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ABSTRACT 

Salmonella is the second most common cause of foodborne infection in the 

Unites States (US). It is estimated that about 1.4 million people suffer from 

salmonellosis a year in the US with an estimated annual cost of $2.9 billion. 

Human cases of salmonellosis are often related to the consumption of raw meat 

and unpasteurized milk and milk products. Whereas the fecal-oral contamination 

is well established at farm level, less in known about the role of the environment 

on the Salmonella survival. The objective of this study was to compare isolation 

of Salmonella in farm animals and their environment based on spatial, temporal, 

and environmental factors to provide population-based epidemiological 

information that can be used in assessing risk and development risk 

management strategies. Samples were collected from 12 different locations in 5 

states (Tennessee, Alabama, North Carolina, California and Washington). 

Samples originated from dairy cows, beef cattle and swine herds. Environmental 

samples (n=360) and rectal swabs (n=1200) were analyzed using BAM modified 

protocols. Salmonella positives were characterized with Riboprinter® and 

Pulsed-Field Gel Electrophoresis using PvuII and XbaI restriction enzymes.  

Salmonella was most frequently isolated from swine, the animals being the major 

reservoir, with an isolation of fecal materials of 11.9%, followed by rectal swabs 

(8.8%) and feed (7.7%). For dairy cows and beef cattle, the major reservoir of 

Salmonella was the environment, especially the feed (3.1%), followed by soil 

samples (2.0%). The most common serotypes isolated from swine were S. 

Anatum, S. Javiana, S. Newington, and S. Worthington. The most common 
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serotypes found in dairy cows were S. Anatum, S. Newington and S. Javiana, 

whereas only two serotypes were isolated from beef cattle, S. Anatum and S. 

Newington. The Simpson’s diversity index was calculated for Riboprinter (0.86) 

and PFGE (0.98). This data indicates significant diversity among the Salmonella 

isolated, but we were able to find regional and spatial differences among the 

Salmonella isolates. Breaking the contamination cycle between the animals, their 

environment, and management practices to control swine fecal materials will be 

essential to reduce the isolation of Salmonella in farm animals.   
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Salmonella general characteristics 

Salmonella is a rod-shape motile non-sporeforming Gram-negative bacterium 

(the exceptions for non-motile species are S. Gallinarum and S. Pullorum) (FDA 

2004). Currently there are 2541 Salmonella serovars (Popoff et al. 2004). These 

are classified in two species, S. enterica and S. bongori. S. enterica is divided 

into six subspecies, Salmonella enterica subsp. arizonae, Salmonella enterica 

subsp. diarizonae, Salmonella enterica subsp. enterica, Salmonella enterica 

subsp. houtenae, Salmonella enterica subsp. indica, and Salmonella enterica 

subsp. salamae (Popoff et al. 2004). Although this new nomenclature has not 

been yet authorized by the Bacteriological Code, it is widely used by the scientific 

community, including the World Health Organization (WHO) and the Institute 

Pasteur in Paris, France (Euzeby 2000; Yan et al. 2003, Popoff et al. 2004). The 

Center for Disease Control and Prevention (CDC) recently adopted a new 

system to name Salmonella as oppose to the Kauffman-White scheme (CDC 

2003). 

Salmonella is the second most important cause of foodborne infection in the 

United States (US). In the US there are about 1.4 million cases of human 

salmonellosis every year (CDC 2003) with an estimated annual cost of $ 2.9 

billion  (ERS USDA 2004). Salmonellosis can occur through consumption of raw 

meat and poultry products as well as through unpasteurized milk (MMWR 1995; 

MMWR 2003). Salmonella can be shed in milk from asymptomatic cows (Smith 

et al. 1994). Meat can be contaminated with Salmonella at slaughter through 

carcasses (Smith et al 1994) or during further processing. Salmonella can 
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produce a variety of symptoms, from non-clinical to diarrhea, septicemia, 

abortion in animals and death. The infectivity of Salmonella depends on the host 

immune system, strain and amount of Salmonella ingested as well as 

environmental factors (Hirsh and Zee 1999).  

The largest outbreak of salmonellosis in the US involved 224,000 people in 

1994. The outbreak was caused by ice cream produced from milk that was 

transported by trucks that previously carried raw eggs (Jay 2000). The second 

biggest outbreak of salmonellosis reported in the US was related to milk from a 

dairy plant and involved 200,000 people (Jay 2000). 

 

Prevalence of Salmonella 

Prevalence in humans 

Major serotypes of Salmonella associated with human salmonellosis reported 

from the period 1995-2002 are shown in Table 1. S. Typhimurium and S. 

Enteriditis are the two most common serotypes associated with human 

salmonellosis since 1995. S. Heidelberg and S Newport have been routinely 

listed in the top five Salmonella causing human salmonellosis between 1995 and 

2002 (Table 1). Frequency of isolation of other serotypes has been outbreak 

related.  

In 2003, five serotypes accounted for about 60% of the human isolates, and 

these were S. Typhimurium, S. Enteriditis, S. Newport, S. Heidelberg, and S. 

Javiana (MMRW 2004). Whereas the isolation of S. Typhimurium has decreased 

within the last 7 seven years, the incidence of S. Javiana has increased 227% for  



 4

Table 1. Top ten Salmonella serotypes isolated from human cases of 

salmonellosis reported to CDC during 2002, 2000, 1997 and 1995.  

 (Adapted from CDC selected annual reports during the years 1995, 1997, 2000 

and 2002). 

 

 

 

 

 

 

 2002 2000 1997 1995 

1 S. Typhimurium S. Typhimurium S. Typhimurium S. Enteriditis 

  2 S. Enteriditis S. Enteriditis S. Enteriditis S. Typhimurium 

3 S. Newport S. Newport S. Heidelberg S. Newport 

4 S. Heidelberg S. Heidelberg S. Newport S. Heidelberg 

5 S. Javiana S. Javiana S. Agona S. Hadar 

6 S. Montevideo S. Montevideo S. Montevideo S. Javiana 

7 S. Muenchen S. Muenchen S. Thomson S. Muenchen 

8 S. Oranienburg S. Infantis S. Javiana S. Montevideo 

9 S. Saintpaul S. Thomson S. Infantis S. Agona 

10 S. Infantis S. Oranienburg S. Hadar S. Thomsom 
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the same period (MMWR 2004). Other common human serotypes have remained 

fairly constant within the last seven years.  

Prevalence in animals 

A comparison of clinical Salmonella serotypes (non-human) and non-clinical 

isolates (healthy animals) reported to the CDC during 2002 is shown in Tables 2 

and 3. Clinical cases reported during 1995 to CDC that were associated with 

specific animals are provided in table 4. Non-clinical Salmonella were not 

reported by CDC until 1999.  

Not all of the Salmonella serotypes isolated from animals match the ones 

isolated from human salmonellosis cases. There were also differences between 

serotypes from clinical and non-clinical animals. The clinical serotypes reported 

in 2002 were related to most of the human isolates, but several of the non-clinical 

isolates were not listed in the top ten serotypes isolated from human cases (CDC 

2002). However, Salmonella serotypes from poultry were quite similar regardless 

of the species. This shows the importance of the carrier state, where the animal 

can be shedding Salmonella without sign of sickness. The shedding of 

Salmonella through feces may contaminate the environment, making the farm 

animals and their environment an important reservoir for Salmonella. 

Several surveys have been done in the US to determine the prevalence of 

Salmonella in farm animals and farm environments. Smith et al. (1994) did a 

survey to evaluate the prevalence of Salmonella in California cattle. They 

analyzed fecal and environmental samples, as well as blood samples to 

determine the exposure to Salmonella. They found that 75% of cattle had recent  
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Table 2. Top five Salmonella serotypes isolated from clinical cases of 

salmonellosis in animals during 2002 reported to CDC. 

 
 Bovine Porcine Chicken Turkey 

1 S. Newport S. Typhimurium S. Heidelberg S. Senftemberg 

2 S. Typhimurium S. Derby S. Kentucky S. Heidelberg 

3 S. Dublin S. Cholerasuis S. Typhimurium S. Typhimurium 

4 S. Agona S. Heidelberg S. Enteriditis S. Bredeney 

5 S. Montevideo S. Agona S. Montevideo S. Montevideo 

 (Adapted from CDC 2003 annual report). 
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Table 3. Top five Salmonella serotypes isolated from non-clinical cases in 

animals during 2002 reported to CDC. 

 Bovine Porcine Chicken Turkey 

1 S. Montevideo S. Derby S. Heidelberg S. Senftemberg 

2 S. Senftemberg S. Senftemberg S. Kentucky S. Heidelberg 

3 S. Dublin S. Agona S. Typhimurium S. Hadar 

4 S. Kentucky S. Uganda S. Enteriditis S. Muenster 

5 S. Anatum S. Mbandaka S. Mbandaka S. Saintpaul 

(Adapted from CDC 2003 annual report). 
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Table 4. Top five Salmonella serotypes isolated from animal clinical cases of 

salmonellosis during 1995 reported to CDC. 

 Bovine Porcine Chicken Turkey 

1 S. Typhimurium S. Derby S. Enteriditis S.Brandenburg 

2 S. Typhimurium 

Var Copenhagen. 

S. Typhimurium 

var Copenhagen. 

S. Heidelberg S. Muenster 

3 S. Kentucky S. Typhimurium S. Kentucky S. Montevideo 

4 S. Dublin S. Heidelberg S. Hadar S. Bredeney 

5 S. Montevideo S. Agona S. Typhimurium S. Heidelberg 

(Adapted from CDC annual report 1996). 
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exposure to Salmonella. This percentage of exposure was lower when they 

analyzed the fecal and environmental samples, with the serotypes isolated 

including S. Typhimurium, S. Dublin, and S. Oranienburg.  

In 1995 The USDA National Animal Health Monitoring System (NAHMS) 

published a national study (Fedorka-Cray et al. 1998) to determine the 

prevalence of Salmonella in feedlot pens (Table 5).  A total of 13 states were 

sampled and Salmonella spp was recovered in 38% of the feedlots. Overall, 5% 

of all the samples were positive for Salmonella. With the exception of S. 

Newington, the other four serotypes were on the top ten list for clinical 

Salmonella isolates from bovine according to the CDC Annual Report in 

1997(Fedorka-Cray et al. 1998). The authors reported that the five most common 

isolates related to sick cattle in 1991 were S. Typhimurium, S. Dublin, S. 

Typhimurium var. Copenhagen, S. Cerro, and S. Newport. The top five clinical 

isolates in that time period were S. Typhimurium, S. Typhimurium var 

Copenhagen, S. Dublin, S. Anatum and S. Montevideo (Fedorka-Cray et al. 

1998).   

In 1999, the USDA NAHMS conducted another national survey to estimate 

the prevalence of Salmonella among feedlot cattle by sampling 12 states (USDA 

2001). Salmonella isolation in the fecal samples was 6.3%.   S. Newport was the 

only isolate from feedlots related to human illnesses that year. The most common 

serotypes isolated in feedlot cattle during 1999 are shown in Table 5. 
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Table 5. Comparison of the different surveys for Salmonella spp. isolation in US 

from non-clinically ill cattle. 

 

 

 

 

 

 

USDA 1995 USDA 1999 Dargatz et al.  

(2000) 

Beach et al. 

(2002) 

feedlot cattle 

Beach et al. 

(2002) 

non feedlot 

cattle 

S. Anatum 

(27.9%) 

S. Anatum S.Orainenbur

g (21.8%) 

S. Anatum 

(18.3%) 

S. Kentucky 

(35.4%) 

S. Montevideo 

(12.9%) 

S. Montevideo S. Cerro 

(21.8%) 

S. Kentucky 

(17.5%) 

S. Montevideo 

(21.7%) 

S. Muenster 

(11.8%) 

S. Reading S. Anatum 

(10.3%) 

S. Montevideo 

(9.2%) 

S. Cerro (7.5%)

S. Kentucky 

(8.2%) 

S. Newport S. Bredeney 

(9.0%) 

S.Senftember

g (8.3%) 

S. Anatum 

(6.8%) 

S. Newington 

(4.3%) 

S. Kentucky S. Mbandaka 

(5.1%) 

S.  Mbandaka 

(7.5%) 

S. Mbandaka 

(5.0%) 
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A national study of health and management for the US beef cow-calf industry 

was conducted by Dargatz et al. (2000). They collected fecal samples from 187 

beef cow-calf operations located in 22 states. The overall prevalence of 

Salmonella spp in cow feces was 1.4%. For specific serotypes found in this study 

see Table 5. 

Another study by Beach et al. (2002) analyzed Salmonella in beef cattle 

during transportation to slaughter in central Texas. The prevalence of Salmonella 

recovery from fecal samples in feedlot cattle was 4.0%; whereas, for nonfeedlot 

cattle it was 10.9%. The serotypes most commonly isolated from feces in feedlot 

cattle were S. Anatum (25%), and S. Senftemberg (25%). For nonfeedlot cattle, 

the most common serotypes were S. Kentucky (35.4%) and S. Montevideo 

(21.7%). The most common serotypes isolated in all sample types in this study 

are shown in Table 5.  

In Canada, a study conducted to determine the most common serotypes 

isolated from Alberta ground beef found that these were S. Anatum, S. 

Heidelberg, S. Montevideo, and S. Typhimurium (Sorensen et al. 2002).  

In 1996, the USDA conducted Dairy’ 96, a national survey to establish the 

prevalence of Salmonella in US dairy operations during the period October 1996 

to September 1997. Fecal samples were analyzed from dairy operations in 19 

states with a fecal shedding of 5.4% reported (Wells et al. 2001). Fecal samples 

were collected from animals in 91 dairies and 97 cull dairy cow markets from 19 

states. The recovery of Salmonella from milk cows was 5.4%. Salmonella 

shedding was detected in 21.1% of dairies. The most common serotypes as well 
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as the top serotypes for clinically ill dairy cows are shown in Table 6 (Wells et al. 

2001). In 1995, the USDA conducted a national survey to estimate the 

prevalence of Salmonella in finisher hogs. The study was conducted in 16 states. 

A total of 6655 fecal samples were collected from pens of late finisher hogs and 

analyzed. Salmonella was present in 38.2% of the operations. The prevalence of 

Salmonella in swine feces was as low as 6%. The majority (60.3%) of the 

operations had only one serotype (USDA 1997b). The most frequent serotypes 

recovered are shown in table 7 (USDA 1997b). 

In 1997 Davies et al. evaluated the prevalence of Salmonella in two different 

swine production systems in North Carolina, a finishing site using all-in/all-out 

management and a farrow-to-finish system using continuous flow management 

of finishing pigs. The prevalence of Salmonella from fecal samples in swine was 

24.6%. The most common serotypes are shown in Table 7 (Davies et al. 1997).   

The prevalence of Salmonella in 25 Minnesota swine farms was determined 

by analyzing the ileocecal lymph nodes of slaughtered swine. In this study, 

3.69% of the swine were positive. For Salmonella, the prevalence during 

shipment was 32%, varying from 0 to 33% overall (Carlson 2001). Most common 

serotypes isolated from lymph nodes at slaughter are shown in Table 7.     

Barber et al. (2002) studied the distribution of Salmonella in swine production 

units in Illinois from farms that tested positive at slaughter. They analyzed fecal 

samples from swine and other domestic and wild animals, feed, water, boots, 

flies and mice (Table 7). 
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Table 6. Salmonella serotypes isolated from non-clinical cases in dairy cows. 

This study was part of a USDA national study  “Dairy’96”. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

Wells et al. 2001 

S. Montevideo (21.3%) 

S. Cerro (13.4%) 

S. Kentucky (8.5%) 

S. Menhaden (7.7%) 

S. Anatum (6.2%) 

S. Meleagridis (6.2%) 



 14

Table 7. Comparison of different studies for Salmonella serotypes isolated from 

several studies from non-clinically ill swine. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

USDA 1997 Davies et al.  

(1997) 

Carlson and 

Blaha (2001) 

Barber et al. 

(2002) 

S. Derby S. Derby S. Agona 

(23.88%) 

S. Derby 

S. Agona S. Typhimurium  

var Copenhagen. 

S. Infantis 

(16.67%) 

S. Agona 

S. Typhimurium 

var Copenhagen. 

S. Heidelberg S. Newhaw 

(11.9%) 

S. 

Worthington 

S. Brandemburg S. Schuarzenground S. Typhimurium 

(7.14%) 

S. Uganda 

S. Mbandaka S. Mbandaka S. Mbandaka 

(7.14%) 
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Bailey et al. (2001) studied the prevalence of Salmonella in integrated poultry 

operations. Different types of samples were analyzed from the hatchery to the 

end process. Salmonella was present in all types of samples and 9.1% of the 

samples were positive for Salmonella. They identified 36 different serotypes, the 

most prevalent being S. Senftemberg, S. Thomson, and S. Montevideo  

A survey conducted in the Pacific Northwest analyzed 4725 samples from 

poultry products, poultry and their environment in 1999-2000 (Roy et al. 2002). 

