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ABSTRACT 

High purity lutetium (99.999%) is employed in the manufacture of cerium-doped 

lutetium oxyorthosilicate.  Such lutetium is in high demand because the cerium-doped 

lutetium oxyorthosilicate is the best gamma-detecting scintillator known.  Solvent 

extraction is the most widely used method for separating the rare earths on an industrial 

scale at 99.999% purity.  However, this process is time consuming and requires 80-100 

separation stages.  The major difficulty in pure lutetium production is the separation 

from the adjacent element, ytterbium.  If ytterbium(III) could be reduced to ytterbium(II), 

this would permit a different chemistry between ytterbium(II) and the trivalent state 

elements, allowing a more facile separation process by opening the separation gap 

between ytterbium and lutetium.  This has been previously achieved through the use of 

mercury cathodes or amalgams.  Unfortunately, any process involving mercury is 

unacceptable industrially because of the toxicity of mercury.  Literature has shown that 

reduction with magnesium metal can be carried out with proper selection of solvent.  A 

maximum amount of 85% ± 5% can be obtained.  The ideal system would be one which 

would remove all of the ytterbium(III).  This project was performed to develop a more 

efficient reduction by the use of the triflate system.  Anhydrous solutions were used in 

the project because of the capability of water to oxidize ytterbium(II) to ytterbium(III).  

With the set of systems that were attempted, about 50% ytterbium(II) was achieved.  

The hypothesis that the absence of water would increase the percent recovery of 

ytterbium did not solve the problem.   
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CHAPTER I 
INTRODUCTION 

OVERVIEW 

 
Positron emission tomography (PET) is a medical imaging technique used to 

produce a three-dimensional picture of metabolic activity in the human body.  It is a very 

important method used for diagnosing cells whose metabolic activity is abnormal, such 

as cancerous ones.1  Cerium-doped lutetium oxysilicate, Lu2OSiO4, or (LSO) crystals 

are commonly used as scintillators for gamma-ray detection in PET instruments.   LSO 

has excellent scintillation properties which include a high-efficiency light output, a short 

fluorescence decay time, a high density, and a high atomic number.  One of the 

disadvantages of LSO is that the expensive lutetium(III) oxide used in its preparation 

cannot have a chemical purity less than 99.999% to be effective.2   This high purity 

requires a suitable method for separating lutetium cleanly from the other lanthanide 

elements, which tend to be its major contaminants. 

 Lutetium is the very last lanthanide element (rare earth element) in the periodic 

table with the highest atomic number, and it is amongst the rarest of the lanthanide 

elements.  Just as all the lanthanide elements, with the possible exception of cerium, its 

chemistry predominantly involves the trivalent state in aqueous solutions.3  This stability 

can be explained by observing the pattern of the ionization energies needed to form the 

various oxidation states.4   
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As a result of the similarities of the lanthanides, these elements are extremely 

difficult to separate, especially from their neighboring elements.  Previous methods for 

separating these elements involved fractional crystallization of selected partially-soluble 

compounds, which required thousands of steps with little purity obtained.  Ion-exchange 

chromatography and counter-current solvent extraction have become the current 

methods for separating the lanthanide elements, the latter technique being the preferred 

industrial method.  Separation and purification of lutetium is not an easy task due to the 

adjacent element, ytterbium.  The separation factor in all methods is very small.  For 

example, continuous counter-current solvent extraction requires 80-100 stages to obtain 

99.999% purity of lutetium.  However, if ytterbium could somehow be completely 

removed from the system, thulium becomes the nearest element to lutetium with a 

separation factor twice that of ytterbium and lutetium.  As a result, separation of lutetium 

would require only 30-40 stages, which is a great economic advantage for industrial 

companies.5 

 Although most of the lanthanide elements prefer the trivalent state, a few 

elements such as europium, ytterbium, and samarium can exist in aqueous solution with 

divalent oxidation states, even though their half lifetimes might be short.6  This provides 

a means for separation because the chemistry of the divalent state lanthanide elements 

is different from trivalent state elements. 
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RARE EARTH REDUCTION HISTORY 

In 1929, Klemm and Schuth were the first to develop a method for preparing a 

divalent compound of ytterbium.  The preparation was carried out by treating 

ytterbium(III) oxide with a stream of chlorine-disulfur dichloride (Cl2-S2Cl2) at 600°C.  

The product was solid ytterbium(II) chloride.  Although this technique was successful, it 

was not performed in aqueous solution.7 

A year later, R.W. Ball and L.F. Yntema were able to produce ytterbium(II) sulfate 

in aqueous solution from its trivalent state.  A mixture of rare earth oxides, which 

contained a small amount of ytterbium, was dissolved in hydrochloric acid.  The solution 

was diluted to 400 mL and 400 mL of sulfuric acid was added after evaporating the 

excess hydrochloric acid.  Then, the solution was placed in an electrolytic cell 

containing a mercury cathode and a platinum anode to generate the divalent ytterbium 

which precipitated as the sulfate.  The above solution was placed in the cathode 

compartment while the anode compartment contained 0.05 M hydrochloric acid.  The 

voltage between the electrodes was 110 volts with a direct current of 0.1 ampere and a 

cathode density of 0.025 ampere/cm2.  A green color was observed for ytterbium(II) 

sulfate and was found to be a distinguishing feature for the ytterbium(II) ion.  The 

success of this technique was dependent upon the high overvoltage of the mercury 

cathode and the insolubility of ytterbium(II) sulfate.  Even though only 1 to 2% ytterbium 

was in the starting material, the authors reported obtaining an ytterbium product of 98% 

purity.  The amount of ytterbium(II) sulfate recovered was not given in the article.8 
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At some point in 1932, W. Prandtl was able to produce YbSO4 in solution using 

the same method discussed by Ball and Yntema.  A mercury cathode and platinum 

anode were used for this electrolytic cell.  The voltage between the electrodes was 110 

volts with a current between 0.2 and 0.4 amperes at a temperature of about 50°C.  The 

percentage recovery of ytterbium sulfate was not reported.9 

During 1936, D.W. Pearce, C.R. Naesar, and B.S. Hopkins modified the 

electrolysis cell used by Yntema.  The anode was a narrow piece of platinum foil, which 

was enclosed in a glass tube that was turned upward to prevent released gases from 

entering the anode compartment.  The mercury cathode was also enclosed in a cone-

shaped tube, which allowed different amounts of mercury to be exposed during 

electrolysis.  The temperature of the system was controlled by surrounding the cathode 

compartment with a water jacket.  The last part of the system to be varied was the 

addition of a stopcock so the cell could be drained.  The authors reported that 

ytterbium(III) was reduced to its divalent state.  The most efficient method found for 

reduction and separation was with 0.13 M ytterbium(III) chloride dissolved in 0.6 M 

sulfuric acid.  The current density of the cell was 0.16 ampere/cm2 with a voltage of 110 

volts.  Under these conditions, approximately 90% of the ytterbium was removed during 

one electrolysis cycle.  It was assumed that the remaining 10% of ytterbium in solution 

reached an equilibrium between the two oxidation states and ceased further reduction.  

The authors also reported that a drop in temperature assisted with removal of ytterbium 

from its neighboring elements.10 
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The following year, J.K. Marsh obtained a high yield of ytterbium(II) sulfate by 

substituting amalgamated lead for the mercury cathode with a lead pipe anode.  

Electrolysis took place in a porous pot that was placed in a 400 mL beaker.  The porous 

pot included the anode and 1M sulfuric acid.  The beaker contained the cathode 

compartment as well as ytterbium(III) sulfate solution produced from ytterbium(III) oxide 

and 1M sulfuric acid.  A maximum of six cells was used in sequence with a voltage of 

100 and a cathode current of 0.3 amp/cm2 was applied to the cell.  A 95% yield of 

ytterbium(II) sulfate was reported with a increase in purity from 30% to 100% with four 

additional precipitations.11 

During the same year, A. Brukl was interested in obtaining pure ytterbium and 

the previously discussed electrolytic reduction experiments were performed.  A mercury 

cathode and platinum anode were used along with sulfuric acid to produce a 

precipitation of ytterbium(II) sulfate.  The production of large amounts of ytterbium was 

found to be dependent upon the solubility of ytterbium(II) sulfate in sulfuric acid.12 

In 1937, L. Holleck and W. Noddack used a strontium amalgam to reduce rare 

earth metals.  This was an innovative procedure that allowed displacement without the 

use of an electrolytic cell.  Strontium amalgam was used to reduce ytterbium and a co-

precipitate of ytterbium sulfate and strontium sulfate was produced.  An eighty percent 

recovery of ytterbium(II) sulfate was obtained.13  Over the next couple of years, L. 

