FPGA performance begins
to level out. The results here are surprising, as it was expected that the logarithmic
curves would at least converge proving the effectiveness of the parallel compares on the
FPGA. While the trend mentioned on the far right hand side of the graph may support
this expectation, there is not enough data here to fully support that expectation.

67

Compares to Performa nce

� 1 500 -
a,

.5 1 000 -1--------�-----------------; I-

0
-+- FPGA time

--- cPU time

1 0000

_ 1 000

1 00 -
a,
E
i=

1 0

1

0

-+- FPGA time

--- cPU time

500 1 000

Compares

1 500

Figure 5 .5 - CPU Compares to Performance

Compa res to Performance

- � �

I

500 1 000 1 500

Compares

Figure 5.6 - CPU Compares to Performance (Log Scale)
68

2000

-,..

=

2000

Viewing the graphs in Figures 5.7 and 5.8, comparing '11 to performance does
show an interesting trend between the datasets. Each row of a matrix multiplied by the
vector yields its own number of compares and hits. A ratio for each row can then be
determined to evaluate the number of hits to compares. '11 represents the average of these
ratios over all of the rows of a matrix. '11 is important because viewing the performance
trends against the number of hits or compares separately does not take the whole picture
into account. The performances between the stand-alone and FPGA assisted computer
designs could have a different relationship when looking at the effects '11 has on them. In
order to isolate the effects '11 has on both methods, the same dataset was used for each
plot below; however, the number of hits was varied to alter '11. These are the first four
points of Figure 5.7 and Figure 5.8 and are the four variations of dataset 4. The next

Ps i to Performa nce

j1 500 -+------------------�----- - - --I

.5 1 000 -l----------------------.------------1
t-

0.05 0. 1 0. 1 5 0.2 0.25 0 .3 0.35
-+- FPGA time Psi
-11- CPU time

Figure 5.7 - Performance to Psi
69

Psi to Performance

_ 1 000 +-----------------------=�=:--------------i
tn
:J
C)
0

:::!. 1 00

E
i=

-+- FPGA time

-11- CPU time

0.05 0 . 1 0. 1 5 0.2 0.25 0.3 0 .35

Psi

Figure 5.8 - Performance to Psi (Log Scale)
three points were datasets with relatively the same number of nonzero values, while the
last data point is a small matrix. The varied data essentially shows no performance
variations. This is most likely due to the structures of each dataset being similar, with the
matched data positioned close together in the matrix too. The three data points in the
center convey the potential impact q, has on the overall performance. Evaluating these
three points show a potential for performance time increasing as q, increases.

The next characteristic observed is the number of nonzeros found in each matrix.
Figures 5.9 and 5.10 clearly depict performance reduction as the number of nonzeros
increase. This effect happens because larger amounts of data are being processed. For

70

2500

2000

� 1 500

Cl)
E

1 000 i=

500

0

0

--+- FPGA time

-- c PU time

200

Nonzeros to Pe rforma nce

400 600 800

Nonzeros

1 000 1 200 1 400 1 600

Figure 5.9 - Nonzero to Performance

Nonzeros to Performa nce

_ 1 000 -+---------=-------==:;____------------- --I

u,
:::J

C)
0 ..J 1 00 -+----- ---- -- - ---- ------------1

Cl)
E
i=

0 200 1-------�
--+- F PGA time

-- c PU time

400 600 800

N onzeros

1 000 1 200 1 400 1 600

Figure 5. 10 - Nonzeros to Performance (Log Scale)

71

each nonzero value that exists, at least one compare must be executed on the stand-alone

computer while 32 compares will be performed on the FPGA.

The final characteristic observed is the number of vector loads necessary to

complete a full sparse matrix sparse vector multiplication on a FPGA. Each vector load

only represents a portion of the main vector loaded as portions are loaded as needed and

only once each. Loading the entire vector only once may mask having to load the vector

in pieces by not using any additional load time, but each load disrupts the flow of the

program and requires a partial sum per matrix row, per vector load. Obviously as there

are more vector loads, the longer overall computation will take due to the requirement for

more partial sums. Figure 5 . 1 1 shows the performance of the FPGA to the number of

vectors loads.

Vector Loads to Performance

"[1 soo ---------f-------------------------4

! 1 000 -----t------------------------1

0 1 2 3 4 5 6 7

-+- FPGA time
Vector Loads

Figure 5. 1 1 - Vector Loads to FPGA Performance

72

One other area that provided interesting results was comparing the number of

FPGA compares versus CPU compares for each dataset. Due to the 1 28 simultaneous

compares per 50 MHz FPGA clock cycle, the number of compares performed reaches

into the tens of thousands, while the CPU performs just the number of compares

necessary. It is important to mention though, that the FPGA pays no penalty for

computing excess compares as they are all done in parallel. Figure 5 . 1 2 shows these

results as Figure 5 . 1 3 puts the same results on a logarithmic scale.

The various graphs paint a large picture of the different intricacies affecting the

big picture. Most of the characteristics do not influence the outcome on their own, but

have a collective effect. The most important characteristic is 'P as it takes into account

the amount of data flowing through the number of compares, and the number of floating-

50000
45000
40000
35000

e 30000

FPGA vs CPU Compares

- - -
/

- -

e 25000
o 20000
0

1 5000
1 0000
5000

0

0

j

-+- CPU Compares

- FPGA Compares

... - - - - -
I I I

2 4 6

Dataset

Figure 5 . 1 2 - Compares per Dataset

73

-

- --
I

8 1 0

FPGA vs CPU Compares

1 00000

1 0000

1 000

1 00

1 0

1

0 2 4 8 1 0

� CPU Compares Dataset

-- FPGA Compares

Figure 5.13 - Compares per Dataset (Log Scale)
point operations that will be necessary to solve the problem due to hit quantity. Because
of this consequence, there is no single MFLOPS to be obtained. As 'I' will vary, the
actual MFLOPS or the percent of theoretical MFLOPS achieved will also vary. For
example, the third dataset has320 hits. The stand-alone CPU runs at 933 MHz; therefore,
its theoretical MFLOPS is 933. Its actual MFLOPS for this problem is 12.8. The
theoretical MFLOPS for the FPGA design is 150 while the actual MFLOPS is 0.278.
The percentage of the theoretical MFLOPS yielded is 1.07% and 0.19% for the stand­
alone and FPGA based designs respectively. Figures 5.14 and 5.15 display the variation
in percentage of theoretical MFLOPS achieved as 'I' varies.

When looking back over the graphs, the number of nonzero values plays a major
role in all of these results, for each nonzero value is processed through the designs.

74

Percentage of Theoretical MFLOPS Achieved
1 .60%

1 .40%

1 .20%

1 .00%

0.80%

0.60%

0.40%

0.20%

0.00%

0.000 0.050 0. 1 00 0. 1 50 0 .200 0.250 0.300 0.350

--.- Percent of MFLOPS CPU
Psi

- Percent of MF LOPS FPGA

Figure 5 . 1 4 - Percentage of Theoretical MFLOPS Achieved

Percentage of Theoretical M FLOPS Ach ieved
1 00 .00% -.----...-------,----,.----,------.-------.------.

0. 00 0.050 0. 1 00 0.1 50 0 .200 0.250 0.300 0. 50

1 0 .00% --------------------------!

0.01 %_ __________________ _

--.- Percent of MFLOPS CPU
Psi

- Percent of MFLOPS FPGA

Figure 5. 1 5 - Percentage of Theoretical MFLOPS Achieved (Log Scale)

75

What needs to be taken into perspective is that when comparing results, the number of

nonzero values must be taken into consideration. If the amount of nonzero values'

addresses is relatively the same in comparing results across datasets, the results should

allow for comparison between other characteristics. If the number of nonzero values is

not relatively the same, then the results cannot be compared. The next sections discuss

the difficulties involved.

5.2 Difficulties

Several areas of difficulty were encountered in the development of the sparse

matrix sparse vector computation engine. The areas included developing a proper

interface from the FPGA back out to the C code, to memory and 1/0 limitations, and a

minor glitch.

5.2.1 Pcore Interface

An extremely large amount of time was spent in this single area alone of

developing a consistently working Pcore interface to connect the sparse matrix sparse

vector multiplication code to the memory bus. Roughly 33% of the design time was

spent creating and adjusting a Pcore interface to adequately support the overall design.

The Pcore interface must monitor data traffic on two different clock speeds between the

memory bus (100 MHz) and the sparse matrix sparse vector multiplication code (50

MHz). The synchronization of data between the two different clocks presented the

greatest challenge. There is no guarantee there will be a consistent stream of data with the

memory bus; therefore, the Pcore interface must be very versatile as well as fast. To

further increase the difficulty of this task, the Pilchard System's design does not lend

itself to post-layout simulation, a key stage in the design process where the designer can

76

get a much more realistic view of how a design will work in reality, versus the perfect

world of presynthesis simulation. Pcore designs ranged from using block RAM as the

main device for interfacing to the memory bus, to relying on the handshaking read/write

signals to grab and send data appropriately. Various combinations of designs were

implemented with varying ranges of success. Often this part of the design drove the

overall clock speed of the design as whole. This is because the pcore needs to be twice as

fast as the rest of the FPGA so it could properly supply twice the amount of data (128

bits) as the memory bus (64 bits) in one 50 MHz clock cycle. The final design involved

using an asynchronous FIFO buffer created by Xilinx' s Corgen to handle the movement

of data between the two different clock speeds. A small (4 address locations) block RAM

was used for data leaving the FPGA to the memory bus to read.

5.2.2 Memory and 1/0 Constraints

The constraints the memory and I/O limitations held on the design dominated the

performance of the FPGA assisted sparse matrix sparse vector multiplication results.

These limitations ranged from space on the FPGA, to FPGA slice usage, to a lack of

RAM on the Pilchard System board to supply this data hungry design with information as

fast as possible.

When possible, Xilinx Coregen components were utilized to help save space and

time in the FPGA design; however, this was not always enough. Originally the FPGA

was to hold a vector of size 64 and perform 256 simultaneous compares. Unfortunately,

doing so utilized 87% of the FPGA's slices when combined with the rest of the design.

Attempting to completely place and route a design with the usage of slices reaching over

75% becomes difficult, not even considering the small likelihood of meeting timing

77

constraints. To alleviate this limitation, the onboard vector size was cut back to 32, thus

reducing the total number of simultaneous compares to 1 28 in one clock cycle. The

vector data was also moved to block RAM from registers. The slice usage dropped to

70% of the FPGA' s available 12,288 slices. This was enough to allow the design to be

place and routed at the necessary timing constraints. The effects of reducing the vector

size on performance in presynthesis simulation were felt immediately as simulation times

nearly doubled. The effects on the actual FPGA was never observed due to the larger

design never being able to be place and routed.

Lastly, due to the need for the FPGA to have constant and quick access to large

amounts of data, the use of onboard RAM on the Pichard would have been very

beneficial . The FPGA must grab data from the main memory (RAM) on the CPU, which

is a very time consuming operation when typical programs can utilize cache. The

availability of RAM on the Pilchard board would not only act similar to cache, but it

would also give the FPGA the ability to have the entire vector stored nearby instead of

some location off in the main memory. This would eliminate time lost for memory bus

contention. Also, large amounts of the rp.atrix could be stored and possibly the entire

vector. This reduction in the use of the memory bus would reduce the communication

cost incurred essentially over the entire design execution time.

The one single factor that potentially had the largest effect was the result of the

I/0 constraints. The design is highly dependent upon the I/0 or memory bus due to the

large amounts of data transfer. A small test was conducted to measure the time to

perform 1 0 writes to get an estimate of how much time is spend on I/0 in the overall

design. This test concluded that 1 0 writes would take 4.5us. Simulation provided

78

accurate results but the implementation of the Pilchard System Wrapper could not

accurately be simulated nor could a memory bus be accurately simulated; however, the

execution time estimated by the simulator painted a much different picture. If dataset 3

was considered, the FPGA execution time was 2300us. By determining the number of

writes and using the small test data, it was determined that 30% of that execution time

was spent conducting 1/0. While this seems underestimated and the small test is likely

inaccurate when referring to a larger design, the simulation results estimated that the

design should be executed in 53us, a 97% improvement. At the very least, 1/0

performance has a huge impact on the design whether that be 30 to 97% of the execution

time.

While performance results did not meet the desired goals, it is clear what is

necessary to alleviate these problems through larger FPGA's, multiple FPGA's, improved

interfacing, and onboard RAM. These suggestions for improvements with further details

can be found in the next chapter, Conclusions and Future Work.

5.2.3 Logic Glitch

Through the various tests run on the FPGA design, a minor flaw in the logic was

exposed. Fortunately this glitch has no effect on performance or accuracy when the

FPGA produces results. The flaw was identified as the FPGA logic not synchronizing

correctly with the host C code when a set of compares produced no hits for a partial sum;

thus yielding a partial sum of zero. Currently, several conditions must be met for a zero

partial sum to occur and these conditions are all not being met. When this occurs, the

FPGA essentially locks into the SEND state. Extensive simulation never brought this

situation to light when using the same test data that would cause the error in real-time

79

calculations on the FPGA; thus underlining the importance of post-synthesis and post­

layout simulation capabilities. Due to the specific nature of this issue, it can be

efficiently resolved by creating a process on the FPGA to monitor if hits ever occur

during a partial sum. It no hits ever occur, the C code and FPGA will not expect nor send

a zero partial sum respectively, and both will move on to the next appropriate state. This

method would eliminate a list of conditions that need to be met by the current

architecture.

80

Chapter 6

Conclusions and Future Work

In hindsight, the overall design was successful in the fact that results were

achieved with data from which to extrapolate and learn from sparse matrix sparse vector

multiplication on a FPGA. When comparing the performance to the stand-alone

processor, a significant gap in performance must be corrected and improved upon. The

following chapter will discuss future work by analyzing areas of improvement and

interesting applications to apply this design to. Finally, conclusions will be given

encapsulating the entire experience.

6.1 Hardware Improvements

A few areas are available to improve from the hardware side of the system. The

Pilchard System is aging; new Xilinx Virtex-11 Pro FPGAs are larger, faster, and have

optional PowerPC processors on board, and/or onboard memory or cache could be added

to the system. The Pilchard System was designed to operate on a 133 MHz memory bus;

however, today's computers have much faster memory buses with speeds ofup to 800

MHz [18]. The Pilchard System could not take advantage of today's bus speeds. If the

overall system hardware was upgraded, several innovations could play an immense role

without the sparse matrix sparse vector design even changing. If the bus was dedicated to

the FPGA's needs and running at a speed of 800 MHz, the bus could theoretically support

up to 8 FPGAs all running at 100 MHz assuming the Pilchard board would be compatible

or if it were upgraded.

81

Upgrading the FPGA could play a significant role in improvement as well. If a

board using a Xilinx Virtex-II Pro X were placed on one of the latest computers,

speedups and improvements would be found in several areas. Xilinx Virtex-II Pro X

XC2VPX70 has almost three times the number of slices (33 ,088) as the Virtex 1 000-E

(1 2,288 slices and 4Kbits of block RAM) and has 5 .5Mb of dual port block RAMs

available allowing for significant upgrades in vector storage size, concurrent compares,

and vector data storage. With that much block RAM available; it is even possible that the

entire vector and even small to midsize sparse matrices could be stored on the FPGA at

the very least. The optional PowerPCs could also be used on the latest Virtex-II Pro X

FPGAs to assist in the overall control or various other areas. With this single

improvement in FPGA size, the vector size stored on the FPGA and number of parallel

compares could at least be tripled if the rest of the design remains intact. This estimation

is based on an earlier design that had twice the current vector size stored and double the

number of compares, and the design was only over-mapped by only 4-5 ,000 slices.

Simulation times improved almost 40% when twice the current number of compares and

vector storage was implemented.

Another benefit in being able to store more if not the entire vector on the FPGA

and possibly the matrix is that the memory bus would only be needed at the beginning of

execution to load all of the_ information onto the FPGA. As mentioned in the previous

chapter, the 1/0 communication cost of the memory bus is potentially consuming 30 to

97% of execution time. Having onboard RAM or cache on the pilchard board, or another

similar type board would create the same improvements in eliminating as much of the

memory bus dependency as possible. Having onboard RAM would likely be very large

82

in comparison to the FPGA' s RAM (32 - 128 Mb) and could quite possibly store all

necessary matrix and vector data.

If upgrading the Pilchard System is not an option, at the very least more than one

Pilchard System could be placed on a computer with a faster bus speed so more FPGA

resources are available to improve overall performance (again assuming the Pilchard

Board could operate on a faster bus). If the Pilchard System was no longer usable the

design, excluding the Pcore interface, could be fitted onto another system where more

FPGA resources are available. The Pcore interface is specific to the Pilchard System;

therefore, a new interface would have to be developed for any new system the design is

placed on. While hardware improvements are not always easy to accommodate due to

economics, design improvements can still be made.

A final hardware improvement would be for the Pilchard Board to be on a bus

utilizing some sort of DMA Controller. Currently the Pilchard must compete for the

memory bus like every other process running on the main computer. This can create

unknown and unpredictable data transfer times, not to mention increased communication

costs. If a DMA was used, the controller could gain access of the bus and be able to send

dedicated block transfers of data to the FPGA without so much interruption, again further

reducing 1/0 costs.

6.2 FPGA Architecture Improvement

An architectural improvement in the design or layout of processes on the FPGA

would be to add the capability of allowing multiple configurations based on the structure

of the sparse matrix. This analysis and design would require pre-processing which could

be done on the FPGA or software side and would likely require a fair amount of research

83

into how this could be efficiently implemented, but having the ability to cater to how the

FPGA solves a structured matrix would be beneficial to overall performance provided

that the preprocessing step did not outweigh the improvement. Sometimes sparse matrix

sparse vector multiplications are run multiple times for example in executing some

iterative solvers. If the FPGA could adapt by monitoring the '¥, after the first run, the

design could adjust by possibly utilizing more MA Cs if the '¥ value was large (0.6 to 1 .0

possibly). This would be assuming more MAC units could fit on the FPGA.

6.3 Algorithmic Improvements

In the creation and design of the sparse matrix sparse vector multiplication,

several important areas have opened up to improve efficiency and overall performance by

reducing the amount of inactivity during waiting, improving data accuracy, and not

wasting clock cycles handling unnecessary information. These algorithmic

improvements include only grabbing vector values as needed and then storing them if

needed again, loading up the next compare results while waiting on an answer from the

multiply accumulator, adding full IEEE 754 support for floating point numbers, keeping

track of multiple partial sums simultaneously, and reducing the number of pipeline stages

in the floating point units.

An algorithm that only requested and stored vector values as needed could

possibly be implemented over the existing model with only incurring the penalty of one

extra sparse code clock cycle per REPORTx state encountered. This extra clock cycle

would be needed to encode a request to the C program to send a vector value or values

with the matched matrix values. To handle this on the FPGA side, each vector slot would

have a status bit of whether it had the value available for a particular address or not. The

84

check for the existing vector value could be done in the same processes as the current

compare processes if the overall speed is not slowed down, or it could be handled in

separate processes. The only difficulty in handling this approach would be keeping track

of matrix and vector values when streaming them into the multipliers. All that should be

necessary is to predetermine an algorithm that would handle expected ordering of the

values sent on the FPGA side and implemented by the C program. The improvements

seen by this scheme would be every time a startup cost is incurred of reloading the

vector. The best-case scenario for the improvement would be that 2 out of every 3 clock

cycles during a vector load would be saved per vector value not ever needed. As is

typical, the more dense the matrix and vector, the less of an improvement that will be

observed; however this improvement while not helping the worst-case scenario, would

help the best-case scenario of an extremely sparse matrix and vector. Jbe cost of sending

the vector value with the matrix values is no different than preloading it. Again, this

method would reduce costly 1/0 as has been shown to be a large problem.

Another improvement to the algorithm of the system would be improving the

overall system efficiency while waiting for an answer from the FPGA code. Currently

while the FPGA code is determining a partial sum after an over flag has gone high, the C

program waits for the answer, which could take about 1 to 1 .5 microseconds (according

to simulation times) if waiting on a partial sum after a set of compare matches. During

this time the FPGA could send in the next row's matrix addresses to begin the next round

of compares. If the partial sum were to be found during this time, the FPGA could

simply wait until after the address data has been streamed in for comparing. A special

case to take care of here is if there were no matches to be calculated into the current

85

partial sum, it is possible the partial sum could already be ready; therefore, in this case

the C program should just wait on the partial sum. This improvement could help both the

best and worst-case scenarios.

Adding full IEEE 754 support into the floating-point units would be beneficial in

that the usefulness of this design for scientific use would be more practical. While

improving the floating-point units, they could both be analyzed to see if any of the

existing pipeline stages could be consolidated. Typically the more pipeline stages, the

faster the component, but if the speed can be maintained while reducing pipeline stages,

the overall latency when waiting for a result is reduced. In particular, consolidating the

adder pipeline would shave clock cycles off finding the partial sum as that is a bottleneck

in the overall design due to the adder having to wait on itself for 1 3 clock cycles for a

result if the last two pieces of data to be summed are not available at the same time.

The last algorithmic improvement involves the continued improvement over the

adder bottleneck. As the number of results run low for the adder to put together for a

partial sum, the adder may only have a couple of additions in the pipeline while another

piece of data waits on results. The adder is in use, but the pipeline is becoming a

hindrance instead of a benefit. To help mask this problem, giving the multiply

accumulator the ability to handle multiple partial sums would help immensely. Creating

this improvement would automatically improve some other areas too. To handle multiple

partial sums simultaneously, the overall system would need to just send in rows of

information and not have to wait for an answer like mentioned above. For the FPGA to

notify the C program that an answer is ready, it can do this by using a reserved bit of the

output vector during the REPORTx stage. Also, the remaining 3 bits could be used to

86

signal that up to 8 answers are available; therefore, up to 8 partial sums could be the limit

supported (000 would stand for 1 , since the answer flag must be high to signal that any

results are available). This improvement would definitely require further analysis as

supporting 8 partial sums could overload the existing single adder requiring the addition

of one or more addition units. The downside to this approach is determining how an

adder knows which set of data that is currently being considered for addition goes to

which partial sum. A buffer that mirrors the data buff er would likely be used that stands

for the partial sum that data corresponds to. Implementing this could be very complex

yet very beneficial.

6.4 Future Applications

In addition to improvements that could be made on the existing system, the

overall approach could be applied to new problems or altered for different applications.

Some of these different applications would be applying the design to sparse matrix sparse

matrix multiplication problems, altering the design to only handle compares, or reading in

multiple rows of a matrix instead of multiple elements from one row. Altering the design

to handle only comparisons could have a unique impact on the overall problem.

Essentially, the only involvement of the FPGA would be to read in vector and matrix

addresses, compare them, and send out the results in some encoded fashion. No multiply

accumulation would be handled on the FPGA. While this greatly simplifies the amount

of work done on the FPGA it also further complicates the work of the C program.

Unfortunately for the C program, it must compete with an operating system and possibly

other programs. The FPGA only has to worry about itself once it has the data necessary

87

to process. As has been observed the overhead of transferring and partial summing all of

the floating-point data is costly.

Another application of this design would be to transfer addresses of the matrix

two to multiple rows at a time. This would require the ability to handle partial sums. The

perf onnance results could have some intriguing affects when compared to the original

algorithm. A problem with this method; however, is if one row is ready for a new vector

to be loaded while other rows are not ready.

A final and more practical application would involve the exploration of applying

this design to the calculation of sparse matrix sparse matrix multiplication. The basis for

sparse matrix sparse matrix multiplication is essentially sparse matrix sparse vector

multiplication repeated for each vector of the second matrix. This application could be

divided on multiple computers using the Pilchard System over a network. The load could

be distributed by one row of the second matrix per computer or it could be broken down

further into each computer gets a portion of a vector per row of the second matrix.

There are numerous possibilities to improve upon the existing design and to apply

it new areas in computing for improved performance results.

6.5 Conclusion

In evaluating the entire design process, design, and results a lot has been learned

about sparse matrix sparse vector multiplication on parallel and reconfigurable

computing. When evaluating results from this problem various different characteristics

of the sparse matrix and vector affect the outcome. When viewing results, the number of

nonzeros must always be taken into consideration as well when comparing to other

. 88

results. The potential influence 'P has on performance with how it measures the number
of compares and hits regarding performance time are important too.

The importance of being able to perform post-synthesis and post-layout simulations
was reinforced too. When attempting to troubleshoot problems that did not appear in
simulation, determining what exactly is going wrong in the chip is extremely difficult and
it is hard to know if processes sharing data over different clock rates are synchronizing
correctly. A lot of time spent troubleshooting errors could conceivably have been saved
if this capability was available.

Even though FPGA performance results were slower than the stand-alone computer's
performance by 50-60 times, it is worth continued research in this area for several
reasons. First not much research as been conducted or at least published regarding sparse
matrix sparse vector multiplication using FPGA' s, and this one approach certainly
doesn't cover all of the possibilities of implementations; however, it does take a
performance minded approach and discusses several possibilities for improvements. Due
to the largest bottleneck being the heavy performance cost paid for memory bus
communication and contention as well as memory constraints, the design could actually
be extremely competitive if not faster to the stand-alone computer's performance. As
was mentioned in the previous chapter, simulation times were extremely close to that of
the actual performance times on the stand-alone computer's results. Add in more FPGA
room and the potential performance improvement is quite optimistic. Exploring these
external limitations to the design's performance is a must. In addition to external
limitations, there are also design improvements that can still be made as mentioned
earlier in the chapter.

89

In summary, being a pioneer in this particular application of the sparse matrix sparse

vector multiplication, much has been learned but plenty of research remains in exploring

this topic. Its importance is felt in the scientific computing community and could

therefore take advantage of performance improvements resulting from continued research

in this field.

90

References

91

References

1 . The Message Passing Interface Standard (2004). http://www­
unix.mcs.anl.gov/mpi/mpich/

2. Parallel Virtual Machine (2004). http://www.csm.oml.gov/pvm/pvm_home.html
3 . Institute for Electrical and Electronics Engineers. IEEE 754 Standard/or Binary

Floating-Point Arithmetic, 1 985.
4. K.H. Tsoi. Pilchard User Reference (VO. l), Department of Computer Science

and Engineering, The Chinese University of Hong Kong, Shatin, NT Hong Kong,
January 2002.

5. K. A. Gallivan. Set 2 - Sparse Matrix Basics. School of Computational Science
and Information Technology, Florida State University,2004.
http://www.csit.fsu.edu/-gallivan/courses/NLA2/set2.pdf

6. K. L. Wong. Iterative Solvers for System of Linear Equations. Joint Institute for
Computational Science. 1997.

7. D. W. Bouldin. Lecture Notes: Overview, ECE 551, Electrical and Computer
Engineering Department, University of Tennessee, 2002.

8. N. Shirazi, A. Walters, and P. Athanas. Quantitative Analysis of Floating Point
Arithmetic on FPGA Based Custom Computing Machines. EEE Symposium on
FPGAsfor Custom Computing Machines, Napa, California, Apr 1 995.

9. G. Lienhart, A. Kugel, and R. Manner. Using Floating-Point Arithmetic on
FPGAs to Accelerate Scientific N-Body Simulations. Proceedings, IEEE
Symposium on Field-Programmable Custom Computing Machines, pages 1 82-
19 1 , Napa, CA, Apr. 2002.

1 0. H. ElGindy, Y. Shue. On Sparse Matrix-Vector Multiplication with FPGA-Based
System. Proceedings of the IO th Annual IEEE Symposium on Field­
Programmable Custom Computing Machines (FCCM'02), p.273, September 22-
24, 2002 .

1 1 . Netlib Repository. The University of Tennessee, Knoxville and Oak Ridge
National Laboratories, www.netlib.org.

12. G. Wellein, G. Hager, A. Basermann, and H. Fehske. Fast sparse matrix-vector
multiplication for TeraFlop/s computers. In High Performance Computing for
Computational Science - VECPAR 2002, Lecture Notes in Computer Science,
pages 287-30 1 . Springer, 2003.

1 3 . W. Gropp, D. Kaushik, D. Keyes, and B. Smith. Improving the performance of
sparse matrix-vector multiplication by blocking. Technical report, MCS Division,
Argonne National Laboratory. www-fp.mcs.anl.gov/petsc-
fun3d/Talks/multivec _ siam00 _ l . pdf.

14. R. Geusand and S. Rollin. Towards a fast parallel sparse matrix-vector
multiplication. Proceedings of the International Conference on Parallel
Computing (ParCo), pages 308.3 1 5. Imperial College Press, 1999.

1 5. F. Khoury. Efficient Parallel Triangular System Solvers for Preconditioning
Large Sparse Linear Systems. Honour's Thesis, School of Mathematics,
University of New South Wales. http://www.ac3.edu.au/edu/papers/Khoury­
thesis/thesis.html, 1 994.

92

16. Xilinx, www.xilinx.com.
17. D. E. Culler, J. P. Singh, and A. Goopta. Parallel Computer Architecture: A

Hardware/Software Approach. Morgan Kaufman Publishers, Inc., San Francisco:
1 999.

1 8. Dell Computer Corporation, www.dell.com.