The total prevalence of Salmonella was 11.99% (Table 8), though the highest 

prevalence came from carcass rinse (34.17%), ground broiler meat (29.49%), 

and fluff samples (15.04%). S. Heidelberg and S. Kentucky accounted for almost 

50% of the isolates. In the Hazard Analysis Critical Control Point (HACCP) 

survey, these two serotypes accounted for 47.41% of the total (FSIS 1999). 

A study was conducted in Canada to determine the prevalence of Salmonella 

in turkey flocks (Irwin 1994). They analyzed pooled litter, dust and feed samples. 

Salmonella was recovered in 86.5% of the environmental samples. 

Hird et al. (1993) compared Salmonella serotypes obtained from two different 

sources in turkey (California Veterinary Diagnostic Laboratory System, CVDLS, 

and NAHMS) and compared this with the most common human isolates in 

California. S. Heidelberg and S. Agona were found to be a common isolates in 

both, humans and turkeys.  

The Food Safety and Inspection Service (FSIS) initiated a pathogen reduction 

plan using the Hazard Analysis Critical Control System  
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Table 8. Comparison of Salmonella serotypes isolated from chicken and turkey in 

different studies.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
(1) Adapted from Hird et al. 1993. 
 

 

 

 

 

 

Roy et al.  

(2002) 

Irwin et al. 

(1994) 

NAHMS (1) 

(1988-89) 

CVDLS (1) 

 (1988-89) 

S. Heidelberg 

(25.77%) 

S. Anatum 

(19.6%) 

S. Kentucky S. Kentucky 

S. Kentucky 

(21.65%) 

S. Hadar 

(18.1%) 

S. Anatum S. Anatum 

S. Montevideo 

(11.34%) 

S. Agona 

(18.1%) 

S. Arizonae S. Heidelberg 

S. Enteriditis 

S. Hadar 

(5.15%) 

S. Saintpaul 

(15.5%) 

S. Heidelberg S. Reading 

S. Infantis 

S. 

Typhimurium  

S. Thomson 

(4.12%) 

S. Bredeney 

(12.6%) 

S. Reading 

S. Senftenberg 

S. Senftenberg 

S. Mbandaka 

S. Cerro 

(3.09%) 

 S. Agona 

S.Meleagridis 

S. Broughton 
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(HACCP) in order to ensure the safety of the raw ground products from meat and 

poultry. During the 1-year period from 1998 to 1999, FSIS conducted a 

Salmonella study to determine the effectiveness of the HACCP system. The 

Salmonella isolates were serotyped and the results are shown in Table 9. 

 

Salmonella in the environment 

The major reservoir for Salmonella is the gastrointestinal tract of humans and 

animals (Jay 2000). Several Salmonella serovars are host adapted including S. 

Gallinarum in poultry, S. Dublin in cattle, and S. Cholerasuis in swine (Jay 2000). 

S. Cholerasuis is the most common serotype found in sick swine, but its isolation 

in feed or in the environment is very low. Therefore the major reservoir of S. 

Cholerasuis is the swine and transmission occurs primarily through infected 

swine (Schwartz 1991).  According to Ferris et al. (1991), S. Typhimurium and S. 

Derby are the two serotypes that cause most of the clinical cases of 

salmonellosis in cattle in the United States (Smith et al. 1994). S. Dublin is 

typically isolated from ill cattle (CDC 2000). Infected animals that shed 

Salmonella through feces asymptomatically are called carriers. This is important 

because they can serve as a reservoir for further spread. According to House et 

al. (1993), cattle that recover from infections from S. Typhimurium and from the 

group B, C and E Salmonella, stop shedding Salmonella in 3 to 12 weeks 

whereas cattle infected with S. Dublin and group D can become chronic carriers 

(Anderson et al. 2001). 
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Table 9. Five most common Salmonella serotypes isolated from plants 

processing under HACCP(1) plan from meat and poultry during 1998.      

(1) Hazard Analysis Critical Control Point.  
(Adapted from USDA FSIS 1999). 

 

 

 

 

 

 

 

 

 Large broiler  

HACCP plan 

 

Large ground 

beef  

HACCP plan 

Large ground 

turkey  

HACCP plan 

Large swine 

 HACCP plan 

1 S. Kentucky S. Anatum S. Hadar S. Derby 

2 S. Heidelberg S. Hadar S. Heidelberg S. Typhimurium 

var. Copenhagen 

3 S. Typhimurium 

var Copenhagen 

S. Muenster S. Senftenberg S. Agona 

4 S. Typhimurium S. Meleagridis S. Reading S. Dranderburg 

5 S. Hadar S. Typhimurium 

var. Copenhagen

S. Saintpaul S. Schwarzengrund
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Most of the foodborne related Salmonella are non-host specific and are 

pathogenic for humans and animals (Jay 2000). According to Rings (1985) most 

of the serotypes isolated from cattle tend to be non-host adapted (Fedorka-Cray 

et al. 1998). 

Several factors have been linked to the presence of Salmonella in animals 

including exposure to new animals without quarantine, use of lagoon wastewater, 

not properly monitoring feed components, presence of rodents or wild animals, 

rendering trucks, and inadequate handling of sick animals (Smith et al. 1994). 

Stress factors such as transportation, food deprivation or confinement may also 

increase the spread of Salmonella. Salmonella shedding in feces tends to be 

intermittent (Corrier et al.1990).  

 

Salmonella in soil 

According to Thomason et al. (1975) and Bohm (1993), Salmonella spp. can 

survive in the environment for long periods of time (Letellier et al. 1999). The 

survival of Salmonella in soil for years has been shown and this increases the 

probability of infecting a new host (Winfield and Groisman 2003).  

Salmonella can move in soil horizontally, being able to be spread from one 

location to another, or vertically, contaminating wells and water reservoirs. The 

vertical movements of bacteria in soil will depend on the soil type, pH, soil water 

content, surface properties, plants and temperature (Mawdsley 1995). Chandler 

et al. (1980) proved that the moisture content of the soil was a limiting factor for 

S. Typhimurium survival, although they were still able to isolate them from dry 
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soils after 14 days. Zibilske and Weaver (1978) also that found that  moisture 

(dry) and temperature (high) were limiting factors for Salmonella Typhimurium 

survival in soil. 

Soil type has an impact on the survival and spread of Salmonella, since 

impermeable soils are more prone to runoff after heavy rains as opposed to more 

permeable soils where the bacterial content can be absorbed (Mawdsley et al. 

1995). The movement of pathogens was reported to occur easier in coarse soils 

that in fine soils (Mawdsley et al. 1995). 

Other factors also play a major role in survival of Salmonella in soil (Gudding 

and Krogstad 1975) such as the presence of indigenous flora (Hussong et al. 

1985).  Turpin et al (1993) showed the prevalence of Salmonella was greater in 

sterile soil. In non sterile soil, Turpin et al. (1993) suggested that Salmonella 

undergoes a state called viable-but-non-culturable in soil.  

 

Salmonella in feces/litter 

Sick animals can shed Salmonella in their feces and contaminate other 

animals through the oral-fecal route or through contamination of the farm 

environment. Asymptomatic carriers can shed Salmonella in feces at a 

prevalence of 3-4% (Smith et al. 1994), although according to Fedorka-Cray 

(2000), the prevalence of fecal shedding in asymptomatic cattle is only 1.4%. The 

presence of Salmonella in feces can be used to estimate the environmental 

contamination (Irwin et al. 1994), although presence in feces may underestimate 
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the prevalence of S. Dublin in cows due to the low shedding ratio of this 

microorganism by the carriers (Smith et al. 1899; 1991; 1994). 

Salmonella has been shown to survive for long periods of time under different 

environmental conditions (Morse et al. 1982). Even the host adapted S. 

Cholerasuis serotype can survive in swine feces and remains detectable in dry 

feces for up to 2 to 4 months (Gray and Fedorka-Cray 2001). 

Extensive research on poultry litter and feces has been done to reduce and 

control the presence of Salmonella and prevent further contamination (Opara et 

al. 1992; Carr et al. 1995; Mallison et al. 2000; Hayes et al. 2000; Eriksson et al. 

2001).  Salmonella is unequally distributed through poultry houses and high Aw 

is a risk factor for Salmonella growth (Hays et al. 2000). Eriksson et al. (2001) 

concluded that Salmonella was detected in poultry samples with high Aw (0.90) 

and moisture content greater than 35%.  Aw values of 0.90-0.95 in dry litter have 

also been related to the presence of Salmonella (Carr et al. 1995). Aw, moisture 

content and airflow seem to be critical factors which must be controlled to reduce 

the growth of Salmonella in poultry litter (Mallison et al. 2001). 

Although most of these studies have been done with poultry litter and feces, 

this principle could be applied to any farm animal manure management plan. 

Areas exposed to some air flow had drier litter and lower bacterial counts. 

 

Salmonella in water 

Water is an important source of Salmonella spread and contamination. 

Salmonella shed by humans can be isolated in municipal sewage (Kinde et al. 
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1997). The contamination by human sewage of water effluents for irrigation of 

plants used as cattle feed can lead to cattle infection (Anderson et al. 2001). 

According to Kinde et al. (2000), poultry contamination may be related to human 

sources through effluent that contaminates rodents, which can be an 

environmental source for poultry contamination (Roy et al. 2001). Rivers can 

spread Salmonella, becoming a vehicle for contamination of farm downstream 

contributing to the regional spread of Salmonella serotypes (Anderson 2001). 

Lamar (2003) studied the influence of a farm on the TN river and found that the 

farm did not contribute to a great extent to the river contamination since the 

samples upstream from the farm were already positive for Salmonella. Rivers 

downstream from farms can be contaminated due to heavy rains through runoff 

(Martinez-Urtaza et al. 2004) or through irrigation. Water runoffs will move 

pathogens but this will depend on the soil type, rate of rainfall and the topography 

(Mawdsley et al.1995). More permeable soils will transfer bacteria more quickly, 

possibly contaminating land drains or ground water (vertical movement of 

microorganisms). Jawson et al. (1982) found higher amounts of fecal 

contaminants from runoffs from grazed soil than from non grazed soils, even 

after removal of the cattle (Mawdsley et al. 1995). Flushing water to remove 

manure from alleys in dairy cattle facilities has been considered a risk factor to 

increase shedders among cattle (Kabagambe et al. 2000). 
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Salmonella in feed 

According to Bailey et al. (2001), Erwin first discovered viable Salmonella in 

poultry feed in 1955. The presence of Salmonella in animal feed is considered to 

be one of the major factors causing contamination and spreading of the bacteria 

among animals. Contamination of feed can occur prior to arrival to the farm in the 

processing plant and during transporting, or at farm level through animals and 

environment. According to Lo Fo Wong et al. (2002), feed can serve as a way to 

introduce Salmonella into the farm or as a way to establish infection in animals. 

Salmonella has been isolated from animal feed but the serotypes isolated do not 

usually correlate with the most prevalent ones found in humans and animals (Jay 

2002; Bredens et al. 1996; Fedorka-Cray et al. 1998), although Krytenburg et al. 

(1998) found one S. Typhimurium in cattle feed in the Pacific Northwest. Another 

study found one serotype of Salmonella in meat that was also found on the final 

processed carcass, although 10 different serotypes were identified in feed (Bailey 

et al. 2001). This might be due to the limited microbiological surveys on animal 

feeds, and different infectious dose for animals and humans (Crump et al. 2002). 

Crump et al. (2002) showed the relationship between contaminated animal feed 

and human outbreaks of salmonellosis. They described the importance of S. 

Hadar and S. Agona serotypes in human outbreaks and how S. Agona has 

increased in human cases since its introduction in animal feeds in the US.   

Krytenburg et al. (1998) studied the prevalence of S. enterica in the Pacific 

Northwest cattle. They found several types of contaminated feed including grain, 

wet and dry forages, by products and protein supplements. They found an 
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incidence of 9.8% Salmonella in cattle feed whereas for swine feed the incidence 

was 2.8% (Harris et al. 1997). Irwin (1994) found that 9.8% of feed for turkeys 

was contaminated with Salmonella. Out of 26 flocks, 12 shared the same 

serovars in feed and environment (Irwin 1994). Environmental contamination at 

the farm is also important. In one study, six farms had the same serotype in feces 

and feed, whereas in five, the serotype isolated in feed was not present in feces 

(Davies et al. 1997).  Other sources of feed contamination include rodents, wild 

birds (Harris et al. 1997) or irrigation water contaminated with human sewage 

(Anderson 2001). 

Samuel et al. (1988) studied the effect of feed management in cattle before 

slaughter. They fed three groups of animals different diets (first group taken to 

the feedlot and slaughter within two days, the second group fed ad libitum for 18 

days and the third group fattened and fed for 80 days). At time of slaughter, 

rumen and lymph node samples were analyzed, as well as soil samples. The 

major number of Salmonella was isolated from cattle from the second group, 

whereas none was isolated from the third group. High levels of Volatile Fatty 

Acids (VFA) and a low ruminal pH can decrease the numbers of Salmonella 

present in the rumen (Samuel et al. 1988). The study concluded that adjustments 

to a new diet resulted in higher incidence of isolation of Salmonella.  According to 

Jones (1992) and Grau et al. (1969), Salmonella survival is increased by the 

reduction in dry matter intake by reducing production of VFA in the rumen 

(Anderson et al. 2001). There are some differences in the serotypes shed by 

feces in feedlot cattle compared to non-feedlot cattle that might be related to 
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differences in the ruminal pH (Beach et al. 2002). Davies (1994) stated that 

contamination in ruminants with Salmonella is primarily due to the consumption 

of rations rich in cottonseed meal and palm kernel (Hinton 2000). Kabagambe et 

al. (2000) found that feeding TMR (Total Mixed Ration) to cattle increased 

Salmonella shedding. 

Glikman et al. (1981) found that the source of a S. Anatum outbreak in cattle 

was the silage that was used to feed the cattle. Contamination of the hayfield 

with bird droppings and improper silage conditions were the cause of the 

outbreak. The survival of Salmonella in grass undergoing silage will depend on 

conditions under which it is ensiled and the final pH (Anderson et al. 2001). 

Salmonella can survive in dry environments for long periods on time (such as 

on feed) (Juven et al. 1984). Pelleting seems to reduce the contamination of 

animal feed but only low levels of contamination can be reduced through 

pelleting, whereas high levels might not be reduced (Fedorka-Cray et al. 1997). 

Davies et al. (1997) found that the prevalence of Salmonella in swine farms 

feeding pelleted rations (38.1%) was higher than farms feeding meal rations 

(5.7%) in North Carolina. Juven et al. (1984) estimated the survival of Salmonella 

in poultry feed and bone meal to be 14 weeks. 

Contamination in the milling plant when preparing animal feed has been 

shown to occur. Whyte et al. (2003) studied the prevalence of Salmonella in a 

poultry feed mill. They found that the recovery of Salmonella in feed in the 

preheating area was 18.8% (11.8% feed ingredients and 33.3% dust), whereas 

post-heating recovery of Salmonella was 33% (dust samples 24.2%). The 



 26

environment in major animal feed operations plays a major role in controlling 

Salmonella contamination (Whyte et al. 2003). Introducing contaminated raw 

ingredients to the mills is common (Whyte et al. 2003), which may cause feed 

ingredients to be an important source of Salmonella. A survey conducted by the 

FDA (McChesney et al. 1995) showed that Salmonella was detected in 56.4% of 

animal protein and 36% of vegetable proteins used for animal feed. During an 

outbreak of Salmonellosis in California, fat added to the feed ratio seemed to be 

directly related to the infection in cattle attributed to S. Menhaden (Anderson et 

al. 1997). The amount of fat added to the feed had implications also on the 

differences in morbidity rates among herds (Anderson et al. 1997). Harris et al. 

(1997) found that the Salmonella isolation rate in feed and feed ingredients was 

2.8% and was isolated from 46.7% of the farms. Seven of the serotypes obtained 

were S. Worthington, Agona, Anatum, Montevideo, Heidelberg, Oranienburg and 

Derby. Barber et al. (2002) did not isolate any Salmonella from swine feed 

samples. 

Transportation is another point where feed can get contaminated with 

Salmonella. Fedorka-Cray et al. (1997) sampled feed and feed trucks and found 

an isolation rate of 0.7% in feed (included meat/bone meal, fish, bonemeal, 

meatmeal, and soybean meal) but 22.7% in trucks. Whyte et al. (2003) found that 

the feed transport vehicles had a rate of contamination with Salmonella of 57.1%. 

Proper truck sanitation and purchasing Salmonella-free animal feed may be a 

key points to control the Salmonella contamination of food. 
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Other environmental sources 

Several environmental sources contribute to Salmonella contamination in the 

farm and might also serve as a possible reservoir for Salmonella. Barber et al. 