Holleck developed a method for reducing all the rare earth elements.   The trichlorides 

of lanthanum to lutetium including scandium and yttrium were reduced when heated at 

800ºC with a stream of hydrogen for about 14 hours.  The majority of the lanthanide 
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chloride reduced to a dichloride while part of the trichloride reduced to its metal state, 

which was found to increase from lanthanum to lutetium and from lanthanum to yttrium 

to scandium.  Samarium, europium, and ytterbium were the only stable divalent 

chlorides formed.14  

In 1940, G.W. Walters and D.W. Pearce were the first to report the electrode 

potential for ytterbium(III) / ytterbium(II) to be -0.578 volts by using a mercury-platinum 

electrode.15  On the other hand, H.A. Laitinen found an error in the experimental 

approach used to determine the electrode potential for ytterbium.  It was reported that 

the potential found by Walters and Pearce was a “mixed potential”, which represented 

two different systems.  With polarographic determinations and with a dropping mercury 

electrode, it was concluded that the potential of ytterbium(III) / ytterbium(II) lies between 

-1.05 and -1.17 volts.  A half wave potential of -1.15 volts was obtained with a ytterbium 

amalgam and ytterbium salt.  The half wave value was suggested to more likely be the 

electrode potential for ytterbium(III) / ytterbium(II).16  In 1974, D. A. Johnson estimated 

the electrode potential of ytterbium(III) / ytterbium(II) to be -1.10 volts with an ionic 

model and thermodynamic data.  Estimated values were found to be in agreement with 

qualitative observations and calculated values from spectroscopic data.17  During 1976, 

L.R. Morss estimated the potential value to be -1.04 volts.18  A few years later, D. Ferri 

and colleagues estimated the value to be -1.155 volts.19 

During 1960, M. Peltier and P. Rombau obtained a patent for separating the 

trivalent and divalent lanthanide ions by treating them with ammonium hydroxide.  The 

divalent lanthanides did not precipitate, but the remaining lanthanide elements in the 
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trivalent state were insoluble.  The authors also found that the addition of sulfate 

resulted in the precipitation of Ln(SO4) and Ln(OH)3.  In the presence of acid, the 

hydroxides were dissolved and the sulfates were separated by filtration.20 

In 1963, L.B. Asprey, F.H. Ellinger, and E. Staritzky also prepared divalent 

sulfate, carbonate, and fluoride compounds for samarium, europium, and ytterbium.  

The divalent sulfates were prepared using the Hg cathode.  Double displacement 

reactions were used to produce the divalent carbonate and fluoride compounds.  The 

percent recovery of the divalent compounds was not reported, but the crystalline 

samples were analyzed by X-ray diffraction and optical crystallography.  Measurements 

were found to be imprecise due to the instability of the divalent compounds obtained.21 

  The research discussed above has shown that mercury cathodes provide 

successful procedures for reducing rare earth metals in aqueous media.  However, 

mercury is a toxic metal that is exceedingly harmful to the human body.  Amalgams are 

alternate methods for reduction without the use of an electrolytic cell; however, 

amalgams are also mercury-based.  Due to the toxicity of mercury, it cannot be used 

industrially as a means for reducing the rare earth metals.  This has sparked an interest 

in developing other methods for reducing rare earth metals.  

For the first time in 1948, Clifford and Beachell developed a novel method for 

reducing lanthanide elements to their divalent state with the use of magnesium.  An 

interest in using non-aqueous solvents was pursued in order to decrease the chance of 

reoxidation to the trivalent state.  Hydrated samarium trichloride was dissolved in 

ethanol and a small amount of 12 M hydrochloric acid.  Although several active metals 



 
 

8

were added to the solution, magnesium was the only one successful in obtaining 

reduced samarium.  Other metals attempted were zinc, manganese, aluminum, 

beryllium, thorium, calcium, lithium, and sodium.  Samarium dichloride was separated 

from the rare earths with the exception of europium and ytterbium in the presence of the 

mentioned solvents and magnesium.  The most favorable results were found when a 

50/50 mixture of dioxane and ethanol was saturated with strontium and barium chlorides 

using magnesium.  Results were also found to be successful with the use of the organic 

solvents, acetone and isopropanol.22 

In 1972, B. Mikheev and colleagues repeated the above experiment with the use 

of magnesium metal.  The following were combined: 50 mg of magnesium metal and 1 

mL of 7M hydrochloric acid in ethanol was added to a 1 mL ethanol solution that 

contained about 100 mg/mL of SmCl3.  A similar experiment was also performed with 

europium(III) chloride.  The purpose of the experiment was to examine the co-

crystallization effects when very small quantities of other divalent elements are present.  

The authors mixed the trichlorides for samarium, europium, and ytterbium in the 

presence of an aqueous ethanolic solution and magnesium.  The results revealed a co-

crystallization of europium chloride and ytterbium chloride on the surface of the 

magnesium.  The authors did not report the percent recovery of the divalent 

compounds.23 

L.I. Maksai and M.G. Sayun formed ytterbium sulfate in 1974 by using an 

ytterbium amalgam.  The amalgam was placed in a chloride/acetate buffer solution that 

contained sodium sulfate while stirring for ten to fifteen minutes.  Ytterbium sulfate was 
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formed as a product.  The authors reported a 95.5% recovery of ytterbium in the 

divalent state.24 

The following year, B.F. Myasoedov and colleagues stated that the following f 

elements: Eu, Sm, Tm, Er, and Am in the trivalent state, could be reduced in acetonitrile 

with the use of potential-controlled electrolysis and polarography.  The authors also 

observed oxidation of the divalent cations in the presence of water.  This oxidation 

occurred at different rates and was found to be related to the stability of the divalent 

cation.25 

During 1998, Siler reduced ytterbium(III) to ytterbium(II) in non-aqueous solvents 

without changing the oxidation state of lutetium in the same system.  The best results 

were produced with the use of 50 mesh magnesium powder and 50/50 mixture of 

dioxane/ethanol as solvents.  The idea of reducing trivalent ytterbium in the discussed 

solvents came from previously discussed authors, A.F. Clifford and H.C. Beachell.  

About fifty percent of ytterbium was reduced to its +2 state.  This separation of 

ytterbium(II) and lutetium(III) was unsuccessful, it having been attempted by removing 

the reducing metal and the adhering product, removing the suspension of product after 

centrifuging or removal of the solution containing the product.26 

In 2000, R.J. Mack reduced ytterbium(III) to ytterbium(II) by electrolytic reduction 

using a lead cathode in different types of media.  The experimental conditions with the 

most favorable results comprised of approximately 0.11 M YbCl3· 6H2O in 50:50 

ethanol:dioxane with a direct current of about 20 mA, a pH of approximately 2.0, and 
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precipitation with 3.0 M (NH4)2SO4.  It was reported that approximately 30.0% of 

divalent ytterbium was recovered.27 

In 2007, Jones was also able to reduce ytterbium(III) to ytterbium(II) with use of 

magnesium in different types of media.  The best system consisted of ytterbium(III) 

chloride in a 3:1 mixture of ethanol: dioxane, acetic acid, tetramethylammonium sulfate 

and 50 mesh magnesium powder under nitrogen at about 0°C.  It was reported that 

85% of Yb(II) was recovered from the system.28 

In 1994, Hanamoto, T., Sugimoto, Y., Sugino, A., and Inanaga, J. reduced 

samarium(III) and ytterbium(III) using a triflate system in the presence of 

ethylmagnesium bromide and tetrahydrofuran at room temperature under argon.  

Reduced products were used to study its reducing ability in a pinacol coupling reaction.  

The interest of this article was in using divalent lanthanides compounds as catalysts in 

organic reactions.  Samarium and ytterbium triflates were successful in producing a 

good percent yield during the reactions.29 

PROPOSED PROJECT 

Most of the experiments that were described in the history of rare earth reduction 

were carried out on a lab scale.  The interest of this research project was to develop a 

method that has potential use for an industrial process.  The mercury electrodes and 

amalgam cathodes were successful systems developed for reducing rare earths and 

recovering a large percent.  However, as discussed earlier, mercury is toxic and not 
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industrially suitable.  Magnesium metal has the potential [Eº (Mg+2 / Mg0) = -2.36 V]30 to 

reduce rare earths in non-aqueous as well as aqueous solvents. 