93

Appendices

94

Appendix A - Dataset Statistics

95

Characteristic Data 1 Data 2 Data 3

CPU time 1 0 36 50

FPGA time 548 1 770 2300

Hits 1 8 1 70 320

Compares 62 1 455 1 852

� 0.3 0. 1 2 0. 1 7

Nonzeros 1 8 858 1 020

Wector Loads 1 4 6

Actual MFLOPS CPU 3.600 9.444 1 2.800

Actual MFLOPS FPGA 0.066 0. 1 92 0.278

ifheoretical MFLOPS CPU 933 933 933

ifheoretical MFLOPS FPGA 1 50 1 50 1 50

Percent of MFLOPS CPU 0.30% 0.79% 1 .07%

Percent of MFLOPS FPGA 0.04% 0. 1 3% 0. 1 9%

FPGA Compares 576 27456 32640

Characteristic Data 4a Data 4b Data 4c

CPU time 37 38 38

FPGA time 2353 2354 2357

Hits 24 48 72

Compares 1 51 2 1488 1464

'I' .01 6 .032 .049

Nonzeros 1 344 1 344 1 344

Wector Loads 1 1 1

�ctual MFLOPS CPU 1 .297 2 .526 3.789

�ctual MFLOPS FPGA 0.020 0.04 1 0 .06 1

iTheoretical MFLOPS CPU 933 933 933

iTheoretical MFLOPS FPGA 1 50 1 50 1 50

Percent of MFLOPS CPU 0. 1 4% 0.27% 0.41 %

Percent of MFLOPS FPGA 0.01 % 0.03% 0.04%

FPGA Compares 43008 43008 43008

Characteristic Data 4d Data 5
CPU time 35 28

FPGA time 2353 1 703

Hits 96 96

Compares 1440 1 080

'I' .067 .089

Nonzeros 1 344 984

Wector Loads 1 1

Actual MFLOPS CPU 5.486 6.857

Actual MFLOPS FPGA 0.082 0. 1 1 3

ifheoretical MFLOPS CPU 933 933

Theoretical MFLOPS FPGA 1 50 1 50

Percent of MFLOPS CPU 0.59% 0.73%

Percent of MFLOPS FPGA 0.05% 0.08%

FPGA Compares 43008 31 488

96

Appendix B - Sparse Matrix Sparse Vector Multiplication C Code

97

#include <stdio . h>
#include <string . h>
#include <sys/ time . h>
include <time . h>

long lt ime ;
float lt ime2 ;
struct timeval t start , t fini sh ;

/ * Pointer indexing for a 1 -d array
p [S] = * (p+S) * /

/* Remember to p = i ; first i f int *p , i [l 0] ; earlier*/

/ * Pointer indexing for a 1 0 by 1 0 int array
the 0 , 4 element of array a may be referenced by
a [0] [4] or * ((int *) a+ 4)
element 1 , 2
a [l] [2] or * ((int *) a+ 12)
in general
a [j] [k l = * ((base type *) a+ (j * row length) +k) * /

int main (int argc , char *argv [])
{

FILE *mdatfp , *mrowfp , *vecfp;
unsigned long int *c , *r , *va , * ya , a , matsize= 0 , matrs i ze=0 ,

vecsi ze=0 ;
double *v, *x , *y , d ;
int i , j , k ;

i f (argc ! = 4) {
print f ("mv_fpga z matrixfi le matrixrowfile vectorfi le\n ") ;
exit (l) ;

i f ((mdat fp = fopen (argv [l] , " r ")) == NULL) {
printf (" cannot open file 1 . \n ") ;
exit (1) ;

if ((mrowfp = fopen (argv [2] , " r ")) == NULL) {
print f (" cannot open fi le 1 . \n") ;
exit (1) ;

i f ((vecfp = fopen (argv [3] , " r ")) == NULL) {
print f (" cannot open file 1 . \n ") ;
exit (1) ;

while (fscanf (mdat fp , " %u%le " , & a , &d) ==2)
{

mat si ze++ ;

98

while (fscanf (mrowfp , " %u" , & a) ==l)

{

matrs i ze++ ;

while (fscanf (vecfp , " %u%le 11 , & a , &d) ==2)
{

vecsi ze++ ;

rewind (mdatfp) ;
rewind (mrowfp) ;
rewind (vecfp) ;

c (unsigned long int *) malloc (mat s i ze * si zeof (unsigned long int)

) ;
v = (double *) malloc (mat s i ze * s i zeof (double)) ;
r (unsigned long int *) malloc (matrsi ze * s i zeof (uns igned long int)

) ;
x (double *) malloc (vecs i ze * s i zeof (double)) ;
va = (unsigned long int *) malloc (vecs i ze * si zeof (uns igned long int)

) ;
y = (double *) malloc (matrsize * s i zeof (double)) ;
ya = (unsigned long int *) malloc (matrs ize * s i zeof (uns igned long int)

) ;

i=O ;
while (fscanf (mdat fp , 11 %u%le 11 , (c+i) , (v+i)) ==2) i++ ;

i=O ;
while (fscanf (mrowfp , 11 %u 11

,
(r+i)) ==l) i++ ;

i=O ;
while (fscanf (vecfp , 11 %u%le 11

,
(va+i) , (x+ i)) ==2) i++ ;

fclose (mdat fp) ;
fclose (mrowfp) ;
fclose (vecfp) ;

gettimeofday (&t_start , NULL) ;

for (i = 0 ; i < matrsi ze-1 ; i++)
{

o . o ; * (y+i)
k=O ;
for (j
{

* (r+i) ; j <* (r+i+ l) ; j ++)

i f (* (c+j) < * (va+k)) continue ;
else i f (* (c+j) == * (va+k))

else
{

* (y+i)
k++ ;

* (y+i) + * (v+j) * * (x+ k) ;

99

if (k<=vecs i ze)
{

for (k=k++ ; k<=vecs i ze-l ; k++)
{

if (* (c+j) < * (va+k)) brea k ;
e l s e if (* (c+ j) == * (va+ k))
{

else
{

else brea k ;
if (k<=vecsize)
{

* (y+i)
brea k ;

* (y + i) + * (V+ j) * * (X + k) ;

if (k<=vecs i ze) cont inue ;
else brea k ;

i f (* (c+j) < * (va+ k)) cont inue ;
else i f (* (c+j) == * (va+ k)) continue ;
else brea k ;

else brea k ;

gettirneofday (&t_finish, NULL) ;
ltirne = (t_finish . tv_sec-t_start . tv_sec) * 1 000000 +

(t_fini sh . tv_usec-t_start . tv_usec) ;
ltirne 2 = (float) ltime / 1 ;
print f ("CPU : calculation completed in % f usec\n" , ltime2) ;

for (i=0 ; i<matrsize- l ; i + +)
{

printf (" --> % f \n " , * (y+ i)) ;

return 0 ;

100

Appendix C - FPGA Host C Code

1 0 1

include <stdio . h>
include <stdlib . h>
include <tirne . h>
include <sys/tirne . h>
include " iflib . h "
include <unistd . h>
include <sys /types . h>
include <sys/stat . h>
include <fcntl . h>
include <sys/rnman . h>

long ltirne ;
float ltime2 ;
struct timeval t start , t_fini sh ;

/ * Pointer indexing for a 1 -d array
p [S] = * (p+S) * /

/ * Remember to p = i ; first i f int *p, i [l 0] ; earlier * /

/ * Pointer indexing for a 10 b y 1 0 int array
the 0 , 4 element of array a may be referenced by
a [0] [4] or * ((int *) a+4)
element 1 , 2
a [1] [2] or * ((int *) a+ 12)
in general
a [j] [k] = * ((base type *) a+ (j * row length) + k) * /

int main (int argc , char *argv [])
{

unsigned long long int * c , *va , *ya , al , *r l , *r2 , mat size=0 ,
matrsize=0 , vecsize=0 , zeros ;

unsigned long long int *ansptr , ternp, * si ze2 fpga ;
double *v , *x , *y , *d ;
FILE *mdat fp, *mrowfp , *vecfp ;
int 64 data , addr , input , input 2 , init ;
int i , fd, sw, t ;
char *memp ;
int stoppoint , q , firsttime ;
double * z , ps , *partialsum, lastsent , ps2 , ps 3 ;
char ch [2] , status [65] , match , over, ans f , crrnt ;

int
stppt , strtm, A, rowcnt , numrows , strtpt , n , done , check , newvecflag2 , g , p , sent , r
, w ;

if (argc ! = 4) {
print f ("mv_fpgaz matrixfile matrixrowfile vectorfile\n ") ;
exit (l) ;

i f ((mdat fp = fopen (argv [l] , " r ")) == NULL) {
print £ (" cannot open file 1 . \n") ;
exit (l) ;

102

i f ((rnrowfp = fopen (argv [2] , " r ")) == NULL) {
print f (" cannot open file 1 . \n ") ;
exit (l) ;

i f ((vecfp = fopen (argv [3] , " r ")) == NULL) {
print f (" cannot open file 1 . \n") ;
exit (l) ;

while (fscanf (rndat fp , " %u%le " , & a l , &d) ==2)
{

rnatsize++ ;

while (f scanf (rnrowfp , " %u " , &al) ==l)
{

rnatrsi ze++ ;

while (fscanf (vecfp, " %u%le " , &al , &d } ==2)
{

vecsi ze++ ;

rewind (rndatfp) ;
rewind (rnrowfp) ;
rewind (vecfp) ;

/ *Matrix Column Address* /
c = (unsigned long long int *) rnalloc (rnatsize * si zeof (unsigned long

long int)) ;
/ *Matrix Value * /
v = (double *) rnalloc (rnatsize * si zeof (double)) ;
/ *Matrix Row Pointer 1 & 2 * /
r l = (unsigned long long int *) malloc (matrsize * si zeof (unsigned long

long int)) ;
r2 = (unsigned long long int *) mal loc (matrsize * s i zeof (unsigned long

long int)) ;
/ *Vector Value * /
x = (double *) rnalloc (vecsi ze * si zeof (double)) ;
/ *Vector Addres s * /
v a = (unsigned long long int *) rnalloc (vecs i ze * si zeof (unsigned long

long int)) ;
/ * Resultant Vector* /
y = (double *) malloc (matrsi ze * si zeof (double)) ;
/ * Resultant Vector Addres s * /
ya = (unsigned long long int *) malloc (rnatrsize * s i zeof (unsigned long

long int)) ;
partialsum = (double *) mal loc (l * si zeof (double)) ;

i=O ;
while (fscanf (rndat fp, " %u% le " , (c+i) , (v+i)) ==2) i++ ;

i=O ;

103

whi l e (fscanf (mrowfp , 1

1 %u 11 , (r l+i)) == l) i++ ;

i=0 ;
whi le (f scanf (vecfp , 1

1 %u%le 1

1 , (va + i) , (x+i)) ==2) i++ ;

for (w=0 ; w<matrs i ze ; w++)
{

* (r2+w) = * (r l+w) ;
/ * * (y+w) = 0e0 ;
print f ("y % ct init to % le \n 11 , w , * (y+w)) ; * /

/ *print f (" %u and % e for % d reads \n " , addr , dat a , x) ; * /

fclose (mdatfp) ;
fclos e (mrowfp) ;
fclose (vecfp) ;

fd = open (DEVICE , O_RDWR) ;
memp = (char *) mmap (NULL , MTRRZ , PROT_READ , MAP_PRIVATE , fd , 0) ;
i f (memp == MAP_FAILED) {

perror (DEVICE) ;
exit (1) ;

SW = O ;
t=0 ;
stoppoint

q=0 ;

3 1 -3 ;

/ * gettimeofday (&t start , NULL) ; * /

z = &dat a ;
anspt r = &input ;
partialsum = &input2 ;
s i ze2fpga = & init ;

stppt = 0 ;
A = O ;
strtm = 0 ;
rowcnt = 0 ;
numrows = matrs i ze - 2 ;

temp = 0e0 ;
/ * zeros =

0 0 0 0 0 0000000000000000000000000000000000 0 0 00 0 0 0 0 0 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 ; * /
zeros = 0x0 0 0 0 0 0 0 0 0 0 0 00 0 0 0 ;
status [64] = ' \ 0 ' ;
Ch [0] I O I ;

Ch [1] = I \ 0 1 i
match = ' 0 ' ;
over = ' 0 ' ;
strtpt = 0 ;
strtm = 0 ;

104

n = 63 ;
done = 0 ;
check = 0 ;
crrnt = ' 0 ' ;
newvecflag2 0 ;
g= B ;
r=O ;
lastsent=OeO ;
sent=O ;
p=O ;
ps=OeO ;
ps 2=0e0 ;
ps 3=0e0 ;
firsttime = 0 ;
* si ze 2 fpga = matrsi ze - 2 ;

/ *Note : The case statement s will fall through to each one checking
sw . I f a break is the last statement in a case , then it brea ks
out of the switch without . falling through the rest of the

cases * /
gettimeofday { &t_start , NULL) ;

while { 1)
{

switch { sw)
{

case 0 :
/ *print f { " # of rows = % 08x , % 08x\n " , init . w [l] , init . w [O]) ; * /
write 6 4 { init , memp+ { Ox0000<<3)) ;
write64 { init , memp+ { Ox0000<<3)) ;

case 1 :
/ * Loop will send 64 vector addresses and values * /
/ * It remembers where t o continue for next time * /
for { t=t ; t<=stoppoint ; t=t+4)
{

i f { t <= vecs i ze- 1-3)
{

/ * * k = * { va + t) ; * /
/ *data . w [O] = * { va + t + 1) ; * /
addr . w [l] = * { va + t) ;
addr . w [O] = * { va + t + 1) ;
write6 4 { addr , rnernp+ { Ox0000<<3)) ;
addr . w [l] = * { va + t + 2) ;
addr . w [O] = * (va + t + 3) ;
write 6 4 (addr , rnernp+ { Ox0000<<3)) ;
* z = * { x + t) ;
write 64 (data , rnernp+ { Ox000 0<<3)) ;
* z = * { x + t + 1) ;
write6 4 { data , rnernp+ { Ox0000<<3)) ;
* z = * (x + t + 2) ;
write6 4 (data , rnernp+ { Ox00 00<<3)) ;
* z = * { x + t + 3) ;
write 6 4 { data , rnernp+ { Ox0000<<3)) ;

else i f { t == vecsize-1-2)
{

addr . w [l] = * (va + t) ;

1 05

addr . w [O] = * (va + t + l) ;
write64 (addr , mernp+ (Ox0000<<3)) ;
addr . w [l] = * (va + t + 2) ;
addr . w [O] = OxO O O O O OO O ;
write64 (addr , mernp+ (Ox 0 0 0 0<<3)) ;
* z = * (x + t) ;
write64 (data , memp+ (Ox00 00<<3)) ;
* z = * (x + t + 1) ;
write 6 4 (data , memp+ (Ox00 00<<3)) ;
* z = * (x + t + 2) ;
write 6 4 (data , memp+ (Ox0 00 0<<3)) ;
* z = OxO OOO O O O O O O O O O OO O ;
write64 (data , rnemp+ (Ox00 00<<3)) ;

else i f (t == vecsi ze- 1 - 1)
{

addr . w [l] = * (va + t) ;
addr . w [O] = * (va + t + 1) ;
write 64 (addr , memp+ (Ox 0 0 0 0<<3)) ;
addr . w [l] = OxO O O O OO O O ;
addr . w [O] = OxO O O O OO O O ;
write64 (addr , memp+ (Ox00 00<<3)) ;
* z = * (x + t) ;
write 64 (data , memp+ (Ox0000<<3)) ;
* z = * (x + t + 1) ;
write 64 (data , rnernp+ (Ox0000<<3)) ;
* z = OxOO O O O O O O O O O O O O O O ;
write64 (data , memp+ (Ox000 0<<3)) ;
* z = OxOO O O O O O O O O OO O O O O ;
write 64 (data , memp+ (Ox 0 0 0 0<<3)) ;

else i f (t == vecsi ze- 1)
{

else
{

addr . w [l] = * (va + t) ;
addr . w [O] = OxO O O O OO O O ;
write64 (addr, rnemp+ (Ox 0 0 0 0<<3)) ;
addr . w [l) = OxO O O O O O O O ;
addr . w [O) = OxO O O O O O O O ;
write64 (addr , memp+ (Ox 0 0 0 0<<3)) ;
* z = * (x + t) ;
write64 (data , memp+ (Ox0000<<3)) ;
* z = OxOO O O O O O OO O O O O OO O ;
write64 (data , rnemp+ (Ox 0 0 0 0<< 3)) ;
* z = OxO OOO O O O O O O O O O O O O ;
write 64 (data , memp+ (Ox000 0<<3)) ;
* z = OxOO OO O O O O O O O O OO O O ;
write 64 (data , mernp+ (Ox0000<<3)) ;

addr . w [l] = OxO O O O O OO O ;
addr . w [O] = OxO O O O O OO O ;
write64 (addr , rnemp+ (Ox0000<<3)) ;
addr . w [l] OxOOO O O OO O ;
addr . w [O] = OxOOOO O O O O ; 106

write 6 4 (addr , rnernp+ (Ox0000<<3)) ;
* z = OxO O OOOOOOOOOOOOOO ;
write 64 (data , rnernp+ (Ox0 000<<3)) ;
* z = OxO O O O O OOOOOOOOO O O ;
write64 (data , rnernp+ (Ox0000<<3)) ;
* z = OxOOOOOOOOOOOOOO O O ;
write 6 4 (data , rnemp+ (Ox000 0<<3)) ;
* z = OxOOOOOOOOOOOO O OO O ;
write6 4 (data , rnernp+ (Ox000 0<<3)) ;

stoppoint = t + 2 8 ;
/ * go to processing stage * /
SW = 2 ;

case 2 :
/ * Reset all handshaking locations * /
addr . w [l] = OxFFFFFFFF;
addr . w [O J = OxFFFFFFFF ;
write 64 (addr , rnernp+ (Ox0002<<3)) ; / * set report location* /
write6 4 (addr , rnernp+ (Ox0003<<3)) ; / * set answer location * /

for (q=O ; q<=52 ; q=q+4)
{

if (* (r l+A) +strtrn+q < * (r2+A+l) - 3)
{

addr . w [l] = * (c + (* (r l+A) +q+strtrn)) ;
addr . w [O J = * (c + (* (rl+A) +q + l+strtrn)) ;
write 6 4 (addr , rnernp+ (Ox0000<<3)) ;
addr . w [l] = * (c + (* (rl+A) +q + 2+st rtrn)) ;
addr . w [O] = * (c + (* (rl+A) +q + 3+strtrn)) ;
write 6 4 (addr , rnernp+ (Ox0000<<3)) ;

else i f (* (r l+A) +strtrn+q == * (r2+A+l) -3 }
{

addr . w [l] = * (c + (* (rl+A} +q+strtrn} } ;
addr . w [O] = * (c + (* (rl+A} +q + l+strtrn }) ;
write64 (addr, mernp+ (Ox0000<<3 }) ;
addr . w [l] = * (c + (* (rl+A} +q + 2+strtrn } } ;
addr . w [O] = OxFFFFFFFF ;
write64 (addr , rnernp+ (Ox0000<<3)) ;

else i f { * { rl+A) +strtm+q == * { r2+A+l) -2)

addr . w [l] = * (c + (* (rl+A) +q+strtrn}) ;
addr . w [O J = * (c + (* (rl+A) +q + l +strtm)) ;
write6 4 (addr , rnemp+ (Ox0000<<3)) ;
addr . w [l] = OxFFFFFFFF;
addr . w [O J = OxFFFFFFFF;
write 64 (addr , rnernp+ (Ox0000<<3)) ;

else i f (* (rl+A} +strtm+q == * (r2+A+ l) -1 }
{

addr . w [l] = * (c + (* (rl+A) +q+strtrn } } ;
addr . w [O J = OxFFFFFFFF ;
write 6 4 (addr , mernp+ (Ox000 0<<3 } } ;

1 07

else
{

addr . w [l] = OxFFFFFFFF ;
addr . w [O] = OxFFFFFFFF;
write6 4 (addr , memp+ (Ox0000<< 3)) ;

addr . w [l] = OxFFFFFFFF;
addr . w [O] = OxFFFFFFFF;
write6 4 (addr , memp+ (Ox0 000<< 3)) ;
addr . w [l) = OxFFFFFFFF ;
addr . w [O] = OxFFFFFFFF;
write6 4 (addr , memp+ (Ox000 0<<3)) ;

/ * i f (rowcnt == numrows)
{

/ *Noti fy FPGA on last row !
addr . w [l] = OxO OOOOOOO ;
addr . w [O] = OxO OOOOOOO ;
write 6 4 (addr , memp+ (Ox000 0<<3)) ;
addr . w [l] = OxO OOOOOOO ;
addr . w [O] = OxOOO OOOO O ;
print f (" % 08x --> % 0 8x\n " , addr . w [l] , addr . w [O]) ;
write6 4 (addr , memp+ (Ox0000<<3)) ;

} * /
/ *Now send start signal * /

SW = 3 ;

/ * go t o report stage t o receive feedback* /
/ *break ; * /

case 3 :
for (i=O ; i<lOO ; i++) ;
read64 (&input , memp+ (Ox00 02<<3)) ;
whi le (input . w [l] ==OxFFFFFFFF & & input . w [O] ==OxFFFFFFFF)
{

read64 (&input , memp+ (Ox0002<<3)) ;
}

addr . w [l] = OxFFFFFFFF;
addr . w [O] = OxFFFFFFFF ;
write 6 4 (addr , memp+ (Ox0002<<3)) ;

/ *temp = * anspt r ; * /
for (i= 6 3 ; i>=O ; i--)

temp = * ansptr ;
temp = (temp >> i) % 2 ;
sprint f (ch , " % ld" , temp) ;
status [63-i] = ch [O] ;

status [6 4] = ' \ 0 ' ;
match = status [O] ;
over = status [l] ;

strtpt = * (rl+A) + strtm;
strtm = strtm + 5 6 ; 108

stppt = 0 ;
i f (over == ' 1 ')
{

n = 6 3 ; / * range 8 to 6 3 * /
done = O ;
stppt = 0 ;
whi le (done == 0)
{

crrnt = status [n] ;
i f (status [2] == ' 1 ')
{

stppt = 63 ;
check = strtpt + 5 6 ;
i f (check > matsize- 1)
{

* (rl+A) = matsize ;

else
{

* (r l+A)

done = 1 ;

check ;

else if (crrnt
{

' 1 ' & & match == ' 1 ')

stppt = n ;
status [n] = ' O ' ;
check = strtpt - 1 - (63 - n) + 5 6 ;
i f (check > mat size-1)
{

* (rl+A) = mat size ;

else
{

* (r l+A) check ;

done = 1 ;

else i f (crrnt
{

' 1 ' & & match == ' 0 ')

stppt = n ;
status [n] = ' 0 ' ;
check = strtpt - 1 - (63 - n) + 5 6 ;
i f (check > matsi ze- 1)
{

* (rl +A) = mat size ;

else
{

* (r l+A) check;

done = 1 ;

n = n - 1 ;

1 09

st rtm = 0 ;
i f (rowcnt
{

numrows)

else

A = O ;
rowcnt = 0 ;
newvecfl ag2 = 1 ;
fi rsttime = 1 ;

A++ ;
rowcnt ++ ;

/ * grab individual bits to see where to go* /
i f (match == ' 1 ')
{ / *Send matched data* /

SW = 4 ;

else if (over == ' 1 ')
{ / *Get answer* /

SW = 5 ;

else
{ / *Go back to process ing* /

SW 2 ;

break ;
case 4 :

/ * Loop back through previous 5 6 submi s si ons to send dat a * /
/ * i f (over = = 1 I I ans f = = 1)
{

SW = 5 ;

} * /
match = ' 0 ' ;
sent = 0 ;
lastsent = 0e0 ;
r = O ;
for (g=8 ; g<=63 ; g++)
{

i f (status [g] == ' l ')
{

* z = * (v+ (strtpt + r)) ;
writ e64 (data , memp+ (0x0000<<3)) ;
lastsent = * z ;

}

sent = s ent + 1 ;

i f (g==stppt) brea k ;
e l s e r++ ;

i f ((s ent%2) ==l)
{

* z = lastsent ;

1 1 0

else
{

write 6 4 (data , memp+ (0x000 0<<3 } } ;
/ * * z = 0x000 00000000000 00 ;
write6 4 (data , memp+ (0x0 000<<3 } } ; * /

* z = 0x00000000000 000 0 0 ;
write 6 4 (dat a , memp+ (0x000 0<<3 } } ;
* z = 0x0 000000000000000 ;
write64 (dat a , memp+ (0x0 00 0<<3 } } ;

* z = 0x00000000000000 0 0 ;
write 6 4 (data , memp+ (0x00 0 0<<3 } } ;
* z = 0x0000000000000 00 0 ;
write 6 4 (data , memp+ (0x000 0<<3 } } ;

i f (over == ' l ' } sw= S ;
else sw=2 ;

/ * NOW send start signal * /

break;
case 5 :

/ *grab answer* /
read64 (&input2 , memp+ (0x0003<< 3 } } ;
while (input 2 . w [l] ==0xFFFFFFFF && input 2 . w [0] ==0xFFFFFFFF }
{

read64 (& input2 , memp+ (0x0003<<3 } } ;

i f (A==0 & & firsttime==l } p=numrows ;
else i f (A==0 & & firsttime==0 } p= 0 ;
else p=A- 1 ;

* (y+p } += *partialsum;

i f (newvecflag2 = = 1 }
{

if (t>=vecs i ze } sw 6 ;
else s w = 1 ;
newvecflag2 = 0 ;

else sw = 2 ;
over ' 0 ' ;
break ;

case 6 :
gett imeofday (&t_finish, NULL } ;

for (i=0 ; i<=matrsize-2 ; i++ }
{

print f ("---> %le\n" , * (y+ i } } ;

lt ime = (t_finish . tv_sec-t_start . tv_sec } * 1 000000 +
(t_finish . tv_usec-t_start . tv_usec } ;

ltime2 = (float } ltime / l ;

1 1 1

printf ("CPU : calculation completed in % f usec\n " , ltime2) ;
munmap (memp , MTRRZ) ;

close (fd) ;
exit (1) ;

default :
}

return 0 ;

1 12

Appendix D - Pilchard.vhd

1 1 3

· library ieee ;
use ieee . std_logic 1 1 6 4 . al l ;

entity pilchard i s
port (

PADS_exchecker_reset : in std_logic ;
PADS_dimrn_ck : in std_logic ;
PADS dimrn eke : in std_logi c_vector (l downto 0) ;
PADS_dimrn_ra s : in std_logic ;
PADS_dimrn_cas : in std_logi c ;
PADS_dimrn_we : in std_logic ;
PADS_dimrn_s : std_logic_vector (3 downto 0) ;
PADS_dimrn_a : in std_logic_vector (1 3 downto 0) ;
PADS_dimrn_ba : in std_logic_vector (l downto 0) ;
PADS_dimrn_rege : in std_logic ;
PADS_dimrn_d : inout std_logic_vector (63 downto 0) ;
PADS_dimrn_cb : inout std_logic_vector (7 downto 0) ;
PADS_dimrn_dqmb : in std_logic_vector (7 downto 0) ;
PADS_dimrn_scl : in std_logic ;
PADS_dimrn_sda : inout std_logi c ;
PADS_dimrn_sa : in std_logic_vector (2 downto 0) ;
PADS_dimrn_wp : in std_logic ;
PADS io conn : inout std_logic_vector (2 7 downto 0)) ;

end pilchard;

archit ecture syn of pi lchard is

component INV
port (

0 : out std_logic ;
I : in std_logic) ;

end component ;

component BUF
port (

I : in std_logic;
0 : out std_logic) ;

end component ;

component BUFG
port (

I : in std_logi c ;
0 : out std_logic) ;

end component ;

component CLKDLLHF is
port (

CLKIN : in std_logi c ;
CLKFB : in std_logi c ;
RST : in std_logic ;
CLK0 : out std_logic ;
CLK1 8 0 : out std_logic;
CLKDV : out std_logic ;
LOCKED : out std_logic) ;

end component ;

1 14

component FDC i s
port (

C : in std_logic;
CLR : in std_logic ;
D : i n std_logic ;
Q : out std_logic) ;

end component ;

component IBUF
port (

I : in std_logic ;
0 : out std_logic) ;

end component ;

component IBUFG
port (

I : in std_logic ;
0 : out std_logic) ;

end component ;

component IOB_FDC is
port (

C : in std_logic ;
CLR : i n std_logic ;
D : in std_logic ;
Q : out std_logic) ;

end component ;

component IOBUF
port (

I : in std_logic ;
0 : out std_logic ;
T : i n std_logic ;
IO : inout std_logic) ;

end component ;

component OBUF
port (

I : in std_logic ;
0 : out std_logic) ;

end component ;

component STARTUP_VI RTEX
port (

GSR : in std_logic;
GTS : in std_logic ;
CLK : in std_logic) ;

end component ;

component pcore
port (

elk : in std_logic ;
clkdiv : in std_logic ;
rst : in std_logic ;

1 1 5

read : in std_logic ;
write : in std_logic ;
addr : in std_logi c_vector (1 3 downto 0) ;
din : in std_logi c_vector (6 3 downto 0) ;
dout : out std_logi c_vector (6 3 downto 0) ;
drnask : in std_logic_vector (6 3 downto 0) ;
extin : in std_logic_vector (2 5 downto 0) ;
extout : out std_logic_vector (2 5 downto 0) ;
extctrl : out std_logi c_vector (2 5 downto 0)) ;

end component ;

signal cl kdl lhf_cl k0 : std_logic ;
signal cl kdllhf_cl kdiv : std_logic ;
signal dimm_ck_bufg : std_logic ;
signal dimm_s_ibuf : std_logic ;
signal dimm_ras_ibuf : std_logic;
signal dimm_cas_ibuf : std_logic ;
signal dimm_we_ibuf : std_logi c ;
signal dimm_s_ibuf_d : std_logic ;
signal dimm_ras_ibuf_d : std_logic ;
signal dimm_cas_ibuf_d : std_logic ;
signal dimm we ibuf d : std_logic ;
signal dimm d iobu f i : std_logic_vector (6 3 downto 0) ;
signal dimm_d_iobuf_o : std_logi c_vector (6 3 downto 0) ;
signal dimm d iobuf t : std_logi c_vector (6 3 downto 0) ;
signal dimm_a_ibuf : std_logic_vector (1 4 downto 0) ;
signal dimm_dqmb_ibuf : std_logic_vector (7 downto 0) ;
signal io conn iobuf i : std_logi c_vector (2 7 downto 0) ;
signal io conn iobuf o : std_logic_vector (2 7 downto 0) ;
signal io conn iobuf t : std_logic_vector (2 7 downto 0) ;

signal s , ras , cas , we : std_logic ;

signal VDD : std_logi c ;
signal GND : std_logic ;

signal CLK : std_logi c ;
signal CLKDIV : std_logi c ;
signal RESET : std_logi c;
signal READ : std_logi c ;
signal WRITE : std_logic ;
signal READ_p : std_logi c ;
signal WRI TE_p : std_logi c ;
signal READ_n : std_logic ;
signal READ_buf : std_logic ;
signal WRITE_buf : std_logic ;
signal READ_d : std_logic ;
signal WRI TE_d : std_logi c ;
signal READ_d_n : std_logic ;
signal READ_d_n_buf : std_logi c ;

signal pcore_addr_raw : std_logic_vector (1 3 downto 0) ;
s ignal pcore_addr : std_logic_vector (1 3 downt o 0) ;
signal pcore_din : std_logic_vector (63 downto 0) ;
signal pcore_dout : std_logi c_vector (63 downto 0) ;

1 1 6

signal pcore_dmas k : std_logic_vector (63 downto 0) ;
s ignal pcore_extin : std_logic_vector (2 5 downto 0) ;
s ignal pcore_extout : std_logic_vector (2 5 downto 0) ;
signal pcore_extctrl : std_logic_vector (2 5 downto 0) ;
s ignal pcore_dqmb : std_logic_vector (7 downto 0) ;

CLKDIV frequency control , default is 2
uncomment the following lines so as to rede fined the clock rate
given by cl kdiv

begin

attribute CLKDV_DIVIDE : string ;
attribute CLKDV DIVI DE of U cl kdllhf : label is " 4 " ;

VDD <= ' 1 ' ;
GND <= ' 0 ' ;

U_ck_bufg : I BUFG port map (
I => PADS_dirnm_ck ,
0 => dirnm_ck_bufg) ;

U reset_ibuf : IBUF port map
I => PADS_exchecker_reset ,
0 => RESET) ;

U clkdllhf : CLKDLLHF port map
CLKIN => dirnm_ck_bufg ,
CLKFB => CLK,
RST => RESET ,
CLK0 => clkdllhf_cl k0 ,
CLK1 8 0 => open ,
CLKDV => cl kdllhf_cl kdiv,
LOCKED => open) ;

U_clkdllhf_cl k0_bufg : BUFG port map (
I => clkdllhf_cl k0 ,
0 => CLK) ;

U clkdllhf cl kdiv_bufg : BUFG port map (
I => cl kdllhf_cl kdiv,
0 => CLKDIV) ;

U_startup : STARTUP VIRTEX port map (
GSR => RESET ,
GTS => GND ,
CLK => CLK) ;

U dimm_s ibuf : IBUF port map
I => PADS_dimm_s (0) ,
0 => dirnm_s_ibuf) ;

U dimm ras_ibuf : I BUF port map
I => PADS_dirnm_ras ,
0 => dimm ras ibuf) ;

1 1 7

U_dimm_cas ibuf : IBUF port map
I => PADS_dimm_cas ,
0 => dimm_cas_ibuf) ;

U_dimm_we_ibuf : IBUF port map
I => PADS_dimm_we ,
0 => dimm_we ibuf) ;

G_dimm_d : for i in integer range O to 63 generate

U_dimm_d_iobuf : IOBUF port map
I => dimm_d_iobuf_i (i) ,
0 => dimm_d_iobuf_o (i) ,
T => dimm_d_iobuf_t (i) ,
IO => PADS_dimm_d { i)) ;

U dimm d iobuf · o : IOB FDC port map (
C => CLK,
CLR => RESET ,
D => dimm_d_iobuf o (i) ,
Q => pcore_din (i)) ;

U dimm d iobuf i : IOB FDC port map (
C => CLK,
CLR => RESET ,
D => pcore_dout (i) ,
Q => dimm_d_iobuf_i (i)) ;

U dimm d iobuf t : IOB FDC port map
C => CLK,
CLR => RESET ,
D => READ_d_n_buf ,
Q = > dimm_d_iobuf_t { i)) ;

end generat e ;

G dimm a : for i i n integer range O to 1 3 generate

U_dimm_a_ibu f : IBUF port map
I => PADS_dimm_a { i) ,
0 => dimm_a_ibuf (i)) ;

U_dimm_a_ibuf o : IOB FDC port map {
C => CLK,
CLR => RESET ,
D => dimm_a_ibuf (i) ,
Q => pcore_addr_raw { i)) ;

end generate ;

pcore_addr (3 downto 0) <= pcore_addr_raw (3 downto 0) ;
addr correct : for i in integer range 4 to 7 generate