(2002) sampled several environmental swine compartments and found that the 

environmental samples that showed higher Salmonella recovery were cats 

(12%), boots (11%), bird feces (8%), flies (6%), and mice (5%).  

Birds at the farm are a possible reservoir for Salmonella that can contaminate 

the environment as well as the feed, or can contaminated themselves through 

ingesting contaminated feed. The presence of Salmonella in wild birds has been 

well established (Kirk et al. 2002; Craven et al. 2000).  

The presence of rodents has been established as a risk factor for Salmonella 

contamination (Warnick et al. 2001). Mice present in farms are possible 

contaminants spreading Salmonella through feces (Davies and Wray 1995). 

Barber et al. (2002) found that the number of positive samples in bird droppings 

and mice were related to the positive Salmonella samples in cats.  

Letellier et al. (1999) found that most of the environmental samples (flies, 

rodents, spiders, bird fecal material) were positive for Salmonella at clinically ill 

swine farms. Flies play such an important role in spreading Salmonella that 

Bailey et al. (2001) suggested flies as a cheap way to monitor the presence of 

Salmonella on farms since they found 18.6% positive Salmonella recovery from 

fly samples. Humans are another source of contamination for animals (Barber et 

al. 2002). Cross contamination through boots has been well established (Barber 

et al. 2002; Bailey et al. 2001; Letellier 1999; Radke et al. 2002). 
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Farm management 

Stress during transport and feed deprivation of the animals can lead to rapid 

growth of Salmonella in the gastrointestinal tract, and when followed by provision 

of a feedyard, can increase the fecal shedding of Salmonella (Corrier 1990). 

Prevalence of shedding in cattle due to transportation was found to be 1.9% 

(Sorensen et al. 2001). Beach et al. (2002) studied the prevalence of Salmonella 

in beeflot cattle from transport to slaughter. They found that the shedding of 

Salmonella was increased for adult cattle from 1 to 21% during transport, 

whereas for feedlot cattle it remained constant. The reason might be the diet 

since it changes the liquor composition of the rumen (Samuel et al. 1988). Use of 

calves in feeder marketing, and moving from one location to another through 

feedyard fattening has been shown to increase the shedding of Salmonella in 

feces (Corrier et al. 1990). 

Regional differences in the isolation of Salmonella have been shown in the 

US, with Salmonella being most prevalent in the Southern US (Kabagambe et al. 

2002). Salmonella in swine was most prevalent in the southeastern US (65.5% of 

operations positive), whereas the Midwest and Northcentral states showed a 

lower prevalence in their operations (29.9% and 36.1% respectively) (USDA 

1997a). The prevalence of Salmonella in feedlot cattle was higher in USDA 

region one (AZ, CA, ID, WA) than the other two regions (IA, IL, MN, SD and CO, 

KS, OK, NE, TX) (Fedorka-Cray et al. 1998). Salmonella was isolated with higher 

prevalence from the South Central, Central and Southeastern US (Dargatz et al. 

2000). These differences are probably due to the climate differences but 
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conflicting climatic data have been reported (Fedorka-Cray et al. 1998; Dargatz 

et al. 2000; Sorensen et al. 2002; Barber et al. 2002). Bailey et al. (2001) found 

that Salmonella was more frequently isolated during the fall and winter than 

during spring and summer in vertically integrated poultry operations. 

Herd size and the use of flush-water systems are reported to be important risk 

factors associated with shedding of Salmonella (Kabagambe et al. 2000). Herd 

size increased Salmonella shedding in swine (USDA 1997b). Large-size cattle 

operations tend to bring more cattle into the operations, increasing the risk of 

contact with subclinically ill cattle and the effect of other stress factors 

(Kabagambe et al. 2000). Stress caused by transportation of animals increased 

shedding of Salmonella (Barber et al. 2002). Letellier et al. (1999) studied 

Salmonella contamination at two swine farms using integrated production 

systems and found an overall Salmonella prevalence of 7.9%. They found higher 

rates of isolation of Salmonella in replacement gilts (15.9%) and finishing units 

(21.9%). This study concluded that Salmonella was introduced to the farm via 

carriers at the breeding level (Letellier et al. 1999). 

Similar results were obtained by Warnick et al. (2003) who found a significant 

association between herd size and fecal shedding of Salmonella when they 

studied 65 dairy herds with a recent history of salmonellosis. Warnick et al. 

(2001) in a separate study concluded that herd size was a risk factor when risk 

factors associated with clinical salmonellosis in Virginia cattle were studied. 

Fedorka-Cray et al. (1998) reported that smaller herds have less Salmonella 

recovery than larger operations. One study in beef cattle concluded that the herd 
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size was not correlated with the shedding of Salmonella in beef cattle (Fedorka-

Cray et al. 2000). 

 

Molecular diversity 

Traditional methods to identify Salmonella are based on phenotypic 

characteristics (FDA 1998). New methods based on DNA patterns are used to 

identify and compare genetic differences among isolates. These techniques are 

very useful to study the epidemiology of outbreaks and to track isolates of 

Salmonella. Some of these techniques, such as Riboprinter and Pulsed-Field Gel 

Electrophoresis (PFGE) are based on the use on restriction enzymes targeted at 

DNA that cut the DNA into pieces or fragments. The resulting fragments are 

separated into bands based on molecular weight (Oscar 1998).  

 

Riboprinter® 

The Riboprinter® (Qualicom, Wilmington, DE) is an automated system for 

analysis of ribosomal DNA. This technique is based on the use of restriction 

enzymes that especially cut ribosomal DNA. DNA fragments are separated by 

size on an agarose gel and then hybridized with a labeled probe. A computerized 

camera captures the band images that can be use for further analysis. The 

Riboprinter® compares band pattern with a library and classifies Salmonella 

isolates into ribogroups.  Riboprinter® was found to have limited use for 

identifying Salmonella based on band match but was effective in characterizing 

Salmonella serotypes (Oscar 1998). Several restriction enzymes have been 
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used, but PvuII seems to give greater band patterns differentiation (Bailey et al. 

2002). 

 

Pulsed-Field Gel Electrophoresis 

PFGE has been considered the gold standard of molecular typing techniques 

for many years (Olive and Bean 1999). The bacterial genome is cut by the action 

of restriction enzymes and separated by electrophoresis. PFGE uses pulsed 

electrical fields in order to separate large molecular weight fragments (Olive and 

Bean 1999). The bands on the gel are commonly visualized with ethidium 

bromide. Although PFGE is superior to other typing technique (Olive and Bean 

1999; Yan et al. 2003), the success in discrimination among isolates depends on 

the serotype (Liebana et al. 2001). Although PFGE is more sensitive in 

differentiating among strains, Riboprinter® is very useful when a large volume of 

samples are to be analyzed (Pfaller et al. 1996; Hollis et al. 1999) or when highly 

trained personnel is not available. PFGE has been used to study clonal 

Salmonella populations in swine and other food applications (Wonderling et al. 

2003; Baloda et al. 2001; Sandvang et al. 2000). PFGE is also the method of 

choice used by CDC for characterizing Salmonella isolates under the PulseNet 

program. 
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Abstract 

Salmonella is the second most important cause of foodborne infections in the 

United States after Campylobacter jejuni. Human cases of salmonellosis are 

often linked to the consumption of raw meat and unpasteurized milk and dairy 

products.  Although fecal-oral contamination among animals has been well 

established, less is known about contamination through the environment at the 

farm level. The objective of this study was to compare isolation of Salmonella in 

dairy cows and beef cattle and their farm environments based on temporal, 

spatial, and environmental factors, including production or management practices 

to provide population-based epidemiological information for Salmonella that can 

be used in assessing risk and developing risk management strategies. Samples 

from 8 locations in four different states (Alabama, Tennessee, California and 

Washington) were collected over 21 months. Environmental samples (n=240) 

and fecal swab samples (n=800) were analyzed to determine the presence of 

Salmonella using modified BAM protocols. In beef cattle, Salmonella was 

recovered from feed (3.1%), soil (2.0%), and bedding (1.0%). In dairy cows, 

Salmonella was recovered from fecal swabs (1%), feed (4.2%), soil (3.1%), and 

bedding (4.1%). The most common serotypes isolated from beef cattle were S. 

Anatum (89.9%) and S. Newington (11.1%). For dairy cows, the most common 

serotypes isolated were S. Anatum (56%), S. Newington (20%), S. Javiana (8%), 

and non serotyped Salmonella spp. (16%). Salmonella was found to be more 

prevalent in dairy cows than beef cattle possibly due to differences in 

management practices and their environment. The environment appeared to be 
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the major reservoir for Salmonella. Breaking the contamination cycle between 

animals and their environment will be essential to reduce the isolation rate of 

Salmonella in beef cattle and dairy cows.   
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I. Introduction 

Salmonella is the second most important cause of foodborne infection in the 

United States (US).  There are about 1.4 million cases of human salmonellosis 

every year in the US (FDA 2004), with an estimated annual cost of $ 2.9 billion  

(ERS USDA 2004).  Human salmonellosis is often related to the consumption of 

or exposure to raw meat, and unpasteurized milk and milk products (Jay 2000; 

MMRW 1995; MMRW 2003). The top ten serotypes from human cases in 2002 

were S. Typhimurium, S. Enteriditis, S. Newport, S. Heidelberg, S. Javiana, S. 

Montevideo, S. Muenchen, S. Oranienburg, S. Saintpaul, and S. Infantis (CDC 

2003). The most common serotypes isolated from clinically ill bovine during the 

same period were S. Newport, S. Typhimurium, S. Dublin, S. Agona, and S. 

Montevideo (CDC 2002). The most common serotypes isolated from non-clinical 

cases were S. Montevideo, S. Senftenberg, S. Dublin, S. Kentucky, S. Anatum 

(CDC 2002). The most common serotypes of Salmonella isolated from beef 

cattle in the US were S. Anatum, S. Montevideo, S. Muenster, S. Kentucky, and 

S. Newington (Fedorka-Cray et al. 1997). The most common serotypes of 

Salmonella in feedlot cattle (USDA 2001) were S. Anatum, S. Montevideo, S. 

Reading, S. Newport, and S. Kentucky. In 1996, the USDA conducted “Dairy’96”, 

a national survey to estimate the isolation rate of Salmonella in US dairy 

operations (USDA 1997). The most common serotypes obtained in dairy cows 

were S. Montevideo, S. Cerro, S. Kentucky, S. Menhaden, S. Anatum, and S. 

Meleagridis (Wells et al. 2001). Most of these studies focused on Salmonella 

isolation from fecal swabs or fresh feces, but little research has been done to 
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establish the significance of the environment as a possible reservoir of 

Salmonella. In 1998, the USDA FSIS established a mandatory HACCP program 

in slaughter plants in order to decrease the cases of human salmonellosis and 

diseases due to other enteric pathogens. A decrease in isolation of foodborne 

diseases in the US was noted for the first time since CDC began intensive 

monitoring in 2003 (CDC 2003). 

Serotypes of Salmonella associated with clinical animal cases in 2002 were 

similar to serotypes in human cases, but most of the non-clinical cases did not 

account for the top ten serotypes causing foodborne illness in humans (CDC 

2002). This gives importance to the carrier state, where the animal may shed 

Salmonella with no obvious sign of sickness. Shedding of Salmonella through 

feces may contaminate the farm environment, which becomes an important 

source for Salmonella. Control of Salmonella in animals at the farm level is 

important to reduce further contamination at the slaughter plant.  

The objective of this study was to evaluate associations in farm animals and 

the surrounding environment over time to provide a better understanding of the 

distribution of Salmonella on the farm. This will help to establish better control 

programs and intervention strategies at the farm level to reduce Salmonella 

contamination of animals before slaughter. 

 
II. Material and Methods 

Sample collection: Samples were collected from a total of 8 farms in four 

different states (Tennessee, Alabama, Washington, and California) during a 
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period of 21 months (from August 2002 to June 2004). Farms were selected 

based on previous collaborative studies with the University of Tennessee and the 

Universities at the states sampled. Each farm was sampled every 3-4 months, 

obtaining a total of 6 samplings per farm. Several sample types were collected 

for each sampling period. A total of 1040 samples were analyzed. Rectal swabs 

were collected from 20 randomly selected cows by the person taking the samples 

(n=800). All other sample types originated from the surrounding environment 

(n=240). From beef cattle farms, soil samples were taken from 3 locations, the 

grazing area, the watering, resting area, and area inaccessible to cattle. From the 

dairy farms, soil was collected from areas near the holding facilities, and bedding 

samples were collected from inside the holding area itself. From each location, 

feed/foodstuff samples were collected from whatever source the animals were 

feeding at the time. These samples were diverse and included pasture grass, 

Total Mixed Ration (TMR, a mixture of silage and high energy feedstuffs), hay, 

and silage. A sample protocol was developed (box containing empty sample 

container and instructions for sample collection). Samples were collected by the 

farmers and Geographical Position System (GPS) coordinates were recorded at 

the sampling place using eTrex (Garmin, Olathe, KS). Samples were sent to the 

University of Tennessee overnight and kept refrigerated at 4o C until completely 

analyzed within the next 3 to 4 days.    

Farm description: Four different farms were sampled for beef cattle and dairy 

cows. Beef cattle farms belonged to universities, with the exception of a 

Washington farm that was privately owned. Dairy cow farms belonged to 
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universities with the exception of one located in California that was privately 

owned.  

Salmonella isolation: Samples were analyzed for the presence of Salmonella 

using FDA-BAM modified methods (Pangloli et al. 2003). All the media used was 

obtained from Difco (Sparks, MD) except Rappaport-Vassiliadis (RV) that was 

obtained from Difco and Oxoid (Ogdensburg, NY). The rectal swabs were first 

transferred into a sterile tube containing 10 ml of Universal Broth in order the 

divide the sample to analyzed for the presence of different pathogens. Then, 1 ml 

was transferred into a tube containing 10 ml of RV broth or Tetrathionate broth 

(TT) (added Brilliant Green 20 ml/l and iodine 10ml/l), and incubated as 

described in Table 1. For the environmental samples, 25 grams were weighed 

and mixed with TT or RV (225 ml) and incubated as described in Table 1. Dairy 

and beef samples were weighed (25 grams) and mixed with 225 ml of Lactose 

Broth (LB) and incubated as described in Table 1. Pre-enrichment broth (1ml) 

was transferred into a sterile test tube with 10 ml of TT and incubated (Table 1). 

All samples were streaked for isolation onto XLT4 (xylose-lysine-Tergiol 4)/BSA 

(bismuth sulfite agar) plates (Table 1).Typical Salmonella colonies on XLT4 

(black) and atypical colonies (yellow with red background) were selected for 

further confirmation. Typical BSA Salmonella colonies (metallic sheen) were also 

selected. Presumptive colonies were transferred onto TSI (Triple Sugar Iron) 

agar tubes and into Urea broth and incubated at 35.5C for 24 hours. A TSI result 

of K/A (red slant /yellow butt) or K/S (red slant/ black precipitate), and urea 

negative was considered presumptive positive for  
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Table 1. Protocol followed for the isolation of Salmonella from dairy and beef 

cattle fecal swabs and environment. This protocol was done as described by 

Pangloli et al. 2003. 

Origin of 

sample 

Pre-enrich.  T (1)      t 

Medium 

Enrichment  T    t 

Medium 

Plating     T        t 

Medium 

Rectal 

swab 

- RV(3)        42C    24h BSA(5)    35.5C  48h 

Feed LB(2)      35.5C   24h TT(4)       35C    24 h BSA      35.5C  48h 

Soil - TT           42C    24h XLT4(6)    35.5C 24h 

Bedding - RV          42C    24h XLT4     35.5C 24h  

(1)T: time; t: temperature. 
(2) LB= Lactose Broth. 
(3) RV= Rappaport-Vassiliadis. 
(4) TT= Tetrathionate. 
(5) BSA= Bismuth Sulfate Agar. 
(6) XLT4= Xylose-Lysine-Tergitol 4 Agar. 
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Salmonella. Presumptive colonies were kept for further serological analysis with 

somatic antigen O (Difco, Sparks, MD). A TSI result of K/A (red slant /yellow butt) 

or K/S (red slant/ black precipitate), and urea negative was considered 

presumptive positive for Salmonella. Presumptive colonies were kept for further 

serological analysis with somatic antigen O (Difco, Sparks, MD). Agglutination 

was considered positive for Salmonella. Positive antigen O colonies were 

analyzed using Analytical Profile Index (API) 20E (Biomeriux, Hazelwood, MO) to 

confirm the presence of Salmonella spp and or S. Arizona.     