The main goal of this work was to prepare a method that will reduce ytterbium(III) to 

ytterbium(II) without changing the oxidation state of lutetium(III) under the same 

conditions.  Lanthanide triflates were compounds of particular interest because they can 

be prepared anhydrous, excluding water, which can oxidize ytterbium(II) back to its 

trivalent state.   

Lanthanide(III) trifluromethanesulfonates for ytterbium and lutetium are to be 

prepared in order to attempt the reduction of ytterbium(III) to ytterbium(II).  Previous 

studies have found that Eu, Yb, and Sm triflate salts can be reduced to their divalent 

states in non-aqueous solutions.31  The efficiencies for the reduction were not reported. 

Similar conditions to those used by Hanamoto et al. will be used in preliminary 

investigations.  Particular attention will be paid to quantitative yields, and conditions will 

be altered to attempt to improve the system. 
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CHAPTER II 
MATERIALS AND METHODS 

MATERIALS 

 
All solvents that were used for the experiments were reagent grade.  Solvents 

were also selected based on the absence of water.  The water used was deionized.  All 

manipulations for the triflate system were carried out under nitrogen to prevent 

atmospheric contamination.  Table 1 lists the different solvents and reagents used in the 

experiments.  The purity of these chemicals was an important aspect because the 

presence of impurities has been known to interfere with redox reactions.  All solvents 

were anhydrous with the exception of diethyl ether, which was treated in order to 

remove water from the system.  Anhydrous tetrahydrofuran was placed in a sealed 

container with molecular sieves.  Triflic acid was also re-purified with the use of 

amorphous carbon. 

 

APPARATUS 

There were five different apparati used during the course of this research: fractional 

distillation, a test tube, modified test tube with attached vacuum, column, and atomic 

emission spectrometer.  A fractional distillation apparatus was assembled to remove 

water from ethyl ether.  Figure 1 shows a general depiction of the apparatus.  Water and 

contaminants are capable or oxidizing ytterbium (II) and water can react violently with 

Grignard reagents.  A sand bath was used as the heating source for the distillation.
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Table 1: List of Solvents and Reagents 

CHEMICAL SUPPLIER PURITY 
Water  Deionized 

Tetrahydrofuran (THF) Acros Organics Reagent grade, >99.9% 

Ethyl ether Fisher Scientific Co. 99.9% 

Ethylmagnesium bromide, 3M in ether Alfa Aesar N/A 

Ethylmagnesium bromide,  1M in 

tetrahydrofuran 

Sigma Aldrich N/A 

1,4-dioxane Sigma Aldrich 99.8% 

Ethanol Aaper Alcohol and Chemical Co. 95%, 190 proof 

Magnesium metal, ribbon Fisher Scientific Co. 99+% 

Magnesium metal, 50 mesh Sigma Aldrich Reagent Plus ≥ 99% 

Hydrochloric acid Fisher Scientific Co. Certified ACS plus, 99.95% 

Nitric acid Fisher Scientific Co. Certified ACS plus, 99.95% 

Potassium Chloride J.T. Baker Chemical Co. 99.6% 

Ytterbium(III) oxide Alfa Aesar 99.9% 

Lutetium(III) oxide Alfa Aesar 99.9% 

Molecular sieves Sigma Aldrich N/A 
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Table 1, cont. 
CHEMICAL SUPPLIER PURITY 

Trifluoromethanesulfonic acid (triflic acid) Fisher Scientific 99% 

Triethyl orthoformate (TEOF) Sigma Aldrich 98% 

Sodium tetraphenylborate Sigma Aldrich ≥99.5% 

Ytterbium(III) chloride hexahydrate Sigma Aldrich 99.9% 

Activated Carbon Atlas Powder Co. N/A 

Dichloromethane Acros Organics 99.9% 

Acetonitrile Fisher Scientific N/A 

1,4-dioxane Sigma Aldrich 99.8% 

1,3-dioxane stabilized w/o BHT Alfa Aesar 99.5% 
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Table 1, cont. 
CHEMICAL SUPPLIER PURITY 

N,N-Dimethylformamide Acros Organics 99.8% 

Dimethyl Sulfoxide Fisher Scientific 99.7% 

Methyl Sulfoxide Sigma Aldrich 99.9+% 

1-chlorobutane Acros Organics 99+% 

Isobutanol Fisher Scientific 99% 

Ethyl Chloroacetate Acros Organics 99% 

Methyl Alcohol Mallinckrodt AR 99.9% 

Acetic Acid Fisher Scientific 99.9% 
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Figure 1: Fractional Distillation Apparatus 
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The temperature of the sand remained steady between 45-50.0 ºC.  After about 2 hours, 

the temperature of the ether reached 31.0 ºC.  The distillation of the ether was complete 

after approximately 6 hours.  The ether was transferred to a glass bottle containing 

molecular sieves and the bottle was capped. 

Figure 2 shows the basic system used for reducing ytterbium(III) to ytterbium(II) 

in non-aqueous solution.  This set-up involved the test tube solution studies, which were 

encapsulated and allowed to react with continuous stirring.  The triflate and magnesium 

were added to the test tube along with a stir bar.  A rubber septum was placed over the 

test tube so that the environment of the system could be controlled.  The test tube was 

flushed with nitrogen and solvents were added to the system via syringe.  Samples 

were allowed to stir for an hour at room temperature before green solid was observed.  

A green precipitate indicated the presence of ytterbium(II).   

Figure 3 is an illustration of the apparatus used for removing small amounts of 

tetrahydrofuran from the Grignard reagent in the presence of triflate.  The triflate was 

placed in a test tube and capped with a rubber septum.  The system was flushed with 

nitrogen and the Grignard reagent in tetrahydrofuran was added by syringe.  Before the 

addition of magnesium, the vacuum tube was attached to a syringe and the needle was 

placed in the test tube.  A portion of the solution was allowed to evaporate while the 

pressure of the system was decreased by vacuum. 

Figure 4 shows a simple set-up used for removal of contaminants found in 

trifluoromethanesulfonic (triflic) acid.  Triflic acid is a hygroscopic, colorless liquid at 

room temperature that can decompose to form a yellow solution color under certain  
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Figure 2: Basic System for Ytterbium(III) Reduction 
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Figure 3: Experimental Set Up for Removal of THF 
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Figure 4: Carbon Filter Apparatus 
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circumstances such as change of temperature.  A carbon column was prepared by 

filling a buret with activated carbon.  A piece of filter paper was cut to fit into the base of 

the barrel so the solid did not pass through the column.  The powdered carbon served 

as the stationary phase.  Then the triflic acid was added to the column and allowed to 

run by gravity flow.  This process was completed after about two days. 

Samples were analyzed with the Perkin Elmer AAnalyst 100 by atomic emission 

spectroscopy.  An image of this instrument can be found in Figure 5.  The wavelengths 

used for ytterbium and lutetium analyses were 398.8 nm and 451.9 nm, respectively.  

Standards used during the analyses were prepared by diluting 1000 ppm SpecPure 

AAS standards.  In atomic emission, a sample is placed under a high energy source so 

as to produce excited atoms that are capable of emitting light.  The energy source used 

in this case was a flame.  For the experiments performed, emission techniques were 

used to determine how much of an element was present in a sample. For a 

"quantitative" analysis, the intensity of light emitted at the wavelength of the element to 

be determined was measured.   

METHODS 

The initial step for this project was the preparation of anhydrous ytterbium and lutetium 

triflates.  The triflate salts were prepared by adding lanthanide oxides, Ln2O3, in excess 

to aqueous trifluoromethanesulfonic acid (triflic acid).  5.0 grams of Ln2O3 was mixed 

with 8.0 mL of 50% (v/v) aqueous triflic acid.  The system was sealed with parafilm and 

left to stir at room temperature until a pH of 5 was reached.  Then the clear solution was 
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Figure 5: Perkin Elmer AAnalyst 100  
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removed by centrifuging to separate the lanthanide triflate solution from the insoluble, 

white oxide.  The solution was placed in a Petri dish and placed under vacuum for about 

20 hours to remove water.  Then the crystals were placed in the oven for about 48 to 

120 hours at 110°C for further drying.  Lastly, a small amount of lanthanide triflate was 

placed in a test tube with the addition of about 2.0 mL of water.  Triflate preparation was 

complete when no insoluble products were present in the aqueous solution.   