ADDR INV : INV port map (
0 => pcore_addr (i) ,

1 1 8

I => pcore_addr_raw (i } } ;
end generate ;
pcore_addr (1 3 downto 8) <= pcore addr_raw (1 3 downto 8 } ;

G_dimm_dqmb : for i in integer range O to 7 generate

U_dimm_dqmb_ibuf : I BUF port map
I => PADS_dimm_dqmb (i } ,
0 => dimm_dqmb_ibuf (i } } ;

U_dimm_dqmb_ibuf_o : IOB FDC port map (
C => CLK,
CLR => RESET ,
D => dimm_dqmb_ibuf (i } ,
Q => pcore_dqmb (i) } ;

end generate ;

pcore_dma s k (7 downto 0 } <= (others => (not pcore_dqmb (0 } } } ;
pcore_dma s k (1 5 downto 8 } <= (others => (not pcore_dqmb (l } } } ;
pcore_dmas k (2 3 downto 1 6 } <= (others => (not pcore_dqmb (2 } } } ;
pcore_dmask (3 1 downto 2 4 } <= (others => (not pcore_dqmb (3)) } ;
pcore_dma s k (3 9 downto 32 } <= (others => (not pcore_dqmb (4) } } ;
pcore_dmask (4 7 downto 4 0 } <= (others => (not pcore_dqmb (S } } } ;
pcore_dmas k (S S downto 4 8 } <= (others => (not pcore_dqmb (6 } } } ;
pcore_dmas k (63 downto 5 6 } <= (others => (not pcore_dqmb (7 } } } ;

G io conn : for i in integer range 2 to 27 generate

U io_conn_iobuf : IOBUF port map
I => io_conn_iobuf_i (i } ,
O => io_conn_iobuf_o (i } ,
T => io_conn_iobuf_t (i) ,
IO => PADS_io_conn (i } } ;

U io conn iobuf o : IOB FDC port map (
C => CLK,
CLR => RESET ,
D => io_conn_iobuf o (i } ,
Q => pcore_extin (i - 2) } ;

U io conn iobuf i : IOB FDC port map
C => CLK,
CLR => RESET ,
D => pcore_extout (i - 2) ,
Q => io_conn_iobuf_i (i)) ;

U io conn iobuf t : IOB FDC port map
C => CLK,
CLR => RESET ,
D => pcore_extctrl (i - 2 } ,
Q => io_conn_i obuf_t (i }) ;

end generate ;

1 1 9

U io conn 0 iobuf : IOBUF port map (
I => dirnrn_ck_bufg ,
0 => open,
T => GND ,
IO => PADS i o conn (0)) ;

U io conn 1 iobuf : IOBUF port map
I => GND,
0 => open ,
T => VDD ,
IO => PADS io_conn (l)) ;

READ_p <=
(not dirnrn_s_ibuf) and
(dirnrn_ras_ibuf) and
(not dirnrn_cas_ibuf) and
(dirnrn_we_ibuf) ;

U_read : FDC port map
C => CLK ,
CLR => RESET ,
D => READ_p ,
Q => READ) ;

U buf read : BUF port map
I => READ,
0 => READ_buf) ;

U_read_d : FDC port map
C => CLK,
CLR => RESET ,
D => READ ,
Q => READ d) ;

WRI TE p <=
(not dirnrn_s_ibuf) and
(dirnrn_ras_ibuf) and
(not dirnrn_cas_ibuf) and
(not dirnrn_we_ibuf) ;

U_write : FDC port map
C => CLK,
CLR => RESET ,
D => WRI TE_p ,
Q => WRI TE) ;

U buf write : BUF port map
I => WRI TE,
0 => WRITE_buf) ;

U write d : FDC port map
C => CLK,
CLR => RESET ,
D => WRI TE ,
Q => WRI TE d) ;

1 20

READ n <= not READ ;

U read_d_n : FDC port map (
C => CLK,
CLR => RESET ,
D => READ_n ,
Q => READ d n) ;

U buf read d n : BUF port map
I => READ_d_n ,
0 => READ d n buf) ;

User logic should be placed inside pcore
U_pcore : pcore port map (

el k => CLK,

end syn ;

cl kdiv => CLKDIV,
rst => RESET ,
read => READ,
write => WRI TE,
addr => pcore_addr ,
din => pcore_din ,
dout => pcore_dout ,
dmas k => pcore_dmas k ,
extin = > pcore_extin ,
extout => pcore_extout ,
extctrl => pcore_extctrl

) ;

121

Appendix E - Pcore.vhd

1 22

Pcore Wrapper
Author : Kirk A Baugher

library ieee ;
use ieee . std_logic_l l 64 . all ;
use ieee . std_logic_unsigned . all ;

entity pcore is
port (

elk : in std_logic ;
clkdiv : in std_logic ;
rst : in std_logic ;
read : in std_logi c ;
write : i n std_logic ;
addr : in std_logic_vector (13 downto 0) ;
din : in std_logic_vector (63 downto 0) ;
dout : out std_logic_vector (63 downto 0) ;
dmas k : in std_logic_vector (63 downto 0) ;
extin : in std_logic_vector (2 5 downto 0) ;
extout : out std_logic_vector (2 5 downto 0) ;
extctrl : out std_logic_vector (2 5 downto 0)) ;

end pcore ;

architecture syn of pcore is
component asyncfifo

port (
din : IN std_logic_VECTOR (127 downto 0) ;
wr_en : IN std_logi c ;
wr_cl k : IN std_logic ;
rd_en : IN std_logic ;
rd_clk : I N std_logic ;
ainit : IN std_logi c ;
dout : OUT std_logic_VECTOR (l2 7 downto 0) ;
full : OUT std_logic ;
empty : OUT std_logic ;
r d ack : OUT std_logi c ;
r d err : OUT std_logic ;
wr ack : OUT std_logic ;
wr err : OUT std_logic) ;

END component ;

component sparsemvmult
PORT (

CLK : IN STD_LOGIC ;
RESET : IN STD_LOGIC ;
din_rdy : IN STD_LOGI C ;
INP : IN STD_LOGIC_VECTOR (12 7 DOWNTO 0) ;
ADDR : OUT STD_LOGIC_VECTOR (l DOWNTO 0) ;
REPORTFLAG : OUT STD_LOGIC ;
ANS FLAG OUT : OUT STD LOGIC ; - -
OUTPUT : OUT STD_LOGIC_VECTOR (63 DOWNTO 0)) ;

END component ;

component outram

123

port (
addra : IN std_logi c_VECTOR (l downto 0) ;
addrb : IN std logic VECTOR (l downto 0) ;
clka : IN std_logic ;
clkb : I N std_logic ;
dina : IN std_logic_VECTOR (63 downto 0) ;
dinb : IN std_logic_VECTOR (63 downt o 0) ;
douta : OUT std_logic_VECTOR (63 downt o 0) ;
doutb : OUT std_logic_VECTOR (63 downto 0) ;
wea : IN std_logic ;
web : IN std_logic) ;

END component ;

signal wr en , wr_ack , wr_err , rd_en, rd_ack, rd_err : std_logi c ;
signal ful l , empty , din_rdy, t i c , fini sh , ready , read2 , read3 , read4
std_logi c ;
signal FI FO_in , FI FO_out , out2parith : std_logic_vector (1 2 7 downto
0) ;

signal parithout , temp : std_logic_vector (63 downto 0) ;

signal
signal
signal
signal
begin

wea , web , ndb , rfdb, rdyb , tac
REPORTFLAG , ANS FLAG_OUT
dina , dinb , douta , doutb
addrb

std_logic ;
: std_logi c ;

std_logi c_vect or (63 downto 0) ;
std logic_vector (l downto 0) ;

fifo0 : asyncfifo port map
din =>FI FO_in ,
wr_en =>wr_en ,

) ;

smsv

) ;

wr elk =>el k,
rd_en =>rd_en ,
rd el k =>clkdiv ,
ainit =>rst ,
dout =>FI FO_out ,
full =>full ,
empty =>empty,
rd ack =>rd_ack,
rd err =>rd_err ,
wr ack =>wr_ack ,
wr err =>wr err

sparsemvrnult port map (
CLK => cl kdiv ,
RESET => rst ,
din_rdy => din_rdy,
INP => out2parith ,
ADDR => addrb ,
REPORTFLAG => REPORTFLAG ,
ANS FLAG OUT => ANS_FLAG_OUT ,
OUTPUT => parithout

outram0 : outram port map (
addra => addr (l downto 0) ,

124

addrb => addrb ,
cl ka => el k ,
cl kb => cl kdiv,
dina => din ,
dinb => parithout ,
douta => douta ,
doutb => doutb ,
wea => writ e ,
web => finish

) ;

fini sh <= (REPORTFLAG OR ANS FLAG_OUT) ;

proces s (clk , rst)
variable tmpx
begin
if rst= ' l ' then

tmpx : = (OTHERS=> ' l ') ;
wr_en <= ' 0 ' ;
tic <= ' 0 ' ;
FI FO_in <= (OTHERS=> ' l ') ;

elsif cl k ' event and clk= ' l ' then

std_logic_vector (63 downto 0) ;

if write= ' l ' and addr (l) = ' 0 ' then
if tic = ' 0 ' then

else

tmpx : = din ;
tic <= ' 1 ' ;
wr_en <= ' 0 ' ;

FI FO_in <= tmpx & din ;
wr_en <= ' 1 ' ;

else

tic <= ' 0 ' ;
end i f ;

wr_en <= ' 0 ' ;
tic <= tic ;
tmpx . - tmpx ;

end i f ;
end i f ;
end process ;

proces s (cl kdiv , rst)
begin
if rst = ' l ' then

rd_en <= ' 0 ' ;
elsi f cl kdiv ' event and cl kdiv= ' l ' then

if empty = ' 0 ' then
rd en <= ' 1 ' ;

else
rd en <= ' 0 ' ;

end i f ;
end i f ;
end process ;

proces s (clkdiv , rst)
begin

1 25

i f rst= ' l ' then
out 2parith <= (OTHERS=> ' l ') ;
din_rdy <= ' 0 ' ;

elsif cl kdiv ' event and cl kdiv= ' l ' then
if rd err = ' 0 ' and rd ack = ' l ' then

out2parith <= FI FO_out ;

else
din_rdy <= ' l ' ;

out2parith <= (OTHERS=> ' l ') ;
din_rdy <= ' 0 ' ;

end i f ;
end i f ;
end proces s ;

dout <= doutb ;

end syn ;

126

Appendix F - Sparsemvmult.vhd

127

Sparse Mat rix Spar se Vector Mult iplier
< sparsernvmult . vhd >
4 / 1 9 /2004
Kirk A Baugher
kbaugher . edu

LI BRARY IEEE ;
USE IEEE . std_logic_1 16 4 . ALL ;
USE IEEE . std_logic_arith . ALL ;
use IEEE . std_logi c_unsigned . al l ;

ENT ITY sparsernvmult IS
PORT (

CLK : IN STD_LOGIC ;
RESET : IN STD LOGIC ;
din_rdy : IN STD_LOGIC ;
INP : IN STD_LOGIC_VECTOR (1 27 DOWNTO 0) ;
ADDR : OUT STD_LOGIC_VECTOR (l DOWNTO 0) ;
REPORTFLAG : OUT STD_LOGIC ;
ANS_FLAG_OUT : OUT STD_LOGIC ;
OUTPUT : OUT STD_LOGIC_VECTOR (63 DOWNTO 0)) ;

END spars ernvmult ;

ARCHITECTURE behavior OF sparsernvrnult IS
SI GNAL ANS_FLAG , overflag , New_vectorflag : STD_LOGIC ;
SIGNAL ANSWER : STD_LOGIC_VECTOR (63 DOWNTO 0) ;
TYPE STATE_TYPE IS (ADDRESS , DATA,
PROCESS ING , INITIALI ZE , REPORTw , REPORTx , SEND, MACN) ;
SIGNAL STATE, STATEX , STATE_DEL : STATE_TYPE ;
TYPE elmnt_addr IS ARRAY (0 TO 3 1) OF STD_LOGI C_VECTOR (3 1 DOWNTO 0) ;
SIGNAL ea elmnt_addr ;
--TYPE elrnnt data IS ARRAY (0 TO 63) OF STD_LOGIC_VECTOR (63 DOWNTO 0) ;
--SIGNAL ed : elrnnt_data ;
SIGNAL j , gnd_bit STD_LOGIC ;
SIGNAL i INTEGER RANGE O TO 63 ;
TYPE MACbuffer IS ARRAY (0 TO 63) OF STD LOGIC_VECTOR (63 DOWNTO 0) ;
SIGNAL buff , accbuff : MACbuffer ;
SI GNAL count l , count2 : INTEGER RANGE O TO 31 ;
SIGNAL OUT PUT1 , OUTPUT2 , OUTPUT3 , OUTPUT4 : STD_LOGI C_VECTOR (1 3 DOWNTO 0) ;
SIGNAL GND, rowcnt , rowcnt_lessl , cntr STD_LOGIC_VECTOR (3 1 DOWNTO 0) ;
S IGNAL Acount , Acount l : INTEGER RANGE O TO 1 3 ;
SIGNAL Mult_inlA, Mult_inlB STD_LOGIC_VECTOR (6 3 DOWNTO 0) ;
SIGNAL Mult_in2A, Mult_in2B STD_LOGIC_VECTOR (63 DOWNTO 0) ;
SIGNAL over , stall , matchflag , one , din_rdy2 : STD_LOGIC ;
SI GNAL overl l , over12 , over 1 3 , over 1 4 , overl : STD_LOGIC;
SI GNAL matchl l , rnatch12 , rnatchl 3 , matchl4 , matchl , matchlx : STD_LOGIC ;
SIGNAL OUTPUT11 , OUTPUT12 , OUTPUT1 3 , OUTPUT 1 4 : STD_LOGIC ;
--SIGNAL Dataout l l , Dataout 1 2 , Dat aout 1 3 , Dataout 1 4 , Dat aout l
STD_LOGIC_VECTOR (63 DOWNTO 0) ;
SIGNAL over2 1 , over2 2 , over2 3 , over2 4 , over2 : STD_LOGIC ;
SIGNAL match2 1 , match2 2 , match2 3 , match2 4 , match2 , match2x : STD LOGIC ;
SIGNAL OUTPUT2 1 , OUTPUT22 , OUT PUT2 3 , OUTPUT24 : STD_LOGIC ;
--SIGNAL Dataout2 1 , Dataout22 , Dataout 2 3 , Dataout 2 4 , Dataout2
STD_LOGIC_VECTOR (6 3 DOWNTO 0) ;
S IGNAL over31 , over 32 , over33 , over34 , over3 : STD_LOGIC ;
SIGNAL match3 1 , match32 , match33 , match34 , match3 , match3x STD_LOGIC ;

1 28

S IGNAL OUTPUT3 1 , OUTPUT32 , OUTPUT33 , OUTPUT3 4 : STD_LOGIC ;
--SIGNAL Dataout3 1 , Dataout32 , Dataout 3 3 , Dataout 3 4 , Dataout3
STD_LOGIC_VECTOR (63 DOWNTO 0) ;
S IGNAL over4 1 , over4 2 , over4 3 , over4 4 , over4 : STD_LOGIC ;
S IGNAL match4 1 , match4 2 , match4 3 , match4 4 , match4 4x , match4 , match4 x
STD_LOGIC ;
SIGNAL OUTPUT4 1 , OUTPUT4 2 , OUTPUT4 3 , OUTPUT4 4 : STD_LOGIC ;
--SIGNAL Dataout 4 1 , Dataout 4 2 , Dataout 4 3 , Dataout 4 4 , Dataout 4
STD_LOGIC_VECTOR (63 DOWNTO 0) ;
S IGNAL spot
S IGNAL addra l , addrbl , addra2 , addrb2
0) ;
S IGNAL addra lx , addrblx , addra2x , addrb2x
DOWNTO 0) ;
S IGNAL addral z , addrb l z , addra2 z , addrb2 z
DOWNTO 0) ;
S IGNAL addra l l , addrbl l , addra2 1 , addrb2 1
DOWNTO 0) ;
S IGNAL addra1 2 , addrb 1 2 , addra2 2 , addrb22
DOWNTO 0) ;
S IGNAL addra1 3 , addrb1 3 , addra2 3 , addrb2 3
DOWNTO 0) ;
S IGNAL addra1 4 , addrb1 4 , addra24 , addrb2 4
DOWNTO 0) ;

S IGNAL dina l , dinbl , dina2 , dinb2
DOWNTO 0) ;

S IGNAL doutal , doutbl , douta2 , doutb2
0) ;
S IGNAL wea l , webl , wea2 , web2
S IGNAL ial , ia2 , i a 3 , ia4
0) ;

.

INTEGER RANGE O TO 5 5 ;
STD_LOGIC_VECTOR (5 DOWNTO

STD_LOGIC_VECTOR (5

STD_LOGIC_VECTOR (5

STD_LOGIC_VECTOR (5

STD_LOGIC_VECTOR (5

STD_LOGIC_VECTOR (5

STD_LOGIC_VECTOR (5

STD_LOGIC_VECTOR (63

STD_LOGIC_VECTOR (63 DOWNTO

STD_LOGIC ;
STD_LOGIC_VECTOR (5 DOWNTO

signal mout l , mout2 , Aa , Xa , Ab , Xb, mout l a , mout2a
STD_LOGIC_VECTOR (63 DOWNTO 0) ;
signal wr enx
signal rd_enl , rd_ackl , rd_errl
signal wr enl : std_logic ;
signal rd_en2 , rd_ack2 , rd_err2
signal wr en2 : std_logic ;
s ignal rd_en3 , rd_ack3 , rd_err3
signal wr en3 : std_logic ;
signal rd_en4 , rd_ack4 , rd_err4
signal wr_en4 : std_logic ;

std_logic_vector (l to 4) ;
std_logic ;

std_logic ;

std_logic ;

std_logic ;

TYPE quadBufferin I S ARRAY (1 TO 4) OF std_logic_vector (63 downto 0) ;
signal buffin quadBufferin ;
signal dout l , dout 2 , dout3 , dout 4 : std_logic_vector (63 downto
0) ;

s ignal emptyl , empty2 , empty3 , empty4
s ignal full l , full2 , full 3 , full 4
signal sml , sm2 , fmla , fm2a
signal ptrl , ptr2 , ptr3 , ptr4
signal smla , sm2a , smlb, sm2b
signal sidel , sidela , sidelb

129

std_logic ;
: std_logic ;

: std_logic !
integer range 1 to 4 ;
std_logic ;

std_logic ;

signal side2 , side2a , side2b : std_logic ;

signal
0) ;
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal

c , d , cl , c2 , dl , Ainl , Ain2 , aout : std_logic_vector { 63 downto

rd_en , wr_enbuff : std_logic ;
sa , rd_err std_logic ;
rd ack std_logic ;
ready : std_logi c ;
fa , full out : std_logic ;
empty_out std_logic ;
dinbuff : std_logi c_vector { 63 downto 0) ;
dout out : std_logic_vector { 6 3 downto 0) ;
overflow val , over flow val2 : std_logic_vector { 63 downto 0) ;
overflow, overflow2 : std_logic ;
fml , fm2 , num_inputs
instatus , input status
size
pending
pendingml , pendingm2
buff reset

: std_logic ;
: integer range O to 9 ;

integer range O to 6 4 ;
: integer range O to 1 3 ;
: integer range O to 9 ;

: std logic ;

--signal
real , rea2 , rea3 , rea4 , rea5 , rea 6 , rea7 , rea8 , rea 9 , rebl , reb2 , reb3 , reb4 , reb5 , r
eb6 , reb7 , reb8 , reb9 : std_logi c ;

COMPONENT dpfpmult
port (CLK : in std_logic ;

A in std_logic_vector (63 downto 0) ;
B : in std_logic_vector (63 downto 0) ;

OUTx : out std_logic_vector { 63 downto 0) ;
start : in std_logic;

finish : out std_logic
) ;
end COMPONENT ;

COMPONENT dpfpadd
port { CLK : in std_logic;

Ain : in std_logic_vector (63 downto 0) ;
Bin : in std_logic_vector (63 downto 0) ;

OUTx : out std_logic_vector (63 downto 0) ;
start : in std_logi c ;
finish : out std_logic

) ;
end COMPONENT ;

component s yncfi fo
port {

· el k : IN std_logic ;
sinit : IN std_logi c ;
din : I N std_logic_VECTOR (63 downto 0) ;

130

wr en : IN std_logic ;
rd en : IN std_logic ;
dout : OUT std_logic_VECTOR (63 downto 0) ;
full : OUT std_logic;
empty : OUT std_logic ;
rd ack : OUT std_logic ;
rd err : OUT std_logi c) ;

end component ;

component dpram64 6 4
port (
addra : IN std_logic_VECTOR (5 downto 0) ;
addrb : IN std_logic_VECTOR (5 downto 0) ;
clka : IN std_logic ;
clkb : IN std_logic ;
dina : IN std_logic_VECTOR (63 downto 0) ;
dinb : IN std_logic_VECTOR (63 downto 0) ;
douta : OUT std_logic_VECTOR (63 downto 0) ;
doutb : OUT std_logic_VECTOR (63 downto 0) ;
wea : IN std_logic ;
web : IN std_logic) ;

END component ;

BEGIN
GND<= (OTHERS=> ' 0 ') ;
gnd_bit<= ' 0 ' ;
one <= ' 1 ' ;

raml

) ;

ram2 :

) ;

dpram64_64 port
addra => addra l ,
addrb => addrbl ,
clka => el k ,
clkb => el k ,
dina => dina l ,
dinb => dinb l ,
douta => douta l ,
doutb => doutbl ,
wea => weal ,
web => webl

dpram64 64 port
addra => addra2 ,
addrb => addrb2 ,
cl ka => elk ,
clkb => elk ,
dina => dina2 ,
dinb => dinb2 ,
douta => douta2 ,
doutb => doutb2 ,
wea => wea2 ,
web => web2

map (

map (

fpmult l dpfpmult port map (

1 3 1

) ;

CLK=>CLK,
A=>Mult_inlA,
B=>Mult_inl B ,
OUTx=>mout 1 ,
start=>sml ,
finish=>fml

fpmult2 : dpfpmult port map (
CLK=>CLK,

) ;

A=>Mult_in2A,
B=>Mult_in2 B ,
OUTx=>mout2 ,
start=>sm2 ,
fini sh=>fm2

fpadd : dpfpadd port map (
CLK=>CLK,
Ain=>Ainl ,
Bin=>Ain2 ,
OUTx=>aout ,
start=>sa ,
finish=>fa) ;

buf : synefi fo port map
el k => el k ,

) ;

din => dinbuff ,
wr en => wr_enbuff ,
rd en => rd_en ,
sinit => buffreset ,
dout => dout_out ,
full => full_out ,
empty => empty_out ,
rd aek => rd_aek,
rd err => rd err

bufl : synefi fo port map

} ;

el k => el k ,
din
wr en -
rd en
sinit
dout
ful l

=>
=>
=>
=>
=>
=>

buff in (1) ,
wr_enx (l } ,
rd_enl ,
buffreset ,
dout l ,
ful l l ,

empty => emptyl ,
rd aek => rd_aekl ,
rd err => rd err l

buf2 : synefi fo port map
el k => el k ,
din => buffin (2 } ,
wr en => wr_enx (2) ,
rd en => rd_en2 ,
s init => buffreset ,

1 32

dout => dout2 ,
ful l => full2 ,
empty => empty2 ,
rd ack => rd ack2 ,
rd err => rd err2

) ;

buf3 : syncfi fo port map
el k => elk ,
din => buff in (3) ,
wr en => wr enx (3) , -
rd en => rd en3 ,
s init => buff reset ,
dout => dout 3 ,
ful l => ful l 3 ,
empty => empty3 ,
rd ack => rd ack3 ,
rd err => rd err3

) ;

buf 4 : syncfi fo port map
elk => el k ,
din => buff in (4) ,
wr en => wr enx (4) , - -
rd en => rd en4 ,
s init => buff reset ,
dout => dout 4 ,
full => ful l 4 ,
empty => empty4 ,
rd ack => rd ack4 ,
rd err => rd err4

) ;

- -buf freset <= reset OR ANS FLAG ;
- -moutl <= mout la when rea9= ' 0 ' else (OTHERS=> ' O ') ;
- -mout2 <= mout 2a when reb9= ' 0 ' else (OTHERS=> ' O ') ;
--fml <= fmla when rea9= ' 0 ' else ' 0 ' ;
-- fm2 <= fm2a when reb9= ' 0 ' else ' 0 ' ;

MAIN : PROCESS (CLK, RESET)
VARIABLE w : INTEGER RANGE O TO 3 ;
VARIABLE over , report flagx std_logi c ;
BEGIN
IF RESET= ' l ' THEN

STATE<=INITIALI ZE ;
STATEX<= INITIALI ZE ;
ANS FLAG OUT <= ' 0 ' ;
w : =0 ;
i<=O ;
j <= I O I j

Acount<= 1 3 ;
--overflag <= ' 0 ' ;
over : = ' 0 ' ;
report fl agx : = ' 0 ' ;
ADDR <= " 1 0 " ;
--match : = ' 0 ' ;

OUTPUT<= (OTHERS=> ' O ') ;

1 33

ea (0) <= (OTHERS=> ' 0 ') ;
ea (l) <= (OTHERS=> ' 0 ') ;
ea (2) <= (OTHERS=> ' 0 ') ;
ea (3) <= (OTHERS=> ' 0 ') ;
ea (4) <= (OTHERS=> ' 0 ') ;
ea (S) <= (OTHERS=> ' 0 ') ;
ea (6) <= (OTHERS=> ' 0 ') ;
ea (7) <= (OTHERS=> ' 0 ') ;
ea (B) <= (OTHERS=> ' 0 ') ;
ea (9) <= (OTHERS=> ' 0 ') ;
ea (l 0) <= (OTHERS=> ' 0 ') ;
ea (l l) <= (OTHERS=> ' 0 ') ;
ea (l2) <= (OTHERS=> ' 0 ') ;
ea (1 3) <= (OTHERS=> ' 0 ') ;
ea (l 4) <= (OTHERS=> ' 0 ') ;
ea (l S) <= (OTHERS=> ' 0 ') ;
ea (l 6) <= (OTHERS=> ' 0 ') ;
ea (l 7) <= (OTHERS=> ' 0 ') ;
ea (l 8) <= (OTHERS=> ' 0 ') ;
ea (l 9) <= (OTHERS=> ' 0 ') ;
ea (2 0) <= (OTHERS=> ' 0 ') ;
ea (2 1) <= (OTHERS=> ' 0 ') ;
ea (22) <= (OTHERS=> ' 0 ') ;
ea (2 3) <� (OTHERS=> ' 0 ') ;
ea (2 4) <= (OTHERS=> ' 0 ') ;
ea (2 5) <= (OTHERS=> ' 0 ') ;
ea (2 6) <= (OTHERS=> ' 0 ') ;
ea (27) <= (OTHERS=> ' 0 ') ;
ea (2 8) <= (OTHERS=> ' 0 ') ;
ea (2 9) <= (OTHERS=> ' 0 ') ;
ea (3 0) <= (OTHERS=> ' 0 ') ;
ea (3 l) <= (OTHERS=> ' 0 ') ;
ia l <= " 0 00000 " ;
ia2 <= " 0 00001 " ;
ia3 <= " 0 00 0 1 0 " ;
ia4 <= " 000 0 1 1 " ;
wea l <= I Q I ;

webl <= I Q I ;

wea2 <= ' 0 ' ;
web2 <=== ' 0 ' ;
dina l<= (OTHERS=> ' 0 ') ;
dinbl<= (OTHERS=> ' 0 ') ;
dina2<= (OTHERS=> ' 0 ') ;
dinb2<= (OTHERS=> ' 0 ') ;
addra l z <= (OTHERS=> ' 0 ') ;
addrb l z <= (OTHERS=> ' 0 ') ;
addra2 z <= (OTHERS=> ' 0 ') ;
addrb2 z <= (OTHERS=> ' 0 ') ;
rowcnt <= (OTHERS=> ' 0 ') ;
rowcnt_les s l <= (OTHERS=> ' 0 ') ;

ELS I F CLK ' EVENT AND CLK= ' l ' THEN
CASE STATE I S
WHEN INITIALI ZE =>

IF din_rdy = ' 1 ' THEN
rowcnt <= INP (3 1 DOWNTO 0) ;

134

rowcnt_less l <= INP { 63 DOWNTO 32) ;
STATE <= ADDRESS ;

END I F ;
OUT PUT <= { OTHERS=> ' l ') ;
reportflagx : = gnd_bit ;
ANS_FLAG_OUT<= ' 0 ' ;
weal <= ' 0 ' ;
webl <= ' 0 ' ;
wea2 <= ' 0 ' ;
web2 <= ' 0 ' ;

WHEN ADDRESS =>
--I f these 128 bit not equal to ' s are too slow for 6 6 or 50

MHz , they can be checked at
-- 133 or 1 0 0 MHz , 64 -bit s at a time at Peare and Peare

could send a 1 -bit flag here
-- noti fying the code i f the input is invalid or not

-- I F INP
/= " 1
1 " THEN

IF din_rdy = ' 1 ' THEN
ea { i) <=INP { 1 27 DOWNTO 9 6) ;
ea { i+ l) <=INP { 95 DOWNTO 64) ;
ea { i+2) <=INP { 63 DOWNTO 32) ;
ea { i+ 3) <=INP { 3 1 DOWNTO 0) ;
STATE<=DATA ;

END I F ;
OUTPUT <= { OTHERS=> ' l ') ;
report flagx : = gnd_bit ;
ANS_FLAG_OUT<= ' 0 ' ;

wea l <= ' 0 ' ;
web l <= ' 0 ' ;
wea2 <= ' 0 ' ;
web2 <= ' 0 ' ;

WHEN DATA =>
- - I F INP

/=" l
1 " THEN

IF din_rdy = ' 1 ' THEN
IF j = ' 0 ' THEN

dina l<=INP { 1 2 7 DOWNTO 64) ;
dinbl<=INP { 63 DOWNTO 0) ;
dina2<=INP (1 27 DOWNTO 64) ;
dinb2<=INP { 63 DOWNTO 0) ;

weal <= ' 1 ' ;
webl <= ' 1 ' ;

wea2 <= ' 1 ' ;

web2 <= I 1 I ;

addra l z <= ial ;
addrbl z <= ia2 ;
addra2 z <= ial ;
addrb2 z <= ia2 ;

j <= ' l ' ;
ELSE

dinal<=INP { 12 7 DOWNTO 6 4) ;
dinbl<=INP { 63 DOWNTO 0) ;

1 35

dina2<=INP (1 27 DOWNTO 64) ;
dinb2<=INP (63 DOWNTO 0) ;

weal <= I 1 I ;

webl <= I 1 I ;

wea2 <= I 1 I ;

web2 <= I 1 I ;

addra l z <= ia3 ;
addrbl z <= ia4 ;
addra2 z <= ia3 ;
addrb2 z <= ia4 ;

j <= ' 0 ' ;
I F i<2 8 THEN

STATE<=ADDRESS ;
i<=i+ 4 ;

ial <= ial + " 0 00100 " ;
ia2 <= ia2 + " 0 0 0 1 0 0 " ;
ia3 <= ia3 + " 0 0 0 1 0 0 " ;
ia4 <= ia4 + " 0 00 100 " ;
ELSE

STATE<=PROCESS ING ;
i<=0 ;
ia l <= " 000000 " ;

ia2 <= " 00000 1 " ;
ia3 <= " 0 0 0 0 10 " ;
ia4 <= " 0 00 0 1 1 " ;
END IF ;

END IF ;
END I F;

OUTPUT <= (OTHERS=> ' l ') ;
report flagx : = gnd_bit ;

WHEN PROCESSING =>
--Don ' t decrement the count er i f the input is invalid ! !
--Reading in addresses for comparators here

wea l <= ' 0 ' ;
webl <= ' 0 ' ;
wea2 <= ' 0 ' ;
web2 <= ' 0 ' ;

I F din_rdy= ' l ' THEN
ADDR <= " 1 0 " ;
I F Acount = 0 THEN

Acount<= 1 3 ;
STATE<=REPORTw;

ELSE
Acount<=Acount- 1 ;

-- OUTPUT<= (OTHERS=> ' 0 ' } ;
END IF ;

OUTPUT <= (OTHERS=> ' l ' } ;
END I F ;

ANS_FLAG_OUT<= ' 0 ' ;
reportflagx : = gnd_bit ;

WHEN REPORTw =>
STATE <= REPORTx ;
report flagx . - gnd_bit ;

WHEN REPORTx =>
report flagx . - one ;

136

--match : = matchl OR match2 OR mat ch3 OR match4 ;
--over : = overl OR over2 OR over3 OR over4 ;
OUTPUT (6 3) <=mat chflag ;
OUTPUT (62) <=overflag ;
OUTPUT (6 1) <=match4 4 x ; --noti fies C code if last bit of status

is a match

--this is important so if the overflag goe s
high the

match and not
--C code will know that the last bit was a

--the over bit address
OUTPUT (6 0 } <= ' 0 ' ; --Reserved for future use
OUT PUT (5 9) <=ANS_FLAG; --Not curently in use but wil l be when

multiple answers
--are supported

--Bits 58 to 56 are reserved for future use
--OUTPUT (5 8 DOWNTO 5 6) <=ANS_SIZE ;
- -These results wi ll be reserved for later use for when the

sparse code can
-- keep track of multiple answers so these bits can signi fy

up to 7
--answers available

OUTPUT (5 8 DOWNTO 5 6) <= " 0 00 " ;
OUTPUT (55) <= OUTPUTl (1 3) ;
OUT PUT (5 4) <= OUTPUT2 (1 3) ;
OUTPUT (53) <= OUTPUT3 (1 3) ;
OUTPUT (52) <= OUTPUT4 (1 3) ;
OUTPUT (5 1) <= OUTPUT1 (12) ;
OUTPUT (S0 } <= OUTPUT2 (1 2) ;
OUTPUT (4 9) <= OUTPUT3 (1 2) ;
OUTPUT (4 8) <= OUTPUT4 (12) ;
OUTPUT (4 7 } <= OUT PUTl (1 1) ;
OUTPUT (4 6) <= OUTPUT2 (1 1) ;
OUTPUT (4 5) <= OUTPUT3 (11) ;
OUTPUT (4 4) <= OUT PUT 4 (1 1) ;
OUTPUT (4 3) <= OUTPUT l (l 0) ;
OUTPUT (4 2) <= OUTPUT2 (1 0) ;
OUTPUT (4 1) <= OUT PUT3 (1 0) ;
OUTPUT (4 0) <= OUT PUT4 (1 0 } ;
OUTPUT (3 9 } <= OUTPUT1 (9) ;
OUTPUT (38) <= OUTPUT2 (9) ;
OUTPUT (37) <= OUTPUT3 (9) ;
OUT PUT (3 6 } <= OUTPUT 4 (9) ;
OUTPUT (35) <= OUTPUT 1 (8) ;
OUT PUT (3 4) <= OUTPUT2 { 8) ;
OUTPUT (3 3 } <= OUTPUT3 (8) ;
OUTPUT (32) <= OUTPUT4 (8) ;
OUTPUT (3 1) <= OUT PUT1 (7 } ;
OUTPUT (3 0 } <= OUTPUT2 (7) ;

OUTPUT (2 9) <= OUTPUT3 (7) ;
OUTPUT (2 8) <= OUTPUT 4 (7 } ;
OUTPUT (2 7) <= OUT PUT1 (6) ;
OUTPUT (2 6) <= OUTPUT2 (6) ;
OUTPUT (2 5) <= OUTPUT3 (6) ;

1 37

flag ! !