Aerobic Plate Count: Aerobic plate count (APC) was prepared according to 

Feldsine et al. (2003) using SimPlate (Biocontrol, Bellevue, WA). Fecal swabs 

were vortexed in 10 ml lactose broth. For other samples, 25 grams were weighed 

into sterile filtered bags with 225 ml of 0.1% peptone water (% w/v) and 10-fold 

dilutions were prepared. SimPlates were incubated at 35C for 24h. The total 

number of wells showing color change were counted. To calculate the MPN 

(most probable number) of organisms, the conversion Table provided by the 

manufacturer (Biocontrol, Bellevue, WA) was used and multiplied by its 

corresponding dilution.    

Total Coliforms/ Escherichia coli :Total Coliforms and E. coli were enumerated 

using SimPlates using instructions provided by the manufacturer (Biocontrol, 

Bellevue, WA). SimPlates were incubated at 35C for 24 h. Total coliforms were 

counted based on wells with color change. E. coli, were counted by observing 

wells that fluoresced under UV light. The total MPN of coliforms/ E. coli was 
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calculated using the SimPlate conversion Table provided by manufacturer 

(Biocontrol, Bellevue, WA). 

Fecal streptococci: Fecal streptococci were counted as described by Downes 

and Ito (2001). For fecal swabs, the swabs were vortexed in 10 ml lactose broth. 

A 1 ml aliquot was transferred into sterile tubes containing 9ml of 0.1% peptone 

water. For other samples, 25 grams was weighed into sterile filtered bags with 

225 ml of 0.1% peptone water (%w/v). Decimal dilutions were prepared. A 1ml 

aliquot from each dilution was pourplated with 15-20 ml. KF Streptococcus Agar 

(%). Plates were incubated at 35C for 48h. Pink colonies were counted using a 

manual colony counter.  

Riboprinter: Frozen isolates were thawed and streaked onto BHI Agar at 

35.5C for 24 h. Samples were processed using a RiboPrinter (Qualicom, 

Wilimgton, DE) manufacturer’s protocol using PvuII as the restriction enzyme 

(Bailey et al. 2002b). The ribosomal DNA fragments were digested and 

processed on a nylon membrane and hybridized with an E. coli DNA probe. 

Using chemiluminescent, the image was captured by a CCD camera and taken 

to computer software for further analysis (Bruce 1996). The RiboPrinter identified 

isolates by band matching and also classified them into ribotypes (Oscar 1998). 

 

III. Results and Discussion 

Our study was part of a multistate study to determine the isolation rate of 

Salmonella in farm animals and their environment. Comparative data on swine, 

turkey, and chickens is provided courtesy of the University of Tennessee and the 
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Food Safety Center of Excellence (Draughon 2004). Data on swine, chickens 

and turkey are adapted from a recent presentation and are shown in Table 2 for 

comparison purposes (Rodriguez et al. 2004a, 2004b). Salmonella isolation in 

beef cattle was the lowest among all of the animals tested (Table 2). Overall, 

Salmonella was more frequently isolated in dairy cows (11.5%) than in beef cattle 

(6.2%) (Table 2). 

Salmonella in fecal swabs and bedding 

Salmonella was not isolated from any of the beef cattle fecal swabs tested, 

whereas for dairy cows, the isolation rate was 1% (Table 3). The isolation rate of 

Salmonella in bedding samples was also lower for beef cattle (1%) than for dairy 

cows (3.2%).  Other studies have found an isolation rate from fecal swabs and/or 

feces as high as 5.5% (Losinger et al. 1997), 5% (Fedorka-Cray et al.1998), 

6.3% (USDA 2001), and 11.2% (Dargatz et al. 2000) for beef cattle. Fecal 

shedding reported in dairy cows was 5.4%, (Wells et al. 2001) and 2.1% 

(Losinger et al. 1995), which are similar to the results, found in our study.  

The background microflora from fecal swabs were very consistent, showing 

high values of total coliforms, fecal streptococci, and E. coli (Tables 4, and 5). 

The reason we found lower isolation rates in fecal swabs from beef cattle 

compared to other studies may be due to a variety of reasons. Animals in our 

study were not from feedlots and beef cattle density was low. Dairy cows were 

primarily from university experiment stations rather than commercial facilities and 

probably had similar herd density. Beef cattle bedding material consisted of 

mixtures of dry feces and soil. For dairy cows, bedding consisted of a mixture of 
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% positive

Table 2. Percentage of Salmonella isolation by state and farm animal type over a 

period of 21 months (August 2002 to June 2004). Five different states were 

sampled, Tennessee, Alabama, California, Washington and North Carolina. 

(1) ns: not sampled. 
(2) Data obtained from Rodriguez et al. 2004a, and Rodriguez et al. 2004b. 
 

 

 

 

 

 

 

 

 

 

 TN AL CA WA NC AVERAGE 

Beef 12.5 8.3 4.2 0.0 ns(1) 6.2 

Dairy 8.3 16.7 4.2 16.7 ns 11.5 

Swine(2) 6.3 Ns 10.3 6.3 7.3 7.8 

Poultry(2) 12.5 Ns ns 16.7 5.0 11.4 

Turkey(2) ns Ns ns ns 30.0 30.0 
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Table 3. Percentage of Salmonella isolated over a period of 21 months (August 

2002 to June 2004) in beef cattle and dairy cows rectal swabs and their 

environment. Four different states were sampled for dairy cows and beef cattle: 

Tennessee, Alabama, California, and Washington. 

BEEF 

 

 

SWAB(1) 

 

FEED(2) 

% Positive 

SOIL(3) 

 

BED(4) 

 

TN 0.0 4.2 4.2 4.2 

AL 0.0 4.2 4.2 0.0 

CA 0.0 4.2 0.0 0.0 

WA 0.0 0.0 0.0 0.0 

Average 0.0 3.1 2.0 1.0 

DAIRY SWAB FEED SOIL BED 

TN 0.0 4.2 4.2 0.0 

AL 0.0 4.2 8.3 4.2 

CA 0.0 4.2 0.0 0.0 

WA 4.2 4.2 0.0 8.3 

Average 1.0 4.2 3.1 12.5 

(1) Rectal swab. 
(2) Feed varied with season, animal type, and state. 
(3) Soil was obtained from the grazing areas, watering resting areas and 
inaccessible areas for beef cattle. For dairy cows soil was collected from areas 
near the holding area. 
(4) Bedding was composed of a mixture of dry feces, soil and/or peanuts hulls. 
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Table 4. Enumeration of fecal microorganisms and percentage positive Salmonella in rectal swabs, bedding and soil 

from beef cattle premises by sample type for each state.  

(1) APC= Aerobic Plate Count. 
(2) The APC, Total coliforms, E. Coli and Fecal Streptococcus are given in log CFU/recal swab and logCFU/gram 
sample. 
(3) Salmonella is given in percentage of isolation by state and sample type. 

Beef  TN AL CA WA 
APC(1)(2) 10 9.9 9.8 10.1 

Total coliforms(2) 9.2 9.6 9.5 9.7 
E coli(2) 

8.9 9.4 9.1 9.6 
Fecal Streptococcus(2) 7.8 8.0 7.2 7.9 

 
 

Rectal swab 
 
 % Salmonella(3) 0.0 0.0 0.0 0.0 

APC 7.1 8.2 7.8 7.8 
Total coliforms 5.9 8.1 6.5 5.3 

E coli 
4.8 8.1 6.5 5.3 

Fecal Streptococcus 4.7 7.0 4.5 7.5 

 
 

Holding material 
 
 % Salmonella 4.2 0.0 0.0 0.0 

APC 6.7 7.6 7.5 8.3 
Total coliforms 5.5 6.3 4.2 5.4 

E. coli 
4.6 6.2 3 4.7 

Fecal Streptococcus 3.5 4.8 6.8 3.2 

 
 

Soil 
 
 % Salmonella 4.2 4.2 0.0 0.0 
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Table 5. Enumeration of fecal microorganisms and percentage positive Salmonella in rectal swabs, bedding and soil 

from dairy cows premises by sample type for each state.  

(1) APC= Aerobic Plate Count. 
(2) The APC, Total coliforms, E. Coli and Fecal Streptococcus are given in log CFU/fecal swab logCFU/gram sample. 
 (3) Salmonella is given in percentage of isolation. 
 
 

Dairy   TN AL CA WA 
  APC(1)(2) 10.3 9.9 9.9 9.5 
  Total Coliforms(2) 9.4 9.2 9.3 8.8 

Fecal swab 
E. coli(2) 

8.8 9.6 8.8 8.6 
  Fecal Streptococcus(2) 7.6 7.7 8.2 7.8 
  % Salmonella(3)  0.0  0.0  0.0 4.2  
  APC 8.0 9.0 8.6 7.7 
  T. Coliforms 6.3 7.2 7.9 7.4 

Bedding material 
E. coli 

5.4 6.7 6.7 6.3 
  Fecal Streptococcus 5.2 7.0 7.3 6.5 
  % Salmonella  0.0  4.2  0.0 8.3  
  APC 7.0 8.9 7.3 6.8 
  Total Coliforms 4.9 6.6 6.9 3.8 

Soil 
E. coli 

4.1 6.4 5.1 3.6 
  Fecal Streptococcus 3.8 4.3 5.0 6.4 
  % Salmonella  4.2 8.3  0.0  0.0  



 59

dry feces, fresh feces, soil, and/or peanuts hulls. Salmonella was only isolated in 

beef cattle bedding in Tennessee (4.2%) (Table 3). In 3 states, Alabama, 

California, and Washington, Salmonella was not isolated from bedding or rectal 

swabs (Table 3). 

Background microflora were higher for dairy bedding than for beef bedding 

material (Tables 4 and 5). The dairy bedding appeared to contain more feces 

than the beef cattle bedding. Salmonella was isolated in 4.2% of Alabama, and 

8.3% of Washington dairy cow bedding (Table 3). Salmonella was isolated in 

both bedding material and rectal swabs from Washington dairy cows (Table 3). 

According to Irwin et al. (1994), feces could be used to estimate the isolation rate 

of Salmonella in farm animals. We found analysis of feed a better estimation of 

the Salmonella status on the farm. This is probably also due to the type of fecal 

samples we obtained.  

Feces may underestimate the isolation rate of Salmonella because carriers 

only shed Salmonella at a rate of 3-4% (Smith et al. 1994), although Salmonella 

survival in feces has been well established (Gray and Fedrorkra-Cray 2001). 

Serotypes in fecal swabs and bedding material 

The serotypes that we most commonly isolated from beef cattle feces were S. 

Anatum and S. Newington (Table 6). From dairy cows, the most common 

serotypes were found in bedding samples were S. Anatum, S. Javiana, S. 

Newington, and Salmonella spp. (Table 7). From dairy cow fecal swabs, only S. 

Anatum and S. Newington were isolated (Table 7). These findings are in  
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 Table 6. Salmonella serotypes isolated from beef cattle by state and sample 

type.  

(1) No Salmonella isolated. 

 

 

 

 

 

 

 

 

 

 

  

RECTAL 

SWAB 

FEED 

 

SOIL 

 

BEDDING 

 

TN -(1) S. Anatum S. Anatum 

S. Anatum  

S. Newington 

AL - S. Anatum S. Anatum - 

CA - S. Anatum - - 

WA - - - - 

Overall 

serotype 

distribution 

- 

 

44% S. Anatum

 

33% S. Anatum

 

11.1% S. Anatum 

11.1% S. Newington
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 Table 7. Salmonella serotypes isolated from dairy cows by state and sample 

type. 

(1) No Salmonella isolated. 

 

 

 

 

 

 

 

 SWAB FEED SOIL BEDDING 

TN -(1) 

S. Anatum 

S. Newington 

S. Anatum 

  

AL - 

 

S. Anatum 

 

S. Anatum 

Salmonella spp S. Anatum 

 

CA 

 

  

 

  

WA 

 

S. Anatum 

S. Newington Salmonella spp  

S. Anatum 

S. Javiana 

S. Newington 

Salmonella spp 

Seroty

pes 

isolate

d 

 
S. Anatum 4% 

S. Newington 4% 

S. Anatum 20% 

S. Newington 8% 

Salmonella spp. 4%

S. Anatum 12% 

Salmonella spp. 4%

S. Anatum 20% 

S. Newington 8% 

S. Javiana 8% 

Salmonella spp. 8%
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agreement with the major national surveys done in beef cattle and dairy cows 

where S. Anatum was one of the most frequent serotypes isolated in dairy cows 

(Wells et al. 2000) beef cattle (Fedorka-Cray 1998; Losinger et al. 1997), and 

feedlot cattle (Beach et al. 2002). 

Salmonella in soil samples 

Salmonella isolation from soil samples from beef cattle premises was 2.0% 

overall (Table 3). Only soil samples from two states, Tennessee (4.2%) and 

Alabama (4.2%), were positive for Salmonella (Table 3). Similar results were 

obtained from dairy cows soil samples, where the isolation rate was 3.1% (Table 

3). Samples from Alabama had overall higher background microflora compared 

to other states. It is interesting to note that Salmonella was isolated in both 

Southern US soil samples but not from soil samples in the Western US. The clay 

soil type, warm humid climate and strong poultry production history of the region 

may have contributed to higher recovery of Salmonella since clay soils and high 

humidity have been associated with increased Salmonella survival (Zibilske et al. 

1978; Mawdsley et al. 1995).  

Soil samples were taken from different locations within the farm in each 

sampling period. Although we do not have enough samples to correlate soil type 

and the presence of Salmonella, our data strongly suggests that Salmonella 

survival in the soils from the Southeast is higher that the other two regions. The 

survival of Salmonella in soil has been demonstrated and this increases the risk 

of further infection to new host (Winfield and Groisman 2003). Salmonella 

survival in soil has been shown to depend on the soil type, pH, soil water content, 
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surface soil properties, and presence of plants and temperature (Mawdsley et al. 

1995).  

The presence of indigenous flora will have an impact on the survival of enteric 

pathogens in soil (Hussong et al. 1985). Salmonella survival in sterile soil has 

been proved to be higher that in soils where there is a native flora present 

(Turpin et al. 1993). The native flora will compete with enteric pathogens for 

nutrients, decreasing its survival. The background microflora did not differ much 

from one location to another, so probably the soil type and climate had a major 

impact on the survival of Salmonella. 

Winfield and Groisman (2003) suggested that the use of E. coli as an indicator 

for Salmonella might not be useful in soil due to the longer survival of Salmonella 

in the environment compared to E. coli. Our results are in agreement with this, 

and lead us to suggest that specific tools to target specific pathogens need to be 

used in soil instead of the use of the indicator bacteria or biomass as a marker. 

Salmonella in feed 

Feed samples had the highest isolation of Salmonella for beef cattle (3.1%), 

and dairy cows (4.2%) (Table 3). Salmonella was found positive in at least one 

sampling period in all states except Washington. In beef cattle, grass was the 

most commonly contaminated sample (Table 8), probably due to the presence of 

feces from carriers within the farm. For dairy cows, TMR was the most 

contaminated feed (Table 8). Salmonella was isolated in all states in dairy cows.  

The mean isolation rate for Salmonella in feed for all four states was 4.2% 
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Table 8. Isolation of Salmonella from different types of feed sources in beef cattle 

and dairy cows by state. Animal feed varied depending on the season sampled 

and the state. 

(1) + = positive for Salmonella. 
(2) - = negative for Salmonella. 
(3) ns = not sampled. 
(4) TMR= Total Mixed Ration. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  STATE 

Animal type Sample type TN AL CA WA 
Beef 

Grass + (1) + + - (2) 

 Fresh hay - ns (3) - ns 

 Bunk hay - ns - ns 

 Fresh TMR(4) ns ns ns - 

 Bunk TMR ns ns ns - 
Dairy 

Fresh TMR - + + - 

 Bunk TMR - + - + 

 Fresh silage + - ns - 

 Bunk silage + - ns - 
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(Table 3). Krytenburg et al. (1998) found that 9.8% of the feed used for cattle in 

the Pacific Northwest samples was contaminated with Salmonella. 

Animal feed contaminated with Salmonella has been widely reported (Crump 

et al. 2002). The FDA (1995) did a survey and concluded that 56.4% of the 

animal protein and 36% of vegeTable proteins used for animal feed were 

contaminated with Salmonella.  

In Tennessee and Alabama, beef cattle were fed on grass during all the 

sampling periods (Table 8). Salmonella was isolated in both states. When 

indicator (E. coli and streptococci) were compared to Salmonella isolation rates 

(Table 9), no pattern was found. Grass samples were highly contaminated, 

probably due to the presence of fecal material in the pasture area (Table 9). An 

outbreak of Salmonella Newport in dairy herds has been associated with the 

presence of Salmonella in the pasture (Clegg et al. 1983). Salmonella survival in 

pasture was reported to occur for over 14 months, even after the removal of the 

cows. The use of wastewater to irrigate pasture land has been associated with 

salmonellosis in herds (Anderson et al. 2001).  

California beef cattle were feed on grass and hay depending on the season. 