Basic preparation of samples was achieved by dissolving the anhydrous triflate in 

an anhydrous solvent and the Grignard reagent with the addition of magnesium to 

reduce the ytterbium(III) triflate to its divalent state.  Solvents and Grignard reagents 

were added to the system via a syringe.  When magnesium powder was added to the 

system after it had been flushed with nitrogen, it was placed in a syringe with an one 

inch-16 gauge needle.  Solvents of choice had to dissolve both the triflate and the 

Grignard reagent.  The best system was determined by changing the order of addition, 

the temperature of the system, the concentration of the triflate, the reduction time, and 

the form of the magnesium.  Positive results for the production of ytterbium(II) were 

indicated when a green precipitate and/or a yellow-orange solution was observed in the 

system.  All experiments were repeated a minimum of three times to ensure 

reproducibility.   

The concentrations of ytterbium and lutetium ions were computed by 

measurements obtained by atomic emission spectroscopy.  After centrifuging the 

ytterbium samples that were reduced with magnesium powder, the solution exhibited a 

yellow-orange color with gray (magnesium powder) and green solid.  In the case of 
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magnesium ribbon, a yellow solution color was observed with a green solid and the 

magnesium strip.  In both cases, the green solid contained divalent ytterbium triflate 

while the solution contained trivalent ytterbium triflate, tetrahydrofuran, ethylmagnesium 

bromide and possibly ytterbium(II) complexed with tetrahydrofuran.  The liquid part was 

quantitatively transferred to a volumetric flask and diluted with 1% nitric acid with a few 

drops of concentrated nitric acid.  The solid part was dissolved in the same solutions in 

a separate volumetric flask.  0.1% potassium chloride was added to each sample to 

minimize the chances of ionization interferences.  After preparation, samples were 

analyzed by atomic emission spectroscopy.  If ytterbium or lutetium concentrations were 

higher than the standards, samples were diluted from their original preparation.  The 

concentrations of the solid sample and liquid sample were calculated from the 

absorbance measurements.  The concentration was then used to measure the 

distribution between the two phases.  Lutetium samples were prepared using a similar 

procedure.  However, there was a colorless solution and no green solid.  In the 

presence of magnesium powder, only gray solid was observed.  A white solid was 

observed with the magnesium strip.  Eventually, ytterbium and lutetium triflate were 

mixed together and the same procedures for individual experiments with ytterbium and 

lutetium were followed.  
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CHAPTER III 
RESULTS AND DISCUSSION 

 

SOLUBILITY TESTS 

 It was important to find a solvent that would dissolve both the lanthanide triflate 

and the Grignard reagent so that the effects of magnesium powder could be observed in 

a homogenous solution.  Lutetium and ytterbium triflate were found to behave in a 

similar manner for the solubility studies.  The general technique involved placing about 

0.04 grams of lanthanide triflate in a test tube.  A stir bar was placed in the test tube to 

assist with the mixing of the different reagents.  Then the test tube was capped with a 

rubber septum and flushed with nitrogen for about 10 seconds.  0.5 mL of solvent was 

added to the test tube via syringe.  The sample was allowed to stir for about 15 minutes.  

If the triflate dissolved in the solvent, 0.5 mL of Grignard reagent was added to the 

system.  If the triflate did not dissolve in the reagent, the test was considered complete 

and the solvent was considered unsuccessful for the system.  Results for these studies 

are listed in Table 2. 

Lanthanide triflate was found to be soluble in several organic solvents.  However, 

with the addition of the Grignard reagent, only three solvents passed the solubility tests: 

acetonitrile, tetrahydrofuran, and 1,3-dioxane.  Two different Grignard reagents were 

tested in the in the reduction reactions, ethylmagnesium bromide in 1.0 M THF, and 

ethylmagnesium bromide in 3.0 M ether.  Since the triflate was soluble in 

tetrahydrofuran, additional tests were performed to further verify this property.   
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Table 2: Lutetium and Ytterbium Solubility Tests 

Solvent Solubility of Ln(OTf)3 Solubility in Grignard  

Tetrahydrofuran Soluble Soluble 

Acetonitrile Soluble Soluble 

1,4-dioxane Soluble Insoluble; cloudy white 

precipitate formed 

1,3-dioxane stabilized w/o BHT Soluble Soluble 

N,N-dimethylformamide Soluble Insoluble; cloudy 2 minutes after 

addition 

Dimethyl Sulfoxide Soluble Insoluble; cloudy, yellow 

precipitate 

Methyl Sulfoxide Soluble, yellow solution Insoluble; cloudy tan precipitate 

Dichloromethane Insoluble; cloudy  - 

1-chlorobutante Insoluble - 

Isobutanol Soluble Insoluble; cloudy 

Acetic Acid Soluble Insoluble; slightly cloudy 

Methyl Alcohol Soluble Insoluble; cloudy 

Ethyl Chloroacetate Insoluble; cloudy - 

Ethyl Ether Insoluble; cloudy - 

Ethanol Soluble Insoluble; precipitate 
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Tetrahydrofuran was found to be soluble in both Grignard reagents.  However, in some 

cases, tetrahydrofuran produced a very small amount of insoluble particles once added 

to the triflate.  The volumes of the organic solvents and Grignard reagent were 

increased to see if this would help dissolve the remaining particles.  The results 

observed were unchanged.  The triflates were then placed in the oven at 110°C for 

about 24 hours for further drying to ensure the removal of water.  The results continued 

to remain unchanged.  Impurities obtained during the preparation of triflate were also 

considered as a result of the insoluble materials, but even with the preparation of 

additional triflate, insoluble particles were still observed.  Control experiments were 

prepared with anhydrous tetrahydrofuran and Grignard reagent mixed together.  The 

solution formed an insoluble compound even in the absence of triflate.  Due to the 

several punctures in the Grignard bottle, it was suggested that the Grignard reagent had 

been exposed to air and therefore contained impurities.  Upon the arrival of the new 

Grignard reagents, tetrahydrofuran was found to be soluble in the presence of triflate 

and Grignard.    

Tetrahydrofuran was considered to be an excellent solvent for this system since 

one of the Grignard reagents used in the system was also dissolved in tetrahydrofuran.  

It is an aprotic solvent that cannot donate a hydrogen bond, but it can donate an 

electron pair.  Since it is a moderately polar solvent, it can dissolve a wide range of 

nonpolar and polar molecules.  It is also a good choice to use with the Grignard reagent 

because it does not contain acidic hydrogen that could go through an acid-base reaction 

with the Grignard reagent.  Last, but not least, it would be a good solvent to use 
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industrially since it does not have any major human risks.  Even though in some 

instances, there were very small amounts of insoluble material present in the system, 

samples were prepared with several modifications in order to increase the efficiency of 

the system.  These modifications will be discussed more in the ytterbium triflate studies 

section. 

ISOLATED ANALYSIS 

Ytterbium and lutetium triflate samples were prepared without the addition of 

magnesium powder to ensure that the insoluble particles observed were not precipitated 

lanthanide triflate.  The results for these experiments can be found in Tables 3 and 4.  

The percent recoveries listed in both tables are the amounts recovered in the solid 

phase.  Data show that the majority of ytterbium and lutetium triflate remained in the 

liquid phase in the absence of magnesium. 

Table 3: Ytterbium Triflate in the Absence of Magnesium 

Components Yb(OTf)3 Anhydrous 
Tetrahydrofuran 

Grignard 
Tetrahydrofuran 

Percent 
Recovery 

Y-1 ~0.02 g 0.3 mL 0.5 mL 5.2 

Y-2 ~0.02 g 0.3 mL 0.5 mL 4.2 

Y-3 ~0.02 g 0.3 mL 0.5 mL 4.5 

 

Table 4: Lutetium Triflate in the Absence of Magnesium 

Components Lu(OTf)3 Anhydrous 
Tetrahydrofuran 

Grignard 
Tetrahydrofuran 

Percent 
Recovery 

L-1 ~0.02 g 0.3 mL 0.5 mL 2.6 
L-2 ~0.02 g 0.3 mL 0.5 mL 3.9 
L-3 ~0.02 g 0.3 mL 0.5 mL 3.6 
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YTTERBIUM TRIFLATE REDUCTION 

Initial reduction with magnesium 

 Previous studies by Hanamoto et al. found that ytterbium(III) triflate could be 

partially reduced to its divalent state in the presence of the Grignard reagent.  Based on 

the isolated studies that excluded magnesium powder, ytterbium(III) triflate remained 

mostly in the liquid phase with a minimal amount of ytterbium recovered in the solid 

phase.   For the initial reduction experiments with magnesium, approximately 0.02 

grams of triflate and 0.02 grams of 50 mesh magnesium powder were placed in a test 

tube, flushed with nitrogen, and then 0.5 mL of anhydrous tetrahydrofuran and 1.0 mL of 

Grignard reagent were added via syringe.  Samples were allowed to react for two days 

before atomic emission preparation.  The sole purpose of these initial experiments was 

to ensure the reduction of ytterbium(III) by the triflate method.  Table 5 shows a table 

with the components and the most reliable results for this system.  Green solid was 

present in these samples and the percent recovery of ytterbium in the solid phase was 

78 and 81%.  Since results were similar for both types of Grignard reagents, the 

Grignard in tetrahydrofuran was chosen because it appeared to react less with the air 

during solution transfer for atomic emission preparation.   