OUTPUT (2 4) <= OUTPUT4 (6) ;
OUTPUT (2 3) <= OUTPUT l (S) ;
OUTPUT (22) <= OUTPUT2 (5) ;
OUTPUT (2 1) <= OUTPUT3 (5) ;
OUTPUT (2 0) <= OUTPUT4 (5) ;
OUTPUT (1 9) <= OUTPUT1 (4) ;
OUTPUT (1 8) <= OUTPUT2 (4) ;
OUTPUT (1 7) <= OUTPUT3 (4) ;
OUTPUT (1 6) <= OUTPUT4 (4) ;
OUTPUT (l S) <= OUTPUT1 (3) ;
OUTPUT (1 4) <= OUTPUT2 (3) ;
OUTPUT (1 3) <= OUTPUT3 (3) ;
OUTPUT (12) <= OUTPUT4 (3) ;
OUTPUT (l l) <= OUTPUT1 (2) ;
OUTPUT (l 0) <= OUTPUT2 (2) ;
OUTPUT (9) <= OUTPUT3 (2) ;
OUTPUT (8) <= OUTPUT4 (2) ;
OUTPUT (?) <= OUTPUTl (l) ;
OUTPUT (6) <= OUTPUT2 (1) ;
OUTPUT (S) <= OUTPUT3 (1) ;
OUTPUT (4) <= OUTPUT4 (1) ;
OUTPUT (3) <= OUTPUTl (0) ;
OUTPUT (2) <= OUTPUT2 (0) ;
OUTPUT (l) <= OUTPUT3 (0) ;
OUTPUT (0) <= OUTPUT4 (0) ;
I F overflag = ' 1 ' THEN

OUTPUT (spot) <= ' 1 ' ;
END I F ;

I F matchflag = ' 1 ' THEN
STATE <= MACN ;

ELSE
IF overflag = ' 1 ' THEN

--go here regardless of ANS FLAG state
STATE <= SEND ;

ELSE --should never have ans flag = ' 1 ' be fore over

STATE <= PROCESSING ;
END I F ;

END I F ;
END I F ;

--overflag <= over ;
--New_vectorflag <= New_vector ;

WHEN SEND =>
report flagx : = gnd_bit ;
I F ANS FLAG = ' 1 ' THEN

ANS FLAG OUT <= ANS FLAG ;
OUTPUT <= ANSWER;
ADDR <= " 1 1 " ;
I F New_vectorflag = ' 0 ' THEN

STATE <= PROCESS ING ;
--overflag < = ' 0 ' ;

ELSE
--New_vectorflag <= ' 0 ' ;

STATE <= ADDRESS ;
--overflag <= ' 0 ' ;

138

- -New_vectorflag <= ' 0 ' ;
END I F ;

ELSE
--wait until an answer is found

ANS FLAG OUT <= ANS_FLAG ;
END I F ;

WHEN MACN =>
I F din_rdy= ' l ' AND

INP= " 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 000
0 0 00000000000000000 0 0 0 0 00 0 000000000000000000000000000000 0 0 0 0 0 0 " THEN

--C code done sending input s
--I F overflag = ' l ' or New vector = ' 1 ' THEN
I F overflag = ' l ' THEN

STATE <= SEND ;
ELSE

STATE <= PROCESS ING ;
END I F ;

ELSE
--do nothing here , other proces ses are handling things

END I F ;
report flagx : = gnd_bit ;
OUTPUT <= { OTHERS=> ' l ') ;

WHEN OTHERS =>
END CASE ;

END I F ;
report flag < = report flagx ;

END PROCESS MAIN ;

PROCESS { CLK, RESET)
BEGIN
IF RESET = ' 1 ' THEN

cntr <= { OTHERS=> ' 0 ') ;
New_vectorflag <= ' 0 ' ;

ELSI F CLK ' EVENT AND CLK= ' l ' THEN
I F STATE = REPORTx AND overflag = ' 1 ' THEN

I F cntr = rowcnt THEN
cntr <= { OTHERS=> ' 0 ') ;
New_vectorflag <= ' 1 ' ;

ELSE
cntr <= cntr + ' 1 ' ;

END I F ;
ELS I F STATE = SEND AND ANS FLAG

THEN
' 1 ' AND New_vectorflag

New_vectorflag <= ' 0 ' ;
END I F;

END I F;
END PROCESS ;

addral <= addra l z when STATE DATA
DATA else addralx ;
addrbl <= addrbl z when STATE DATA
DATA else addrblx ;
addra2 <= addra2 z when STATE DATA
DATA else addra2 x ;

OR

OR

OR

139

STATE=ADDRESS OR STATE DEL

STATE=ADDRESS OR STATE DEL

STATE=ADDRESS OR STATE DEL

I 1 '

addrb2 <= addrb2 z when STATE
DATA else addrb2x ;

DATA OR STATE=ADDRESS OR STATE DEL

DELAY PROC : PROCESS (CLK , RESET)
BEGIN
IF RESET = ' l ' THEN

Acount l<=0 ;
din_rdy2 <= ' 0 ' ;
STATE_DEL <= ADDRESS ;

ELS I F CLK ' EVENT AND CLK= ' l ' THEN
Acount l<=Acount ;
din_rdy2 <= din_rdy;
STATE DEL <= STATE ;
--Acount2<=Acount l ;
--overa <= overl or over2 or over3 or over4 ;

END I F ;
END PROCESS DELAY_PROC ;

PROCESS (CLK, RESET)
BEGIN
IF RESET= ' l ' THEN

overflag <= ' 0 ' ;
ELS I F CLK ' EVENT AND CLK= ' l ' THEN

IF din_rdy2 = ' l ' AND STATE_DEL = PROCESSING then
-- I F ANS FLAG = ' 1 ' THEN

overflag <= ' 0 ' ; --reset it for next time
I F over4 4 = ' 1 ' THEN

overflag <= ' 1 ' ;
--ELS I F Acount l = 0 AND match4 4 = ' 1 ' THEN

overflag <= ' 1 ' ;
ELSE

overflag <= overflag ;
END I F ;

ELS I F ANS FLAG = ' 1 ' AND STATE
overflag <= ' 0 ' ;

END I F ;
END I F ;
END PROCESS ;

MATCH PROC : PROCESS (CLK, RESET)
BEGIN
IF RESET= ' l ' THEN

matchflag <= ' 0 ' ;
ELSI F CLK ' EVENT AND CLK= ' l ' THEN

SEND THEN

I F din_rdy2 = ' 1 ' AND STATE_DEL = PROCESSING THEN
I F (matchll OR match12 OR match1 3 OR match1 4) = ' 1 ' THEN

matchflag <= ' 1 ' ;
ELS I F (match2 1 OR match22 OR match2 3 OR match2 4) = ' 1 ' THEN

matchflag <= I 1 I ;

ELS I F (match31 OR match32 OR match3 3 OR match34) = ' 1 ' THEN
matchflag <= I 1 I ;

ELS I F (match4 1 OR match4 2 OR match4 3 OR match4 4) = ' 1 ' THEN
matchflag <= I 1 I ;

ELSE
matchflag <= matchflag ;

140

END I F ;
ELSI F STATE DEL = MACN THEN

matchflag <= ' 0 ' ;
END IF ;

END IF ;
END PROCESS MATCH_PROC ;

OVER_ADJ : PROCESS (CLK)
BEGIN
IF CLK ' EVENT AND CLK= ' l ' THEN

I F STATE DEL = PROCESS ING AND din_rdy2= ' 1 ' THEN
I F overflag = ' 0 ' THEN

I F over4 4 = ' 1 ' AND (match4 1 OR match4 2 OR match4 3 OR
match4 4) = ' 0 ' THEN

spot <= (4 *Acount l) ;
ELSE
END IF ;

ELSE
spot <= spot ;

END IF ;
END IF ;

END IF ;
END PROCESS OVER_ADJ;

COMPARATORl l : PROCESS (CLK, STATE , RESET)
BEGIN
IF RESET = ' 1 ' THEN

addra l l <= " 000000 " ;
OUTPUT l l<= ' 0 ' ;
overl l<= ' 0 ' ;
matchl l<= ' 0 ' ;

ELSI F CLK ' EVENT AND CLK= ' l ' THEN
IF STATE /= PROCESSING or din_rdy= ' 0 ' THEN

addra l l <= " 0 0 0 00 0 " ;
OUTPUTl l<= ' 0 ' ;
overl l<= ' 0 ' ;
matchl l<= ' 0 ' ;

--ELSE
ELSIF INP (127 DOWNTO 9 6)

addral l < = " 0 0 0 00 0 " ;
overl l<= ' 0 ' ;
matchll<= ' l ' ;
OUTPUTl l<= ' l ' ;

ELS I F INP (127 DOWNTO 9 6)
addra l l < = " 0 0 0 00 1 " ;
overll<= ' 0 ' ;
matchll<= ' l ' ;
OUTPUTl l<= ' l ' ;

ELS IF INP (127 DOWNTO 9 6)
addral l < = " 0 0 0 0 1 0 " ;
overl l<= ' 0 ' ;
matchl l<= ' l ' ;
OUTPUTl l<= ' l ' ;

ELSIF INP (l27 DOWNTO 9 6)
addral l < = " 000 0 1 1 " ;

ea (0) THEN

ea (l) THEN

ea (2) THEN

ea (3) THEN

141

overl l<= ' 0 ' ;
matchll<= ' l ' ;
OUTPUTl l<= ' l ' ;

ELS I F INP (1 2 7 DOWNTO 9 6)
addra l l < = " 0 0 0 1 0 0 " ;
overll<= ' 0 ' ;
matchll<= ' l ' ;
OUTPUTl l<= ' l ' ;

ELS I F INP (127 DOWNTO 9 6)
addra l l < = " 0 0 0 1 0 1 " ;
overl l<= ' 0 ' ;
matchll<= ' l ' ;
OUTPUT ll<= ' 1 ' ;

ELS I F INP (1 27 DOWNTO 9 6)
addra l l < = " 0 00 1 1 0 " ;
overll<= ' 0 ' ;
matchl l<= ' l ' ;
OUTPUTl l<= ' l ' ;

ELS I F INP (12 7 DOWNTO 9 6)
addral l < = " 0 0 0 1 1 1 " ;
overl l<= ' 0 ' ;
match l l<= ' l ' ;
OUTPUTl l<= ' l ' ;

ea (4) THEN

ea (5) THEN

ea (6) THEN

ea (7) THEN

ELS I F INP (127 DOWNTO 9 6) > ea (63) THEN

ELSE

overl l<= ' l ' ;
matchl l<= ' 0 ' ;
OUTPUTl l<= ' 0 ' ;

addra l l <= " 00000 0 " ;
matchl l<= ' 0 ' ;
overll<= ' 0 ' ;
OUTPUTl l<= ' 0 ' ;

END I F ;
END I F ;
END PROCESS COMPARATORl l ;

COMPARATOR12 : PROCESS (CLK, STATE, RESET)
BEGIN

IF RESET = ' l ' THEN
OUTPUT12<= ' 0 ' ;
over12<= ' 0 ' ;
match12<= ' 0 ' ;
addra 12 <= " 0 000 0 0 " ;

ELS I F CLK ' EVENT AND CLK= ' l ' THEN
IF STATE /= PROCESS ING or din_rdy= ' 0 ' THEN

OUTPUT12<= ' 0 ' ;
over12<= ' 0 ' ;
match12<= ' 0 ' ;
addra12 <= " 00000 0 " ;

--ELSE
ELS I F INP (12 7 DOWNTO 9 6)

addra12 < = " 0 0 1 0 0 0 " ;
over12<= ' 0 ' ;
matchl2<= ' 1 ' ;
OUTPUT12<= ' 1 ' ;

ea (B) THEN

142

ELS I F INP (127 DOWNTO 9 6)
addra 12 < = " 00 1 0 0 1 " ;
over12<= ' 0 ' ;
match12<= ' 1 ' ;
OUTPUT12<= ' 1 ' ;

ELS I F INP (12 7 DOWNTO 9 6)
addra 12 < = " 00 1 0 1 0 " ;
over12<= ' 0 ' ;
match12<= ' 1 ' ;
OUTPUT12<= ' 1 ' ;

ELS I F INP (1 2 7 DOWNTO 9 6)
addra12 < = " 0 0 1 0 1 1 " ;
over12<= ' 0 ' ;
match12<= ' 1 ' ;
OUTPUT 12<= ' 1 ' ;

ELSI F INP (12 7 DOWNTO 9 6)
addra 12 < = " 0 0 1 1 0 0 " ;
over12<= ' 0 ' ;
match1 2<= ' 1 ' ;
OUTPUT1 2<= ' 1 ' ;

ELSI F INP (l2 7 DOWNTO 9 6)
addra 12 < = " 0 0 1 1 0 1 " ;
over12<= ' 0 ' ;
match1 2<= ' 1 ' ;
OUTPUT12<= ' 1 ' ;

ELS I F INP (127 DOWNTO 9 6)
addra 12 < = " 0 0 1 1 1 0 " ;
over12<= ' 0 ' ;
match1 2<= ' 1 ' ;
OUTPUT12<= ' 1 ' ;

ELS I F INP (1 2 7 DOWNTO 9 6)
addra 12 < = " 0 0 1 1 1 1 " ;
over12<= ' 0 ' ;
match1 2<= ' 1 ' ;
OUTPUT1 2<= ' 1 ' ;

ea (9) THEN

ea (l O) THEN

ea (1 1) THEN

ea (12) THEN

ea (1 3) THEN

ea (1 4) THEN

ea (1 5) THEN

ELS I F INP (12 7 DOWNTO 9 6) > ea (63) THEN
over12<= ' 1 ' ;
match12<= ' 0 ' ;
OUTPUT12<= ' 0 ' ;

ELSE
match12<= ' 0 ' ;
over12<= ' 0 ' ;
addra12 <= " 0 0 0 00 0 " ;
OUTPUT12<= ' 0 ' ;

END I F;
END I F;
END PROCESS COMPARATOR1 2 ;

COMPARATOR1 3 : PROCESS (CLK, STATE , RESET)
BEGIN
IF RESET = ' 1 ' THEN

OUTPUT13<= ' 0 ' ;
over1 3<= ' 0 ' ;
match1 3<= ' 0 ' ;
addra 1 3 <= " 0 00000 " ;

1 43

ELS I F CLK ' EVENT AND CLK= ' l ' THEN
I F STATE /= PROCESSING or din_rdy= ' 0 ' THEN

OUTPUT 13<= ' 0 ' ;
over13<= ' 0 ' ;
match1 3<= ' 0 ' ;
addra 1 3 <= " 0 00000 " ;

--ELSE
ELS I F INP (12 7 DOWNTO 9 6)

over13<= ' 0 ' ;
match1 3<= ' 1 ' ;
OUTPUT 1 3<= ' 1 ' ;
addra 1 3 <= " 0 1 00 0 0 " ;

ELS I F INP (l2 7 DOWNTO 9 6)
over13<= ' 0 ' ;
match1 3<= ' 1 ' ;
OUTPUT1 3<= ' 1 ' ;
addra 1 3 <= " 0 1 0 0 0 1 " ;

ELS I F INP (1 27 DOWNTO 9 6)
over13<= ' 0 ' ;
match1 3<= ' 1 ' ;
OUTPUT1 3<= ' 1 ' ;
addra1 3 <= " 0 1 0 0 1 0 " ;

ELS I F INP (1 27 DOWNTO 9 6)
over13<= ' 0 ' ;
match1 3<= ' 1 ' ;
OUTPUT1 3<= ' 1 ' ;
addra1 3 <= " 0 1 0 0 1 1 " ;

ELS I F INP (1 2 7 DOWNTO 9 6)
over13<= ' 0 ' ;
match1 3<= ' 1 ' ;
OUTPUT1 3<= ' 1 ' ;
addra1 3 <= " 0 1 0 1 0 0 " ;

ELS I F INP (1 27 DOWNTO 9 6)
over13<= ' 0 ' ;
match1 3<= ' 1 ' ;
OUTPUT13<= ' 1 ' ;
addra13 <= " 0 1 0 1 0 1 " ;

ELS I F INP (1 27 DOWNTO 9 6)
over13<= ' 0 ' ;
match1 3<= ' 1 ' ;
OUTPUT1 3<= ' 1 ' ;
addra 1 3 <= " 0 1 0 1 1 0 " ;

ELS I F INP (l 27 DOWNTO 9 6)
over13<= ' 0 ' ;
match1 3<= ' 1 ' ;
OUTPUT 1 3<= ' 1 ' ;
addra 1 3 <= " 0 1 0 1 1 1 " ;

ea (1 6) THEN

ea (17) THEN

ea (1 8) THEN

ea (1 9) THEN

ea (2 0) THEN

ea (2 1) THEN

ea (2 2) THEN

ea (2 3) THEN

ELS I F INP (l2 7 DOWNTO 9 6) > ea (63) THEN
over1 3<= ' 1 ' ;
match1 3<= ' 0 ' ;
OUTPUT1 3<= ' 0 ' ;

ELSE
match1 3<= ' 0 ' ;
over13<= ' 0 ' ;
addra13 <= " 0 0 0 00 0 " ;

144

OUTPUT1 3<= ' 0 ' ;
END I F ;

END I F ;
END PROCESS COMPARATOR1 3 ;

COMPARATOR1 4 : PROCESS (CLK, STATE , RESET)
BEGIN
IF RESET = ' l ' THEN

addra 1 4 <= " 00 0 00 0 " ;
OUT PUT 1 4 <= ' 0 ' ;
over1 4<= ' 0 ' ;
match1 4 <= ' 0 ' ;

ELS I F CLK ' EVENT AND CLK= ' l ' THEN
IF STATE /= PROCESSING or din_rdy= ' 0 ' THEN

OUTPUT 1 4 <= ' 0 ' ;
over1 4<= ' 0 ' ;
match1 4<= ' 0 ' ;
addra 1 4 <= " 0 0 0 0 0 0 " ;

--ELSE
ELS I F INP (12 7 DOWNTO 9 6)

over1 4 <= ' 0 ' ;
match1 4<= ' 1 ' ;
OUTPUT 1 4 <= ' 1 ' ;
addra 1 4 <= " 0 1 1 000 " ;

ELS I F INP (12 7 DOWNTO 9 6)
over1 4 <= ' 0 ' ;
match 1 4 <= ' 1 ' ;
OUTPUT 1 4 <= ' 1 ' ;
addra 1 4 <= " 0 1 1 0 0 1 " ;

ELS I F INP (12 7 DOWNTO 96)
over1 4<= ' 0 ' ;
match1 4 <= ' 1 ' ;
OUTPUT 1 4 <= ' 1 ' ;
addra1 4 <= " 0 1 1 0 1 0 " ;

ELS I F INP (12 7 DOWNTO 96)
over 1 4 <= ' 0 ' ;
match1 4 <= ' 1 ' ;
OUTPUT1 4 <= ' 1 ' ;
addra1 4 <= " 0 1 1 0 1 1 " ;

ELS I F INP (1 2 7 DOWNTO 9 6)
over1 4 <= ' 0 ' ;
match1 4 <= ' 1 ' ;
OUTPUT1 4 <= ' 1 ' ;
addra 1 4 <= " 0 1 1 1 0 0 " ;

ELS I F INP (1 27 DOWNTO 9 6)
over1 4<= ' 0 ' ;
match 1 4 <= ' 1 ' ;
OUTPUT 1 4 <= ' 1 ' ;
addra1 4 <= " 0 1 1 10 1 " ;

ELS I F INP (12 7 DOWNTO 9 6)
over1 4<= ' 0 ' ;
matchl 4 <= ' 1 ' ;
OUT PUT1 4 <= ' 1 ' ;
addra1 4 <= " 0 1 1 1 1 0 " ;

ELS I F INP (1 2 7 DOWNTO 9 6)

ea (2 4) THEN

ea (2 5) THEN

ea (2 6) THEN

ea (27) THEN

ea (2 8) THEN

ea (2 9) THEN

ea (30) THEN

ea (3 1) THEN

145

over1 4<= ' 0 ' ;
rnat ch1 4 <= ' 1 ' ;
OUTPUT1 4 <= ' 1 ' ;
addra 1 4 <= " 0 1 1 1 1 1 " ;

ELSI F INP (127 DOWNTO 9 6) > ea (3 1) THEN
--over1 4 <= ' 1 ' ;
rnatch 1 4 <= ' 0 ' ;
OUTPUT 1 4 <= ' 0 ' ;

ELSE
rnatch1 4 <= ' 0 ' ;
over1 4 <= ' 0 ' ;
addra l 4 <= " 0 00000 " ;
OUTPUT1 4 <= ' 0 ' ;

END I F ;
END I F ;
END PROCESS COMPARATOR1 4 ;

MUXERl : PROCESS (CLK, RESET)
variable rnatchla : std_logic ;
BEGIN
IF RESET= ' l ' THEN

--overl <= I O I ;
rnatchlx <= I O I ;
addra lx <= (OTHERS=> ' 0 ') ;
OUTPUT l <= (OTHERS=> ' 0 ') ;
rnatchl a ' 0 ' ;

ELS IF CLK ' EVENT AND CLK= ' l ' THEN
--overl<=overl l OR over12 OR over13 OR over1 4 ;
rnatchla : =rnatchll OR rnatch12 OR rnatch13 OR rnatch14 ;
rnatchlx<=rnatchl a ;
OUTPUT l (Acount l) <= OUTPUT l l OR OUTPUT 12 OR OUTPUT 13 OR OUTPUT 1 4 ;
I F rnatchl l = ' 1 ' THEN

addralx <= addra l l ;
ELS I F rnatch12 = ' 1 ' THEN

addralx <= addra 12 ;
ELS I F match13 = ' 1 ' THEN

addralx <= addra 1 3 ;
ELS I F match14 = ' l ' THEN

addra lx <= addra 1 4 ;
ELSE

addralx <= (OTHERS=> ' 0 ') ;
END I F ;

END I F ;
END PROCESS MUXERl ;

COMPARATOR2 1 : PROCESS (CLK, STATE , RESET)
BEGIN
IF RESET = ' 1 ' THEN

OUTPUT2 1<= ' 0 ' ;
over2 1<= ' 0 ' ;
rnatch21<= ' 0 ' ;
addrbl l <= " 0 00000 " ;

ELS I F CLK ' EVENT AND CLK= ' l ' THEN
IF STATE /= PROCESSING or din_rdy= ' 0 ' THEN

OUTPUT21<= ' 0 ' ;

146

over2 1<= ' 0 ' ;
match2 1<= ' 0 ' ;
addrbl l <= " 0 0 0 00 0 " ;

--ELSE
ELS I F INP (95 DOWNTO 64) ea (0) THEN

over2 1<= ' 0 ' ;
match2 1<= ' 1 ' ;
OUTPUT2 1<= ' 1 ' ;
addrbll <= " 0 0000 0 " ;

ELS I F INP (95 DOWNTO 64) ea (l) THEN
over2 1<= ' 0 ' ;
match2 1<= ' 1 ' ;
OUT PUT21<= ' 1 ' ;
addrbl l <= " 0 0000 1 " ;

ELSI F INP (95 DOWNTO 64) ea (2) THEN
over2 1<= ' 0 ' ;
match2 1<= ' 1 ' ;
OUTPUT2 1<= ' 1 ' ;
addrbl l <= " 0 0 0 0 1 0 " ;

ELS I F INP (95 DOWNTO 64) ea (3) THEN
over2 1<= ' 0 ' ;
match2 1<= ' 1 ' ;
OUTPUT2 1<= ' 1 ' ;
addrbl l <= " 00 0 0 1 1 " ;

ELS I F INP (95 DOWNTO 64) ea (4) THEN
over21<= ' 0 ' ;
match2 1<= ' 1 ' ;
OUTPUT21<= ' 1 ' ;
addrbl l <= " 0 0 0 1 0 0 " ;

ELS I F INP (95 DOWNTO 64) ea (S) THEN
over2 1<= ' 0 ' ;
match2 1<= ' 1 ' ;
OUTPUT2 1<= ' 1 ' ;
addrbl l <= " 0 0 0 1 0 1 " ;

ELS I F INP (95 DOWNTO 6 4) ea (6) THEN
over2 1<= ' 0 ' ;
match2 1<= ' 1 ' ;
OUTPUT2 1<= ' 1 ' ;
addrbl l <= " 0 0 0 1 1 0 " ;

ELS I F INP (95 DOWNTO 64) ea (7) THEN
over2 1<= ' 0 ' ;
mat ch2 1<= ' 1 ' ;
OUTPUT2 1<= ' 1 ' ;
addrbl l <= " 0 0 0 1 1 1 " ;

ELS I F INP (95 DOWNTO 64) > ea (63) THEN
over21<= ' 1 ' ;
match2 1<= ' 0 ' ;
OUTPUT2 1<= ' 0 ' ;

ELSE
match2 1<= ' 0 ' ;
over2 1�= ' 0 ' ;
addrbl l <= " 000000 " ;
OUTPUT2 1<= ' 0 ' ;

END I F;
END I F;

1 47

END PROCESS COMPARATOR2 1 ;

COMPARATOR22 : PROCESS (CLK, STATE , RESET)
BEGIN
IF RESET = ' 1 ' THEN

OUTPUT22<= ' 0 ' ;
over2 2<= ' 0 ' ;
mat ch22<= ' 0 ' ;
addrb12 <= " 000000 " ;

ELS I F CLK ' EVENT AND CLK= ' l ' THEN
I F STATE /= PROCESS ING or din_rdy= ' 0 ' THEN

OUTPUT22<= ' 0 ' ;
over22<= ' 0 ' ;
match22<= ' 0 ' ;
addrb12 <= " 00 0 0 0 0 " ;

--ELSE
ELS I F INP (95 DOWNTO 64)

over22<= ' 0 ' ;
match22<= ' 1 ' ;
OUTPUT22<= ' 1 ' ;
addrb12 <= " 0 0 1 0 0 0 " ;

ELS I F INP (95 DOWNTO 64)
over22<= ' 0 ' ;
mat ch22<= ' 1 ' ;
OUTPUT22<= ' 1 ' ;
addrb1 2 <= " 0 0 1 00 1 " ;

ELS I F INP (95 DOWNTO 64)
over22<= ' 0 ' ;
match22<= ' 1 ' ;
OUTPUT22<= ' 1 ' ;
addrb1 2 <= " 0 0 1 01 0 " ;

ELS I F INP (95 DOWNTO 64)
over2 2<= ' 0 ' ;
match22<= ' 1 ' ;
OUTPUT22<= ' 1 ' ;
addrb12 <= " 0 0 1 0 1 1 " ;

ELS I F INP (95 DOWNTO 64)
over22<= ' 0 ' ;
match22<= ' 1 ' ;
OUTPUT22<= ' 1 ' ;
addrb12 <= " 0 0 1 1 0 0 " ;

ELS I F INP (95 DOWNTO 64)
over22<= ' 0 ' ;
match22<= ' 1 ' ;
OUTPUT22<= ' 1 ' ;
addrb12 <= " 0 0 1 1 0 1 " ;

ELSI F INP (95 DOWNTO 64)
over22<= ' 0 ' ;
match22<= ' 1 ' ;
OUTPUT22<= ' 1 ' ;
addrb1 2 <= " 0 0 1 1 1 0 " ;

ELSIF INP (95 DOWNTO 64)
over22<= ' 0 ' ;
mat ch22<= ' 1 ' ;
OUTPUT22<= ' 1 ' ;

ea (B) THEN

ea (9) THEN

ea (l 0) THEN

ea (l l) THEN

ea (1 2) THEN

ea (1 3) THEN

ea (l 4) THEN

ea (l S) THEN

1 48

addrb12 <= " 0 0 1 1 1 1 " ;
ELSI F INP (95 DOWNTO 64) > ea (63) THEN

over22<= ' 1 ' ;
match2 2<= ' 0 ' ;
OUTPUT22<= ' 0 ' ;

ELSE
match22<= ' 0 ' ;
over22<= ' 0 ' ;
addrb12 <= " 000000 " ;
OUTPUT22<= ' 0 ' ;

END I F;
END IF ;
END PROCESS COMPARATOR2 2 ;

COMPARATOR2 3 : PROCESS (CLK, STATE , RESET)
BEGIN
IF RESET = ' 1 ' THEN

OUTPUT2 3<= ' 0 ' ;
over23<= ' 0 ' ;
match2 3<= ' 0 ' ;
addrbl3 <= " 0 0 0 00 0 " ;

ELS I F CLK ' EVENT AND CLK= ' l ' THEN
I F STATE /= PROCESSING or din_rdy= ' 0 ' THEN

OUTPUT2 3<= ' 0 ' ;
over2 3<= ' 0 ' ;
match2 3<= ' 0 ' ;
addrb1 3 <= " 000000 " ;