Although the Aerobic Plate Count (APC) was higher in bulk hay, total coliforms 

and fecal Streptococcus were found more frequently in fresh hay where 

Salmonella was isolated. Similar values were found in Washington fresh hay and 

no Salmonella was isolated (Table 9). Therefore, there was no association 

between fecal indicator bacteria and occurrence of Salmonella in samples.
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Table 9. Enumeration of fecal microorganisms and percentage positive Salmonella in different feed types in bee cattle 

premises for each state 

 

Beef Microbial TN AL CA WA 
 APC(1)(2)   5.8 6.9 
 Total Coliforms(2)   5.3 5.9 

Fresh hay 
 

E. coli(2) 
  

1.2 
 

2.1 
 

 Fecal Streptococcus(2)   4.5 5.4 
 % Salmonella(3)   4.2 0.0 
 APC   6.5  
 Total Coliforms   3.9  

Bunk hay 
 

E. coli 
  

1.2 
  

 Fecal Streptococcus   3.5  
 % Salmonella   0.0  
 APC 8.3 9.0 8.2 7.8 
 Total Coliforms 6.6 8.0 6.8 6.6 

Grass 
 

E. coli 5.5 
 

5.7 
 

6.8 
 

5.8 
 

 Fecal Streptococcus 5.8 6.9 6.0 6.6 
 % Salmonella 4.2 4.2 0.0 0.0 
 APC    5.6 
 Total Coliforms    4.9 

Fresh TMR 
 

E. coli 
   4.5 

 Fecal Streptococcus    5 
 % Salmonella    0.0 
 APC    6.3 
 Total Coliforms    6 

Bunk TMR 
 

E. coli 
   

5.5 
 

 Fecal Streptococcus    5.5 
 % Salmonella    0.0 



 67

Washington cattle had more feed changes among seasons (Table 8). The feed 

consisted of hay, grass, and TMR. No Salmonella was isolated from Washington 

feed. The highest APC counts in Washington feed came from grass, and the 

lowest from fresh TMR (Table 9).  

For dairy cows, the background microflora did not differ in fresh vs. bunk 

silage samples. High background microflora including fecal indicators were found 

in beef and dairy silage (Table 10). Silage fermentation is important to control the 

level of acidity in order to decrease the resident microflora (Glickman et al. 1981). 

Salmonella survival in dry feed not only depends on the Aw values but also 

moisture content (Juven et al. 1983). Although Salmonella was not isolated from 

Washington fresh hay, the background microflora values were very high (Table 

10). Salmonella was probably not isolated because of the small amount of 

sample analyzed or because of competition with background microflora. 

Contamination could have occurred from other environmental sources such as 

birds or rodents. Glickman et al. (1981) reported an outbreak of S. Anatum that 

was related to an improper fermentation of the haylage and contaminated by wild 

birds. 

Fecal Streptococcus was infrequently found in both, fresh and trough TMR 

samples from Tennessee (Table 10).  Kabagambe et al. (2000) found that 

feeding TMR to cattle increased Salmonella shedding. Anderson et al. (1997) 

also associated the use of TMR with an outbreak of S. Menhaden in dairy cows 

in California. The source of feed was traced and the source of the contamination
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Table 10. Enumeration of fecal microorganisms and percentage positive Salmonella in rectal swabs, bedding and soil 

from dairy cows premises by sample type for each state.  

(1) APC= Aerobic Plate Count 
(2) The APC, Total coliforms, E. Coli and Fecal Streptococcus are given in log CFU/fecal swab logCFU/gram sample. 
(3) Salmonella is given in percentage of isolation 

 

Dairy   TN AL CA WA 
  APC(1)(2) 10.3 9.9 9.9 9.5 
  Total Coliforms(2) 9.4 9.2 9.3 8.8 

Fecal swab 
E. coli(2) 

8.8 9.6 8.8 8.6 
  Fecal Streptococcus(2) 7.6 7.7 8.2 7.8 
  % Salmonella(3)  0.0  0.0  0.0 4.2  
  APC 8.0 9.0 8.6 7.7 
  T. Coliforms 6.3 7.2 7.9 7.4 

Bedding material 
E. coli 

5.4 6.7 6.7 6.3 
  Fecal Streptococcus 5.2 7.0 7.3 6.5 
  % Salmonella  0.0  4.2  0.0 8.3  
  APC 7.0 8.9 7.3 6.8 
  Total Coliforms 4.9 6.6 6.9 3.8 

Soil 
E. coli 

4.1 6.4 5.1 3.6 
  Fecal Streptococcus 3.8 4.3 5.0 6.4 
  % Salmonella  4.2 8.3  0.0  0.0  
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was related to the addition of beef tallow which was contaminated with 

Salmonella. The use of animal by-products have been shown to be related to the 

presence of Salmonella in animal feed. Animal feed can get contaminated at 

milling (Whyte el at. 2003), during transportation (Fedorka-Cray et al. 1997), at 

the farm, from animals or due to the presence of rodents (Davies and Wray 

1995).  

Seasonality of Salmonella 

For beef cattle, all of the Salmonella positive samples were found during the 

period December 2002-February 2003 (Table 11). No Salmonella was isolated in 

any other season from Washington.  For dairy cows, all Salmonella positives 

were isolated during the period November 2002-May 2003 and May 2004 (Table 

12). Most of the Salmonella positive samples were obtained in the same period 

for beef cattle and dairy cows. In Washington dairy cows, Salmonella isolation 

was distributed among seasons, being isolated in Spring 2003 and 2004. These 

findings differ from the major national surveys were they found higher isolation 

rate of Salmonella isolation in the summer months (Wells et al. 2000; Losinger et 

al. 1997). Most of these studies were conducted during a 1 year period or less 

and only focused on the isolation rate of Salmonella in fresh feces or fecal 

swabs.  Our study covered a longer period of time and included environmental 

samples in addition to animal samples. Our data agrees with other studies where 

they isolated Salmonella in the winter months (Bailey et al. 2001). Most of the 

national studies have suggested a national distribution of Salmonella, being more 

prevalent in the Southern states (Kabagambe et al. 2000;
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Table 11. Salmonella isolation from beef cattle by season and state over a period of 21 months (August 2002 to June 

2004). 

 

 

 

 

 

 

 

 

(+) Salmonella isolated; (-) no Salmonella isolated; ns: not sampled. 

 

 

 

 

 

  

 
Summer/ 

Autumn02 

 
Winter 
02/03 

 
Spring 

03 

 
Summer 

03 

 
Autumn 

03 

 
Winter 

04 

 
Spring 

04 

 
TN - + - - - -   

ns 

AL - + - - - -   
ns 

CA - + - - - -   
ns 

WA - - -   
ns 

- - - 
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Table 12. Salmonella isolation from dairy cows by season and state over a period of 21 months (August 2002 to  June 

2004). 

 

 

 

 

 

 

 

 

 

 

 

(+) Salmonella isolated; (-) no Salmonella isolated; ns: not sampled. 
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Fedorka- Cray et al. 1998). Most of these studies sampled the farms in the South 

during the summer periods (Kabagambe et al. 2002; Fedorka-Cray et al. 2000). 

However, Fedorka-Cray et al. (1998) found that Salmonella was more 

prevalent in a region which included Arizona, California, Idaho and Washington 

state.  

A high isolation of Salmonella was identified during the winter of 2003 in the 

US. Most of the Salmonella isolated came from the environment. The presence 

of wild birds or rodents in warmer areas has been related to the increase of 

Salmonella isolation (Kirk et al. 2002; Craven et al. 2000; Davies and Wray 

1995). Salmonella was not isolated during the summer periods, but we found it 

during other seasons. High temperatures in the Southern states might have 

impeded the survival of Salmonella in soil samples.  

There were also differences in the Salmonella isolation by states. For beef 

cattle, Salmonella was more prevalent in Tennessee (12.5%), whereas no 

Salmonella was isolated from Washington beef samples (Table 2). For dairy 

cows, the highest isolation rate was seen in Alabama and Washington (16.7% 

each). California was the only state where we found the same isolation rate for 

dairy cows and beef cattle (4.2%). 

Serotype distribution 

S. Anatum was the most common serotype isolated from beef cattle and dairy 

cows (Tables 6 and 7). This is not one of the most common human isolates 

(CDC 2003). S. Anatum is not commonly isolated from sick ruminants (CDC 

2003), but during 2002, was the 5th most common isolate from non sick bovine 
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(CDC 2003). We are in agreement with other authors that the most common 

serotypes found in animal feeds do not usually correlate with the most common 

serotypes isolated from human cases (CDC 2003). S. Anatum is not species-

specific and seems not to be very infective for ruminants. Other authors have 

also found S. Anatum among the most common serotypes isolated from ruminant 

feed (Krytemburg et al. 1998). 

The only two serotypes isolated from beef cattle samples were S. Anatum 

(89.9%) and S. Newington (11.1%) (Table 6). S. Anatum was found in every 

sample type and S. Newington only in Tennessee bedding (Table 6).  

The most common serotypes isolated from dairy cows were S. Anatum (56%), 

S. Newington (20%), Salmonella spp (16%), and S. Javiana (8%) (Table 7). In 

beef cattle (Figure 1), S. Anatum was well distributed across all sample sites in 

the US with the exception of Washington, and S. Newington was only found in 

Tennessee. The same trend was found for dairy cows for S. Anatum (Figure 2). It 

was more frequently isolated in Washington state, and less in California. S. 

Javiana was only isolated in Washington state. S. Newington was isolated in 

Washington state and Tennessee. Salmonella spp. (unidentified serotype) were 

found in Washington state and Alabama. 

 

IV. Conclusion 

Salmonella isolation rate differed in dairy cows and beef cattle probably due 

to differences in animal management practices and their environment. We found
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Figure 1. Percentage of Salmonella serotypes isolated by state in beef cattle. 
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Figure 2. Percentage of Salmonella serotypes isolated by state in dairy cows 
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a national distribution of S Anatum, although isolation rate was higher in 

Southern beef cattle. Although S. Anatum does not represent one of the top ten 

serotypes most common in humans in the US every year, care must be taken to 

control the presence of these serotypes. S. Javiana is increasingly isolated in 

human cases of salmonellosis (CDC 2004) and one cause may be its presence 

in bovine and their environment.   The serotypes found in this study are similar to 

those obtained by other authors in previous studies. Soil contamination with 

Salmonella was common. The survival in soil might have an impact in further 

contamination within the farm. Salmonella was more frequently isolated during 

colder months from environmental samples. The environment appeared to be a 

major reservoir for Salmonella at the farm from which animals can be 

contaminated repeatedly. Breaking the contamination cycle for Salmonella 

between animals and the environment will be essential to reduce isolation rate of 

Salmonella in beef and dairy cows. 
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Abstract 

Human cases of salmonellosis have been linked to the consumption of pork 

products. The most common Salmonella serotypes isolated from human cases of 

salmonellosis usually differ from the most common serotypes isolated from 

healthy swine. Whereas Salmonella contamination during transportation, or at 

slaughterhouses has been well established, less in known about the role of swine 

environments in Salmonella survival and further contamination of the animals. 

The objective of this study was to determine the Salmonella occurrence in 

animals at selected farms as well as its occurrence in the environment 

geographically and temporally to try to establish the major reservoirs of 

Salmonella in swine farm operations. Samples from 4 locations in four different 

states (Tennessee, North Carolina, California and Washington) were collected 

over 21 months. Environmental samples (n=120) and fecal swab samples 

(n=400) were analyzed to determine the presence of Salmonella using modified 

BAM protocols. Salmonella was more prevalent in California swine (10.3%), 

followed by North Carolina (7.3%), and Tennessee and Washington (6.3% each) 

swine. Salmonella was often isolated from fecal samples (11.9%), followed by 

fecal swabs (8.8%), feed (7.7%) and soil samples (5.4%). A total of 40 serotypes 

were isolated from swine fecal swabs and environment. The most common 

Salmonella serotypes isolated were S. Anatum, S. Javiana, S. Newington, and S. 

Worthington. We found regional differences in Salmonella serotypes. 

Management practices must be addressed to control swine fecal matter to 

reduce further contamination of the farm. 
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I. Introduction 

Human cases of salmonellosis have been linked to the consumption of pork 

products. The most common serotypes isolated from human cases of 

salmonellosis during 2002 were S. Typhimurium, S. Enteriditis, S. Newport, S. 

Heidelberg, S. Javiana, S. Montevideo, S. Muenchen, S. Oranienburg, S. 

Saintpaul, and S. Infantis (CDC 2003). These usually differ from the most 

common serotypes isolated from healthy swine (CDC 2003). In 1995, the USDA 

conducted a national survey to determine the most common serotypes of 

Salmonella found in finisher pigs in the US. The serotypes most commonly found 

were S. Derby, S. Agona, S. Typhimurium var Copenhagen, S. Brandemburg, 

and S. Mbandaka (USDA 1997).  Salmonella contamination of pork meat at 

slaughter has been well established (Wonderling et al. 2003). To reduce 

contamination of swine with enteric pathogens at slaughter, USDA initiated a 

mandatory Hazard Analysis Critical Control Point (HACCP) program in 1997 in 

US meat plants (FSIS 1999). Stress factors can increase the shedding of 

Salmonella by carriers and contaminate other animals (Corrier et al. 1990) during 

transportation and in holding areas prior to slaughter. Several studies have been 

done to determine the status of Salmonella at the farm level to investigate the 

level of this pathogenic organism before slaughter. Most farm level studies have 

sampled fecal material (USDA 1997), whereas a few studies have focused on 

feed samples (Harris et al. 1997), transportation (Lo Fo Wong et al. 2002) or the 

environment (Letellier et al. 1999; Barber et al. 2002). The objective of this study 

was to determine the Salmonella occurrence in animals at the farm as well as its 
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occurrence in the environment geographically and temporally to try to establish 

the major reservoirs of Salmonella in swine farm operations. 

 

II. Material and Methods 

Sample collection: Samples were collected from a total of 4 farms in 4 

different states (Tennessee, California, Washington, and North Carolina) during a 

period of 21 months. Each farm was sampled every 3-4 months, obtaining a total 

of 6 samplings per farm. Several sample types were collected for each sampling 

period. A total of 520 samples were analyzed. Rectal swabs were collected from 

20 randomly selected swine on each farm. Animals were randomly chosen by the 

person that was taking the samples (n=400). The other sample types were taken 

from the surrounding environment (n=120). These consisted of soil samples from 

outside the area where swine were held, and fresh feces from the swine holding 

area. Also, from each farm, fresh feed and feed bunk samples were collected 

from whatever source the animals were feeding. Samples were collected by the 

farmers using a detailed sampling plan, individualized pre-weighed sample 

containers, and Geographical Position System (GPS) coordinates were recorded 

at the sampling place using  eTrex (Garmin, Olathe, KS). All sample containers 

and sampling supplies were mailed to farm collaborators approximately two 

weeks prior to each sampling with a return address label. Samples were sent to 

the University of Tennessee via overnight express and kept refrigerated at 4o C 

until analyzed within the next 3-4 days.    



 89

Farm description: The farms from Washington, North Carolina and California 

were private premises. The Tennessee study site was a privately owned farm for 

the first 3 sampling periods. Beginning with the fourth sampling period samples 

were taken from a nearby University swine farm. The North Carolina swine farm 

was a farrowing swine facility.    

Salmonella isolation: Samples were analyzed for the presence of Salmonella 

using FDA-BAM modified methods (Pangloli et al. 2003). All media used was 

obtained from Difco (Sparks, MD) except Rappaport-Vassiliadis (RV) that was 

obtained from Difco and Oxoid (Ogdensburg, NY). The rectal swabs were first 

transferred into a sterile tube containing 10 ml of Universal Broth in order the 

divide the sample to analyzed for the presence of different pathogens. Then, 1 ml 

was transferred into a tube containing 10 ml of RV broth or Tetrathionate broth 

(TT) (added Brilliant Green 20 ml/l and iodine 10ml/l), and incubated as 

described in Table 1. For the environmental samples, 25 grams were weighed 

and mixed with TT or RV (225 ml) and incubated as described in Table 1. Dairy 

and beef samples were weighed (25 grams) and mixed with 225 ml of Lactose 

Broth (LB) and incubated as described in Table 1. Pre-enrichment broth (1ml) 

was transferred into a sterile test tube with 10 ml of TT and incubated (Table 1).  

All the samples were streaked for isolation onto XLT4 (xylose-lysine-Tergitol 

4)/BSA (bismuth sulfite agar) plates (Table 1).Typical Salmonella colonies on 

XLT4 (black) and atypical colonies (yellow with red background) were selected 

for further analysis. Typical BSA Salmonella colonies (metallic sheen) were 

selected. Presumptive colonies were transferred onto TSI (Triple  
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Table 1. Protocol followed for the isolation of Salmonella from swine rectal swabs 

and environment. This protocol was done as described by Pangloli et al. 2003. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(1)T: time; t: temperature. 
(2) RV= Rappaport-Vassiliadis.  
(3) TT= Tetrathionate. 
(4) BSA= Bismuth Sulfate Agar. 
(5) XLT4= Xylose-Lysine-Tergitol 4 Agar. 
 