Several trial experiments confirmed the reduction of ytterbium(III) triflate to 

ytterbium(II) triflate in the presence of magnesium powder.  The next step was design 

experiments to analyze the best reaction time for the reduction process.  Triflate 

samples were prepared the same as in the initial experiments, but samples were 

allowed to react for 1, 3, 5 and 7 days for samples Y-6 through Y-9, respectively.   
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Table 5: Initial trials of Yb(III) Triflate Reduction with Mg Powder 

Components Yb(OTf)3 Mg 
powder 

Anhydrous 
Tetrahydrofuran

Grignard 
Tetrahydrofuran

Grignard 
ether 

Percent 
Recovery 

Y-4 ~0.02 g ~0.02 g 0.3 mL 0.5 mL n/a 78 
Y-5 ~0.02 g ~0.02 g 0.3 mL n/a 0.5 mL 81 

 
Table 6: Effects of Different Reaction Times 

Components Yb(OTf)3 Mg powder Anhydrous 
Tetrahydrofuran

Grignard 
Tetrahydrofuran

Reaction 
Time 

Percent 
Recovery 

Y-6 ~0.02 g ~0.02 g 0.3 mL 0.5 mL 1 day 51 
Y-7 ~0.02 g ~0.02 g 0.3 mL 0.5 mL 3 days 72 
Y-8 ~0.02 g ~0.02 g 0.3 mL 0.5 mL 5 days 71 
Y-9 ~0.02 g ~0.02 g 0.3 mL 0.5 mL 7 days 72 

 

Table 6 lists the components and results for these samples.  All samples had a percent 

recovery of ytterbium in the solid phase that was over 50%.  Samples that were allowed 

to reduce for more than one day had percentages of about 70%, which was much 

higher than the one day reduction results.  

According to the atomic emission results, the reaction time does not affect the 

reduction of ytterbium(III) as long as the system is allowed to react for more than 1 day.  

The percent recovery of ytterbium(II) in the solid phase was insignificantly different for 

days 3, 5, and 7. 

 

New Order of Addition 

 With the implementation of the initial method, a few particles continued to remain 

in the test tube in the absence of magnesium powder as described in the solubility tests 

section.  This problem was thought to be resolved, but the Grignard reagent must have 

become contaminated again with the continuous needle punctures by the syringe.  To 

account for this issue, a new technique was attempted by centrifuging the test tubes 
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after the triflate, tetrahydrofuran, and Grignard reagent were mixed.  Any components 

that were insoluble in the solutions were separated from the liquid after centrifuging.  

The septum was removed from the test tube and the supernatant was removed by 

syringe and transferred to a sealed test tube that contained magnesium powder and 

nitrogen.  Samples were left to stir at room temperature for 3 days.  After centrifuging, 

green solid was visible in the test tube after about a 1-hour reaction time with a yellow-

orange solution color that darkened in color over time.   These samples are identified as 

Y-10 and Y-11 in Table 7.  These experiments were repeated, but the septum was not 

removed from the test tube when transferring the supernatant.  The results for these 

samples were similar to the former technique.  Results for these experiments are shown 

in Table 7 as Y-12 through Y-15.  Y-10 and Y-11 had slightly lower yields compared to 

these samples.  This is most likely due to Y-10 and Y-11 samples having more 

exposure to air during the transfer of solution because the septum was completely 

removed from the test tube. 

 The same experiments were repeated with the Grignard in ethyl ether instead of 

the tetrahydrofuran to see if any differences in results would be observed.  These 

samples were allowed to reduce for three days as well and Table 8 shows the data 

Table 7: New Procedure for Reducing Ytterbium(III) Triflate 

Components Yb(OTf)3 Mg powder Anhydrous 
Tetrahydrofuran 

Grignard 
Tetrahydrofuran 

Percent 
Recovery  

Y-10 ~0.02 g ~0.02 g 0.3 mL 0.5 mL 38 
Y-11 ~0.02 g ~0.02 g 0.3 mL 0.5 mL 50 
Y-12 ~0.02 g ~0.02 g 0.3 mL 0.5 mL 64 
Y-13 ~0.02 g ~0.02 g 0.3 mL 0.5 mL 79 
Y-14 ~0.02 g ~0.02 g 0.3 mL 0.5 mL 52 
Y-15 ~0.02 g ~0.02 g 0.3 mL 0.5 mL 53 
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Table 8: Ytterbium(III) Triflate Reduction in the presence of Grignard in Ether 

Components Yb(OTf)3 Mg powder Anhydrous THF Grignard ethyl 
ether 

Percent 
Recovery  

Y-16 ~0.02 g ~0.02 g 0.3 mL 0.5 mL 63 
Y-17 ~0.02 g ~0.02 g 0.3 mL 0.5 mL 56 
Y-18 ~0.02 g ~0.02 g 0.3 mL 0.5 mL 71 
Y-19 ~0.02 g ~0.02 g 0.3 mL 0.5 mL 64 
Y-20 ~0.02 g ~0.02 g 0.3 mL 0.5 mL 74 

 

collected for these experiments.  On average, the percent recovered for ytterbium in the 

solid phase with the use of Grignard in ethyl ether was slightly higher than with Grignard 

in tetrahydrofuran.  The difference of these averages was insignificant and the Grignard 

in tetrahydrofuran remained as the preferred organic reagent. 

 The percent recovery of ytterbium in the solid phase was greatly increased when 

the supernatant was removed from the test tube with the septum via syringe.  However, 

this method was still exposed to air once the syringe was removed from the test tube.  

Therefore, modifications were made to improve this system by performing the 

supernatant transfer in a nitrogen bag.  Samples were prepared as the previous 

techniques with the modification formerly described.   Table 9 shows the results from 

these experiments.  The percent recoveries recorded were similar to results observed 

with the technique that removed the supernatant by syringe with the septa before the 

addition of magnesium powder.  These results were considered positive because 

almost half or more of ytterbium was found in the solid phase, but they remain similar to 

previous experiments.  Although this modification kept divalent ytterbium from air 

exposure, the final yields of divalent ytterbium did not significantly increase compared to 

the initial experiments. 
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Table 9: Reduction of Soluble Ytterbium(III) Triflate 

Components Yb(OTf)3 Mg powder Anhydrous 
Tetrahydrofuran 

Grignard 
Tetrahydrofuran 

Percent 
Recovery 

Y-21 ~0.02 g ~0.02 g 0.3 mL 0.5 mL 46 
Y-22 ~0.02 g ~0.02 g 0.3 mL 0.5 mL 52 
Y-23 ~0.02 g ~0.02 g 0.3 mL 0.5 mL 60 

 

Isolated experiments were also performed with the organic solutions used in the 

triflate system to better understand the products that are formed from the reactions.  

After the reaction of ytterbium(II) triflate, a brownish orange solution and green and gray 

solid were observed after centrifuging the test tube.  The brownish orange solution was 

proposed to be oxidized tetrahydrofuran or ytterbium(II) complexed to tetrahydrofuran.  

In the absence of triflate, tetrahydrofuran did not produce a brownish orange solution.  

Instead, it produced a colorless solution.  This observation verified that oxidized 

tetrahydrofuran is not likely to be one of the products found in solution, but it is more 

likely to be ytterbium(II) complexed to tetrahydrofuran.   

 

Effect of Temperature 

As a result of the additional steps required in the previous system, the effects of 

the order of addition and the temperature were considered.  The most favorable results 

were observed when the following steps were applied: (1) ytterbium (III) triflate was 

added to a test tube, (2) then the test tube was flushed with nitrogen, (3) followed by the 

addition of the Grignard reagent and then magnesium powder via syringe at 0°C.  On 

average, about 50% of ytterbium remained in the solid phase with a 48 hour reduction 
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time having the most favorable percent recovery of ytterbium in the solid phase after 

three trials.   

Originally, samples were prepared at room temperature during the addition of 

each component.  The effect of temperature became a factor of consideration because 

the addition of the Grignard reagent was found to produce an exothermic reaction.  