- -ELSE
ELS I F INP (95 DOWNTO 64)

over2 3<= ' 0 ' ;
match2 3<= ' 1 ' ;
OUTPUT2 3<= ' 1 ' ;
addrb1 3 <= " 0 1 0000 " ;

ELSI F INP (95 DOWNTO 64)
over23<= ' 0 ' ;
match2 3<= ' 1 ' ;
OUTPUT2 3<= ' 1 ' ;
addrb13 <= " 0 1 0 0 0 1 " ;

ELSI F INP (95 DOWNTO 64)
over2 3<= ' 0 ' ;
match2 3<= ' 1 ' ;
OUTPUT2 3<= ' 1 ' ;
addrbl 3 <= " 0 1 00 1 0 " ;

ELS I F INP (95 DOWNTO 64)
over23<= ' 0 ' ;
match2 3<= ' 1 ' ;
OUTPUT2 3<= ' 1 ' ;
addrbl3 <= " 0 1 00 1 1 " ;

ELS IF INP (95 DOWNTO 64)
over23<= ' 0 ' ;
match2 3<= ' 1 ' ;
OUTPUT2 3<= ' 1 ' ;
addrb 1 3 <= " 0 1 01 00 " ;

ELS I F INP (95 DOWNTO 64)
over23<= ' 0 ' ;

ea (1 6) THEN

ea (1 7) THEN

ea (1 8) THEN

ea (1 9) THEN

ea (2 0) THEN

ea (2 1) THEN

1 49

match2 3<= ' 1 ' ;
OUTPUT23<= ' 1 ' ;
addrbl3 <= " 0 1 0 1 0 1 " ;

ELS I F INP (95 DOWNTO 64) ea (2 2) THEN
over2 3<= ' 0 ' ;
match2 3<= ' 1 ' ;
OUTPUT2 3<= ' 1 ' ;
addrb1 3 <= " 0 1 0 1 1 0 " ;

ELS I F INP (95 DOWNTO 64) e a (2 3) THEN
over23<= ' 0 ' ;
match2 3<= ' 1 ' ;
OUTPUT2 3<= ' 1 ' ;
addrb1 3 <= " 0 1 0 1 1 1 " ;

ELS I F INP (95 DOWNTO 64) > ea (63) THEN
over2 3<= ' 1 ' ;
match23<= ' 0 ' ;
OUTPUT2 3<= ' 0 ' ;

ELSE
match2 3<= ' 0 ' ;
over2 3<= ' 0 ' ;
addrb1 3 <= " 0 0 0 0 0 0 " ;
OUTPUT2 3<= ' 0 ' ;

END I F;
END I F ;
END PROCESS COMPARATOR2 3 ;

COMPARATOR2 4 : PROCESS (CLK, STATE , RESET)
BEGIN
IF RESET = ' 1 ' THEN

OUTPUT2 4 <= ' 0 ' ;
over2 4 <= ' 0 ' ;
match2 4 <= ' 0 ' ;
addrb1 4 <= " 0 00000 " ;

ELS I F CLK ' EVENT AND CLK= ' l ' THEN
I F STATE /= PROCESS ING or din_rdy= ' 0 ' THEN

OUTPUT2 4<= ' 0 ' ;
over2 4 <= ' 0 ' ;
match2 4 <= ' 0 ' ;
addrbl 4 <= " 0 0 0 0 00 " ;

--ELSE
ELS I F INP (95 DOWNTO 6 4)

over2 4 <= ' 0 ' ;
match2 4<= ' 1 ' ;
OUTPUT2 4 <= ' 1 ' ;
addrb1 4 <= " 0 1 1 0 0 0 " ;

ELS I F INP (95 DOWNTO 6 4)
over2 4 <= ' 0 ' ;
match2 4 <= ' 1 ' ;
OUTPUT2 4 <= ' 1 ' ;
addrb1 4 <= " 0 1 1 0 0 1 " ;

ELS I F INP (95 DOWNTO 64)
over2 4 <= ' 0 ' ;
match2 4<= ' 1 ' ;
OUTPUT2 4 <= ' 1 ' ;
addrbl 4 <= " 0 1 1 0 1 0 " ;

ea (2 4) THEN

ea (2 5) THEN

ea (2 6) THEN

150

ELS I F INP (95 DOWNTO 64)
over2 4 <= ' 0 ' ;
rnatch2 4 <= ' 1 ' ;
OUTPUT2 4 <= ' 1 ' ;
addrb1 4 <= " 0 1 1 0 1 1 " ;

ELS I F INP (95 DOWNTO 64)
over2 4 <= ' 0 ' ;
rnatch2 4 <= ' 1 ' ;
OUTPUT 2 4 <= ' 1 ' ;
addrb1 4 <= " 0 1 1 1 0 0 " ;

ELS I F INP (95 DOWNTO 6 4)
over2 4 <= ' 0 ' ;
rnatch2 4 <= ' 1 ' ;
OUTPUT2 4 <= ' 1 ' ;
addrb1 4 <= " 0 1 1 1 0 1 " ;

ELS I F INP (95 DOWNTO 64)
over2 4 <= ' 0 ' ;
rnatch2 4<= ' 1 ' ;
OUTPUT2 4 <= ' 1 ' ;
addrb1 4 <= " 0 1 1 1 1 0 " ;

ELS I F INP (95 DOWNTO 64)
over2 4 <= ' 0 ' ;
rnatch2 4 <= ' 1 ' ;
OUTPUT24<= ' 1 ' ;
addrb1 4 <= " 0 1 1 1 1 1 " ;

ea (2 7) THEN

ea (2 8) THEN

ea (2 9) THEN

ea (30) THEN

ea (3 1) THEN

ELS I F INP (95 DOWNTO 6 4) > ea (3 1) THEN
--over2 4 <= ' 1 ' ;
rnatch2 4<= ' 0 ' ;
OUTPUT2 4 <= ' 0 ' ;

ELSE
rnatch2 4 <= ' 0 ' ;
over2 4 <= ' 0 ' ;
addrb1 4 <= " 000000 " ;
OUTPUT2 4 <= ' 0 ' ;

END I F ;
END I F ;
END PROCESS COMPARATOR2 4 ;

MUXER2 : PROCESS (CLK, RESET)
variable rnatch2a : std_logi c ;
BEGIN

IF RESET= ' l ' THEN
--over2 <= I O I ;
rnatch2x <= I O I ;
addrblx <= (OTHERS=> ' 0 ') ;
OUTPUT2 <= (OTHERS=> ' 0 ') ;
rnatch2a . - ' 0 ' ;

ELS I F CLK ' EVENT AND CLK= ' l ' THEN
- -over2<=over2 1 OR over22 OR over2 3 OR over2 4 ;
rnatch2a : =rnatch2 1 OR rnatch22 OR rnatch2 3 OR rnatch2 4 ;
rnatch2x<=rnatch2a ;
OUTPUT2 (Acount l) <= OUTPUT2 1 OR OUTPUT22 OR OUTPUT23 OR OUTPUT2 4 ;
I F rnatch2 1 = ' 1 ' THEN

addrblx <= addrbl l ;
ELSI F rnatch22 = ' 1 ' THEN

1 5 1

addrblx <= addrbl2 ;
ELS I F match2 3 = ' 1 ' THEN

addrblx <= addrbl 3 ;
ELS IF match2 4 = ' l ' THEN

addrb lx <= addrb1 4 ;
ELSE

addrblx <= (OTHERS=> ' 0 ') ;
END I F ;

END I F ;
END PROCESS MUXER2 ;

COMPARATOR31 : PROCESS (CLK , STATE , RESET)
BEGIN
IF RESET = ' 1 ' THEN

OUT PUT31<= ' 0 ' ;
over31<= ' 0 ' ;
match31<= ' 0 ' ;
addra2 1 <= " 000000 " ;

ELSIF CLK ' EVENT AND CLK= ' l ' THEN
IF STATE /= PROCESSING or din_rdy= ' 0 ' THEN

OUT PUT31<= ' 0 ' ;
over31<= ' 0 ' ;
match3 1<= ' 0 ' ;
addra2 1 <= "000000 " ;

--ELSE
ELS I F INP (63 DOWNTO 32)

over31<= ' 0 ' ;
match31<= ' 1 ' ;
OUTPUT3 1 <= ' 1 ' ;
addra2 1 <= " 0 000 0 0 " ;

ELSI F INP (63 DOWNTO 32)
over31<= ' 0 ' ;
match31<= ' 1 ' ;
OUTPUT3 1<= ' 1 ' ;
addra2 1 <= " 0000 0 1 " ;

ELSI F INP (6 3 DOWNTO 32)
over31<= ' 0 ' ;
rnatch3 1<= ' 1 ' ;
OUTPUT3 1<= ' 1 ' ;
addra2 1 <= " 0000 1 0 " ;

ELSIF INP (63 DOWNTO 32)
over31<= ' 0 ' ;
rnatch3 1<= ' 1 ' ;
OUTPUT3 1 <= ' 1 ' ;
addra2 1 <= " 0 0001 1 " ;

ELSIF INP (63 DOWNTO 32)
over31<= ' 0 ' ;
rnat ch31<= ' 1 ' ;
OUTPUT31<= ' 1 ' ;
addra2 1 <= " 0 00 1 00 " ;

ELS I F INP (63 DOWNTO 32)
over3 1<= ' 0 ' ;
rnatch31<= ' 1 ' ;
OUTPUT31<= ' 1 ' ;
addra2 1 <= " 0 0 0 1 0 1 " ;

ea (0) THEN

ea (l) THEN

ea (2) THEN

ea (3) THEN

ea (4) THEN

ea (S) THEN

1 52

ELSI F INP (63 DOWNTO 32)
over31<= ' 0 ' ;
rnatch3 1<= ' 1 ' ;
OUTPUT31<= ' 1 ' ;
addra2 1 <= " 0 0 0 1 1 0 " ;

ELSI F INP (63 DOWNTO 32)
over3 1<= ' 0 ' ;
rnatch3 1<= ' 1 ' ;
OUTPUT31<= ' 1 ' ;
addra2 1 <= " 0 0 0 1 1 1 " ;

ea (6) THEN

ea (7) THEN

ELS I F INP (63 DOWNTO 32) > ea (63) THEN
over31<= ' 1 ' ;
rnatch31<= ' 0 ' ;
OUTPUT3 1<= ' 0 ' ;

ELSE
rnatch3 1<= ' 0 ' ;
over31<= ' 0 ' ;
addra2 1 <= " 0 0 0 0 0 0 " ;
OUTPUT3 1<= ' 0 ' ;

END I F ;
END I F;
END PROCESS COMPARATOR31 ;

COMPARATOR32 : PROCESS (CLK, STATE , RESET)
BEGIN
IF RESET = ' l ' THEN

OUTPUT32<= ' 0 ' ;
over32<= ' 0 ' ;
rnatch32<= ' 0 ' ;
addra22 <= " 00 0 0 0 0 " ;

ELSI F CLK ' EVENT AND CLK= ' l ' THEN
IF STATE /= PROCESSING or din_rdy= ' 0 ' THEN

OUTPUT32<= ' 0 ' ;
over32<= ' 0 ' ;
rnatch32<= ' 0 ' ;
addra22 <= " 000000 " ;

--ELSE
ELS I F INP (63 DOWNTO 32)

over32<= ' 0 ' ;
rnatch32<= ' 1 ' ;
OUTPUT32<= ' 1 ' ;
addra22 <= " 0 0 1 0 0 0 " ;

ELS I F INP (63 DOWNTO 32)
over32<= ' 0 ' ;
rnatch32<= ' 1 ' ;
OUTPUT32<= ' 1 ' ;
addra22 <= " 0 0 1 00 1 " ;

ELS I F INP (63 DOWNTO 32)
over32<= ' 0 ' ;
rnatch32<= ' 1 ' ;
OUTPUT32<= ' 1 ' ;
addra22 <= " 00 1 01 0 " ;

ELSI F INP (63 DOWNTO 32)
over32<= ' 0 ' ;
rnatch32<= ' 1 ' ;

ea (B) THEN

ea (9) THEN

ea (l0) THEN

ea (1 1) THEN

1 53

OUTPUT32<= ' 1 ' ;
addra22 <= " 0 0 1 0 1 1 " ;

ELS I F INP (63 DOWNTO 32)
over32<= ' 0 ' ;
match32<= ' 1 ' ;
OUTPUT32<= ' 1 ' ;
addra22 <= " 0 0 1 1 0 0 " ;

ELS I F INP (63 DOWNTO 32)
over32<= ' 0 ' ;
match32<= ' 1 ' ;
OUTPUT32<= ' 1 ' ;
addra22 <= " 0 0 1 1 0 1 " ;

ELS I F INP (63 DOWNTO 32)
over32<= ' 0 ' ;
match32<= ' 1 ' ;
OUTPUT32<= ' 1 ' ;
addra22 <= " 0 0 1 1 1 0 " ;

ELS I F INP (63 DOWNTO 32)
over32<= ' 0 ' ;
match32<= ' 1 ' ;
OUTPUT32<= ' 1 ' ;
addra22 <= " 0 0 1 1 1 1 " ;

ea (1 2) THEN

ea (1 3) THEN

ea (1 4) THEN

ea (l S) THEN

ELS I F INP (63 DOWNTO 32) > ea (63) THEN
over32<= ' 1 ' ;
match32<= ' 0 ' ;
OUTPUT32<= ' 0 ' ;

ELSE
match32<= ' 0 ' ;
over32<= ' 0 ' ;
addra22 <= " 000000 " ;
OUTPUT32<= ' 0 ' ;

END I F ;
END I F ;
END PROCESS COMPARATOR32 ;

COMPARATOR33 : PROCESS (CLK, STATE , RESET)
BEGIN
I F RESET = ' l ' THEN

OUTPUT33<= ' 0 ' ;
over33<= ' 0 ' ;
match33<= ' 0 ' ;
addra2 3 <= " 0 00000 " ;

ELS I F CLK ' EVENT AND CLK= ' l ' THEN
I F STATE /= PROCESSING or din_rdy= ' 0 ' THEN

OUTPUT33<= ' 0 ' ;
over33<= ' 0 ' ;
match33<= ' 0 ' ;
addra2 3 <= " 0 0000 0 " ;

--ELSE
ELS I F INP (63 DOWNTO 32)

over33<= ' 0 ' ;
match33<= ' 1 ' ;
OUTPUT33<= ' 1 ' ;
addra2 3 <= " 0 1 0000 " ;

ELS I F INP (63 DOWNTO 32)

ea (1 6) THEN

ea (17) THEN

1 54

over33<= ' 0 ' ;
rnatch33<= ' 1 ' ;
OUT PUT33<= ' 1 ' ;
addra23 <= " 0 1 0001 " ;

ELSI F INP (63 DOWNTO 32 }
over33<= ' 0 ' ;
rnat ch3 3<= ' 1 ' ;
OUTPUT33<= ' 1 ' ;
addra23 <= " 0 1 00 1 0 " ;

ELSIF INP (63 DOWNTO 32 }
over33<= ' 0 ' ;
rnat ch33<= ' 1 ' ;
OUTPUT33<= ' 1 ' ;
addra23 <= " 0 1 0 0 1 1 " ;

ELS I F INP (63 DOWNTO 32 }
over33<= ' 0 ' ;
match33<= ' 1 ' ;
OUTPUT33<= ' 1 ' ;
addra23 <= " 0 1 0 1 00 " ;

ELSI F INP (63 DOWNTO 32 }
over3 3<= ' 0 ' ;
rnatch33<= ' 1 ' ;
OUTPUT33<= ' 1 ' ;
addra23 <= " 0 1 0 10 1 " ;

ELSI F INP (63 DOWNTO 32 }
over33<= ' 0 ' ;
match33<= ' 1 ' ;
OUTPUT3 3<= ' 1 ' ;
addra23 <= " 0 1 0 1 1 0 " ;

ea (1 8 } THEN

ea (1 9 } THEN

ea (2 0 } THEN

ea (2 1 } THEN

ea (2 2 } THEN

ELS I F INP (63 DOWNTO 32 } ea (2 3 } THEN
over3 3<= ' 0 ' ;
match33<= ' 1 ' ;
OUTPUT33<= ' 1 ' ;
addra2 3 <= " 0 1 0 1 1 1 " ;

ELS I F INP (63 DOWNTO 32 } > ea (63 } THEN
over33<= ' 1 ' ;
match33<= ' 0 ' ;
OUTPUT33<= ' 0 ' ;

ELSE
match33<= ' 0 ' ;
over33<= ' 0 ' ;
addra2 3 <= " 0 00000 " ;
OUTPUT33<= ' 0 ' ;

END I F ;
END I F;
END PROCESS COMPARATOR33 ;

COMPARATOR3 4 : PROCESS (CLK, STATE , RESET }
BEGIN
I F RESET = ' 1 ' THEN

OUTPUT34<= ' 0 ' ;
over3 4<= ' 0 ' ;
match34<= ' 0 ' ;
addra2 4 <= " 0 00000 " ;

ELS I F CLK ' EVENT AND CLK= ' l ' THEN

155

I F STATE /= PROCESS ING or din_rdy= ' 0 ' THEN
OUTPUT34<= ' 0 ' ;
over3 4<= ' 0 ' ;
match34<= ' 0 ' ;
addra2 4 <= " 000000 " ;

--ELSE
ELS I F INP (63 DOWNTO 32)

over3 4<= ' 0 ' ;
match3 4<= ' 1 ' ;
OUTPUT3 4 <= ' 1 ' ;
addra2 4 <= " 0 1 1 00 0 " ;

ELS I F INP (63 DOWNTO 3 2)
over3 4<= ' 0 ' ;
match34 <= ' 1 ' ;
OUTPUT34<= ' 1 ' ;
addra2 4 <= " 0 1 1 00 1 " ;

ELS I F INP (63 DOWNTO 32)
over3 4<= ' 0 ' ;
mat ch34<= ' 1 ' ;
OUTPUT34<= ' 1 ' ;
addra2 4 <= " 0 1 1 0 1 0 " ;

ELSIF INP (63 DOWNTO 32)
over3 4<= ' 0 ' ;
match3 4<= ' 1 ' ;
OUTPUT34<= ' 1 ' ;
addra2 4 <= " 0 1 1 0 1 1 " ;

ELS I F INP (63 DOWNTO 32)
over34<= ' 0 ' ;
match34<= ' 1 ' ;
OUTPUT34<= ' 1 ' ;
addra2 4 <= " 0 1 1 1 0 0 " ;

ELS I F INP (63 DOWNTO 32)
over3 4<= ' 0 ' ;
match34<= ' 1 ' ;
OUTPUT34<= ' 1 ' ;
addra2 4 <= " 0 1 1 1 01 " ;

ELS I F INP (6 3 DOWNTO 32)
over34<= ' 0 ' ;
match34 <= ' 1 ' ;
OUTPUT3 4<= ' 1 ' ;
addra2 4 <= " 0 1 1 1 1 0 " ;

ELS I F INP (6 3 DOWNTO 32)
over3 4<= ' 0 ' ;
match3 4 <= ' 1 ' ;
OUTPUT3 4<= ' 1 ' ;
addra2 4 <= " 0 1 1 1 1 1 " ;

ea (2 4) THEN

ea (2 5) THEN

ea (2 6) THEN

ea (2 7) THEN

ea (2 8) THEN

ea (2 9) THEN

ea (3 0 } THEN

ea (3 1) THEN

ELS I F INP (63 DOWNTO 32) > ea (3 1) THEN
--over34<= ' 1 ' ;
match34<= ' 0 ' ;
OUTPUT3 4<= ' 0 ' ;

ELSE
match34<= ' 0 ' ;
over34<= ' 0 ' ;
addra24 <= " 000000 " ;
OUTPUT34<= ' 0 ' ;

156

END I F ;
END I F ;
END PROCESS COMPARATOR34 ;

MUXER3 : PROCESS (CLK , RESET)
variable rnatch3a : std_logic;
BEGIN
IF RESET= ' l ' THEN

--over3 <= I O I ;
rnatch3x <= I O I ;
addra2x <= (OTHERS=> ' 0 ') ;
OUTPUT3 <= (OTHERS=> ' 0 ') ;
rnatch3a : = ' 0 ' ;

ELS IF CLK ' EVENT AND CLK= ' l ' THEN
- -over3<=over31 OR over32 OR over33 OR over3 4 ;
rnatch3a : =rnatch31 OR rnatch32 OR rnatch33 OR rnatch34 ;
rnatch3x<=rnatch3a ;
OUTPUT3 (Acount l) <= OUTPUT31 OR OUTPUT32 OR OUTPUT33 OR OUTPUT34 ;
I F rnatch31 = ' 1 ' THEN

addra2x <= addra2 1 ;
ELS I F rnatch32 = ' 1 ' THEN

addra2x <= addra22 ;
ELSIF rnatch33 = ' 1 ' THEN

addra2x <= addra2 3 ;
ELS I F rnatch34 = ' 1 ' THEN

addra2x <= addra24 ;
ELSE

addra2x <= (OTHERS=> ' 0 ') ;
END I F ;

END I F;
END PROCESS MUXER3 ;

COMPARATOR4 1 : PROCESS (CLK, STATE , RESET)
BEGIN
IF RESET = ' 1 ' THEN

OUTPUT4 1<= ' 0 ' ;
over4 1<= ' 0 ' ;
rnat ch 4 1<= ' 0 ' ;
addrb21 <= " 0 00000 " ;

ELS I F CLK ' EVENT AND CLK= ' l ' THEN
I F STATE /= PROCESSING or din_rdy= ' 0 ' THEN

OUTPUT4 1<= ' 0 ' ;
over4 1<= ' 0 ' ;
rnatch 4 1<= ' 0 ' ;
addrb2 1 <= " 000000 " ;

--ELSE
ELS I F INP (3 1 DOWNTO 0) = ea (0) THEN

over4 1<= ' 0 ' ;
rnatch 4 1<= ' 1 ' ;
OUTPUT4 1<= ' 1 ' ;
addrb2 1 <= " 0 0 0 00 0 " ;

ELS I F INP (31 DOWNTO 0) = ea (l) THEN
over4 1<= ' 0 ' ;
rnatch4 1<= ' 1 ' ;
OUTPUT4 1<= ' 1 ' ;

1 57

addrb21 <= " 0 0 0 00 1 " ;
ELS I F INP (3 1 DOWNTO 0) = ea (2) THEN

over4 1<= ' 0 ' ;
match4 1<= ' 1 ' ;
OUTPUT4 1<= ' 1 ' ;
addrb2 1 <= " 0 000 1 0 " ;

ELS I F INP (3 1 DOWNTO 0) = ea (3) THEN
over4 1<= ' 0 ' ;
match4 1<= ' 1 ' ;
OUTPUT4 1<= ' 1 ' ;
addrb2 1 <= " 0 0 0 0 1 1 " ;

ELS I F INP (31 DOWNTO 0) = ea (4) THEN
over4 1<= ' 0 ' ;
mat ch4 1<= ' 1 ' ;
OUTPUT4 1<= ' 1 ' ;
addrb2 1 <= " 0 0 0 1 0 0 " ;

ELS I F INP (3 1 DOWNTO 0) = ea (5) THEN
over4 1<= ' 0 ' ;
match4 1<= ' 1 ' ;
OUTPUT4 1<= ' 1 ' ;
addrb2 1 <= " 00 0 1 0 1 " ;

ELS I F INP (3 1 DOWNTO 0) = ea (6) THEN
over4 1<= ' 0 ' ;
match4 1<= ' 1 ' ;
OUTPUT4 1<= ' 1 ' ;
addrb2 1 <= " 0 00 1 1 0 " ;

ELS I F INP (3 1 DOWNTO 0) = ea (7) THEN
over4 1<= ' 0 ' ;
match4 1<= ' 1 ' ;
OUTPUT4 1<= ' 1 ' ;
addrb2 1 <= " 0 0 0 1 1 1 " ;

ELS I F INP (3 1 DOWNTO 0) > ea (63) THEN
over4 1<= ' 1 ' ;
match4 1<= ' 0 ' ;
OUTPUT4 1<= ' 0 ' ;

ELSE
match4 1<= ' 0 ' ;
over4 1<= ' 0 ' ;
addrb2 1 <= " 00000 0 " ;
OUTPUT4 1<= ' 0 ' ;

END I F ;
END I F ;
END PROCESS COMPARATOR4 1 ;

COMPARATOR4 2 : PROCESS (CLK, STATE , RESET)
BEGIN
IF RESET = ' 1 ' THEN

OUTPUT4 2<= ' 0 ' ;
over4 2<= ' 0 ' ;
match4 2<= ' 0 ' ;
addrb22 <= " 0 00000 " ;

ELS I F CLK ' EVENT AND CLK= ' l ' THEN
I F STATE /= PROCESSING or din rdy= ' 0 ' THEN

OUTPUT4 2<= ' 0 ' ;
over4 2<= ' 0 ' ;

158

match4 2<= ' 0 ' ;
addrb22 <= " 00000 0 " ;

- -ELSE
ELS I F INP (3 1 DOWNTO 0) = ea (B) THEN

over4 2<= ' 0 ' ;
match4 2<= ' 1 ' ;
OUTPUT4 2<= ' 1 ' ;
addrb22 <= " 00 1 0 00 " ;

ELS I F INP (3 1 DOWNTO 0) = ea (9) THEN
over4 2<= ' 0 ' ;
match4 2<= ' 1 ' ;
OUTPUT4 2<= ' 1 ' ;
addrb22 <= " 0 0 1 00 1 " ;

ELSI F INP (31 DOWNTO 0) = ea (l 0) THEN
over4 2 <= ' 0 ' ;
match42<= ' 1 ' ;
OUTPUT4 2<= ' 1 ' ;
addrb22 <= " 0 0 1 0 1 0 " ;

ELSIF INP (3 1 DOWNTO 0) = ea (l l) THEN
over4 2<= ' 0 ' ;
mat ch4 2<= ' 1 ' ;
OUTPUT4 2<= ' 1 ' ;
addrb22 <= " 00 1 0 1 1 " ;

ELS I F INP (3 1 DOWNTO 0) = ea (1 2) THEN
over4 2<= ' 0 ' ;
match4 2<= ' 1 ' ;
OUTPUT4 2<= ' 1 ' ;
addrb2 2 <= " 00 1 1 0 0 " ;

ELS I F INP (3 1 DOWNTO 0) = ea (1 3) THEN
over4 2<= ' 0 ' ;
match4 2 <= ' 1 ' ;
OUTPUT4 2<= ' 1 ' ;
addrb22 <= " 0 0 1 1 0 1 " ;

ELS I F INP (3 1 DOWNTO 0) = ea (1 4) THEN
over42<= ' 0 ' ;
match4 2<= ' 1 ' ;
OUTPUT4 2<= ' 1 ' ;
addrb22 <= " 0 0 1 1 1 0 " ;

ELS I F INP (31 DOWNTO 0) = ea (l S) THEN
over4 2<= ' 0 ' ;
match4 2<= ' 1 ' ;
OUTPUT4 2<= ' 1 ' ;
addrb22 <= " 00 1 1 1 1 " ;

ELSI F INP (31 DOWNTO 0) > ea (63) THEN
over4 2<= ' 1 ' ;
match4 2<= ' 0 ' ;
OUTPUT4 2 <= ' 0 ' ;

ELSE
match4 2<= ' 0 ' ;
over4 2<= ' 0 ' ;
addrb22 <= " 000000 " ;
OUTPUT4 2<= ' 0 ' ;

END IF ;
END IF ;
END PROCESS COMPARATOR4 2 ;

1 59

COMPARATOR4 3 : PROCESS (CLK, STATE , RESET)
BEGIN
IF RESET = ' l ' THEN

OUTPUT4 3<= ' 0 ' ;
over4 3<= ' 0 ' ;
mat ch4 3<= ' 0 ' ;
addrb23 <= " 0 00000 " ;

ELS I F CLK ' EVENT AND CLK= ' l ' THEN
I F STATE /= PROCESSING or din_rdy= ' 0 ' THEN

OUTPUT4 3<= ' 0 ' ;
over4 3<= ' 0 ' ;
match4 3<= ' 0 ' ;
addrb23 <= " 0 00000 " ;

--ELSE
ELS I F INP (3 1 DOWNTO 0) = ea (1 6) THEN

over4 3<= ' 0 ' ;
match4 3<= ' 1 ' ;
OUTPUT4 3<= ' 1 ' ;
addrb23 <= " 0 1000 0 " ;

ELS I F INP (3 1 DOWNTO 0) = ea (1 7) THEN
over4 3<= ' 0 ' ;
match4 3<= ' 1 ' ;
OUTPUT4 3<= ' 1 ' ;
addrb2 3 <= " 0 1 000 1 " ;

ELS I F INP (3 1 DOWNTO 0) = ea (1 8) THEN
over4 3<= ' 0 ' ;
match4 3<= ' 1 ' ;
OUTPUT4 3<= ' 1 ' ;
addrb23 <= " 0 1 0 0 1 0 " ;

ELS I F INP (31 DOWNTO 0) = ea (1 9) THEN
over4 3<= ' 0 ' ;
match4 3<= ' 1 ' ;
OUTPUT4 3<= ' 1 ' ;
addrb23 <= " 0 1 0 0 1 1 " ;

ELS I F INP (3 1 DOWNTO 0) = ea (2 0) THEN
over43<= ' 0 ' ;
match4 3<= ' 1 ' ;
OUTPUT4 3<= ' 1 ' ;
addrb23 <= " 0 1 0 1 0 0 " ;

ELS I F INP (3 1 DOWNTO 0) = ea (2 1) THEN
over4 3<= ' 0 ' ;
match4 3<= ' 1 ' ;
OUTPUT4 3<= ' 1 ' ;
addrb23 <= " 0 1 0 1 0 1 " ;

ELS I F INP (31 DOWNTO 0) = ea (22) THEN
over4 3<= ' 0 ' ;
match4 3<= ' 1 ' ;
OUTPUT4 3<= ' 1 ' ;
addrb23 <= " 0 1 0 1 1 0 " ;

ELS I F INP (3 1 DOWNTO 0) = ea (2 3) THEN
over4 3<= ' 0 ' ;
match4 3<= ' 1 ' ;
OUTPUT4 3<= ' 1 ' ;
addrb23 <= " 0 1 0 1 1 1 " ;

160

ELS I F INP (3 1 DOWNTO 0) > ea (63) THEN
over4 3<= ' 1 ' ;
match4 3<= ' 0 ' ;
OUTPUT4 3<= ' 0 ' ;

ELSE
match4 3<= ' 0 ' ;
over4 3<= ' 0 ' ;
addrb23 <= " 000000 " ;
OUTPUT4 3<= ' 0 ' ;

END I F ;
END I F ;
END PROCESS COMPARATOR4 3 ;

COMPARATOR4 4 : PROCESS (CLK, STATE , RESET)
BEGIN
IF RESET = ' 1 ' THEN

OUTPUT4 4 <= ' 0 ' ;
over4 4 <= ' 0 ' ;
match4 4 <= ' 0 ' ;
addrb2 4 <= " 0000 0 0 " ;

ELS I F CLK ' EVENT AND CLK= ' l ' THEN
I F STATE /= PROCESSING or din_rdy= ' 0 ' THEN

OUTPUT4 4 <= ' 0 ' ;
over4 4 <= ' 0 ' ;
match4 4 <= ' 0 ' ;
addrb2 4 <= " 00000 0 " ;

--ELSE
ELS I F INP (3 1 DOWNTO 0) = ea (2 4) THEN

over4 4 <= ' 0 ' ;
match4 4 <= ' 1 ' ;
OUTPUT 4 4 <= ' 1 ' ;
addrb2 4 <= " 0 1 1 00 0 " ;

ELS I F INP (31 DOWNTO 0) = ea (2 5) THEN
over4 4 <= ' 0 ' ;
match4 4 <= ' 1 ' ;
OUTPUT4 4 <= ' 1 ' ;
addrb2 4 <= " 0 1 1 0 0 1 " ;