 

 

 

 

 

 

 

Origin of sample Enrichment  T(1)      t 

Medium 

Plating         T        t 

Medium 

Rectal swab RV(2)        42C    24h XLT4(5)     35.5C  24h 

Feed RV          42C   24 h BSA(4)      35.5C  48h 

Soil TT(3)         42C    24h XLT4     35.5C  24h  

Bedding/feces TT          42C    24h XLT4     35.5C  24h  
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Sugar Iron) agar slants, and into Urea broth and incubated at 35.5C for 24 hours. 

A TSI result of K/A (red slant /yellow butt) or K/S (red slant/ black precipitate), 

and urea negative were considered presumptive positive for Salmonella. 

Presumptive colonies were kept for further serological analysis with somatic 

antigen O (Difco, Sparks, MD). 

Agglutination was considered positive for Salmonella. Positive antigen O 

colonies were analyzed using Analytical Profile Index (API) 20E (Biomeriux, 

Hazelwood, MO) to confirm the presence of Salmonella spp and or S. Arizona.     

Aerobic Plate Count : Aerobic plate count (APC) was prepared according to 

Feldsine et al. (2003) using SimPlate (Biocontrol, Bellevue, WA). Fecal swabs 

were vortexed in 10 ml lactose broth. For other samples, 25 grams were weighed 

into sterile filtered bags with 225 ml of 0.1% peptone water (% w/v) and 10-fold 

dilutions were prepared. SimPlates were incubated at 35C for 24h. The total 

number of wells showing color change were counted. To calculate the MPN 

(most probable number) of organisms, the conversion Table provided by the 

manufacturer (Biocontrol, Bellevue, WA) was used and multiplied by its 

corresponding dilution.    

Total Coliforms/ Escherichia coli :Total Coliforms and E. coli were enumerated 

using SimPlates using instructions provided by the manufacturer (Biocontrol, 

Bellevue, WA). SimPlates were incubated at 35C for 24 h. Total coliforms were 

counted based on wells with color change. E. coli, were counted by observing 

wells that fluoresced under UV light. The total MPN of coliforms/ E. coli was 
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calculated using the SimPlate conversion Table provided by manufacturer 

(Biocontrol, Bellevue, WA). 

Fecal streptococci: Fecal streptococci were counted as described by Downes 

and Ito (2001). For fecal swabs, the swabs were vortexed in 10 ml lactose broth. 

A 1 ml aliquot was transferred into sterile tubes containing 9ml of 0.1% peptone 

water. For other samples, 25 grams was weighed into sterile filtered bags with 

225 ml of 0.1% peptone water (%w/v). Decimal dilutions were prepared. A 1ml 

aliquot from each dilution was pourplated with 15-20 ml. KF Streptococcus Agar 

(%). Plates were incubated at 35C for 48h. Pink colonies were counted using a 

manual colony counter. 

Riboprinter: Frozen isolates were thawed and streaked onto BHI Agar at 

35.5C for 24 h. Samples were processed using a RiboPrinter (Qualicom, 

Wilimgton, DE) manufacturer’s protocol using PvuII as the restriction enzyme 

(Bailey et al. 2002). The ribosomal DNA fragments were digested and processed 

on a nylon membrane and hybridized with an E. coli DNA probe. Using 

chemiluminescent, the image was captured by a CCD camera and taken to 

computer software for further analysis (Bruce 1996). The RiboPrinter identified 

isolates by band matching and also classified them into ribotypes (Oscar 1998). 

 

III. Results and Discussion 

Salmonella was isolated from animals and their environment in a multistate 

study to determine its isolation rate in beef cattle, dairy cows, swine, poultry, and 

turkey in the US. The overall results of this study are shown in Table 2. In this  
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Table 2. Percentage of Salmonella isolation by state and farm animal type over a 

period of 21 months (August 2002 to June 2004). Five different states were 

sampled, Tennessee, Alabama, California, Washington and North Carolina. 

(1) ns: not sampled. 
(2) Data obtained from Rodriguez et al. 2004a, and Rodriguez et al. 2004b. 
 

 

 

 

 

 

 

 

 

 

 

 TN AL CA WA NC AVERAGE 

Beef (2) 12.5 8.3 4.16 0.0 ns (1) 6.2 

Dairy (2) 8.3 16.7 4.16 16.7 ns 11.5 

Swine  6.3 ns 10.3 6.3 7.3 7.8 

Poultry (2) 12.5 ns ns 16.7 5.0 11.4 

Turkey (2) ns ns ns Ns 30.0 30.0 
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study we focus only on the Salmonella isolation rate in swine and the farm 

environment.  Data on other animals are provided for comparison only by the 

University of Tennessee Food Safety Center of Excellence (Draughon 2004).  

Salmonella was found in over 5% of swine samples in all states tested during 

this study. 

Salmonella in fecal swabs and feces 

Salmonella was not isolated from the Washington swine feces samples 

(holding area) (Figure 1). However, the highest isolation rate of Salmonella 

isolation from fecal swabs was found in Washington (12.5%). The background 

microflora (Table 3) was similar for all fecal swabs. The swine feces samples 

obtained from North Carolina, California, and Tennessee were fresh feces. The 

Aerobic Plate Count (APC) counts of feces were similar in all states (Table 3). 

Tennessee fecal samples showed background counts lower than California and 

North Carolina, but Salmonella was still present (Table 3).  

Swine feces not containing Salmonella came from a Washington farm from a 

mixture of bedding material, grains and dry feces. The background microflora 

counts for this sample type were similar to those found in Tennessee and 

California swine feces (Table 3). The bedding material added to the dry feces 

was highly contaminated and one can argue that the presence of a native 

microflora could have prevented the growth or survival of enteric pathogenic 

microorganisms. Salmonella survival in fecal material has been previously 

established (Gray and Fedrorkra-Cray 2001). Repeated exposure to swine feces 

is a risk factor for Salmonella shedding in the farm (Davies et al 1997)   
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Figure 1. Percentage of Salmonella isolated over a period of 21 months (August 

2002 to June 2004) in swine rectal swabs (swab) and their environment (feed, 

soil and feces). Four different states were sampled for dairy cows and beef cattle: 

Tennessee, Alabama, California, and North Carolina. 
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Table 3. Enumeration of fecal microorganisms and percentage positive Salmonella in rectal swabs, bedding and soil 

from swine premises by sample type for each state.  

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(1) APC= Aerobic Plate Count. 
(2) The APC, Total coliforms, E. Coli and Fecal Streptococcus are given in log CFU/fecal swab logCFU/gram sample. 
(3) Salmonella is given in percentage of isolation

Swine Microbiology WA TN CA NC 
 APC (1)(2) 10.0 9.9 9.6 9.5 
 Total Coliforms (1) 9.6 9.4 9.5 9.2 

Fecal swab 
E. Coli (1) 

8.8 9.0 9.3 9.2 
 Fecal Streptococcus (1) 6.5 7.7 7.2 7.0 
 % Salmonella (3) 12.5 4.2 8.3 10.0 

 APC 8.4 8.1 8.9 9.5 

 Total Coliforms 7.0 5.4 8.6 7.6 

Feces 
E. Coli 

6.1 5.4 8.5 7.1 
 Fecal Streptococcus 7.0 5.9 6.9 6.9 
 % Salmonella 0.0 12.5 25.0 10.0 
 APC 6.6 6.2 7.9 7.4 
 Total Coliforms 4.6 4.3 6.1 5.2 

Soil E. Coli 6.7 2.2 5.3 5.1 
 Fecal Streptococcus 4.5 3.9 6.6 4.7 
 % Salmonella 4.2 4.2 8.3 5.0 
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Serotypes in fecal material  

The most common serotypes obtained from swine feces were S. Javiana 

(7.3%), S. Anatum, S. Derby, S. Saintpaul, S. Arizona/Tennessee and S. 

Worthington (2.4% each) (Table 4). S. Javiana was found in all swine feces 

positive for Salmonella.  S. Javiana is one of the top ten most common serotypes 

isolated from human salmonellosis cases, and the CDC reported an increased of 

227% in human cases within the last seven years (MMRW 2004). It was 

significant that this serotype was found in the feces of all states sampled except 

Washington (Table 4). S. Javiana was also found in North Carolina soil  (Table 4) 

that probably was contaminated by feces. 

Salmonella in feed 

Swine feed samples were contaminated with Salmonella in all states included 

in our study. Percent positive salmonellae in feed were (Figure 1): North Carolina 

(10%), California and Washington (8.3%), and Tennessee (4.2%). The type of 

feed given to the animals varied depending on the location. North Carolina swine 

were fed pelleted feed, whereas Tennessee and California in the study used a 

mixture of grains and corn. Washington feed consisted of a mixture of grains. 

While some authors consider pelleting as a risk factor for Salmonella in feed 

(Harris et al. 1997), other researchers show different results (Lo Fo Wong et al. 

2004). Our data show higher Salmonella isolation from pelleted feed than from 

non-pelleted, but these differences were small.
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Table 4. Salmonella serotypes by state and sample type in swine. 
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Salmonella was isolated from feed bunk samples in all states (Table 5). The 

animals probably contaminated feed. Interestingly, Salmonella was isolated on 

fresh feed (Table 5) in all states sampled except California. Fresh feed was 

considered to be feed that was at the farm that had not been opened or freshly 

mixed. This fresh feed could have been contaminated before arrival to the farm, 

during transportation (Fedorka-Cray et al.1997), or in the farm facility due to 

environmental factors or the presence of wild birds or rodents. The background 

microflora when compared for fresh feed and feed bunk were higher for feed 

bunk (Table 5).  There was no association between the presence of total 

coliforms, E. coli, or fecal Streptococcus with the presence of Salmonella in 

feeds.  

Serotypes in feed 

The most common serotypes of Salmonella obtained from swine feed were S. 

Anatum (12.2%), and S. Typhimurium and S. Newington (2.4% each). A group of 

Salmonella were not identifiable to the serotype level and were classified as 

Salmonella spp. (Table 4). The most common serotypes in feed in Tennessee 

and Washington were not the same as those isolated from fecal swabs of fecal 

samples. These data indicate that contamination of these feed samples probably 

occurred prior to arrival to the farm. An important finding was the isolation of S. 

Typhimurium from bunk feed in North Carolina (Table 4). This is not a common 

serotype frequently found in animal feed (Davies et al. 1997; Schneider 2002). 

Since it was isolated from feed bunk, we could conclude that feed was most likely 

contaminated by animals. This serotype is the major one isolated from human
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Table 5. Enumeration of fecal microorganisms and percentage positive Salmonella in fresh and bunk feed samples 

from swine premises by sample type for each state. 

  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(1) APC= Aerobic Plate Count. 
(2) The APC, Total coliforms, E. Coli and Fecal Streptococcus are given in log CFU/fecal swab logCFU/gram sample. 
(3) Salmonella is given in percentage of isolation. 

 

Swine Microbial WA TN CA NC 

 APC (1)(2) 6.0 4.4 4.7 5.0 

 Total Coliforms (2) 3.4 3.9 4.3 4.2 

Fresh feed 
E. Coli (2) 

3.2 1.0 1.0 4.2 

 Fecal Streptococcus (2) 3.1 3.9 4.4 2.3 

 % Salmonella (3) 4.2 2.1 0.0 3.3 

 APC 6.8 5.5 6.4 6.0 

 Total Coliforms 4.4 4.3 4.9 3.9 

Bulk feed 
E. Coli 

2.8 1.0 3.9 3.5 

 Fecal Streptococcus 5.2 4.8 5.3 4.3 

 % Salmonella 4.2 2,1 8.3 6.7 
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cases (CDC 2003), and is also commonly isolated from sick swine (CDC 2003). 

The presence of this serotype in the farm can be a risk for further contamination 

of other animals in the farm, or further contamination during transportation or at 

the slaughter plant, becoming a hazard for human health. S. Anatum was the 

most common serotypes isolated from fresh feed, followed by S. Newington. S. 

Anatum was found in feed in all the states sampled except California (Table 4). 

S. Anatum was also found in feed bunk samples from Tennessee and North 

Carolina, whereas the most common serotype found in California and 

Washington feed bunk was identified only was Salmonella spp. These serotypes 

isolated in feed are not usually associated with disease in swine (Schwartz 

1991). 

Salmonella in soil 

Soil samples around swine facilities were positive for Salmonella in all states 

(Figure 1), being slightly higher in California (8.3%), followed by North Carolina 

(5%), Tennessee and Washington (4.2% each). Soil samples were taken on the 

farm outside the area where the animals were kept. The presence of Salmonella 

in this sample type suggests that soil could have been contaminated by the 

presence of wild birds, rodents, and animal transfer or by the farmers through 

boots when moving about the swine facility. Contamination of the farmer’s boot is 

not unusual; especially considering the amount of Salmonella isolated from swine 

feces.  

Salmonella survival in soil and swine environment has been described by 

Morse et al. (1982), and cited by Gray and Fedorka-Cray (2001). The length of 
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survival will be determined by the soil characteristics (Zibilske et al. 1978). Soil 

contamination in the farm could serve as a reservoir for further transmission to 

swine on the farm.  

Serotypes in soil 

The most common serotypes isolated from soil were S. Anatum (7.3%), S. 

Javiana (4.9%), Salmonella spp. (4.9%), and S. Newington (2.4%). S. Anatum 

and Salmonella spp. were isolated from every sample type. S. Javiana was 

isolated from feces in all states except Washington, and was also found in North 

Carolina soil. S. Newington was also isolated from fecal swabs, and feed 

samples. 

Our best success in isolating Salmonella from swine farms came from 

combining rectal swabs and feces samples. The use of feces in combination with 

feed may also be a reliable tool to determine the total presence of Salmonella in 

swine farms. 

Salmonella and seasons 

The distribution of Salmonella by seasons and states is shown in Table 6. It is 

well established that Salmonella is most commonly isolated during the summer 

periods (Huges et al1971; Wray et al. 1987; Currier et al. 1986), although 

Berends et al. (1996) did not find any seasonality. However, this depends on the 

location sampled according to our data. Salmonella was isolated from California 

swine at least once in every season during the six sampling periods (100%). In 

Washington, Salmonella was isolated in five out of six sampling periods (83.3%), 

whereas in North Carolina Salmonella was found in four of the five sampling
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Table 6. Salmonella isolation from swine samples by season and state over a period of 21 months (August 2002 to 

June 2004). 
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periods (80%). Salmonella was found in three of the six sampling periods in 

Tennessee (50%).The first swine farm from Tennessee was located next to a 

beef farm we had sampled in a previous study. Salmonella was isolated from the 

beef farm only during winter 02/03 (data not shown). Salmonella was not isolated 

in any other season from this farm (data not shown). The majority of samples that 

came from the swine farm in Tennessee situated close to the beef farm were 

positive for Salmonella during the same period. The same serotype was found in 

both farms, and corresponded to S. Anatum. This was found in swine feed, soil 

and feces (Table 3), and in beef cattle grass, soil and bedding. Due to the 

proximity between these two farms, it appears that cross contamination may 

have occurred from one farm to another via contaminated water, wild birds 

(Craven et al. 2000), rodents (Davies and Wray 1995) or workers (Barber et al. 

2002).  Runoff may have been another possible mode of transmission from one 

farm to another. Further research is under way to evaluate the clonacity of this 

isolate.  

Salmonella serotypes  

A total of 40 Salmonella were isolated from swine fecal swabs and 

environmental samples (Table 7). The most common serotypes were S. Anatum, 

S. Javiana, S. Newington, and S. Worthington. One isolate (2.4%) was classified 

as S. Arizona/ S. Tennessee.  S. Anatum was the most prevalent isolate from 

feed and soil, whereas Salmonella spp was the most common isolate from feces 

followed by S. Javiana. 
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Table 7. Percentage of Salmonella serotypes isolation from each sample type in 

swine herds and their environment (n=40). 

 

 

 

 

 

 

 

 

 

Serotype Swab Feed Soil Feces 
 

Total 

S. Anatum 2.4 12.2 7.3 2.4 
 
       6.1 

S. Arizona/TN - - - 2.4 
 

0.6 

S. Derby - - - 2.4 
 

0.6 

S. Heidelberg 2.4 - - - 
 

0.6 

S. Javiana - - 4.9 7.3 
 

3.0 

S. Mbandaka 2.4 - - - 
 

0.6 

S. Newington 2.4 2.4 2.4 - 
 

1.8 

S. Saintpaul - - - 2.4 
 

0.6 

Salmonella spp. 14.6 7.3 4.9 9.8 
 

10.4 

S. Typhimurium - 2.4   - 
 

0.6 

S. Worthington 2.4 - -  2.4 
 

1.2 
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The most common serotypes isolated in “Swine ‘96” were S. Derby, S. Agona, 

S. Typhimurium var Copenhagen, S. Brandenburg, S. Mbandaka, S. 

Typhimurium, S. Heidelberg, S. Anatum, S. Enteriditis, and S. Worthington 

 (USDA 1997). This study did not sample any farm from the Pacific Coast and 

was focused on the presence of Salmonella in finishing hogs. Davies et al. 