Since ytterbium(II) is easily oxidized to its trivalent state, it was suggested that that a 

lower temperature would allow for the redox reactions to be controlled.  By controlling 

the rate of the redox reactions by lowering the temperature, one could also decrease 

the rate of oxidation of divalent ytterbium as well.    

Experimentally, a lower temperature appeared to produce a larger proportion of 

green solid, but the percent recovery was not higher than previous studies that were 

performed at room temperature.  Experiments that were repeated at room temperature 

with the lower temperature samples produced less ytterbium(II) triflate in the solid 

phase.  The results for the room temperature experiments were previously higher than 

these experiments that were performed at room temperature.   

Results for these experiments are listed in Table 10.  Y-24 and Y-25 were 

prepared by adding 0.04 grams of ytterbium(III) triflate to a test tube.  Then magnesium 

powder was added, the test tube was capped, and flushed with nitrogen.  0.3 mL of 

anhydrous tetrahydrofuran, and 1.0 mL of Grignard in tetrahydrofuran was added by 

syringe at room temperature.  Y-24 was analyzed after one day of reacting at room 

temperature and a very low percent recovery was obtained.  Y-25 was placed on ice for 

about 15 minutes after reacting for five days at room temperature.  When analyzed, a 
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26% yield of ytterbium(II) in the solid phase was achieved.  Y-26 was prepared by 

mixing anhydrous tetrahydrofuran and Grignard in tetrahydrofuran in a test tube that 

had been capped and flushed with nitrogen.  The system was cooled to 0°C before the 

addition of the organic solutions.  Once the system reached room temperature, 

ytterbium triflate was added to the system by syringe.  The sample was left to stir at 

room temperature for one day before adding magnesium powder to the system via 

syringe.  A yield of 50% was obtained for ytterbium(II) in the solid phase.  Y-27 and Y-

28 were prepared the same as Y-24 and Y-25 except both samples were placed on ice 

for about 15 minutes after reacting at room temperature for one day.  No green solid 

was observed for these samples.  Y-29 and Y-30 were prepared in the following order: 

ytterbium(III) triflate, capped test tube, flushed with nitrogen, addition of anhydrous 

tetrahydrofuran, system cooled to 0°C, addition of magnesium powder, and addition of 

Grignard in tetrahydrofuran.  These samples remained at the cooled temperature for 30 

minutes.  No green solid was present.  After stirring for 30 minutes at room temperature, 

green solid was observed.  The percent recovery was 34% and 38% for these samples, 

which reacted for a shorter time than the samples prepared at room temperature and 

produced a larger amount of divalent ytterbium.  Y-26 had a higher recovery, but it also 

reacted for five days before analysis.  Y-31 was prepared as Y-29 and Y-30, but it was 

cooled to 0°C for four hours.  After reacting at room temperature for about 30 minutes, 

green solid was present and 54% of ytterbium(II) was obtained in the solid phase.  Y-32 

and Y-33 were prepared in a similar manner as Y-31 except these samples were not 

placed at room temperature after reacting at 0°C for three hours.  Green solid was 
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present and the yields were low for these samples.  Y-34 and Y-35 were prepared by 

adding the magnesium after the addition of Grignard in tetrahydrofuran at 0°C.  Both 

samples were allowed to react at this low temperature for about 24 hours.  Green solid 

did not become visible until the sample was allowed to react at room temperature.  After 

reacting for seven days, samples were cooled to 0°C again to see if a greater portion of 

green solid could be obtained.  A yield of 55 and 41 was achieved for Y-34 and Y-35, 

respectively.  The table lists the observations for each sample.  After samples were left 

at a temperature of 0°C for a period of time, they were placed back at room temperature 

the remaining reacting time unless otherwise stated in the table.  Samples that did not 

produce a green solid were not analyzed since a reduction to ytterbium(II) was not 

visually observed.  The percent recovery of ytterbium(II) samples that produced a green 

solid are listed in the last column of the tables.  The reduction time was different for 

each of these samples as observed by the table.  The final observation day represents 

the total reaction time. 

Experiments were performed with a variation in the amount of time samples were 

allowed to react at a low temperature.  As the data above showed, some samples were 

left at 0°C for minutes, hours, or days.  This time did not make a significant difference in 

the percent recovery in the solid phase of divalent ytterbium.  As long as the sample 

was at the low temperature during the addition of the Grignard reagent, which produced 

heat during its addition, the results were similar to samples left at 0°C for approximately 

24 hours.  It was found that 15 to 30 minutes was a reasonable amount of time to cool 

the reaction for the triflate system.  Y-26, Y-31, and Y-34 samples produced the highest 
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yield of ytterbium(II) in the solid phase.  Each of these samples was prepared by placing 

the system at 0°C while adding the Grignard reagent via syringe.   

 

THF Removal 

The next experiments examined the exclusion of anhydrous tetrahydrofuran from the 

system.  This only eliminated the additional tetrahydrofuran that was added to the 

system because the Grignard reagent was dissolved in 1.0M tetrahydrofuran.  0.4 

grams of ytterbium(III) triflate was added to the system, flushed with nitrogen, 0.5 mL of 

anhydrous tetrahydrofuran was added to samples Y-36 and Y-37, and 1.0 mL of 

Grignard reagent was added to samples Y-36 through Y-39.  Lastly, 50 mesh 

magnesium powder was added immediately afterwards to the system.  The Grignard 

reagent and magnesium powder were added to the system at 0°C via syringe and 

maintained at this temperature for about 30 minutes until warmed to room temperature.  

Samples were left to react for two days.  When samples were prepared without the 

additional tetrahydrofuran, a higher percent recovery was found compared to the control 

samples that were prepared with tetrahydrofuran.  Results for these samples are shown 

in Table 11.  Y-36 and Y-37 had a percent recovery of about 40% and Y-38 and Y-39 

had a recovery of 56% of ytterbium(II) in the solid state.  Samples that excluded the 

additional tetrahydrofuran produced favorable results. 
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      Table 10: Temperature Effects on Triflate System 

Sample Observations Percent 
Recovery 

Y-24 Day 0: After the addition of the Grignard, the test tube was very hot. 
Day 1: Solution was yellow green; small amount of green solid; grey solid 16 

Y-25 

Day 0: After the addition of the Grignard, the test tube was very hot and the 
solution with solid was green during Grignard addition and the green color 

faded. 
Day 1: Solution was brownish orange; green solid; grey solid 

Day 4: brownish orange solution; black solid 
Day 5: Placed on ice for 15 min, brownish orange solution, green solid was 

larger 

26 

Y-26 

Day 0: The solution was slightly warm after adding the Grignard. The color of 
the solution was yellow green. 

Day 1: Colorless solution; After the addition of Mg, colorless solution, green 
and grey solid; 

Day 4: Slightly brownish orange solution; Greater amount of green solid; 
black solid present 

Day 5: Placed on ice for 15 min, brownish orange solution, green solid was 
larger 

53 

Y-27 Day 0: Brownish yellow solution, grey and black solid after 3 hours of stirring. 
Day 1: Placed on ice for 15 min, no green solid present n/a 

Y-28 Day 0: Brownish yellow solution, grey and black solid after 3 hours of stirring. 
Day 1: Placed on ice for 15 min, no green solid present n/a 

Y-29 
Day 0: after 30 min at 0ºC, light green solution, no green solid. after stirring 

for 30 min at RT, yellow solution, yellow solid 
Day 1: green solid present 

34 

Y-30 
Day 0: after 30 min at 0ºC, light green solution, no green solid. after stirring 

for 30 min at RT, clear solution, grey solid 
Day 1: green solid present 

38 
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        Table 10, cont. 

Y-31 
Day 0: after 30 min at RT, yellow-green solution, grey solid; after ice, a little 

green solid was present 
Day 1: green solid present 

54 

Y-32 Day 0: after 3 hours on ice, green solid was present (very small amount) 21 
Y-33 Day 0: after 3 hours on ice, green solid was present (very small amount) 14 

Y-34 

Day 0: after 5 hours on ice, No green solid was present. Samples were left at 
0ºC overnight. 

Day 1: No change observed. Samples were left to stir at RT. 
Day 7: Brownish orange solution and green and grey solid. Samples were 

placed at 0ºC to see if greener solid could be recovered. 
Day 8: Samples were prepped for analysis. The solid appeared to be 

greener. There was black, green, and grey solid present. 

55 

Y-35 

Day 0: after 5 hours on ice, No green solid was present. Samples were left at 
0ºC overnight. 