ELS I F INP (31 DOWNTO 0) = ea (2 6) THEN
over4 4 <= ' 0 ' ;
match4 4 <= ' 1 ' ;
OUTPUT 4 4 <= ' 1 ' ;
addrb2 4 <= " 0 1 1 0 1 0 " ;

ELS I F INP (31 DOWNTO 0) = ea (2 7) THEN
over4 4 <= ' 0 ' ;
match4 4 <= ' 1 ' ;
OUTPUT 4 4 <= ' 1 ' ;
addrb2 4 <= " 0 1 1 0 1 1 " ;

ELS I F INP (31 DOWNTO 0) = ea (2 8) THEN
over4 4 <= ' 0 ' ; .
match4 4 <= ' 1 ' ;
OUTPUT4 4<= ' 1 ' ;
addrb2 4 <= " 0 1 1 1 00 " ;

ELSI F INP (31 DOWNTO 0) = ea (2 9) THEN
over4 4 <= ' 0 ' ;
match4 4 <= ' 1 ' ;

1 6 1

OUTPUT 4 4 <= ' 1 ' ;
addrb2 4 <= " 0 1 1 1 0 1 " ;

ELS I F INP (3 1 DOWNTO 0) = ea (3 0) THEN
over4 4 <= ' 0 ' ;
match4 4<= ' 1 ' ;
OUTPUT 4 4 <= ' 1 ' ;
addrb2 4 <= " 0 1 1 1 1 0 " ;

ELS I F INP (3 1 DOWNTO 0) = ea (3 1) THEN
over 4 4 <= ' 0 ' ;
match4 4<= ' 1 ' ;
OUTPUT 4 4 <= ' 1 ' ;
addrb2 4 <= " 0 1 1 1 1 1 " ;

ELS I F INP (3 1 DOWNTO 0) > ea (3 1) THEN
over4 4 <= ' 1 ' ;
match4 4 <= ' 0 ' ;
OUTPUT4 4 <= ' 0 ' ;

ELSE
match4 4 <= ' 0 ' ;
over4 4 <= ' 0 ' ;
addrb2 4 <= " 0 000 00 " ;
OUTPUT4 4<= ' 0 ' ;

END I F ;
END I F ;
END PROCESS COMPARATOR4 4 ;

MUXER4 : PROCESS (CLK, RESET)
variable match4 a : std_logic ;
BEGIN
IF RESET= ' l ' THEN

over4 <= ' 0 ' ;
match4x <= ' 0 ' ;
addrb2x <= (OTHERS=> ' 0 ') ;
OUTPUT4 <= (OTHERS=> ' 0 ') ;
match4a . - ' 0 ' ;

ELS I F CLK ' EVENT AND CLK= ' l ' THEN
--over4 <=over4 1 OR over4 2 OR over4 3 OR over4 4 ;
over4 <=over4 4 ;
match4 a : =match4 1 OR match4 2 OR match4 3 OR match4 4 ;
match4 x<=match4 a ;
OUTPUT4 (Acount l) < = OUTPUT4 1 OR OUTPUT4 2 OR OUTPUT4 3 OR OUTPUT4 4 ;
I F match4 1 = ' 1 ' THEN

addrb2x <= addrb2 1 ;
ELS I F match4 2 = ' 1 ' THEN

addrb2x <= addrb22 ;
ELS I F match4 3 = ' 1 ' THEN

addrb2x <= addrb2 3 ;
ELSI F match4 4 = ' 1 ' THEN

addrb2x <= addrb2 4 ;
ELSE

addrb2x <= (OTHERS=> ' 0 ') ;
END I F ;

END I F ;
END PROCESS MUXER4 ;

LAST CMP MTCH : PROCESS (CLK, RESET)

162

BEGIN
I F RESET = ' 1 ' THEN

match4 4 x <= ' 0 ' ;
ELS I F CLK ' EVENT AND CLK= ' l ' THEN

IF Acount l = 0 THEN
match4 4 x <= match4 4 ;

ELSE
match4 4 x <= ' 0 ' ;

END IF ;
END I F;
END PROCESS LAST_CMP_MTCH ;

STATE DELAY : PROCESS (CLK, RESET)
BEGIN
I F RESET = ' 1 ' THEN

matchl <= I Q I j

match2 <= I Q I i

match3 <= I O I j

match4 <= I Q I j

ELS I F CLK ' EVENT AND CLK= ' l ' THEN
mat chl <= matchlx ;
mat ch2 <= mat ch2x ;
match3 <= match3x ;
match4 <= match4 x ;

END I F;
END PROCESS STATE DELAY ;

proces s (clk , reset)
begin

if reset = ' 1 ' then
wr enx <= (OTHERS=> ' 0 ') ;
buffin (l) <= (OTHERS=> ' 0 ') ;
buffin (2) <= (OTHERS=> ' 0 ') ;
buf fin (3) <= (OTHERS=> ' 0 ') ;
buf fin (4) <= (OTHERS=> ' 0 ') ;

elsif clk ' event and cl k= ' l ' then
if matchl = ' 1 ' then

wr_enx (ptrl) <= ' 1 ' ;
buffin (ptrl) <= doutal ;
i f match2 = ' 1 ' then

wr_enx (ptr2) <= ' 1 ' ;
buffin (pt r2) <= doutbl ;
i f match3 = ' 1 ' then

wr_enx (ptr3) <= ' 1 ' ;
buffin (ptr3) <= douta2 ;
i f match4 = ' 1 ' then

- - 4 matches
wr_enx (ptr4) <= ' 1 ' ;
buf fin (ptr4) <= doutb2 ;

163

else

else
--3 matches
wr_enx (ptr4) <= ' 0 ' ;
buffin (ptr4) <= (OTHERS=> ' 0 ') ;

end i f ;
else

i f match4 = ' 1 ' then

else

- - 3 matches
wr_enx (ptr3) <= ' 1 ' ;
buffin (pt r3) <=doutb2 ;
buffin (ptr4) <= (OTHERS=> ' 0 ') ;
wr_enx (ptr4) <= ' 0 ' ;

--2 mat ches
wr_enx (ptr3) <= ' 0 ' ;
wr_enx (ptr4) <= ' 0 ' ;
buffin (pt r3) <= (OTHERS=> ' 0 ') ;
buffin (ptr4) <= (OTHERS=> ' 0 ') ;

end i f ;
end i f ;

i f match3 = ' 1 ' then
wr_enx (ptr2) <= ' l ' ;
buffin (ptr2) <= douta2 ;
i f mat ch4 = ' 1 ' then

else

else

end

- - 3 mat ches
wr_enx (ptr3) <= ' l ' ;
wr_enx (pt r4) <= ' 0 ' ;
buffin (pt r3) <= doutb2 ;
buffin (ptr4) <= (OTHERS=> ' 0 ') ;

--2 mat ches
wr_enx (ptr3) <= I O I ;
wr_enx (ptr4) <= I O I ;
buff in (ptr3) <= (OTHERS=> ' 0 ') ;
buf fin (ptr4) <= (OTHERS=> ' 0 ') ;

i f ;

i f mat ch4 = ' l ' then

else

--2 mat ches
wr_enx (pt r2) <= ' 1 ' ;
wr_enx (ptr3) <= ' 0 ' ;
wr_enx (ptr4) <= ' 0 ' ;
buffin (ptr2) <=doutb2 ;
buffin (ptr3) <= (OTHERS=> ' 0 ') ;
buffin (ptr4) <= (OTHERS=> ' 0 ') ;

- - 1 mat ch
wr_enx (ptr2) <= ' 0 ' ;
wr_enx (ptr3) <= ' 0 ' ;
wr_enx (pt r4) <= ' 0 ' ;
buffin (pt r2) <= (OTHERS=> ' 0 ') ;
buffin (pt r3) <= (OTHERS=> ' 0 ') ;
buffin (ptr4) <= (OTHERS=> ' 0 ') ;

end i f ;

164

else

end i f ;
end i f ;

i f match2 = ' 1 ' then
wr_enx (pt rl) <= ' l ' ;
buffin (ptrl) <= doutbl ;
i f mat ch3 = ' 1 ' then

else

else

end

wr_enx (ptr2) <= ' 1 ' ;
buffin (ptr2) <= douta2 ;
if match4 = ' 1 ' then

else

end

--3 matches
wr_enx (ptr3) <= ' 1 ' ;
wr_enx (ptr4) <= ' 0 ' ;
buffin (ptr3) <= doutb2 ;
buffin (ptr4) <= (OTHERS=> ' 0 ') ;

--2 matches
wr_enx (ptr3) <= ' 0 I i

wr_enx (ptr4) <= I O I ;
buff in (ptr3) <= (OTHERS=> ' 0 ') ;
buf f in (pt r4) <= (OTHERS=> ' 0 ') ;

i f ;

i f match4 = ' 1 ' then
--2 matches
wr_enx (ptr2) <= I 1 I ;
wr_enx (ptr3) <= I O I ;
wr_enx (ptr4) <= ' 0 I i

buffin (ptr2) <= doutb2 ;
buf fin (ptr3) <= (OTHERS=> ' 0 ') ;
buffin (ptr4) <= (OTHERS=> ' 0 ') ;

else
- - 1 match
wr_enx (ptr2) <= ' 0 ' ;

wr_enx (ptr3) <= ' 0 I ;
wr _ enx (ptr4) <= I O I ;
buffin (ptr2) <= (OTHERS=> ' 0 ') ;
buf fin (ptr3) <= (OTHERS=> ' 0 ') ;
buff in (ptr4) <= (OTHERS=> ' 0 ') ;

end i f ;
i f ;

if match3 = ' 1 ' then
wr_enx (ptrl) <= ' 1 ' ;
buffin (ptrl) <= douta2 ;
if match4 = ' 1 ' then

else

--2 matches
wr_enx (ptr2) <= ' 1 ' ;
wr_enx (ptr3) <= ' 0 ' ;
wr_enx (ptr4) <= ' 0 ' ;
buffin (ptr2) <= doutb2 ;
buffin (ptr3) <= (OTHERS=> ' 0 ') ;
buffin (ptr4) <= (OTHERS=> ' 0 ') ;

- - 1 match

1 65

wr enx (ptr2) <=
wr enx (ptr3) <= -
wr enx (ptr4) <=
buffin (ptr2) <=
buffin (ptr3) <=
buffin (ptr4) <=

end i f ;
else

if match4 = I 1 ' then

else

- - 1 match
wr_enx (ptrl)
wr enx (ptr2)
wr enx (ptr3) -
wr enx (ptr4)
buff in (ptrl)
buffin (ptr2)
buffin (ptr3)
buff in (ptr4)

--0 matches
wr_enx (ptrl)
wr_enx (ptr2)
wr_enx (ptr3)
wr_enx (ptr4)
buff in (ptrl)
buffin (ptr2)
buffin (ptr3)
buff in (ptr4)

end i f ;
end i f ;

<=
<=
<=
<=
<=
<=
<=
<=

<=
<=
<=
<=
<=
<=
<=
<=

end i f ;
end if ;

end i f ;
end process ;

process (clk , reset)
variable g , h , j , f std_logic ;
begin

i f reset = I 1 ' then
ptrl <= 1 ;

elsif cl k ' event and clk= ' l ' then
--mxla · = matchl NOR match2
--mxlb : = matchl NOR match2
--mxlc . - matchl NOR match3
--mxld . - match2 NOR match3

--matchl AND match2
--matchl AND match3
--matchl AND match4
--match2 AND match3
--match2 AND match4
--match3 AND match4

NOR
NOR
NOR
NOR

--matchl AND match2 AND match3 ;

166

match3 ;
match4 ;
match4 ;
match4 ;

I O I ;
I O I ;
I O I ;
(OTHERS=> ' 0 ') ;
(OTHERS=> ' 0 ') ;
(OTHERS=> ' 0 ') ;

I 1 I ;
I O I ;
I O I i

I O I ;
doutb2 ;
(OTHERS=> ' 0 ') ;
(OTHERS=> .' 0 ') ;
(OTHERS=> ' 0 ') ;

I O I i
I O I ;
I O I ;
I O I ;
(OTHERS=> ' 0 ') ;
(OTHERS=> ' 0 ') ;
(OTHERS=> ' 0 ') ;
(OTHERS=> ' 0 ') ;

--matchl AND match2 AND match4 ;
--matchl AND match3 AND match4 ;
--match2 AND match3 AND match4 ;

--j . g NOR h ;
--j NOR (g , h) ;
-- j : = NOR3 (g , h , f) ;
--j : = g NOR h NOR f ;
i f STATE DEL = REPORTx then

ptrl <= 1 ;
elsif (matchl AND match2 AND match3 AND match4) = ' 1 ' then

--4 match
--do nothing
ptrl <= ptrl ;

elsif ((matchl AND match2 AND match3) OR (matchl AND match2
AND match4) OR (matchl AND match3 AND match4) OR (match2 AND match3 AND
match4)) = ' 1 ' then

--3 match
if ptrl = 2 then

ptrl <= 1 ;
elsif ptrl = 3 then

ptrl <= 2 ;
elsif ptrl = 4 then

ptrl <= 3 ;
else

ptrl <= 4 ;
end i f ;

elsif ((matchl AND match2) OR (matchl AND match3) OR (matchl
AND match4) OR (match2 AND match3) OR (match2 AND match4) OR (match3 AND
match4)) = ' 1 ' then

--2 match
i f ptrl = 3 then

ptrl <= 1 ;
elsif ptrl = 4 then

ptrl <= 2 ;
elsif ptrl = 2 then

ptrl <= 4 ;
else

ptrl <= 3 ;
end i f ;

els i f (matchl OR match2 OR match3 OR match4) = ' 0 ' then
--0 matches do nothing

else
--1 match
i f ptrl = 4 then

ptrl <= 1 ;
elsif ptrl = 3 then

ptrl <= 4 ;
elsif ptrl = 2 then

ptrl <= 3 ;
else

ptrl <= 2 ;
end i f ;

end i f ;
end i f ;

167

end process ;
proce ss (clk , reset)
begin

if reset = ' 1 ' then
ptr2 <= 2 ;

el sif cl k ' event and cl k= ' l ' then
if STATE DEL = REPORTx then

ptr2 <= 2 ;
e lsif (matchl AND mat ch2 AND match3 AND match4) = ' 1 ' then

-- 4 match
--do nothing
ptr2 <= ptr2 ;

elsif ((mat chl AND match2 AND match3) OR {matchl AND mat ch2
AND match4) OR (matchl AND match3 AND match4) OR {match2 AND match3 AND
match4)) = ' 1 ' then

--3 match
if ptr2 = 2 then

ptr2 <= 1 ;
elsif ptr2 = 3 then

ptr2 <= 2 ;
e lsif ptr2 = 4 then

ptr2 <= 3 ;
else

pt r2 <= 4 ;
end i f ;

e l s i f ((matchl AND match2) OR (matchl AND match3) OR { matchl
AND match4) OR (match2 AND match3) OR {mat ch2 AND match4) OR {match3 AND
match4)) = ' 1 ' then

--2 match
if ptr2 = 3 then

ptr2 <= 1 ;
e lsif ptr2 = 4 then

ptr2 <= 2 ;
e lsif ptr2 = 1 then

ptr2 <= 3 ;
else

ptr2 <= 4 ;
end i f ;

e l s i f (matchl O R match2 OR match3 O R match4) = ' 0 ' then
--0 matches do nothing

else
--1 match
i f pt r2 = 4 then

pt r2 <= 1 ;
elsif ptr2 = 3 then

ptr2 <= 4 ;
els i f ptr2 = 2 then

ptr2 <= 3 ;
else

ptr2 <= 2 ;
end i f ;

end if ;
end if ;

end process ;
process (cl k , reset)

1 68

begin
if reset = ' 1 ' then

ptr3 <= 3 ;
elsif cl k ' event and cl k= ' l ' then

i f STATE DEL = REPORTx then
pt r3 <= 3 ;

elsi f (matchl AND match2 AND match3 AND match4) = ' 1 ' then
- - 4 match
- -do nothing
ptr3 <= pt r3 ;

els i f ((matchl AND match2 AND match3) OR (matchl AND match2
AND match4) OR (matchl AND match3 AND match4) OR (match2 AND match3 AND
match4)) = ' 1 ' then

--3 match
i f ptr3 = 2 then

ptr3 <= 1 ;
elsif ptr3 = 3 then

ptr3 <= . 2 ;
elsif ptr3 = 4 then

ptr3 <= 3 ;
else

ptr3 <= 4 ;
end i f ;

elsi f ((matchl AND match2) OR (matchl AND match3) OR (matchl
AND match4) OR (match2 AND match3) OR (match2 AND match4) OR (match3 AND
match4)) = ' 1 ' then

--2 match
if ptr3 = 3 then

ptr3 <= 1 ;
elsif ptr3 = 2 then

ptr3 <= 4 ;
elsif ptr3 = 1 then

ptr3 <= 3 ;
else

ptr3 <= 2 ;
end i f ;

el s i f (matchl OR match2 O R match3 O R match4) = ' 0 ' then
- - 0 matches do nothing

else
--1 match
i f ptr3 = 4 then

ptr3 <= 1 ;
elsif ptr3 = 3 then

ptr3 <= 4 ;
elsif ptr3 = 2 then

ptr3 <= 3 ;
else

ptr3 <= 2 ;
end i f ;

end i f ;
end i f ;

end process ;
process (cl k , reset)
begin

if reset = ' 1 ' then 169

ptr4 <= 4 ;
elsif cl k ' event and clk= ' l ' then

if STATE DEL = REPORTx then
ptr4 <= 4 ;

elsif (matchl AND match2 AND match3 AND match4) = ' 1 ' then
-- 4 match
--do nothing
ptr4 <= ptr4 ;

el sif ((matchl AND match2 AND match3) OR (matchl AND match2
AND match4) OR (matchl AND match3 AND match4) OR (match2 AND match3 AND
match4)) = ' 1 ' then

--3 match
i f ptr4 = 2 then

ptr4 <= 1 ;
elsif ptr4 = 3 then

ptr4 <= 2 ;
elsif ptr4 = 4 then

ptr4 <= 3 ;
else

ptr4 <= 4 ;
end i f ;

el sif ((matchl AND match2) OR (matchl AND match3) OR (matchl
AND match4) OR (match2 AND match3) OR (match2 AND match4) OR (match3 AND
match4)) = ' 1 ' then

--2 match
if ptr4 = 3 then

ptr4 <= 1 ;
elsif ptr4 = 2 then

ptr 4 <= 4 ;
elsif ptr4 = 1 then

ptr 4 <= 3 ;
else

ptr4 <= 2 ;
end i f ;

el sif (matchl O R match2 OR match3 OR match4) = ' 0 ' then
--0 matches do nothing

else
--1 match
if ptr4 = 4 then

ptr4 <= 1 ;
elsi f ptr4 = 3 then

ptr4 <= 4 ;
elsif ptr4 = 2 then

ptr4 <= 3 ;
else

ptr4 <= 2 ;
end i f ;

end i f ;
end i f ;

end process ;

process (cl k , reset)
begin

if reset = ' 1 ' then
smla <= ' 0 ' ; 170

srnlb <= ' 0 ' ;
--srnl <= ' 0 ' ;
sidel <= ' 0 ' ;
sidela <= ' 0 ' ;
sidelb <= ' 0 ' ;
Aa <= (OTHERS=> ' 0 ' } ;
Ab <= (OTHERS=> ' 0 ' } ;
Mult inlA <= (OTHERS=> ' 0 ') ;
rd_enl<= ' 0 ' ;
rd_en3<= ' 0 ' ;

elsif clk ' event and cl k= ' l ' then
if STATE = REPORTx THEN

sidel <= ' 0 ' ;
els i f din_rdy= ' l ' and STATE_DEL=MACN AND

INP/= " 0 00
0 0000000000000 0 0 0 0 0 000000000000000000000 0 0 0 0 0000000 0 0 0 0 0 0 0 0 0000 " then

if sidel = ' 0 ' then

else

i f ernptyl= ' 0 ' then
srnla <= ' 1 ' ;
rd_enl <= ' 1 ' ;
rd_en3 <= ' 0 ' ;
Aa <= INP (127 DOWNTO 64 } ;
sidel <= ' 1 ' ;

elsif ernpty3= ' 0 ' then
srnla <= ' 1 ' ;
rd_enl <= ' 0 ' ;
rd_en3 <= ' 1 ' ;

else

Aa <= INP (127 DOWNTO 6 4 } ;
side l <= ' 0 ' ;

srnla <= ' 0 ' ;
rd_enl <= ' 0 ' ;
rd_en3 <= ' 0 ' ;
Aa <= (OTHERS=> ' 0 ' } ;
sidel <= ' 0 ' ;

end i f ;

i f ernpty3= ' 0 ' then
srnla <= ' 1 ' ;
rd_enl <= ' 0 ' ;
rd_en3 <= ' 1 ' ;
Aa <= INP (127 DOWNTO 6 4) ;
sidel <= ' 0 ' ;

elsif ernptyl= ' 0 ' then
srnla <= ' 1 ' ;
rd_enl <= ' 1 ' ;
rd_en3 <= ' 0 ' ;

else

Aa <= INP (l27 DOWNTO 64 } ;
sidel <= ' 0 ' ;

srnla <= ' 0 ' ;
rd_enl <= ' 0 ' ;
rd_en3 <= ' 0 ' ;
Aa <= (OTHERS=> ' 0 ' } ;
sidel <= ' 0 ' ;

171

else

end i f ;
end i f ;

srnla <= ' 0 ' ;
rd enl <= ' 0 ' ;
rd en3 <= ' 0 ' ;

end i f ;
smlb <= sml a ;
--srnl <= smlb;
- ---sml <= sml a ;
Ab <= Aa ;
--Mult_inlA <= Ab ;
Mult inlA <= Aa ;
sidela <= sidel ;
sidelb <= sidela ;

end i f ;
end proces s ;
sml < = ' 0 ' when (rd_errl OR rd_err3) = ' 1 ' else smlb ;
sm2 <= ' 0 ' when (rd_err2 OR rd_err4) = ' 1 ' else srn2b;
--Mult inlB <= doutl when sidela= ' 0 ' else dout 3 ;
--Mult in2B <= dout2 when side2a= ' 0 ' else dout4 ;
Mult inlB <= dout l when side lb= ' 0 ' else dout3 ;
Mult in2 B <= dout2 when side2b= ' 0 ' else dout 4 ;
process (cl k , reset)
begin

if reset = ' 1 ' then
sm2a <= ' 0 ' ;
sm2b <= ' 0 ' ;
--sm2 <= ' 0 ' ;
side2 <= ' 0 ' ;
side2a <= ' 0 ' ;
side2b <= ' 0 ' ;
xa <= (OTHERS=> ' 0 ') ;
Xb <= (OTHERS=> ' 0 ') ;
Mult in2A <= (OTHERS=> ' 0 ') ;
rd_en2<= ' 0 ' ;
rd_en4 <= ' 0 ' ;

elsif cl k ' event and cl k= ' l ' then
if STATE = PROCESSING THEN

side2 <= ' 0 ' ;
elsi f din_rdy= ' l ' and STATE_DEL=MACN AND

INP/= " 000000000000000000000000000000000000 000 0 0 0 0 0 0 0 0000000000000000000
0000000000000000000000000000000000000 000000000000000000000000 0 0 " then

if side2 = ' 0 ' then
if empty2= ' 0 ' then

sm2a <= ' 1 ' ;
rd_en2 <= ' 1 ' ;
rd_en4 <= ' 0 ' ;
xa <= INP (63 DOWNTO 0) ;
side2 <= ' 1 ' ;

els i f empty4 = ' 0 ' then
sm2a <= ' l ' ;
rd_en2 <= ' 0 ' ;
rd_en4 <= ' 1 ' ;
xa <= INP (63 DOWNTO 0) ;

1 72

else

else
side2 <= ' 0 ' ;

sm2a <= ' 0 ' ;
rd_en2 <= ' 0 ' ;
rd_en4 <= ' 0 ' ;
xa <= (OTHERS=> ' 0 ') ;
side2 <= ' 0 ' ;

end i f ;
else

if empty4 = ' 0 ' then
sm2 a <= ' 1 ' ;
rd_en2 <= ' 0 ' ;
rd_en4 <= ' 1 ' ;
xa <= INP (63 DOWNTO 0) ;
side2 <= ' 0 ' ;

elsif empty2= ' 0 ' then
sm2a <= ' l ' ;
rd_en2 <= ' 1 ' ;
rd_en4 <= ' 0 ' ;

else

xa <= INP (63 DOWNTO 0) ;
side2 <= ' 0 ' ;

sm2a <= ' 0 ' ;
rd_en2 <= ' 0 ' ;
rd_en4 <= ' 0 ' ;
xa <= (OTHERS=> ' 0 ') ;
side2 <= ' 0 ' ;

end i f ;
end i f ;

sm2a < = ' 0 ' ;
rd en2 <= ' 0 ' ;
rd en4 <= ' 0 ' ;

end i f ;
sm2b < = sm2a ;
--sm2 <= sm2b ;
----sm2 <= sm2a ;
Xb <= xa ;
- -Mult_in2A <= Xb ;
Mult in2A <=xa ;
side2a <= side2 ;
side2b <= side2a ;

end i f ;
end process ;

proces s (cl k , reset)
begin

if reset = ' 1 ' then
instatus <= 6 ;

1 73

num_inputs <= ' 0 ' ;
rd en <= ' 0 ' ;
Cl <= (OTHERS=> ' 0 ') ;
D1 <= (OTHERS=> ' 0 ') ;
C2 <= (OTHERS=> ' 0 ') ;

elsif cl k ' event and cl k= ' l ' then

' 1 ' and size

' 1 ' and size

if num input s = ' 0 ' then

1) then

i f (fml = ' 1 ' and fm2
Cl <= mout l ;

' 1 ') then

Dl <= mout 2 ;
instatus <= 0 ;
num_inputs <= ' 0 ' ;
rd_en <= ' 0 ' ;

elsif (fml = ' 1 ' or fm2 = ' 1 ') then
if fml = ' 1 ' then

else

if fa = ' 1 ' then
Cl <= mout l ;
D 1 <= aout ;
rd en <= ' 0 ' ;
instatus <= 0 ;
num_inputs <= ' 0 ' ;

elsif empty_out = ' 0 ' and NOT (rd_en

else

rd_en <= ' 1 ' ;
instatus <= 1 ;
Cl <= mout l ;
num_inputs <= ' 0 ' ;

C2 <= moutl ;
instatus <= 2 ;
num_inputs <= ' 1 ' ;
rd en <= ' 0 ' ;

end i f ;

i f fa ' 1 ' then
Cl <= mout 2 ;
D 1 <= aout ;
rd en <= ' 0 ' ;
instatus <= 0 ;
num_inputs < = ' 0 ' ;

e lsif empty_out = ' 0 ' and NOT (rd_en
1) then

else

rd_en <= ' 1 ' ;
instatus <= 1 ;
Cl <= mout2 ;
num_inputs <= ' 0 ' ;

C2 <= mout 2 ;
instatus <= 2 ;
num_inputs <= ' 1 ' ;
rd en <= ' 0 ' ;

end i f ;
end i f ;

--empty_out ' 1 ' is delayed

1 74

or empty_out = ' 1 ') then

nothing in the buffer

add result emerges

elsi f fa = ' 1 ' and ((rd_en = ' 1 ' and s i ze = 1)

--why go to num_input s= ' l ' when there ' s

- -maybe go and wait for 2 clocks , not no

I O I and s i ze

NOT (rd_en

NOT (rd_en

- -then write to the buffer

1 then

el sif

elsif

C2 <= aout ;
instatus <= 2 ;
num_inputs <= ' 1 ' ;
rd en <= ' 0 ' ;
fa = ' 1 ' and empty_
rd en <= I 1 I ;
instatus <= 1 ;
Cl <= aout ;
num input s <= I O I ;
fa = I O I and empty_

rd en <= ' 1 ' ;
num_inputs <= ' 1 ' ;
instatus <= 3 ;

out

out

elsif fa = ' 0 ' and empty_out
' 1 ' and s i ze = 1) and pending = 0 then

rd_en <= ' 0 ' ;
num_inputs <= ' 0 ' ;
instatus <= 6 ;
Cl <= (OTHERS=> ' 0 ') ;
D1 <= (OTHERS=> ' 0 ') ;
C2 <= (OTHERS=> ' 0 ') ;

elsif fa = ' 0 ' and empty_out
' 1 ' and size = 1) then

else

rd en <= ' 1 ' ;
num_inputs <= ' 1 ' ;
instatus <= 3 ;

Cl <= (OTHERS=> ' 0 ') ;
Dl <= (OTHERS=> ' 0 ') ;
C2 <= (OTHERS=> ' 0 ') ;
rd en <= ' 0 ' ;
instatus <= 6 ;
num_inputs <= ' 0 ' ;

end i f ;
else

i f ans_flag = ' 1 ' then
Cl <= (OTHERS=> ' 0 ') ;
C2 <= (OTHERS=> ' 0 ') ;
Dl <= (OTHERS=> ' 0 ') ;
rd en <= ' 0 ' ;
num_input s <= ' 0 ' ;
instatus <= 0 ;

elsif instatus = 2 then
if fml = ' 1 ' then

Cl <= C2 ;
Dl <= mout l ;
rd en <= ' 0 ' ;

1 75

I O I then

I O I and

' 0 ' and

' 0 ' and

rd en

as a NOT in the next elsif

= 1) or empty_out = ' 1 ') then

instatus <= 0 ;
num_inputs <= ' 0 ' ;

els i f fm2 = ' l ' then
Cl <= C2 ;
D1 <= mout2 ;
rd en <= ' 0 ' ;
instatus <= 0 ;
num_inputs <= ' 0 ' ;

elsif fa = ' 1 ' then
Cl <= C2 ;
D1 <= aout ;
rd_en <= ' 0 ' ;
instatus <= 0 ;
num_input s <= ' 0 ' ;

- -couid probably check for rd en & size

elsif fa = ' 0 ' and ((rd_en = ' 1 ' and size

rd en <= ' 0 ' ;
C2 <= C2 ;
instatus <= 5 ;
num_input s <= ' 1 ' ;

elsif fa = ' 0 ' and empty_out
Cl <= C2 ;
rd_en <= ' 1 ' ;
instatus <= 1 ;
num_input s <= ' 0 ' ;

end i f ;

' 0 ' then

el sif instatus = 3 then
if fml = ' 1 ' then

Cl <= mout l ;
rd_en <= ' 0 ' ;
instatus <= 7 ;
num_inputs <= ' 0 ' ;

e lsif fm2 = ' 1 ' then
Cl <= mout2 ;
rd_en <= ' 0 ' ;
instatus <= 7 ;
num_inputs <= ' 0 ' ;

elsif fa = ' 1 ' then
--Cl <=

conv_integer (unsi gned (dout_out (3 1 downto 0))) ;

as a NOT in the next elsif

= 1) or empty_out = ' 1 ') then

hasn ' t screwed anything up yet

Redirect to instatus 5 and

Cl <= aout ;
rd_en <= ' 0 ' ;
instatus <= 7 ;
num_inputs <= ' 0 ' ;

--couid probabl y check for rd en & s i ze

elsif fa = ' 0 ' and ((rd_en = ' 1 ' and s i ze

--this stage is dangerous , why it

-- I don ' t know, it ' s hit 8 times .