(1997) compared the isolation rate of Salmonella in finishing pigs raised under 

two different production systems. The most common serotypes they isolated 

were S. Derby, S. Typhimurium, S. Heidelberg, S. Worthington, and S. 

Mbandaka. Isolates in both studies were similar to ours. The major difference 

was in the isolation of Salmonella spp in our study that was not found in any of 

the other two studies. Most of the unserotyped Salmonella spp. in our study was 

found in California and Washington (Figure 2).  Although Salmonella were 

repeatedly streaked for isolation, it is possible that the Salmonella spp. are two or 

more serotypes which resist separation. They could also be slightly different from 

other recognized serotypes.     

S. Anatum was found among the top ten serotypes in “Swine’96” and not 

found in Davies’ study. Most of our farms were not finisher farms, and due to the 

nature of the samples, slight differences in the serotypes isolated is not 

unexpected.  

The geographical distribution of Salmonella is shown in Figure 2. At a glance 

we can see differences in the distribution of S. Anatum, being more prevalent in 

the Southeastern US. In the Pacific coast states, most of the Salmonella isolated 

were classified as Salmonella spp. S. Javiana was the most.
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Worthington      ; Salmonella spp 

Figure 2. Percentage of Salmonella serotypes isolated from swine herds and their environment by state. 
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frequent isolate found in North Carolina, although it was also found in Tennessee 

and California S. Derby in the most common serotype isolated from non-clinical 

cases in swine and the fourth most frequent cause of clinical salmonellosis in 

swine in 2002 (CDC 2003). S. Heidelberg is the fourth most common serotype 

isolated from human cases of salmonellosis; it is not typically isolated from 

healthy swine. 

S. Typhimurium is the number one cause of human and swine salmonellosis. 

The finding of this isolate in swine feed, though rare, is important due to its 

clinical implication. Further research has to be done to establish differences 

among serotypes isolated from swine farm environments in the US to establish 

levels of risk and determine if certain geographic areas are more prone to 

introduce specific serotypes to the food chain.  

 

IV. Conclusion 

Salmonella serotypes can vary widely depending on the geographical 

location. Within the farm, most of the isolates came from feces or rectal swab 

samples. Management practices must address the isolation rate of Salmonella in 

feces since this is a potential source for further contamination. The isolation of 

Salmonella in the soil area outside the farm was related to the amount of 

Salmonella isolated from feces. Practices to control wild birds and rodents, as 

well as access to the farm by personnel is essential to avoid further spread of 

Salmonella to the environment. Although the common serotypes found in feed 

did not correlate to the serotypes isolated from fecal material, animal feed needs 
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to be free of Salmonella to reduce transmission to animals. Identification and 

control of Salmonella positive carriers at the farm is important to stop further 

shedding and contamination.   
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Abstract 

Salmonella is a pathogenic enteric microorganism that belongs to the 

Enterobacteriaceae family. Traditional identification methods of pathogenic 

microorganisms are based on biochemical and serological analysis. However, 

newer techniques rely on DNA analysis. Automated Riboprinter® is one such 

widely used method to identify Salmonella spp.  This technique is based on the 

enzymatic digestion of ribosomal DNA by restriction enzymes. The objective of 

this study was to compare the efficacy of two restriction enzymes for 

identification of Salmonella spp. originating from farm animals and the 

surrounding environment. Samples were obtained for a multisate study 

conducted by the University of Tennessee Food Safety Center of Excellence. 

Isolates were characterized using biochemical and serological tests. Two 

different restriction enzymes were used with the automated Riboprinter® 

protocol, EcoRI and PvuII. Different results were obtained with each enzyme. 

EcoRI digested isolates were mistakenly identified as Escherichia coli, whereas, 

PvuII digested isolates were identified as a variety of Salmonella spp. and 

Pseudomona fluorescens. Further biochemical analysis indicated the isolate was 

not Pseudomona fluorescens. These data suggest that care must be taken when 

using molecular tools such as Riboprinter® to identify Salmonella spp. because 

misinterpretation can lead to a misclassification of the organism. Understanding 

the limitations, choosing the correct protocol, and confirming results with 

appropriate biochemical and serological tests will ensure more accurate 

identification of Salmonella serotypes.       
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I. Introduction 

Salmonella is a pathogenic enteric microorganism in the Enterobacteriaceae 

family. Traditionally, Salmonella has been classified based on biochemical and 

serological tests in the Kauffman-White scheme. New methods of identification of 

organisms based on DNA analysis have moved Salmonella nomenclature into 

two different species, Salmonella enterica and Salmonella bongori. Salmonella 

enterica is subdivided onto five different groups (Jay 2000) which contains the 

majority of the Salmonella serotypes. The Centers for Disease Control (CDC) 

have recently adopted this new nomenclature (CDC 2002). This new scheme is 

also used by the World Health Organization (WHO), and the Pasteur Institute in 

France (Euzeby 2000; Yan et al. 2003, Popoff et al. 2004). 

Ribotyping is a genetic tool that classifies organisms based on the differences 

in the DNA that transcribes for ribosomal RNA. Automated ribotyping was 

developed by Qualicom (Wilimgton, DE) to analyze, compare and classify 

organisms using their patented Riboprinter®. Genes that codify for ribosomal 

RNA are one of the most conserved regions in the bacterial genome (Snyder and 

Champness 2003) Small differences among different organisms are used to 

classify them into different groups or serotypes.  

Restriction enzymes cut DNA at specific nucleotide sequences. Bacteria use 

restriction enzymes to defend themselves against foreign DNA, such as virus, 

plasmids and prophages, or in recombination events (Snyder and Champness 

2003). These enzymes can be grouped into three categories, type I, type II, and 

type III. The most common restriction enzymes used in molecular genetics 
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belong to the type II (Pingoud 2002).  The two most common restriction enzymes 

used for Salmonella with the Qualicom Riboprinter® are EcoRI and PvuII. The 

restriction enzymes are named after the name of the organisms from which they 

were isolated. EcoRI was isolated from Escherichia coli and PvuII from Proteus 

vulgaris. 

There are over 2300 Salmonella serotypes, and the Riboprinter® library does 

not contain representatives of all of them (Oscar 1997). Riboprinter® has many 

useful applications, however studies are needed to compare efficacy of different 

restriction enzymes and to understand how phenotypic and serological 

characteristics are related to ribogroups. Therefore this study was undertaken to 

determine the ability of the Riboprinter® to differentiate and identify Salmonella 

isolates in comparison to serological analysis, and to determine which restriction 

enzymes, EcoRI or PvuII, is more useful for differentiation of Salmonella from 

animal and environmental samples.     

 

II. Materials and Methods 

The Salmonella isolates were obtained from a multistate study conducted by 

the University of Tennessee Food Safety Center of Excellence to determine the 

presence of Salmonella on swine farms. Samples were taken from four farms 

located in four different states (Tennessee, Washington, California and North 

Carolina) during a period of 21 months. Sample types included fecal material, soil 

outside the holding area, and swine feed. The media used was obtained from 

Difco (Sparks, MD) except Rappaport-Vassiliadis (RV) which was obtained from 
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Difco and Oxoid (Ogdensburg, NY) Salmonella was isolated according to BAM 

protocol as modified by Pangloli et al. (2003). Atypical colonies on selective 

plating were tested for serological reaction with Ag O (Difco). Triple Sugar Iron 

(TSI) and urea test were performed. On TSI, colonies appeared as K/S (alkaline 

slant black butt) or A/S (acid slant black butt). Urea test was negative. 

Agglutination was considered a positive results. Colony identification was 

confirmed using Analytical Profile Index (API) 20E (Biomerieux, Hazelwood, MO). 

Ribotyping of these isolates was conducted using two different restriction 

enzymes, EcoRI and PvuII (Qualicom, Millington, DE), using the automated 

Riboprinter® (Qualicom). Colonies were grown overnight at 350 C on Brain Heart 

Infusion (BHI) Agar (Difco), and DNA prepared for enzymatic digestion according 

to the manufacturer’s protocol. Samples were loaded in a sample carrier. A lysing 

agent was added and the DNA was digested with the selected restriction enzyme 

(Bruce 1996). The DNA fragments were separated by electrophoresis, 

transferred to a membrane, and then hybridized with a labelled DNA probe 

(Oscar 1997). A picture of the resulting bands was taken and processed by a 

computer (Bruce 1996). The organism was identified by comparing the banding 

pattern with an existing computer library (Bruce 1996). If no match was found for 

the isolate a new ribogroup was assigned (Oscar 1997).  

Serological analysis with Ag O (Difco) test was done to confirm a positive 

result. King’s Agar media and OF medium were prepared according to 

manufacturer’s formulation (Difco) for identification of possible Pseudomonas 

fluorescens. Colonies were plated and incubated 48 hours at 35C. After 
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incubation, the plates were examined under UV light and colony fluorescens 

indicated a positive result. In addition, fermentation of glucose was considered 

negative for Pseudomona fluorescens (Compendium of methods for the exam of 

food products).    

 

III. Results and Discussion 

The results obtained when both enzymes were compared (PvuII and EcoRI) are 

shown in table 1. Both EcoRI and PvuII are 6 bases cutters. Although EcoRI and 

PvuII belong to the type II restriction enzyme class, they are structurally different 

and cut DNA in a different manner (Koval and Matthews 1999; Pingoud and 

Jeltsch 2001). As can be see in table 1, most of the EcoRI digested isolates were 

mistakenly identified as Escherichia coli, whereas the PvuII digested isolates 

were classified as a variety of Salmonella serotypes and P. fluorescens. Although 

the isolates were positive for the agglutination test, and positive for Salmonella 

spp. according to the Analytical Profile Index (API) 20 E, they could not be 

classified as a specific serotype. The Salmonella isolates were typed with the two 

enzymes, the EcoRI protocol classified one as Salmonella AA, whereas PvuII 

identified it as S. Anatum. Similar results were obtained with another isolate that 

EcoRI classified as Salmonella AA, BB (S. Senftenberg and S. Reading), 

whereas PvuII classified it also as S. Anatum. This difficulty arises because of 

the genetic diversity of the thousands of Salmonella serotypes and the limited 

number of serotypes available for comparison in computer databases.   

To verify the results obtained with PvuII, we prepared King’s Media and 
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Table 1. Comparison of PvuII and EcoRI enzymes using Riboprinter®. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Sample code EcoRI PvuII Ag O 

WASSW5- 6503  
Pseudomona fluorescens 

  
WASSW8-6903   Salmonella spp 60% + 

WASSW13-22503 Escherichia coli S. Paratyphi B 60%   
    S. Montevideo 57% + 
    S. Oraienburg 57%   

WADSW1-11402 Salmonella AA Salmonella Anatum  +  
WADSW2-11402 Salmonella AA AB Salmonella Anatum  + 

  S.Reading, Senftenberg     

WAPTF-61103 
Escherichia coli 

Pseudomonas fluorescens 78%   
    S.IV Houten 58% + 
    S. Miller 57%   

WASSW14-6903 Escherichia coli 
Pseudomona fluorescens 

 +  
WASTF61103 Escherichia coli Pseudomona fluorescens 79%   

    S. Pullorum 60%    
    S. Marina 63% + 
    S. Houten IV 59%   

CASSW13-82203 Escherichia coli Pseudomona fluorescens 65%   
    S. Arizona III 63% + 
    S.Tennessee 59%   
    S. Paratyphy B 56%   

CASSW14-11603 Escherichia coli 
Pseudomona fluorescens 

 +  

CASFC1-22503 Escherichia coli 
Pseudomona fluorescens 

+ 

CASSW19-51903 Escherichia coli 84% 
Pseudomona fluorescens 

+ 

CABSW12-51903
Escherichia coli 

S. Pullorum 59%   
   S. Senftenberg 59% + 
   Pseudomona fluorescens 69%   
   S. Bangkok 60%   

CASS1-11603 Escherichia coli 80% Pseudomona fluorescens 85%   
   S. Pullorum 65%   
   S. Marina 62% + 
   S. IV Houten 59%   

CASFC1-11603 
Escherichia coli 

Pseudomona fluorescens 82%   
   S. Marina 62% + 
   S. Pullorum 64%   
   S. IV Houten 62%   

CASSW17-51903  Pseudomona flurescens 83%   

  
Escherichia coli 

S. Pullorum 66%  + 
    S. Marina 62%   
   S. IV Houten 62%   

TNSFC2-62803 
Escherichia coli 

S.Arizona III 73% + 
    S.Tennessee 83%   
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incubated isolates to determine if fluorescence under the UV light could be 

observed. None of the isolates fluoresced and other phenotypic characteristics of 

the isolates also did not support the possibility of the isolates being 

Pseudomonas. Therefore, PvuII misclassified the isolates as P. fluorecens. 

EcoRI gave very limited information and was only able to report a single species, 

which was Escherichia coli. According to Bailey et al. (2002), PvuII seems to be a 

better enzyme when identifying Salmonella isolates. It has been reported that the 

bacterial DNA is resistant to digestion when using EcoRI (Oscar 1997). Bailey et 

al. (2002) found from 80 to 90% correlation between serotypes of Salmonella 

analyzed with subtyping methods and Riboprinter® using PvuII enzyme.  Several 

studies have shown that the identification of Salmonella by restriction enzymes 

depends on the type of the restriction enzyme and the Salmonella 

strain.(Chadfield et al. 2001; Esteban et al. 1993; Millemann 1995; Olsen et al. 

1992).The strains used in this study are non-clinical isolates from varied 

environments. This might explain why significant diversity was found among the 

strains and why the enzymes provided different results. The use of EcoRI was 

not successful in discriminating among these Salmonella strains. 

Salmonella and E. coli live in the same environment, the gastrointestinal tract 

of humans and animals. They have been sharing genetic information for a long 

time. This may explain why E. coli and Salmonella sometimes overlap 

phenotypically and genotypically. The colonies from this study were expressing 

antigens that reacted for Salmonella antibodies. For this reason, all of the 

isolates that showed some Salmonella grouping using PvuII and were AgO 
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positive, were classified as Salmonella spp. Until further serological grouping, 

care must be taken when analyzing the results from ribotyping, especially when 

using different restriction enzymes on Salmonella from environment or food 

samples.  

 

IV. Conclusion 

There are more than 2400 serotypes of Salmonella known. Biochemical and 

serological tests have been used for years to identify and classify the members 

of the Salmonella genus. One must be careful when using molecular tools such 

as Riboprinter® to identify Salmonella isolates because misinterpretation can 

lead to misclassification of the organism. Understanding the principles, the 

limitations, and choosing the correct restriction enzyme as well as ensuring that 

biochemical and serological tests are not overlooked, will ensure more accurate 

identification of Salmonella serotypes.   
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Abstract 

Salmonella is the second most common cause of human salmonellosis in the 

United States (US). Whereas conventional methods have been successfully used 

for many years, new methods based on DNA analysis are increasingly used. The 

objective of this study is to compare Riboprinter® and Pulsed-Field Gel 

Electrophoresis (PFGE) for discriminatory power among Salmonella isolates from 

animals and farm environment as well as study their spatial and geographical 

relationships. PvuII was the restriction enzyme used for ribotyping, and XbaI was 

used for PFGE. The discrimination index obtained for Riboprinter® was 0.86.  

PFGE had a discrmination index of 0.98. Ribotyping classified the isolates into 13 

different ribogroups. Further differentiation was seen when a dendrogram was 

done. Most of the S. Anatum isolated were found to be clonal using Riboprinter®. 

PFGE was able to further discriminate among these isolates, suggesting even 

more diversity among the isolates. This study revealed significant diversity of 

Salmonella isolates from environmental samples. It was also found that related 

isolates grouped within geographical regions.  
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I. Introduction 

Salmonella is the second most common cause of foodborne infections in the 

United States. Human cases of salmonellosis have been long linked to the 

consumption of raw meat and unpasteurized dairy products (CDC 1994; CDC 

2003). Conventional methods based on biochemical and morphological methods 

for isolation and identification have been successfully used for many years. 

However, new technologies based on DNA analysis are increasingly used to 

classify and compare Salmonella spp. Two of theses techniques, ribotyping and 

Pulsed-Field Gel Electrophoresis (PFGE) use restriction enzymes to digest DNA 

that is then separated by electrophoresis (Olive and Bean 1999).   

 PFGE is considered to be “gold standard” for Salmonella identification and 

this method is currently used for the “PulseNet” program at the Centers for 

Disease Control and Prevention (CDC) (Swaminathan 2001). PFGE has been 

proven to be very useful when studying clonal populations (Sandvang et al. 