Day 1: No change observed. 
Day 7: Brownish orange solution and green and grey solid. 

Day 8: green solid present 

41 
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Table 11: Removal of Additional Tetrahydrofuran 

Components Yb(OTf)3 Anhydrous THF Grignard 
tetrahydrofuran 

Percent 
Recovery  

Y-36 ~0.04 g 0.5 mL 1.0 mL 44 
Y-37 ~0.04 g 0.5 mL 1.0 mL 41 
Y-38 ~0.04 g - 1.0 mL 56 
Y-39 ~0.04 g - 1.0 mL 56 

 

Table 12: Effect of Concentration Excluding Tetrahydrofuran 

Components Yb(OTf)3 Grignard tetrahydrofuran Percent 
Recovery  

Y-40 ~0.04 g 1.5 mL 68 
Y-41 ~0.06 g 1.5 mL 56 
Y-42 ~0.08 g 1.5 mL 47 

 

 More samples were prepared without the additional tetrahydrofuran and with a 

variation in the triflate weight.  Samples were prepared with 0.04, 0.06, and 0.08 grams 

of triflate labeled as Y-40, Y-41, and Y-42, respectively, in Table 12.  Each test tube was 

flushed with nitrogen and 1.5 mL of Grignard in tetrahydrofuran and magnesium powder 

was added by syringe at 0°C.  Samples were allowed to react at 0°C for about 30 

minutes and then allowed to react at room temperature for two days.  Compared to 

previous experiments, the volume of the Grignard reagent was slightly increased due to 

the exclusion of tetrahydrofuran to the system.    Data for these samples found that 0.04 

grams of triflate gave the best results.  These results can be found in Table 12.   As the 

concentration of the ytterbium triflate increased, the percent recovery slightly 

decreased, but all values remained similar to previous results.  Based on these 

experiments, 0.04 grams of ytterbium(III) triflate was chosen as the preferred 

concentration for this system.  
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 Since results were improved when tetrahydrofuran was excluded, it was 

proposed that the removal of some of the tetrahydrofuran from the Grignard reagent 

could possibly produce more favorable results.  The method previously discussed (refer 

to Figure 3) was employed for these experiments.  The system was evacuated in order 

to remove some of the tetrahydrofuran from the Grignard reagent.  Samples were 

prepared by dissolving 0.04 grams of triflate in 1.5 mL of Grignard in tetrahydrofuran.  

The test tube was flushed with nitrogen after the addition of triflate and the Grignard 

reagent was added while the test tube was placed at 0°C.  Then samples were placed 

partially evacuated, in order to remove tetrahydrofuran.  Solvents boil at a lower boiling 

point than when the liquid is at atmospheric pressure.  Placing this system under 

vacuum reduced the pressure so that tetrahydrofuran from the Grignard reagent could 

be partially evaporated.  As Figure 3 portrays, a syringe was placed in the vacuum tube 

and taped so air could not enter and to secure the syringe in the tube.  The syringe was 

placed inside the test tube through the septum.  When the vacuum was turned on, the 

solution began to bubble and the solvent began to evaporate.  It was noted that 

tetrahydrofuran boils at about 66°C and the Grignard reagent is unstable in its crystal 

form; therefore, all of the solvent was not removed.  Initial experiments had an 

evacuation time of approximately 2 hours.  At the end of the evacuation, magnesium 

powder was added to each sample by syringe at 0°C.  These samples were maintained 

at this temperature for about 30 minutes and then warmed to room temperature.  

Results for these experiments are shown in Table 13.  The table shows the initial results 

found with the removal of tetrahydrofuran from the Grignard reagent.  During this first  
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Table 13: Removal of Tetrahydrofuran from Grignard 

Components Yb(OTf)3 Grignard tetrahydrofuran Percent 
Recovery  

Y-43 ~0.04 g 1.5 mL 34 
Y-44 ~0.04 g 1.5 mL 40 
Y-45 ~0.04 g 1.5 mL 59 

 

Table 14: Different Amounts of Tetrahydrofuran Removed 

Components Yb(OTf)3 Grignard 
tetrahydrofuran 

Percent 
Solvent 

Removed 

Percent 
Recovery  

Y-46 ~0.04 g 1.5 mL 75 37 
Y-47 ~0.04 g 1.5 mL 50 47 
Y-48 ~0.04 g 1.5 mL 10 36 

 

trial, about 10% of solution remained in the test tube after the removal of most of the 

tetrahydrofuran.  Y-43, Y-44, and Y-45 were subject to reduction for 1, 2, and 3 days, 

respectively.  The percent recovery increased with the reduction time.  A 3-day 

reduction time was used for further studies. 

Table 14 depicts the percent recovery when different amounts of tetrahydrofuran 

were removed from the system.  75%, 50%, and 10% were analyzed to see how the 

amount of solvent removed affected the amount of ytterbium(II) recovered in the solid 

phase.  Based on data, the removal of tetrahydrofuran from the Grignard reagent did 

not seem to have a significant influence on the system compared to results obtained 

with the addition of the Grignard reagent in tetrahydrofuran. 

The percent recovery of ytterbium in the solid state did not significantly increase 

after the removal of tetrahydrofuran from the Grignard reagent.  The average value 

remained about the same compared to previous results.    Results remained similar to 

previous results with this small change to the system. However, the additional 
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anhydrous tetrahydrofuran that was initially added to the system was considered 

unproductive for the triflate system. 

 

Reduction Time 

The best reduction time was re-analyzed after finding that 0.04 grams of 

ytterbium triflate in 1.5 mL of Grignard reagent produced the highest percent recovery of 

ytterbium in the solid state.  The best results were produced after ytterbium(III) triflate 

reacted with the Grignard reagent and magnesium powder for two days.  Tables 15 and 

16 show the results for these experiments.  Although day 2 produced the highest yield 

and was chosen as the best reduction time, the yields observed for day 1, 3, and 4 were 

very close to results observed with a 2 day reduction time. 

Samples were prepared by adding 1.5 mL of Grignard reagent to 0.04 grams of 

triflate in a test tube flushed with nitrogen.  The Grignard reagent was added to the 

Table 15: Best Reduction Time 

Components Yb(OTf)3 Grignard 
tetrahydrofuran 

Reduction 
time 

Percent 
Recovery  

Y-49 ~0.04 g 1.5 mL 1 day 48 
Y-50 ~0.04 g 1.5 mL 2 days 58 
Y-51 ~0.04 g 1.5 mL 3 days 57 
Y-52 ~0.04 g 1.5 mL 4 days 56 

 

Table 16: Best Reduction Time II 

Components Yb(OTf)3 Grignard 
tetrahydrofuran 

Reduction 
time 

Percent 
Recovery  

Y-53 ~0.04 g 1.5 mL 1 day 60 
Y-54 ~0.04 g 1.5 mL 2 days 64 
Y-55 ~0.04 g 1.5 mL 3 days 55 
Y-56 ~0.04 g 1.5 mL 4 days 59 
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Table 17: Reduction Time of Two Days 

Components Yb(OTf)3 Grignard tetrahydrofuran Percent 
Recovery  

Y-57 ~0.04 g 1.5 mL 63 
Y-58 ~0.04 g 1.5 mL 66 
Y-59 ~0.04 g 1.5 mL 62 

 

Table 18: Multiple Additions of Grignard and Magnesium 

Components Yb(OTf)3 Grignard 
tetrahydrofuran 

Percent 
Recovery  

Y-60 ~0.04 g 1.5 mL 38 
Y-61 ~0.04 g 1.5 mL 39 

 

system at 0°C for about 30 minutes and then samples were transferred to room 

temperature for two days.  Results for these experiments are found in Table 17.  The 

percent recovery average is close to 65%. 

Since removing excess tetrahydrofuran from the system did not improve results, other 

experiments were tried to improve the system.  Molecular sieves were added to the system 

to make sure any water that could have been introduced to the system was eliminated.  Even 

with this change to the system, the percent recovery of ytterbium(II) triflate was not increased 

compared to previous methods performed.  There was about 50% recovery in the solid state, 

which was the same as some of the other results.  The system was supersaturated with 1.0 g 

of ytterbium(III) triflate and 1.0 mL of Grignard in tetrahydrofuran.  These results did not show 

any significant changes to previous results.  Multiple additions of magnesium powder and 

Grignard reagent were also added to the system after a reaction time of 1 day.  However, 

these additions did not appear to reduce any remaining ytterbium(III) to ytterbium(II) based 

on data.  The results for these reactions are shown in Table 18.   
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Form of Magnesium 

 Magnesium strip was used to prepare samples in place of magnesium powder.  It 

was assumed that magnesium powder would be the more suitable reducing agent 

because it has a greater surface area than the magnesium strip.  However, this greater 

surface area also results in a faster reaction, which may need to be slowed down in this 

particular system.  Preparation of samples was similar to preparation for reduction with 

magnesium powder, except the magnesium strip was placed in the test tube after the 

addition of the ytterbium triflate.  The strip was also abraded before its addition to the 

system.  Table 19 shows the experimental data for determining the best reduction time 

of ytterbium(III) triflate with magnesium ribbon.   