1 76

data .
-- have the buffer read back in the

--rd_en <= ' 0 ' ;
--C2 <= C2 ;
--instatus <= instatus ;
num_input s <= ' 1 ' ;
rd en <= ' 0 ' ;
instatus <= 9 ;

els if fa = ' 0 ' and empty_out
--C2 <=

' 0 ' then

conv_integer (unsigned {dout_out { 3 1 downt o 0 })) ;
rd_en <= ' 1 ' ;
--instatus <= 8 ;
num_inputs <= ' 1 ' ;
instatus <= 4 ;

end i f ;
elsif instatus = 4 then

--Cl <= C2 ;
Cl <= dout_out ;
instatus <= 7 ;
num_input s <= ' 0 ' ;
rd en <= ' 0 ' ;

elsif instatus = 5 then
if fml = ' 1 ' then

Cl <= C2 ;
D1 <= mout l ;
rd_en <= ' 0 ' ;
instatus <= 0 ;
num_input s <= ' 0 ' ;

elsif fm2 = ' 1 ' then
Cl <= C2 ;
D1 <= mout 2 ;
rd en <= ' 0 ' ;
instatus <= 0 ;
num_input s <= ' 0 ' ;

elsi f fa = ' 1 ' then
Cl <= C2 ;
D1 <= aout ;
rd_en <= ' 0 ' ;
inst atus <= 0 ;
num_input s < = ' 0 ' ;

elsif rd ack = ' 1 ' then
--rewrite back into buf fer
C2 <= {OTHERS=> ' 0 ' } ;

else

rd_en <= ' 0 ' ;
num_input s <= ' 0 ' ;
Cl <= {OTHERS=> ' 0 ' } ;
D1 <= (OTHERS=> ' 0 ' } ;
instatus <= 6 ;

--write C 2 t o buffer and clear i t
C2 < = {OTHERS=> ' 0 ' } ;
rd_en <= ' 0 ' ;
num_input s <= ' 0 ' ;
Cl <= {OTHERS=> ' 0 ' } ;

1 77

01 <= { OTHERS=> ' 0 ') ;
instatus <= 6 ;

end i f ;
els i f instatus = 9 then

else

if fml = ' 1 ' then
Cl <= mout l ;
01 <= dout out ;
rd en <= ' 0 ' ;
instatus <= 0 ;
num_input s <= ' 0 ' ;

els i f fm2 = ' 1 ' then
Cl <= mout2 ;
01 <= dout out ;
rd en <= ' 0 ' ;
instatus <= 0 ;
num_input s <= ' 0 ' ;

el sif fa = ' 1 ' then
Cl <= dout_out ;

else

01 <= aout ;
rd_en <= ' 0 ' ;
instatus <= 0 ;
num_input s <= ' 0 ' ;

instatus <= 0 ;
num_input s <= ' 0 ' ;
rd en <= ' 0 ' ;
C l <= (OTHERS=> ' 0 ') ;
01 <= { OTHERS=> ' 0 ') ;

end i f ;

r d en <= ' 0 ' ;
C2 <= C2 ;
instatus <= instatus ;
num_input s <= ' 1 ' ;

end i f ;
end i f ;

--end i f ;
end i f ;

end process ;

process { clk , reset)
begin

if reset = ' 1 ' then
inputstatus <= 0 ;
C <= (OTHERS=> ' 0 ') ;
0 <= (OTHERS=> ' 0 ') ;

els i f cl k ' event and cl k= ' l ' then
if instatus = 0 then

C <= Cl ;
0 <= 01 ;
input status <= 1 ;

elsi f instatus = 1 then
C <= Cl ;
--0 <= conv_integer (unsigned (dout_out (31 downto 0))) ;

1 78

D <= (OTHERS=> ' 0 ') ;
inputstatus <= 2 ;

elsif instatus = 7 then
C <= C l ;

else

D <= dout_out ;
inputstatus <= 1 ;

D <= (OTHERS=> ' 0 ') ;
C <= (OTHERS=> ' 0 ') ;
inputstatus <= 3 ;

end i f ;
end i f ;

end process ;

process (clk , reset)
begin

if reset = ' 1 ' then
sa <= ' 0 ' ;
Ainl <= (OTHERS=> ' 0 ') ;
Ain2 <= (OTHERS=> ' 0 ') ;

e lsif cl k ' event and cl k= ' l ' then
if inputstatus = 1 then

IF C =
" 0 00 00000000000 " and
D = " 0 000000000000000000 000000000000000000000000000000000000 000000 0 0 0 "
THEN

sa <= ' 0 ' ;
ELSE

sa <= ' 1 ' ;
Ainl <= C ;
Ain2 < = D ;

END IF ;
elsif inputstatus 2 then

else

sa <= ' 1 ' ;
Ainl <= C ;
Ain2 < = dout_out ;

Ainl <= (OTHERS=> ' 0 ') ;
Ain2 <= (OTHERS=> ' 0 ') ;
sa <= ' 0 ' ;

end i f ;
end i f ;

end process ;

proces s (cl k , reset)
--variable overflow val std_logic_vector (63 downto 0) ;

std_logic ; --variable overflow
begin

if reset = ' 1 ' then
wr_enbuff <= ' 0 ' ;
overflow <= ' 0 ' ;
overflow_val <= (OTHERS=> ' 0 ') ;
overflow2 <= ' 0 ' ;
overflow_val2 <= (OTHERS=> ' 0 ') ;
dinbuf f <= (OTHERS=> ' 0 ') ;

1 79

e l s i f cl k ' event and cl k= ' l ' then
I F (instatus = 4 and fml= ' l ' and fm2= ' 1 ' and fa= ' l ') THEN

wr_enbuff <= ' l ' ;
dinbuff <= aout ;
ove rflow <= ' l ' ;
overflow_val <= mout l ;
overflow2 <= ' 1 ' ;
overflow_val2 <= mout 2 ;

ELS I F (instatus = 4 and (fml = ' O ' and fm2= ' 0 ') and fa= ' l ')
OR ((fml= ' l ' and fm2= ' 1 ') and fa = ' l ' and num_input s= ' O ') then

wr_enbuff <= ' 1 ' ;
dinbuff <= aout ;

ELS I F (instatus = 4 and (fml= ' l ' and fm2= ' 1 ')) then
wr_enbuff <= ' 1 ' ;
dinbuff <= mout l ;
i f overflow = ' 0 ' then

overfl ow <= ' 1 ' ;
overflow val <= mout2 ;

else
overflow2 <= ' 1 ' ;
overflow_val2 <= mout 2 ;

end i f ;
ELSIF (instatus = 4 and (fml= ' l ' o r fm2= ' 1 ')) then

i f fml = ' 1 ' then
dinbuff <= mout l ;

else
dinbuff <= mout 2 ;

end i f ;
wr enbuff <= ' l ' ;

ELS I F ((fml= ' l ' and fm2 = ' l ') and fa= ' l ' and
num_input s = ' l ') then

wr enbuff <= ' 1 ' ;
dinbuff <= aout ;
--and temporari ly store mout 2 unt il it can be put

int o the bu ffer
i f overflow = ' 0 ' then

overflow <= ' 1 ' ;
overflow val <= mout2 ;

else
overflow2 <= ' l ' ;
overflow_val2 <= mout 2 ;

end i f ;
ELS I F ((fml= ' l ' and fm2= ' 1 ') and fa= ' O ' and

num_input s= ' l ') then
wr enbuff <= ' 1 ' ;
dinbuff <= mout 2 ;

ELS I F ((fml= ' l ' or fm2= ' l ') and fa= ' l ' and
num_inputs = ' l ') then

wr enbuff <= ' 1 ' ;
dinbuff <= aout ;

elsif (instatus = 5 and rd ack ' 1 ') then
wr_enbuff <= ' l ' ;
dinbuff <= dout_out ;

ELS I F (instatus = 5 and fa
and ANS_FLAG= ' O ') then

1 80

' 0 ' and fml= ' O ' and fm2= ' 0 '

wr_enbuff < = ' 1 ' ;
dinbuff <= C2 ;

ELS I F (instatus = 9 and fa ' 0 ' and fml = ' 0 ' and fm2= ' 0 ')
then

wr_enbuff <= ' l ' ;
dinbuff <= dout_out ;

ELS I F overflow = ' 1 ' THEN
wr_enbuff <= ' l ' ;
dinbuff <= overflow val ;
overflow <= ' 0 ' ;

ELS I F overflow2 = ' l ' THEN
wr_enbuff <= ' 1 ' ;

else

dinbuff <= overflow_val2 ;
overflow2 <= ' 0 ' ;

wr enbuff <= ' 0 ' ;
dinbuff <= (OTHERS=> ' 0 ' } ;

end i f ;

end i f ;
end proces s ;

-- keeps a detailed account o f the s i ze o f the buffer
proces s (clk , reset , buffreset }
begin

if reset = ' 1 ' or buffreset = ' 1 ' then
s i ze <= 0 ;

elsif cl k ' event and clk= ' l ' then
if wr enbuff = ' 1 ' and rd en = ' 1 ' then

s i ze <= s i ze ;
elsif wr enbuff = ' 1 ' and rd en = ' 0 ' then

if size = 64 then
size <= size ;

else
s i ze <= s i ze + 1 ;

end i f ;
el sif wr enbuff = ' 0 ' and rd en

if s i ze = 0 then

else

si ze<=0 ;
else

size <= size - 1 ;
end i f ;

size <= s i ze ;
end i f ;

end i f ;

' 1 ' then

end process ;

process { cl k , reset , buffreset }
begin

if reset = ' 1 ' or buf freset ' 1 ' then
pendingml <= 0 ;

elsif cl k ' event and elk = ' 1 ' then
if sml = ' 1 ' and fml = ' 1 ' then

pendingml <= pendingml ;

1 8 1

elsif sml = ' l ' and fml = ' 0 ' then
if pendingml = 12 then

--pending <= 0 ;
else

pendingml <= pendingml + l ;
end i f ;

elsif sml = ' 0 ' and fml = ' l ' then
if pendingml = 0 then

--pendingrnl <= 1 2 ;
else

else

pendingml <= pendingml - l ;
end i f ;

pendingml <= pendingrnl ;
end i f ;

end i f ;
end proce� s ;

process (cl k , reset , buffreset)
begin

if reset = ' l ' or buffreset ' 1 ' then
pending <= 0 ;

elsif cl k ' event and el k = ' 1 ' then
if sa = ' 1 ' and fa = ' 1 ' then

pending <= pending ;
elsif sa = ' 1 ' and fa = ' 0 ' then

i f pending = 1 3 then
--pending <= 0 ;

else
pending <= pending + 1 ;

end i f ;
elsif sa = ' 0 ' and fa = ' 1 ' then

if pending = 0 then
--pending <= 12 ;

else

else

pending <= pending - l ;
end i f ;

pending <= pending ;
end i f ;

end i f ;
end process ;

process (cl k , reset)
begin

if reset = ' 1 ' then
ANS FLAG <= ' 0 ' ;
ANSWER <= (OTHERS=> ' 0 ') ;

elsif clk ' event and cl k= ' l ' then
--if emptyl= ' l ' and ernpty2= ' 1 ' and empty3= ' 1 ' and

empty4 = ' 1 ' and pendingrnl=0 and pendingrn2=0 and pending=l and
overflag= ' l ' and empty out= ' l ' and fa= ' l ' and sa= ' 0 ' and instatus /= 9
and num_inputs= ' 0 ' and �r_enbuff= ' O ' then

if emptyl= ' l ' and empty2= ' 1 ' and ernpty3= ' 1 ' and ernpty4 = ' 1 '
and pendingrnl=0 and pending= l and overflag= ' l ' and empty_out= ' l ' and

182

fa= ' l ' and sa= ' 0 ' and instatus /= 9 and instatus /= 0 and inputstatus /= 1
and num_inputs= ' 0 ' and wr enbuff= ' 0 ' and STATE DEL=SEND then

ANS_FLAG <= ' 1 ' ;
ANSWER <= aout ;

--elsif emptyl= ' l ' and empty2= ' 1 ' and empty3= ' 1 ' and
empty4 = ' 1 ' and pendingml=0 and pendingm2= 0 and pending=0 and
over flag= ' l ' and empty_out= ' l ' and fa= ' 0 ' and sa= ' 0 ' and inputstatus=3
and instatus= 6 and wr enbuff= ' 0 ' and num_inputs= ' 0 ' and STATE_DEL=SEND
then

elsif emptyl= ' l ' and empty2= ' 1 ' and empty3= ' 1 ' and
empty4 = ' 1 ' and pendingml=0 and pending=0 and overflag= ' l ' and
empty_out= ' l ' and fa= ' 0 ' and sa= ' 0 ' and inputstatus=3 and instatus=6
and wr enbuff= ' 0 ' and num_inputs= ' 0 ' and STATE_DEL=SEND then

ANS_FLAG <= ' 1 ' ;
ANSWER <= (OTHERS=> ' 0 ' } ;

--el sif emptyl= ' l ' and empty2= ' 1 ' and empty3= ' 1 ' and
empty4 = ' 1 ' and pendingml= 0 and pendingm2= 0 and pending= 0 and
overflag= ' l ' and empty_out= ' l ' and fa= ' 0 ' and sa= ' 0 ' and instatus=S and
wr enbuff= ' 0 ' then

elsi f emptyl= ' l ' and empty2= ' 1 ' and empty3= ' 1 ' and
empty4 = ' 1 ' and pendingml= 0 and pending=0 and overflag= ' l ' and
empty_out= ' l ' and fa= ' 0 ' and sa= ' 0 ' and instatus=S and wr enbuff= ' 0 '
and STATE DEL=SEND then

ANS_FLAG <= ' 1 ' ;
ANSWER <= C2 ;

elsif emptyl= ' l ' and empty2= ' 1 ' and empty3= ' 1 ' and
empty4 = ' 1 ' and pendingml= 0 and pending= 0 and overflag= ' l ' and
empty_out= ' l ' and fa= ' 0 ' and sa= ' 0 ' and instatus= 9 and wr enbuff= ' 0 '
and STATE DEL=SEND then

ANS_FLAG <= ' 1 ' ;
ANSWER <= dout_out ;

elsi f STATE = PROCESSING OR STATE
ANS_FLAG <= ' 0 ' ;
ANSWER <= (OTHERS=> ' 0 ' } ;

end i f ;
end i f ;

end process ;

process (clk , reset }
begin

i f reset = ' 1 ' then
buffreset <= ' 0 ' ;

el sif clk ' event and cl k= ' l ' then
if ANS FLAG = ' 1 ' then

buffreset <= ' 1 ' ;
else

buffreset <= ' 0 ' ;
end i f ;

end i f ;
end process ;
END behavior ;

183

ADDRESS then

Appendix G - DPFPMult.vhd

1 84

Double Precision Floating Point Multiplier
< dpfpmult . vhd >
4 / 1 8 /2 0 0 4
kbaugher@ut k . edu
Author : Kirk A Baugher

--Library XilinxCoreLib ;
library I EEE ;
use I EEE . std_logic_1 1 64 . all ;
use I EEE . std_logic_arith . al l ;
use I EEE . std_logic_unsigned . all ;

entity dpfpmult is
port (CLK : in std_logic ;

A i n std_logic_vector (63 downto 0) ;
B : in std_logic_vector (63 downto 0) ;
OUTx : out std_logic_vector (63 downto 0) ;
start : in std_logic ;

finish : out std_logic
) ;
end dpfpmult ;

architecture RTL of dpfpmult is

signal MA, MB : std logic_vector (52 downto 0) ;
signal EA, EB : std_logic_vector (l 0 downto 0) ;
signal Sans , s l , s 2 , s 3 , s 4 , s 5 , s 6 , s 7 , s 8 , s 9 : std_logic ;
signal stepl , step2 , step3 , step4 , step5 , step6 , step7 , step8

signal Q : std_logic_vector (1 05 downto 0) ;

signal eaddans : std_logic_vector (l l downto 0) ;
signal exp_result : std_logic_vector (12 downto 0) ;
signal answer : std_logic_vector (63 downto 0) ;

signal exponent : std_logic_vector (l 0 downto 0) ;
signal exponent l : std_logic_vector (l l downto 0) ;
signal mca l , mca2 , mca3 , mca4 , mca5 , mca 6 , mca7 std_logic ;
signal eca l , eca2 , eca3 , eca4 : std_logic ;
signal mcbl , mcb2 , mcb3 , mcb4 , mcb5 , mcb6 , mcb7 std_logic;
signal ecbl , ecb2 , ecb3 , ecb4 : std_logi c ;
s ignal mc8 , mc8 a , mc8b , mc8 c , mc8d : std_logic ;
signal ec5 , ec5a , ec5b , ec5c , ec5d : std_logic ;

component mul53
port (
el k : IN std logic ;
a : IN std_logic_VECTOR (52 downto 0) ;
b : IN std_logic_VECTOR (52 downto 0) ;
q : OUT std_logic_VECTOR (l 0 S downto 0)
) ;

end component ;

1 85

std_logic ;

component expaddl l
port (
A : IN std_logic_VECTOR (l0 downt o 0) ;
B : IN std_logic_VECTOR (l0 downto 0) ;
Q C OUT : OUT std logic;
Q� OUT std_logic=VECTOR (l O downto 0) ;
CLK : IN std_l ogi c) ;

END component ;

component expbi as l l
port (
A : IN std_logic_VECTOR (l l downto 0) ;

Q : OUT std_logic_VECTOR (1 2 downto 0) ;

CLK : IN std_logi c) ;
END component ;

begin

MA (5 1 downto 0) <= A (5 1 downt o 0) ;
MA (52) <= ' 1 ' ;
MB (5 1 downto 0) <= B (5 1 downto 0) ;
MB (52) <= ' 1 ' ;

EA <= A (62 downto 52) ;
EB <= B (6 2 downto 52) ;

Sans <= A (6 3) XOR B (63) ;

mul 53 0 : mul 53 port map (a => MA, b => MB , elk => CLK, q => Q) ;

expaddl l_0 : expaddl l port map (A => EA, B => EB, Q => eaddans (l 0
downt o 0) , Q_C_OUT => eaddans (l l) , CLK => CLK) ;

expbi asl l_0 : expbias l l port map (A => eaddans , Q => exp_result , CLK =>
CLK) ;

------------< Float ing- Point Multiplication Algorithm >-- ------­

process (CLK)
begin
--some latch should be insert ed here for delay 4 cycle
--wait unti l rising_edge (CLK) ;
I F (CLK = ' 1 ' and CLK ' event) THEN

Sl <= Sans ;
S2 <= S l ;
S 3 < = S 2 ;
S 4 <= S3 ;
SS <= S 4 ;
S 6 <= S 5 ;
S7 <= S 6 ;
S8 <= S7 ;
s 9 <= s 8 ;

stepl <= st art ;
step2 <= stepl ;

1 86

step3 <= step2 ;
step4 <= step3 ;
steps <= step4 ;
step6 <= stepS ;
step7 <= step6 ;
steps <= step7 ;
finish <= step8 ;

END I F ;
end proces s ;

proces s (CLK)
variable mca , mcb
variable eca , ecb
begin

std_logic_vector (S l downto 0) ;
std_logic_vector (l 0 downto 0) ;

--check for a zero value for an input and adj ust the answer if
necessary at end
I F (CLK = ' 1 ' and CLK ' event) THEN

mca : = A (S l DOWNTO 0) ;
mcb : = B (S l DOWNTO 0) ;
eca : = A (62 DOWNTO 52) ;
ecb . - B (62 DOWNTO 52) ;
meal <= mca (S l) OR mca (S 0) OR mca (4 9) OR mca (4 8) OR mca (4 7) OR

mca (4 6) OR
mca (4 5) OR mca (4 4) OR mca (4 3) ;

mcbl <= mcb (S l) OR mcb (S 0) OR mcb (4 9) OR mcb (4 8) OR mcb (4 7) OR
mcb (4 6) OR

mcb (4 5) OR mcb (4 4) OR mcb (4 3) ;
mca2 <= mca (4 2) OR mca (4 1) OR mca (4 0) OR mca (3 9) OR mca (38) OR

mca (37) OR
mca (3 6) OR mca (3 5) OR mca (34) ;

mcb2 <= mcb (4 2) OR mcb (4 1) OR mcb (4 0) OR mcb (3 9) OR mcb (38) OR
mcb (37) OR

mcb (3 6) OR mcb (35) OR mcb (3 4) ;
mca3 <= mca (33) OR mca (32) OR mca (31) OR mca (3 0) OR mca (2 9) OR

mca (2 8) OR
mca (27) OR mca (2 6) OR mca (2 5) ;

mcb3 <= mcb (33) OR mcb (32) OR mcb (31) OR mcb (3 0) OR mcb (2 9) OR
mcb (2 8) OR

mcb (27) OR mcb (2 6) OR mcb (2 5) ;
mca4 <= mca (2 4) OR mca (2 3) OR mca (22) OR mca (2 1) OR mca (20) OR

mca (l 9) OR
mca (1 8) OR mca (1 7) OR mca (1 6) ;

mcb4 <= mcb (2 4) OR mcb (2 3) OR mcb (22) OR mcb (2 1) OR mcb (2 0) OR
mcb (1 9) OR

mcb (l 8) OR mcb (l 7) OR mcb (1 6) ;
meas <= mca (l S) OR mca (1 4) OR mca (1 3) OR mca (1 2) OR mca (l l) OR

mca (1 0) OR
mca (9) OR mca (B) OR mca (7) ;

mcbS <= mcb (lS) OR mcb (l 4) OR mcb (1 3) OR mcb (1 2) OR mcb (l l) OR
mcb (l0) OR

mcb (9) OR mcb (B) OR mcb (7) ;
mca 6 <= mca (6) OR mca (S) OR mca (4) OR mca (3) OR mca (2) OR mca (l)

OR
mca (0) ;

1 87

OR
mcb 6 <= mcb (6) OR mcb (S) OR mcb (4) OR mcb (3) OR mcb (2) OR mcb (l)

mcb (0) ;

mca7 <= mea l OR mca2 OR mca3 OR mca4 OR mea s OR mca 6 ;
mcb7 <= mcb l OR mcb2 OR mcb3 OR mcb4 OR mcb5 OR mcb6 ;

mc8 <= mca7 AND mcb7 ;
mc8 a <= mc8 ;
mc8b <= mc8 a ;
mc8c <= mc8b;
mc8d <= mc8 c ;

eca l <= eca (1 0) OR eca (9) OR eca (8) OR eca (7) ;
eca2 <= eca (6) OR eca (S) OR eca (4) OR eca (3) ;
eca3 <= eca (2) OR eca (l) OR eca (0) ;

eca4 <= ecal OR eca2 OR eca3 ;

ecbl <= ecb (1 0) OR ecb (9) OR ecb (8) OR ecb (7) ;
ecb2 <= ecb (6) OR ecb (S) OR ecb (4) OR ecb (3) ;
ecb3 <= ecb (2) OR ecb (l) OR ecb (0) ;

ecb4 <= ecbl OR ecb2 OR ecb3 ;

ec5 <= eca4 AND ecb4 ;
ec5a <= ecS ;
ec5b <= ec5a ;
ec5c <= ec5b ;
ec5d <= ec5c ;

END I F;
end process ;

proce ss (CLK) --7th step-- Check for exponent overflow
variable exponent la : std_logic_vector (l2 downt o 0) ;
begin
- -wait until rising_edge (CLK) ;
I F (CLK = ' 1 ' and CLK ' event) THEN

I F (exp_result (12) = ' 1 ' OR exp_result = " 0 1 1 1 1 1 1 1 1 1 1 1 1 ") THEN
exponent <= " 1 1 1 1 1 1 1 1 1 1 1 " ; - - I f overflow set to max value

of 2 5 4 (biased)
ELSE

exponent <= exp_result (l 0 downt o 0) ;
END I F ;

END I F ;
end process ;

process (CLK, Q)
variable exponent la : std_logic_vector (l l downto 0) ;
variable mant issa : std_logic_vector (53 downto 0) ;
variable exponent lx std_logic_vector (l 0 downto 0) ;
begin - -8 th step--
- -wait unti l rising_edge (CLK) ;

1 88

I F (CLK = ' 1 ' and CLK ' event) THEN
exponentla (l 0 downto 0) : = exponent ;
exponentla (l l) : = ' 0 ' ;
mantissa : = Q (l0 S downto 52) ;
I F mantissa (5 3) = ' 1 ' THEN

I F ecSd = ' 0 ' AND mc8d = ' 0 ' THEN
exponent la : = " 000000000000 " ;
mantissa : =

" 00 0 0000000000000000000000000000000000000 000000000 00000 " ;
--ELS I F ecSd = ' 0 ' THEN

exponent la : = " 000000000000 " ;
--ELS I F mcBd = ' 0 ' THEN

mantissa : =

" 0 00 0000000 0000 " ;
ELS I F exponent la < " 1 1 1 1 1 1 1 1 1 1 1 " THEN

exponent la : = exponent la + " 00 0 0 0 0 0 0 1 " ;
END I F ;
exponent lx : = exponentla (l 0 downto 0) ;
answer <= S7 & exponent lx & mantissa (52 downto 1) ;

ELSE
IF ecSd = ' 0 ' AND mc8d = ' 0 ' THEN

exponentla : = " 0 00000000000 " ;
mantissa : =

" 000 00 0 0 0 " ;
- -ELS I F ecSd = ' 0 ' THEN

exponent la : = " 000000000000 " ;
--ELS I F mc8d = ' 0 ' THEN

mantissa : =

" 00 0 0 0 0 000000000000000000000000000000000000 0000000 0 0 0 00 " ;
END I F;
exponent lx : = exponent la (l 0 downto 0) ;
answer <= S7 & exponentlx & manti ssa (S l downto 0) ;

END I F ;
OUTx <= answer ;

END I F ;
end process ;

end RTL ;

189

Appendix H - DPFPAdd.vhd

1 90

Double Precision Floating Point Adder
< dpfpadd . vhd >
4 / 1 8 /2 0 0 4
kbaugher@ut k . edu

--Author : Kirk A Baugher
LI BRARY I EEE ;
USE I EEE . std_logic_1 1 64 . ALL ;
USE I EEE . std_logic_arith . ALL ;
USE I EEE . std_logic_unsigned . all ;

ENT ITY dpfpadd I S
PORT (

CLK : IN STD_LOGIC ;
start : IN STD_LOGI C ;
Ain : IN STD_LOGIC_VECTOR (63 DOWNTO 0) ;
Bin : IN STD_LOGIC_VECTOR (63 DOWNTO 0) ;
OUTx : OUT STD_LOGIC_VECTOR (63 DOWNTO 0) ;
finish : OUT STD_LOGIC) ;

END dpfpadd;
ARCHITECTURE behavior OF dpfpadd I S

S IGNAL edi f f l , edi f f2 , edi ffout , Aout , Bout : STD_LOGIC_VECTOR (l l DOWNTO
0) ;

S IGNAL expa , expb , explout , explout l , explout l a , explout lb :
STD_LOGIC_VECTOR (l0 DOWNTO 0) ;
S IGNAL rnanta , rnantb, rnantxlout , rnant lout , rnantx2out , rnant lout l
STD_LOGIC_VECTOR (53 DOWNTO 0) ;
S IGNAL rnantx2a , rnant lout l a , rnant lout lb
STD_LOGIC_VECTOR (5 3 DOWNTO 0) ;
S IGNAL s a , sb, Sans lout , Sans lout l : STD_LOGIC ;

S IGNAL Sans lout l a , Sanswerl , Sans lout lb, Sanswerz l , change
STD_LOGIC ;

S IGNAL rnant result : STD_LOGIC_VECTOR (53 DOWNTO 0) ;
S IGNAL Sans2 , Sans3 , Sans 4 , Sans 5 , Sans 6 STD_LOGIC ;
SIGNAL expl a , explb, explc , expld, exple : STD_LOGIC_VECTOR (l 0 DOWNTO
0) ;

S IGNAL Z l , Z2 , Z 3 , Z 4 , Z 5 , Z 6 , Z7 , Z8 , Z 9 , Z l0 , Z l l , zeroflagl , zeroflag2
std_logic ;
S IGNAL fl , f2 , f3 , f4 , f5 , f6 , f7 , f8 , f 9 , f1 0 , f l l , f12 : STD_LOGIC ;
S IGNAL SSxl , SSx2 , SSx3 , SSx4 , SSx5 , SSx6 , SSx7 , SSx8 , SSxout , SSxout2
STD_LOGIC ;

S IGNAL SSout , SStoCompl STD_LOGIC ;
S IGNAL expanswerl , expanswerzl
STD_LOGIC_VECTOR (l0 DOWNTO 0) ;
S IGNAL shi ft l , shi ftout , shi ft , shift 1 2 , shi ftn2 STD_LOGIC_VECTOR (S
DOWNTO 0) ;
S IGNAL rnantans3 , rnant z l STD_LOGIC_VECTOR (S l
DOWNTO 0) ;
S IGNAL rnantx2tornantadd STD_LOGIC_VECTOR (5 4 DOWNTO
0) ;

1 9 1

--Port A is input , Port B output
COMPONENT subexpl

port (
CLK : IN std logic ;
A : IN std_logic_VECTOR (l l downto 0) ;
B : IN std_l ogic_VECTOR (l l downto 0) ;
Q : OUT std_logi c_VECTOR (l l downto 0)) ;

END COMPONENT ;

-- Port A is input , Port B output
COMPONENT mantadd5

port (
CLK : IN std_logic ;
A : IN std_l ogic_VECTOR (53 downto 0) ;
B : IN std_logic_VECTOR (53 downto 0) ;
Q : OUT std_logic_VECTOR (5 3 downto 0)) ;

END COMPONENT ;

- -Port A is input , Port B output
COMPONENT twoscompl

port (
CLK : IN std_logic ;
BYPASS : IN std_logi c ;
A : IN std_logic_VECTOR (53 downto 0) ;
Q : OUT std_logi c_VECTOR (5 4 downto 0)) ;

END COMPONENT ;

BEGIN
Aout <= ' 0 ' & Ain (62 DOWNTO 52) ;
Bout <= ' 0 ' & Bin (62 DOWNTO 52) ;
subexpl2 : subexpl port map (

A=>Aout ,
B=>Bout ,
Q=>edi f fl ,
CLK=>CLK) ;

subexp2 1 subexpl port map (
A=>Bout ,
B=>Aout ,
Q=>edi ff2 ,
CLK=>CLK) ;

mantexe mantadd5 port map (
A=>mant lout l a ,
B=>mantx2out ,
Q=>mant_result ,
CLK=>CLK) ;

twos twoscompl port map (
A=>mantx2 a ,
BYPASS=>SStoCompl ,
Q=>mantx2tomantadd,
CLK=>CLK) ;

PROCl : PROCESS (CLK) --Occurs during expdi ff

1 92

BEGIN
IF CLK ' EVENT AND CLK= ' l ' THEN

expa <= Ain (62 downto 52) ;
manta <= " 0 1 " & Ain (5 1 downto 0) ;
sa <= Ain (63) ;
expb <= Bin (62 downto 52) ;
mantb <= " 0 1 " & Bin (5 1 downto 0) ;
sb <= Bin (63) ;

END I F ;
END PROCESS PROCl ;

PROC2 : PROCESS (CLK) --depending
variable expl , exp2
variable mant l , mant2 , mantxl
variable edi f f
variable Sans l , SS
BEGIN
IF CLK ' EVENT AND CLK= ' l ' THEN

IF edi ffl (l l) = ' 0 ' THEN
expl : = expa ;
mant l · = manta ;
Sansl : = sa ;

ELSE

exp2 : = expb ;
mant2 : = mantb;
edi ff : = edi ffl ;

expl : = expb ;
mant l : = mantb;
Sans l : = sb ;

exp2 : = expa ;
mant2 : = manta ;
edif f . - edi ff2 ;

END I F;

SS : = sa XOR sb ;

on expdi ff larger number goes to FPl
std_logic_vector (l 0 downto 0) ;
std_logic_vector (5 3 downto 0) ;
std_logic_vector (l l downto 0) ;
std

...:..
logic ;

--Begin shi fting lower number mantissa
--IF (edi ff (7 } OR edi ff (6 } OR ediff (S } } = ' 1 ' THEN-- for single-

precision
I F (ediff (l l) OR edi ff (l 0) OR ediff (9) OR edi ff (8) OR edi ff (7) OR

edi ff (6)) = ' 1 ' THEN - - for DP
mantxl : =

" 00 00000 0 0 0 " ; - -change to 25
zeros for sp

ELSE
IF edi ff (5) = ' 1 ' THEN --shi ft 32 zeros

mantx1 (2 0 downto 0) : = mant2 (52 downto 32) ;
mantx1 (52 downto 2 1) · =

" 00000000000000000000000000000000 " ;
ELSE

--For Single Precision

1 93

- - I F edi ff (4) = ' 1 ' THEN-- shi ft 1 6 zeros
mantx1 (3 6 downto 0) : = mant 2 (52 downto 1 6) ;
mantxl (52 downto &d) " 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 " ;
mantxl (3 7 downto &d) : = " 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 " ;