2000;Baloda et al. 2001Wonderling 2003) and when investigating human 

salmonellosis outbreaks (Barret et al. 1994; Gruner et al. 1997). Ribotyping using 

the automated Riboprinter® is less discriminatory than PFGE (Hollis et al. 1999; 

Pfaller et al. 1996) but much faster and requires less technical training.  

In this study both techniques, Riboprinter® and PFGE, are compared for 

discriminatory power among Salmonella isolated from several farm animals and 

their surrounding environment. Understanding the limitations of these techniques 

as well as the movement of Salmonella in the environment will help to establish 

better control for Salmonella at the farm.    
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II. Materials and Methods 

Salmonella isolation: Salmonella was isolated in a multistate study to 

determine the prevalence of Salmonella spp. in animals and their environment. 

This study was conducted by the Food Safety Center of Excellence at the 

University of Tennessee.  

Pulsed-field gel electrophoresis: Genomic DNA was prepared in agarose 

blocks. The method utilized for PFGE was described by Gautom (1997) for typing 

Gram-negative organisms. Isolates of Salmonella spp were grown overnight 

using Brain Heart Infusion (BHI) Agar (Difco, Sparks, MD) at 35 C and were 

suspended in 2 to 3 ml of TE buffer (100 mM Tris - 100 mM EDTA, pH 7.5). The 

cell suspension was adjusted with TE buffer to 20% transmittance using a 

colorimeter (bioMérieux). A 200 µl aliquot of the bacterial suspension was 

transferred to a 1.5 ml micro-centrifuge tube. To each tube, 10 µl proteinase K 

(20 mg/ml; Roche Molecular Biochemicals, Indianapolis, IN, USA) was added 

and gently mixed.  Added to this was 200 µl of 1.6% InCert/SDS agarose 

(BioWhittaker Molecular Applications, Rockland, ME, USA) maintained at 55°C. 

This bacterium-agarose mixture was added immediately to plug molds (Bio-Rad 

Laboratories, Hercules, CA, USA). Plugs were allowed to solidify for 10 min at 

4°C, and then transferred to a 2 ml tube containing 1.5 ml ES buffer (0.5 M 

EDTA, pH 9.0: 1% sodium-lauroyl-sarcosine; Sigma Chemical Co.) and 40 µl of 

proteinase K (20 mg/ml; Roche Molecular Biochemicals).  Plugs were incubated 

in a 55°C shaker water bath for 45 min. After incubation, ES buffer was removed 

and plugs were transferred to 50 ml tubes. Plugs were washed in 10 ml sterile 
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distilled water that was preheated to 50°C for 15 min in a shaker water bath. 

Water was removed and replaced with 10 ml Plug Wash TE buffer (10 mM Tris 

pH 7.5 and 1 mM EDTA, pH 7.5) preheated to 50°C. This was incubated at 50°C 

in a shaker water bath for 15 min. This wash was repeated 2 times with Plug 

Wash TE buffer at 50°C in a shaker water bath for 15 min. Plugs were stored at 

4°C in 1 ml Plug Wash TE until used.   

For restriction endonuclease digestion of genomic DNA, two 1-mm wide 

slices of plugs were incubated at 37°C for 1 to 1.5 h with 30 units XbaI 

(BioWhittaker Molecular Applications) restriction endonuclease enzyme in 100 µl 

of the appropriate restriction enzyme buffer.  

The DNA fragments were separated by clamped homogeneous electric field 

(CHEF) electrophoresis using a CHEF-Mapper (Bio-Rad Laboratories). Plug 

slices were loaded and electrophoresed in 1% SeaKem gold agarose 

(BioWhittaker Molecular Applications) with 2 L of 0.5X TBE (0.9 M Tris base, 0.9 

M Boric acid, 0.02 M EDTA pH 8.0) running buffer. Electrophoresis was 

performed with a CHEF-Mapper using the following conditions: initial switch time, 

2.16 s; final switch time, 35.07 s; angle, 120°; gradient, 6.0V/cm; temperature, 

14°C; ramping, linear; run time, 14 h.  After electrophoresis, gels were stained in 

500 ml distilled water with 50 µl ethidium bromide (10 mg/ml; Sigma Chemical 

Co.) for 20 min followed by two 15 min washes with distilled water. The DNA 

fragments were visualized by transillumination (Fotodyne Inc.) and photographed 

with type 55 Polaroid film (Polaroid Corp.).  
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Riboprinter®: The samples were processed following RiboPrinter® 

(Qualicom, Wilington, DE) protocol using PvuII as a restriction enzyme (Bailey et 

al 2002). The ribosomal DNA fragments were digested and processed ion a 

nylon membrane and hybridized with an E. coli DNA probe. Fragments were 

visualized by chemiluminescens and the image is captured by a CCD camera 

and taken to computer software for further analysis (Bruce 1996). The 

RiboPrinter® identifies isolates by bands matching and also classifies them into 

ribotypes (Oscar 1998). 

Strain classification: Molecular Analyst Software version 1.6 (Bio-Rad 

Laboratories) was used to determine strain relatedness for each of the two typing 

methods. The Dice binary coefficient along with the UPGMA (unweighted pair 

group method using arithmetic averages) was used to construct dendrograms 

and to determine similarities.  The dendrogram is visual illustration of the 

hierarchic representation of linkage levels between pairs of strains. Band position 

tolerance of 3% was used for comparison of DNA patterns. The Dice method 

only considers the presence or absence of bands. Strains that exhibited 93% 

similarity were considered to be the same subtype. A similarity of 93% was 

chosen to correspond with the Riboprinter® similarity index which is used under 

stringent quality control. The automated RiboPrinter® System uses a similarity 

index of 90% as a cut-off for identical strains. The RiboPrinter® Data Analysis 

System (DuPont-Qualicon) was also used for strain classification of Salmonella 

spp. isolates that were analyzed using the automated RiboPrinter®. Grouping of 

strains by the RiboPrinter® Microbial Characterization Data Analysis System 
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(DuPont-Qualicon) was compared to grouping of strains by the Molecular Analyst 

Software version 1.6 (Bio-Rad, Laboratories). 

 

III. Results and Discussion 

The Simpson’s index of diversity was calculated as described by Hunter and 

Gaston (1998).  The Simpson’s index of diversity for the Riboprinter® was 0.86, 

and for the PFGE was 0.98. This index was used to measure the genetic 

diversity in a population. 

Riboprinter® classified the isolates into 13 different ribogroups (figure 1). 

Ribogrouping is calculated by the program depending on the restriction enzyme 

used. Ribogrouping with PvuII is more flexible (Qualicom, personal 

communication) as oppose to EcoRI. The Riboprinter® compares the isolates to 

an internal library, and if it is not recognized, generates new ribogroups based on 

the new isolates loaded. Salmonella isolates used were not recognized by the 

PvuII library and were classified under new ribogroups of Salmonella.  

The dendrogram generated from the Salmonella isolates analyzed using 

Riborpinter® with PvuII restriction enzyme is shown in figure 1. Although the 

riboprinter generated only 13 ribogroups (figure 1), the dendrogram generated 

more clusters. This is in agreement with the way Riboprinter® classifies the 

isolates into ribogroups and was expected since the ribogrouping is flexible. 
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Figure1. Riboprinter Dendrogram generated using PvuII restriction enzyme. 

Correlation: Bands, Dice (Tol. 3.0%, Opt 0.5%, Min area 0.0%). Clustering: 

UPGMA. 
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The serotypes that followed under cluster C were 91% related (Figure 1). 

Cluster C was divided into 3 subclusters. Isolates with a similarity above 93% 

was identified as the same serotype. This was true for most of the serotypes that 

followed under C cluster. In the subcluster C1, there were two groups of 

serotypes that were 100% related. The first group consisted of three serotypes 

that were identified by riboprinting as S. Anatum/Newington (149-6), S. Saintpaul 

(142-3), and S. Anatum (136-6). The other two clonal serotypes identified were 

S. Anatum (141-5), and S. Anatum/Newington (139-5). All of these serotypes are 

so closely related genetically that the Riboprinter® may classify them into 

different serotypes even though they are the same. This is one of the limitations 

of the automated Riboprinter®. Ribotyping using PvuII as the restriction enzyme 

shows a great capability to classify the organisms as Salmonella spp. but 

sometimes can misclassify the serotypes depending on how closely related they 

are. The serotypes above may have arisen from the same clonal population.   

The subcluster C2 was divided into three groups. The first one showed that all 

of the isolates were clonal and serotyped as S. Anatum. Interestingly, one 

serotype (147-9) was classified in a different ribogroup (R6). The isolate 140-9 

was serotyped as S. Javiana. Although it was considered clonal with the other 

members of this cluster, it was close to 170-3 which was also a serotype as S. 

Javiana. The other major subcluster contained a clonal population where most of 

the serotypes corresponded to S. Anatum, with the exception of S. Javiana (148-

8) and S. Anatum/Newington (149-3; 149-11; 148-6). The third subcluster 

represented two different serotypes S. Anatum (139-2) and S. Javiana (170-6) 
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that were closely related (95%). The D cluster showed two clonal serotypes that 

have different ribogroups (R8 and R5) and different serotypes (S. Anatum and S. 

Worthington).The E cluster had all of the serotypes typed as Salmonella spp. 

These unclassified serotypes were expected since Riboprinter® did not classify 

them into any serotype. These isolates belonged to Salmonella spp. isolated 

from Washington State and California. Three Salmonella spp. from California 

were classified under the same ribogroup. Under the F cluster, the serotype was 

Salmonella Arizona/Tennessee, but according the API20E it was only S. Arizona. 

This might not have been detected by the Riboprinter® due to limitations of the 

library. These serotypes were classified under a different cluster in the 

dendrogram due to the classification of S. Arizona. An outlier was found under 

the last cluster and was classified a serotype under S. Javiana, which was not 

closely related to the other S. Javiana found.  

Under cluster A, there were two groups. The first corresponded to the 

serotypes S. Heidleberg, being 95% similar. The second group was a clonal 

population of serotypes identified as S. Reading (134-5; 134-6) and S. Sandiego 

(134-9). Since these three were clonal and were isolated from North Carolina 

turkey soil and swabs, probably the S. Sandiego was misclassified. Cluster B 

only had one sertotype that was classified under Salmonella spp.  

By states, most of the Southeastern serotypes tended to cluster close to each 

other (Tennessee and North Carolina). Washington and California serotypes 

were more dispersed and this correlates with the fact that most of the serotypes 

were classified as Salmonella spp because of their diversity. Temporally, most of 
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the serotypes obtained from Tennessee, Alabama and North Carolina were 

clustered together, especially those obtained during the winter 2002. The other 

serotypes were found to be more dispersed and less related.  

When analyzing the same isolates using PFGE (figure 2) a higher genetic 

diversity was observed. The Simpson’s index of diversity is a reflection of this, 

with a value of 0.98. This means that few of the salmonellae isolated were clonal. 

The dendrogram classified the isolates in two major clusters. The cluster A had 

the serotype identified as S. Arizona/Tennessee and S. Javiana which were 

isolated from North Carolina swine.  

Cluster B consisted of more different pulsotypes where most of the serotypes 

obtained were S. Anatum. A close relationship was found among isolates 

obtained in different states. The PFGE dendrogram grouped the isolates 

obtained from Southeastern US (Tennessee, North Carolina and Alabama), and 

more differentiation was found among Salmonella isolates found in California and 

Washington State. This is similar to the results found with Riboprinter®. Several 

clonal populations were found with PFGE. Two isolates typed as S. Anatum 

came from North Carolina turkey litter. S. Anatum isolates that came from 

Tennessee poultry and swine, and an Alabama dairy were considered clonal.  

The Tennessee swine farm was located close to a beef farm. Although not 

clonal, the serotypes obtained during this sample period in both farms were 95% 

similar. In these two farms the same serotype (S. Anatum) was isolated during 

the same season and due to the proximity of the two farms, a clonal population 

was suspected. Although not clonal, there was a high degree of similarity. 
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Figure2. PFGE Dendrogram generated using XbaI restriction enzyme. 

Correlation: Bands, Dice (Tol. 1.5%, Opt 0.5%, Min area 0.0%). Clustering: 

UPGMA. 
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One of the S. Anatum serotypes obtained from Washington State (asala2-10) 

that came from a dairy fecal swab was found to be clonal with a Tennessee 

poultry trough feed sample. Riboprinter® also classified these two serotypes in 

the same cluster. 

PFGE showed more discriminatory power than ribotyping for S. Anatum 

serotypes. Similar results were found by Nayak et al. (2004). Ribotyping has 

shown excellent capability for determining if the bacterium isolated belongs to the 

Salmonella species. Each technique differs in the way it analyzes the DNA. While 

Riboprinter® only accounts for the ribosomal DNA, the PFGE takes in account 

the whole bacterial genome. The ribosomal DNA is a conserved region and this 

may explain the high degree of clonacity found with the Riboprinter®. The 

technique also generates fewer bands than PFGE limiting its ability to further 

discriminate among isolates (Olive and Bean 1999). Mutations in the genome 

can easily be detected by PFGE (Bennekov et al. 1996). This may explain why a 

higher diversity was found in isolates using PFGE compared with Riboprinter®. 

PFGE has been shown to be a great tool to establish clonacity among isolates, 

so this would be very useful in determining the source of an outbreak (Barret et 

al. 1993). In this study the same serotype was isolated from dairy cows and a 

geographically close swine farm in Tennessee (data provided by the Food safety 

center of Excellence, The University of Tennessee). In this case, PFGE was 

used to discriminate among the serotypes and concluded that the isolates did not 

come from the same clonal population, although were closely related (93%). 
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For the isolates that were found clonal on PFGE, Ribotyping also found most 

of them to be clonal. The exception was an isolate from Alabama dairy bedding 1 

(Figure 1:141-5) that was 92% related to the others. Several outliers were found 

with PFGE for S. Anatum that were found clonal using Riboprinter. Weigel et al. 

(2004) also found that some serotypes (Agona, Anatum, Derby, Infantis and 

Worthington) were located across the riboprinting clusters.  

In the cluster where most of the S. Anatum were isolated, there were 

similarities to the Riboprinter® dendrogram. S. Javiana was classified with the S. 

Anatum serotypes (sal42903-7; sal42903-9). Similarly, S. Sandiego and S. 

Reading, were classified with a 95% similarity in the dendrogram (asala2-4; 

salb4-2; asala1-11). These serotypes came from the same North Carolina turkey 

farm, but from different seasons. The genetic similarity suggests a long survival 

of the salmonellae in the environment.  

Riboprinter® analyzes band pattern based on band position and intensity, 

whereas for PFGE, the way to analyze the bands is chosen by the operator. The 

Dice UPMGA is based on band position and not on band intensity. Genetic 

similarity is based on the distance between the bands analyzed. When entering 

PFGE bands in a computer to analyze, care must be taken to verify that all the 

bands are properly marked. The resolution of the computer may interfere with 

some of the bands and this can lead to a misclassification of the isolate. 

According to several authors, the use of both techniques can be used to 

determine the presence of Salmonella serotypes and to study their relationships 

(Fontana et al. 2003). PFGE has been extremely useful when studying human 
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outbreaks (Barret et al. 1994; Bender et al. 2004). Other authors have 

determined that depending on the serotype (Barret et al. 1994; Thong et al. 1995; 

Liebana et al. 2001) and the restriction enzyme used (Gunner et al. 1997), one 

technique can be superior to the other. Liebana et al. (2002) found that PFGE did 

not provide a good differentiation for the serotypes Enteriditis and Typhimurium. 

However, PFGE is generally considered to have a superior discrimination 

compared to Ribotyping (Hollis et al. 1999; Pfaller et al. 1996) because the larger 

number of bands obtained for analysis. 

 

IV. Conclusion 

PFGE is considered to be the Gold Standard for molecular analysis of 

Salmonella. Our Simpon’s diversity index supports this statement.  PFGE 

demonstrated a tremendous genetic diversity among the salmonellae isolated, 

but this technique is more time consuming than the Riboprinter® and required 

more expertise.  

Riboprinter® is a faster technique and has good capacity to distinguish 

among Salmonella isolates to a level where different serotypes can be studied. 

Depending on the requirements of the study the use of ribotyping has 

advantages, especially if large numbers of samples need to be analyzed. The 

automated Riboprinter® is a fast, reliable and repeatable technique, whereas 

PFGE requires a higher degree of expertise and more time. 

There was a significant diversity in Salmonella isolates across the US in the 

farm samples analyzed. However, geographic and seasonal relationships were 
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clearly demonstrated. Survival and competition with other enteric and native 

bacteria at the farm may have increased the diversity of the salmonellae in the 

farm animals. Understanding this genetic diversity will help to track salmonellae 

and develop programs to reduce and control the spread of salmonellae in the 

farm environment to prevent further spread and contamination the animals and 

the food supply. 
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