The data reveal that the percent recovery slightly increases with reduction time.  

Another experiment was performed with both forms of magnesium to see how a longer 

reduction time would affect the results.  Samples were allowed to react for nine days 

before prepping for atomic emission analysis.  Table 20 displays the results for these 

Table 19: Best Reduction Time with Mg Ribbon 

Components Yb(OTf)3 Grignard 
tetrahydrofuran 

Reduction time Percent 
Recovery  

Y-62 ~0.04 g 1.5 mL 1 day 34 

Y-63 ~0.04 g 1.5 mL 2 days 38 

Y-64 ~0.04 g 1.5 mL 3 days 41 

Y-65 ~0.04 g 1.5 mL 4 days 42 

Y-66 ~0.04 g 1.5 mL 5 days 50 



 
 

46

Table 20: Magnesium Ribbon versus Magnesium Powder 

Components Yb(OTf)3 Grignard 
tetrahydrofuran 

Form of 
Magnesium 

Percent 
Recovery  

Y-67 ~0.04 g 1.5 mL Powder 59 

Y-68 ~0.04 g 1.5 mL Ribbon 59 
 

experiments.  After a reduction time of about nine days, the percent recovery for 

ytterbium in the solid phase was approximately the same for both forms of magnesium. 

LUTETIUM TRIFLATE AND MAGNESIUM 

 Due to the similarity in chemistry of the lanthanide elements, lutetium triflate was 

found to be soluble and insoluble in the same solvents that were tried for ytterbium 

triflate.  The best system found for ytterbium triflate was used to test the chemistry of 

lutetium triflate.  Based on the Pourbaix diagram, magnesium does not have the 

potential to reduce lutetium.  Lutetium triflate was prepared by adding 0.04 grams of 

lutetium triflate to a test tube, flushing the test tube with nitrogen, and adding 1.5 mL of 

Grignard reagent and magnesium powder via syringe at 0°C.  All samples were allowed 

to reduce for two days since optimal results were found with ytterbium(III) triflate with 

this reduction time.  Results were higher for ytterbium triflate when tetrahydrofuran was 

removed, but lutetium triflate samples were prepared with tetrahydrofuran for 

comparison purposes.  The percent recovery for lutetium in the solid phase is listed in 

Table 21.  Results were similar for all samples with L-4 and L-5 having slightly lower 

percent recoveries compared to L-6 and L-7 samples that excluded tetrahydrofuran. 
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Table 21: Lutetium triflate with Magnesium Powder 

Components Lu(OTf)3 Tetrahydrofuran Grignard 
tetrahydrofuran 

Percent 
Recovery  

L-4 ~0.04 g 0.5 mL 1.5 mL 9 
L-5 ~0.04 g 0.5 mL 1.5 mL 8 
L-6 ~0.04 g - 1.5 mL 15 
L-7 ~0.04 g - 1.5 mL 10 

 

Table 22: Lutetium triflate with Magnesium Ribbon 

Components Lu(OTf)3 Grignard 
tetrahydrofuran 

Reaction time Percent 
Recovery  

L-8 ~0.04 g 1.5 mL 1 day 9 
L-9 ~0.04 g 1.5 mL 2 days 9 
L-10 ~0.04 g 1.5 mL 3 days 12 
L-11 ~0.04 g 1.5 mL 4days 19 

 
 
 When magnesium powder was replaced with magnesium strip, the amount of 

lutetium that remained in the liquid phase did not change significantly.  Table 22 gives 

the results for these experiments.  Results show that the longer the reaction time, the 

higher the amount of lutetium found in the solid state.  The percent recovery lists the 

amount of lutetium in the solid state, which was less than 20 percent for all samples. 

COMBINED TRIFLATE STUDIES 

 After establishing a system that converts about half of ytterbium(III) to its divalent 

state in the solid phase and retains trivalent lutetium in the liquid phase, both triflates 

were mixed together to investigate the chemistry of combining them together.  If the two 

compounds produce the same results found when they were isolated, the first step will 

have been accomplished before developing a means of separation of the divalent 

ytterbium triflate from lutetium(III) triflate.  In the presence of both triflates (0.04 grams of 
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each), ytterbium(III) triflate continued to reduce to its divalent state and the majority of 

lutetium triflate remained in its trivalent state in the liquid phase.  The percent recovery 

values were slightly higher for the combined results compared to the isolated results.  

Table 23 displays the components and results for these experiments.  The percent 

recovery of ytterbium(II) triflate is the amount recovered in the solid phase.  The percent 

recovery of lutetium(III) triflate is the amount recovered in the liquid phase.  As these 

experiments were repeated, the ytterbium(II) triflate results remained reproducible, but 

the lutetium(III) triflate results slightly increased.  Instead of ranging between 85-95% in 

the liquid phase, about 70-80% of lutetium remained in the liquid phase.  Figure 6 

shows a graph of ytterbium(II) triflate and lutetium(III) triflate recovered in the solid 

phase.  As the graph shows, a little more than half of the ytterbium is converted to the 

solid state and very little lutetium is found in the solid state.   

 

Table 23: Ytterbium(III) and Lutetium(III) Triflate Mixed 

Components Yb(OTf)3 Lu(OTf)3 Grignard 
tetrahydrofuran 

Percent 
Recovery 
Yb(OTf)2 

(solid phase) 

Percent 
Recovery  
Lu(OTf)3 

(aqueous 
phase) 

YL-1 ~0.04 g ~0.04 g 1.5 mL 63 96 
YL-2 ~0.04 g ~0.04 g 1.5 mL 55 85 
YL-3 ~0.04 g ~0.04 g 1.5 mL 57 86 
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Figure 6: Relationship between Ytterbium and Lutetium Mixed 
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CHAPTER IV 
CONCLUSION 

 
 The most common use of PET scanners is for the identification of abnormally 

active tissue.  The production of the lutetium oxyorthosilicate used in PET scanners 

requires a high purity of lutetium.  This high purity is very difficult to achieve due to the 

similar chemical properties and mainly the adopted trivalent oxidation state of the 

lanthanide elements.  However, it is possible to change the environments of ytterbium 

and lutetium so that the separation process is more efficient.  We found that the 

reduction of ytterbium(III) triflate provides a convenient method for the production of 

ytterbium(II) triflate.  Under the same conditions as ytterbium(III), lutetium(III) triflate 

remained in its trivalent state.  The difference of properties of the two compounds would 

allow a more effective separation between ytterbium(II) and lutetium(III).  

Past research as shown that the electrolytic reduction of ytterbium(III) to 

ytterbium(II) can be successfully achieved with the use of a mercury cathode or mercury 

amalgams.  However, the toxicity of mercury makes the use of the method undesirable 

in an industrial setting.    

Triflates have shown to be great catalysts in organic chemistry for several 

reactions and has also shown to be a great compound for reducing ytterbium(III).  The 

most effective system that could be used industrially was the following: approximately 

0.04 grams of ytterbium(III) triflate was dissolved in 1.5 mL of Grignard in 

tetrahydrofuran at 0°C for about 30 minutes after capping and flushing the system with 

nitrogen.  Then about 0.04 grams of 50 mesh magnesium was added and the system 

was allowed to stir at room temperature for about two days.  About fifty percent of 
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ytterbium(III) was reduced to its divalent state in the presence of a Grignard reagent in 

tetrahydrofuran and magnesium powder.  If allowed to reduce for about five days, 

substitution with magnesium strip gave a reduction of about fifty percent also.   

It was believed that the major difficulty in producing a large quantity of 

ytterbium(II) was its ability to oxidize back to the trivalent state due to its potential.  

Although the triflate system allowed the removal of water from the system, a problem 

continues to exist with the system.  It is possible that the system was exposed to some 

oxygen due to the punctures from the syringe.  On the other hand, it is also likely that 

the system may reach an equilibrium that will not allow the reaction to push forward.  

Further research will definitely have to address this issue by discovering a compound 

that will favor the forward reaction. 
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