--ELSE
mantxl

END I F ;
END I F ;
SSout <= SS ;
mantxlout <= mantxl ;
explout <= expl ;
rnant lout <= rnant l ;
Sans lout <= Sans l ;
edi ffout <= edi f f ;

mant 2 ;

END I F ;
END PROCESS PROC2 ;

PROC3 : PROCESS (CLK) - - Finish shi fting
variable rnantx2 std_logic_vector (5 3 downto
0) ;

variable edi ffa
0) ;

std_logic_vector (l l downto

variable SSx
BEGIN
IF CLK ' EVENT AND CLK= ' l ' THEN

SSx : = SSout ;
rnantx2 : = rnantxl out ;
edi ffa : = edi ffout ;

std_logic ;

--Comment edi ffa (4) out for s ingle preci sion
I F ediffa (4) = ' 1 ' THEN--shi ft 1 6 zeros

ELSE

rnantx2 (3 6 downto 0) : = mantx2 (52 downto 1 6) ;
rnantx2 (52 downto 37) : = " 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 " ;

rnantx2 · = rnantx2 ;
END I F ;

I F edi ffa (3) = ' 1 ' THEN--shi ft 8 zeros

ELSE

mantx2 (4 4 downto 0) : = mantx2 (52 downto 8) ;
mantx2 (52 downto 4 5) · = " 0 0 0 0 0 0 0 0 " ;

mantx2
END I F ;

rnantx2 ;

I F edi ffa (2) = ' 1 ' THEN-- shift 4 zeros

ELSE

rnantx2 (4 8 downto 0) : = rnantx2 (52 downto 4) ;
rnantx2 (52 downto 4 9) : = " 0 0 0 0 " ;

rnantx2 . - rnantx2 ;
END I F;

I F edi ffa (l) = ' l ' THEN--shi ft 2 zeros
mantx2 (50 downto 0) : = rnantx2 (52 downto 2) ;
mantx2 (52 downto 5 1) : = " 0 0 " ;

1 94

ELSE
mantx2 : = mantx2 ;

END I F;

I F edi ffa (0) = ' l ' THEN--shi ft 1 zeros

ELSE

mantx2 (5 1 downto 0) mantx2 (52 downto 1) ;
mantx2 (52) : = ' 0 ' ;

mantx2 . mantx2 ;
END I F;

I F SSx = ' 1 ' THEN
mantx2 · = NOT (mantx2) + 1 ;

ELSE
mantx2 : = mantx2 ;

END I F ;
mantx2a <= mantx2 ;
explout l <= explout ;
mant lout l <= mant lout ;
Sans lout l <= Sans lout ;
SSxout <= SSx ;
SStoCompl <= NOT (SSx) ;

END I F;
END PROCESS PROC3 ;

--this proces s occurs during the twos compliment
PROC2 3 : PROCESS (CLK)
BEGIN

IF CLK ' EVENT AND CLK= ' l ' THEN
mantx2out<=mantx2tomantadd (53 DOWNTO 0) ;
SSxout2<=SSxout ;

explout lb <= explout l ;
explout la <= explout lb ;
mantlout lb <= mant lout l ;
mant lout la <= mant lout lb;
Sans lout lb <= Sans lout l ;
Sans lout la <= Sans lout lb ;

END I F;
END PROCESS PROC2_3 ;

PROC4 : PROCESS (CLK) --mantissa
variable mant result l
variable mantansl
variable expanswer
variable Sanswer
--variable shift
BEGIN

normali zation
: std_logic_vector (5 3 downto

std_logic_vector (5 1 downto 0) ;
: std_logic_vector (l 0 downto

std_logic ;
std_logic_vector (5 downto 0) ;

I F CLK ' EVENT AND CLK= ' l ' THEN
mant_result l : = mant_result ;
expanswer : = exple ;
Sanswer : = Sans 6 ;

1 95

0) ;

0) ;

change <= ' 1 ' ;
I F mant_result1 (53) = ' l ' THEN

mantans l : = mant_result 1 (52 downto 1) ;
shi ft <= " 000000 " ;
--shiftn <= " 0 0000 1 " ;
shi ftn2 <= " 0 0 0 00 1 " ;

ELS I F mant_result1 (52) = ' 1 ' THEN
mantans l : = mant_result l (S l downto 0) ;
shi ft <= " 000000 " ;
--shi ftn <= " 00 0 0 1 0 " ;
shi ftn2 <= " 00 0 0 00 " ;

ELS I F mant_result 1 (5 1) = ' 1 ' THEN
mantans 1 (5 1 downto 1) . - mant_result1 (50 downto 0) ;
mantans l (0) : = ' 0 ' ;
shi ft <= " 0 0000 1 " ;
--shi ftn <= " 0 0 0 0 1 1 " ;
shi ftn2 <= " 0 0 0 0 0 1 " ;

ELS I F mant_result 1 (50) = ' 1 ' THEN
shi ft <= " 0 000 10 " ;
--shi ftn <= " 0 00 100 " ;
shi ftn2 <= " 000 0 1 0 " ;
mantans l (S l downto 2) : = mant_result 1 (4 9 downto 0) ;
mantans l (1 downto 0) : = " 00 " ;

ELSIF mant_resultl (4 9) = ' 1 ' THEN
shi ft <= " 00 0 0 1 1 " ;
--shi ftn <= " 0 0 0 1 0 1 " ;
shi ftn2 <= " 00 00 1 1 " ;
mantans l (S l downto 3) : = mant_result 1 (4 8 downto 0) ;
mantans 1 (2 downto 0) : = " 000 " ;

ELS I F mant_result1 (4 8) = ' 1 ' THEN
shi ft <= " 0 0 0 1 0 0 " ;
--shi ftn <= " 0 0 0 1 1 0 " ;
shi ftn2 <= " 0 0 0 1 0 0 " ;
mantans 1 (5 1 downto 4) : = mant_result 1 (4 7 downto 0) ;
mantans 1 (3 downto 0) : = " 0 0 0 0 " ;

ELS I F mant_result 1 (4 7) = ' 1 ' THEN
shi ft <= " 0 0 0 1 0 1 " ;
- -shi ftn <= " 0 00 1 1 1 " ;
shi ftn2 <= " 0 0 0 1 0 1 " ;
mantans l (S l downto 5) : = mant_result 1 (4 6 downto 0) ;
mantans l (4 downto 0) : = " 0 000 0 " ;

ELSIF mant_result 1 (4 6) = ' 1 ' THEN
shift <= " 0 0 0 1 1 0 " ;
--shiftn <= " 0 0 1 0 00 " ;
shi ftn2 <= " 000 1 1 0 " ;
mantans l (S l downto 6) : = mant_result 1 (4 5 downt o 0) ;
mantans 1 (5 downto 0) : = " 0 0 0 0 00 " ;

ELS I F mant_result 1 (4 5) = ' 1 ' THEN
shift <= " 0 00 1 1 1 " ;
--shiftn <� " 0 0 10 0 1 " ;
shi ftn2 <= " 0 00 1 1 1 " ;
mantans 1 (5 1 downto 7) : = mant_result 1 (4 4 downto 0) ;
mantans 1 (6 downto 0) : = " 0 000000 " ;

ELS I F mant_result 1 (4 4) = ' 1 ' THEN
shi ft <= " 0 0 1 0 0 0 " ;

1 96

--shi ftn <= " 0 0 1 0 1 0 " ;
shi ftn2 <= " 0 0 1 0 0 0 " ;
mantans l (Sl downto 8) : = mant_result1 (4 3 downto 0) ;
mantans 1 (7 downto 0) : = " 00000000 " ;

ELS I F mant_result 1 (4 3) = ' l ' THEN
shi ft <= " 0 0 1 0 0 1 " ;
- -shi ftn <= " 0 0 1 0 1 1 " ;
shi ftn2 <= " 0 0 1 00 1 " ;
mantans l (Sl downto 9) : = mant_result 1 (4 2 downto 0) ;
mantans 1 (8 downto 0) : = " 000000000 " ;

ELS I F mant_result 1 (4 2) = ' 1 ' THEN
shi ft <= " 0 0 1 0 1 0 " ;
--shiftn <= " 0 0 1 1 0 0 " ;
shi ftn2 <= " 0 0 1 0 1 0 " ;
mantans l (Sl downto 1 0) : = mant_re sult 1 (4 1 downto 0) ;
mantans 1 (9 downto 0) : = " 0000000000 " ;

ELS IF mant_result l (4 1) = ' 1 ' THEN
shift <= " 0 0 1 0 1 1 " ;
--shi ftn <= " 0 0 1 1 0 1 " ;
shi ftn2 <= " 0 0 1 0 1 1 " ;
mantans l (S l downto 1 1) : = mant_result 1 (4 0 downto 0) ;
mantans l (l 0 downto 0) : = " 0 0 0 000000 00 " ;

ELS I F mant_result 1 (4 0) = ' l ' THEN
shi ft <= " 0 0 1 1 0 0 " ;
--shi ftn <= " 00 1 1 10 " ;
shi ftn2 <= " 0 0 1 1 0 0 " ;
mantans l (S l downto 12) : = mant_result 1 (39 downto 0) ;
mantans l (ll downto 0) : = " 0 00000000 00 0 " ;

ELS I F mant_result1 (39) = ' 1 ' THEN
shi ft <= " 0 0 1 1 0 1 " ;
--shi ftn <= " 0 0 1 1 1 1 " ;
shi ftn2 <= " 0 0 1 1 0 1 " ;
mantans l (Sl downto 1 3) : = mant_result 1 (38 downto 0) ;
mantans l (12 downto 0) : = " 0 000000000000 " ;

ELS I F mant_result 1 (3 8) = ' 1 ' THEN
shi ft <= " 0 0 1 1 1 0 " ;
--shiftn <= " 01 0000 " ;

shi ftn2 <= " 0 0 1 1 1 0 " ;
mantans l (S l downto 1 4) : = mant_resul t 1 (37 downto 0) ;
mantans l (13 downto 0) : = " 00000000000000 " ;

ELS IF mant_result 1 (37) = ' 1 ' THEN
shi ft <= " 0 0 1 1 1 1 " ;
- -shiftn <= " 01 0 0 0 1 " ;
shi ftn2 <= " 0 0 1 1 1 1 " ;
mantans l (S l downto 1 5) : = mant_resul t 1 (3 6 downto 0) ;
mantans 1 (1 4 downto 0) : = " 0 00000000000000 " ;

ELS IF mant_result 1 (3 6) = ' 1 ' THEN
shi ft <= " 0 1 00 0 0 " ;
--shi ftn <= " 01 0 0 1 0 " ;
shi ftn2 <= " 0 1 0 000 " ;
mantans l (Sl downto 1 6) : = mant_result 1 (35 downto 0) ;
mantans l (lS downto 0) : = " 0 000000000000000 " ;

ELS IF mant_result 1 (35) = ' 1 ' THEN
s hi ft <= " 0 1 0 0 0 1 " ;
--shi ftn <= " 0 1 0 0 1 1 " ;

1 97

shi ftn2 <= " 0 1 000 1 " ;
mantans l (S l downto 1 7) : = mant_resul t 1 (3 4 downto 0) ;
mantans l (1 6 downto 0) : = " 0 0 0 Q 0 0 0 0 0 0 0 0 0 0 0 0 0 " ;

ELS I F mant_result1 (3 4) = ' 1 ' THEN
shi ft <= " 0 1 0 0 1 0 " ;
--shi ftn <= " 0 1 0 1 0 0 " ;
shi ftn2 <= " 0 1 00 1 0 " ;
mantans l (S l downto 1 8) : = mant_resul t 1 (33 downto 0) ;
mantans 1 (1 7 downto 0) : = " 00 0 0 0 0 0 0 0 0 0 0 0 0 0 00 0 " ;

ELS I F mant_result 1 (3 3) = ' 1 ' THEN
shi ft <= " 0 1 00 1 1 " ;
--shiftn <= " 0 1 0 1 0 1 " ;
shi ftn2 <= " 0 1 0 01 1 " ;
mantans l (S l downto 1 9) : = mant_result 1 (32 downto 0) ;
mantans l (1 8 downto 0) : = " 0 0 000 0 0 0 0 0 0 0 0 0 0 0 00 0 " ;

ELS I F mant_result1 (32) = ' 1 ' THEN
shi ft <= " 0 1 0 1 00 " ;
--shi ftn <= " 0 1 0 1 1 0 " ;
shiftn2 <= " 0 1 0 1 0 0 " ;
mantans l (S l downto 2 0) : = mant_resul t 1 (3 1 downto 0) ;
mantans 1 (1 9 downto 0) : = " 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 0 " ;

ELSI F mant_result 1 (31) = ' l ' THEN
shi ft <= " 0 1 0 1 0 1 " ;
--shi ftn <= " 0 1 0 1 1 1 " ;
shi ftn2 <= " 0 1 0 1 0 1 " ;
mantans 1 (5 1 downto 2 1) : = mant_resul t 1 (30 downto 0) ;
mantans l (20 downto 0) : = " 00 " ;

ELS I F mant_resul t 1 (30) = ' 1 ' THEN
shift <= " 0 1 0 1 1 0 " ;
--shi ftn <= " 0 1 1 0 0 0 " ;
shi ftn2 <= " 0 1 0 1 1 0 " ;
mantans 1 (5 1 downto 2 2) : = mant_resul t 1 (2 9 downto 0) ;
mantans l (2 1 downto 0) : = " 00 0 0 0 0 0 0 0 0 0 0 0 0 0 00 0 0 00 0 " ;

ELS I F mant_resul t l (2 9) = ' 1 ' THEN
shi ft <= " 0 1 0 1 1 1 " ;
--shi ftn <= " 0 1 1 00 1 " ;
shiftn2 <= " 0 1 0 1 1 1 " ;
mantans l (S l downto 2 3) : = mant_resul t 1 (2 8 downto 0) ;
mantans l (2 2 downto 0) : = " 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 0 " ;

ELS I F mant_result l (2 8) = ' 1 ' THEN
shi ft <= " 0 1 1 0 0 0 " ;
--shi ftn <= " 0 1 1 0 1 0 " ;
shi ftn2 <= " 0 1 1 000 " ;
mantans l (S l downto 2 4) : = mant_result 1 (2 7 downto 0) ;
mantans1 (2 3 downto 0) : = " 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 0 0 " ;

ELSE
mantans l : = mant_result l (S l DOWNTO 0) ;
change<= ' 0 ' ;
shi ft <= " 00 0 0 0 0 " ;
--shi ftn <= " 0 00000 " ;
shi ftn2 <= " 000000 " ;

END I F ;
rnant z l <= rnantans l ;
shi ftout <=shi ft ;
expanswerz l<=expanswer ;

198

Sanswerzl<=Sanswer ;
END IF ;
END PROCESS PROC4 ;

PROC4A : PROCESS (CLK) - -mantissa normali zation
variable mant resultla : std_logic_vector (5 1 downto 0) ; --
was 5 3
variable mantans
variable expanswer
variable Sanswer
variable shiftc , shi ftd2
BEGIN

std_logic_vector (5 1 downto 0) ;
: std_logic_vector (l 0 downto 0) ;

std_logic ;
std_logic_vector (5 downto 0) ;

I F CLK ' EVENT AND CLK= ' l ' THEN
--shiftc : = shiftout ;
shiftc : = shift ;
--shiftd : = shiftn ;
shi ftd2 : = shi ftn2 ;
mant_result la : = mant zl ;
expanswer : = expanswerzl ;
Sanswer : = Sanswerz l ;
I F change = ' 1 ' THEN

mantans : = mant_result l a ;
ELSI F mant_result la (2 7) = ' 1 ' THEN

shiftc : = " 0 1 1 00 1 " ;
--shi ftd : = " 0 1 1 0 1 1 " ;
shiftd2 : = " 0 1 1 0 0 1 " ;
mantans (5 1 downto 2 5) : = mant result l a (2 6 downto 0) ;
mantans (2 4 downto 0) : = " 0000000000000000000000 000 " ;

ELS I F mant_result l a (2 6) = ' 1 ' THEN
shi ftc : = " 0 1 1 0 1 0 " ;
--shiftd : = " 0 1 1 1 00 " ;
shiftd2 : = " 0 1 1 0 1 0 " ;
mantans (5 1 downto 2 6) : = mant result l a (2 5 downto 0) ;
mantans (2 5 downto 0) : = " 00 0 0 000000000000000000000 0 " ;

ELS I F mant_result la (2 5) = ' 1 ' THEN
shiftc : = " 0 1 1 0 1 1 " ;
--shi ftd : = " 0 1 1 1 0 1 " ;
shiftd2 : = " 0 1 1 0 1 1 " ;
mantans (5 1 downto 2 7) : = mant result la (2 4 downto 0) ;
mantans (2 6 downto 0) : = " 0 0 0000000000000000000000000 " ;

ELS I F mant_result l a (2 4) = ' l ' THEN
shi ftc : = " 0 1 1 1 00 " ;
--shiftd : = " 0 1 1 1 1 0 " ;
shi ftd2 : = " 01 1 10 0 " ;
mantans (51 downto 2 8) : = mant result l a (2 3 downto 0) ;
mantans (2 7 downto 0) : = " 0 0 00000000000000000000000 000 " ;

ELS I F mant_result l a (2 3) = ' 1 ' THEN
shiftc : = " 0 1 1 10 1 " ;
--shi ftd : = " 0 1 1 1 1 1 " ;
shi ftd2 : = " 0 1 1 1 0 1 " ;
mantans (5 1 downto 2 9) : = mant result l a (22 downto 0) ;
mantans (2 8 downto 0) : = " 0 0 0 0 00000000000000000000000 0 0 " ;

ELS I F mant_result la (22) = ' 1 ' THEN
shiftc : = " 0 1 1 1 1 0 " ;
--shi ftd : = " 10 0 0 00 " ;

1 99

shi ftd2 : = " 0 1 1 1 1 0 " ;
mantans (S l downto 30) : = mant result la (2 1 downto 0) ;
mantans (2 9 downto 0) : = " 0 " ;

ELS I F mant_result la (2 1) = ' 1 ' THEN
shi ftc : = " 0 1 1 1 1 1 " ;
--shi ftd : = " 1 0 0 0 0 1 " ;
shi ftd2 : = " 0 1 1 1 1 1 " ;
mantans (S l downto 31) : = mant result la (2 0 downto 0) ;
mantans (30 downto 0) : = " 00 0 0 0 0 0 0 0 0 00 " ;

ELSI F mant_result l a (2 0) = ' 1 ' THEN
shi ftc : = " 1 0 0 0 0 0 " ;
--shi ftd : = " 1 0 0 0 1 0 " ;
shi ftd2 : = " 1 00 0 0 0 " ;
mantans (S l downto 32) : = mant result la (1 9 downto 0) ;
mantans (3 1 downto 0) : = " 00 00 0 " ;

ELSI F mant_resul t l a (l 9) = ' l ' THEN
shi ftc : = " 1 0 0 00 1 " ;
--shi ftd : = " 1 0 0 0 1 1 " ;
shi ftd2 : = " 1 0 0 0 0 1 " ;
mantans (Sl downto 33) mant_resul t l a { 1 8 downto 0) ;
mantans (32 downto 0) : =

" 00 00 0 0 0 0 0 0 " ;
ELSI F mant_resul t l a (1 8) = ' 1 ' THEN

shi ftc : = " 1 0 0 0 1 0 " ;
--shi ftd : = " 1 0 0 1 0 0 " ;
shi ftd2 : = " 1 00 0 1 0 " ;
mantans { S l downto 3 4) : = mant result l a (1 7 downto 0) ;
mantans (33 downto 0) : =

" 0 00 0000 0 0 0 0 0 0 " ;
ELSI F mant_result la { 17) = ' l ' THEN

shi ftc : = " 1 000 1 1 " ;
--shi ftd : = " 1 0 0 1 0 1 " ;
shi ftd2 : = " 1 0 0 0 1 1 " ;
mantans { S l downto 35) : = mant resul t l a (1 6 downto 0) ;
mantans (3 4 downto 0) : =

" 00 0 0 0 0 0 0 " ;
ELS I F mant_result la (l 6) = ' 1 ' THEN

shi ftc : = " 1 0 0 1 0 0 " ;
- - shi ftd : = " 1 0 01 1 0 " ;
shi ftd2 : = " 1 0 0 1 00 " ;
mantans (S l downto 3 6) : = mant result l a { 1 5 downto 0) ;
mantans (35 downto 0) : =

" 00 " ;
ELSI F mant_result la (l 5) = ' l ' THEN

shi ftc : = " 1 0 0 1 0 1 " ;
--shiftd : = " 1 0 0 1 1 1 " ;
shi ftd2 : = " 10 0 1 0 1 " ;
mantans (S l downto 37) : = mant result l a (1 4 downto 0) ;
mantans { 3 6 downto 0) : =

" 0 " ;
ELS I F mant_result la { l 4) = ' l ' THEN

shi ftc : = " 1 0 0 1 1 0 " ;
- - shiftd : = " 1 0 1 0 00 " ;
shi ftd2 : = " 1 0 0 1 1 0 " ;
mantans (S l downto 3 8) : = mant_re sult l a (1 3 downto 0) ;

200

mantans (37 downto 0) : =

" 0 00000000000000000000000000000000 0 0 0 0 0 " ;
ELS I F mant_result la (1 3) = ' 1 ' THEN

shi ftc : = " 1 0 0 1 1 1 " ;
--shi ftd : = " 1 0 1 00 1 " ;
shiftd2 : = " 1 0 0 1 1 1 " ;
mantans (5 1 downto 3 9) : = mant resultla (l 2 downto 0) ;
mantans (38 downto 0) : =

" 0 0000000000000000 0000000000000000 000000 " ;
ELS I F mant_result la (12) = ' 1 ' THEN

shi ftc : = " 1 0 1 0 0 0 " ;
--shi ftd : = " 1 0 1 0 10 " ;
shi ftd2 : = " 1 0 1 000 " ;
mantans (5 1 downto 4 0) : = mant result l a (l l downto 0) ;
mantans (39 downto 0) : =

" 0 0 0 0 0000000000000000000000000000 0 0 0 0 0 00 0 " ;
ELS I F mant_result la (l l) = ' 1 ' THEN

shiftc : = " 1 0 10 0 1 " ;
--shi ftd : = " 10 1 0 1 1 " ;
shi ftd2 : = " 1 0 1 0 0 1 " ;
mantans (S l downto 4 1) : = mant result la (l 0 downto 0) ;
mantans (4 0 downto 0) : =

" 0 00 " ;
ELS I F mant_result l a (l 0) = ' l ' THEN

shiftc : = " 1 0 1 0 10 " ;
--shi ftd : = " 10 1 100 " ;
shi ftd2 : = " 1 0 1 0 10 " ;
mantans (5 1 downto 4 2) : = mant resultla (9 downto 0) ;
mantans (4 1 downto 0) : =

" 00 0 00000000000000000000000000000000 0 0 0 0 0 0 0 " ;
ELS I F mant_result la (9) = ' 1 ' THEN

shi ftc : = " 1 0 1 0 1 1 " ;
--shiftd : = " 1 0 1 1 0 1 " ;
shi ftd2 : = " 1 0 1 0 1 1 " ;
mantans (S l downto 4 3) : = mant result la (8 downto 0) ;
mantans (4 2 downto 0) : =

" 000 " ;
ELS I F mant_result la (8) = ' 1 ' THEN

shi ftc : = " 1 0 1 1 0 0 " ;
--shiftd : = " 10 1 1 10 " ;
shiftd2 : = " 1 0 1 10 0 " ;
mantans (S l downto 4 4) : = mant result la (7 downto 0) ;
mantans (4 3 downto 0) : =

" 00 0 0 " ;
ELS I F mant_result la (7) = ' l ' THEN

shiftc : = " 1 0 1 1 0 1 " ;
--shiftd : = " 10 1 1 1 1 " ;
shi ftd2 : = " 1 0 1 1 0 1 " ;
mantans (S l downto 4 5) : = mant resultla (6 downto 0) ;
mantans (4 4 downto 0) : =

" 0 000000000000000000000000000000000 0 0 0 0 0 0 0 0 00 0 " ;
ELS I F mant_result l a (6) = ' 1 ' THEN

shiftc : = " 1 0 1 1 1 0 " ;
--shi ftd : = " 1 1 0 000 " ;
shi ftd2 : = " 1 0 1 1 1 0 " ;

201

mantans (S l downto 4 6) : = mant_result la (S downto 0) ;
mantans (4 5 downto 0) : =

" 0 00 " ;
ELSI F mant_resul t l a (S) = ' 1 ' THEN

shi ftc : = " 1 0 1 1 1 1 " ;
--shi ftd : = " 1 10 0 0 1 " ;
shi ftd2 : = " 1 0 1 1 1 1 " ;
mantans (S l downto 4 7) : = mant result l a (4 downto 0) ;
mantans (4 6 downto 0) : =

" 00 00 0 0 0 0 0 0 0 0 0 0 0 " ;
ELSI F mant_result l a (4) = ' 1 ' THEN

shi ftc : = " 1 1 0000 " ;
- - shiftd : = " 1 10 0 1 0 " ;
shi ftd2 : = " 1 1 0 0 00 " ;
mantans (S l downto 4 8) : = mant result l a (3 downto 0) ;
mantans (4 7 downto 0) : =

" 0 00 00 0 0 00 " ;
ELS I F mant_resul t l a (3) = ' 1 ' THEN

shi ftc : = " 1 1 0 00 1 " ;
- -shi ftd : = " 1 1 0 0 1 1 " ;
shiftd2 : = " 1 1 0 0 0 1 " ;
mantans (S l downto 4 9) : = mant result l a (2 downto 0) ;
mantans (4 8 downto 0) : =

" 00 00 0 0 0 0 000000000 0 0 0 0 0 0 0 0 " ;
ELS I F mant_resul t l a (2) = ' 1 ' THEN

shi ftc : = " 1 1 0 0 1 0 " ;
--shiftd : = " 1 1 0 1 0 0 " ;
shi ftd2 : = " 1 1 00 1 0 " ;
mantans (S l downto 50) : = mant result l a (l downto 0) ;
mantans (4 9 downto 0) : =

" 00 0 00 0000000000 0 0 0 0 00 " ;
ELS I F mant_resul t l a (l) = ' l ' THEN

shi ftc : = " 1 1 0 0 1 1 " ;
shiftd2 : = " 1 1 0 0 1 1 " ;
--shi ftd : = " 1 1 0 1 0 1 " ;
mantans (S l) : = mant_result la (O) ;
mantans (S O downto 0) : =

" 00 " ;
ELSE

shi ftc : = " 00 0 00 0 " ;
- - shi ftd : = " 000000 " ;
shi ftd2 : = " 0 00000 " ;

mantans : =

" 0 0 0 0 0000000000 0000000 0 0 0 0 0 0 00 0 " ;
END I F ;

OUTx <= Sanswer & expanswer & mantans ;
Sanswerl <= Sanswer ;
expanswerl <= expanswer ;
mantans 3 <= mantans ;
shi ft l <= shi ftc ;
--shi ft l l < = shi ftd;
shi ft 1 2 <= shi ftd2 ;

END I F ;
END PROCESS PROC4A;

202

PROC4 B : PROCESS (CLK) - -occurs during normali zat ion
BEGIN
IF CLK ' EVENT AND CLK= ' l ' THEN

Sans2 <= Sans l out la ;
Sans 3 <= Sans 2 ;
Sans4 <= Sans 3 ;
Sans 5 <= S ans 4 ;
S ans 6 <= Sans5 ;

SSxl <= SSxout2 ;
SSx2 <= SSxl ;
SSx3 <= SSx2 ;
SSx4 <= SSx3 ;
SSx5 <= SSx4 ;
SSx6 <= SSx5 ;
SSx7 <= SSx 6 ;
SSxB <= SSx7 ;

expla <= explout l a ;
explb <= expla ;
explc <= explb ;

expld <= expl c ;
exple <= expld;

END I F;
END PROCESS PROC4 B ;

PROCESS EXP ADJ : PROCESS (CLK)
variable expanswer2 : STD LOGIC_VECTOR (l 0 DOWNTO 0) ;
variable mant ans 4 STD_LOGIC_VECTOR (5 1 DOWNTO 0) ;
variable Sanswer2 STD_LOGIC;
variable shi ft l x , shift 12x STD_LOGIC_VECTOR (S DOWNTO 0) ;

BEGIN
IF CLK ' EVENT AND CLK= ' l ' THEN

Sanswer2 : = Sanswerl ;
expanswer2 : = expanswerl ;
mantans 4 : = mantans3 ;
shi ft lx : = shi ftl ;
--shi ft l lx : = shi ftl l ;
shift 1 2x : = shi ft1 2 ;
I F Z l l = ' 1 ' THEN

Sanswer2 : = ' 0 ' ;
expanswer2 : = (OTHERS=> ' 0 ') ;
mantans 4 : = (OTHERS=> ' 0 ') ;

ELS IF (shi ft lx > " 0 0 0 0 0 0 " AND SSxB = ' 1 ') THEN
expanswer2 : = expanswer2 - shi ft lx;

ELS I F (shift 1 2x > " 0 00000 " AND SSxB = ' 0 ') THEN
expanswer2 : = expanswer2 + shi ft 12x ;

END IF ;
OUTx <= Sanswer2 & expanswer2 & mant ans 4 ;

203

END I F ;
END PROCESS PROCESS EXP ADJ ;

PROCESS FINISH : PROCESS (CLK)
BEGIN
I F CLK ' EVENT AND CLK= ' l ' THEN

fl <= s tart ;
f2 <= fl ;
f 3 <= f2 ;
f4 <= f3 ;

f5 <= f4 ;
f 6 <= f 5 ;

f7 <= f 6 ;
f 8 <= f7 ;
f9 <= f8 ;

fl0 <= f 9 ;
f l l <= fl0 ;
fl2 <= fl l ;
fini sh <= fl2 ;

END I F ;
END PROCESS PROCESS FINISH ;

Zerocheckl : PROCESS (CLK)
BEGIN
IF CLK ' EVENT AND CLK= ' l ' THEN

I F Ain =

" 0 0 00 00 0 0 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 " THEN
zeroflagl <= ' 1 ' ;

ELSE
zeroflagl <= ' 0 ' ;

END I F ;
END I F ;
END PROCESS Zerocheckl ;

Zerocheck2 : PROCESS (CLK)
BEGIN
I F CLK ' EVENT AND CLK= ' l ' THEN

IF Bin =

" 0 0 0 0 0 0 0 0 0 0 0 0 0 00 00 0 0 0 0 0 0 0 0 0 0 0 " THEN
zeroflag2 <= ' 1 ' ;

ELSE
zerofl ag2 <= ' 0 ' ;

END I F ;
END I F ;
END PROCESS Zerocheck2 ;

Zeropass : PROCESS (CLK)
BEGIN
IF CLK ' EVENT AND CLK= ' l ' THEN

Zl <= zeroflagl AND zeroflag2 ;
Z2 <= Zl ;
Z3 <= Z2 ;
Z 4 <= Z3 ;

204

ZS <= Z 4 ;
Z 6 <= Z S ;
Z7 <= Z 6 ;
Z S <= Z7 ;
Z 9 <= ZS ;
Z l 0 <= Z 9 ;
Z l l < = Z l 0 ;

END I F ;
END PROCESS Zeropass ;

END behavior ;

205

Vita

Kirk Andrew Baugher was born on January 2, 1 980 in Enterprise, Alabama. Kirk

was raised in all across the country spending his childhood and adolescent life in

Alabama, Washington, Virginia, Tennessee, and Texas. He began attending college at

the University of Tennessee, Knoxville in the fall of 1 998. During his undergraduate

term at the University of Tennessee, Kirk co-oped for one year with the Tennessee Valley

Authority and soon graduated with a Bachelor of Science degree in Computer

Engineering and a minor in Engineering Communication and Performance in 2003 .

Immediately following the completion of his undergraduate degree, Kirk started his

graduate degree. One year later in 2004, Kirk graduated with a Master of Science in

Electrical Engineering.

Kirk will be starting his career as an engineer with Honeywell in Clearwater,

Florida.

	Sparse Matrix Sparse Vector Multiplication using Parallel and Reconfigurable Computing
	Recommended Citation

	tmp.1501694968.pdf.0z2F4

